1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_counter.h> 51 #include <trace/events/sched.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/pgtable.h> 56 #include <asm/mmu_context.h> 57 #include "cred-internals.h" 58 59 static void exit_mm(struct task_struct * tsk); 60 61 static void __unhash_process(struct task_struct *p) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (thread_group_leader(p)) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 __get_cpu_var(process_counts)--; 71 } 72 list_del_rcu(&p->thread_group); 73 list_del_init(&p->sibling); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 struct sighand_struct *sighand; 83 84 BUG_ON(!sig); 85 BUG_ON(!atomic_read(&sig->count)); 86 87 sighand = rcu_dereference(tsk->sighand); 88 spin_lock(&sighand->siglock); 89 90 posix_cpu_timers_exit(tsk); 91 if (atomic_dec_and_test(&sig->count)) 92 posix_cpu_timers_exit_group(tsk); 93 else { 94 /* 95 * If there is any task waiting for the group exit 96 * then notify it: 97 */ 98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 99 wake_up_process(sig->group_exit_task); 100 101 if (tsk == sig->curr_target) 102 sig->curr_target = next_thread(tsk); 103 /* 104 * Accumulate here the counters for all threads but the 105 * group leader as they die, so they can be added into 106 * the process-wide totals when those are taken. 107 * The group leader stays around as a zombie as long 108 * as there are other threads. When it gets reaped, 109 * the exit.c code will add its counts into these totals. 110 * We won't ever get here for the group leader, since it 111 * will have been the last reference on the signal_struct. 112 */ 113 sig->utime = cputime_add(sig->utime, task_utime(tsk)); 114 sig->stime = cputime_add(sig->stime, task_stime(tsk)); 115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); 116 sig->min_flt += tsk->min_flt; 117 sig->maj_flt += tsk->maj_flt; 118 sig->nvcsw += tsk->nvcsw; 119 sig->nivcsw += tsk->nivcsw; 120 sig->inblock += task_io_get_inblock(tsk); 121 sig->oublock += task_io_get_oublock(tsk); 122 task_io_accounting_add(&sig->ioac, &tsk->ioac); 123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 124 sig = NULL; /* Marker for below. */ 125 } 126 127 __unhash_process(tsk); 128 129 /* 130 * Do this under ->siglock, we can race with another thread 131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 132 */ 133 flush_sigqueue(&tsk->pending); 134 135 tsk->signal = NULL; 136 tsk->sighand = NULL; 137 spin_unlock(&sighand->siglock); 138 139 __cleanup_sighand(sighand); 140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 141 if (sig) { 142 flush_sigqueue(&sig->shared_pending); 143 taskstats_tgid_free(sig); 144 /* 145 * Make sure ->signal can't go away under rq->lock, 146 * see account_group_exec_runtime(). 147 */ 148 task_rq_unlock_wait(tsk); 149 __cleanup_signal(sig); 150 } 151 } 152 153 static void delayed_put_task_struct(struct rcu_head *rhp) 154 { 155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 156 157 #ifdef CONFIG_PERF_COUNTERS 158 WARN_ON_ONCE(tsk->perf_counter_ctxp); 159 #endif 160 trace_sched_process_free(tsk); 161 put_task_struct(tsk); 162 } 163 164 165 void release_task(struct task_struct * p) 166 { 167 struct task_struct *leader; 168 int zap_leader; 169 repeat: 170 tracehook_prepare_release_task(p); 171 /* don't need to get the RCU readlock here - the process is dead and 172 * can't be modifying its own credentials */ 173 atomic_dec(&__task_cred(p)->user->processes); 174 175 proc_flush_task(p); 176 177 write_lock_irq(&tasklist_lock); 178 tracehook_finish_release_task(p); 179 __exit_signal(p); 180 181 /* 182 * If we are the last non-leader member of the thread 183 * group, and the leader is zombie, then notify the 184 * group leader's parent process. (if it wants notification.) 185 */ 186 zap_leader = 0; 187 leader = p->group_leader; 188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 189 BUG_ON(task_detached(leader)); 190 do_notify_parent(leader, leader->exit_signal); 191 /* 192 * If we were the last child thread and the leader has 193 * exited already, and the leader's parent ignores SIGCHLD, 194 * then we are the one who should release the leader. 195 * 196 * do_notify_parent() will have marked it self-reaping in 197 * that case. 198 */ 199 zap_leader = task_detached(leader); 200 201 /* 202 * This maintains the invariant that release_task() 203 * only runs on a task in EXIT_DEAD, just for sanity. 204 */ 205 if (zap_leader) 206 leader->exit_state = EXIT_DEAD; 207 } 208 209 write_unlock_irq(&tasklist_lock); 210 release_thread(p); 211 call_rcu(&p->rcu, delayed_put_task_struct); 212 213 p = leader; 214 if (unlikely(zap_leader)) 215 goto repeat; 216 } 217 218 /* 219 * This checks not only the pgrp, but falls back on the pid if no 220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 221 * without this... 222 * 223 * The caller must hold rcu lock or the tasklist lock. 224 */ 225 struct pid *session_of_pgrp(struct pid *pgrp) 226 { 227 struct task_struct *p; 228 struct pid *sid = NULL; 229 230 p = pid_task(pgrp, PIDTYPE_PGID); 231 if (p == NULL) 232 p = pid_task(pgrp, PIDTYPE_PID); 233 if (p != NULL) 234 sid = task_session(p); 235 236 return sid; 237 } 238 239 /* 240 * Determine if a process group is "orphaned", according to the POSIX 241 * definition in 2.2.2.52. Orphaned process groups are not to be affected 242 * by terminal-generated stop signals. Newly orphaned process groups are 243 * to receive a SIGHUP and a SIGCONT. 244 * 245 * "I ask you, have you ever known what it is to be an orphan?" 