1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/stat.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/sched/cputime.h> 15 #include <linux/interrupt.h> 16 #include <linux/module.h> 17 #include <linux/capability.h> 18 #include <linux/completion.h> 19 #include <linux/personality.h> 20 #include <linux/tty.h> 21 #include <linux/iocontext.h> 22 #include <linux/key.h> 23 #include <linux/cpu.h> 24 #include <linux/acct.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/blkdev.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/userfaultfd_k.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/unistd.h> 68 #include <asm/pgtable.h> 69 #include <asm/mmu_context.h> 70 71 static void __unhash_process(struct task_struct *p, bool group_dead) 72 { 73 nr_threads--; 74 detach_pid(p, PIDTYPE_PID); 75 if (group_dead) { 76 detach_pid(p, PIDTYPE_PGID); 77 detach_pid(p, PIDTYPE_SID); 78 79 list_del_rcu(&p->tasks); 80 list_del_init(&p->sibling); 81 __this_cpu_dec(process_counts); 82 } 83 list_del_rcu(&p->thread_group); 84 list_del_rcu(&p->thread_node); 85 } 86 87 /* 88 * This function expects the tasklist_lock write-locked. 89 */ 90 static void __exit_signal(struct task_struct *tsk) 91 { 92 struct signal_struct *sig = tsk->signal; 93 bool group_dead = thread_group_leader(tsk); 94 struct sighand_struct *sighand; 95 struct tty_struct *uninitialized_var(tty); 96 u64 utime, stime; 97 98 sighand = rcu_dereference_check(tsk->sighand, 99 lockdep_tasklist_lock_is_held()); 100 spin_lock(&sighand->siglock); 101 102 #ifdef CONFIG_POSIX_TIMERS 103 posix_cpu_timers_exit(tsk); 104 if (group_dead) { 105 posix_cpu_timers_exit_group(tsk); 106 } else { 107 /* 108 * This can only happen if the caller is de_thread(). 109 * FIXME: this is the temporary hack, we should teach 110 * posix-cpu-timers to handle this case correctly. 111 */ 112 if (unlikely(has_group_leader_pid(tsk))) 113 posix_cpu_timers_exit_group(tsk); 114 } 115 #endif 116 117 if (group_dead) { 118 tty = sig->tty; 119 sig->tty = NULL; 120 } else { 121 /* 122 * If there is any task waiting for the group exit 123 * then notify it: 124 */ 125 if (sig->notify_count > 0 && !--sig->notify_count) 126 wake_up_process(sig->group_exit_task); 127 128 if (tsk == sig->curr_target) 129 sig->curr_target = next_thread(tsk); 130 } 131 132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 133 sizeof(unsigned long long)); 134 135 /* 136 * Accumulate here the counters for all threads as they die. We could 137 * skip the group leader because it is the last user of signal_struct, 138 * but we want to avoid the race with thread_group_cputime() which can 139 * see the empty ->thread_head list. 140 */ 141 task_cputime(tsk, &utime, &stime); 142 write_seqlock(&sig->stats_lock); 143 sig->utime += utime; 144 sig->stime += stime; 145 sig->gtime += task_gtime(tsk); 146 sig->min_flt += tsk->min_flt; 147 sig->maj_flt += tsk->maj_flt; 148 sig->nvcsw += tsk->nvcsw; 149 sig->nivcsw += tsk->nivcsw; 150 sig->inblock += task_io_get_inblock(tsk); 151 sig->oublock += task_io_get_oublock(tsk); 152 task_io_accounting_add(&sig->ioac, &tsk->ioac); 153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 154 sig->nr_threads--; 155 __unhash_process(tsk, group_dead); 156 write_sequnlock(&sig->stats_lock); 157 158 /* 159 * Do this under ->siglock, we can race with another thread 160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 161 */ 162 flush_sigqueue(&tsk->pending); 163 tsk->sighand = NULL; 164 spin_unlock(&sighand->siglock); 165 166 __cleanup_sighand(sighand); 167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 168 if (group_dead) { 169 flush_sigqueue(&sig->shared_pending); 170 tty_kref_put(tty); 171 } 172 } 173 174 static void delayed_put_task_struct(struct rcu_head *rhp) 175 { 176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 177 178 perf_event_delayed_put(tsk); 179 trace_sched_process_free(tsk); 180 put_task_struct(tsk); 181 } 182 183 184 void release_task(struct task_struct *p) 185 { 186 struct task_struct *leader; 187 int zap_leader; 188 repeat: 189 /* don't need to get the RCU readlock here - the process is dead and 190 * can't be modifying its own credentials. But shut RCU-lockdep up */ 191 rcu_read_lock(); 192 atomic_dec(&__task_cred(p)->user->processes); 193 rcu_read_unlock(); 194 195 proc_flush_task(p); 196 197 write_lock_irq(&tasklist_lock); 198 ptrace_release_task(p); 199 __exit_signal(p); 200 201 /* 202 * If we are the last non-leader member of the thread 203 * group, and the leader is zombie, then notify the 204 * group leader's parent process. (if it wants notification.) 205 */ 206 zap_leader = 0; 207 leader = p->group_leader; 208 if (leader != p && thread_group_empty(leader) 209 && leader->exit_state == EXIT_ZOMBIE) { 210 /* 211 * If we were the last child thread and the leader has 212 * exited already, and the leader's parent ignores SIGCHLD, 213 * then we are the one who should release the leader. 214 */ 215 zap_leader = do_notify_parent(leader, leader->exit_signal); 216 if (zap_leader) 217 leader->exit_state = EXIT_DEAD; 218 } 219 220 write_unlock_irq(&tasklist_lock); 221 release_thread(p); 222 call_rcu(&p->rcu, delayed_put_task_struct); 223 224 p = leader; 225 if (unlikely(zap_leader)) 226 goto repeat; 227 } 228 229 /* 230 * Note that if this function returns a valid task_struct pointer (!NULL) 231 * task->usage must remain >0 for the duration of the RCU critical section. 232 */ 233 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 234 { 235 struct sighand_struct *sighand; 236 struct task_struct *task; 237 238 /* 239 * We need to verify that release_task() was not called and thus 240 * delayed_put_task_struct() can't run and drop the last reference 241 * before rcu_read_unlock(). We check task->sighand != NULL, 242 * but we can read the already freed and reused memory. 243 */ 244 retry: 245 task = rcu_dereference(*ptask); 246 if (!task) 247 return NULL; 248 249 probe_kernel_address(&task->sighand, sighand); 250 251 /* 252 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 253 * was already freed we can not miss the preceding update of this 254 * pointer. 