1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/unwind_deferred.h> 72 #include <linux/uaccess.h> 73 #include <linux/pidfs.h> 74 75 #include <uapi/linux/wait.h> 76 77 #include <asm/unistd.h> 78 #include <asm/mmu_context.h> 79 80 #include "exit.h" 81 82 /* 83 * The default value should be high enough to not crash a system that randomly 84 * crashes its kernel from time to time, but low enough to at least not permit 85 * overflowing 32-bit refcounts or the ldsem writer count. 86 */ 87 static unsigned int oops_limit = 10000; 88 89 #ifdef CONFIG_SYSCTL 90 static const struct ctl_table kern_exit_table[] = { 91 { 92 .procname = "oops_limit", 93 .data = &oops_limit, 94 .maxlen = sizeof(oops_limit), 95 .mode = 0644, 96 .proc_handler = proc_douintvec, 97 }, 98 }; 99 100 static __init int kernel_exit_sysctls_init(void) 101 { 102 register_sysctl_init("kernel", kern_exit_table); 103 return 0; 104 } 105 late_initcall(kernel_exit_sysctls_init); 106 #endif 107 108 static atomic_t oops_count = ATOMIC_INIT(0); 109 110 #ifdef CONFIG_SYSFS 111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 112 char *page) 113 { 114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 115 } 116 117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 118 119 static __init int kernel_exit_sysfs_init(void) 120 { 121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 122 return 0; 123 } 124 late_initcall(kernel_exit_sysfs_init); 125 #endif 126 127 /* 128 * For things release_task() would like to do *after* tasklist_lock is released. 129 */ 130 struct release_task_post { 131 struct pid *pids[PIDTYPE_MAX]; 132 }; 133 134 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 135 bool group_dead) 136 { 137 struct pid *pid = task_pid(p); 138 139 nr_threads--; 140 141 detach_pid(post->pids, p, PIDTYPE_PID); 142 wake_up_all(&pid->wait_pidfd); 143 144 if (group_dead) { 145 detach_pid(post->pids, p, PIDTYPE_TGID); 146 detach_pid(post->pids, p, PIDTYPE_PGID); 147 detach_pid(post->pids, p, PIDTYPE_SID); 148 149 list_del_rcu(&p->tasks); 150 list_del_init(&p->sibling); 151 __this_cpu_dec(process_counts); 152 } 153 list_del_rcu(&p->thread_node); 154 } 155 156 /* 157 * This function expects the tasklist_lock write-locked. 158 */ 159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 160 { 161 struct signal_struct *sig = tsk->signal; 162 bool group_dead = thread_group_leader(tsk); 163 struct sighand_struct *sighand; 164 struct tty_struct *tty; 165 u64 utime, stime; 166 167 sighand = rcu_dereference_check(tsk->sighand, 168 lockdep_tasklist_lock_is_held()); 169 spin_lock(&sighand->siglock); 170 171 #ifdef CONFIG_POSIX_TIMERS 172 posix_cpu_timers_exit(tsk); 173 if (group_dead) 174 posix_cpu_timers_exit_group(tsk); 175 #endif 176 177 if (group_dead) { 178 tty = sig->tty; 179 sig->tty = NULL; 180 } else { 181 /* 182 * If there is any task waiting for the group exit 183 * then notify it: 184 */ 185 if (sig->notify_count > 0 && !--sig->notify_count) 186 wake_up_process(sig->group_exec_task); 187 188 if (tsk == sig->curr_target) 189 sig->curr_target = next_thread(tsk); 190 } 191 192 /* 193 * Accumulate here the counters for all threads as they die. We could 194 * skip the group leader because it is the last user of signal_struct, 195 * but we want to avoid the race with thread_group_cputime() which can 196 * see the empty ->thread_head list. 197 */ 198 task_cputime(tsk, &utime, &stime); 199 write_seqlock(&sig->stats_lock); 200 sig->utime += utime; 201 sig->stime += stime; 202 sig->gtime += task_gtime(tsk); 203 sig->min_flt += tsk->min_flt; 204 sig->maj_flt += tsk->maj_flt; 205 sig->nvcsw += tsk->nvcsw; 206 sig->nivcsw += tsk->nivcsw; 207 sig->inblock += task_io_get_inblock(tsk); 208 sig->oublock += task_io_get_oublock(tsk); 209 task_io_accounting_add(&sig->ioac, &tsk->ioac); 210 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 211 sig->nr_threads--; 212 __unhash_process(post, tsk, group_dead); 213 write_sequnlock(&sig->stats_lock); 214 215 tsk->sighand = NULL; 216 spin_unlock(&sighand->siglock); 217 218 __cleanup_sighand(sighand); 219 if (group_dead) 220 tty_kref_put(tty); 221 } 222 223 static void delayed_put_task_struct(struct rcu_head *rhp) 224 { 225 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 226 227 kprobe_flush_task(tsk); 228 rethook_flush_task(tsk); 229 perf_event_delayed_put(tsk); 230 trace_sched_process_free(tsk); 231 put_task_struct(tsk); 232 } 233 234 void put_task_struct_rcu_user(struct task_struct *task) 235 { 236 if (refcount_dec_and_test(&task->rcu_users)) 237 call_rcu(&task->rcu, delayed_put_task_struct); 238 } 239 240 void __weak release_thread(struct task_struct *dead_task) 241 { 242 } 243 244 void release_task(struct task_struct *p) 245 { 246 struct release_task_post post; 247 struct task_struct *leader; 248 struct pid *thread_pid; 249 int zap_leader; 250 repeat: 251 memset(&post, 0, sizeof(post)); 252 253 /* don't need to get the RCU readlock here - the process is dead and 254 * can't be modifying its own credentials. But shut RCU-lockdep up */ 255 rcu_read_lock(); 256 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 257 rcu_read_unlock(); 258 259 pidfs_exit(p); 260 cgroup_release(p); 261 262 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */ 263 thread_pid = task_pid(p); 264 265 write_lock_irq(&tasklist_lock); 266 ptrace_release_task(p); 267 __exit_signal(&post, p); 268 269 /* 270 * If we are the last non-leader member of the thread 271 * group, and the leader is zombie, then notify the 272 * group leader's parent process. (if it wants notification.) 273 */ 274 zap_leader = 0; 275 leader = p->group_leader; 276 if (leader != p && thread_group_empty(leader) 277 && leader->exit_state == EXIT_ZOMBIE) { 278 /* for pidfs_exit() and do_notify_parent() */ 279 if (leader->signal->flags & SIGNAL_GROUP_EXIT) 280 leader->exit_code = leader->signal->group_exit_code; 281 /* 282 * If we were the last child thread and the leader has 283 * exited already, and the leader's parent ignores SIGCHLD, 284 * then we are the one who should release the leader. 285 */ 286 zap_leader = do_notify_parent(leader, leader->exit_signal); 287 if (zap_leader) 288 leader->exit_state = EXIT_DEAD; 289 } 290 291 write_unlock_irq(&tasklist_lock); 292 /* @thread_pid can't go away until free_pids() below */ 293 proc_flush_pid(thread_pid); 294 exit_cred_namespaces(p); 295 add_device_randomness(&p->se.sum_exec_runtime, 296 sizeof(p->se.sum_exec_runtime)); 297 free_pids(post.pids); 298 release_thread(p); 299 /* 300 * This task was already removed from the process/thread/pid lists 301 * and lock_task_sighand(p) can't succeed. Nobody else can touch 302 * ->pending or, if group dead, signal->shared_pending. We can call 303 * flush_sigqueue() lockless. 