246 */ 247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 248 { 249 struct task_struct *p; 250 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 252 if ((p == ignored_task) || 253 (p->exit_state && thread_group_empty(p)) || 254 is_global_init(p->real_parent)) 255 continue; 256 257 if (task_pgrp(p->real_parent) != pgrp && 258 task_session(p->real_parent) == task_session(p)) 259 return 0; 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 261 262 return 1; 263 } 264 265 int is_current_pgrp_orphaned(void) 266 { 267 int retval; 268 269 read_lock(&tasklist_lock); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 271 read_unlock(&tasklist_lock); 272 273 return retval; 274 } 275 276 static int has_stopped_jobs(struct pid *pgrp) 277 { 278 int retval = 0; 279 struct task_struct *p; 280 281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 282 if (!task_is_stopped(p)) 283 continue; 284 retval = 1; 285 break; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 return retval; 288 } 289 290 /* 291 * Check to see if any process groups have become orphaned as 292 * a result of our exiting, and if they have any stopped jobs, 293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 294 */ 295 static void 296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 297 { 298 struct pid *pgrp = task_pgrp(tsk); 299 struct task_struct *ignored_task = tsk; 300 301 if (!parent) 302 /* exit: our father is in a different pgrp than 303 * we are and we were the only connection outside. 304 */ 305 parent = tsk->real_parent; 306 else 307 /* reparent: our child is in a different pgrp than 308 * we are, and it was the only connection outside. 309 */ 310 ignored_task = NULL; 311 312 if (task_pgrp(parent) != pgrp && 313 task_session(parent) == task_session(tsk) && 314 will_become_orphaned_pgrp(pgrp, ignored_task) && 315 has_stopped_jobs(pgrp)) { 316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 318 } 319 } 320 321 /** 322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 323 * 324 * If a kernel thread is launched as a result of a system call, or if 325 * it ever exits, it should generally reparent itself to kthreadd so it 326 * isn't in the way of other processes and is correctly cleaned up on exit. 327 * 328 * The various task state such as scheduling policy and priority may have 329 * been inherited from a user process, so we reset them to sane values here. 330 * 331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 332 */ 333 static void reparent_to_kthreadd(void) 334 { 335 write_lock_irq(&tasklist_lock); 336 337 ptrace_unlink(current); 338 /* Reparent to init */ 339 current->real_parent = current->parent = kthreadd_task; 340 list_move_tail(¤t->sibling, ¤t->real_parent->children); 341 342 /* Set the exit signal to SIGCHLD so we signal init on exit */ 343 current->exit_signal = SIGCHLD; 344 345 if (task_nice(current) < 0) 346 set_user_nice(current, 0); 347 /* cpus_allowed? */ 348 /* rt_priority? */ 349 /* signals? */ 350 memcpy(current->signal->rlim, init_task.signal->rlim, 351 sizeof(current->signal->rlim)); 352 353 atomic_inc(&init_cred.usage); 354 commit_creds(&init_cred); 355 write_unlock_irq(&tasklist_lock); 356 } 357 358 void __set_special_pids(struct pid *pid) 359 { 360 struct task_struct *curr = current->group_leader; 361 362 if (task_session(curr) != pid) 363 change_pid(curr, PIDTYPE_SID, pid); 364 365 if (task_pgrp(curr) != pid) 366 change_pid(curr, PIDTYPE_PGID, pid); 367 } 368 369 static void set_special_pids(struct pid *pid) 370 { 371 write_lock_irq(&tasklist_lock); 372 __set_special_pids(pid); 373 write_unlock_irq(&tasklist_lock); 374 } 375 376 /* 377 * Let kernel threads use this to say that they allow a certain signal. 378 * Must not be used if kthread was cloned with CLONE_SIGHAND. 379 */ 380 int allow_signal(int sig) 381 { 382 if (!valid_signal(sig) || sig < 1) 383 return -EINVAL; 384 385 spin_lock_irq(¤t->sighand->siglock); 386 /* This is only needed for daemonize()'ed kthreads */ 387 sigdelset(¤t->blocked, sig); 388 /* 389 * Kernel threads handle their own signals. Let the signal code 390 * know it'll be handled, so that they don't get converted to 391 * SIGKILL or just silently dropped. 392 */ 393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 394 recalc_sigpending(); 395 spin_unlock_irq(¤t->sighand->siglock); 396 return 0; 397 } 398 399 EXPORT_SYMBOL(allow_signal); 400 401 int disallow_signal(int sig) 402 { 403 if (!valid_signal(sig) || sig < 1) 404 return -EINVAL; 405 406 spin_lock_irq(¤t->sighand->siglock); 407 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 408 recalc_sigpending(); 409 spin_unlock_irq(¤t->sighand->siglock); 410 return 0; 411 } 412 413 EXPORT_SYMBOL(disallow_signal); 414 415 /* 416 * Put all the gunge required to become a kernel thread without 417 * attached user resources in one place where it belongs. 418 */ 419 420 void daemonize(const char *name, ...) 421 { 422 va_list args; 423 sigset_t blocked; 424 425 va_start(args, name); 426 vsnprintf(current->comm, sizeof(current->comm), name, args); 427 va_end(args); 428 429 /* 430 * If we were started as result of loading a module, close all of the 431 * user space pages. We don't need them, and if we didn't close them 432 * they would be locked into memory. 433 */ 434 exit_mm(current); 435 /* 436 * We don't want to have TIF_FREEZE set if the system-wide hibernation 437 * or suspend transition begins right now. 438 */ 439 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 440 441 if (current->nsproxy != &init_nsproxy) { 442 get_nsproxy(&init_nsproxy); 443 switch_task_namespaces(current, &init_nsproxy); 444 } 445 set_special_pids(&init_struct_pid); 446 proc_clear_tty(current); 447 448 /* Block and flush all signals */ 449 sigfillset(&blocked); 450 sigprocmask(SIG_BLOCK, &blocked, NULL); 451 flush_signals(current); 452 453 /* Become as one with the init task */ 454 455 daemonize_fs_struct(); 456 exit_files(current); 457 current->files = init_task.files; 458 atomic_inc(¤t->files->count); 459 460 reparent_to_kthreadd(); 461 } 462 463 EXPORT_SYMBOL(daemonize); 464 465 static void close_files(struct files_struct * files) 466 { 467 int i, j; 468 struct fdtable *fdt; 469 470 j = 0; 471 472 /* 473 * It is safe to dereference the fd table without RCU or 474 * ->file_lock because this is the last reference to the 475 * files structure. 