xref: /linux/kernel/exit.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70 
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_TGID);
77 		detach_pid(p, PIDTYPE_PGID);
78 		detach_pid(p, PIDTYPE_SID);
79 
80 		list_del_rcu(&p->tasks);
81 		list_del_init(&p->sibling);
82 		__this_cpu_dec(process_counts);
83 	}
84 	list_del_rcu(&p->thread_group);
85 	list_del_rcu(&p->thread_node);
86 }
87 
88 /*
89  * This function expects the tasklist_lock write-locked.
90  */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 	struct signal_struct *sig = tsk->signal;
94 	bool group_dead = thread_group_leader(tsk);
95 	struct sighand_struct *sighand;
96 	struct tty_struct *uninitialized_var(tty);
97 	u64 utime, stime;
98 
99 	sighand = rcu_dereference_check(tsk->sighand,
100 					lockdep_tasklist_lock_is_held());
101 	spin_lock(&sighand->siglock);
102 
103 #ifdef CONFIG_POSIX_TIMERS
104 	posix_cpu_timers_exit(tsk);
105 	if (group_dead) {
106 		posix_cpu_timers_exit_group(tsk);
107 	} else {
108 		/*
109 		 * This can only happen if the caller is de_thread().
110 		 * FIXME: this is the temporary hack, we should teach
111 		 * posix-cpu-timers to handle this case correctly.
112 		 */
113 		if (unlikely(has_group_leader_pid(tsk)))
114 			posix_cpu_timers_exit_group(tsk);
115 	}
116 #endif
117 
118 	if (group_dead) {
119 		tty = sig->tty;
120 		sig->tty = NULL;
121 	} else {
122 		/*
123 		 * If there is any task waiting for the group exit
124 		 * then notify it:
125 		 */
126 		if (sig->notify_count > 0 && !--sig->notify_count)
127 			wake_up_process(sig->group_exit_task);
128 
129 		if (tsk == sig->curr_target)
130 			sig->curr_target = next_thread(tsk);
131 	}
132 
133 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 			      sizeof(unsigned long long));
135 
136 	/*
137 	 * Accumulate here the counters for all threads as they die. We could
138 	 * skip the group leader because it is the last user of signal_struct,
139 	 * but we want to avoid the race with thread_group_cputime() which can
140 	 * see the empty ->thread_head list.
141 	 */
142 	task_cputime(tsk, &utime, &stime);
143 	write_seqlock(&sig->stats_lock);
144 	sig->utime += utime;
145 	sig->stime += stime;
146 	sig->gtime += task_gtime(tsk);
147 	sig->min_flt += tsk->min_flt;
148 	sig->maj_flt += tsk->maj_flt;
149 	sig->nvcsw += tsk->nvcsw;
150 	sig->nivcsw += tsk->nivcsw;
151 	sig->inblock += task_io_get_inblock(tsk);
152 	sig->oublock += task_io_get_oublock(tsk);
153 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
155 	sig->nr_threads--;
156 	__unhash_process(tsk, group_dead);
157 	write_sequnlock(&sig->stats_lock);
158 
159 	/*
160 	 * Do this under ->siglock, we can race with another thread
161 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 	 */
163 	flush_sigqueue(&tsk->pending);
164 	tsk->sighand = NULL;
165 	spin_unlock(&sighand->siglock);
166 
167 	__cleanup_sighand(sighand);
168 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
169 	if (group_dead) {
170 		flush_sigqueue(&sig->shared_pending);
171 		tty_kref_put(tty);
172 	}
173 }
174 
175 static void delayed_put_task_struct(struct rcu_head *rhp)
176 {
177 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
178 
179 	perf_event_delayed_put(tsk);
180 	trace_sched_process_free(tsk);
181 	put_task_struct(tsk);
182 }
183 
184 
185 void release_task(struct task_struct *p)
186 {
187 	struct task_struct *leader;
188 	int zap_leader;
189 repeat:
190 	/* don't need to get the RCU readlock here - the process is dead and
191 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 	rcu_read_lock();
193 	atomic_dec(&__task_cred(p)->user->processes);
194 	rcu_read_unlock();
195 
196 	proc_flush_task(p);
197 
198 	write_lock_irq(&tasklist_lock);
199 	ptrace_release_task(p);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	cgroup_release(p);
223 	release_thread(p);
224 	call_rcu(&p->rcu, delayed_put_task_struct);
225 
226 	p = leader;
227 	if (unlikely(zap_leader))
228 		goto repeat;
229 }
230 
231 /*
232  * Note that if this function returns a valid task_struct pointer (!NULL)
233  * task->usage must remain >0 for the duration of the RCU critical section.
234  */
235 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
236 {
237 	struct sighand_struct *sighand;
238 	struct task_struct *task;
239 
240 	/*
241 	 * We need to verify that release_task() was not called and thus
242 	 * delayed_put_task_struct() can't run and drop the last reference
243 	 * before rcu_read_unlock(). We check task->sighand != NULL,
244 	 * but we can read the already freed and reused memory.
245 	 */
246 retry:
247 	task = rcu_dereference(*ptask);
248 	if (!task)
249 		return NULL;
250 
251 	probe_kernel_address(&task->sighand, sighand);
252 
253 	/*
254 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
255 	 * was already freed we can not miss the preceding update of this
256 	 * pointer.
257 	 */
258 	smp_rmb();
259 	if (unlikely(task != READ_ONCE(*ptask)))
260 		goto retry;
261 
262 	/*
263 	 * We've re-checked that "task == *ptask", now we have two different
264 	 * cases:
265 	 *
266 	 * 1. This is actually the same task/task_struct. In this case
267 	 *    sighand != NULL tells us it is still alive.
268 	 *
269 	 * 2. This is another task which got the same memory for task_struct.
270 	 *    We can't know this of course, and we can not trust
271 	 *    sighand != NULL.
272 	 *
273 	 *    In this case we actually return a random value, but this is
274 	 *    correct.
275 	 *
276 	 *    If we return NULL - we can pretend that we actually noticed that
277 	 *    *ptask was updated when the previous task has exited. Or pretend
278 	 *    that probe_slab_address(&sighand) reads NULL.
279 	 *
280 	 *    If we return the new task (because sighand is not NULL for any
281 	 *    reason) - this is fine too. This (new) task can't go away before
282 	 *    another gp pass.
283 	 *
284 	 *    And note: We could even eliminate the false positive if re-read
285 	 *    task->sighand once again to avoid the falsely NULL. But this case
286 	 *    is very unlikely so we don't care.