304 */ 305 flush_sigqueue(&p->pending); 306 if (thread_group_leader(p)) 307 flush_sigqueue(&p->signal->shared_pending); 308 309 put_task_struct_rcu_user(p); 310 311 p = leader; 312 if (unlikely(zap_leader)) 313 goto repeat; 314 } 315 316 int rcuwait_wake_up(struct rcuwait *w) 317 { 318 int ret = 0; 319 struct task_struct *task; 320 321 rcu_read_lock(); 322 323 /* 324 * Order condition vs @task, such that everything prior to the load 325 * of @task is visible. This is the condition as to why the user called 326 * rcuwait_wake() in the first place. Pairs with set_current_state() 327 * barrier (A) in rcuwait_wait_event(). 328 * 329 * WAIT WAKE 330 * [S] tsk = current [S] cond = true 331 * MB (A) MB (B) 332 * [L] cond [L] tsk 333 */ 334 smp_mb(); /* (B) */ 335 336 task = rcu_dereference(w->task); 337 if (task) 338 ret = wake_up_process(task); 339 rcu_read_unlock(); 340 341 return ret; 342 } 343 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 344 345 /* 346 * Determine if a process group is "orphaned", according to the POSIX 347 * definition in 2.2.2.52. Orphaned process groups are not to be affected 348 * by terminal-generated stop signals. Newly orphaned process groups are 349 * to receive a SIGHUP and a SIGCONT. 350 * 351 * "I ask you, have you ever known what it is to be an orphan?" 352 */ 353 static int will_become_orphaned_pgrp(struct pid *pgrp, 354 struct task_struct *ignored_task) 355 { 356 struct task_struct *p; 357 358 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 359 if ((p == ignored_task) || 360 (p->exit_state && thread_group_empty(p)) || 361 is_global_init(p->real_parent)) 362 continue; 363 364 if (task_pgrp(p->real_parent) != pgrp && 365 task_session(p->real_parent) == task_session(p)) 366 return 0; 367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 368 369 return 1; 370 } 371 372 int is_current_pgrp_orphaned(void) 373 { 374 int retval; 375 376 read_lock(&tasklist_lock); 377 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 378 read_unlock(&tasklist_lock); 379 380 return retval; 381 } 382 383 static bool has_stopped_jobs(struct pid *pgrp) 384 { 385 struct task_struct *p; 386 387 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 388 if (p->signal->flags & SIGNAL_STOP_STOPPED) 389 return true; 390 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 391 392 return false; 393 } 394 395 /* 396 * Check to see if any process groups have become orphaned as 397 * a result of our exiting, and if they have any stopped jobs, 398 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 399 */ 400 static void 401 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 402 { 403 struct pid *pgrp = task_pgrp(tsk); 404 struct task_struct *ignored_task = tsk; 405 406 if (!parent) 407 /* exit: our father is in a different pgrp than 408 * we are and we were the only connection outside. 409 */ 410 parent = tsk->real_parent; 411 else 412 /* reparent: our child is in a different pgrp than 413 * we are, and it was the only connection outside. 414 */ 415 ignored_task = NULL; 416 417 if (task_pgrp(parent) != pgrp && 418 task_session(parent) == task_session(tsk) && 419 will_become_orphaned_pgrp(pgrp, ignored_task) && 420 has_stopped_jobs(pgrp)) { 421 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 422 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 423 } 424 } 425 426 static void coredump_task_exit(struct task_struct *tsk, 427 struct core_state *core_state) 428 { 429 struct core_thread self; 430 431 self.task = tsk; 432 if (self.task->flags & PF_SIGNALED) 433 self.next = xchg(&core_state->dumper.next, &self); 434 else 435 self.task = NULL; 436 /* 437 * Implies mb(), the result of xchg() must be visible 438 * to core_state->dumper. 439 */ 440 if (atomic_dec_and_test(&core_state->nr_threads)) 441 complete(&core_state->startup); 442 443 for (;;) { 444 set_current_state(TASK_IDLE|TASK_FREEZABLE); 445 if (!self.task) /* see coredump_finish() */ 446 break; 447 schedule(); 448 } 449 __set_current_state(TASK_RUNNING); 450 } 451 452 #ifdef CONFIG_MEMCG 453 /* drops tasklist_lock if succeeds */ 454 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 455 { 456 bool ret = false; 457 458 task_lock(tsk); 459 if (likely(tsk->mm == mm)) { 460 /* tsk can't pass exit_mm/exec_mmap and exit */ 461 read_unlock(&tasklist_lock); 462 WRITE_ONCE(mm->owner, tsk); 463 lru_gen_migrate_mm(mm); 464 ret = true; 465 } 466 task_unlock(tsk); 467 return ret; 468 } 469 470 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 471 { 472 struct task_struct *t; 473 474 for_each_thread(g, t) { 475 struct mm_struct *t_mm = READ_ONCE(t->mm); 476 if (t_mm == mm) { 477 if (__try_to_set_owner(t, mm)) 478 return true; 479 } else if (t_mm) 480 break; 481 } 482 483 return false; 484 } 485 486 /* 487 * A task is exiting. If it owned this mm, find a new owner for the mm. 488 */ 489 void mm_update_next_owner(struct mm_struct *mm) 490 { 491 struct task_struct *g, *p = current; 492 493 /* 494 * If the exiting or execing task is not the owner, it's 495 * someone else's problem. 496 */ 497 if (mm->owner != p) 498 return; 499 /* 500 * The current owner is exiting/execing and there are no other 501 * candidates. Do not leave the mm pointing to a possibly 502 * freed task structure. 503 */ 504 if (atomic_read(&mm->mm_users) <= 1) { 505 WRITE_ONCE(mm->owner, NULL); 506 return; 507 } 508 509 read_lock(&tasklist_lock); 510 /* 511 * Search in the children 512 */ 513 list_for_each_entry(g, &p->children, sibling) { 514 if (try_to_set_owner(g, mm)) 515 goto ret; 516 } 517 /* 518 * Search in the siblings 519 */ 520 list_for_each_entry(g, &p->real_parent->children, sibling) { 521 if (try_to_set_owner(g, mm)) 522 goto ret; 523 } 524 /* 525 * Search through everything else, we should not get here often. 526 */ 527 for_each_process(g) { 528 if (atomic_read(&mm->mm_users) <= 1) 529 break; 530 if (g->flags & PF_KTHREAD) 531 continue; 532 if (try_to_set_owner(g, mm)) 533 goto ret; 534 } 535 read_unlock(&tasklist_lock); 536 /* 537 * We found no owner yet mm_users > 1: this implies that we are 538 * most likely racing with swapoff (try_to_unuse()) or /proc or 539 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 540 */ 541 WRITE_ONCE(mm->owner, NULL); 542 ret: 543 return; 544 545 } 546 #endif /* CONFIG_MEMCG */ 547 548 /* 549 * Turn us into a lazy TLB process if we 550 * aren't already.. 551 */ 552 static void exit_mm(void) 553 { 554 struct mm_struct *mm = current->mm; 555 556 exit_mm_release(current, mm); 557 if (!mm) 558 return; 559 mmap_read_lock(mm); 560 mmgrab_lazy_tlb(mm); 561 BUG_ON(mm != current->active_mm); 562 /* more a memory barrier than a real lock */ 563 task_lock(current); 564 /* 565 * When a thread stops operating on an address space, the loop 566 * in membarrier_private_expedited() may not observe that 567 * tsk->mm, and the loop in membarrier_global_expedited() may 568 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 569 * rq->membarrier_state, so those would not issue an IPI. 570 * Membarrier requires a memory barrier after accessing 571 * user-space memory, before clearing tsk->mm or the 572 * rq->membarrier_state. 