476 */ 477 fdt = files_fdtable(files); 478 for (;;) { 479 unsigned long set; 480 i = j * __NFDBITS; 481 if (i >= fdt->max_fds) 482 break; 483 set = fdt->open_fds->fds_bits[j++]; 484 while (set) { 485 if (set & 1) { 486 struct file * file = xchg(&fdt->fd[i], NULL); 487 if (file) { 488 filp_close(file, files); 489 cond_resched(); 490 } 491 } 492 i++; 493 set >>= 1; 494 } 495 } 496 } 497 498 struct files_struct *get_files_struct(struct task_struct *task) 499 { 500 struct files_struct *files; 501 502 task_lock(task); 503 files = task->files; 504 if (files) 505 atomic_inc(&files->count); 506 task_unlock(task); 507 508 return files; 509 } 510 511 void put_files_struct(struct files_struct *files) 512 { 513 struct fdtable *fdt; 514 515 if (atomic_dec_and_test(&files->count)) { 516 close_files(files); 517 /* 518 * Free the fd and fdset arrays if we expanded them. 519 * If the fdtable was embedded, pass files for freeing 520 * at the end of the RCU grace period. Otherwise, 521 * you can free files immediately. 522 */ 523 fdt = files_fdtable(files); 524 if (fdt != &files->fdtab) 525 kmem_cache_free(files_cachep, files); 526 free_fdtable(fdt); 527 } 528 } 529 530 void reset_files_struct(struct files_struct *files) 531 { 532 struct task_struct *tsk = current; 533 struct files_struct *old; 534 535 old = tsk->files; 536 task_lock(tsk); 537 tsk->files = files; 538 task_unlock(tsk); 539 put_files_struct(old); 540 } 541 542 void exit_files(struct task_struct *tsk) 543 { 544 struct files_struct * files = tsk->files; 545 546 if (files) { 547 task_lock(tsk); 548 tsk->files = NULL; 549 task_unlock(tsk); 550 put_files_struct(files); 551 } 552 } 553 554 #ifdef CONFIG_MM_OWNER 555 /* 556 * Task p is exiting and it owned mm, lets find a new owner for it 557 */ 558 static inline int 559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 560 { 561 /* 562 * If there are other users of the mm and the owner (us) is exiting 563 * we need to find a new owner to take on the responsibility. 564 */ 565 if (atomic_read(&mm->mm_users) <= 1) 566 return 0; 567 if (mm->owner != p) 568 return 0; 569 return 1; 570 } 571 572 void mm_update_next_owner(struct mm_struct *mm) 573 { 574 struct task_struct *c, *g, *p = current; 575 576 retry: 577 if (!mm_need_new_owner(mm, p)) 578 return; 579 580 read_lock(&tasklist_lock); 581 /* 582 * Search in the children 583 */ 584 list_for_each_entry(c, &p->children, sibling) { 585 if (c->mm == mm) 586 goto assign_new_owner; 587 } 588 589 /* 590 * Search in the siblings 591 */ 592 list_for_each_entry(c, &p->real_parent->children, sibling) { 593 if (c->mm == mm) 594 goto assign_new_owner; 595 } 596 597 /* 598 * Search through everything else. We should not get 599 * here often 600 */ 601 do_each_thread(g, c) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } while_each_thread(g, c); 605 606 read_unlock(&tasklist_lock); 607 /* 608 * We found no owner yet mm_users > 1: this implies that we are 609 * most likely racing with swapoff (try_to_unuse()) or /proc or 610 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 611 */ 612 mm->owner = NULL; 613 return; 614 615 assign_new_owner: 616 BUG_ON(c == p); 617 get_task_struct(c); 618 /* 619 * The task_lock protects c->mm from changing. 620 * We always want mm->owner->mm == mm 621 */ 622 task_lock(c); 623 /* 624 * Delay read_unlock() till we have the task_lock() 625 * to ensure that c does not slip away underneath us 626 */ 627 read_unlock(&tasklist_lock); 628 if (c->mm != mm) { 629 task_unlock(c); 630 put_task_struct(c); 631 goto retry; 632 } 633 mm->owner = c; 634 task_unlock(c); 635 put_task_struct(c); 636 } 637 #endif /* CONFIG_MM_OWNER */ 638 639 /* 640 * Turn us into a lazy TLB process if we 641 * aren't already.. 642 */ 643 static void exit_mm(struct task_struct * tsk) 644 { 645 struct mm_struct *mm = tsk->mm; 646 struct core_state *core_state; 647 648 mm_release(tsk, mm); 649 if (!mm) 650 return; 651 /* 652 * Serialize with any possible pending coredump. 653 * We must hold mmap_sem around checking core_state 654 * and clearing tsk->mm. The core-inducing thread 655 * will increment ->nr_threads for each thread in the 656 * group with ->mm != NULL. 657 */ 658 down_read(&mm->mmap_sem); 659 core_state = mm->core_state; 660 if (core_state) { 661 struct core_thread self; 662 up_read(&mm->mmap_sem); 663 664 self.task = tsk; 665 self.next = xchg(&core_state->dumper.next, &self); 666 /* 667 * Implies mb(), the result of xchg() must be visible 668 * to core_state->dumper. 669 */ 670 if (atomic_dec_and_test(&core_state->nr_threads)) 671 complete(&core_state->startup); 672 673 for (;;) { 674 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 675 if (!self.task) /* see coredump_finish() */ 676 break; 677 schedule(); 678 } 679 __set_task_state(tsk, TASK_RUNNING); 680 down_read(&mm->mmap_sem); 681 } 682 atomic_inc(&mm->mm_count); 683 BUG_ON(mm != tsk->active_mm); 684 /* more a memory barrier than a real lock */ 685 task_lock(tsk); 686 tsk->mm = NULL; 687 up_read(&mm->mmap_sem); 688 enter_lazy_tlb(mm, current); 689 /* We don't want this task to be frozen prematurely */ 690 clear_freeze_flag(tsk); 691 task_unlock(tsk); 692 mm_update_next_owner(mm); 693 mmput(mm); 694 } 695 696 /* 697 * When we die, we re-parent all our children. 698 * Try to give them to another thread in our thread 699 * group, and if no such member exists, give it to 700 * the child reaper process (ie "init") in our pid 701 * space. 