xref: /linux/kernel/exit.c (revision 18c4078489fe064cc0ed08be3381cf2f26657f5f)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_counter.h>
51 #include <trace/events/sched.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58 
59 static void exit_mm(struct task_struct * tsk);
60 
61 static void __unhash_process(struct task_struct *p)
62 {
63 	nr_threads--;
64 	detach_pid(p, PIDTYPE_PID);
65 	if (thread_group_leader(p)) {
66 		detach_pid(p, PIDTYPE_PGID);
67 		detach_pid(p, PIDTYPE_SID);
68 
69 		list_del_rcu(&p->tasks);
70 		__get_cpu_var(process_counts)--;
71 	}
72 	list_del_rcu(&p->thread_group);
73 	list_del_init(&p->sibling);
74 }
75 
76 /*
77  * This function expects the tasklist_lock write-locked.
78  */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 	struct signal_struct *sig = tsk->signal;
82 	struct sighand_struct *sighand;
83 
84 	BUG_ON(!sig);
85 	BUG_ON(!atomic_read(&sig->count));
86 
87 	sighand = rcu_dereference(tsk->sighand);
88 	spin_lock(&sighand->siglock);
89 
90 	posix_cpu_timers_exit(tsk);
91 	if (atomic_dec_and_test(&sig->count))
92 		posix_cpu_timers_exit_group(tsk);
93 	else {
94 		/*
95 		 * If there is any task waiting for the group exit
96 		 * then notify it:
97 		 */
98 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99 			wake_up_process(sig->group_exit_task);
100 
101 		if (tsk == sig->curr_target)
102 			sig->curr_target = next_thread(tsk);
103 		/*
104 		 * Accumulate here the counters for all threads but the
105 		 * group leader as they die, so they can be added into
106 		 * the process-wide totals when those are taken.
107 		 * The group leader stays around as a zombie as long
108 		 * as there are other threads.  When it gets reaped,
109 		 * the exit.c code will add its counts into these totals.
110 		 * We won't ever get here for the group leader, since it
111 		 * will have been the last reference on the signal_struct.
112 		 */
113 		sig->utime = cputime_add(sig->utime, task_utime(tsk));
114 		sig->stime = cputime_add(sig->stime, task_stime(tsk));
115 		sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 		sig->min_flt += tsk->min_flt;
117 		sig->maj_flt += tsk->maj_flt;
118 		sig->nvcsw += tsk->nvcsw;
119 		sig->nivcsw += tsk->nivcsw;
120 		sig->inblock += task_io_get_inblock(tsk);
121 		sig->oublock += task_io_get_oublock(tsk);
122 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 		sig = NULL; /* Marker for below. */
125 	}
126 
127 	__unhash_process(tsk);
128 
129 	/*
130 	 * Do this under ->siglock, we can race with another thread
131 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 	 */
133 	flush_sigqueue(&tsk->pending);
134 
135 	tsk->signal = NULL;
136 	tsk->sighand = NULL;
137 	spin_unlock(&sighand->siglock);
138 
139 	__cleanup_sighand(sighand);
140 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 	if (sig) {
142 		flush_sigqueue(&sig->shared_pending);
143 		taskstats_tgid_free(sig);
144 		/*
145 		 * Make sure ->signal can't go away under rq->lock,
146 		 * see account_group_exec_runtime().
147 		 */
148 		task_rq_unlock_wait(tsk);
149 		__cleanup_signal(sig);
150 	}
151 }
152 
153 static void delayed_put_task_struct(struct rcu_head *rhp)
154 {
155 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
156 
157 #ifdef CONFIG_PERF_COUNTERS
158 	WARN_ON_ONCE(tsk->perf_counter_ctxp);
159 #endif
160 	trace_sched_process_free(tsk);
161 	put_task_struct(tsk);
162 }
163 
164 
165 void release_task(struct task_struct * p)
166 {
167 	struct task_struct *leader;
168 	int zap_leader;
169 repeat:
170 	tracehook_prepare_release_task(p);
171 	/* don't need to get the RCU readlock here - the process is dead and
172 	 * can't be modifying its own credentials */
173 	atomic_dec(&__task_cred(p)->user->processes);
174 
175 	proc_flush_task(p);
176 
177 	write_lock_irq(&tasklist_lock);
178 	tracehook_finish_release_task(p);
179 	__exit_signal(p);
180 
181 	/*
182 	 * If we are the last non-leader member of the thread
183 	 * group, and the leader is zombie, then notify the
184 	 * group leader's parent process. (if it wants notification.)
185 	 */
186 	zap_leader = 0;
187 	leader = p->group_leader;
188 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189 		BUG_ON(task_detached(leader));
190 		do_notify_parent(leader, leader->exit_signal);
191 		/*
192 		 * If we were the last child thread and the leader has
193 		 * exited already, and the leader's parent ignores SIGCHLD,
194 		 * then we are the one who should release the leader.
195 		 *
196 		 * do_notify_parent() will have marked it self-reaping in
197 		 * that case.
198 		 */
199 		zap_leader = task_detached(leader);
200 
201 		/*
202 		 * This maintains the invariant that release_task()
203 		 * only runs on a task in EXIT_DEAD, just for sanity.
204 		 */
205 		if (zap_leader)
206 			leader->exit_state = EXIT_DEAD;
207 	}
208 
209 	write_unlock_irq(&tasklist_lock);
210 	release_thread(p);
211 	call_rcu(&p->rcu, delayed_put_task_struct);
212 
213 	p = leader;
214 	if (unlikely(zap_leader))
215 		goto repeat;
216 }
217 
218 /*
219  * This checks not only the pgrp, but falls back on the pid if no
220  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221  * without this...
222  *
223  * The caller must hold rcu lock or the tasklist lock.
224  */
225 struct pid *session_of_pgrp(struct pid *pgrp)
226 {
227 	struct task_struct *p;
228 	struct pid *sid = NULL;
229 
230 	p = pid_task(pgrp, PIDTYPE_PGID);
231 	if (p == NULL)
232 		p = pid_task(pgrp, PIDTYPE_PID);
233 	if (p != NULL)
234 		sid = task_session(p);
235 
236 	return sid;
237 }
238 
239 /*
240  * Determine if a process group is "orphaned", according to the POSIX
241  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
242  * by terminal-generated stop signals.  Newly orphaned process groups are
243  * to receive a SIGHUP and a SIGCONT.
244  *
245  * "I ask you, have you ever known what it is to be an orphan?"