573 */ 574 smp_mb__after_spinlock(); 575 local_irq_disable(); 576 current->mm = NULL; 577 membarrier_update_current_mm(NULL); 578 enter_lazy_tlb(mm, current); 579 local_irq_enable(); 580 task_unlock(current); 581 mmap_read_unlock(mm); 582 mm_update_next_owner(mm); 583 mmput(mm); 584 if (test_thread_flag(TIF_MEMDIE)) 585 exit_oom_victim(); 586 } 587 588 static struct task_struct *find_alive_thread(struct task_struct *p) 589 { 590 struct task_struct *t; 591 592 for_each_thread(p, t) { 593 if (!(t->flags & PF_EXITING)) 594 return t; 595 } 596 return NULL; 597 } 598 599 static struct task_struct *find_child_reaper(struct task_struct *father, 600 struct list_head *dead) 601 __releases(&tasklist_lock) 602 __acquires(&tasklist_lock) 603 { 604 struct pid_namespace *pid_ns = task_active_pid_ns(father); 605 struct task_struct *reaper = pid_ns->child_reaper; 606 struct task_struct *p, *n; 607 608 if (likely(reaper != father)) 609 return reaper; 610 611 reaper = find_alive_thread(father); 612 if (reaper) { 613 pid_ns->child_reaper = reaper; 614 return reaper; 615 } 616 617 write_unlock_irq(&tasklist_lock); 618 619 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 620 list_del_init(&p->ptrace_entry); 621 release_task(p); 622 } 623 624 zap_pid_ns_processes(pid_ns); 625 write_lock_irq(&tasklist_lock); 626 627 return father; 628 } 629 630 /* 631 * When we die, we re-parent all our children, and try to: 632 * 1. give them to another thread in our thread group, if such a member exists 633 * 2. give it to the first ancestor process which prctl'd itself as a 634 * child_subreaper for its children (like a service manager) 635 * 3. give it to the init process (PID 1) in our pid namespace 636 */ 637 static struct task_struct *find_new_reaper(struct task_struct *father, 638 struct task_struct *child_reaper) 639 { 640 struct task_struct *thread, *reaper; 641 642 thread = find_alive_thread(father); 643 if (thread) 644 return thread; 645 646 if (father->signal->has_child_subreaper) { 647 unsigned int ns_level = task_pid(father)->level; 648 /* 649 * Find the first ->is_child_subreaper ancestor in our pid_ns. 650 * We can't check reaper != child_reaper to ensure we do not 651 * cross the namespaces, the exiting parent could be injected 652 * by setns() + fork(). 653 * We check pid->level, this is slightly more efficient than 654 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 655 */ 656 for (reaper = father->real_parent; 657 task_pid(reaper)->level == ns_level; 658 reaper = reaper->real_parent) { 659 if (reaper == &init_task) 660 break; 661 if (!reaper->signal->is_child_subreaper) 662 continue; 663 thread = find_alive_thread(reaper); 664 if (thread) 665 return thread; 666 } 667 } 668 669 return child_reaper; 670 } 671 672 /* 673 * Any that need to be release_task'd are put on the @dead list. 674 */ 675 static void reparent_leader(struct task_struct *father, struct task_struct *p, 676 struct list_head *dead) 677 { 678 if (unlikely(p->exit_state == EXIT_DEAD)) 679 return; 680 681 /* We don't want people slaying init. */ 682 p->exit_signal = SIGCHLD; 683 684 /* If it has exited notify the new parent about this child's death. */ 685 if (!p->ptrace && 686 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 687 if (do_notify_parent(p, p->exit_signal)) { 688 p->exit_state = EXIT_DEAD; 689 list_add(&p->ptrace_entry, dead); 690 } 691 } 692 693 kill_orphaned_pgrp(p, father); 694 } 695 696 /* 697 * Make init inherit all the child processes 698 */ 699 static void forget_original_parent(struct task_struct *father, 700 struct list_head *dead) 701 { 702 struct task_struct *p, *t, *reaper; 703 704 if (unlikely(!list_empty(&father->ptraced))) 705 exit_ptrace(father, dead); 706 707 /* Can drop and reacquire tasklist_lock */ 708 reaper = find_child_reaper(father, dead); 709 if (list_empty(&father->children)) 710 return; 711 712 reaper = find_new_reaper(father, reaper); 713 list_for_each_entry(p, &father->children, sibling) { 714 for_each_thread(p, t) { 715 RCU_INIT_POINTER(t->real_parent, reaper); 716 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 717 if (likely(!t->ptrace)) 718 t->parent = t->real_parent; 719 if (t->pdeath_signal) 720 group_send_sig_info(t->pdeath_signal, 721 SEND_SIG_NOINFO, t, 722 PIDTYPE_TGID); 723 } 724 /* 725 * If this is a threaded reparent there is no need to 726 * notify anyone anything has happened. 727 */ 728 if (!same_thread_group(reaper, father)) 729 reparent_leader(father, p, dead); 730 } 731 list_splice_tail_init(&father->children, &reaper->children); 732 } 733 734 /* 735 * Send signals to all our closest relatives so that they know 736 * to properly mourn us.. 737 */ 738 static void exit_notify(struct task_struct *tsk, int group_dead) 739 { 740 bool autoreap; 741 struct task_struct *p, *n; 742 LIST_HEAD(dead); 743 744 write_lock_irq(&tasklist_lock); 745 forget_original_parent(tsk, &dead); 746 747 if (group_dead) 748 kill_orphaned_pgrp(tsk->group_leader, NULL); 749 750 tsk->exit_state = EXIT_ZOMBIE; 751 752 if (unlikely(tsk->ptrace)) { 753 int sig = thread_group_leader(tsk) && 754 thread_group_empty(tsk) && 755 !ptrace_reparented(tsk) ? 756 tsk->exit_signal : SIGCHLD; 757 autoreap = do_notify_parent(tsk, sig); 758 } else if (thread_group_leader(tsk)) { 759 autoreap = thread_group_empty(tsk) && 760 do_notify_parent(tsk, tsk->exit_signal); 761 } else { 762 autoreap = true; 763 /* untraced sub-thread */ 764 do_notify_pidfd(tsk); 765 } 766 767 if (autoreap) { 768 tsk->exit_state = EXIT_DEAD; 769 list_add(&tsk->ptrace_entry, &dead); 770 } 771 772 /* mt-exec, de_thread() is waiting for group leader */ 773 if (unlikely(tsk->signal->notify_count < 0)) 774 wake_up_process(tsk->signal->group_exec_task); 775 write_unlock_irq(&tasklist_lock); 776 777 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 778 list_del_init(&p->ptrace_entry); 779 release_task(p); 780 } 781 } 782 783 #ifdef CONFIG_DEBUG_STACK_USAGE 784 #ifdef CONFIG_STACK_GROWSUP 785 unsigned long stack_not_used(struct task_struct *p) 786 { 787 unsigned long *n = end_of_stack(p); 788 789 do { /* Skip over canary */ 790 n--; 791 } while (!*n); 792 793 return (unsigned long)end_of_stack(p) - (unsigned long)n; 794 } 795 #else /* !CONFIG_STACK_GROWSUP */ 796 unsigned long stack_not_used(struct task_struct *p) 797 { 798 unsigned long *n = end_of_stack(p); 799 800 do { /* Skip over canary */ 801 n++; 802 } while (!