287 	 */
288 	if (!sighand)
289 		return NULL;
290 
291 	return task;
292 }
293 
294 void rcuwait_wake_up(struct rcuwait *w)
295 {
296 	struct task_struct *task;
297 
298 	rcu_read_lock();
299 
300 	/*
301 	 * Order condition vs @task, such that everything prior to the load
302 	 * of @task is visible. This is the condition as to why the user called
303 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
304 	 * barrier (A) in rcuwait_wait_event().
305 	 *
306 	 *    WAIT                WAKE
307 	 *    [S] tsk = current	  [S] cond = true
308 	 *        MB (A)	      MB (B)
309 	 *    [L] cond		  [L] tsk
310 	 */
311 	smp_mb(); /* (B) */
312 
313 	/*
314 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
315 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
316 	 */
317 	task = rcu_dereference(w->task);
318 	if (task)
319 		wake_up_process(task);
320 	rcu_read_unlock();
321 }
322 
323 /*
324  * Determine if a process group is "orphaned", according to the POSIX
325  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
326  * by terminal-generated stop signals.  Newly orphaned process groups are
327  * to receive a SIGHUP and a SIGCONT.
328  *
329  * "I ask you, have you ever known what it is to be an orphan?"
330  */
331 static int will_become_orphaned_pgrp(struct pid *pgrp,
332 					struct task_struct *ignored_task)
333 {
334 	struct task_struct *p;
335 
336 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
337 		if ((p == ignored_task) ||
338 		    (p->exit_state && thread_group_empty(p)) ||
339 		    is_global_init(p->real_parent))
340 			continue;
341 
342 		if (task_pgrp(p->real_parent) != pgrp &&
343 		    task_session(p->real_parent) == task_session(p))
344 			return 0;
345 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
346 
347 	return 1;
348 }
349 
350 int is_current_pgrp_orphaned(void)
351 {
352 	int retval;
353 
354 	read_lock(&tasklist_lock);
355 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
356 	read_unlock(&tasklist_lock);
357 
358 	return retval;
359 }
360 
361 static bool has_stopped_jobs(struct pid *pgrp)
362 {
363 	struct task_struct *p;
364 
365 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
366 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
367 			return true;
368 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
369 
370 	return false;
371 }
372 
373 /*
374  * Check to see if any process groups have become orphaned as
375  * a result of our exiting, and if they have any stopped jobs,
376  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
377  */
378 static void
379 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
380 {
381 	struct pid *pgrp = task_pgrp(tsk);
382 	struct task_struct *ignored_task = tsk;
383 
384 	if (!parent)
385 		/* exit: our father is in a different pgrp than
386 		 * we are and we were the only connection outside.
387 		 */
388 		parent = tsk->real_parent;
389 	else
390 		/* reparent: our child is in a different pgrp than
391 		 * we are, and it was the only connection outside.
392 		 */
393 		ignored_task = NULL;
394 
395 	if (task_pgrp(parent) != pgrp &&
396 	    task_session(parent) == task_session(tsk) &&
397 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
398 	    has_stopped_jobs(pgrp)) {
399 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
400 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
401 	}
402 }
403 
404 #ifdef CONFIG_MEMCG
405 /*
406  * A task is exiting.   If it owned this mm, find a new owner for the mm.
407  */
408 void mm_update_next_owner(struct mm_struct *mm)
409 {
410 	struct task_struct *c, *g, *p = current;
411 
412 retry:
413 	/*
414 	 * If the exiting or execing task is not the owner, it's
415 	 * someone else's problem.
416 	 */
417 	if (mm->owner != p)
418 		return;
419 	/*
420 	 * The current owner is exiting/execing and there are no other
421 	 * candidates.  Do not leave the mm pointing to a possibly
422 	 * freed task structure.
423 	 */
424 	if (atomic_read(&mm->mm_users) <= 1) {
425 		mm->owner = NULL;
426 		return;
427 	}
428 
429 	read_lock(&tasklist_lock);
430 	/*
431 	 * Search in the children
432 	 */
433 	list_for_each_entry(c, &p->children, sibling) {
434 		if (c->mm == mm)
435 			goto assign_new_owner;
436 	}
437 
438 	/*
439 	 * Search in the siblings
440 	 */
441 	list_for_each_entry(c, &p->real_parent->children, sibling) {
442 		if (c->mm == mm)
443 			goto assign_new_owner;
444 	}
445 
446 	/*
447 	 * Search through everything else, we should not get here often.
448 	 */
449 	for_each_process(g) {
450 		if (g->flags & PF_KTHREAD)
451 			continue;
452 		for_each_thread(g, c) {
453 			if (c->mm == mm)
454 				goto assign_new_owner;
455 			if (c->mm)
456 				break;
457 		}
458 	}
459 	read_unlock(&tasklist_lock);
460 	/*
461 	 * We found no owner yet mm_users > 1: this implies that we are
462 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
463 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
464 	 */
465 	mm->owner = NULL;
466 	return;
467 
468 assign_new_owner:
469 	BUG_ON(c == p);
470 	get_task_struct(c);
471 	/*
472 	 * The task_lock protects c->mm from changing.
473 	 * We always want mm->owner->mm == mm
474 	 */
475 	task_lock(c);
476 	/*
477 	 * Delay read_unlock() till we have the task_lock()
478 	 * to ensure that c does not slip away underneath us
479 	 */
480 	read_unlock(&tasklist_lock);
481 	if (c->mm != mm) {
482 		task_unlock(c);
483 		put_task_struct(c);
484 		goto retry;
485 	}
486 	mm->owner = c;
487 	task_unlock(c);
488 	put_task_struct(c);
489 }
490 #endif /* CONFIG_MEMCG */
491 
492 /*
493  * Turn us into a lazy TLB process if we
494  * aren't already..
495  */
496 static void exit_mm(void)
497 {
498 	struct mm_struct *mm = current->mm;
499 	struct core_state *core_state;
500 
501 	mm_release(current, mm);
502 	if (!mm)
503 		return;
504 	sync_mm_rss(mm);
505 	/*
506 	 * Serialize with any possible pending coredump.
507 	 * We must hold mmap_sem around checking core_state
508 	 * and clearing tsk->mm.  The core-inducing thread
509 	 * will increment ->nr_threads for each thread in the
510 	 * group with ->mm != NULL.
511 	 */
512 	down_read(&mm->mmap_sem);
513 	core_state = mm->core_state;
514 	if (core_state) {
515 		struct core_thread self;
516 
517 		up_read(&mm->mmap_sem);
518 
519 		self.task = current;
520 		self.next = xchg(&core_state->dumper.next, &self);
521 		/*
522 		 * Implies mb(), the result of xchg() must be visible
523 		 * to core_state->dumper.