246  */
247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248 {
249 	struct task_struct *p;
250 
251 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 		if ((p == ignored_task) ||
253 		    (p->exit_state && thread_group_empty(p)) ||
254 		    is_global_init(p->real_parent))
255 			continue;
256 
257 		if (task_pgrp(p->real_parent) != pgrp &&
258 		    task_session(p->real_parent) == task_session(p))
259 			return 0;
260 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 
262 	return 1;
263 }
264 
265 int is_current_pgrp_orphaned(void)
266 {
267 	int retval;
268 
269 	read_lock(&tasklist_lock);
270 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 	read_unlock(&tasklist_lock);
272 
273 	return retval;
274 }
275 
276 static int has_stopped_jobs(struct pid *pgrp)
277 {
278 	int retval = 0;
279 	struct task_struct *p;
280 
281 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 		if (!task_is_stopped(p))
283 			continue;
284 		retval = 1;
285 		break;
286 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 	return retval;
288 }
289 
290 /*
291  * Check to see if any process groups have become orphaned as
292  * a result of our exiting, and if they have any stopped jobs,
293  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294  */
295 static void
296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297 {
298 	struct pid *pgrp = task_pgrp(tsk);
299 	struct task_struct *ignored_task = tsk;
300 
301 	if (!parent)
302 		 /* exit: our father is in a different pgrp than
303 		  * we are and we were the only connection outside.
304 		  */
305 		parent = tsk->real_parent;
306 	else
307 		/* reparent: our child is in a different pgrp than
308 		 * we are, and it was the only connection outside.
309 		 */
310 		ignored_task = NULL;
311 
312 	if (task_pgrp(parent) != pgrp &&
313 	    task_session(parent) == task_session(tsk) &&
314 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
315 	    has_stopped_jobs(pgrp)) {
316 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 	}
319 }
320 
321 /**
322  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323  *
324  * If a kernel thread is launched as a result of a system call, or if
325  * it ever exits, it should generally reparent itself to kthreadd so it
326  * isn't in the way of other processes and is correctly cleaned up on exit.
327  *
328  * The various task state such as scheduling policy and priority may have
329  * been inherited from a user process, so we reset them to sane values here.
330  *
331  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332  */
333 static void reparent_to_kthreadd(void)
334 {
335 	write_lock_irq(&tasklist_lock);
336 
337 	ptrace_unlink(current);
338 	/* Reparent to init */
339 	current->real_parent = current->parent = kthreadd_task;
340 	list_move_tail(&current->sibling, &current->real_parent->children);
341 
342 	/* Set the exit signal to SIGCHLD so we signal init on exit */
343 	current->exit_signal = SIGCHLD;
344 
345 	if (task_nice(current) < 0)
346 		set_user_nice(current, 0);
347 	/* cpus_allowed? */
348 	/* rt_priority? */
349 	/* signals? */
350 	memcpy(current->signal->rlim, init_task.signal->rlim,
351 	       sizeof(current->signal->rlim));
352 
353 	atomic_inc(&init_cred.usage);
354 	commit_creds(&init_cred);
355 	write_unlock_irq(&tasklist_lock);
356 }
357 
358 void __set_special_pids(struct pid *pid)
359 {
360 	struct task_struct *curr = current->group_leader;
361 
362 	if (task_session(curr) != pid)
363 		change_pid(curr, PIDTYPE_SID, pid);
364 
365 	if (task_pgrp(curr) != pid)
366 		change_pid(curr, PIDTYPE_PGID, pid);
367 }
368 
369 static void set_special_pids(struct pid *pid)
370 {
371 	write_lock_irq(&tasklist_lock);
372 	__set_special_pids(pid);
373 	write_unlock_irq(&tasklist_lock);
374 }
375 
376 /*
377  * Let kernel threads use this to say that they allow a certain signal.
378  * Must not be used if kthread was cloned with CLONE_SIGHAND.
379  */
380 int allow_signal(int sig)
381 {
382 	if (!valid_signal(sig) || sig < 1)
383 		return -EINVAL;
384 
385 	spin_lock_irq(&current->sighand->siglock);
386 	/* This is only needed for daemonize()'ed kthreads */
387 	sigdelset(&current->blocked, sig);
388 	/*
389 	 * Kernel threads handle their own signals. Let the signal code
390 	 * know it'll be handled, so that they don't get converted to
391 	 * SIGKILL or just silently dropped.
392 	 */
393 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394 	recalc_sigpending();
395 	spin_unlock_irq(&current->sighand->siglock);
396 	return 0;
397 }
398 
399 EXPORT_SYMBOL(allow_signal);
400 
401 int disallow_signal(int sig)
402 {
403 	if (!valid_signal(sig) || sig < 1)
404 		return -EINVAL;
405 
406 	spin_lock_irq(&current->sighand->siglock);
407 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
408 	recalc_sigpending();
409 	spin_unlock_irq(&current->sighand->siglock);
410 	return 0;
411 }
412 
413 EXPORT_SYMBOL(disallow_signal);
414 
415 /*
416  *	Put all the gunge required to become a kernel thread without
417  *	attached user resources in one place where it belongs.
418  */
419 
420 void daemonize(const char *name, ...)
421 {
422 	va_list args;
423 	sigset_t blocked;
424 
425 	va_start(args, name);
426 	vsnprintf(current->comm, sizeof(current->comm), name, args);
427 	va_end(args);
428 
429 	/*
430 	 * If we were started as result of loading a module, close all of the
431 	 * user space pages.  We don't need them, and if we didn't close them
432 	 * they would be locked into memory.
433 	 */
434 	exit_mm(current);
435 	/*
436 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
437 	 * or suspend transition begins right now.
438 	 */
439 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
440 
441 	if (current->nsproxy != &init_nsproxy) {
442 		get_nsproxy(&init_nsproxy);
443 		switch_task_namespaces(current, &init_nsproxy);
444 	}
445 	set_special_pids(&init_struct_pid);
446 	proc_clear_tty(current);
447 
448 	/* Block and flush all signals */
449 	sigfillset(&blocked);
450 	sigprocmask(SIG_BLOCK, &blocked, NULL);
451 	flush_signals(current);
452 
453 	/* Become as one with the init task */
454 
455 	daemonize_fs_struct();
456 	exit_files(current);
457 	current->files = init_task.files;
458 	atomic_inc(&current->files->count);
459 
460 	reparent_to_kthreadd();
461 }
462 
463 EXPORT_SYMBOL(daemonize);
464 
465 static void close_files(struct files_struct * files)
466 {
467 	int i, j;
468 	struct fdtable *fdt;
469 
470 	j = 0;
471 
472 	/*
473 	 * It is safe to dereference the fd table without RCU or
474 	 * ->file_lock because this is the last reference to the
475 	 * files structure.