*n); 803 804 return (unsigned long)n - (unsigned long)end_of_stack(p); 805 } 806 #endif /* CONFIG_STACK_GROWSUP */ 807 808 /* Count the maximum pages reached in kernel stacks */ 809 static inline void kstack_histogram(unsigned long used_stack) 810 { 811 #ifdef CONFIG_VM_EVENT_COUNTERS 812 if (used_stack <= 1024) 813 count_vm_event(KSTACK_1K); 814 #if THREAD_SIZE > 1024 815 else if (used_stack <= 2048) 816 count_vm_event(KSTACK_2K); 817 #endif 818 #if THREAD_SIZE > 2048 819 else if (used_stack <= 4096) 820 count_vm_event(KSTACK_4K); 821 #endif 822 #if THREAD_SIZE > 4096 823 else if (used_stack <= 8192) 824 count_vm_event(KSTACK_8K); 825 #endif 826 #if THREAD_SIZE > 8192 827 else if (used_stack <= 16384) 828 count_vm_event(KSTACK_16K); 829 #endif 830 #if THREAD_SIZE > 16384 831 else if (used_stack <= 32768) 832 count_vm_event(KSTACK_32K); 833 #endif 834 #if THREAD_SIZE > 32768 835 else if (used_stack <= 65536) 836 count_vm_event(KSTACK_64K); 837 #endif 838 #if THREAD_SIZE > 65536 839 else 840 count_vm_event(KSTACK_REST); 841 #endif 842 #endif /* CONFIG_VM_EVENT_COUNTERS */ 843 } 844 845 static void check_stack_usage(void) 846 { 847 static DEFINE_SPINLOCK(low_water_lock); 848 static int lowest_to_date = THREAD_SIZE; 849 unsigned long free; 850 851 free = stack_not_used(current); 852 kstack_histogram(THREAD_SIZE - free); 853 854 if (free >= lowest_to_date) 855 return; 856 857 spin_lock(&low_water_lock); 858 if (free < lowest_to_date) { 859 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 860 current->comm, task_pid_nr(current), free); 861 lowest_to_date = free; 862 } 863 spin_unlock(&low_water_lock); 864 } 865 #else /* !CONFIG_DEBUG_STACK_USAGE */ 866 static inline void check_stack_usage(void) {} 867 #endif /* CONFIG_DEBUG_STACK_USAGE */ 868 869 static void synchronize_group_exit(struct task_struct *tsk, long code) 870 { 871 struct sighand_struct *sighand = tsk->sighand; 872 struct signal_struct *signal = tsk->signal; 873 struct core_state *core_state; 874 875 spin_lock_irq(&sighand->siglock); 876 signal->quick_threads--; 877 if ((signal->quick_threads == 0) && 878 !(signal->flags & SIGNAL_GROUP_EXIT)) { 879 signal->flags = SIGNAL_GROUP_EXIT; 880 signal->group_exit_code = code; 881 signal->group_stop_count = 0; 882 } 883 /* 884 * Serialize with any possible pending coredump. 885 * We must hold siglock around checking core_state 886 * and setting PF_POSTCOREDUMP. The core-inducing thread 887 * will increment ->nr_threads for each thread in the 888 * group without PF_POSTCOREDUMP set. 889 */ 890 tsk->flags |= PF_POSTCOREDUMP; 891 core_state = signal->core_state; 892 spin_unlock_irq(&sighand->siglock); 893 894 if (unlikely(core_state)) 895 coredump_task_exit(tsk, core_state); 896 } 897 898 void __noreturn do_exit(long code) 899 { 900 struct task_struct *tsk = current; 901 int group_dead; 902 903 WARN_ON(irqs_disabled()); 904 WARN_ON(tsk->plug); 905 906 kcov_task_exit(tsk); 907 kmsan_task_exit(tsk); 908 909 synchronize_group_exit(tsk, code); 910 ptrace_event(PTRACE_EVENT_EXIT, code); 911 user_events_exit(tsk); 912 913 io_uring_files_cancel(); 914 exit_signals(tsk); /* sets PF_EXITING */ 915 916 seccomp_filter_release(tsk); 917 918 acct_update_integrals(tsk); 919 group_dead = atomic_dec_and_test(&tsk->signal->live); 920 if (group_dead) { 921 /* 922 * If the last thread of global init has exited, panic 923 * immediately to get a useable coredump. 924 */ 925 if (unlikely(is_global_init(tsk))) 926 panic("Attempted to kill init! exitcode=0x%08x\n", 927 tsk->signal->group_exit_code ?: (int)code); 928 929 #ifdef CONFIG_POSIX_TIMERS 930 hrtimer_cancel(&tsk->signal->real_timer); 931 exit_itimers(tsk); 932 #endif 933 if (tsk->mm) 934 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 935 } 936 acct_collect(code, group_dead); 937 if (group_dead) 938 tty_audit_exit(); 939 audit_free(tsk); 940 941 tsk->exit_code = code; 942 taskstats_exit(tsk, group_dead); 943 trace_sched_process_exit(tsk, group_dead); 944 945 /* 946 * Since sampling can touch ->mm, make sure to stop everything before we 947 * tear it down. 948 * 949 * Also flushes inherited counters to the parent - before the parent 950 * gets woken up by child-exit notifications. 951 */ 952 perf_event_exit_task(tsk); 953 /* 954 * PF_EXITING (above) ensures unwind_deferred_request() will no 955 * longer add new unwinds. While exit_mm() (below) will destroy the 956 * abaility to do unwinds. So flush any pending unwinds here. 957 */ 958 unwind_deferred_task_exit(tsk); 959 960 exit_mm(); 961 962 if (group_dead) 963 acct_process(); 964 965 exit_sem(tsk); 966 exit_shm(tsk); 967 exit_files(tsk); 968 exit_fs(tsk); 969 if (group_dead) 970 disassociate_ctty(1); 971 exit_nsproxy_namespaces(tsk); 972 exit_task_work(tsk); 973 exit_thread(tsk); 974 975 sched_autogroup_exit_task(tsk); 976 cgroup_exit(tsk); 977 978 /* 979 * FIXME: do that only when needed, using sched_exit tracepoint 980 */ 981 flush_ptrace_hw_breakpoint(tsk); 982 983 exit_tasks_rcu_start(); 984 exit_notify(tsk, group_dead); 985 proc_exit_connector(tsk); 986 mpol_put_task_policy(tsk); 987 #ifdef CONFIG_FUTEX 988 if (unlikely(current->pi_state_cache)) 989 kfree(current->pi_state_cache); 990 #endif 991 /* 992 * Make sure we are holding no locks: 993 */ 994 debug_check_no_locks_held(); 995 996 if (tsk->io_context) 997 exit_io_context(tsk); 998 999 if (tsk->splice_pipe) 1000 free_pipe_info(tsk->splice_pipe); 1001 1002 if (tsk->task_frag.page) 1003 put_page(tsk->task_frag.page); 1004 1005 exit_task_stack_account(tsk); 1006 1007 check_stack_usage(); 1008 preempt_disable(); 1009 if (tsk->nr_dirtied) 1010 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1011 exit_rcu(); 1012 exit_tasks_rcu_finish(); 1013 1014 lockdep_free_task(tsk); 1015 do_task_dead(); 1016 } 1017 1018 void __noreturn make_task_dead(int signr) 1019 { 1020 /* 1021 * Take the task off the cpu after something catastrophic has 1022 * happened. 1023 * 1024 * We can get here from a kernel oops, sometimes with preemption off. 1025 * Start by checking for critical errors. 1026 * Then fix up important state like USER_DS and preemption. 1027 * Then do everything else. 1028 */ 1029 struct task_struct *tsk = current; 1030 unsigned int limit; 1031 1032 if (unlikely(in_interrupt())) 1033 panic("Aiee, killing interrupt handler!"); 1034 if (unlikely(!tsk->pid)) 1035 panic("Attempted to kill the idle task!"); 1036 1037 if (unlikely(irqs_disabled())) { 1038 pr_info("note: %s[%d] exited with irqs disabled\n", 1039 current->comm, task_pid_nr(current)); 1040 local_irq_enable(); 1041 } 1042 if (unlikely(in_atomic())) { 1043 pr_info("note: %s[%d] exited with preempt_count %d\n", 1044 current->comm, task_pid_nr(current), 1045 preempt_count()); 1046 preempt_count_set(PREEMPT_ENABLED); 1047 } 1048 1049 /* 1050 * Every time the system oopses, if the oops happens while a reference 1051 * to an object was held, the reference leaks. 