255 */ 256 smp_rmb(); 257 if (unlikely(task != READ_ONCE(*ptask))) 258 goto retry; 259 260 /* 261 * We've re-checked that "task == *ptask", now we have two different 262 * cases: 263 * 264 * 1. This is actually the same task/task_struct. In this case 265 * sighand != NULL tells us it is still alive. 266 * 267 * 2. This is another task which got the same memory for task_struct. 268 * We can't know this of course, and we can not trust 269 * sighand != NULL. 270 * 271 * In this case we actually return a random value, but this is 272 * correct. 273 * 274 * If we return NULL - we can pretend that we actually noticed that 275 * *ptask was updated when the previous task has exited. Or pretend 276 * that probe_slab_address(&sighand) reads NULL. 277 * 278 * If we return the new task (because sighand is not NULL for any 279 * reason) - this is fine too. This (new) task can't go away before 280 * another gp pass. 281 * 282 * And note: We could even eliminate the false positive if re-read 283 * task->sighand once again to avoid the falsely NULL. But this case 284 * is very unlikely so we don't care. 285 */ 286 if (!sighand) 287 return NULL; 288 289 return task; 290 } 291 292 void rcuwait_wake_up(struct rcuwait *w) 293 { 294 struct task_struct *task; 295 296 rcu_read_lock(); 297 298 /* 299 * Order condition vs @task, such that everything prior to the load 300 * of @task is visible. This is the condition as to why the user called 301 * rcuwait_trywake() in the first place. Pairs with set_current_state() 302 * barrier (A) in rcuwait_wait_event(). 303 * 304 * WAIT WAKE 305 * [S] tsk = current [S] cond = true 306 * MB (A) MB (B) 307 * [L] cond [L] tsk 308 */ 309 smp_rmb(); /* (B) */ 310 311 /* 312 * Avoid using task_rcu_dereference() magic as long as we are careful, 313 * see comment in rcuwait_wait_event() regarding ->exit_state. 314 */ 315 task = rcu_dereference(w->task); 316 if (task) 317 wake_up_process(task); 318 rcu_read_unlock(); 319 } 320 321 /* 322 * Determine if a process group is "orphaned", according to the POSIX 323 * definition in 2.2.2.52. Orphaned process groups are not to be affected 324 * by terminal-generated stop signals. Newly orphaned process groups are 325 * to receive a SIGHUP and a SIGCONT. 326 * 327 * "I ask you, have you ever known what it is to be an orphan?" 328 */ 329 static int will_become_orphaned_pgrp(struct pid *pgrp, 330 struct task_struct *ignored_task) 331 { 332 struct task_struct *p; 333 334 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 335 if ((p == ignored_task) || 336 (p->exit_state && thread_group_empty(p)) || 337 is_global_init(p->real_parent)) 338 continue; 339 340 if (task_pgrp(p->real_parent) != pgrp && 341 task_session(p->real_parent) == task_session(p)) 342 return 0; 343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 344 345 return 1; 346 } 347 348 int is_current_pgrp_orphaned(void) 349 { 350 int retval; 351 352 read_lock(&tasklist_lock); 353 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 354 read_unlock(&tasklist_lock); 355 356 return retval; 357 } 358 359 static bool has_stopped_jobs(struct pid *pgrp) 360 { 361 struct task_struct *p; 362 363 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 364 if (p->signal->flags & SIGNAL_STOP_STOPPED) 365 return true; 366 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 367 368 return false; 369 } 370 371 /* 372 * Check to see if any process groups have become orphaned as 373 * a result of our exiting, and if they have any stopped jobs, 374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 375 */ 376 static void 377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 378 { 379 struct pid *pgrp = task_pgrp(tsk); 380 struct task_struct *ignored_task = tsk; 381 382 if (!parent) 383 /* exit: our father is in a different pgrp than 384 * we are and we were the only connection outside. 385 */ 386 parent = tsk->real_parent; 387 else 388 /* reparent: our child is in a different pgrp than 389 * we are, and it was the only connection outside. 390 */ 391 ignored_task = NULL; 392 393 if (task_pgrp(parent) != pgrp && 394 task_session(parent) == task_session(tsk) && 395 will_become_orphaned_pgrp(pgrp, ignored_task) && 396 has_stopped_jobs(pgrp)) { 397 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 398 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 399 } 400 } 401 402 #ifdef CONFIG_MEMCG 403 /* 404 * A task is exiting. If it owned this mm, find a new owner for the mm. 405 */ 406 void mm_update_next_owner(struct mm_struct *mm) 407 { 408 struct task_struct *c, *g, *p = current; 409 410 retry: 411 /* 412 * If the exiting or execing task is not the owner, it's 413 * someone else's problem. 414 */ 415 if (mm->owner != p) 416 return; 417 /* 418 * The current owner is exiting/execing and there are no other 419 * candidates. Do not leave the mm pointing to a possibly 420 * freed task structure. 421 */ 422 if (atomic_read(&mm->mm_users) <= 1) { 423 mm->owner = NULL; 424 return; 425 } 426 427 read_lock(&tasklist_lock); 428 /* 429 * Search in the children 430 */ 431 list_for_each_entry(c, &p->children, sibling) { 432 if (c->mm == mm) 433 goto assign_new_owner; 434 } 435 436 /* 437 * Search in the siblings 438 */ 439 list_for_each_entry(c, &p->real_parent->children, sibling) { 440 if (c->mm == mm) 441 goto assign_new_owner; 442 } 443 444 /* 445 * Search through everything else, we should not get here often. 446 */ 447 for_each_process(g) { 448 if (g->flags & PF_KTHREAD) 449 continue; 450 for_each_thread(g, c) { 451 if (c->mm == mm) 452 goto assign_new_owner; 453 if (c->mm) 454 break; 455 } 456 } 457 read_unlock(&tasklist_lock); 458 /* 459 * We found no owner yet mm_users > 1: this implies that we are 460 * most likely racing with swapoff (try_to_unuse()) or /proc or 461 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 462 */ 463 mm->owner = NULL; 464 return; 465 466 assign_new_owner: 467 BUG_ON(c == p); 468 get_task_struct(c); 469 /* 470 * The task_lock protects c->mm from changing. 