xref: /linux/kernel/exit.c (revision 1b044f1cfc65a7d90b209dfabd57e16d98b58c5b)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/userfaultfd_k.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70 
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_PGID);
77 		detach_pid(p, PIDTYPE_SID);
78 
79 		list_del_rcu(&p->tasks);
80 		list_del_init(&p->sibling);
81 		__this_cpu_dec(process_counts);
82 	}
83 	list_del_rcu(&p->thread_group);
84 	list_del_rcu(&p->thread_node);
85 }
86 
87 /*
88  * This function expects the tasklist_lock write-locked.
89  */
90 static void __exit_signal(struct task_struct *tsk)
91 {
92 	struct signal_struct *sig = tsk->signal;
93 	bool group_dead = thread_group_leader(tsk);
94 	struct sighand_struct *sighand;
95 	struct tty_struct *uninitialized_var(tty);
96 	u64 utime, stime;
97 
98 	sighand = rcu_dereference_check(tsk->sighand,
99 					lockdep_tasklist_lock_is_held());
100 	spin_lock(&sighand->siglock);
101 
102 #ifdef CONFIG_POSIX_TIMERS
103 	posix_cpu_timers_exit(tsk);
104 	if (group_dead) {
105 		posix_cpu_timers_exit_group(tsk);
106 	} else {
107 		/*
108 		 * This can only happen if the caller is de_thread().
109 		 * FIXME: this is the temporary hack, we should teach
110 		 * posix-cpu-timers to handle this case correctly.
111 		 */
112 		if (unlikely(has_group_leader_pid(tsk)))
113 			posix_cpu_timers_exit_group(tsk);
114 	}
115 #endif
116 
117 	if (group_dead) {
118 		tty = sig->tty;
119 		sig->tty = NULL;
120 	} else {
121 		/*
122 		 * If there is any task waiting for the group exit
123 		 * then notify it:
124 		 */
125 		if (sig->notify_count > 0 && !--sig->notify_count)
126 			wake_up_process(sig->group_exit_task);
127 
128 		if (tsk == sig->curr_target)
129 			sig->curr_target = next_thread(tsk);
130 	}
131 
132 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 			      sizeof(unsigned long long));
134 
135 	/*
136 	 * Accumulate here the counters for all threads as they die. We could
137 	 * skip the group leader because it is the last user of signal_struct,
138 	 * but we want to avoid the race with thread_group_cputime() which can
139 	 * see the empty ->thread_head list.
140 	 */
141 	task_cputime(tsk, &utime, &stime);
142 	write_seqlock(&sig->stats_lock);
143 	sig->utime += utime;
144 	sig->stime += stime;
145 	sig->gtime += task_gtime(tsk);
146 	sig->min_flt += tsk->min_flt;
147 	sig->maj_flt += tsk->maj_flt;
148 	sig->nvcsw += tsk->nvcsw;
149 	sig->nivcsw += tsk->nivcsw;
150 	sig->inblock += task_io_get_inblock(tsk);
151 	sig->oublock += task_io_get_oublock(tsk);
152 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 	sig->nr_threads--;
155 	__unhash_process(tsk, group_dead);
156 	write_sequnlock(&sig->stats_lock);
157 
158 	/*
159 	 * Do this under ->siglock, we can race with another thread
160 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 	 */
162 	flush_sigqueue(&tsk->pending);
163 	tsk->sighand = NULL;
164 	spin_unlock(&sighand->siglock);
165 
166 	__cleanup_sighand(sighand);
167 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 	if (group_dead) {
169 		flush_sigqueue(&sig->shared_pending);
170 		tty_kref_put(tty);
171 	}
172 }
173 
174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177 
178 	perf_event_delayed_put(tsk);
179 	trace_sched_process_free(tsk);
180 	put_task_struct(tsk);
181 }
182 
183 
184 void release_task(struct task_struct *p)
185 {
186 	struct task_struct *leader;
187 	int zap_leader;
188 repeat:
189 	/* don't need to get the RCU readlock here - the process is dead and
190 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 	rcu_read_lock();
192 	atomic_dec(&__task_cred(p)->user->processes);
193 	rcu_read_unlock();
194 
195 	proc_flush_task(p);
196 
197 	write_lock_irq(&tasklist_lock);
198 	ptrace_release_task(p);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	release_thread(p);
222 	call_rcu(&p->rcu, delayed_put_task_struct);
223 
224 	p = leader;
225 	if (unlikely(zap_leader))
226 		goto repeat;
227 }
228 
229 /*
230  * Note that if this function returns a valid task_struct pointer (!NULL)
231  * task->usage must remain >0 for the duration of the RCU critical section.
232  */
233 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
234 {
235 	struct sighand_struct *sighand;
236 	struct task_struct *task;
237 
238 	/*
239 	 * We need to verify that release_task() was not called and thus
240 	 * delayed_put_task_struct() can't run and drop the last reference
241 	 * before rcu_read_unlock(). We check task->sighand != NULL,
242 	 * but we can read the already freed and reused memory.
243 	 */
244 retry:
245 	task = rcu_dereference(*ptask);
246 	if (!task)
247 		return NULL;
248 
249 	probe_kernel_address(&task->sighand, sighand);
250 
251 	/*
252 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
253 	 * was already freed we can not miss the preceding update of this
254 	 * pointer.
255 	 */
256 	smp_rmb();
257 	if (unlikely(task != READ_ONCE(*ptask)))
258 		goto retry;
259 
260 	/*
261 	 * We've re-checked that "task == *ptask", now we have two different
262 	 * cases:
263 	 *
264 	 * 1. This is actually the same task/task_struct. In this case
265 	 *    sighand != NULL tells us it is still alive.
266 	 *
267 	 * 2. This is another task which got the same memory for task_struct.
268 	 *    We can't know this of course, and we can not trust
269 	 *    sighand != NULL.
270 	 *
271 	 *    In this case we actually return a random value, but this is
272 	 *    correct.
273 	 *
274 	 *    If we return NULL - we can pretend that we actually noticed that
275 	 *    *ptask was updated when the previous task has exited. Or pretend
276 	 *    that probe_slab_address(&sighand) reads NULL.
277 	 *
278 	 *    If we return the new task (because sighand is not NULL for any
279 	 *    reason) - this is fine too. This (new) task can't go away before
280 	 *    another gp pass.
281 	 *
282 	 *    And note: We could even eliminate the false positive if re-read
283 	 *    task->sighand once again to avoid the falsely NULL. But this case
284 	 *    is very unlikely so we don't care.