524 		 */
525 		if (atomic_dec_and_test(&core_state->nr_threads))
526 			complete(&core_state->startup);
527 
528 		for (;;) {
529 			set_current_state(TASK_UNINTERRUPTIBLE);
530 			if (!self.task) /* see coredump_finish() */
531 				break;
532 			freezable_schedule();
533 		}
534 		__set_current_state(TASK_RUNNING);
535 		down_read(&mm->mmap_sem);
536 	}
537 	mmgrab(mm);
538 	BUG_ON(mm != current->active_mm);
539 	/* more a memory barrier than a real lock */
540 	task_lock(current);
541 	current->mm = NULL;
542 	up_read(&mm->mmap_sem);
543 	enter_lazy_tlb(mm, current);
544 	task_unlock(current);
545 	mm_update_next_owner(mm);
546 	mmput(mm);
547 	if (test_thread_flag(TIF_MEMDIE))
548 		exit_oom_victim();
549 }
550 
551 static struct task_struct *find_alive_thread(struct task_struct *p)
552 {
553 	struct task_struct *t;
554 
555 	for_each_thread(p, t) {
556 		if (!(t->flags & PF_EXITING))
557 			return t;
558 	}
559 	return NULL;
560 }
561 
562 static struct task_struct *find_child_reaper(struct task_struct *father,
563 						struct list_head *dead)
564 	__releases(&tasklist_lock)
565 	__acquires(&tasklist_lock)
566 {
567 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
568 	struct task_struct *reaper = pid_ns->child_reaper;
569 	struct task_struct *p, *n;
570 
571 	if (likely(reaper != father))
572 		return reaper;
573 
574 	reaper = find_alive_thread(father);
575 	if (reaper) {
576 		pid_ns->child_reaper = reaper;
577 		return reaper;
578 	}
579 
580 	write_unlock_irq(&tasklist_lock);
581 	if (unlikely(pid_ns == &init_pid_ns)) {
582 		panic("Attempted to kill init! exitcode=0x%08x\n",
583 			father->signal->group_exit_code ?: father->exit_code);
584 	}
585 
586 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
587 		list_del_init(&p->ptrace_entry);
588 		release_task(p);
589 	}
590 
591 	zap_pid_ns_processes(pid_ns);
592 	write_lock_irq(&tasklist_lock);
593 
594 	return father;
595 }
596 
597 /*
598  * When we die, we re-parent all our children, and try to:
599  * 1. give them to another thread in our thread group, if such a member exists
600  * 2. give it to the first ancestor process which prctl'd itself as a
601  *    child_subreaper for its children (like a service manager)
602  * 3. give it to the init process (PID 1) in our pid namespace
603  */
604 static struct task_struct *find_new_reaper(struct task_struct *father,
605 					   struct task_struct *child_reaper)
606 {
607 	struct task_struct *thread, *reaper;
608 
609 	thread = find_alive_thread(father);
610 	if (thread)
611 		return thread;
612 
613 	if (father->signal->has_child_subreaper) {
614 		unsigned int ns_level = task_pid(father)->level;
615 		/*
616 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
617 		 * We can't check reaper != child_reaper to ensure we do not
618 		 * cross the namespaces, the exiting parent could be injected
619 		 * by setns() + fork().
620 		 * We check pid->level, this is slightly more efficient than
621 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
622 		 */
623 		for (reaper = father->real_parent;
624 		     task_pid(reaper)->level == ns_level;
625 		     reaper = reaper->real_parent) {
626 			if (reaper == &init_task)
627 				break;
628 			if (!reaper->signal->is_child_subreaper)
629 				continue;
630 			thread = find_alive_thread(reaper);
631 			if (thread)
632 				return thread;
633 		}
634 	}
635 
636 	return child_reaper;
637 }
638 
639 /*
640 * Any that need to be release_task'd are put on the @dead list.
641  */
642 static void reparent_leader(struct task_struct *father, struct task_struct *p,
643 				struct list_head *dead)
644 {
645 	if (unlikely(p->exit_state == EXIT_DEAD))
646 		return;
647 
648 	/* We don't want people slaying init. */
649 	p->exit_signal = SIGCHLD;
650 
651 	/* If it has exited notify the new parent about this child's death. */
652 	if (!p->ptrace &&
653 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
654 		if (do_notify_parent(p, p->exit_signal)) {
655 			p->exit_state = EXIT_DEAD;
656 			list_add(&p->ptrace_entry, dead);
657 		}
658 	}
659 
660 	kill_orphaned_pgrp(p, father);
661 }
662 
663 /*
664  * This does two things:
665  *
666  * A.  Make init inherit all the child processes
667  * B.  Check to see if any process groups have become orphaned
668  *	as a result of our exiting, and if they have any stopped
669  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
670  */
671 static void forget_original_parent(struct task_struct *father,
672 					struct list_head *dead)
673 {
674 	struct task_struct *p, *t, *reaper;
675 
676 	if (unlikely(!list_empty(&father->ptraced)))
677 		exit_ptrace(father, dead);
678 
679 	/* Can drop and reacquire tasklist_lock */
680 	reaper = find_child_reaper(father, dead);
681 	if (list_empty(&father->children))
682 		return;
683 
684 	reaper = find_new_reaper(father, reaper);
685 	list_for_each_entry(p, &father->children, sibling) {
686 		for_each_thread(p, t) {
687 			t->real_parent = reaper;
688 			BUG_ON((!t->ptrace) != (t->parent == father));
689 			if (likely(!t->ptrace))
690 				t->parent = t->real_parent;
691 			if (t->pdeath_signal)
692 				group_send_sig_info(t->pdeath_signal,
693 						    SEND_SIG_NOINFO, t,
694 						    PIDTYPE_TGID);
695 		}
696 		/*
697 		 * If this is a threaded reparent there is no need to
698 		 * notify anyone anything has happened.
699 		 */
700 		if (!same_thread_group(reaper, father))
701 			reparent_leader(father, p, dead);
702 	}
703 	list_splice_tail_init(&father->children, &reaper->children);
704 }
705 
706 /*
707  * Send signals to all our closest relatives so that they know
708  * to properly mourn us..
709  */
710 static void exit_notify(struct task_struct *tsk, int group_dead)
711 {
712 	bool autoreap;
713 	struct task_struct *p, *n;
714 	LIST_HEAD(dead);
715 
716 	write_lock_irq(&tasklist_lock);
717 	forget_original_parent(tsk, &dead);
718 
719 	if (group_dead)
720 		kill_orphaned_pgrp(tsk->group_leader, NULL);
721 
722 	if (unlikely(tsk->ptrace)) {
723 		int sig = thread_group_leader(tsk) &&
724 				thread_group_empty(tsk) &&
725 				!ptrace_reparented(tsk) ?