702 */ 703 static struct task_struct *find_new_reaper(struct task_struct *father) 704 { 705 struct pid_namespace *pid_ns = task_active_pid_ns(father); 706 struct task_struct *thread; 707 708 thread = father; 709 while_each_thread(father, thread) { 710 if (thread->flags & PF_EXITING) 711 continue; 712 if (unlikely(pid_ns->child_reaper == father)) 713 pid_ns->child_reaper = thread; 714 return thread; 715 } 716 717 if (unlikely(pid_ns->child_reaper == father)) { 718 write_unlock_irq(&tasklist_lock); 719 if (unlikely(pid_ns == &init_pid_ns)) 720 panic("Attempted to kill init!"); 721 722 zap_pid_ns_processes(pid_ns); 723 write_lock_irq(&tasklist_lock); 724 /* 725 * We can not clear ->child_reaper or leave it alone. 726 * There may by stealth EXIT_DEAD tasks on ->children, 727 * forget_original_parent() must move them somewhere. 728 */ 729 pid_ns->child_reaper = init_pid_ns.child_reaper; 730 } 731 732 return pid_ns->child_reaper; 733 } 734 735 /* 736 * Any that need to be release_task'd are put on the @dead list. 737 */ 738 static void reparent_thread(struct task_struct *father, struct task_struct *p, 739 struct list_head *dead) 740 { 741 if (p->pdeath_signal) 742 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 743 744 list_move_tail(&p->sibling, &p->real_parent->children); 745 746 if (task_detached(p)) 747 return; 748 /* 749 * If this is a threaded reparent there is no need to 750 * notify anyone anything has happened. 751 */ 752 if (same_thread_group(p->real_parent, father)) 753 return; 754 755 /* We don't want people slaying init. */ 756 p->exit_signal = SIGCHLD; 757 758 /* If it has exited notify the new parent about this child's death. */ 759 if (!task_ptrace(p) && 760 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 761 do_notify_parent(p, p->exit_signal); 762 if (task_detached(p)) { 763 p->exit_state = EXIT_DEAD; 764 list_move_tail(&p->sibling, dead); 765 } 766 } 767 768 kill_orphaned_pgrp(p, father); 769 } 770 771 static void forget_original_parent(struct task_struct *father) 772 { 773 struct task_struct *p, *n, *reaper; 774 LIST_HEAD(dead_children); 775 776 exit_ptrace(father); 777 778 write_lock_irq(&tasklist_lock); 779 reaper = find_new_reaper(father); 780 781 list_for_each_entry_safe(p, n, &father->children, sibling) { 782 p->real_parent = reaper; 783 if (p->parent == father) { 784 BUG_ON(task_ptrace(p)); 785 p->parent = p->real_parent; 786 } 787 reparent_thread(father, p, &dead_children); 788 } 789 write_unlock_irq(&tasklist_lock); 790 791 BUG_ON(!list_empty(&father->children)); 792 793 list_for_each_entry_safe(p, n, &dead_children, sibling) { 794 list_del_init(&p->sibling); 795 release_task(p); 796 } 797 } 798 799 /* 800 * Send signals to all our closest relatives so that they know 801 * to properly mourn us.. 802 */ 803 static void exit_notify(struct task_struct *tsk, int group_dead) 804 { 805 int signal; 806 void *cookie; 807 808 /* 809 * This does two things: 810 * 811 * A. Make init inherit all the child processes 812 * B. Check to see if any process groups have become orphaned 813 * as a result of our exiting, and if they have any stopped 814 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 815 */ 816 forget_original_parent(tsk); 817 exit_task_namespaces(tsk); 818 819 write_lock_irq(&tasklist_lock); 820 if (group_dead) 821 kill_orphaned_pgrp(tsk->group_leader, NULL); 822 823 /* Let father know we died 824 * 825 * Thread signals are configurable, but you aren't going to use 826 * that to send signals to arbitary processes. 827 * That stops right now. 828 * 829 * If the parent exec id doesn't match the exec id we saved 830 * when we started then we know the parent has changed security 831 * domain. 832 * 833 * If our self_exec id doesn't match our parent_exec_id then 834 * we have changed execution domain as these two values started 835 * the same after a fork. 836 */ 837 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 838 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 839 tsk->self_exec_id != tsk->parent_exec_id)) 840 tsk->exit_signal = SIGCHLD; 841 842 signal = tracehook_notify_death(tsk, &cookie, group_dead); 843 if (signal >= 0) 844 signal = do_notify_parent(tsk, signal); 845 846 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 847 848 /* mt-exec, de_thread() is waiting for us */ 849 if (thread_group_leader(tsk) && 850 tsk->signal->group_exit_task && 851 tsk->signal->notify_count < 0) 852 wake_up_process(tsk->signal->group_exit_task); 853 854 write_unlock_irq(&tasklist_lock); 855 856 tracehook_report_death(tsk, signal, cookie, group_dead); 857 858 /* If the process is dead, release it - nobody will wait for it */ 859 if (signal == DEATH_REAP) 860 release_task(tsk); 861 } 862 863 #ifdef CONFIG_DEBUG_STACK_USAGE 864 static void check_stack_usage(void) 865 { 866 static DEFINE_SPINLOCK(low_water_lock); 867 static int lowest_to_date = THREAD_SIZE; 868 unsigned long free; 869 870 free = stack_not_used(current); 871 872 if (free >= lowest_to_date) 873 return; 874 875 spin_lock(&low_water_lock); 876 if (free < lowest_to_date) { 877 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 878 "left\n", 879 current->comm, free); 880 lowest_to_date = free; 881 } 882 spin_unlock(&low_water_lock); 883 } 884 #else 885 static inline void check_stack_usage(void) {} 886 #endif 887 888 NORET_TYPE void do_exit(long code) 889 { 890 struct task_struct *tsk = current; 891 int group_dead; 892 893 profile_task_exit(tsk); 894 895 WARN_ON(atomic_read(&tsk->fs_excl)); 896 897 if (unlikely(in_interrupt())) 898 panic("Aiee, killing interrupt handler!"); 899 if (unlikely(!tsk->pid)) 900 panic("Attempted to kill the idle task!"); 901 902 tracehook_report_exit(&code); 903 904 /* 905 * We're taking recursive faults here in do_exit. Safest is to just 906 * leave this task alone and wait for reboot. 907 */ 908 if (unlikely(tsk->flags & PF_EXITING)) { 909 printk(KERN_ALERT 910 "Fixing recursive fault but reboot is needed!