285 	 */
286 	if (!sighand)
287 		return NULL;
288 
289 	return task;
290 }
291 
292 void rcuwait_wake_up(struct rcuwait *w)
293 {
294 	struct task_struct *task;
295 
296 	rcu_read_lock();
297 
298 	/*
299 	 * Order condition vs @task, such that everything prior to the load
300 	 * of @task is visible. This is the condition as to why the user called
301 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
302 	 * barrier (A) in rcuwait_wait_event().
303 	 *
304 	 *    WAIT                WAKE
305 	 *    [S] tsk = current	  [S] cond = true
306 	 *        MB (A)	      MB (B)
307 	 *    [L] cond		  [L] tsk
308 	 */
309 	smp_rmb(); /* (B) */
310 
311 	/*
312 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
313 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
314 	 */
315 	task = rcu_dereference(w->task);
316 	if (task)
317 		wake_up_process(task);
318 	rcu_read_unlock();
319 }
320 
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 					struct task_struct *ignored_task)
331 {
332 	struct task_struct *p;
333 
334 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 		if ((p == ignored_task) ||
336 		    (p->exit_state && thread_group_empty(p)) ||
337 		    is_global_init(p->real_parent))
338 			continue;
339 
340 		if (task_pgrp(p->real_parent) != pgrp &&
341 		    task_session(p->real_parent) == task_session(p))
342 			return 0;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return 1;
346 }
347 
348 int is_current_pgrp_orphaned(void)
349 {
350 	int retval;
351 
352 	read_lock(&tasklist_lock);
353 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 	read_unlock(&tasklist_lock);
355 
356 	return retval;
357 }
358 
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 	struct task_struct *p;
362 
363 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 			return true;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return false;
369 }
370 
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 	struct pid *pgrp = task_pgrp(tsk);
380 	struct task_struct *ignored_task = tsk;
381 
382 	if (!parent)
383 		/* exit: our father is in a different pgrp than
384 		 * we are and we were the only connection outside.
385 		 */
386 		parent = tsk->real_parent;
387 	else
388 		/* reparent: our child is in a different pgrp than
389 		 * we are, and it was the only connection outside.
390 		 */
391 		ignored_task = NULL;
392 
393 	if (task_pgrp(parent) != pgrp &&
394 	    task_session(parent) == task_session(tsk) &&
395 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 	    has_stopped_jobs(pgrp)) {
397 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 	}
400 }
401 
402 #ifdef CONFIG_MEMCG
403 /*
404  * A task is exiting.   If it owned this mm, find a new owner for the mm.
405  */
406 void mm_update_next_owner(struct mm_struct *mm)
407 {
408 	struct task_struct *c, *g, *p = current;
409 
410 retry:
411 	/*
412 	 * If the exiting or execing task is not the owner, it's
413 	 * someone else's problem.
414 	 */
415 	if (mm->owner != p)
416 		return;
417 	/*
418 	 * The current owner is exiting/execing and there are no other
419 	 * candidates.  Do not leave the mm pointing to a possibly
420 	 * freed task structure.
421 	 */
422 	if (atomic_read(&mm->mm_users) <= 1) {
423 		mm->owner = NULL;
424 		return;
425 	}
426 
427 	read_lock(&tasklist_lock);
428 	/*
429 	 * Search in the children
430 	 */
431 	list_for_each_entry(c, &p->children, sibling) {
432 		if (c->mm == mm)
433 			goto assign_new_owner;
434 	}
435 
436 	/*
437 	 * Search in the siblings
438 	 */
439 	list_for_each_entry(c, &p->real_parent->children, sibling) {
440 		if (c->mm == mm)
441 			goto assign_new_owner;
442 	}
443 
444 	/*
445 	 * Search through everything else, we should not get here often.
446 	 */
447 	for_each_process(g) {
448 		if (g->flags & PF_KTHREAD)
449 			continue;
450 		for_each_thread(g, c) {
451 			if (c->mm == mm)
452 				goto assign_new_owner;
453 			if (c->mm)
454 				break;
455 		}
456 	}
457 	read_unlock(&tasklist_lock);
458 	/*
459 	 * We found no owner yet mm_users > 1: this implies that we are
460 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
461 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
462 	 */
463 	mm->owner = NULL;
464 	return;
465 
466 assign_new_owner:
467 	BUG_ON(c == p);
468 	get_task_struct(c);
469 	/*
470 	 * The task_lock protects c->mm from changing.
471 	 * We always want mm->owner->mm == mm
472 	 */
473 	task_lock(c);
474 	/*
475 	 * Delay read_unlock() till we have the task_lock()
476 	 * to ensure that c does not slip away underneath us
477 	 */
478 	read_unlock(&tasklist_lock);
479 	if (c->mm != mm) {
480 		task_unlock(c);
481 		put_task_struct(c);
482 		goto retry;
483 	}
484 	mm->owner = c;
485 	task_unlock(c);
486 	put_task_struct(c);
487 }
488 #endif /* CONFIG_MEMCG */
489 
490 /*
491  * Turn us into a lazy TLB process if we
492  * aren't already..
493  */
494 static void exit_mm(void)
495 {
496 	struct mm_struct *mm = current->mm;
497 	struct core_state *core_state;
498 
499 	mm_release(current, mm);
500 	if (!mm)
501 		return;
502 	sync_mm_rss(mm);
503 	/*
504 	 * Serialize with any possible pending coredump.
505 	 * We must hold mmap_sem around checking core_state
506 	 * and clearing tsk->mm.  The core-inducing thread
507 	 * will increment ->nr_threads for each thread in the
508 	 * group with ->mm != NULL.
509 	 */
510 	down_read(&mm->mmap_sem);
511 	core_state = mm->core_state;
512 	if (core_state) {
513 		struct core_thread self;
514 
515 		up_read(&mm->mmap_sem);
516 
517 		self.task = current;
518 		self.next = xchg(&core_state->dumper.next, &self);
519 		/*
520 		 * Implies mb(), the result of xchg() must be visible
521 		 * to core_state->dumper.