726 			tsk->exit_signal : SIGCHLD;
727 		autoreap = do_notify_parent(tsk, sig);
728 	} else if (thread_group_leader(tsk)) {
729 		autoreap = thread_group_empty(tsk) &&
730 			do_notify_parent(tsk, tsk->exit_signal);
731 	} else {
732 		autoreap = true;
733 	}
734 
735 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
736 	if (tsk->exit_state == EXIT_DEAD)
737 		list_add(&tsk->ptrace_entry, &dead);
738 
739 	/* mt-exec, de_thread() is waiting for group leader */
740 	if (unlikely(tsk->signal->notify_count < 0))
741 		wake_up_process(tsk->signal->group_exit_task);
742 	write_unlock_irq(&tasklist_lock);
743 
744 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
745 		list_del_init(&p->ptrace_entry);
746 		release_task(p);
747 	}
748 }
749 
750 #ifdef CONFIG_DEBUG_STACK_USAGE
751 static void check_stack_usage(void)
752 {
753 	static DEFINE_SPINLOCK(low_water_lock);
754 	static int lowest_to_date = THREAD_SIZE;
755 	unsigned long free;
756 
757 	free = stack_not_used(current);
758 
759 	if (free >= lowest_to_date)
760 		return;
761 
762 	spin_lock(&low_water_lock);
763 	if (free < lowest_to_date) {
764 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
765 			current->comm, task_pid_nr(current), free);
766 		lowest_to_date = free;
767 	}
768 	spin_unlock(&low_water_lock);
769 }
770 #else
771 static inline void check_stack_usage(void) {}
772 #endif
773 
774 void __noreturn do_exit(long code)
775 {
776 	struct task_struct *tsk = current;
777 	int group_dead;
778 
779 	profile_task_exit(tsk);
780 	kcov_task_exit(tsk);
781 
782 	WARN_ON(blk_needs_flush_plug(tsk));
783 
784 	if (unlikely(in_interrupt()))
785 		panic("Aiee, killing interrupt handler!");
786 	if (unlikely(!tsk->pid))
787 		panic("Attempted to kill the idle task!");
788 
789 	/*
790 	 * If do_exit is called because this processes oopsed, it's possible
791 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
792 	 * continuing. Amongst other possible reasons, this is to prevent
793 	 * mm_release()->clear_child_tid() from writing to a user-controlled
794 	 * kernel address.
795 	 */
796 	set_fs(USER_DS);
797 
798 	ptrace_event(PTRACE_EVENT_EXIT, code);
799 
800 	validate_creds_for_do_exit(tsk);
801 
802 	/*
803 	 * We're taking recursive faults here in do_exit. Safest is to just
804 	 * leave this task alone and wait for reboot.
805 	 */
806 	if (unlikely(tsk->flags & PF_EXITING)) {
807 		pr_alert("Fixing recursive fault but reboot is needed!\n");
808 		/*
809 		 * We can do this unlocked here. The futex code uses
810 		 * this flag just to verify whether the pi state
811 		 * cleanup has been done or not. In the worst case it
812 		 * loops once more. We pretend that the cleanup was
813 		 * done as there is no way to return. Either the
814 		 * OWNER_DIED bit is set by now or we push the blocked
815 		 * task into the wait for ever nirwana as well.
816 		 */
817 		tsk->flags |= PF_EXITPIDONE;
818 		set_current_state(TASK_UNINTERRUPTIBLE);
819 		schedule();
820 	}
821 
822 	exit_signals(tsk);  /* sets PF_EXITING */
823 	/*
824 	 * Ensure that all new tsk->pi_lock acquisitions must observe
825 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
826 	 */
827 	smp_mb();
828 	/*
829 	 * Ensure that we must observe the pi_state in exit_mm() ->
830 	 * mm_release() -> exit_pi_state_list().
831 	 */
832 	raw_spin_lock_irq(&tsk->pi_lock);
833 	raw_spin_unlock_irq(&tsk->pi_lock);
834 
835 	if (unlikely(in_atomic())) {
836 		pr_info("note: %s[%d] exited with preempt_count %d\n",
837 			current->comm, task_pid_nr(current),
838 			preempt_count());
839 		preempt_count_set(PREEMPT_ENABLED);
840 	}
841 
842 	/* sync mm's RSS info before statistics gathering */
843 	if (tsk->mm)
844 		sync_mm_rss(tsk->mm);
845 	acct_update_integrals(tsk);
846 	group_dead = atomic_dec_and_test(&tsk->signal->live);
847 	if (group_dead) {
848 #ifdef CONFIG_POSIX_TIMERS
849 		hrtimer_cancel(&tsk->signal->real_timer);
850 		exit_itimers(tsk->signal);
851 #endif
852 		if (tsk->mm)
853 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
854 	}
855 	acct_collect(code, group_dead);
856 	if (group_dead)
857 		tty_audit_exit();
858 	audit_free(tsk);
859 
860 	tsk->exit_code = code;
861 	taskstats_exit(tsk, group_dead);
862 
863 	exit_mm();
864 
865 	if (group_dead)
866 		acct_process();
867 	trace_sched_process_exit(tsk);
868 
869 	exit_sem(tsk);
870 	exit_shm(tsk);
871 	exit_files(tsk);
872 	exit_fs(tsk);
873 	if (group_dead)
874 		disassociate_ctty(1);
875 	exit_task_namespaces(tsk);
876 	exit_task_work(tsk);
877 	exit_thread(tsk);
878 	exit_umh(tsk);
879 
880 	/*
881 	 * Flush inherited counters to the parent - before the parent
882 	 * gets woken up by child-exit notifications.
883 	 *
884 	 * because of cgroup mode, must be called before cgroup_exit()
885 	 */
886 	perf_event_exit_task(tsk);
887 
888 	sched_autogroup_exit_task(tsk);
889 	cgroup_exit(tsk);
890 
891 	/*
892 	 * FIXME: do that only when needed, using sched_exit tracepoint
893 	 */
894 	flush_ptrace_hw_breakpoint(tsk);
895 
896 	exit_tasks_rcu_start();
897 	exit_notify(tsk, group_dead);
898 	proc_exit_connector(tsk);
899 	mpol_put_task_policy(tsk);
900 #ifdef CONFIG_FUTEX
901 	if (unlikely(current->pi_state_cache))
902 		kfree(current->pi_state_cache);
903 #endif
904 	/*
905 	 * Make sure we are holding no locks:
906 	 */
907 	debug_check_no_locks_held();
908 	/*
909 	 * We can do this unlocked here. The futex code uses this flag
910 	 * just to verify whether the pi state cleanup has been done
911 	 * or not. In the worst case it loops once more.