471 * We always want mm->owner->mm == mm 472 */ 473 task_lock(c); 474 /* 475 * Delay read_unlock() till we have the task_lock() 476 * to ensure that c does not slip away underneath us 477 */ 478 read_unlock(&tasklist_lock); 479 if (c->mm != mm) { 480 task_unlock(c); 481 put_task_struct(c); 482 goto retry; 483 } 484 mm->owner = c; 485 task_unlock(c); 486 put_task_struct(c); 487 } 488 #endif /* CONFIG_MEMCG */ 489 490 /* 491 * Turn us into a lazy TLB process if we 492 * aren't already.. 493 */ 494 static void exit_mm(void) 495 { 496 struct mm_struct *mm = current->mm; 497 struct core_state *core_state; 498 499 mm_release(current, mm); 500 if (!mm) 501 return; 502 sync_mm_rss(mm); 503 /* 504 * Serialize with any possible pending coredump. 505 * We must hold mmap_sem around checking core_state 506 * and clearing tsk->mm. The core-inducing thread 507 * will increment ->nr_threads for each thread in the 508 * group with ->mm != NULL. 509 */ 510 down_read(&mm->mmap_sem); 511 core_state = mm->core_state; 512 if (core_state) { 513 struct core_thread self; 514 515 up_read(&mm->mmap_sem); 516 517 self.task = current; 518 self.next = xchg(&core_state->dumper.next, &self); 519 /* 520 * Implies mb(), the result of xchg() must be visible 521 * to core_state->dumper. 522 */ 523 if (atomic_dec_and_test(&core_state->nr_threads)) 524 complete(&core_state->startup); 525 526 for (;;) { 527 set_current_state(TASK_UNINTERRUPTIBLE); 528 if (!self.task) /* see coredump_finish() */ 529 break; 530 freezable_schedule(); 531 } 532 __set_current_state(TASK_RUNNING); 533 down_read(&mm->mmap_sem); 534 } 535 mmgrab(mm); 536 BUG_ON(mm != current->active_mm); 537 /* more a memory barrier than a real lock */ 538 task_lock(current); 539 current->mm = NULL; 540 up_read(&mm->mmap_sem); 541 enter_lazy_tlb(mm, current); 542 task_unlock(current); 543 mm_update_next_owner(mm); 544 mmput(mm); 545 if (test_thread_flag(TIF_MEMDIE)) 546 exit_oom_victim(); 547 } 548 549 static struct task_struct *find_alive_thread(struct task_struct *p) 550 { 551 struct task_struct *t; 552 553 for_each_thread(p, t) { 554 if (!(t->flags & PF_EXITING)) 555 return t; 556 } 557 return NULL; 558 } 559 560 static struct task_struct *find_child_reaper(struct task_struct *father) 561 __releases(&tasklist_lock) 562 __acquires(&tasklist_lock) 563 { 564 struct pid_namespace *pid_ns = task_active_pid_ns(father); 565 struct task_struct *reaper = pid_ns->child_reaper; 566 567 if (likely(reaper != father)) 568 return reaper; 569 570 reaper = find_alive_thread(father); 571 if (reaper) { 572 pid_ns->child_reaper = reaper; 573 return reaper; 574 } 575 576 write_unlock_irq(&tasklist_lock); 577 if (unlikely(pid_ns == &init_pid_ns)) { 578 panic("Attempted to kill init! exitcode=0x%08x\n", 579 father->signal->group_exit_code ?: father->exit_code); 580 } 581 zap_pid_ns_processes(pid_ns); 582 write_lock_irq(&tasklist_lock); 583 584 return father; 585 } 586 587 /* 588 * When we die, we re-parent all our children, and try to: 589 * 1. give them to another thread in our thread group, if such a member exists 590 * 2. give it to the first ancestor process which prctl'd itself as a 591 * child_subreaper for its children (like a service manager) 592 * 3. give it to the init process (PID 1) in our pid namespace 593 */ 594 static struct task_struct *find_new_reaper(struct task_struct *father, 595 struct task_struct *child_reaper) 596 { 597 struct task_struct *thread, *reaper; 598 599 thread = find_alive_thread(father); 600 if (thread) 601 return thread; 602 603 if (father->signal->has_child_subreaper) { 604 unsigned int ns_level = task_pid(father)->level; 605 /* 606 * Find the first ->is_child_subreaper ancestor in our pid_ns. 607 * We can't check reaper != child_reaper to ensure we do not 608 * cross the namespaces, the exiting parent could be injected 609 * by setns() + fork(). 610 * We check pid->level, this is slightly more efficient than 611 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 612 */ 613 for (reaper = father->real_parent; 614 task_pid(reaper)->level == ns_level; 615 reaper = reaper->real_parent) { 616 if (reaper == &init_task) 617 break; 618 if (!reaper->signal->is_child_subreaper) 619 continue; 620 thread = find_alive_thread(reaper); 621 if (thread) 622 return thread; 623 } 624 } 625 626 return child_reaper; 627 } 628 629 /* 630 * Any that need to be release_task'd are put on the @dead list. 631 */ 632 static void reparent_leader(struct task_struct *father, struct task_struct *p, 633 struct list_head *dead) 634 { 635 if (unlikely(p->exit_state == EXIT_DEAD)) 636 return; 637 638 /* We don't want people slaying init. */ 639 p->exit_signal = SIGCHLD; 640 641 /* If it has exited notify the new parent about this child's death. */ 642 if (!p->ptrace && 643 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 644 if (do_notify_parent(p, p->exit_signal)) { 645 p->exit_state = EXIT_DEAD; 646 list_add(&p->ptrace_entry, dead); 647 } 648 } 649 650 kill_orphaned_pgrp(p, father); 651 } 652 653 /* 654 * This does two things: 655 * 656 * A. Make init inherit all the child processes 657 * B. Check to see if any process groups have become orphaned 658 * as a result of our exiting, and if they have any stopped 659 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 660 */ 661 static void forget_original_parent(struct task_struct *father, 662 struct list_head *dead) 663 { 664 struct task_struct *p, *t, *reaper; 665 666 if (unlikely(!list_empty(&father->ptraced))) 667 exit_ptrace(father, dead); 668 669 /* Can drop and reacquire tasklist_lock */ 670 reaper = find_child_reaper(father); 671 if (list_empty(&father->children)) 672 return; 673 674 reaper = find_new_reaper(father, reaper); 675 list_for_each_entry(p, &father->children, sibling) { 676 for_each_thread(p, t) { 677 t->real_parent = reaper; 678 BUG_ON((!t->ptrace) != (t->parent == father)); 679 if (likely(!t->ptrace)) 680 t->parent = t->real_parent; 681 if (t->pdeath_signal) 682 group_send_sig_info(t->pdeath_signal, 683 SEND_SIG_NOINFO, t); 684 } 685 /* 686 * If this is a threaded reparent there is no need to 687 * notify anyone anything has happened. 