522 		 */
523 		if (atomic_dec_and_test(&core_state->nr_threads))
524 			complete(&core_state->startup);
525 
526 		for (;;) {
527 			set_current_state(TASK_UNINTERRUPTIBLE);
528 			if (!self.task) /* see coredump_finish() */
529 				break;
530 			freezable_schedule();
531 		}
532 		__set_current_state(TASK_RUNNING);
533 		down_read(&mm->mmap_sem);
534 	}
535 	mmgrab(mm);
536 	BUG_ON(mm != current->active_mm);
537 	/* more a memory barrier than a real lock */
538 	task_lock(current);
539 	current->mm = NULL;
540 	up_read(&mm->mmap_sem);
541 	enter_lazy_tlb(mm, current);
542 	task_unlock(current);
543 	mm_update_next_owner(mm);
544 	mmput(mm);
545 	if (test_thread_flag(TIF_MEMDIE))
546 		exit_oom_victim();
547 }
548 
549 static struct task_struct *find_alive_thread(struct task_struct *p)
550 {
551 	struct task_struct *t;
552 
553 	for_each_thread(p, t) {
554 		if (!(t->flags & PF_EXITING))
555 			return t;
556 	}
557 	return NULL;
558 }
559 
560 static struct task_struct *find_child_reaper(struct task_struct *father)
561 	__releases(&tasklist_lock)
562 	__acquires(&tasklist_lock)
563 {
564 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
565 	struct task_struct *reaper = pid_ns->child_reaper;
566 
567 	if (likely(reaper != father))
568 		return reaper;
569 
570 	reaper = find_alive_thread(father);
571 	if (reaper) {
572 		pid_ns->child_reaper = reaper;
573 		return reaper;
574 	}
575 
576 	write_unlock_irq(&tasklist_lock);
577 	if (unlikely(pid_ns == &init_pid_ns)) {
578 		panic("Attempted to kill init! exitcode=0x%08x\n",
579 			father->signal->group_exit_code ?: father->exit_code);
580 	}
581 	zap_pid_ns_processes(pid_ns);
582 	write_lock_irq(&tasklist_lock);
583 
584 	return father;
585 }
586 
587 /*
588  * When we die, we re-parent all our children, and try to:
589  * 1. give them to another thread in our thread group, if such a member exists
590  * 2. give it to the first ancestor process which prctl'd itself as a
591  *    child_subreaper for its children (like a service manager)
592  * 3. give it to the init process (PID 1) in our pid namespace
593  */
594 static struct task_struct *find_new_reaper(struct task_struct *father,
595 					   struct task_struct *child_reaper)
596 {
597 	struct task_struct *thread, *reaper;
598 
599 	thread = find_alive_thread(father);
600 	if (thread)
601 		return thread;
602 
603 	if (father->signal->has_child_subreaper) {
604 		unsigned int ns_level = task_pid(father)->level;
605 		/*
606 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
607 		 * We can't check reaper != child_reaper to ensure we do not
608 		 * cross the namespaces, the exiting parent could be injected
609 		 * by setns() + fork().
610 		 * We check pid->level, this is slightly more efficient than
611 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
612 		 */
613 		for (reaper = father->real_parent;
614 		     task_pid(reaper)->level == ns_level;
615 		     reaper = reaper->real_parent) {
616 			if (reaper == &init_task)
617 				break;
618 			if (!reaper->signal->is_child_subreaper)
619 				continue;
620 			thread = find_alive_thread(reaper);
621 			if (thread)
622 				return thread;
623 		}
624 	}
625 
626 	return child_reaper;
627 }
628 
629 /*
630 * Any that need to be release_task'd are put on the @dead list.
631  */
632 static void reparent_leader(struct task_struct *father, struct task_struct *p,
633 				struct list_head *dead)
634 {
635 	if (unlikely(p->exit_state == EXIT_DEAD))
636 		return;
637 
638 	/* We don't want people slaying init. */
639 	p->exit_signal = SIGCHLD;
640 
641 	/* If it has exited notify the new parent about this child's death. */
642 	if (!p->ptrace &&
643 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
644 		if (do_notify_parent(p, p->exit_signal)) {
645 			p->exit_state = EXIT_DEAD;
646 			list_add(&p->ptrace_entry, dead);
647 		}
648 	}
649 
650 	kill_orphaned_pgrp(p, father);
651 }
652 
653 /*
654  * This does two things:
655  *
656  * A.  Make init inherit all the child processes
657  * B.  Check to see if any process groups have become orphaned
658  *	as a result of our exiting, and if they have any stopped
659  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
660  */
661 static void forget_original_parent(struct task_struct *father,
662 					struct list_head *dead)
663 {
664 	struct task_struct *p, *t, *reaper;
665 
666 	if (unlikely(!list_empty(&father->ptraced)))
667 		exit_ptrace(father, dead);
668 
669 	/* Can drop and reacquire tasklist_lock */
670 	reaper = find_child_reaper(father);
671 	if (list_empty(&father->children))
672 		return;
673 
674 	reaper = find_new_reaper(father, reaper);
675 	list_for_each_entry(p, &father->children, sibling) {
676 		for_each_thread(p, t) {
677 			t->real_parent = reaper;
678 			BUG_ON((!t->ptrace) != (t->parent == father));
679 			if (likely(!t->ptrace))
680 				t->parent = t->real_parent;
681 			if (t->pdeath_signal)
682 				group_send_sig_info(t->pdeath_signal,
683 						    SEND_SIG_NOINFO, t);
684 		}
685 		/*
686 		 * If this is a threaded reparent there is no need to
687 		 * notify anyone anything has happened.
688 		 */
689 		if (!same_thread_group(reaper, father))
690 			reparent_leader(father, p, dead);
691 	}
692 	list_splice_tail_init(&father->children, &reaper->children);
693 }
694 
695 /*
696  * Send signals to all our closest relatives so that they know
697  * to properly mourn us..
698  */
699 static void exit_notify(struct task_struct *tsk, int group_dead)
700 {
701 	bool autoreap;
702 	struct task_struct *p, *n;
703 	LIST_HEAD(dead);
704 
705 	write_lock_irq(&tasklist_lock);
706 	forget_original_parent(tsk, &dead);
707 
708 	if (group_dead)
709 		kill_orphaned_pgrp(tsk->group_leader, NULL);
710 
711 	if (unlikely(tsk->ptrace)) {
712 		int sig = thread_group_leader(tsk) &&
713 				thread_group_empty(tsk) &&
714 				!ptrace_reparented(tsk) ?