912 	 */
913 	tsk->flags |= PF_EXITPIDONE;
914 
915 	if (tsk->io_context)
916 		exit_io_context(tsk);
917 
918 	if (tsk->splice_pipe)
919 		free_pipe_info(tsk->splice_pipe);
920 
921 	if (tsk->task_frag.page)
922 		put_page(tsk->task_frag.page);
923 
924 	validate_creds_for_do_exit(tsk);
925 
926 	check_stack_usage();
927 	preempt_disable();
928 	if (tsk->nr_dirtied)
929 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
930 	exit_rcu();
931 	exit_tasks_rcu_finish();
932 
933 	lockdep_free_task(tsk);
934 	do_task_dead();
935 }
936 EXPORT_SYMBOL_GPL(do_exit);
937 
938 void complete_and_exit(struct completion *comp, long code)
939 {
940 	if (comp)
941 		complete(comp);
942 
943 	do_exit(code);
944 }
945 EXPORT_SYMBOL(complete_and_exit);
946 
947 SYSCALL_DEFINE1(exit, int, error_code)
948 {
949 	do_exit((error_code&0xff)<<8);
950 }
951 
952 /*
953  * Take down every thread in the group.  This is called by fatal signals
954  * as well as by sys_exit_group (below).
955  */
956 void
957 do_group_exit(int exit_code)
958 {
959 	struct signal_struct *sig = current->signal;
960 
961 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
962 
963 	if (signal_group_exit(sig))
964 		exit_code = sig->group_exit_code;
965 	else if (!thread_group_empty(current)) {
966 		struct sighand_struct *const sighand = current->sighand;
967 
968 		spin_lock_irq(&sighand->siglock);
969 		if (signal_group_exit(sig))
970 			/* Another thread got here before we took the lock.  */
971 			exit_code = sig->group_exit_code;
972 		else {
973 			sig->group_exit_code = exit_code;
974 			sig->flags = SIGNAL_GROUP_EXIT;
975 			zap_other_threads(current);
976 		}
977 		spin_unlock_irq(&sighand->siglock);
978 	}
979 
980 	do_exit(exit_code);
981 	/* NOTREACHED */
982 }
983 
984 /*
985  * this kills every thread in the thread group. Note that any externally
986  * wait4()-ing process will get the correct exit code - even if this
987  * thread is not the thread group leader.
988  */
989 SYSCALL_DEFINE1(exit_group, int, error_code)
990 {
991 	do_group_exit((error_code & 0xff) << 8);
992 	/* NOTREACHED */
993 	return 0;
994 }
995 
996 struct waitid_info {
997 	pid_t pid;
998 	uid_t uid;
999 	int status;
1000 	int cause;
1001 };
1002 
1003 struct wait_opts {
1004 	enum pid_type		wo_type;
1005 	int			wo_flags;
1006 	struct pid		*wo_pid;
1007 
1008 	struct waitid_info	*wo_info;
1009 	int			wo_stat;
1010 	struct rusage		*wo_rusage;
1011 
1012 	wait_queue_entry_t		child_wait;
1013 	int			notask_error;
1014 };
1015 
1016 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1017 {
1018 	return	wo->wo_type == PIDTYPE_MAX ||
1019 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1020 }
1021 
1022 static int
1023 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1024 {
1025 	if (!eligible_pid(wo, p))
1026 		return 0;
1027 
1028 	/*
1029 	 * Wait for all children (clone and not) if __WALL is set or
1030 	 * if it is traced by us.
1031 	 */
1032 	if (ptrace || (wo->wo_flags & __WALL))
1033 		return 1;
1034 
1035 	/*
1036 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1037 	 * otherwise, wait for non-clone children *only*.
1038 	 *
1039 	 * Note: a "clone" child here is one that reports to its parent
1040 	 * using a signal other than SIGCHLD, or a non-leader thread which
1041 	 * we can only see if it is traced by us.
1042 	 */
1043 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1044 		return 0;
1045 
1046 	return 1;
1047 }
1048 
1049 /*
1050  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1051  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1052  * the lock and this task is uninteresting.  If we return nonzero, we have
1053  * released the lock and the system call should return.
1054  */
1055 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1056 {
1057 	int state, status;
1058 	pid_t pid = task_pid_vnr(p);
1059 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1060 	struct waitid_info *infop;
1061 
1062 	if (!likely(wo->wo_flags & WEXITED))
1063 		return 0;
1064 
1065 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1066 		status = p->exit_code;
1067 		get_task_struct(p);
1068 		read_unlock(&tasklist_lock);
1069 		sched_annotate_sleep();
1070 		if (wo->wo_rusage)
1071 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1072 		put_task_struct(p);
1073 		goto out_info;
1074 	}
1075 	/*
1076 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1077 	 */
1078 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1079 		EXIT_TRACE : EXIT_DEAD;
1080 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1081 		return 0;
1082 	/*
1083 	 * We own this thread, nobody else can reap it.
1084 	 */
1085 	read_unlock(&tasklist_lock);
1086 	sched_annotate_sleep();
1087 
1088 	/*
1089 	 * Check thread_group_leader() to exclude the traced sub-threads.
1090 	 */
1091 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1092 		struct signal_struct *sig = p->signal;
1093 		struct signal_struct *psig = current->signal;
1094 		unsigned long maxrss;
1095 		u64 tgutime, tgstime;
1096 
1097 		/*
1098 		 * The resource counters for the group leader are in its
1099 		 * own task_struct.  Those for dead threads in the group
1100 		 * are in its signal_struct, as are those for the child
1101 		 * processes it has previously reaped.  All these
1102 		 * accumulate in the parent's signal_struct c* fields.
1103 		 *
1104 		 * We don't bother to take a lock here to protect these
1105 		 * p->signal fields because the whole thread group is dead
1106 		 * and nobody can change them.
1107 		 *
1108 		 * psig->stats_lock also protects us from our sub-theads
1109 		 * which can reap other children at the same time. Until
1110 		 * we change k_getrusage()-like users to rely on this lock
1111 		 * we have to take ->siglock as well.
1112 		 *
1113 		 * We use thread_group_cputime_adjusted() to get times for
1114 		 * the thread group, which consolidates times for all threads
1115 		 * in the group including the group leader.