688 */ 689 if (!same_thread_group(reaper, father)) 690 reparent_leader(father, p, dead); 691 } 692 list_splice_tail_init(&father->children, &reaper->children); 693 } 694 695 /* 696 * Send signals to all our closest relatives so that they know 697 * to properly mourn us.. 698 */ 699 static void exit_notify(struct task_struct *tsk, int group_dead) 700 { 701 bool autoreap; 702 struct task_struct *p, *n; 703 LIST_HEAD(dead); 704 705 write_lock_irq(&tasklist_lock); 706 forget_original_parent(tsk, &dead); 707 708 if (group_dead) 709 kill_orphaned_pgrp(tsk->group_leader, NULL); 710 711 if (unlikely(tsk->ptrace)) { 712 int sig = thread_group_leader(tsk) && 713 thread_group_empty(tsk) && 714 !ptrace_reparented(tsk) ? 715 tsk->exit_signal : SIGCHLD; 716 autoreap = do_notify_parent(tsk, sig); 717 } else if (thread_group_leader(tsk)) { 718 autoreap = thread_group_empty(tsk) && 719 do_notify_parent(tsk, tsk->exit_signal); 720 } else { 721 autoreap = true; 722 } 723 724 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 725 if (tsk->exit_state == EXIT_DEAD) 726 list_add(&tsk->ptrace_entry, &dead); 727 728 /* mt-exec, de_thread() is waiting for group leader */ 729 if (unlikely(tsk->signal->notify_count < 0)) 730 wake_up_process(tsk->signal->group_exit_task); 731 write_unlock_irq(&tasklist_lock); 732 733 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 734 list_del_init(&p->ptrace_entry); 735 release_task(p); 736 } 737 } 738 739 #ifdef CONFIG_DEBUG_STACK_USAGE 740 static void check_stack_usage(void) 741 { 742 static DEFINE_SPINLOCK(low_water_lock); 743 static int lowest_to_date = THREAD_SIZE; 744 unsigned long free; 745 746 free = stack_not_used(current); 747 748 if (free >= lowest_to_date) 749 return; 750 751 spin_lock(&low_water_lock); 752 if (free < lowest_to_date) { 753 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 754 current->comm, task_pid_nr(current), free); 755 lowest_to_date = free; 756 } 757 spin_unlock(&low_water_lock); 758 } 759 #else 760 static inline void check_stack_usage(void) {} 761 #endif 762 763 void __noreturn do_exit(long code) 764 { 765 struct task_struct *tsk = current; 766 int group_dead; 767 TASKS_RCU(int tasks_rcu_i); 768 769 profile_task_exit(tsk); 770 kcov_task_exit(tsk); 771 772 WARN_ON(blk_needs_flush_plug(tsk)); 773 774 if (unlikely(in_interrupt())) 775 panic("Aiee, killing interrupt handler!"); 776 if (unlikely(!tsk->pid)) 777 panic("Attempted to kill the idle task!"); 778 779 /* 780 * If do_exit is called because this processes oopsed, it's possible 781 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 782 * continuing. Amongst other possible reasons, this is to prevent 783 * mm_release()->clear_child_tid() from writing to a user-controlled 784 * kernel address. 785 */ 786 set_fs(USER_DS); 787 788 ptrace_event(PTRACE_EVENT_EXIT, code); 789 790 validate_creds_for_do_exit(tsk); 791 792 /* 793 * We're taking recursive faults here in do_exit. Safest is to just 794 * leave this task alone and wait for reboot. 795 */ 796 if (unlikely(tsk->flags & PF_EXITING)) { 797 pr_alert("Fixing recursive fault but reboot is needed!\n"); 798 /* 799 * We can do this unlocked here. The futex code uses 800 * this flag just to verify whether the pi state 801 * cleanup has been done or not. In the worst case it 802 * loops once more. We pretend that the cleanup was 803 * done as there is no way to return. Either the 804 * OWNER_DIED bit is set by now or we push the blocked 805 * task into the wait for ever nirwana as well. 806 */ 807 tsk->flags |= PF_EXITPIDONE; 808 set_current_state(TASK_UNINTERRUPTIBLE); 809 schedule(); 810 } 811 812 exit_signals(tsk); /* sets PF_EXITING */ 813 /* 814 * Ensure that all new tsk->pi_lock acquisitions must observe 815 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 816 */ 817 smp_mb(); 818 /* 819 * Ensure that we must observe the pi_state in exit_mm() -> 820 * mm_release() -> exit_pi_state_list(). 821 */ 822 raw_spin_unlock_wait(&tsk->pi_lock); 823 824 if (unlikely(in_atomic())) { 825 pr_info("note: %s[%d] exited with preempt_count %d\n", 826 current->comm, task_pid_nr(current), 827 preempt_count()); 828 preempt_count_set(PREEMPT_ENABLED); 829 } 830 831 /* sync mm's RSS info before statistics gathering */ 832 if (tsk->mm) 833 sync_mm_rss(tsk->mm); 834 acct_update_integrals(tsk); 835 group_dead = atomic_dec_and_test(&tsk->signal->live); 836 if (group_dead) { 837 #ifdef CONFIG_POSIX_TIMERS 838 hrtimer_cancel(&tsk->signal->real_timer); 839 exit_itimers(tsk->signal); 840 #endif 841 if (tsk->mm) 842 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 843 } 844 acct_collect(code, group_dead); 845 if (group_dead) 846 tty_audit_exit(); 847 audit_free(tsk); 848 849 tsk->exit_code = code; 850 taskstats_exit(tsk, group_dead); 851 852 exit_mm(); 853 854 if (group_dead) 855 acct_process(); 856 trace_sched_process_exit(tsk); 857 858 exit_sem(tsk); 859 exit_shm(tsk); 860 exit_files(tsk); 861 exit_fs(tsk); 862 if (group_dead) 863 disassociate_ctty(1); 864 exit_task_namespaces(tsk); 865 exit_task_work(tsk); 866 exit_thread(tsk); 867 868 /* 869 * Flush inherited counters to the parent - before the parent 870 * gets woken up by child-exit notifications. 