\n"); 911 /* 912 * We can do this unlocked here. The futex code uses 913 * this flag just to verify whether the pi state 914 * cleanup has been done or not. In the worst case it 915 * loops once more. We pretend that the cleanup was 916 * done as there is no way to return. Either the 917 * OWNER_DIED bit is set by now or we push the blocked 918 * task into the wait for ever nirwana as well. 919 */ 920 tsk->flags |= PF_EXITPIDONE; 921 set_current_state(TASK_UNINTERRUPTIBLE); 922 schedule(); 923 } 924 925 exit_irq_thread(); 926 927 exit_signals(tsk); /* sets PF_EXITING */ 928 /* 929 * tsk->flags are checked in the futex code to protect against 930 * an exiting task cleaning up the robust pi futexes. 931 */ 932 smp_mb(); 933 spin_unlock_wait(&tsk->pi_lock); 934 935 if (unlikely(in_atomic())) 936 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 937 current->comm, task_pid_nr(current), 938 preempt_count()); 939 940 acct_update_integrals(tsk); 941 942 group_dead = atomic_dec_and_test(&tsk->signal->live); 943 if (group_dead) { 944 hrtimer_cancel(&tsk->signal->real_timer); 945 exit_itimers(tsk->signal); 946 } 947 acct_collect(code, group_dead); 948 if (group_dead) 949 tty_audit_exit(); 950 if (unlikely(tsk->audit_context)) 951 audit_free(tsk); 952 953 tsk->exit_code = code; 954 taskstats_exit(tsk, group_dead); 955 956 exit_mm(tsk); 957 958 if (group_dead) 959 acct_process(); 960 trace_sched_process_exit(tsk); 961 962 exit_sem(tsk); 963 exit_files(tsk); 964 exit_fs(tsk); 965 check_stack_usage(); 966 exit_thread(); 967 cgroup_exit(tsk, 1); 968 969 if (group_dead && tsk->signal->leader) 970 disassociate_ctty(1); 971 972 module_put(task_thread_info(tsk)->exec_domain->module); 973 if (tsk->binfmt) 974 module_put(tsk->binfmt->module); 975 976 proc_exit_connector(tsk); 977 978 /* 979 * Flush inherited counters to the parent - before the parent 980 * gets woken up by child-exit notifications. 981 */ 982 perf_counter_exit_task(tsk); 983 984 exit_notify(tsk, group_dead); 985 #ifdef CONFIG_NUMA 986 mpol_put(tsk->mempolicy); 987 tsk->mempolicy = NULL; 988 #endif 989 #ifdef CONFIG_FUTEX 990 if (unlikely(!list_empty(&tsk->pi_state_list))) 991 exit_pi_state_list(tsk); 992 if (unlikely(current->pi_state_cache)) 993 kfree(current->pi_state_cache); 994 #endif 995 /* 996 * Make sure we are holding no locks: 997 */ 998 debug_check_no_locks_held(tsk); 999 /* 1000 * We can do this unlocked here. The futex code uses this flag 1001 * just to verify whether the pi state cleanup has been done 1002 * or not. In the worst case it loops once more. 1003 */ 1004 tsk->flags |= PF_EXITPIDONE; 1005 1006 if (tsk->io_context) 1007 exit_io_context(); 1008 1009 if (tsk->splice_pipe) 1010 __free_pipe_info(tsk->splice_pipe); 1011 1012 preempt_disable(); 1013 /* causes final put_task_struct in finish_task_switch(). */ 1014 tsk->state = TASK_DEAD; 1015 schedule(); 1016 BUG(); 1017 /* Avoid "noreturn function does return". */ 1018 for (;;) 1019 cpu_relax(); /* For when BUG is null */ 1020 } 1021 1022 EXPORT_SYMBOL_GPL(do_exit); 1023 1024 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1025 { 1026 if (comp) 1027 complete(comp); 1028 1029 do_exit(code); 1030 } 1031 1032 EXPORT_SYMBOL(complete_and_exit); 1033 1034 SYSCALL_DEFINE1(exit, int, error_code) 1035 { 1036 do_exit((error_code&0xff)<<8); 1037 } 1038 1039 /* 1040 * Take down every thread in the group. This is called by fatal signals 1041 * as well as by sys_exit_group (below). 1042 */ 1043 NORET_TYPE void 1044 do_group_exit(int exit_code) 1045 { 1046 struct signal_struct *sig = current->signal; 1047 1048 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1049 1050 if (signal_group_exit(sig)) 1051 exit_code = sig->group_exit_code; 1052 else if (!thread_group_empty(current)) { 1053 struct sighand_struct *const sighand = current->sighand; 1054 spin_lock_irq(&sighand->siglock); 1055 if (signal_group_exit(sig)) 1056 /* Another thread got here before we took the lock. */ 1057 exit_code = sig->group_exit_code; 1058 else { 1059 sig->group_exit_code = exit_code; 1060 sig->flags = SIGNAL_GROUP_EXIT; 1061 zap_other_threads(current); 1062 } 1063 spin_unlock_irq(&sighand->siglock); 1064 } 1065 1066 do_exit(exit_code); 1067 /* NOTREACHED */ 1068 } 1069 1070 /* 1071 * this kills every thread in the thread group. Note that any externally 1072 * wait4()-ing process will get the correct exit code - even if this 1073 * thread is not the thread group leader. 1074 */ 1075 SYSCALL_DEFINE1(exit_group, int, error_code) 1076 { 1077 do_group_exit((error_code & 0xff) << 8); 1078 /* NOTREACHED */ 1079 return 0; 1080 } 1081 1082 struct wait_opts { 1083 enum pid_type wo_type; 1084 int wo_flags; 1085 struct pid *wo_pid; 1086 1087 struct siginfo __user *wo_info; 1088 int __user *wo_stat; 1089 struct rusage __user *wo_rusage; 1090 1091 int notask_error; 1092 }; 1093 1094 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1095 { 1096 struct pid *pid = NULL; 1097 if (type == PIDTYPE_PID) 1098 pid = task->pids[type].pid; 1099 else if (type < PIDTYPE_MAX) 1100 pid = task->group_leader->pids[type].pid; 1101 return pid; 1102 } 1103 1104 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1105 { 1106 int err; 1107 1108 if (wo->wo_type < PIDTYPE_MAX) { 1109 if (task_pid_type(p, wo->wo_type) != wo->wo_pid) 1110 return 0; 1111 } 1112 1113 /* Wait for all children (clone and not) if __WALL is set; 1114 * otherwise, wait for clone children *only* if __WCLONE is 1115 * set; otherwise, wait for non-clone children *only*. (Note: 1116 * A "clone" child here is one that reports to its parent 1117 * using a signal other than SIGCHLD.) */ 1118 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1119 && !