715 			tsk->exit_signal : SIGCHLD;
716 		autoreap = do_notify_parent(tsk, sig);
717 	} else if (thread_group_leader(tsk)) {
718 		autoreap = thread_group_empty(tsk) &&
719 			do_notify_parent(tsk, tsk->exit_signal);
720 	} else {
721 		autoreap = true;
722 	}
723 
724 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
725 	if (tsk->exit_state == EXIT_DEAD)
726 		list_add(&tsk->ptrace_entry, &dead);
727 
728 	/* mt-exec, de_thread() is waiting for group leader */
729 	if (unlikely(tsk->signal->notify_count < 0))
730 		wake_up_process(tsk->signal->group_exit_task);
731 	write_unlock_irq(&tasklist_lock);
732 
733 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 		list_del_init(&p->ptrace_entry);
735 		release_task(p);
736 	}
737 }
738 
739 #ifdef CONFIG_DEBUG_STACK_USAGE
740 static void check_stack_usage(void)
741 {
742 	static DEFINE_SPINLOCK(low_water_lock);
743 	static int lowest_to_date = THREAD_SIZE;
744 	unsigned long free;
745 
746 	free = stack_not_used(current);
747 
748 	if (free >= lowest_to_date)
749 		return;
750 
751 	spin_lock(&low_water_lock);
752 	if (free < lowest_to_date) {
753 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 			current->comm, task_pid_nr(current), free);
755 		lowest_to_date = free;
756 	}
757 	spin_unlock(&low_water_lock);
758 }
759 #else
760 static inline void check_stack_usage(void) {}
761 #endif
762 
763 void __noreturn do_exit(long code)
764 {
765 	struct task_struct *tsk = current;
766 	int group_dead;
767 	TASKS_RCU(int tasks_rcu_i);
768 
769 	profile_task_exit(tsk);
770 	kcov_task_exit(tsk);
771 
772 	WARN_ON(blk_needs_flush_plug(tsk));
773 
774 	if (unlikely(in_interrupt()))
775 		panic("Aiee, killing interrupt handler!");
776 	if (unlikely(!tsk->pid))
777 		panic("Attempted to kill the idle task!");
778 
779 	/*
780 	 * If do_exit is called because this processes oopsed, it's possible
781 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
782 	 * continuing. Amongst other possible reasons, this is to prevent
783 	 * mm_release()->clear_child_tid() from writing to a user-controlled
784 	 * kernel address.
785 	 */
786 	set_fs(USER_DS);
787 
788 	ptrace_event(PTRACE_EVENT_EXIT, code);
789 
790 	validate_creds_for_do_exit(tsk);
791 
792 	/*
793 	 * We're taking recursive faults here in do_exit. Safest is to just
794 	 * leave this task alone and wait for reboot.
795 	 */
796 	if (unlikely(tsk->flags & PF_EXITING)) {
797 		pr_alert("Fixing recursive fault but reboot is needed!\n");
798 		/*
799 		 * We can do this unlocked here. The futex code uses
800 		 * this flag just to verify whether the pi state
801 		 * cleanup has been done or not. In the worst case it
802 		 * loops once more. We pretend that the cleanup was
803 		 * done as there is no way to return. Either the
804 		 * OWNER_DIED bit is set by now or we push the blocked
805 		 * task into the wait for ever nirwana as well.
806 		 */
807 		tsk->flags |= PF_EXITPIDONE;
808 		set_current_state(TASK_UNINTERRUPTIBLE);
809 		schedule();
810 	}
811 
812 	exit_signals(tsk);  /* sets PF_EXITING */
813 	/*
814 	 * Ensure that all new tsk->pi_lock acquisitions must observe
815 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
816 	 */
817 	smp_mb();
818 	/*
819 	 * Ensure that we must observe the pi_state in exit_mm() ->
820 	 * mm_release() -> exit_pi_state_list().
821 	 */
822 	raw_spin_unlock_wait(&tsk->pi_lock);
823 
824 	if (unlikely(in_atomic())) {
825 		pr_info("note: %s[%d] exited with preempt_count %d\n",
826 			current->comm, task_pid_nr(current),
827 			preempt_count());
828 		preempt_count_set(PREEMPT_ENABLED);
829 	}
830 
831 	/* sync mm's RSS info before statistics gathering */
832 	if (tsk->mm)
833 		sync_mm_rss(tsk->mm);
834 	acct_update_integrals(tsk);
835 	group_dead = atomic_dec_and_test(&tsk->signal->live);
836 	if (group_dead) {
837 #ifdef CONFIG_POSIX_TIMERS
838 		hrtimer_cancel(&tsk->signal->real_timer);
839 		exit_itimers(tsk->signal);
840 #endif
841 		if (tsk->mm)
842 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
843 	}
844 	acct_collect(code, group_dead);
845 	if (group_dead)
846 		tty_audit_exit();
847 	audit_free(tsk);
848 
849 	tsk->exit_code = code;
850 	taskstats_exit(tsk, group_dead);
851 
852 	exit_mm();
853 
854 	if (group_dead)
855 		acct_process();
856 	trace_sched_process_exit(tsk);
857 
858 	exit_sem(tsk);
859 	exit_shm(tsk);
860 	exit_files(tsk);
861 	exit_fs(tsk);
862 	if (group_dead)
863 		disassociate_ctty(1);
864 	exit_task_namespaces(tsk);
865 	exit_task_work(tsk);
866 	exit_thread(tsk);
867 
868 	/*
869 	 * Flush inherited counters to the parent - before the parent
870 	 * gets woken up by child-exit notifications.
871 	 *
872 	 * because of cgroup mode, must be called before cgroup_exit()
873 	 */
874 	perf_event_exit_task(tsk);
875 
876 	sched_autogroup_exit_task(tsk);
877 	cgroup_exit(tsk);
878 
879 	/*
880 	 * FIXME: do that only when needed, using sched_exit tracepoint
881 	 */
882 	flush_ptrace_hw_breakpoint(tsk);
883 
884 	TASKS_RCU(preempt_disable());
885 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
886 	TASKS_RCU(preempt_enable());
887 	exit_notify(tsk, group_dead);
888 	proc_exit_connector(tsk);
889 	mpol_put_task_policy(tsk);
890 #ifdef CONFIG_FUTEX
891 	if (unlikely(current->pi_state_cache))
892 		kfree(current->pi_state_cache);
893 #endif
894 	/*
895 	 * Make sure we are holding no locks:
896 	 */
897 	debug_check_no_locks_held();
898 	/*
899 	 * We can do this unlocked here. The futex code uses this flag
900 	 * just to verify whether the pi state cleanup has been done
901 	 * or not. In the worst case it loops once more.