871 * 872 * because of cgroup mode, must be called before cgroup_exit() 873 */ 874 perf_event_exit_task(tsk); 875 876 sched_autogroup_exit_task(tsk); 877 cgroup_exit(tsk); 878 879 /* 880 * FIXME: do that only when needed, using sched_exit tracepoint 881 */ 882 flush_ptrace_hw_breakpoint(tsk); 883 884 TASKS_RCU(preempt_disable()); 885 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 886 TASKS_RCU(preempt_enable()); 887 exit_notify(tsk, group_dead); 888 proc_exit_connector(tsk); 889 mpol_put_task_policy(tsk); 890 #ifdef CONFIG_FUTEX 891 if (unlikely(current->pi_state_cache)) 892 kfree(current->pi_state_cache); 893 #endif 894 /* 895 * Make sure we are holding no locks: 896 */ 897 debug_check_no_locks_held(); 898 /* 899 * We can do this unlocked here. The futex code uses this flag 900 * just to verify whether the pi state cleanup has been done 901 * or not. In the worst case it loops once more. 902 */ 903 tsk->flags |= PF_EXITPIDONE; 904 905 if (tsk->io_context) 906 exit_io_context(tsk); 907 908 if (tsk->splice_pipe) 909 free_pipe_info(tsk->splice_pipe); 910 911 if (tsk->task_frag.page) 912 put_page(tsk->task_frag.page); 913 914 validate_creds_for_do_exit(tsk); 915 916 check_stack_usage(); 917 preempt_disable(); 918 if (tsk->nr_dirtied) 919 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 920 exit_rcu(); 921 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 922 923 do_task_dead(); 924 } 925 EXPORT_SYMBOL_GPL(do_exit); 926 927 void complete_and_exit(struct completion *comp, long code) 928 { 929 if (comp) 930 complete(comp); 931 932 do_exit(code); 933 } 934 EXPORT_SYMBOL(complete_and_exit); 935 936 SYSCALL_DEFINE1(exit, int, error_code) 937 { 938 do_exit((error_code&0xff)<<8); 939 } 940 941 /* 942 * Take down every thread in the group. This is called by fatal signals 943 * as well as by sys_exit_group (below). 944 */ 945 void 946 do_group_exit(int exit_code) 947 { 948 struct signal_struct *sig = current->signal; 949 950 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 951 952 if (signal_group_exit(sig)) 953 exit_code = sig->group_exit_code; 954 else if (!thread_group_empty(current)) { 955 struct sighand_struct *const sighand = current->sighand; 956 957 spin_lock_irq(&sighand->siglock); 958 if (signal_group_exit(sig)) 959 /* Another thread got here before we took the lock. */ 960 exit_code = sig->group_exit_code; 961 else { 962 sig->group_exit_code = exit_code; 963 sig->flags = SIGNAL_GROUP_EXIT; 964 zap_other_threads(current); 965 } 966 spin_unlock_irq(&sighand->siglock); 967 } 968 969 do_exit(exit_code); 970 /* NOTREACHED */ 971 } 972 973 /* 974 * this kills every thread in the thread group. Note that any externally 975 * wait4()-ing process will get the correct exit code - even if this 976 * thread is not the thread group leader. 977 */ 978 SYSCALL_DEFINE1(exit_group, int, error_code) 979 { 980 do_group_exit((error_code & 0xff) << 8); 981 /* NOTREACHED */ 982 return 0; 983 } 984 985 struct wait_opts { 986 enum pid_type wo_type; 987 int wo_flags; 988 struct pid *wo_pid; 989 990 struct siginfo __user *wo_info; 991 int __user *wo_stat; 992 struct rusage __user *wo_rusage; 993 994 wait_queue_entry_t child_wait; 995 int notask_error; 996 }; 997 998 static inline 999 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1000 { 1001 if (type != PIDTYPE_PID) 1002 task = task->group_leader; 1003 return task->pids[type].pid; 1004 } 1005 1006 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1007 { 1008 return wo->wo_type == PIDTYPE_MAX || 1009 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1010 } 1011 1012 static int 1013 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1014 { 1015 if (!eligible_pid(wo, p)) 1016 return 0; 1017 1018 /* 1019 * Wait for all children (clone and not) if __WALL is set or 1020 * if it is traced by us. 1021 */ 1022 if (ptrace || (wo->wo_flags & __WALL)) 1023 return 1; 1024 1025 /* 1026 * Otherwise, wait for clone children *only* if __WCLONE is set; 1027 * otherwise, wait for non-clone children *only*. 1028 * 1029 * Note: a "clone" child here is one that reports to its parent 1030 * using a signal other than SIGCHLD, or a non-leader thread which 1031 * we can only see if it is traced by us. 1032 */ 1033 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1034 return 0; 1035 1036 return 1; 1037 } 1038 1039 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1040 pid_t pid, uid_t uid, int why, int status) 1041 { 1042 struct siginfo __user *infop; 1043 int retval = wo->wo_rusage 1044 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1045 1046 put_task_struct(p); 1047 infop = wo->wo_info; 1048 if (infop) { 1049 if (!retval) 1050 retval = put_user(SIGCHLD, &infop->si_signo); 1051 if (!retval) 1052 retval = put_user(0, &infop->si_errno); 1053 if (!retval) 1054 retval = put_user((short)why, &infop->si_code); 1055 if (!retval) 1056 retval = put_user(pid, &infop->si_pid); 1057 if (!retval) 1058 retval = put_user(uid, &infop->si_uid); 1059 if (!retval) 1060 retval = put_user(status, &infop->si_status); 1061 } 1062 if (!retval) 1063 retval = pid; 1064 return retval; 1065 } 1066 1067 /* 1068 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1069 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1070 * the lock and this task is uninteresting. If we return nonzero, we have 1071 * released the lock and the system call should return. 1072 */ 1073 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1074 { 1075 int state, retval, status; 1076 pid_t pid = task_pid_vnr(p); 1077 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1078 struct siginfo __user *infop; 1079 1080 if (!likely(wo->wo_flags & WEXITED)) 1081 return 0; 1082 1083 if (unlikely(wo->wo_flags & WNOWAIT)) { 1084 int exit_code = p->exit_code; 1085 int why; 1086 1087 get_task_struct(p); 1088 read_unlock(&tasklist_lock); 1089 sched_annotate_sleep(); 1090 1091 if ((exit_code & 0x7f) == 0) { 1092 why = CLD_EXITED; 1093 status = exit_code >> 8; 1094 } else { 1095 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1096 status = exit_code & 0x7f; 1097 } 1098 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1099 } 1100 /* 1101 * Move the task's state to DEAD/TRACE, only one thread can do this. 1102 */ 1103 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1104 EXIT_TRACE : EXIT_DEAD; 1105 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1106 return 0; 1107 /* 1108 * We own this thread, nobody else can reap it. 1109 */ 1110 read_unlock(&tasklist_lock); 1111 sched_annotate_sleep(); 1112 1113 /* 1114 * Check thread_group_leader() to exclude the traced sub-threads. 