1052 * If the oops doesn't also leak memory, repeated oopsing can cause 1053 * reference counters to wrap around (if they're not using refcount_t). 1054 * This means that repeated oopsing can make unexploitable-looking bugs 1055 * exploitable through repeated oopsing. 1056 * To make sure this can't happen, place an upper bound on how often the 1057 * kernel may oops without panic(). 1058 */ 1059 limit = READ_ONCE(oops_limit); 1060 if (atomic_inc_return(&oops_count) >= limit && limit) 1061 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1062 1063 /* 1064 * We're taking recursive faults here in make_task_dead. Safest is to just 1065 * leave this task alone and wait for reboot. 1066 */ 1067 if (unlikely(tsk->flags & PF_EXITING)) { 1068 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1069 futex_exit_recursive(tsk); 1070 tsk->exit_state = EXIT_DEAD; 1071 refcount_inc(&tsk->rcu_users); 1072 do_task_dead(); 1073 } 1074 1075 do_exit(signr); 1076 } 1077 1078 SYSCALL_DEFINE1(exit, int, error_code) 1079 { 1080 do_exit((error_code&0xff)<<8); 1081 } 1082 1083 /* 1084 * Take down every thread in the group. This is called by fatal signals 1085 * as well as by sys_exit_group (below). 1086 */ 1087 void __noreturn 1088 do_group_exit(int exit_code) 1089 { 1090 struct signal_struct *sig = current->signal; 1091 1092 if (sig->flags & SIGNAL_GROUP_EXIT) 1093 exit_code = sig->group_exit_code; 1094 else if (sig->group_exec_task) 1095 exit_code = 0; 1096 else { 1097 struct sighand_struct *const sighand = current->sighand; 1098 1099 spin_lock_irq(&sighand->siglock); 1100 if (sig->flags & SIGNAL_GROUP_EXIT) 1101 /* Another thread got here before we took the lock. */ 1102 exit_code = sig->group_exit_code; 1103 else if (sig->group_exec_task) 1104 exit_code = 0; 1105 else { 1106 sig->group_exit_code = exit_code; 1107 sig->flags = SIGNAL_GROUP_EXIT; 1108 zap_other_threads(current); 1109 } 1110 spin_unlock_irq(&sighand->siglock); 1111 } 1112 1113 do_exit(exit_code); 1114 /* NOTREACHED */ 1115 } 1116 1117 /* 1118 * this kills every thread in the thread group. Note that any externally 1119 * wait4()-ing process will get the correct exit code - even if this 1120 * thread is not the thread group leader. 1121 */ 1122 SYSCALL_DEFINE1(exit_group, int, error_code) 1123 { 1124 do_group_exit((error_code & 0xff) << 8); 1125 /* NOTREACHED */ 1126 return 0; 1127 } 1128 1129 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1130 { 1131 return wo->wo_type == PIDTYPE_MAX || 1132 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1133 } 1134 1135 static int 1136 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1137 { 1138 if (!eligible_pid(wo, p)) 1139 return 0; 1140 1141 /* 1142 * Wait for all children (clone and not) if __WALL is set or 1143 * if it is traced by us. 1144 */ 1145 if (ptrace || (wo->wo_flags & __WALL)) 1146 return 1; 1147 1148 /* 1149 * Otherwise, wait for clone children *only* if __WCLONE is set; 1150 * otherwise, wait for non-clone children *only*. 1151 * 1152 * Note: a "clone" child here is one that reports to its parent 1153 * using a signal other than SIGCHLD, or a non-leader thread which 1154 * we can only see if it is traced by us. 1155 */ 1156 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1157 return 0; 1158 1159 return 1; 1160 } 1161 1162 /* 1163 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1164 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1165 * the lock and this task is uninteresting. If we return nonzero, we have 1166 * released the lock and the system call should return. 1167 */ 1168 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1169 { 1170 int state, status; 1171 pid_t pid = task_pid_vnr(p); 1172 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1173 struct waitid_info *infop; 1174 1175 if (!likely(wo->wo_flags & WEXITED)) 1176 return 0; 1177 1178 if (unlikely(wo->wo_flags & WNOWAIT)) { 1179 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1180 ? p->signal->group_exit_code : p->exit_code; 1181 get_task_struct(p); 1182 read_unlock(&tasklist_lock); 1183 sched_annotate_sleep(); 1184 if (wo->wo_rusage) 1185 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1186 put_task_struct(p); 1187 goto out_info; 1188 } 1189 /* 1190 * Move the task's state to DEAD/TRACE, only one thread can do this. 1191 */ 1192 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1193 EXIT_TRACE : EXIT_DEAD; 1194 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1195 return 0; 1196 /* 1197 * We own this thread, nobody else can reap it. 1198 */ 1199 read_unlock(&tasklist_lock); 1200 sched_annotate_sleep(); 1201 1202 /* 1203 * Check thread_group_leader() to exclude the traced sub-threads. 1204 */ 1205 if (state == EXIT_DEAD && thread_group_leader(p)) { 1206 struct signal_struct *sig = p->signal; 1207 struct signal_struct *psig = current->signal; 1208 unsigned long maxrss; 1209 u64 tgutime, tgstime; 1210 1211 /* 1212 * The resource counters for the group leader are in its 1213 * own task_struct. Those for dead threads in the group 1214 * are in its signal_struct, as are those for the child 1215 * processes it has previously reaped. All these 1216 * accumulate in the parent's signal_struct c* fields. 1217 * 1218 * We don't bother to take a lock here to protect these 1219 * p->signal fields because the whole thread group is dead 1220 * and nobody can change them. 1221 * 1222 * psig->stats_lock also protects us from our sub-threads 1223 * which can reap other children at the same time. 1224 * 1225 * We use thread_group_cputime_adjusted() to get times for 1226 * the thread group, which consolidates times for all threads 1227 * in the group including the group leader. 