(wo->wo_flags & __WALL)) 1120 return 0; 1121 1122 err = security_task_wait(p); 1123 if (err) 1124 return err; 1125 1126 return 1; 1127 } 1128 1129 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1130 pid_t pid, uid_t uid, int why, int status) 1131 { 1132 struct siginfo __user *infop; 1133 int retval = wo->wo_rusage 1134 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1135 1136 put_task_struct(p); 1137 infop = wo->wo_info; 1138 if (!retval) 1139 retval = put_user(SIGCHLD, &infop->si_signo); 1140 if (!retval) 1141 retval = put_user(0, &infop->si_errno); 1142 if (!retval) 1143 retval = put_user((short)why, &infop->si_code); 1144 if (!retval) 1145 retval = put_user(pid, &infop->si_pid); 1146 if (!retval) 1147 retval = put_user(uid, &infop->si_uid); 1148 if (!retval) 1149 retval = put_user(status, &infop->si_status); 1150 if (!retval) 1151 retval = pid; 1152 return retval; 1153 } 1154 1155 /* 1156 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1157 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1158 * the lock and this task is uninteresting. If we return nonzero, we have 1159 * released the lock and the system call should return. 1160 */ 1161 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1162 { 1163 unsigned long state; 1164 int retval, status, traced; 1165 pid_t pid = task_pid_vnr(p); 1166 uid_t uid = __task_cred(p)->uid; 1167 struct siginfo __user *infop; 1168 1169 if (!likely(wo->wo_flags & WEXITED)) 1170 return 0; 1171 1172 if (unlikely(wo->wo_flags & WNOWAIT)) { 1173 int exit_code = p->exit_code; 1174 int why, status; 1175 1176 get_task_struct(p); 1177 read_unlock(&tasklist_lock); 1178 if ((exit_code & 0x7f) == 0) { 1179 why = CLD_EXITED; 1180 status = exit_code >> 8; 1181 } else { 1182 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1183 status = exit_code & 0x7f; 1184 } 1185 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1186 } 1187 1188 /* 1189 * Try to move the task's state to DEAD 1190 * only one thread is allowed to do this: 1191 */ 1192 state = xchg(&p->exit_state, EXIT_DEAD); 1193 if (state != EXIT_ZOMBIE) { 1194 BUG_ON(state != EXIT_DEAD); 1195 return 0; 1196 } 1197 1198 traced = ptrace_reparented(p); 1199 /* 1200 * It can be ptraced but not reparented, check 1201 * !task_detached() to filter out sub-threads. 1202 */ 1203 if (likely(!traced) && likely(!task_detached(p))) { 1204 struct signal_struct *psig; 1205 struct signal_struct *sig; 1206 1207 /* 1208 * The resource counters for the group leader are in its 1209 * own task_struct. Those for dead threads in the group 1210 * are in its signal_struct, as are those for the child 1211 * processes it has previously reaped. All these 1212 * accumulate in the parent's signal_struct c* fields. 1213 * 1214 * We don't bother to take a lock here to protect these 1215 * p->signal fields, because they are only touched by 1216 * __exit_signal, which runs with tasklist_lock 1217 * write-locked anyway, and so is excluded here. We do 1218 * need to protect the access to parent->signal fields, 1219 * as other threads in the parent group can be right 1220 * here reaping other children at the same time. 1221 */ 1222 spin_lock_irq(&p->real_parent->sighand->siglock); 1223 psig = p->real_parent->signal; 1224 sig = p->signal; 1225 psig->cutime = 1226 cputime_add(psig->cutime, 1227 cputime_add(p->utime, 1228 cputime_add(sig->utime, 1229 sig->cutime))); 1230 psig->cstime = 1231 cputime_add(psig->cstime, 1232 cputime_add(p->stime, 1233 cputime_add(sig->stime, 1234 sig->cstime))); 1235 psig->cgtime = 1236 cputime_add(psig->cgtime, 1237 cputime_add(p->gtime, 1238 cputime_add(sig->gtime, 1239 sig->cgtime))); 1240 psig->cmin_flt += 1241 p->min_flt + sig->min_flt + sig->cmin_flt; 1242 psig->cmaj_flt += 1243 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1244 psig->cnvcsw += 1245 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1246 psig->cnivcsw += 1247 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1248 psig->cinblock += 1249 task_io_get_inblock(p) + 1250 sig->inblock + sig->cinblock; 1251 psig->coublock += 1252 task_io_get_oublock(p) + 1253 sig->oublock + sig->coublock; 1254 task_io_accounting_add(&psig->ioac, &p->ioac); 1255 task_io_accounting_add(&psig->ioac, &sig->ioac); 1256 spin_unlock_irq(&p->real_parent->sighand->siglock); 1257 } 1258 1259 /* 1260 * Now we are sure this task is interesting, and no other 1261 * thread can reap it because we set its state to EXIT_DEAD. 1262 */ 1263 read_unlock(&tasklist_lock); 1264 1265 retval = wo->wo_rusage 1266 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1267 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1268 ? p->signal->group_exit_code : p->exit_code; 1269 if (!retval && wo->wo_stat) 1270 retval = put_user(status, wo->wo_stat); 1271 1272 infop = wo->wo_info; 1273 if (!retval && infop) 1274 retval = put_user(SIGCHLD, &infop->si_signo); 1275 if (!retval && infop) 1276 retval = put_user(0, &infop->si_errno); 1277 if (!retval && infop) { 1278 int why; 1279 1280 if ((status & 0x7f) == 0) { 1281 why = CLD_EXITED; 1282 status >>= 8; 1283 } else { 1284 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1285 status &= 0x7f; 1286 } 1287 retval = put_user((short)why, &infop->si_code); 1288 if (!retval) 1289 retval = put_user(status, &infop->si_status); 1290 } 1291 if (!retval && infop) 1292 retval = put_user(pid, &infop->si_pid); 1293 if (!retval && infop) 1294 retval = put_user(uid, &infop->si_uid); 1295 if (!retval) 1296 retval = pid; 1297 1298 if (traced) { 1299 write_lock_irq(&tasklist_lock); 1300 /* We dropped tasklist, ptracer could die and untrace */ 1301 ptrace_unlink(p); 1302 /* 1303 * If this is not a detached task, notify the parent. 