476 	 */
477 	fdt = files_fdtable(files);
478 	for (;;) {
479 		unsigned long set;
480 		i = j * __NFDBITS;
481 		if (i >= fdt->max_fds)
482 			break;
483 		set = fdt->open_fds->fds_bits[j++];
484 		while (set) {
485 			if (set & 1) {
486 				struct file * file = xchg(&fdt->fd[i], NULL);
487 				if (file) {
488 					filp_close(file, files);
489 					cond_resched();
490 				}
491 			}
492 			i++;
493 			set >>= 1;
494 		}
495 	}
496 }
497 
498 struct files_struct *get_files_struct(struct task_struct *task)
499 {
500 	struct files_struct *files;
501 
502 	task_lock(task);
503 	files = task->files;
504 	if (files)
505 		atomic_inc(&files->count);
506 	task_unlock(task);
507 
508 	return files;
509 }
510 
511 void put_files_struct(struct files_struct *files)
512 {
513 	struct fdtable *fdt;
514 
515 	if (atomic_dec_and_test(&files->count)) {
516 		close_files(files);
517 		/*
518 		 * Free the fd and fdset arrays if we expanded them.
519 		 * If the fdtable was embedded, pass files for freeing
520 		 * at the end of the RCU grace period. Otherwise,
521 		 * you can free files immediately.
522 		 */
523 		fdt = files_fdtable(files);
524 		if (fdt != &files->fdtab)
525 			kmem_cache_free(files_cachep, files);
526 		free_fdtable(fdt);
527 	}
528 }
529 
530 void reset_files_struct(struct files_struct *files)
531 {
532 	struct task_struct *tsk = current;
533 	struct files_struct *old;
534 
535 	old = tsk->files;
536 	task_lock(tsk);
537 	tsk->files = files;
538 	task_unlock(tsk);
539 	put_files_struct(old);
540 }
541 
542 void exit_files(struct task_struct *tsk)
543 {
544 	struct files_struct * files = tsk->files;
545 
546 	if (files) {
547 		task_lock(tsk);
548 		tsk->files = NULL;
549 		task_unlock(tsk);
550 		put_files_struct(files);
551 	}
552 }
553 
554 #ifdef CONFIG_MM_OWNER
555 /*
556  * Task p is exiting and it owned mm, lets find a new owner for it
557  */
558 static inline int
559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
560 {
561 	/*
562 	 * If there are other users of the mm and the owner (us) is exiting
563 	 * we need to find a new owner to take on the responsibility.
564 	 */
565 	if (atomic_read(&mm->mm_users) <= 1)
566 		return 0;
567 	if (mm->owner != p)
568 		return 0;
569 	return 1;
570 }
571 
572 void mm_update_next_owner(struct mm_struct *mm)
573 {
574 	struct task_struct *c, *g, *p = current;
575 
576 retry:
577 	if (!mm_need_new_owner(mm, p))
578 		return;
579 
580 	read_lock(&tasklist_lock);
581 	/*
582 	 * Search in the children
583 	 */
584 	list_for_each_entry(c, &p->children, sibling) {
585 		if (c->mm == mm)
586 			goto assign_new_owner;
587 	}
588 
589 	/*
590 	 * Search in the siblings
591 	 */
592 	list_for_each_entry(c, &p->real_parent->children, sibling) {
593 		if (c->mm == mm)
594 			goto assign_new_owner;
595 	}
596 
597 	/*
598 	 * Search through everything else. We should not get
599 	 * here often
600 	 */
601 	do_each_thread(g, c) {
602 		if (c->mm == mm)
603 			goto assign_new_owner;
604 	} while_each_thread(g, c);
605 
606 	read_unlock(&tasklist_lock);
607 	/*
608 	 * We found no owner yet mm_users > 1: this implies that we are
609 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
610 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
611 	 */
612 	mm->owner = NULL;
613 	return;
614 
615 assign_new_owner:
616 	BUG_ON(c == p);
617 	get_task_struct(c);
618 	/*
619 	 * The task_lock protects c->mm from changing.
620 	 * We always want mm->owner->mm == mm
621 	 */
622 	task_lock(c);
623 	/*
624 	 * Delay read_unlock() till we have the task_lock()
625 	 * to ensure that c does not slip away underneath us
626 	 */
627 	read_unlock(&tasklist_lock);
628 	if (c->mm != mm) {
629 		task_unlock(c);
630 		put_task_struct(c);
631 		goto retry;
632 	}
633 	mm->owner = c;
634 	task_unlock(c);
635 	put_task_struct(c);
636 }
637 #endif /* CONFIG_MM_OWNER */
638 
639 /*
640  * Turn us into a lazy TLB process if we
641  * aren't already..
642  */
643 static void exit_mm(struct task_struct * tsk)
644 {
645 	struct mm_struct *mm = tsk->mm;
646 	struct core_state *core_state;
647 
648 	mm_release(tsk, mm);
649 	if (!mm)
650 		return;
651 	/*
652 	 * Serialize with any possible pending coredump.
653 	 * We must hold mmap_sem around checking core_state
654 	 * and clearing tsk->mm.  The core-inducing thread
655 	 * will increment ->nr_threads for each thread in the
656 	 * group with ->mm != NULL.
657 	 */
658 	down_read(&mm->mmap_sem);
659 	core_state = mm->core_state;
660 	if (core_state) {
661 		struct core_thread self;
662 		up_read(&mm->mmap_sem);
663 
664 		self.task = tsk;
665 		self.next = xchg(&core_state->dumper.next, &self);
666 		/*
667 		 * Implies mb(), the result of xchg() must be visible
668 		 * to core_state->dumper.
669 		 */
670 		if (atomic_dec_and_test(&core_state->nr_threads))
671 			complete(&core_state->startup);
672 
673 		for (;;) {
674 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
675 			if (!self.task) /* see coredump_finish() */
676 				break;
677 			schedule();
678 		}
679 		__set_task_state(tsk, TASK_RUNNING);
680 		down_read(&mm->mmap_sem);
681 	}
682 	atomic_inc(&mm->mm_count);
683 	BUG_ON(mm != tsk->active_mm);
684 	/* more a memory barrier than a real lock */
685 	task_lock(tsk);
686 	tsk->mm = NULL;
687 	up_read(&mm->mmap_sem);
688 	enter_lazy_tlb(mm, current);
689 	/* We don't want this task to be frozen prematurely */
690 	clear_freeze_flag(tsk);
691 	task_unlock(tsk);
692 	mm_update_next_owner(mm);
693 	mmput(mm);
694 }
695 
696 /*
697  * When we die, we re-parent all our children.
698  * Try to give them to another thread in our thread
699  * group, and if no such member exists, give it to
700  * the child reaper process (ie "init") in our pid
701  * space.