1115 */ 1116 if (state == EXIT_DEAD && thread_group_leader(p)) { 1117 struct signal_struct *sig = p->signal; 1118 struct signal_struct *psig = current->signal; 1119 unsigned long maxrss; 1120 u64 tgutime, tgstime; 1121 1122 /* 1123 * The resource counters for the group leader are in its 1124 * own task_struct. Those for dead threads in the group 1125 * are in its signal_struct, as are those for the child 1126 * processes it has previously reaped. All these 1127 * accumulate in the parent's signal_struct c* fields. 1128 * 1129 * We don't bother to take a lock here to protect these 1130 * p->signal fields because the whole thread group is dead 1131 * and nobody can change them. 1132 * 1133 * psig->stats_lock also protects us from our sub-theads 1134 * which can reap other children at the same time. Until 1135 * we change k_getrusage()-like users to rely on this lock 1136 * we have to take ->siglock as well. 1137 * 1138 * We use thread_group_cputime_adjusted() to get times for 1139 * the thread group, which consolidates times for all threads 1140 * in the group including the group leader. 1141 */ 1142 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1143 spin_lock_irq(¤t->sighand->siglock); 1144 write_seqlock(&psig->stats_lock); 1145 psig->cutime += tgutime + sig->cutime; 1146 psig->cstime += tgstime + sig->cstime; 1147 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1148 psig->cmin_flt += 1149 p->min_flt + sig->min_flt + sig->cmin_flt; 1150 psig->cmaj_flt += 1151 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1152 psig->cnvcsw += 1153 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1154 psig->cnivcsw += 1155 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1156 psig->cinblock += 1157 task_io_get_inblock(p) + 1158 sig->inblock + sig->cinblock; 1159 psig->coublock += 1160 task_io_get_oublock(p) + 1161 sig->oublock + sig->coublock; 1162 maxrss = max(sig->maxrss, sig->cmaxrss); 1163 if (psig->cmaxrss < maxrss) 1164 psig->cmaxrss = maxrss; 1165 task_io_accounting_add(&psig->ioac, &p->ioac); 1166 task_io_accounting_add(&psig->ioac, &sig->ioac); 1167 write_sequnlock(&psig->stats_lock); 1168 spin_unlock_irq(¤t->sighand->siglock); 1169 } 1170 1171 retval = wo->wo_rusage 1172 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1173 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1174 ? p->signal->group_exit_code : p->exit_code; 1175 if (!retval && wo->wo_stat) 1176 retval = put_user(status, wo->wo_stat); 1177 1178 infop = wo->wo_info; 1179 if (!retval && infop) 1180 retval = put_user(SIGCHLD, &infop->si_signo); 1181 if (!retval && infop) 1182 retval = put_user(0, &infop->si_errno); 1183 if (!retval && infop) { 1184 int why; 1185 1186 if ((status & 0x7f) == 0) { 1187 why = CLD_EXITED; 1188 status >>= 8; 1189 } else { 1190 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1191 status &= 0x7f; 1192 } 1193 retval = put_user((short)why, &infop->si_code); 1194 if (!retval) 1195 retval = put_user(status, &infop->si_status); 1196 } 1197 if (!retval && infop) 1198 retval = put_user(pid, &infop->si_pid); 1199 if (!retval && infop) 1200 retval = put_user(uid, &infop->si_uid); 1201 if (!retval) 1202 retval = pid; 1203 1204 if (state == EXIT_TRACE) { 1205 write_lock_irq(&tasklist_lock); 1206 /* We dropped tasklist, ptracer could die and untrace */ 1207 ptrace_unlink(p); 1208 1209 /* If parent wants a zombie, don't release it now */ 1210 state = EXIT_ZOMBIE; 1211 if (do_notify_parent(p, p->exit_signal)) 1212 state = EXIT_DEAD; 1213 p->exit_state = state; 1214 write_unlock_irq(&tasklist_lock); 1215 } 1216 if (state == EXIT_DEAD) 1217 release_task(p); 1218 1219 return retval; 1220 } 1221 1222 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1223 { 1224 if (ptrace) { 1225 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1226 return &p->exit_code; 1227 } else { 1228 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1229 return &p->signal->group_exit_code; 1230 } 1231 return NULL; 1232 } 1233 1234 /** 1235 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1236 * @wo: wait options 1237 * @ptrace: is the wait for ptrace 1238 * @p: task to wait for 1239 * 1240 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1241 * 1242 * CONTEXT: 1243 * read_lock(&tasklist_lock), which is released if return value is 1244 * non-zero. Also, grabs and releases @p->sighand->siglock. 1245 * 1246 * RETURNS: 1247 * 0 if wait condition didn't exist and search for other wait conditions 1248 * should continue. Non-zero return, -errno on failure and @p's pid on 1249 * success, implies that tasklist_lock is released and wait condition 1250 * search should terminate. 1251 */ 1252 static int wait_task_stopped(struct wait_opts *wo, 1253 int ptrace, struct task_struct *p) 1254 { 1255 struct siginfo __user *infop; 1256 int retval, exit_code, *p_code, why; 1257 uid_t uid = 0; /* unneeded, required by compiler */ 1258 pid_t pid; 1259 1260 /* 1261 * Traditionally we see ptrace'd stopped tasks regardless of options. 1262 */ 1263 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1264 return 0; 1265 1266 if (!task_stopped_code(p, ptrace)) 1267 return 0; 1268 1269 exit_code = 0; 1270 spin_lock_irq(&p->sighand->siglock); 1271 1272 p_code = task_stopped_code(p, ptrace); 1273 if (unlikely(!p_code)) 1274 goto unlock_sig; 1275 1276 exit_code = *p_code; 1277 if (!exit_code) 1278 goto unlock_sig; 1279 1280 if (!unlikely(wo->wo_flags & WNOWAIT)) 1281 *p_code = 0; 1282 1283 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1284 unlock_sig: 1285 spin_unlock_irq(&p->sighand->siglock); 1286 if (!exit_code) 1287 return 0; 1288 1289 /* 1290 * Now we are pretty sure this task is interesting. 1291 * Make sure it doesn't get reaped out from under us while we 1292 * give up the lock and then examine it below. We don't want to 1293 * keep holding onto the tasklist_lock while we call getrusage and 1294 * possibly take page faults for user memory. 