1228 */ 1229 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1230 write_seqlock_irq(&psig->stats_lock); 1231 psig->cutime += tgutime + sig->cutime; 1232 psig->cstime += tgstime + sig->cstime; 1233 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1234 psig->cmin_flt += 1235 p->min_flt + sig->min_flt + sig->cmin_flt; 1236 psig->cmaj_flt += 1237 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1238 psig->cnvcsw += 1239 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1240 psig->cnivcsw += 1241 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1242 psig->cinblock += 1243 task_io_get_inblock(p) + 1244 sig->inblock + sig->cinblock; 1245 psig->coublock += 1246 task_io_get_oublock(p) + 1247 sig->oublock + sig->coublock; 1248 maxrss = max(sig->maxrss, sig->cmaxrss); 1249 if (psig->cmaxrss < maxrss) 1250 psig->cmaxrss = maxrss; 1251 task_io_accounting_add(&psig->ioac, &p->ioac); 1252 task_io_accounting_add(&psig->ioac, &sig->ioac); 1253 write_sequnlock_irq(&psig->stats_lock); 1254 } 1255 1256 if (wo->wo_rusage) 1257 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1258 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1259 ? p->signal->group_exit_code : p->exit_code; 1260 wo->wo_stat = status; 1261 1262 if (state == EXIT_TRACE) { 1263 write_lock_irq(&tasklist_lock); 1264 /* We dropped tasklist, ptracer could die and untrace */ 1265 ptrace_unlink(p); 1266 1267 /* If parent wants a zombie, don't release it now */ 1268 state = EXIT_ZOMBIE; 1269 if (do_notify_parent(p, p->exit_signal)) 1270 state = EXIT_DEAD; 1271 p->exit_state = state; 1272 write_unlock_irq(&tasklist_lock); 1273 } 1274 if (state == EXIT_DEAD) 1275 release_task(p); 1276 1277 out_info: 1278 infop = wo->wo_info; 1279 if (infop) { 1280 if ((status & 0x7f) == 0) { 1281 infop->cause = CLD_EXITED; 1282 infop->status = status >> 8; 1283 } else { 1284 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1285 infop->status = status & 0x7f; 1286 } 1287 infop->pid = pid; 1288 infop->uid = uid; 1289 } 1290 1291 return pid; 1292 } 1293 1294 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1295 { 1296 if (ptrace) { 1297 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1298 return &p->exit_code; 1299 } else { 1300 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1301 return &p->signal->group_exit_code; 1302 } 1303 return NULL; 1304 } 1305 1306 /** 1307 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1308 * @wo: wait options 1309 * @ptrace: is the wait for ptrace 1310 * @p: task to wait for 1311 * 1312 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1313 * 1314 * CONTEXT: 1315 * read_lock(&tasklist_lock), which is released if return value is 1316 * non-zero. Also, grabs and releases @p->sighand->siglock. 1317 * 1318 * RETURNS: 1319 * 0 if wait condition didn't exist and search for other wait conditions 1320 * should continue. Non-zero return, -errno on failure and @p's pid on 1321 * success, implies that tasklist_lock is released and wait condition 1322 * search should terminate. 1323 */ 1324 static int wait_task_stopped(struct wait_opts *wo, 1325 int ptrace, struct task_struct *p) 1326 { 1327 struct waitid_info *infop; 1328 int exit_code, *p_code, why; 1329 uid_t uid = 0; /* unneeded, required by compiler */ 1330 pid_t pid; 1331 1332 /* 1333 * Traditionally we see ptrace'd stopped tasks regardless of options. 1334 */ 1335 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1336 return 0; 1337 1338 if (!task_stopped_code(p, ptrace)) 1339 return 0; 1340 1341 exit_code = 0; 1342 spin_lock_irq(&p->sighand->siglock); 1343 1344 p_code = task_stopped_code(p, ptrace); 1345 if (unlikely(!p_code)) 1346 goto unlock_sig; 1347 1348 exit_code = *p_code; 1349 if (!exit_code) 1350 goto unlock_sig; 1351 1352 if (!unlikely(wo->wo_flags & WNOWAIT)) 1353 *p_code = 0; 1354 1355 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1356 unlock_sig: 1357 spin_unlock_irq(&p->sighand->siglock); 1358 if (!exit_code) 1359 return 0; 1360 1361 /* 1362 * Now we are pretty sure this task is interesting. 1363 * Make sure it doesn't get reaped out from under us while we 1364 * give up the lock and then examine it below. We don't want to 1365 * keep holding onto the tasklist_lock while we call getrusage and 1366 * possibly take page faults for user memory. 1367 */ 1368 get_task_struct(p); 1369 pid = task_pid_vnr(p); 1370 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1371 read_unlock(&tasklist_lock); 1372 sched_annotate_sleep(); 1373 if (wo->wo_rusage) 1374 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1375 put_task_struct(p); 1376 1377 if (likely(!(wo->wo_flags & WNOWAIT))) 1378 wo->wo_stat = (exit_code << 8) | 0x7f; 1379 1380 infop = wo->wo_info; 1381 if (infop) { 1382 infop->cause = why; 1383 infop->status = exit_code; 1384 infop->pid = pid; 1385 infop->uid = uid; 1386 } 1387 return pid; 1388 } 1389 1390 /* 1391 * Handle do_wait work for one task in a live, non-stopped state. 1392 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1393 * the lock and this task is uninteresting. If we return nonzero, we have 1394 * released the lock and the system call should return. 1395 */ 1396 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1397 { 1398 struct waitid_info *infop; 1399 pid_t pid; 1400 uid_t uid; 1401 1402 if (!unlikely(wo->wo_flags & WCONTINUED)) 1403 return 0; 1404 1405 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1406 return 0; 1407 1408 spin_lock_irq(&p->sighand->siglock); 1409 /* Re-check with the lock held. */ 1410 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1411 spin_unlock_irq(&p->sighand->siglock); 1412 return 0; 1413 } 1414 if (!unlikely(wo->wo_flags & WNOWAIT)) 1415 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1416 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1417 spin_unlock_irq(&p->sighand->siglock); 1418 1419 pid = task_pid_vnr(p); 1420 get_task_struct(p); 1421 read_unlock(&tasklist_lock); 1422 sched_annotate_sleep(); 1423 if (wo->wo_rusage) 1424 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1425 put_task_struct(p); 1426 1427 infop = wo->wo_info; 1428 if (!infop) { 1429 wo->wo_stat = 0xffff; 1430 } else { 1431 infop->cause = CLD_CONTINUED; 1432 infop->pid = pid; 1433 infop->uid = uid; 1434 infop->status = SIGCONT; 1435 } 1436 return pid; 1437 } 1438 1439 /* 1440 * Consider @p for a wait by @parent. 1441 * 1442 * -ECHILD should be in ->notask_error before the first call. 1443 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1444 * Returns zero if the search for a child should continue; 1445 * then ->notask_error is 0 if @p is an eligible child, 1446 * or still -ECHILD. 1447 */ 1448 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1449 struct task_struct *p) 1450 { 1451 /* 1452 * We can race with wait_task_zombie() from another thread. 1453 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1454 * can't confuse the checks below. 1455 */ 1456 int exit_state = READ_ONCE(p->exit_state); 1457 int ret; 1458 1459 if (unlikely(exit_state == EXIT_DEAD)) 1460 return 0; 1461 1462 ret = eligible_child(wo, ptrace, p); 1463 if (!ret) 1464 return ret; 1465 1466 if (unlikely(exit_state == EXIT_TRACE)) { 1467 /* 1468 * ptrace == 0 means we are the natural parent. In this case 1469 * we should clear notask_error, debugger will notify us. 1470 */ 1471 if (likely(!ptrace)) 1472 wo->notask_error = 0; 1473 return 0; 1474 } 1475 1476 if (likely(!ptrace) && unlikely(p->ptrace)) { 1477 /* 1478 * If it is traced by its real parent's group, just pretend 1479 * the caller is ptrace_do_wait() and reap this child if it 1480 * is zombie. 