702  */
703 static struct task_struct *find_new_reaper(struct task_struct *father)
704 {
705 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
706 	struct task_struct *thread;
707 
708 	thread = father;
709 	while_each_thread(father, thread) {
710 		if (thread->flags & PF_EXITING)
711 			continue;
712 		if (unlikely(pid_ns->child_reaper == father))
713 			pid_ns->child_reaper = thread;
714 		return thread;
715 	}
716 
717 	if (unlikely(pid_ns->child_reaper == father)) {
718 		write_unlock_irq(&tasklist_lock);
719 		if (unlikely(pid_ns == &init_pid_ns))
720 			panic("Attempted to kill init!");
721 
722 		zap_pid_ns_processes(pid_ns);
723 		write_lock_irq(&tasklist_lock);
724 		/*
725 		 * We can not clear ->child_reaper or leave it alone.
726 		 * There may by stealth EXIT_DEAD tasks on ->children,
727 		 * forget_original_parent() must move them somewhere.
728 		 */
729 		pid_ns->child_reaper = init_pid_ns.child_reaper;
730 	}
731 
732 	return pid_ns->child_reaper;
733 }
734 
735 /*
736 * Any that need to be release_task'd are put on the @dead list.
737  */
738 static void reparent_thread(struct task_struct *father, struct task_struct *p,
739 				struct list_head *dead)
740 {
741 	if (p->pdeath_signal)
742 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
743 
744 	list_move_tail(&p->sibling, &p->real_parent->children);
745 
746 	if (task_detached(p))
747 		return;
748 	/*
749 	 * If this is a threaded reparent there is no need to
750 	 * notify anyone anything has happened.
751 	 */
752 	if (same_thread_group(p->real_parent, father))
753 		return;
754 
755 	/* We don't want people slaying init.  */
756 	p->exit_signal = SIGCHLD;
757 
758 	/* If it has exited notify the new parent about this child's death. */
759 	if (!task_ptrace(p) &&
760 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
761 		do_notify_parent(p, p->exit_signal);
762 		if (task_detached(p)) {
763 			p->exit_state = EXIT_DEAD;
764 			list_move_tail(&p->sibling, dead);
765 		}
766 	}
767 
768 	kill_orphaned_pgrp(p, father);
769 }
770 
771 static void forget_original_parent(struct task_struct *father)
772 {
773 	struct task_struct *p, *n, *reaper;
774 	LIST_HEAD(dead_children);
775 
776 	exit_ptrace(father);
777 
778 	write_lock_irq(&tasklist_lock);
779 	reaper = find_new_reaper(father);
780 
781 	list_for_each_entry_safe(p, n, &father->children, sibling) {
782 		p->real_parent = reaper;
783 		if (p->parent == father) {
784 			BUG_ON(task_ptrace(p));
785 			p->parent = p->real_parent;
786 		}
787 		reparent_thread(father, p, &dead_children);
788 	}
789 	write_unlock_irq(&tasklist_lock);
790 
791 	BUG_ON(!list_empty(&father->children));
792 
793 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
794 		list_del_init(&p->sibling);
795 		release_task(p);
796 	}
797 }
798 
799 /*
800  * Send signals to all our closest relatives so that they know
801  * to properly mourn us..
802  */
803 static void exit_notify(struct task_struct *tsk, int group_dead)
804 {
805 	int signal;
806 	void *cookie;
807 
808 	/*
809 	 * This does two things:
810 	 *
811   	 * A.  Make init inherit all the child processes
812 	 * B.  Check to see if any process groups have become orphaned
813 	 *	as a result of our exiting, and if they have any stopped
814 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
815 	 */
816 	forget_original_parent(tsk);
817 	exit_task_namespaces(tsk);
818 
819 	write_lock_irq(&tasklist_lock);
820 	if (group_dead)
821 		kill_orphaned_pgrp(tsk->group_leader, NULL);
822 
823 	/* Let father know we died
824 	 *
825 	 * Thread signals are configurable, but you aren't going to use
826 	 * that to send signals to arbitary processes.
827 	 * That stops right now.
828 	 *
829 	 * If the parent exec id doesn't match the exec id we saved
830 	 * when we started then we know the parent has changed security
831 	 * domain.
832 	 *
833 	 * If our self_exec id doesn't match our parent_exec_id then
834 	 * we have changed execution domain as these two values started
835 	 * the same after a fork.
836 	 */
837 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
838 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
839 	     tsk->self_exec_id != tsk->parent_exec_id))
840 		tsk->exit_signal = SIGCHLD;
841 
842 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
843 	if (signal >= 0)
844 		signal = do_notify_parent(tsk, signal);
845 
846 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
847 
848 	/* mt-exec, de_thread() is waiting for us */
849 	if (thread_group_leader(tsk) &&
850 	    tsk->signal->group_exit_task &&
851 	    tsk->signal->notify_count < 0)
852 		wake_up_process(tsk->signal->group_exit_task);
853 
854 	write_unlock_irq(&tasklist_lock);
855 
856 	tracehook_report_death(tsk, signal, cookie, group_dead);
857 
858 	/* If the process is dead, release it - nobody will wait for it */
859 	if (signal == DEATH_REAP)
860 		release_task(tsk);
861 }
862 
863 #ifdef CONFIG_DEBUG_STACK_USAGE
864 static void check_stack_usage(void)
865 {
866 	static DEFINE_SPINLOCK(low_water_lock);
867 	static int lowest_to_date = THREAD_SIZE;
868 	unsigned long free;
869 
870 	free = stack_not_used(current);
871 
872 	if (free >= lowest_to_date)
873 		return;
874 
875 	spin_lock(&low_water_lock);
876 	if (free < lowest_to_date) {
877 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
878 				"left\n",
879 				current->comm, free);
880 		lowest_to_date = free;
881 	}
882 	spin_unlock(&low_water_lock);
883 }
884 #else
885 static inline void check_stack_usage(void) {}
886 #endif
887 
888 NORET_TYPE void do_exit(long code)
889 {
890 	struct task_struct *tsk = current;
891 	int group_dead;
892 
893 	profile_task_exit(tsk);
894 
895 	WARN_ON(atomic_read(&tsk->fs_excl));
896 
897 	if (unlikely(in_interrupt()))
898 		panic("Aiee, killing interrupt handler!");
899 	if (unlikely(!tsk->pid))
900 		panic("Attempted to kill the idle task!");
901 
902 	tracehook_report_exit(&code);
903 
904 	/*
905 	 * We're taking recursive faults here in do_exit. Safest is to just
906 	 * leave this task alone and wait for reboot.
907 	 */
908 	if (unlikely(tsk->flags & PF_EXITING)) {
909 		printk(KERN_ALERT
910 			"Fixing recursive fault but reboot is needed!\n");
911 		/*
912 		 * We can do this unlocked here. The futex code uses
913 		 * this flag just to verify whether the pi state
914 		 * cleanup has been done or not. In the worst case it
915 		 * loops once more. We pretend that the cleanup was
916 		 * done as there is no way to return. Either the
917 		 * OWNER_DIED bit is set by now or we push the blocked
918 		 * task into the wait for ever nirwana as well.