1295 */ 1296 get_task_struct(p); 1297 pid = task_pid_vnr(p); 1298 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1299 read_unlock(&tasklist_lock); 1300 sched_annotate_sleep(); 1301 1302 if (unlikely(wo->wo_flags & WNOWAIT)) 1303 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1304 1305 retval = wo->wo_rusage 1306 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1307 if (!retval && wo->wo_stat) 1308 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1309 1310 infop = wo->wo_info; 1311 if (!retval && infop) 1312 retval = put_user(SIGCHLD, &infop->si_signo); 1313 if (!retval && infop) 1314 retval = put_user(0, &infop->si_errno); 1315 if (!retval && infop) 1316 retval = put_user((short)why, &infop->si_code); 1317 if (!retval && infop) 1318 retval = put_user(exit_code, &infop->si_status); 1319 if (!retval && infop) 1320 retval = put_user(pid, &infop->si_pid); 1321 if (!retval && infop) 1322 retval = put_user(uid, &infop->si_uid); 1323 if (!retval) 1324 retval = pid; 1325 put_task_struct(p); 1326 1327 BUG_ON(!retval); 1328 return retval; 1329 } 1330 1331 /* 1332 * Handle do_wait work for one task in a live, non-stopped state. 1333 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1334 * the lock and this task is uninteresting. If we return nonzero, we have 1335 * released the lock and the system call should return. 1336 */ 1337 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1338 { 1339 int retval; 1340 pid_t pid; 1341 uid_t uid; 1342 1343 if (!unlikely(wo->wo_flags & WCONTINUED)) 1344 return 0; 1345 1346 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1347 return 0; 1348 1349 spin_lock_irq(&p->sighand->siglock); 1350 /* Re-check with the lock held. */ 1351 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1352 spin_unlock_irq(&p->sighand->siglock); 1353 return 0; 1354 } 1355 if (!unlikely(wo->wo_flags & WNOWAIT)) 1356 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1357 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1358 spin_unlock_irq(&p->sighand->siglock); 1359 1360 pid = task_pid_vnr(p); 1361 get_task_struct(p); 1362 read_unlock(&tasklist_lock); 1363 sched_annotate_sleep(); 1364 1365 if (!wo->wo_info) { 1366 retval = wo->wo_rusage 1367 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1368 put_task_struct(p); 1369 if (!retval && wo->wo_stat) 1370 retval = put_user(0xffff, wo->wo_stat); 1371 if (!retval) 1372 retval = pid; 1373 } else { 1374 retval = wait_noreap_copyout(wo, p, pid, uid, 1375 CLD_CONTINUED, SIGCONT); 1376 BUG_ON(retval == 0); 1377 } 1378 1379 return retval; 1380 } 1381 1382 /* 1383 * Consider @p for a wait by @parent. 1384 * 1385 * -ECHILD should be in ->notask_error before the first call. 1386 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1387 * Returns zero if the search for a child should continue; 1388 * then ->notask_error is 0 if @p is an eligible child, 1389 * or still -ECHILD. 1390 */ 1391 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1392 struct task_struct *p) 1393 { 1394 /* 1395 * We can race with wait_task_zombie() from another thread. 1396 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1397 * can't confuse the checks below. 1398 */ 1399 int exit_state = ACCESS_ONCE(p->exit_state); 1400 int ret; 1401 1402 if (unlikely(exit_state == EXIT_DEAD)) 1403 return 0; 1404 1405 ret = eligible_child(wo, ptrace, p); 1406 if (!ret) 1407 return ret; 1408 1409 if (unlikely(exit_state == EXIT_TRACE)) { 1410 /* 1411 * ptrace == 0 means we are the natural parent. In this case 1412 * we should clear notask_error, debugger will notify us. 1413 */ 1414 if (likely(!ptrace)) 1415 wo->notask_error = 0; 1416 return 0; 1417 } 1418 1419 if (likely(!ptrace) && unlikely(p->ptrace)) { 1420 /* 1421 * If it is traced by its real parent's group, just pretend 1422 * the caller is ptrace_do_wait() and reap this child if it 1423 * is zombie. 1424 * 1425 * This also hides group stop state from real parent; otherwise 1426 * a single stop can be reported twice as group and ptrace stop. 1427 * If a ptracer wants to distinguish these two events for its 1428 * own children it should create a separate process which takes 1429 * the role of real parent. 1430 */ 1431 if (!ptrace_reparented(p)) 1432 ptrace = 1; 1433 } 1434 1435 /* slay zombie? */ 1436 if (exit_state == EXIT_ZOMBIE) { 1437 /* we don't reap group leaders with subthreads */ 1438 if (!delay_group_leader(p)) { 1439 /* 1440 * A zombie ptracee is only visible to its ptracer. 1441 * Notification and reaping will be cascaded to the 1442 * real parent when the ptracer detaches. 1443 */ 1444 if (unlikely(ptrace) || likely(!p->ptrace)) 1445 return wait_task_zombie(wo, p); 1446 } 1447 1448 /* 1449 * Allow access to stopped/continued state via zombie by 1450 * falling through. Clearing of notask_error is complex. 1451 * 1452 * When !@ptrace: 1453 * 1454 * If WEXITED is set, notask_error should naturally be 1455 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1456 * so, if there are live subthreads, there are events to 1457 * wait for. If all subthreads are dead, it's still safe 1458 * to clear - this function will be called again in finite 1459 * amount time once all the subthreads are released and 1460 * will then return without clearing. 1461 * 1462 * When @ptrace: 1463 * 1464 * Stopped state is per-task and thus can't change once the 1465 * target task dies. Only continued and exited can happen. 1466 * Clear notask_error if WCONTINUED | WEXITED. 1467 */ 1468 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1469 wo->notask_error = 0; 1470 } else { 1471 /* 1472 * @p is alive and it's gonna stop, continue or exit, so 1473 * there always is something to wait for. 1474 */ 1475 wo->notask_error = 0; 1476 } 1477 1478 /* 1479 * Wait for stopped. Depending on @ptrace, different stopped state 1480 * is used and the two don't interact with each other. 