902 	 */
903 	tsk->flags |= PF_EXITPIDONE;
904 
905 	if (tsk->io_context)
906 		exit_io_context(tsk);
907 
908 	if (tsk->splice_pipe)
909 		free_pipe_info(tsk->splice_pipe);
910 
911 	if (tsk->task_frag.page)
912 		put_page(tsk->task_frag.page);
913 
914 	validate_creds_for_do_exit(tsk);
915 
916 	check_stack_usage();
917 	preempt_disable();
918 	if (tsk->nr_dirtied)
919 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
920 	exit_rcu();
921 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
922 
923 	do_task_dead();
924 }
925 EXPORT_SYMBOL_GPL(do_exit);
926 
927 void complete_and_exit(struct completion *comp, long code)
928 {
929 	if (comp)
930 		complete(comp);
931 
932 	do_exit(code);
933 }
934 EXPORT_SYMBOL(complete_and_exit);
935 
936 SYSCALL_DEFINE1(exit, int, error_code)
937 {
938 	do_exit((error_code&0xff)<<8);
939 }
940 
941 /*
942  * Take down every thread in the group.  This is called by fatal signals
943  * as well as by sys_exit_group (below).
944  */
945 void
946 do_group_exit(int exit_code)
947 {
948 	struct signal_struct *sig = current->signal;
949 
950 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
951 
952 	if (signal_group_exit(sig))
953 		exit_code = sig->group_exit_code;
954 	else if (!thread_group_empty(current)) {
955 		struct sighand_struct *const sighand = current->sighand;
956 
957 		spin_lock_irq(&sighand->siglock);
958 		if (signal_group_exit(sig))
959 			/* Another thread got here before we took the lock.  */
960 			exit_code = sig->group_exit_code;
961 		else {
962 			sig->group_exit_code = exit_code;
963 			sig->flags = SIGNAL_GROUP_EXIT;
964 			zap_other_threads(current);
965 		}
966 		spin_unlock_irq(&sighand->siglock);
967 	}
968 
969 	do_exit(exit_code);
970 	/* NOTREACHED */
971 }
972 
973 /*
974  * this kills every thread in the thread group. Note that any externally
975  * wait4()-ing process will get the correct exit code - even if this
976  * thread is not the thread group leader.
977  */
978 SYSCALL_DEFINE1(exit_group, int, error_code)
979 {
980 	do_group_exit((error_code & 0xff) << 8);
981 	/* NOTREACHED */
982 	return 0;
983 }
984 
985 struct wait_opts {
986 	enum pid_type		wo_type;
987 	int			wo_flags;
988 	struct pid		*wo_pid;
989 
990 	struct siginfo __user	*wo_info;
991 	int __user		*wo_stat;
992 	struct rusage __user	*wo_rusage;
993 
994 	wait_queue_entry_t		child_wait;
995 	int			notask_error;
996 };
997 
998 static inline
999 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1000 {
1001 	if (type != PIDTYPE_PID)
1002 		task = task->group_leader;
1003 	return task->pids[type].pid;
1004 }
1005 
1006 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1007 {
1008 	return	wo->wo_type == PIDTYPE_MAX ||
1009 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1010 }
1011 
1012 static int
1013 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1014 {
1015 	if (!eligible_pid(wo, p))
1016 		return 0;
1017 
1018 	/*
1019 	 * Wait for all children (clone and not) if __WALL is set or
1020 	 * if it is traced by us.
1021 	 */
1022 	if (ptrace || (wo->wo_flags & __WALL))
1023 		return 1;
1024 
1025 	/*
1026 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1027 	 * otherwise, wait for non-clone children *only*.
1028 	 *
1029 	 * Note: a "clone" child here is one that reports to its parent
1030 	 * using a signal other than SIGCHLD, or a non-leader thread which
1031 	 * we can only see if it is traced by us.
1032 	 */
1033 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1034 		return 0;
1035 
1036 	return 1;
1037 }
1038 
1039 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1040 				pid_t pid, uid_t uid, int why, int status)
1041 {
1042 	struct siginfo __user *infop;
1043 	int retval = wo->wo_rusage
1044 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1045 
1046 	put_task_struct(p);
1047 	infop = wo->wo_info;
1048 	if (infop) {
1049 		if (!retval)
1050 			retval = put_user(SIGCHLD, &infop->si_signo);
1051 		if (!retval)
1052 			retval = put_user(0, &infop->si_errno);
1053 		if (!retval)
1054 			retval = put_user((short)why, &infop->si_code);
1055 		if (!retval)
1056 			retval = put_user(pid, &infop->si_pid);
1057 		if (!retval)
1058 			retval = put_user(uid, &infop->si_uid);
1059 		if (!retval)
1060 			retval = put_user(status, &infop->si_status);
1061 	}
1062 	if (!retval)
1063 		retval = pid;
1064 	return retval;
1065 }
1066 
1067 /*
1068  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1069  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1070  * the lock and this task is uninteresting.  If we return nonzero, we have
1071  * released the lock and the system call should return.
1072  */
1073 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1074 {
1075 	int state, retval, status;
1076 	pid_t pid = task_pid_vnr(p);
1077 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1078 	struct siginfo __user *infop;
1079 
1080 	if (!likely(wo->wo_flags & WEXITED))
1081 		return 0;
1082 
1083 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1084 		int exit_code = p->exit_code;
1085 		int why;
1086 
1087 		get_task_struct(p);
1088 		read_unlock(&tasklist_lock);
1089 		sched_annotate_sleep();
1090 
1091 		if ((exit_code & 0x7f) == 0) {
1092 			why = CLD_EXITED;
1093 			status = exit_code >> 8;
1094 		} else {
1095 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 			status = exit_code & 0x7f;
1097 		}
1098 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1099 	}
1100 	/*
1101 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1102 	 */
1103 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1104 		EXIT_TRACE : EXIT_DEAD;
1105 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1106 		return 0;
1107 	/*
1108 	 * We own this thread, nobody else can reap it.
1109 	 */
1110 	read_unlock(&tasklist_lock);
1111 	sched_annotate_sleep();
1112 
1113 	/*
1114 	 * Check thread_group_leader() to exclude the traced sub-threads.
1115 	 */
1116 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1117 		struct signal_struct *sig = p->signal;
1118 		struct signal_struct *psig = current->signal;
1119 		unsigned long maxrss;
1120 		u64 tgutime, tgstime;
1121 
1122 		/*
1123 		 * The resource counters for the group leader are in its
1124 		 * own task_struct.  Those for dead threads in the group
1125 		 * are in its signal_struct, as are those for the child
1126 		 * processes it has previously reaped.  All these
1127 		 * accumulate in the parent's signal_struct c* fields.