919 		 */
920 		tsk->flags |= PF_EXITPIDONE;
921 		set_current_state(TASK_UNINTERRUPTIBLE);
922 		schedule();
923 	}
924 
925 	exit_irq_thread();
926 
927 	exit_signals(tsk);  /* sets PF_EXITING */
928 	/*
929 	 * tsk->flags are checked in the futex code to protect against
930 	 * an exiting task cleaning up the robust pi futexes.
931 	 */
932 	smp_mb();
933 	spin_unlock_wait(&tsk->pi_lock);
934 
935 	if (unlikely(in_atomic()))
936 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
937 				current->comm, task_pid_nr(current),
938 				preempt_count());
939 
940 	acct_update_integrals(tsk);
941 
942 	group_dead = atomic_dec_and_test(&tsk->signal->live);
943 	if (group_dead) {
944 		hrtimer_cancel(&tsk->signal->real_timer);
945 		exit_itimers(tsk->signal);
946 	}
947 	acct_collect(code, group_dead);
948 	if (group_dead)
949 		tty_audit_exit();
950 	if (unlikely(tsk->audit_context))
951 		audit_free(tsk);
952 
953 	tsk->exit_code = code;
954 	taskstats_exit(tsk, group_dead);
955 
956 	exit_mm(tsk);
957 
958 	if (group_dead)
959 		acct_process();
960 	trace_sched_process_exit(tsk);
961 
962 	exit_sem(tsk);
963 	exit_files(tsk);
964 	exit_fs(tsk);
965 	check_stack_usage();
966 	exit_thread();
967 	cgroup_exit(tsk, 1);
968 
969 	if (group_dead && tsk->signal->leader)
970 		disassociate_ctty(1);
971 
972 	module_put(task_thread_info(tsk)->exec_domain->module);
973 	if (tsk->binfmt)
974 		module_put(tsk->binfmt->module);
975 
976 	proc_exit_connector(tsk);
977 
978 	/*
979 	 * Flush inherited counters to the parent - before the parent
980 	 * gets woken up by child-exit notifications.
981 	 */
982 	perf_counter_exit_task(tsk);
983 
984 	exit_notify(tsk, group_dead);
985 #ifdef CONFIG_NUMA
986 	mpol_put(tsk->mempolicy);
987 	tsk->mempolicy = NULL;
988 #endif
989 #ifdef CONFIG_FUTEX
990 	if (unlikely(!list_empty(&tsk->pi_state_list)))
991 		exit_pi_state_list(tsk);
992 	if (unlikely(current->pi_state_cache))
993 		kfree(current->pi_state_cache);
994 #endif
995 	/*
996 	 * Make sure we are holding no locks:
997 	 */
998 	debug_check_no_locks_held(tsk);
999 	/*
1000 	 * We can do this unlocked here. The futex code uses this flag
1001 	 * just to verify whether the pi state cleanup has been done
1002 	 * or not. In the worst case it loops once more.
1003 	 */
1004 	tsk->flags |= PF_EXITPIDONE;
1005 
1006 	if (tsk->io_context)
1007 		exit_io_context();
1008 
1009 	if (tsk->splice_pipe)
1010 		__free_pipe_info(tsk->splice_pipe);
1011 
1012 	preempt_disable();
1013 	/* causes final put_task_struct in finish_task_switch(). */
1014 	tsk->state = TASK_DEAD;
1015 	schedule();
1016 	BUG();
1017 	/* Avoid "noreturn function does return".  */
1018 	for (;;)
1019 		cpu_relax();	/* For when BUG is null */
1020 }
1021 
1022 EXPORT_SYMBOL_GPL(do_exit);
1023 
1024 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1025 {
1026 	if (comp)
1027 		complete(comp);
1028 
1029 	do_exit(code);
1030 }
1031 
1032 EXPORT_SYMBOL(complete_and_exit);
1033 
1034 SYSCALL_DEFINE1(exit, int, error_code)
1035 {
1036 	do_exit((error_code&0xff)<<8);
1037 }
1038 
1039 /*
1040  * Take down every thread in the group.  This is called by fatal signals
1041  * as well as by sys_exit_group (below).
1042  */
1043 NORET_TYPE void
1044 do_group_exit(int exit_code)
1045 {
1046 	struct signal_struct *sig = current->signal;
1047 
1048 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1049 
1050 	if (signal_group_exit(sig))
1051 		exit_code = sig->group_exit_code;
1052 	else if (!thread_group_empty(current)) {
1053 		struct sighand_struct *const sighand = current->sighand;
1054 		spin_lock_irq(&sighand->siglock);
1055 		if (signal_group_exit(sig))
1056 			/* Another thread got here before we took the lock.  */
1057 			exit_code = sig->group_exit_code;
1058 		else {
1059 			sig->group_exit_code = exit_code;
1060 			sig->flags = SIGNAL_GROUP_EXIT;
1061 			zap_other_threads(current);
1062 		}
1063 		spin_unlock_irq(&sighand->siglock);
1064 	}
1065 
1066 	do_exit(exit_code);
1067 	/* NOTREACHED */
1068 }
1069 
1070 /*
1071  * this kills every thread in the thread group. Note that any externally
1072  * wait4()-ing process will get the correct exit code - even if this
1073  * thread is not the thread group leader.
1074  */
1075 SYSCALL_DEFINE1(exit_group, int, error_code)
1076 {
1077 	do_group_exit((error_code & 0xff) << 8);
1078 	/* NOTREACHED */
1079 	return 0;
1080 }
1081 
1082 struct wait_opts {
1083 	enum pid_type		wo_type;
1084 	int			wo_flags;
1085 	struct pid		*wo_pid;
1086 
1087 	struct siginfo __user	*wo_info;
1088 	int __user		*wo_stat;
1089 	struct rusage __user	*wo_rusage;
1090 
1091 	int			notask_error;
1092 };
1093 
1094 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1095 {
1096 	struct pid *pid = NULL;
1097 	if (type == PIDTYPE_PID)
1098 		pid = task->pids[type].pid;
1099 	else if (type < PIDTYPE_MAX)
1100 		pid = task->group_leader->pids[type].pid;
1101 	return pid;
1102 }
1103 
1104 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1105 {
1106 	int err;
1107 
1108 	if (wo->wo_type < PIDTYPE_MAX) {
1109 		if (task_pid_type(p, wo->wo_type) != wo->wo_pid)
1110 			return 0;
1111 	}
1112 
1113 	/* Wait for all children (clone and not) if __WALL is set;
1114 	 * otherwise, wait for clone children *only* if __WCLONE is
1115 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1116 	 * A "clone" child here is one that reports to its parent
1117 	 * using a signal other than SIGCHLD.) */
1118 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1119 	    && !(wo->wo_flags & __WALL))
1120 		return 0;
1121 
1122 	err = security_task_wait(p);
1123 	if (err)
1124 		return err;
1125 
1126 	return 1;
1127 }
1128 
1129 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1130 				pid_t pid, uid_t uid, int why, int status)
1131 {
1132 	struct siginfo __user *infop;
1133 	int retval = wo->wo_rusage
1134 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1135 
1136 	put_task_struct(p);
1137 	infop = wo->wo_info;
1138 	if (!retval)
1139 		retval = put_user(SIGCHLD, &infop->si_signo);
1140 	if (!retval)
1141 		retval = put_user(0, &infop->si_errno);
1142 	if (!retval)
1143 		retval = put_user((short)why, &infop->si_code);
1144 	if (!retval)
1145 		retval = put_user(pid, &infop->si_pid);
1146 	if (!retval)
1147 		retval = put_user(uid, &infop->si_uid);
1148 	if (!retval)
1149 		retval = put_user(status, &infop->si_status);
1150 	if (!retval)
1151 		retval = pid;
1152 	return retval;
1153 }
1154 
1155 /*
1156  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1157  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1158  * the lock and this task is uninteresting.  If we return nonzero, we have
1159  * released the lock and the system call should return.