1481 */ 1482 ret = wait_task_stopped(wo, ptrace, p); 1483 if (ret) 1484 return ret; 1485 1486 /* 1487 * Wait for continued. There's only one continued state and the 1488 * ptracer can consume it which can confuse the real parent. Don't 1489 * use WCONTINUED from ptracer. You don't need or want it. 1490 */ 1491 return wait_task_continued(wo, p); 1492 } 1493 1494 /* 1495 * Do the work of do_wait() for one thread in the group, @tsk. 1496 * 1497 * -ECHILD should be in ->notask_error before the first call. 1498 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1499 * Returns zero if the search for a child should continue; then 1500 * ->notask_error is 0 if there were any eligible children, 1501 * or still -ECHILD. 1502 */ 1503 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1504 { 1505 struct task_struct *p; 1506 1507 list_for_each_entry(p, &tsk->children, sibling) { 1508 int ret = wait_consider_task(wo, 0, p); 1509 1510 if (ret) 1511 return ret; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1518 { 1519 struct task_struct *p; 1520 1521 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1522 int ret = wait_consider_task(wo, 1, p); 1523 1524 if (ret) 1525 return ret; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1532 int sync, void *key) 1533 { 1534 struct wait_opts *wo = container_of(wait, struct wait_opts, 1535 child_wait); 1536 struct task_struct *p = key; 1537 1538 if (!eligible_pid(wo, p)) 1539 return 0; 1540 1541 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1542 return 0; 1543 1544 return default_wake_function(wait, mode, sync, key); 1545 } 1546 1547 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1548 { 1549 __wake_up_sync_key(&parent->signal->wait_chldexit, 1550 TASK_INTERRUPTIBLE, 1, p); 1551 } 1552 1553 static long do_wait(struct wait_opts *wo) 1554 { 1555 struct task_struct *tsk; 1556 int retval; 1557 1558 trace_sched_process_wait(wo->wo_pid); 1559 1560 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1561 wo->child_wait.private = current; 1562 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1563 repeat: 1564 /* 1565 * If there is nothing that can match our criteria, just get out. 1566 * We will clear ->notask_error to zero if we see any child that 1567 * might later match our criteria, even if we are not able to reap 1568 * it yet. 1569 */ 1570 wo->notask_error = -ECHILD; 1571 if ((wo->wo_type < PIDTYPE_MAX) && 1572 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1573 goto notask; 1574 1575 set_current_state(TASK_INTERRUPTIBLE); 1576 read_lock(&tasklist_lock); 1577 tsk = current; 1578 do { 1579 retval = do_wait_thread(wo, tsk); 1580 if (retval) 1581 goto end; 1582 1583 retval = ptrace_do_wait(wo, tsk); 1584 if (retval) 1585 goto end; 1586 1587 if (wo->wo_flags & __WNOTHREAD) 1588 break; 1589 } while_each_thread(current, tsk); 1590 read_unlock(&tasklist_lock); 1591 1592 notask: 1593 retval = wo->notask_error; 1594 if (!retval && !(wo->wo_flags & WNOHANG)) { 1595 retval = -ERESTARTSYS; 1596 if (!signal_pending(current)) { 1597 schedule(); 1598 goto repeat; 1599 } 1600 } 1601 end: 1602 __set_current_state(TASK_RUNNING); 1603 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1604 return retval; 1605 } 1606 1607 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1608 infop, int, options, struct rusage __user *, ru) 1609 { 1610 struct wait_opts wo; 1611 struct pid *pid = NULL; 1612 enum pid_type type; 1613 long ret; 1614 1615 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1616 __WNOTHREAD|__WCLONE|__WALL)) 1617 return -EINVAL; 1618 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1619 return -EINVAL; 1620 1621 switch (which) { 1622 case P_ALL: 1623 type = PIDTYPE_MAX; 1624 break; 1625 case P_PID: 1626 type = PIDTYPE_PID; 1627 if (upid <= 0) 1628 return -EINVAL; 1629 break; 1630 case P_PGID: 1631 type = PIDTYPE_PGID; 1632 if (upid <= 0) 1633 return -EINVAL; 1634 break; 1635 default: 1636 return -EINVAL; 1637 } 1638 1639 if (type < PIDTYPE_MAX) 1640 pid = find_get_pid(upid); 1641 1642 wo.wo_type = type; 1643 wo.wo_pid = pid; 1644 wo.wo_flags = options; 1645 wo.wo_info = infop; 1646 wo.wo_stat = NULL; 1647 wo.wo_rusage = ru; 1648 ret = do_wait(&wo); 1649 1650 if (ret > 0) { 1651 ret = 0; 1652 } else if (infop) { 1653 /* 1654 * For a WNOHANG return, clear out all the fields 1655 * we would set so the user can easily tell the 1656 * difference. 1657 */ 1658 if (!ret) 1659 ret = put_user(0, &infop->si_signo); 1660 if (!ret) 1661 ret = put_user(0, &infop->si_errno); 1662 if (!ret) 1663 ret = put_user(0, &infop->si_code); 1664 if (!ret) 1665 ret = put_user(0, &infop->si_pid); 1666 if (!ret) 1667 ret = put_user(0, &infop->si_uid); 1668 if (!ret) 1669 ret = put_user(0, &infop->si_status); 1670 } 1671 1672 put_pid(pid); 1673 return ret; 1674 } 1675 1676 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1677 int, options, struct rusage __user *, ru) 1678 { 1679 struct wait_opts wo; 1680 struct pid *pid = NULL; 1681 enum pid_type type; 1682 long ret; 1683 1684 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1685 __WNOTHREAD|__WCLONE|__WALL)) 1686 return -EINVAL; 1687 1688 if (upid == -1) 1689 type = PIDTYPE_MAX; 1690 else if (upid < 0) { 1691 type = PIDTYPE_PGID; 1692 pid = find_get_pid(-upid); 1693 } else if (upid == 0) { 1694 type = PIDTYPE_PGID; 1695 pid = get_task_pid(current, PIDTYPE_PGID); 1696 } else /* upid > 0 */ { 1697 type = PIDTYPE_PID; 1698 pid = find_get_pid(upid); 1699 } 1700 1701 wo.wo_type = type; 1702 wo.wo_pid = pid; 1703 wo.wo_flags = options | WEXITED; 1704 wo.wo_info = NULL; 1705 wo.wo_stat = stat_addr; 1706 wo.wo_rusage = ru; 1707 ret = do_wait(&wo); 1708 put_pid(pid); 1709 1710 return ret; 1711 } 1712 1713 #ifdef __ARCH_WANT_SYS_WAITPID 1714 1715 /* 1716 * sys_waitpid() remains for compatibility. waitpid() should be 1717 * implemented by calling sys_wait4() from libc.a. 1718 */ 1719 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1720 { 1721 return sys_wait4(pid, stat_addr, options, NULL); 1722 } 1723 1724 #endif 1725