1128 		 *
1129 		 * We don't bother to take a lock here to protect these
1130 		 * p->signal fields because the whole thread group is dead
1131 		 * and nobody can change them.
1132 		 *
1133 		 * psig->stats_lock also protects us from our sub-theads
1134 		 * which can reap other children at the same time. Until
1135 		 * we change k_getrusage()-like users to rely on this lock
1136 		 * we have to take ->siglock as well.
1137 		 *
1138 		 * We use thread_group_cputime_adjusted() to get times for
1139 		 * the thread group, which consolidates times for all threads
1140 		 * in the group including the group leader.
1141 		 */
1142 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1143 		spin_lock_irq(&current->sighand->siglock);
1144 		write_seqlock(&psig->stats_lock);
1145 		psig->cutime += tgutime + sig->cutime;
1146 		psig->cstime += tgstime + sig->cstime;
1147 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1148 		psig->cmin_flt +=
1149 			p->min_flt + sig->min_flt + sig->cmin_flt;
1150 		psig->cmaj_flt +=
1151 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1152 		psig->cnvcsw +=
1153 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1154 		psig->cnivcsw +=
1155 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1156 		psig->cinblock +=
1157 			task_io_get_inblock(p) +
1158 			sig->inblock + sig->cinblock;
1159 		psig->coublock +=
1160 			task_io_get_oublock(p) +
1161 			sig->oublock + sig->coublock;
1162 		maxrss = max(sig->maxrss, sig->cmaxrss);
1163 		if (psig->cmaxrss < maxrss)
1164 			psig->cmaxrss = maxrss;
1165 		task_io_accounting_add(&psig->ioac, &p->ioac);
1166 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1167 		write_sequnlock(&psig->stats_lock);
1168 		spin_unlock_irq(&current->sighand->siglock);
1169 	}
1170 
1171 	retval = wo->wo_rusage
1172 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1173 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1174 		? p->signal->group_exit_code : p->exit_code;
1175 	if (!retval && wo->wo_stat)
1176 		retval = put_user(status, wo->wo_stat);
1177 
1178 	infop = wo->wo_info;
1179 	if (!retval && infop)
1180 		retval = put_user(SIGCHLD, &infop->si_signo);
1181 	if (!retval && infop)
1182 		retval = put_user(0, &infop->si_errno);
1183 	if (!retval && infop) {
1184 		int why;
1185 
1186 		if ((status & 0x7f) == 0) {
1187 			why = CLD_EXITED;
1188 			status >>= 8;
1189 		} else {
1190 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1191 			status &= 0x7f;
1192 		}
1193 		retval = put_user((short)why, &infop->si_code);
1194 		if (!retval)
1195 			retval = put_user(status, &infop->si_status);
1196 	}
1197 	if (!retval && infop)
1198 		retval = put_user(pid, &infop->si_pid);
1199 	if (!retval && infop)
1200 		retval = put_user(uid, &infop->si_uid);
1201 	if (!retval)
1202 		retval = pid;
1203 
1204 	if (state == EXIT_TRACE) {
1205 		write_lock_irq(&tasklist_lock);
1206 		/* We dropped tasklist, ptracer could die and untrace */
1207 		ptrace_unlink(p);
1208 
1209 		/* If parent wants a zombie, don't release it now */
1210 		state = EXIT_ZOMBIE;
1211 		if (do_notify_parent(p, p->exit_signal))
1212 			state = EXIT_DEAD;
1213 		p->exit_state = state;
1214 		write_unlock_irq(&tasklist_lock);
1215 	}
1216 	if (state == EXIT_DEAD)
1217 		release_task(p);
1218 
1219 	return retval;
1220 }
1221 
1222 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1223 {
1224 	if (ptrace) {
1225 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1226 			return &p->exit_code;
1227 	} else {
1228 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1229 			return &p->signal->group_exit_code;
1230 	}
1231 	return NULL;
1232 }
1233 
1234 /**
1235  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1236  * @wo: wait options
1237  * @ptrace: is the wait for ptrace
1238  * @p: task to wait for
1239  *
1240  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1241  *
1242  * CONTEXT:
1243  * read_lock(&tasklist_lock), which is released if return value is
1244  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1245  *
1246  * RETURNS:
1247  * 0 if wait condition didn't exist and search for other wait conditions
1248  * should continue.  Non-zero return, -errno on failure and @p's pid on
1249  * success, implies that tasklist_lock is released and wait condition
1250  * search should terminate.
1251  */
1252 static int wait_task_stopped(struct wait_opts *wo,
1253 				int ptrace, struct task_struct *p)
1254 {
1255 	struct siginfo __user *infop;
1256 	int retval, exit_code, *p_code, why;
1257 	uid_t uid = 0; /* unneeded, required by compiler */
1258 	pid_t pid;
1259 
1260 	/*
1261 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1262 	 */
1263 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1264 		return 0;
1265 
1266 	if (!task_stopped_code(p, ptrace))
1267 		return 0;
1268 
1269 	exit_code = 0;
1270 	spin_lock_irq(&p->sighand->siglock);
1271 
1272 	p_code = task_stopped_code(p, ptrace);
1273 	if (unlikely(!p_code))
1274 		goto unlock_sig;
1275 
1276 	exit_code = *p_code;
1277 	if (!exit_code)
1278 		goto unlock_sig;
1279 
1280 	if (!unlikely(wo->wo_flags & WNOWAIT))
1281 		*p_code = 0;
1282 
1283 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1284 unlock_sig:
1285 	spin_unlock_irq(&p->sighand->siglock);
1286 	if (!exit_code)
1287 		return 0;
1288 
1289 	/*
1290 	 * Now we are pretty sure this task is interesting.
1291 	 * Make sure it doesn't get reaped out from under us while we
1292 	 * give up the lock and then examine it below.  We don't want to
1293 	 * keep holding onto the tasklist_lock while we call getrusage and
1294 	 * possibly take page faults for user memory.