1116 		 */
1117 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1118 		spin_lock_irq(&current->sighand->siglock);
1119 		write_seqlock(&psig->stats_lock);
1120 		psig->cutime += tgutime + sig->cutime;
1121 		psig->cstime += tgstime + sig->cstime;
1122 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1123 		psig->cmin_flt +=
1124 			p->min_flt + sig->min_flt + sig->cmin_flt;
1125 		psig->cmaj_flt +=
1126 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1127 		psig->cnvcsw +=
1128 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1129 		psig->cnivcsw +=
1130 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1131 		psig->cinblock +=
1132 			task_io_get_inblock(p) +
1133 			sig->inblock + sig->cinblock;
1134 		psig->coublock +=
1135 			task_io_get_oublock(p) +
1136 			sig->oublock + sig->coublock;
1137 		maxrss = max(sig->maxrss, sig->cmaxrss);
1138 		if (psig->cmaxrss < maxrss)
1139 			psig->cmaxrss = maxrss;
1140 		task_io_accounting_add(&psig->ioac, &p->ioac);
1141 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1142 		write_sequnlock(&psig->stats_lock);
1143 		spin_unlock_irq(&current->sighand->siglock);
1144 	}
1145 
1146 	if (wo->wo_rusage)
1147 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1148 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1149 		? p->signal->group_exit_code : p->exit_code;
1150 	wo->wo_stat = status;
1151 
1152 	if (state == EXIT_TRACE) {
1153 		write_lock_irq(&tasklist_lock);
1154 		/* We dropped tasklist, ptracer could die and untrace */
1155 		ptrace_unlink(p);
1156 
1157 		/* If parent wants a zombie, don't release it now */
1158 		state = EXIT_ZOMBIE;
1159 		if (do_notify_parent(p, p->exit_signal))
1160 			state = EXIT_DEAD;
1161 		p->exit_state = state;
1162 		write_unlock_irq(&tasklist_lock);
1163 	}
1164 	if (state == EXIT_DEAD)
1165 		release_task(p);
1166 
1167 out_info:
1168 	infop = wo->wo_info;
1169 	if (infop) {
1170 		if ((status & 0x7f) == 0) {
1171 			infop->cause = CLD_EXITED;
1172 			infop->status = status >> 8;
1173 		} else {
1174 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1175 			infop->status = status & 0x7f;
1176 		}
1177 		infop->pid = pid;
1178 		infop->uid = uid;
1179 	}
1180 
1181 	return pid;
1182 }
1183 
1184 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1185 {
1186 	if (ptrace) {
1187 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1188 			return &p->exit_code;
1189 	} else {
1190 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1191 			return &p->signal->group_exit_code;
1192 	}
1193 	return NULL;
1194 }
1195 
1196 /**
1197  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1198  * @wo: wait options
1199  * @ptrace: is the wait for ptrace
1200  * @p: task to wait for
1201  *
1202  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1203  *
1204  * CONTEXT:
1205  * read_lock(&tasklist_lock), which is released if return value is
1206  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1207  *
1208  * RETURNS:
1209  * 0 if wait condition didn't exist and search for other wait conditions
1210  * should continue.  Non-zero return, -errno on failure and @p's pid on
1211  * success, implies that tasklist_lock is released and wait condition
1212  * search should terminate.
1213  */
1214 static int wait_task_stopped(struct wait_opts *wo,
1215 				int ptrace, struct task_struct *p)
1216 {
1217 	struct waitid_info *infop;
1218 	int exit_code, *p_code, why;
1219 	uid_t uid = 0; /* unneeded, required by compiler */
1220 	pid_t pid;
1221 
1222 	/*
1223 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1224 	 */
1225 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1226 		return 0;
1227 
1228 	if (!task_stopped_code(p, ptrace))
1229 		return 0;
1230 
1231 	exit_code = 0;
1232 	spin_lock_irq(&p->sighand->siglock);
1233 
1234 	p_code = task_stopped_code(p, ptrace);
1235 	if (unlikely(!p_code))
1236 		goto unlock_sig;
1237 
1238 	exit_code = *p_code;
1239 	if (!exit_code)
1240 		goto unlock_sig;
1241 
1242 	if (!unlikely(wo->wo_flags & WNOWAIT))
1243 		*p_code = 0;
1244 
1245 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1246 unlock_sig:
1247 	spin_unlock_irq(&p->sighand->siglock);
1248 	if (!exit_code)
1249 		return 0;
1250 
1251 	/*
1252 	 * Now we are pretty sure this task is interesting.
1253 	 * Make sure it doesn't get reaped out from under us while we
1254 	 * give up the lock and then examine it below.  We don't want to
1255 	 * keep holding onto the tasklist_lock while we call getrusage and
1256 	 * possibly take page faults for user memory.
1257 	 */
1258 	get_task_struct(p);
1259 	pid = task_pid_vnr(p);
1260 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1261 	read_unlock(&tasklist_lock);
1262 	sched_annotate_sleep();
1263 	if (wo->wo_rusage)
1264 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1265 	put_task_struct(p);
1266 
1267 	if (likely(!(wo->wo_flags & WNOWAIT)))
1268 		wo->wo_stat = (exit_code << 8) | 0x7f;
1269 
1270 	infop = wo->wo_info;
1271 	if (infop) {
1272 		infop->cause = why;
1273 		infop->status = exit_code;
1274 		infop->pid = pid;
1275 		infop->uid = uid;
1276 	}
1277 	return pid;
1278 }
1279 
1280 /*
1281  * Handle do_wait work for one task in a live, non-stopped state.
1282  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1283  * the lock and this task is uninteresting.  If we return nonzero, we have
1284  * released the lock and the system call should return.
1285  */
1286 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1287 {
1288 	struct waitid_info *infop;
1289 	pid_t pid;
1290 	uid_t uid;
1291 
1292 	if (!unlikely(wo->wo_flags & WCONTINUED))
1293 		return 0;
1294 
1295 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1296 		return 0;
1297 
1298 	spin_lock_irq(&p->sighand->siglock);
1299 	/* Re-check with the lock held.  */
1300 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1301 		spin_unlock_irq(&p->sighand->siglock);
1302 		return 0;
1303 	}
1304 	if (!unlikely(wo->wo_flags & WNOWAIT))
1305 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1306 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1307 	spin_unlock_irq(&p->sighand->siglock);
1308 
1309 	pid = task_pid_vnr(p);
1310 	get_task_struct(p);
1311 	read_unlock(&tasklist_lock);
1312 	sched_annotate_sleep();
1313 	if (wo->wo_rusage)
1314 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1315 	put_task_struct(p);
1316 
1317 	infop = wo->wo_info;
1318 	if (!infop) {
1319 		wo->wo_stat = 0xffff;
1320 	} else {
1321 		infop->cause = CLD_CONTINUED;
1322 		infop->pid = pid;
1323 		infop->uid = uid;
1324 		infop->status = SIGCONT;
1325 	}
1326 	return pid;
1327 }
1328 
1329 /*
1330  * Consider @p for a wait by @parent.
1331  *
1332  * -ECHILD should be in ->notask_error before the first call.