1304 * If it's still not detached after that, don't release 1305 * it now. 1306 */ 1307 if (!task_detached(p)) { 1308 do_notify_parent(p, p->exit_signal); 1309 if (!task_detached(p)) { 1310 p->exit_state = EXIT_ZOMBIE; 1311 p = NULL; 1312 } 1313 } 1314 write_unlock_irq(&tasklist_lock); 1315 } 1316 if (p != NULL) 1317 release_task(p); 1318 1319 return retval; 1320 } 1321 1322 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1323 { 1324 if (ptrace) { 1325 if (task_is_stopped_or_traced(p)) 1326 return &p->exit_code; 1327 } else { 1328 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1329 return &p->signal->group_exit_code; 1330 } 1331 return NULL; 1332 } 1333 1334 /* 1335 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1336 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1337 * the lock and this task is uninteresting. If we return nonzero, we have 1338 * released the lock and the system call should return. 1339 */ 1340 static int wait_task_stopped(struct wait_opts *wo, 1341 int ptrace, struct task_struct *p) 1342 { 1343 struct siginfo __user *infop; 1344 int retval, exit_code, *p_code, why; 1345 uid_t uid = 0; /* unneeded, required by compiler */ 1346 pid_t pid; 1347 1348 /* 1349 * Traditionally we see ptrace'd stopped tasks regardless of options. 1350 */ 1351 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1352 return 0; 1353 1354 exit_code = 0; 1355 spin_lock_irq(&p->sighand->siglock); 1356 1357 p_code = task_stopped_code(p, ptrace); 1358 if (unlikely(!p_code)) 1359 goto unlock_sig; 1360 1361 exit_code = *p_code; 1362 if (!exit_code) 1363 goto unlock_sig; 1364 1365 if (!unlikely(wo->wo_flags & WNOWAIT)) 1366 *p_code = 0; 1367 1368 /* don't need the RCU readlock here as we're holding a spinlock */ 1369 uid = __task_cred(p)->uid; 1370 unlock_sig: 1371 spin_unlock_irq(&p->sighand->siglock); 1372 if (!exit_code) 1373 return 0; 1374 1375 /* 1376 * Now we are pretty sure this task is interesting. 1377 * Make sure it doesn't get reaped out from under us while we 1378 * give up the lock and then examine it below. We don't want to 1379 * keep holding onto the tasklist_lock while we call getrusage and 1380 * possibly take page faults for user memory. 1381 */ 1382 get_task_struct(p); 1383 pid = task_pid_vnr(p); 1384 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1385 read_unlock(&tasklist_lock); 1386 1387 if (unlikely(wo->wo_flags & WNOWAIT)) 1388 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1389 1390 retval = wo->wo_rusage 1391 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1392 if (!retval && wo->wo_stat) 1393 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1394 1395 infop = wo->wo_info; 1396 if (!retval && infop) 1397 retval = put_user(SIGCHLD, &infop->si_signo); 1398 if (!retval && infop) 1399 retval = put_user(0, &infop->si_errno); 1400 if (!retval && infop) 1401 retval = put_user((short)why, &infop->si_code); 1402 if (!retval && infop) 1403 retval = put_user(exit_code, &infop->si_status); 1404 if (!retval && infop) 1405 retval = put_user(pid, &infop->si_pid); 1406 if (!retval && infop) 1407 retval = put_user(uid, &infop->si_uid); 1408 if (!retval) 1409 retval = pid; 1410 put_task_struct(p); 1411 1412 BUG_ON(!retval); 1413 return retval; 1414 } 1415 1416 /* 1417 * Handle do_wait work for one task in a live, non-stopped state. 1418 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1419 * the lock and this task is uninteresting. If we return nonzero, we have 1420 * released the lock and the system call should return. 1421 */ 1422 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1423 { 1424 int retval; 1425 pid_t pid; 1426 uid_t uid; 1427 1428 if (!unlikely(wo->wo_flags & WCONTINUED)) 1429 return 0; 1430 1431 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1432 return 0; 1433 1434 spin_lock_irq(&p->sighand->siglock); 1435 /* Re-check with the lock held. */ 1436 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1437 spin_unlock_irq(&p->sighand->siglock); 1438 return 0; 1439 } 1440 if (!unlikely(wo->wo_flags & WNOWAIT)) 1441 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1442 uid = __task_cred(p)->uid; 1443 spin_unlock_irq(&p->sighand->siglock); 1444 1445 pid = task_pid_vnr(p); 1446 get_task_struct(p); 1447 read_unlock(&tasklist_lock); 1448 1449 if (!wo->wo_info) { 1450 retval = wo->wo_rusage 1451 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1452 put_task_struct(p); 1453 if (!retval && wo->wo_stat) 1454 retval = put_user(0xffff, wo->wo_stat); 1455 if (!retval) 1456 retval = pid; 1457 } else { 1458 retval = wait_noreap_copyout(wo, p, pid, uid, 1459 CLD_CONTINUED, SIGCONT); 1460 BUG_ON(retval == 0); 1461 } 1462 1463 return retval; 1464 } 1465 1466 /* 1467 * Consider @p for a wait by @parent. 1468 * 1469 * -ECHILD should be in ->notask_error before the first call. 1470 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1471 * Returns zero if the search for a child should continue; 1472 * then ->notask_error is 0 if @p is an eligible child, 1473 * or another error from security_task_wait(), or still -ECHILD. 1474 */ 1475 static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, 1476 int ptrace, struct task_struct *p) 1477 { 1478 int ret = eligible_child(wo, p); 1479 if (!ret) 1480 return ret; 1481 1482 if (unlikely(ret < 0)) { 1483 /* 1484 * If we have not yet seen any eligible child, 1485 * then let this error code replace -ECHILD. 1486 * A permission error will give the user a clue 1487 * to look for security policy problems, rather 1488 * than for mysterious wait bugs. 1489 */ 1490 if (wo->notask_error) 1491 wo->notask_error = ret; 1492 return 0; 1493 } 1494 1495 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1496 /* 1497 * This child is hidden by ptrace. 1498 * We aren't allowed to see it now, but eventually we will. 1499 */ 1500 wo->notask_error = 0; 1501 return 0; 1502 } 1503 1504 if (p->exit_state == EXIT_DEAD) 1505 return 0; 1506 1507 /* 1508 * We don't reap group leaders with subthreads. 