1295 	 */
1296 	get_task_struct(p);
1297 	pid = task_pid_vnr(p);
1298 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1299 	read_unlock(&tasklist_lock);
1300 	sched_annotate_sleep();
1301 
1302 	if (unlikely(wo->wo_flags & WNOWAIT))
1303 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1304 
1305 	retval = wo->wo_rusage
1306 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1307 	if (!retval && wo->wo_stat)
1308 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1309 
1310 	infop = wo->wo_info;
1311 	if (!retval && infop)
1312 		retval = put_user(SIGCHLD, &infop->si_signo);
1313 	if (!retval && infop)
1314 		retval = put_user(0, &infop->si_errno);
1315 	if (!retval && infop)
1316 		retval = put_user((short)why, &infop->si_code);
1317 	if (!retval && infop)
1318 		retval = put_user(exit_code, &infop->si_status);
1319 	if (!retval && infop)
1320 		retval = put_user(pid, &infop->si_pid);
1321 	if (!retval && infop)
1322 		retval = put_user(uid, &infop->si_uid);
1323 	if (!retval)
1324 		retval = pid;
1325 	put_task_struct(p);
1326 
1327 	BUG_ON(!retval);
1328 	return retval;
1329 }
1330 
1331 /*
1332  * Handle do_wait work for one task in a live, non-stopped state.
1333  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1334  * the lock and this task is uninteresting.  If we return nonzero, we have
1335  * released the lock and the system call should return.
1336  */
1337 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1338 {
1339 	int retval;
1340 	pid_t pid;
1341 	uid_t uid;
1342 
1343 	if (!unlikely(wo->wo_flags & WCONTINUED))
1344 		return 0;
1345 
1346 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1347 		return 0;
1348 
1349 	spin_lock_irq(&p->sighand->siglock);
1350 	/* Re-check with the lock held.  */
1351 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1352 		spin_unlock_irq(&p->sighand->siglock);
1353 		return 0;
1354 	}
1355 	if (!unlikely(wo->wo_flags & WNOWAIT))
1356 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1357 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1358 	spin_unlock_irq(&p->sighand->siglock);
1359 
1360 	pid = task_pid_vnr(p);
1361 	get_task_struct(p);
1362 	read_unlock(&tasklist_lock);
1363 	sched_annotate_sleep();
1364 
1365 	if (!wo->wo_info) {
1366 		retval = wo->wo_rusage
1367 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1368 		put_task_struct(p);
1369 		if (!retval && wo->wo_stat)
1370 			retval = put_user(0xffff, wo->wo_stat);
1371 		if (!retval)
1372 			retval = pid;
1373 	} else {
1374 		retval = wait_noreap_copyout(wo, p, pid, uid,
1375 					     CLD_CONTINUED, SIGCONT);
1376 		BUG_ON(retval == 0);
1377 	}
1378 
1379 	return retval;
1380 }
1381 
1382 /*
1383  * Consider @p for a wait by @parent.
1384  *
1385  * -ECHILD should be in ->notask_error before the first call.
1386  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1387  * Returns zero if the search for a child should continue;
1388  * then ->notask_error is 0 if @p is an eligible child,
1389  * or still -ECHILD.
1390  */
1391 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1392 				struct task_struct *p)
1393 {
1394 	/*
1395 	 * We can race with wait_task_zombie() from another thread.
1396 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1397 	 * can't confuse the checks below.
1398 	 */
1399 	int exit_state = ACCESS_ONCE(p->exit_state);
1400 	int ret;
1401 
1402 	if (unlikely(exit_state == EXIT_DEAD))
1403 		return 0;
1404 
1405 	ret = eligible_child(wo, ptrace, p);
1406 	if (!ret)
1407 		return ret;
1408 
1409 	if (unlikely(exit_state == EXIT_TRACE)) {
1410 		/*
1411 		 * ptrace == 0 means we are the natural parent. In this case
1412 		 * we should clear notask_error, debugger will notify us.
1413 		 */
1414 		if (likely(!ptrace))
1415 			wo->notask_error = 0;
1416 		return 0;
1417 	}
1418 
1419 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1420 		/*
1421 		 * If it is traced by its real parent's group, just pretend
1422 		 * the caller is ptrace_do_wait() and reap this child if it
1423 		 * is zombie.
1424 		 *
1425 		 * This also hides group stop state from real parent; otherwise
1426 		 * a single stop can be reported twice as group and ptrace stop.
1427 		 * If a ptracer wants to distinguish these two events for its
1428 		 * own children it should create a separate process which takes
1429 		 * the role of real parent.
1430 		 */
1431 		if (!ptrace_reparented(p))
1432 			ptrace = 1;
1433 	}
1434 
1435 	/* slay zombie? */
1436 	if (exit_state == EXIT_ZOMBIE) {
1437 		/* we don't reap group leaders with subthreads */
1438 		if (!delay_group_leader(p)) {
1439 			/*
1440 			 * A zombie ptracee is only visible to its ptracer.
1441 			 * Notification and reaping will be cascaded to the
1442 			 * real parent when the ptracer detaches.
1443 			 */
1444 			if (unlikely(ptrace) || likely(!p->ptrace))
1445 				return wait_task_zombie(wo, p);
1446 		}
1447 
1448 		/*
1449 		 * Allow access to stopped/continued state via zombie by
1450 		 * falling through.  Clearing of notask_error is complex.
1451 		 *
1452 		 * When !@ptrace:
1453 		 *
1454 		 * If WEXITED is set, notask_error should naturally be
1455 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1456 		 * so, if there are live subthreads, there are events to
1457 		 * wait for.  If all subthreads are dead, it's still safe
1458 		 * to clear - this function will be called again in finite
1459 		 * amount time once all the subthreads are released and
1460 		 * will then return without clearing.
1461 		 *
1462 		 * When @ptrace:
1463 		 *
1464 		 * Stopped state is per-task and thus can't change once the
1465 		 * target task dies.  Only continued and exited can happen.
1466 		 * Clear notask_error if WCONTINUED | WEXITED.
1467 		 */
1468 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1469 			wo->notask_error = 0;
1470 	} else {
1471 		/*
1472 		 * @p is alive and it's gonna stop, continue or exit, so
1473 		 * there always is something to wait for.
1474 		 */
1475 		wo->notask_error = 0;
1476 	}
1477 
1478 	/*
1479 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1480 	 * is used and the two don't interact with each other.
1481 	 */
1482 	ret = wait_task_stopped(wo, ptrace, p);
1483 	if (ret)
1484 		return ret;
1485 
1486 	/*
1487 	 * Wait for continued.  There's only one continued state and the
1488 	 * ptracer can consume it which can confuse the real parent.  Don't
1489 	 * use WCONTINUED from ptracer.  You don't need or want it.
1490 	 */
1491 	return wait_task_continued(wo, p);
1492 }
1493 
1494 /*
1495  * Do the work of do_wait() for one thread in the group, @tsk.
1496  *
1497  * -ECHILD should be in ->notask_error before the first call.
1498  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1499  * Returns zero if the search for a child should continue; then
1500  * ->notask_error is 0 if there were any eligible children,
1501  * or still -ECHILD.