1333  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1334  * Returns zero if the search for a child should continue;
1335  * then ->notask_error is 0 if @p is an eligible child,
1336  * or still -ECHILD.
1337  */
1338 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1339 				struct task_struct *p)
1340 {
1341 	/*
1342 	 * We can race with wait_task_zombie() from another thread.
1343 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1344 	 * can't confuse the checks below.
1345 	 */
1346 	int exit_state = READ_ONCE(p->exit_state);
1347 	int ret;
1348 
1349 	if (unlikely(exit_state == EXIT_DEAD))
1350 		return 0;
1351 
1352 	ret = eligible_child(wo, ptrace, p);
1353 	if (!ret)
1354 		return ret;
1355 
1356 	if (unlikely(exit_state == EXIT_TRACE)) {
1357 		/*
1358 		 * ptrace == 0 means we are the natural parent. In this case
1359 		 * we should clear notask_error, debugger will notify us.
1360 		 */
1361 		if (likely(!ptrace))
1362 			wo->notask_error = 0;
1363 		return 0;
1364 	}
1365 
1366 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1367 		/*
1368 		 * If it is traced by its real parent's group, just pretend
1369 		 * the caller is ptrace_do_wait() and reap this child if it
1370 		 * is zombie.
1371 		 *
1372 		 * This also hides group stop state from real parent; otherwise
1373 		 * a single stop can be reported twice as group and ptrace stop.
1374 		 * If a ptracer wants to distinguish these two events for its
1375 		 * own children it should create a separate process which takes
1376 		 * the role of real parent.
1377 		 */
1378 		if (!ptrace_reparented(p))
1379 			ptrace = 1;
1380 	}
1381 
1382 	/* slay zombie? */
1383 	if (exit_state == EXIT_ZOMBIE) {
1384 		/* we don't reap group leaders with subthreads */
1385 		if (!delay_group_leader(p)) {
1386 			/*
1387 			 * A zombie ptracee is only visible to its ptracer.
1388 			 * Notification and reaping will be cascaded to the
1389 			 * real parent when the ptracer detaches.
1390 			 */
1391 			if (unlikely(ptrace) || likely(!p->ptrace))
1392 				return wait_task_zombie(wo, p);
1393 		}
1394 
1395 		/*
1396 		 * Allow access to stopped/continued state via zombie by
1397 		 * falling through.  Clearing of notask_error is complex.
1398 		 *
1399 		 * When !@ptrace:
1400 		 *
1401 		 * If WEXITED is set, notask_error should naturally be
1402 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1403 		 * so, if there are live subthreads, there are events to
1404 		 * wait for.  If all subthreads are dead, it's still safe
1405 		 * to clear - this function will be called again in finite
1406 		 * amount time once all the subthreads are released and
1407 		 * will then return without clearing.
1408 		 *
1409 		 * When @ptrace:
1410 		 *
1411 		 * Stopped state is per-task and thus can't change once the
1412 		 * target task dies.  Only continued and exited can happen.
1413 		 * Clear notask_error if WCONTINUED | WEXITED.
1414 		 */
1415 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1416 			wo->notask_error = 0;
1417 	} else {
1418 		/*
1419 		 * @p is alive and it's gonna stop, continue or exit, so
1420 		 * there always is something to wait for.
1421 		 */
1422 		wo->notask_error = 0;
1423 	}
1424 
1425 	/*
1426 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1427 	 * is used and the two don't interact with each other.
1428 	 */
1429 	ret = wait_task_stopped(wo, ptrace, p);
1430 	if (ret)
1431 		return ret;
1432 
1433 	/*
1434 	 * Wait for continued.  There's only one continued state and the
1435 	 * ptracer can consume it which can confuse the real parent.  Don't
1436 	 * use WCONTINUED from ptracer.  You don't need or want it.
1437 	 */
1438 	return wait_task_continued(wo, p);
1439 }
1440 
1441 /*
1442  * Do the work of do_wait() for one thread in the group, @tsk.
1443  *
1444  * -ECHILD should be in ->notask_error before the first call.
1445  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1446  * Returns zero if the search for a child should continue; then
1447  * ->notask_error is 0 if there were any eligible children,
1448  * or still -ECHILD.
1449  */
1450 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1451 {
1452 	struct task_struct *p;
1453 
1454 	list_for_each_entry(p, &tsk->children, sibling) {
1455 		int ret = wait_consider_task(wo, 0, p);
1456 
1457 		if (ret)
1458 			return ret;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1465 {
1466 	struct task_struct *p;
1467 
1468 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1469 		int ret = wait_consider_task(wo, 1, p);
1470 
1471 		if (ret)
1472 			return ret;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1479 				int sync, void *key)
1480 {
1481 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1482 						child_wait);
1483 	struct task_struct *p = key;
1484 
1485 	if (!eligible_pid(wo, p))
1486 		return 0;
1487 
1488 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1489 		return 0;
1490 
1491 	return default_wake_function(wait, mode, sync, key);
1492 }
1493 
1494 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1495 {
1496 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1497 				TASK_INTERRUPTIBLE, 1, p);
1498 }
1499 
1500 static long do_wait(struct wait_opts *wo)
1501 {
1502 	struct task_struct *tsk;
1503 	int retval;
1504 
1505 	trace_sched_process_wait(wo->wo_pid);
1506 
1507 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1508 	wo->child_wait.private = current;
1509 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1510 repeat:
1511 	/*
1512 	 * If there is nothing that can match our criteria, just get out.
1513 	 * We will clear ->notask_error to zero if we see any child that
1514 	 * might later match our criteria, even if we are not able to reap
1515 	 * it yet.