1481 * 1482 * This also hides group stop state from real parent; otherwise 1483 * a single stop can be reported twice as group and ptrace stop. 1484 * If a ptracer wants to distinguish these two events for its 1485 * own children it should create a separate process which takes 1486 * the role of real parent. 1487 */ 1488 if (!ptrace_reparented(p)) 1489 ptrace = 1; 1490 } 1491 1492 /* slay zombie? */ 1493 if (exit_state == EXIT_ZOMBIE) { 1494 /* we don't reap group leaders with subthreads */ 1495 if (!delay_group_leader(p)) { 1496 /* 1497 * A zombie ptracee is only visible to its ptracer. 1498 * Notification and reaping will be cascaded to the 1499 * real parent when the ptracer detaches. 1500 */ 1501 if (unlikely(ptrace) || likely(!p->ptrace)) 1502 return wait_task_zombie(wo, p); 1503 } 1504 1505 /* 1506 * Allow access to stopped/continued state via zombie by 1507 * falling through. Clearing of notask_error is complex. 1508 * 1509 * When !@ptrace: 1510 * 1511 * If WEXITED is set, notask_error should naturally be 1512 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1513 * so, if there are live subthreads, there are events to 1514 * wait for. If all subthreads are dead, it's still safe 1515 * to clear - this function will be called again in finite 1516 * amount time once all the subthreads are released and 1517 * will then return without clearing. 1518 * 1519 * When @ptrace: 1520 * 1521 * Stopped state is per-task and thus can't change once the 1522 * target task dies. Only continued and exited can happen. 1523 * Clear notask_error if WCONTINUED | WEXITED. 1524 */ 1525 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1526 wo->notask_error = 0; 1527 } else { 1528 /* 1529 * @p is alive and it's gonna stop, continue or exit, so 1530 * there always is something to wait for. 1531 */ 1532 wo->notask_error = 0; 1533 } 1534 1535 /* 1536 * Wait for stopped. Depending on @ptrace, different stopped state 1537 * is used and the two don't interact with each other. 1538 */ 1539 ret = wait_task_stopped(wo, ptrace, p); 1540 if (ret) 1541 return ret; 1542 1543 /* 1544 * Wait for continued. There's only one continued state and the 1545 * ptracer can consume it which can confuse the real parent. Don't 1546 * use WCONTINUED from ptracer. You don't need or want it. 1547 */ 1548 return wait_task_continued(wo, p); 1549 } 1550 1551 /* 1552 * Do the work of do_wait() for one thread in the group, @tsk. 1553 * 1554 * -ECHILD should be in ->notask_error before the first call. 1555 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1556 * Returns zero if the search for a child should continue; then 1557 * ->notask_error is 0 if there were any eligible children, 1558 * or still -ECHILD. 1559 */ 1560 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1561 { 1562 struct task_struct *p; 1563 1564 list_for_each_entry(p, &tsk->children, sibling) { 1565 int ret = wait_consider_task(wo, 0, p); 1566 1567 if (ret) 1568 return ret; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1575 { 1576 struct task_struct *p; 1577 1578 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1579 int ret = wait_consider_task(wo, 1, p); 1580 1581 if (ret) 1582 return ret; 1583 } 1584 1585 return 0; 1586 } 1587 1588 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1589 { 1590 if (!eligible_pid(wo, p)) 1591 return false; 1592 1593 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1594 return false; 1595 1596 return true; 1597 } 1598 1599 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1600 int sync, void *key) 1601 { 1602 struct wait_opts *wo = container_of(wait, struct wait_opts, 1603 child_wait); 1604 struct task_struct *p = key; 1605 1606 if (pid_child_should_wake(wo, p)) 1607 return default_wake_function(wait, mode, sync, key); 1608 1609 return 0; 1610 } 1611 1612 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1613 { 1614 __wake_up_sync_key(&parent->signal->wait_chldexit, 1615 TASK_INTERRUPTIBLE, p); 1616 } 1617 1618 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1619 struct task_struct *target) 1620 { 1621 struct task_struct *parent = 1622 !ptrace ? target->real_parent : target->parent; 1623 1624 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1625 same_thread_group(current, parent)); 1626 } 1627 1628 /* 1629 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1630 * and tracee lists to find the target task. 1631 */ 1632 static int do_wait_pid(struct wait_opts *wo) 1633 { 1634 bool ptrace; 1635 struct task_struct *target; 1636 int retval; 1637 1638 ptrace = false; 1639 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1640 if (target && is_effectively_child(wo, ptrace, target)) { 1641 retval = wait_consider_task(wo, ptrace, target); 1642 if (retval) 1643 return retval; 1644 } 1645 1646 ptrace = true; 1647 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1648 if (target && target->ptrace && 1649 is_effectively_child(wo, ptrace, target)) { 1650 retval = wait_consider_task(wo, ptrace, target); 1651 if (retval) 1652 return retval; 1653 } 1654 1655 return 0; 1656 } 1657 1658 long __do_wait(struct wait_opts *wo) 1659 { 1660 long retval; 1661 1662 /* 1663 * If there is nothing that can match our criteria, just get out. 1664 * We will clear ->notask_error to zero if we see any child that 1665 * might later match our criteria, even if we are not able to reap 1666 * it yet. 1667 */ 1668 wo->notask_error = -ECHILD; 1669 if ((wo->wo_type < PIDTYPE_MAX) && 1670 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1671 goto notask; 1672 1673 read_lock(&tasklist_lock); 1674 1675 if (wo->wo_type == PIDTYPE_PID) { 1676 retval = do_wait_pid(wo); 1677 if (retval) 1678 return retval; 1679 } else { 1680 struct task_struct *tsk = current; 1681 1682 do { 1683 retval = do_wait_thread(wo, tsk); 1684 if (retval) 1685 return retval; 1686 1687 retval = ptrace_do_wait(wo, tsk); 1688 if (retval) 1689 return retval; 1690 1691 if (wo->wo_flags & __WNOTHREAD) 1692 break; 1693 } while_each_thread(current, tsk); 1694 } 1695 read_unlock(&tasklist_lock); 1696 1697 notask: 1698 retval = wo->notask_error; 1699 if (!retval && !