1502  */
1503 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1504 {
1505 	struct task_struct *p;
1506 
1507 	list_for_each_entry(p, &tsk->children, sibling) {
1508 		int ret = wait_consider_task(wo, 0, p);
1509 
1510 		if (ret)
1511 			return ret;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1518 {
1519 	struct task_struct *p;
1520 
1521 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1522 		int ret = wait_consider_task(wo, 1, p);
1523 
1524 		if (ret)
1525 			return ret;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1532 				int sync, void *key)
1533 {
1534 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1535 						child_wait);
1536 	struct task_struct *p = key;
1537 
1538 	if (!eligible_pid(wo, p))
1539 		return 0;
1540 
1541 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1542 		return 0;
1543 
1544 	return default_wake_function(wait, mode, sync, key);
1545 }
1546 
1547 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1548 {
1549 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1550 				TASK_INTERRUPTIBLE, 1, p);
1551 }
1552 
1553 static long do_wait(struct wait_opts *wo)
1554 {
1555 	struct task_struct *tsk;
1556 	int retval;
1557 
1558 	trace_sched_process_wait(wo->wo_pid);
1559 
1560 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1561 	wo->child_wait.private = current;
1562 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1563 repeat:
1564 	/*
1565 	 * If there is nothing that can match our criteria, just get out.
1566 	 * We will clear ->notask_error to zero if we see any child that
1567 	 * might later match our criteria, even if we are not able to reap
1568 	 * it yet.
1569 	 */
1570 	wo->notask_error = -ECHILD;
1571 	if ((wo->wo_type < PIDTYPE_MAX) &&
1572 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1573 		goto notask;
1574 
1575 	set_current_state(TASK_INTERRUPTIBLE);
1576 	read_lock(&tasklist_lock);
1577 	tsk = current;
1578 	do {
1579 		retval = do_wait_thread(wo, tsk);
1580 		if (retval)
1581 			goto end;
1582 
1583 		retval = ptrace_do_wait(wo, tsk);
1584 		if (retval)
1585 			goto end;
1586 
1587 		if (wo->wo_flags & __WNOTHREAD)
1588 			break;
1589 	} while_each_thread(current, tsk);
1590 	read_unlock(&tasklist_lock);
1591 
1592 notask:
1593 	retval = wo->notask_error;
1594 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1595 		retval = -ERESTARTSYS;
1596 		if (!signal_pending(current)) {
1597 			schedule();
1598 			goto repeat;
1599 		}
1600 	}
1601 end:
1602 	__set_current_state(TASK_RUNNING);
1603 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1604 	return retval;
1605 }
1606 
1607 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1608 		infop, int, options, struct rusage __user *, ru)
1609 {
1610 	struct wait_opts wo;
1611 	struct pid *pid = NULL;
1612 	enum pid_type type;
1613 	long ret;
1614 
1615 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1616 			__WNOTHREAD|__WCLONE|__WALL))
1617 		return -EINVAL;
1618 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1619 		return -EINVAL;
1620 
1621 	switch (which) {
1622 	case P_ALL:
1623 		type = PIDTYPE_MAX;
1624 		break;
1625 	case P_PID:
1626 		type = PIDTYPE_PID;
1627 		if (upid <= 0)
1628 			return -EINVAL;
1629 		break;
1630 	case P_PGID:
1631 		type = PIDTYPE_PGID;
1632 		if (upid <= 0)
1633 			return -EINVAL;
1634 		break;
1635 	default:
1636 		return -EINVAL;
1637 	}
1638 
1639 	if (type < PIDTYPE_MAX)
1640 		pid = find_get_pid(upid);
1641 
1642 	wo.wo_type	= type;
1643 	wo.wo_pid	= pid;
1644 	wo.wo_flags	= options;
1645 	wo.wo_info	= infop;
1646 	wo.wo_stat	= NULL;
1647 	wo.wo_rusage	= ru;
1648 	ret = do_wait(&wo);
1649 
1650 	if (ret > 0) {
1651 		ret = 0;
1652 	} else if (infop) {
1653 		/*
1654 		 * For a WNOHANG return, clear out all the fields
1655 		 * we would set so the user can easily tell the
1656 		 * difference.
1657 		 */
1658 		if (!ret)
1659 			ret = put_user(0, &infop->si_signo);
1660 		if (!ret)
1661 			ret = put_user(0, &infop->si_errno);
1662 		if (!ret)
1663 			ret = put_user(0, &infop->si_code);
1664 		if (!ret)
1665 			ret = put_user(0, &infop->si_pid);
1666 		if (!ret)
1667 			ret = put_user(0, &infop->si_uid);
1668 		if (!ret)
1669 			ret = put_user(0, &infop->si_status);
1670 	}
1671 
1672 	put_pid(pid);
1673 	return ret;
1674 }
1675 
1676 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1677 		int, options, struct rusage __user *, ru)
1678 {
1679 	struct wait_opts wo;
1680 	struct pid *pid = NULL;
1681 	enum pid_type type;
1682 	long ret;
1683 
1684 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1685 			__WNOTHREAD|__WCLONE|__WALL))
1686 		return -EINVAL;
1687 
1688 	if (upid == -1)
1689 		type = PIDTYPE_MAX;
1690 	else if (upid < 0) {
1691 		type = PIDTYPE_PGID;
1692 		pid = find_get_pid(-upid);
1693 	} else if (upid == 0) {
1694 		type = PIDTYPE_PGID;
1695 		pid = get_task_pid(current, PIDTYPE_PGID);
1696 	} else /* upid > 0 */ {
1697 		type = PIDTYPE_PID;
1698 		pid = find_get_pid(upid);
1699 	}
1700 
1701 	wo.wo_type	= type;
1702 	wo.wo_pid	= pid;
1703 	wo.wo_flags	= options | WEXITED;
1704 	wo.wo_info	= NULL;
1705 	wo.wo_stat	= stat_addr;
1706 	wo.wo_rusage	= ru;
1707 	ret = do_wait(&wo);
1708 	put_pid(pid);
1709 
1710 	return ret;
1711 }
1712 
1713 #ifdef __ARCH_WANT_SYS_WAITPID
1714 
1715 /*
1716  * sys_waitpid() remains for compatibility. waitpid() should be
1717  * implemented by calling sys_wait4() from libc.a.
1718  */
1719 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1720 {
1721 	return sys_wait4(pid, stat_addr, options, NULL);
1722 }
1723 
1724 #endif
1725