1516 	 */
1517 	wo->notask_error = -ECHILD;
1518 	if ((wo->wo_type < PIDTYPE_MAX) &&
1519 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1520 		goto notask;
1521 
1522 	set_current_state(TASK_INTERRUPTIBLE);
1523 	read_lock(&tasklist_lock);
1524 	tsk = current;
1525 	do {
1526 		retval = do_wait_thread(wo, tsk);
1527 		if (retval)
1528 			goto end;
1529 
1530 		retval = ptrace_do_wait(wo, tsk);
1531 		if (retval)
1532 			goto end;
1533 
1534 		if (wo->wo_flags & __WNOTHREAD)
1535 			break;
1536 	} while_each_thread(current, tsk);
1537 	read_unlock(&tasklist_lock);
1538 
1539 notask:
1540 	retval = wo->notask_error;
1541 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1542 		retval = -ERESTARTSYS;
1543 		if (!signal_pending(current)) {
1544 			schedule();
1545 			goto repeat;
1546 		}
1547 	}
1548 end:
1549 	__set_current_state(TASK_RUNNING);
1550 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1551 	return retval;
1552 }
1553 
1554 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1555 			  int options, struct rusage *ru)
1556 {
1557 	struct wait_opts wo;
1558 	struct pid *pid = NULL;
1559 	enum pid_type type;
1560 	long ret;
1561 
1562 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1563 			__WNOTHREAD|__WCLONE|__WALL))
1564 		return -EINVAL;
1565 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1566 		return -EINVAL;
1567 
1568 	switch (which) {
1569 	case P_ALL:
1570 		type = PIDTYPE_MAX;
1571 		break;
1572 	case P_PID:
1573 		type = PIDTYPE_PID;
1574 		if (upid <= 0)
1575 			return -EINVAL;
1576 		break;
1577 	case P_PGID:
1578 		type = PIDTYPE_PGID;
1579 		if (upid <= 0)
1580 			return -EINVAL;
1581 		break;
1582 	default:
1583 		return -EINVAL;
1584 	}
1585 
1586 	if (type < PIDTYPE_MAX)
1587 		pid = find_get_pid(upid);
1588 
1589 	wo.wo_type	= type;
1590 	wo.wo_pid	= pid;
1591 	wo.wo_flags	= options;
1592 	wo.wo_info	= infop;
1593 	wo.wo_rusage	= ru;
1594 	ret = do_wait(&wo);
1595 
1596 	put_pid(pid);
1597 	return ret;
1598 }
1599 
1600 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1601 		infop, int, options, struct rusage __user *, ru)
1602 {
1603 	struct rusage r;
1604 	struct waitid_info info = {.status = 0};
1605 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1606 	int signo = 0;
1607 
1608 	if (err > 0) {
1609 		signo = SIGCHLD;
1610 		err = 0;
1611 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1612 			return -EFAULT;
1613 	}
1614 	if (!infop)
1615 		return err;
1616 
1617 	if (!user_access_begin(infop, sizeof(*infop)))
1618 		return -EFAULT;
1619 
1620 	unsafe_put_user(signo, &infop->si_signo, Efault);
1621 	unsafe_put_user(0, &infop->si_errno, Efault);
1622 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1623 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1624 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1625 	unsafe_put_user(info.status, &infop->si_status, Efault);
1626 	user_access_end();
1627 	return err;
1628 Efault:
1629 	user_access_end();
1630 	return -EFAULT;
1631 }
1632 
1633 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1634 		  struct rusage *ru)
1635 {
1636 	struct wait_opts wo;
1637 	struct pid *pid = NULL;
1638 	enum pid_type type;
1639 	long ret;
1640 
1641 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1642 			__WNOTHREAD|__WCLONE|__WALL))
1643 		return -EINVAL;
1644 
1645 	/* -INT_MIN is not defined */
1646 	if (upid == INT_MIN)
1647 		return -ESRCH;
1648 
1649 	if (upid == -1)
1650 		type = PIDTYPE_MAX;
1651 	else if (upid < 0) {
1652 		type = PIDTYPE_PGID;
1653 		pid = find_get_pid(-upid);
1654 	} else if (upid == 0) {
1655 		type = PIDTYPE_PGID;
1656 		pid = get_task_pid(current, PIDTYPE_PGID);
1657 	} else /* upid > 0 */ {
1658 		type = PIDTYPE_PID;
1659 		pid = find_get_pid(upid);
1660 	}
1661 
1662 	wo.wo_type	= type;
1663 	wo.wo_pid	= pid;
1664 	wo.wo_flags	= options | WEXITED;
1665 	wo.wo_info	= NULL;
1666 	wo.wo_stat	= 0;
1667 	wo.wo_rusage	= ru;
1668 	ret = do_wait(&wo);
1669 	put_pid(pid);
1670 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1671 		ret = -EFAULT;
1672 
1673 	return ret;
1674 }
1675 
1676 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1677 		int, options, struct rusage __user *, ru)
1678 {
1679 	struct rusage r;
1680 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1681 
1682 	if (err > 0) {
1683 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1684 			return -EFAULT;
1685 	}
1686 	return err;
1687 }
1688 
1689 #ifdef __ARCH_WANT_SYS_WAITPID
1690 
1691 /*
1692  * sys_waitpid() remains for compatibility. waitpid() should be
1693  * implemented by calling sys_wait4() from libc.a.
1694  */
1695 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1696 {
1697 	return kernel_wait4(pid, stat_addr, options, NULL);
1698 }
1699 
1700 #endif
1701 
1702 #ifdef CONFIG_COMPAT
1703 COMPAT_SYSCALL_DEFINE4(wait4,
1704 	compat_pid_t, pid,
1705 	compat_uint_t __user *, stat_addr,
1706 	int, options,
1707 	struct compat_rusage __user *, ru)
1708 {
1709 	struct rusage r;
1710 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1711 	if (err > 0) {
1712 		if (ru && put_compat_rusage(&r, ru))
1713 			return -EFAULT;
1714 	}
1715 	return err;
1716 }
1717 
1718 COMPAT_SYSCALL_DEFINE5(waitid,
1719 		int, which, compat_pid_t, pid,
1720 		struct compat_siginfo __user *, infop, int, options,
1721 		struct compat_rusage __user *, uru)
1722 {
1723 	struct rusage ru;
1724 	struct waitid_info info = {.status = 0};
1725 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1726 	int signo = 0;
1727 	if (err > 0) {
1728 		signo = SIGCHLD;
1729 		err = 0;
1730 		if (uru) {
1731 			/* kernel_waitid() overwrites everything in ru */
1732 			if (COMPAT_USE_64BIT_TIME)
1733 				err = copy_to_user(uru, &ru, sizeof(ru));
1734 			else
1735 				err = put_compat_rusage(&ru, uru);
1736 			if (err)
1737 				return -EFAULT;
1738 		}
1739 	}
1740 
1741 	if (!infop)
1742 		return err;
1743 
1744 	if (!user_access_begin(infop, sizeof(*infop)))
1745 		return -EFAULT;
1746 
1747 	unsafe_put_user(signo, &infop->si_signo, Efault);
1748 	unsafe_put_user(0, &infop->si_errno, Efault);
1749 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1750 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1751 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1752 	unsafe_put_user(info.status, &infop->si_status, Efault);
1753 	user_access_end();
1754 	return err;
1755 Efault:
1756 	user_access_end();
1757 	return -EFAULT;
1758 }
1759 #endif
1760 
1761 __weak void abort(void)
1762 {
1763 	BUG();
1764 
1765 	/* if that doesn't kill us, halt */
1766 	panic("Oops failed to kill thread");
1767 }
1768 EXPORT_SYMBOL(abort);
1769