1509 */ 1510 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1511 return wait_task_zombie(wo, p); 1512 1513 /* 1514 * It's stopped or running now, so it might 1515 * later continue, exit, or stop again. 1516 */ 1517 wo->notask_error = 0; 1518 1519 if (task_stopped_code(p, ptrace)) 1520 return wait_task_stopped(wo, ptrace, p); 1521 1522 return wait_task_continued(wo, p); 1523 } 1524 1525 /* 1526 * Do the work of do_wait() for one thread in the group, @tsk. 1527 * 1528 * -ECHILD should be in ->notask_error before the first call. 1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1530 * Returns zero if the search for a child should continue; then 1531 * ->notask_error is 0 if there were any eligible children, 1532 * or another error from security_task_wait(), or still -ECHILD. 1533 */ 1534 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1535 { 1536 struct task_struct *p; 1537 1538 list_for_each_entry(p, &tsk->children, sibling) { 1539 /* 1540 * Do not consider detached threads. 1541 */ 1542 if (!task_detached(p)) { 1543 int ret = wait_consider_task(wo, tsk, 0, p); 1544 if (ret) 1545 return ret; 1546 } 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1553 { 1554 struct task_struct *p; 1555 1556 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1557 int ret = wait_consider_task(wo, tsk, 1, p); 1558 if (ret) 1559 return ret; 1560 } 1561 1562 return 0; 1563 } 1564 1565 static long do_wait(struct wait_opts *wo) 1566 { 1567 DECLARE_WAITQUEUE(wait, current); 1568 struct task_struct *tsk; 1569 int retval; 1570 1571 trace_sched_process_wait(wo->wo_pid); 1572 1573 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1574 repeat: 1575 /* 1576 * If there is nothing that can match our critiera just get out. 1577 * We will clear ->notask_error to zero if we see any child that 1578 * might later match our criteria, even if we are not able to reap 1579 * it yet. 1580 */ 1581 wo->notask_error = -ECHILD; 1582 if ((wo->wo_type < PIDTYPE_MAX) && 1583 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1584 goto notask; 1585 1586 set_current_state(TASK_INTERRUPTIBLE); 1587 read_lock(&tasklist_lock); 1588 tsk = current; 1589 do { 1590 retval = do_wait_thread(wo, tsk); 1591 if (retval) 1592 goto end; 1593 1594 retval = ptrace_do_wait(wo, tsk); 1595 if (retval) 1596 goto end; 1597 1598 if (wo->wo_flags & __WNOTHREAD) 1599 break; 1600 } while_each_thread(current, tsk); 1601 read_unlock(&tasklist_lock); 1602 1603 notask: 1604 retval = wo->notask_error; 1605 if (!retval && !(wo->wo_flags & WNOHANG)) { 1606 retval = -ERESTARTSYS; 1607 if (!signal_pending(current)) { 1608 schedule(); 1609 goto repeat; 1610 } 1611 } 1612 end: 1613 __set_current_state(TASK_RUNNING); 1614 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1615 if (wo->wo_info) { 1616 struct siginfo __user *infop = wo->wo_info; 1617 1618 if (retval > 0) 1619 retval = 0; 1620 else { 1621 /* 1622 * For a WNOHANG return, clear out all the fields 1623 * we would set so the user can easily tell the 1624 * difference. 1625 */ 1626 if (!retval) 1627 retval = put_user(0, &infop->si_signo); 1628 if (!retval) 1629 retval = put_user(0, &infop->si_errno); 1630 if (!retval) 1631 retval = put_user(0, &infop->si_code); 1632 if (!retval) 1633 retval = put_user(0, &infop->si_pid); 1634 if (!retval) 1635 retval = put_user(0, &infop->si_uid); 1636 if (!retval) 1637 retval = put_user(0, &infop->si_status); 1638 } 1639 } 1640 return retval; 1641 } 1642 1643 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1644 infop, int, options, struct rusage __user *, ru) 1645 { 1646 struct wait_opts wo; 1647 struct pid *pid = NULL; 1648 enum pid_type type; 1649 long ret; 1650 1651 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1652 return -EINVAL; 1653 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1654 return -EINVAL; 1655 1656 switch (which) { 1657 case P_ALL: 1658 type = PIDTYPE_MAX; 1659 break; 1660 case P_PID: 1661 type = PIDTYPE_PID; 1662 if (upid <= 0) 1663 return -EINVAL; 1664 break; 1665 case P_PGID: 1666 type = PIDTYPE_PGID; 1667 if (upid <= 0) 1668 return -EINVAL; 1669 break; 1670 default: 1671 return -EINVAL; 1672 } 1673 1674 if (type < PIDTYPE_MAX) 1675 pid = find_get_pid(upid); 1676 1677 wo.wo_type = type; 1678 wo.wo_pid = pid; 1679 wo.wo_flags = options; 1680 wo.wo_info = infop; 1681 wo.wo_stat = NULL; 1682 wo.wo_rusage = ru; 1683 ret = do_wait(&wo); 1684 put_pid(pid); 1685 1686 /* avoid REGPARM breakage on x86: */ 1687 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1688 return ret; 1689 } 1690 1691 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1692 int, options, struct rusage __user *, ru) 1693 { 1694 struct wait_opts wo; 1695 struct pid *pid = NULL; 1696 enum pid_type type; 1697 long ret; 1698 1699 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1700 __WNOTHREAD|__WCLONE|__WALL)) 1701 return -EINVAL; 1702 1703 if (upid == -1) 1704 type = PIDTYPE_MAX; 1705 else if (upid < 0) { 1706 type = PIDTYPE_PGID; 1707 pid = find_get_pid(-upid); 1708 } else if (upid == 0) { 1709 type = PIDTYPE_PGID; 1710 pid = get_task_pid(current, PIDTYPE_PGID); 1711 } else /* upid > 0 */ { 1712 type = PIDTYPE_PID; 1713 pid = find_get_pid(upid); 1714 } 1715 1716 wo.wo_type = type; 1717 wo.wo_pid = pid; 1718 wo.wo_flags = options | WEXITED; 1719 wo.wo_info = NULL; 1720 wo.wo_stat = stat_addr; 1721 wo.wo_rusage = ru; 1722 ret = do_wait(&wo); 1723 put_pid(pid); 1724 1725 /* avoid REGPARM breakage on x86: */ 1726 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1727 return ret; 1728 } 1729 1730 #ifdef __ARCH_WANT_SYS_WAITPID 1731 1732 /* 1733 * sys_waitpid() remains for compatibility. waitpid() should be 1734 * implemented by calling sys_wait4() from libc.a. 1735 */ 1736 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1737 { 1738 return sys_wait4(pid, stat_addr, options, NULL); 1739 } 1740 1741 #endif 1742