1160  */
1161 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1162 {
1163 	unsigned long state;
1164 	int retval, status, traced;
1165 	pid_t pid = task_pid_vnr(p);
1166 	uid_t uid = __task_cred(p)->uid;
1167 	struct siginfo __user *infop;
1168 
1169 	if (!likely(wo->wo_flags & WEXITED))
1170 		return 0;
1171 
1172 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1173 		int exit_code = p->exit_code;
1174 		int why, status;
1175 
1176 		get_task_struct(p);
1177 		read_unlock(&tasklist_lock);
1178 		if ((exit_code & 0x7f) == 0) {
1179 			why = CLD_EXITED;
1180 			status = exit_code >> 8;
1181 		} else {
1182 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1183 			status = exit_code & 0x7f;
1184 		}
1185 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1186 	}
1187 
1188 	/*
1189 	 * Try to move the task's state to DEAD
1190 	 * only one thread is allowed to do this:
1191 	 */
1192 	state = xchg(&p->exit_state, EXIT_DEAD);
1193 	if (state != EXIT_ZOMBIE) {
1194 		BUG_ON(state != EXIT_DEAD);
1195 		return 0;
1196 	}
1197 
1198 	traced = ptrace_reparented(p);
1199 	/*
1200 	 * It can be ptraced but not reparented, check
1201 	 * !task_detached() to filter out sub-threads.
1202 	 */
1203 	if (likely(!traced) && likely(!task_detached(p))) {
1204 		struct signal_struct *psig;
1205 		struct signal_struct *sig;
1206 
1207 		/*
1208 		 * The resource counters for the group leader are in its
1209 		 * own task_struct.  Those for dead threads in the group
1210 		 * are in its signal_struct, as are those for the child
1211 		 * processes it has previously reaped.  All these
1212 		 * accumulate in the parent's signal_struct c* fields.
1213 		 *
1214 		 * We don't bother to take a lock here to protect these
1215 		 * p->signal fields, because they are only touched by
1216 		 * __exit_signal, which runs with tasklist_lock
1217 		 * write-locked anyway, and so is excluded here.  We do
1218 		 * need to protect the access to parent->signal fields,
1219 		 * as other threads in the parent group can be right
1220 		 * here reaping other children at the same time.
1221 		 */
1222 		spin_lock_irq(&p->real_parent->sighand->siglock);
1223 		psig = p->real_parent->signal;
1224 		sig = p->signal;
1225 		psig->cutime =
1226 			cputime_add(psig->cutime,
1227 			cputime_add(p->utime,
1228 			cputime_add(sig->utime,
1229 				    sig->cutime)));
1230 		psig->cstime =
1231 			cputime_add(psig->cstime,
1232 			cputime_add(p->stime,
1233 			cputime_add(sig->stime,
1234 				    sig->cstime)));
1235 		psig->cgtime =
1236 			cputime_add(psig->cgtime,
1237 			cputime_add(p->gtime,
1238 			cputime_add(sig->gtime,
1239 				    sig->cgtime)));
1240 		psig->cmin_flt +=
1241 			p->min_flt + sig->min_flt + sig->cmin_flt;
1242 		psig->cmaj_flt +=
1243 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1244 		psig->cnvcsw +=
1245 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1246 		psig->cnivcsw +=
1247 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1248 		psig->cinblock +=
1249 			task_io_get_inblock(p) +
1250 			sig->inblock + sig->cinblock;
1251 		psig->coublock +=
1252 			task_io_get_oublock(p) +
1253 			sig->oublock + sig->coublock;
1254 		task_io_accounting_add(&psig->ioac, &p->ioac);
1255 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1256 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1257 	}
1258 
1259 	/*
1260 	 * Now we are sure this task is interesting, and no other
1261 	 * thread can reap it because we set its state to EXIT_DEAD.
1262 	 */
1263 	read_unlock(&tasklist_lock);
1264 
1265 	retval = wo->wo_rusage
1266 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1267 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1268 		? p->signal->group_exit_code : p->exit_code;
1269 	if (!retval && wo->wo_stat)
1270 		retval = put_user(status, wo->wo_stat);
1271 
1272 	infop = wo->wo_info;
1273 	if (!retval && infop)
1274 		retval = put_user(SIGCHLD, &infop->si_signo);
1275 	if (!retval && infop)
1276 		retval = put_user(0, &infop->si_errno);
1277 	if (!retval && infop) {
1278 		int why;
1279 
1280 		if ((status & 0x7f) == 0) {
1281 			why = CLD_EXITED;
1282 			status >>= 8;
1283 		} else {
1284 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 			status &= 0x7f;
1286 		}
1287 		retval = put_user((short)why, &infop->si_code);
1288 		if (!retval)
1289 			retval = put_user(status, &infop->si_status);
1290 	}
1291 	if (!retval && infop)
1292 		retval = put_user(pid, &infop->si_pid);
1293 	if (!retval && infop)
1294 		retval = put_user(uid, &infop->si_uid);
1295 	if (!retval)
1296 		retval = pid;
1297 
1298 	if (traced) {
1299 		write_lock_irq(&tasklist_lock);
1300 		/* We dropped tasklist, ptracer could die and untrace */
1301 		ptrace_unlink(p);
1302 		/*
1303 		 * If this is not a detached task, notify the parent.
1304 		 * If it's still not detached after that, don't release
1305 		 * it now.