(wo->wo_flags & WNOHANG)) 1700 return -ERESTARTSYS; 1701 1702 return retval; 1703 } 1704 1705 static long do_wait(struct wait_opts *wo) 1706 { 1707 int retval; 1708 1709 trace_sched_process_wait(wo->wo_pid); 1710 1711 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1712 wo->child_wait.private = current; 1713 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1714 1715 do { 1716 set_current_state(TASK_INTERRUPTIBLE); 1717 retval = __do_wait(wo); 1718 if (retval != -ERESTARTSYS) 1719 break; 1720 if (signal_pending(current)) 1721 break; 1722 schedule(); 1723 } while (1); 1724 1725 __set_current_state(TASK_RUNNING); 1726 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1727 return retval; 1728 } 1729 1730 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1731 struct waitid_info *infop, int options, 1732 struct rusage *ru) 1733 { 1734 unsigned int f_flags = 0; 1735 struct pid *pid = NULL; 1736 enum pid_type type; 1737 1738 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1739 __WNOTHREAD|__WCLONE|__WALL)) 1740 return -EINVAL; 1741 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1742 return -EINVAL; 1743 1744 switch (which) { 1745 case P_ALL: 1746 type = PIDTYPE_MAX; 1747 break; 1748 case P_PID: 1749 type = PIDTYPE_PID; 1750 if (upid <= 0) 1751 return -EINVAL; 1752 1753 pid = find_get_pid(upid); 1754 break; 1755 case P_PGID: 1756 type = PIDTYPE_PGID; 1757 if (upid < 0) 1758 return -EINVAL; 1759 1760 if (upid) 1761 pid = find_get_pid(upid); 1762 else 1763 pid = get_task_pid(current, PIDTYPE_PGID); 1764 break; 1765 case P_PIDFD: 1766 type = PIDTYPE_PID; 1767 if (upid < 0) 1768 return -EINVAL; 1769 1770 pid = pidfd_get_pid(upid, &f_flags); 1771 if (IS_ERR(pid)) 1772 return PTR_ERR(pid); 1773 1774 break; 1775 default: 1776 return -EINVAL; 1777 } 1778 1779 wo->wo_type = type; 1780 wo->wo_pid = pid; 1781 wo->wo_flags = options; 1782 wo->wo_info = infop; 1783 wo->wo_rusage = ru; 1784 if (f_flags & O_NONBLOCK) 1785 wo->wo_flags |= WNOHANG; 1786 1787 return 0; 1788 } 1789 1790 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1791 int options, struct rusage *ru) 1792 { 1793 struct wait_opts wo; 1794 long ret; 1795 1796 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1797 if (ret) 1798 return ret; 1799 1800 ret = do_wait(&wo); 1801 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1802 ret = -EAGAIN; 1803 1804 put_pid(wo.wo_pid); 1805 return ret; 1806 } 1807 1808 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1809 infop, int, options, struct rusage __user *, ru) 1810 { 1811 struct rusage r; 1812 struct waitid_info info = {.status = 0}; 1813 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1814 int signo = 0; 1815 1816 if (err > 0) { 1817 signo = SIGCHLD; 1818 err = 0; 1819 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1820 return -EFAULT; 1821 } 1822 if (!infop) 1823 return err; 1824 1825 if (!user_write_access_begin(infop, sizeof(*infop))) 1826 return -EFAULT; 1827 1828 unsafe_put_user(signo, &infop->si_signo, Efault); 1829 unsafe_put_user(0, &infop->si_errno, Efault); 1830 unsafe_put_user(info.cause, &infop->si_code, Efault); 1831 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1832 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1833 unsafe_put_user(info.status, &infop->si_status, Efault); 1834 user_write_access_end(); 1835 return err; 1836 Efault: 1837 user_write_access_end(); 1838 return -EFAULT; 1839 } 1840 1841 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1842 struct rusage *ru) 1843 { 1844 struct wait_opts wo; 1845 struct pid *pid = NULL; 1846 enum pid_type type; 1847 long ret; 1848 1849 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1850 __WNOTHREAD|__WCLONE|__WALL)) 1851 return -EINVAL; 1852 1853 /* -INT_MIN is not defined */ 1854 if (upid == INT_MIN) 1855 return -ESRCH; 1856 1857 if (upid == -1) 1858 type = PIDTYPE_MAX; 1859 else if (upid < 0) { 1860 type = PIDTYPE_PGID; 1861 pid = find_get_pid(-upid); 1862 } else if (upid == 0) { 1863 type = PIDTYPE_PGID; 1864 pid = get_task_pid(current, PIDTYPE_PGID); 1865 } else /* upid > 0 */ { 1866 type = PIDTYPE_PID; 1867 pid = find_get_pid(upid); 1868 } 1869 1870 wo.wo_type = type; 1871 wo.wo_pid = pid; 1872 wo.wo_flags = options | WEXITED; 1873 wo.wo_info = NULL; 1874 wo.wo_stat = 0; 1875 wo.wo_rusage = ru; 1876 ret = do_wait(&wo); 1877 put_pid(pid); 1878 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1879 ret = -EFAULT; 1880 1881 return ret; 1882 } 1883 1884 int kernel_wait(pid_t pid, int *stat) 1885 { 1886 struct wait_opts wo = { 1887 .wo_type = PIDTYPE_PID, 1888 .wo_pid = find_get_pid(pid), 1889 .wo_flags = WEXITED, 1890 }; 1891 int ret; 1892 1893 ret = do_wait(&wo); 1894 if (ret > 0 && wo.wo_stat) 1895 *stat = wo.wo_stat; 1896 put_pid(wo.wo_pid); 1897 return ret; 1898 } 1899 1900 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1901 int, options, struct rusage __user *, ru) 1902 { 1903 struct rusage r; 1904 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1905 1906 if (err > 0) { 1907 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1908 return -EFAULT; 1909 } 1910 return err; 1911 } 1912 1913 #ifdef __ARCH_WANT_SYS_WAITPID 1914 1915 /* 1916 * sys_waitpid() remains for compatibility. waitpid() should be 1917 * implemented by calling sys_wait4() from libc.a. 1918 */ 1919 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1920 { 1921 return kernel_wait4(pid, stat_addr, options, NULL); 1922 } 1923 1924 #endif 1925 1926 #ifdef CONFIG_COMPAT 1927 COMPAT_SYSCALL_DEFINE4(wait4, 1928 compat_pid_t, pid, 1929 compat_uint_t __user *, stat_addr, 1930 int, options, 1931 struct compat_rusage __user *, ru) 1932 { 1933 struct rusage r; 1934 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1935 if (err > 0) { 1936 if (ru && put_compat_rusage(&r, ru)) 1937 return -EFAULT; 1938 } 1939 return err; 1940 } 1941 1942 COMPAT_SYSCALL_DEFINE5(waitid, 1943 int, which, compat_pid_t, pid, 1944 struct compat_siginfo __user *, infop, int, options, 1945 struct compat_rusage __user *, uru) 1946 { 1947 struct rusage ru; 1948 struct waitid_info info = {.status = 0}; 1949 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1950 int signo = 0; 1951 if (err > 0) { 1952 signo = SIGCHLD; 1953 err = 0; 1954 if (uru) { 1955 /* kernel_waitid() overwrites everything in ru */ 1956 if (COMPAT_USE_64BIT_TIME) 1957 err = copy_to_user(uru, &ru, sizeof(ru)); 1958 else 1959 err = put_compat_rusage(&ru, uru); 1960 if (err) 1961 return -EFAULT; 1962 } 1963 } 1964 1965 if (!infop) 1966 return err; 1967 1968 if (!user_write_access_begin(infop, sizeof(*infop))) 1969 return -EFAULT; 1970 1971 unsafe_put_user(signo, &infop->si_signo, Efault); 1972 unsafe_put_user(0, &infop->si_errno, Efault); 1973 unsafe_put_user(info.cause, &infop->si_code, Efault); 1974 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1975 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1976 unsafe_put_user(info.status, &infop->si_status, Efault); 1977 user_write_access_end(); 1978 return err; 1979 Efault: 1980 user_write_access_end(); 1981 return -EFAULT; 1982 } 1983 #endif 1984 1985 /* 1986 * This needs to be __function_aligned as GCC implicitly makes any 1987 * implementation of abort() cold and drops alignment specified by 1988 * -falign-functions=N. 1989 * 1990 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1991 */ 1992 __weak __function_aligned void abort(void) 1993 { 1994 BUG(); 1995 1996 /* if that doesn't kill us, halt */ 1997 panic("Oops failed to kill thread"); 1998 } 1999 EXPORT_SYMBOL(abort); 2000