1306 		 */
1307 		if (!task_detached(p)) {
1308 			do_notify_parent(p, p->exit_signal);
1309 			if (!task_detached(p)) {
1310 				p->exit_state = EXIT_ZOMBIE;
1311 				p = NULL;
1312 			}
1313 		}
1314 		write_unlock_irq(&tasklist_lock);
1315 	}
1316 	if (p != NULL)
1317 		release_task(p);
1318 
1319 	return retval;
1320 }
1321 
1322 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1323 {
1324 	if (ptrace) {
1325 		if (task_is_stopped_or_traced(p))
1326 			return &p->exit_code;
1327 	} else {
1328 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1329 			return &p->signal->group_exit_code;
1330 	}
1331 	return NULL;
1332 }
1333 
1334 /*
1335  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1336  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1337  * the lock and this task is uninteresting.  If we return nonzero, we have
1338  * released the lock and the system call should return.
1339  */
1340 static int wait_task_stopped(struct wait_opts *wo,
1341 				int ptrace, struct task_struct *p)
1342 {
1343 	struct siginfo __user *infop;
1344 	int retval, exit_code, *p_code, why;
1345 	uid_t uid = 0; /* unneeded, required by compiler */
1346 	pid_t pid;
1347 
1348 	/*
1349 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1350 	 */
1351 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1352 		return 0;
1353 
1354 	exit_code = 0;
1355 	spin_lock_irq(&p->sighand->siglock);
1356 
1357 	p_code = task_stopped_code(p, ptrace);
1358 	if (unlikely(!p_code))
1359 		goto unlock_sig;
1360 
1361 	exit_code = *p_code;
1362 	if (!exit_code)
1363 		goto unlock_sig;
1364 
1365 	if (!unlikely(wo->wo_flags & WNOWAIT))
1366 		*p_code = 0;
1367 
1368 	/* don't need the RCU readlock here as we're holding a spinlock */
1369 	uid = __task_cred(p)->uid;
1370 unlock_sig:
1371 	spin_unlock_irq(&p->sighand->siglock);
1372 	if (!exit_code)
1373 		return 0;
1374 
1375 	/*
1376 	 * Now we are pretty sure this task is interesting.
1377 	 * Make sure it doesn't get reaped out from under us while we
1378 	 * give up the lock and then examine it below.  We don't want to
1379 	 * keep holding onto the tasklist_lock while we call getrusage and
1380 	 * possibly take page faults for user memory.
1381 	 */
1382 	get_task_struct(p);
1383 	pid = task_pid_vnr(p);
1384 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1385 	read_unlock(&tasklist_lock);
1386 
1387 	if (unlikely(wo->wo_flags & WNOWAIT))
1388 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1389 
1390 	retval = wo->wo_rusage
1391 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1392 	if (!retval && wo->wo_stat)
1393 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1394 
1395 	infop = wo->wo_info;
1396 	if (!retval && infop)
1397 		retval = put_user(SIGCHLD, &infop->si_signo);
1398 	if (!retval && infop)
1399 		retval = put_user(0, &infop->si_errno);
1400 	if (!retval && infop)
1401 		retval = put_user((short)why, &infop->si_code);
1402 	if (!retval && infop)
1403 		retval = put_user(exit_code, &infop->si_status);
1404 	if (!retval && infop)
1405 		retval = put_user(pid, &infop->si_pid);
1406 	if (!retval && infop)
1407 		retval = put_user(uid, &infop->si_uid);
1408 	if (!retval)
1409 		retval = pid;
1410 	put_task_struct(p);
1411 
1412 	BUG_ON(!retval);
1413 	return retval;
1414 }
1415 
1416 /*
1417  * Handle do_wait work for one task in a live, non-stopped state.
1418  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1419  * the lock and this task is uninteresting.  If we return nonzero, we have
1420  * released the lock and the system call should return.
1421  */
1422 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1423 {
1424 	int retval;
1425 	pid_t pid;
1426 	uid_t uid;
1427 
1428 	if (!unlikely(wo->wo_flags & WCONTINUED))
1429 		return 0;
1430 
1431 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1432 		return 0;
1433 
1434 	spin_lock_irq(&p->sighand->siglock);
1435 	/* Re-check with the lock held.  */
1436 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1437 		spin_unlock_irq(&p->sighand->siglock);
1438 		return 0;
1439 	}
1440 	if (!unlikely(wo->wo_flags & WNOWAIT))
1441 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1442 	uid = __task_cred(p)->uid;
1443 	spin_unlock_irq(&p->sighand->siglock);
1444 
1445 	pid = task_pid_vnr(p);
1446 	get_task_struct(p);
1447 	read_unlock(&tasklist_lock);
1448 
1449 	if (!wo->wo_info) {
1450 		retval = wo->wo_rusage
1451 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1452 		put_task_struct(p);
1453 		if (!retval && wo->wo_stat)
1454 			retval = put_user(0xffff, wo->wo_stat);
1455 		if (!retval)
1456 			retval = pid;
1457 	} else {
1458 		retval = wait_noreap_copyout(wo, p, pid, uid,
1459 					     CLD_CONTINUED, SIGCONT);
1460 		BUG_ON(retval == 0);
1461 	}
1462 
1463 	return retval;
1464 }
1465 
1466 /*
1467  * Consider @p for a wait by @parent.
1468  *
1469  * -ECHILD should be in ->notask_error before the first call.
1470  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1471  * Returns zero if the search for a child should continue;
1472  * then ->notask_error is 0 if @p is an eligible child,
1473  * or another error from security_task_wait(), or still -ECHILD.
1474  */
1475 static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent,
1476 				int ptrace, struct task_struct *p)
1477 {
1478 	int ret = eligible_child(wo, p);
1479 	if (!ret)
1480 		return ret;
1481 
1482 	if (unlikely(ret < 0)) {
1483 		/*
1484 		 * If we have not yet seen any eligible child,
1485 		 * then let this error code replace -ECHILD.
1486 		 * A permission error will give the user a clue
1487 		 * to look for security policy problems, rather
1488 		 * than for mysterious wait bugs.
1489 		 */
1490 		if (wo->notask_error)
1491 			wo->notask_error = ret;
1492 		return 0;
1493 	}
1494 
1495 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1496 		/*
1497 		 * This child is hidden by ptrace.
1498 		 * We aren't allowed to see it now, but eventually we will.
1499 		 */
1500 		wo->notask_error = 0;
1501 		return 0;
1502 	}
1503 
1504 	if (p->exit_state == EXIT_DEAD)
1505 		return 0;
1506 
1507 	/*
1508 	 * We don't reap group leaders with subthreads.
1509 	 */
1510 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1511 		return wait_task_zombie(wo, p);
1512 
1513 	/*
1514 	 * It's stopped or running now, so it might
1515 	 * later continue, exit, or stop again.
1516 	 */
1517 	wo->notask_error = 0;
1518 
1519 	if (task_stopped_code(p, ptrace))
1520 		return wait_task_stopped(wo, ptrace, p);
1521 
1522 	return wait_task_continued(wo, p);
1523 }
1524 
1525 /*
1526  * Do the work of do_wait() for one thread in the group, @tsk.
1527  *
1528  * -ECHILD should be in ->notask_error before the first call.
1529  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530  * Returns zero if the search for a child should continue; then
1531  * ->notask_error is 0 if there were any eligible children,
1532  * or another error from security_task_wait(), or still -ECHILD.
1533  */
1534 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1535 {
1536 	struct task_struct *p;
1537 
1538 	list_for_each_entry(p, &tsk->children, sibling) {
1539 		/*
1540 		 * Do not consider detached threads.
1541 		 */
1542 		if (!task_detached(p)) {
1543 			int ret = wait_consider_task(wo, tsk, 0, p);
1544 			if (ret)
1545 				return ret;
1546 		}
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1553 {
1554 	struct task_struct *p;
1555 
1556 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1557 		int ret = wait_consider_task(wo, tsk, 1, p);
1558 		if (ret)
1559 			return ret;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static long do_wait(struct wait_opts *wo)
1566 {
1567 	DECLARE_WAITQUEUE(wait, current);
1568 	struct task_struct *tsk;
1569 	int retval;
1570 
1571 	trace_sched_process_wait(wo->wo_pid);
1572 
1573 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1574 repeat:
1575 	/*
1576 	 * If there is nothing that can match our critiera just get out.
1577 	 * We will clear ->notask_error to zero if we see any child that
1578 	 * might later match our criteria, even if we are not able to reap
1579 	 * it yet.
1580 	 */
1581 	wo->notask_error = -ECHILD;
1582 	if ((wo->wo_type < PIDTYPE_MAX) &&
1583 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1584 		goto notask;
1585 
1586 	set_current_state(TASK_INTERRUPTIBLE);
1587 	read_lock(&tasklist_lock);
1588 	tsk = current;
1589 	do {
1590 		retval = do_wait_thread(wo, tsk);
1591 		if (retval)
1592 			goto end;
1593 
1594 		retval = ptrace_do_wait(wo, tsk);
1595 		if (retval)
1596 			goto end;
1597 
1598 		if (wo->wo_flags & __WNOTHREAD)
1599 			break;
1600 	} while_each_thread(current, tsk);
1601 	read_unlock(&tasklist_lock);
1602 
1603 notask:
1604 	retval = wo->notask_error;
1605 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1606 		retval = -ERESTARTSYS;
1607 		if (!signal_pending(current)) {
1608 			schedule();
1609 			goto repeat;
1610 		}
1611 	}
1612 end:
1613 	__set_current_state(TASK_RUNNING);
1614 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1615 	if (wo->wo_info) {
1616 		struct siginfo __user *infop = wo->wo_info;
1617 
1618 		if (retval > 0)
1619 			retval = 0;
1620 		else {
1621 			/*
1622 			 * For a WNOHANG return, clear out all the fields
1623 			 * we would set so the user can easily tell the
1624 			 * difference.
1625 			 */
1626 			if (!retval)
1627 				retval = put_user(0, &infop->si_signo);
1628 			if (!retval)
1629 				retval = put_user(0, &infop->si_errno);
1630 			if (!retval)
1631 				retval = put_user(0, &infop->si_code);
1632 			if (!retval)
1633 				retval = put_user(0, &infop->si_pid);
1634 			if (!retval)
1635 				retval = put_user(0, &infop->si_uid);
1636 			if (!retval)
1637 				retval = put_user(0, &infop->si_status);
1638 		}
1639 	}
1640 	return retval;
1641 }
1642 
1643 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1644 		infop, int, options, struct rusage __user *, ru)
1645 {
1646 	struct wait_opts wo;
1647 	struct pid *pid = NULL;
1648 	enum pid_type type;
1649 	long ret;
1650 
1651 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1652 		return -EINVAL;
1653 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654 		return -EINVAL;
1655 
1656 	switch (which) {
1657 	case P_ALL:
1658 		type = PIDTYPE_MAX;
1659 		break;
1660 	case P_PID:
1661 		type = PIDTYPE_PID;
1662 		if (upid <= 0)
1663 			return -EINVAL;
1664 		break;
1665 	case P_PGID:
1666 		type = PIDTYPE_PGID;
1667 		if (upid <= 0)
1668 			return -EINVAL;
1669 		break;
1670 	default:
1671 		return -EINVAL;
1672 	}
1673 
1674 	if (type < PIDTYPE_MAX)
1675 		pid = find_get_pid(upid);
1676 
1677 	wo.wo_type	= type;
1678 	wo.wo_pid	= pid;
1679 	wo.wo_flags	= options;
1680 	wo.wo_info	= infop;
1681 	wo.wo_stat	= NULL;
1682 	wo.wo_rusage	= ru;
1683 	ret = do_wait(&wo);
1684 	put_pid(pid);
1685 
1686 	/* avoid REGPARM breakage on x86: */
1687 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1688 	return ret;
1689 }
1690 
1691 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1692 		int, options, struct rusage __user *, ru)
1693 {
1694 	struct wait_opts wo;
1695 	struct pid *pid = NULL;
1696 	enum pid_type type;
1697 	long ret;
1698 
1699 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1700 			__WNOTHREAD|__WCLONE|__WALL))
1701 		return -EINVAL;
1702 
1703 	if (upid == -1)
1704 		type = PIDTYPE_MAX;
1705 	else if (upid < 0) {
1706 		type = PIDTYPE_PGID;
1707 		pid = find_get_pid(-upid);
1708 	} else if (upid == 0) {
1709 		type = PIDTYPE_PGID;
1710 		pid = get_task_pid(current, PIDTYPE_PGID);
1711 	} else /* upid > 0 */ {
1712 		type = PIDTYPE_PID;
1713 		pid = find_get_pid(upid);
1714 	}
1715 
1716 	wo.wo_type	= type;
1717 	wo.wo_pid	= pid;
1718 	wo.wo_flags	= options | WEXITED;
1719 	wo.wo_info	= NULL;
1720 	wo.wo_stat	= stat_addr;
1721 	wo.wo_rusage	= ru;
1722 	ret = do_wait(&wo);
1723 	put_pid(pid);
1724 
1725 	/* avoid REGPARM breakage on x86: */
1726 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1727 	return ret;
1728 }
1729 
1730 #ifdef __ARCH_WANT_SYS_WAITPID
1731 
1732 /*
1733  * sys_waitpid() remains for compatibility. waitpid() should be
1734  * implemented by calling sys_wait4() from libc.a.
1735  */
1736 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1737 {
1738 	return sys_wait4(pid, stat_addr, options, NULL);
1739 }
1740 
1741 #endif
1742