1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/uaccess.h> 72 #include <linux/pidfs.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static const struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 /* 127 * For things release_task() would like to do *after* tasklist_lock is released. 128 */ 129 struct release_task_post { 130 struct pid *pids[PIDTYPE_MAX]; 131 }; 132 133 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 134 bool group_dead) 135 { 136 struct pid *pid = task_pid(p); 137 138 nr_threads--; 139 140 detach_pid(post->pids, p, PIDTYPE_PID); 141 wake_up_all(&pid->wait_pidfd); 142 143 if (group_dead) { 144 detach_pid(post->pids, p, PIDTYPE_TGID); 145 detach_pid(post->pids, p, PIDTYPE_PGID); 146 detach_pid(post->pids, p, PIDTYPE_SID); 147 148 list_del_rcu(&p->tasks); 149 list_del_init(&p->sibling); 150 __this_cpu_dec(process_counts); 151 } 152 list_del_rcu(&p->thread_node); 153 } 154 155 /* 156 * This function expects the tasklist_lock write-locked. 157 */ 158 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 159 { 160 struct signal_struct *sig = tsk->signal; 161 bool group_dead = thread_group_leader(tsk); 162 struct sighand_struct *sighand; 163 struct tty_struct *tty; 164 u64 utime, stime; 165 166 sighand = rcu_dereference_check(tsk->sighand, 167 lockdep_tasklist_lock_is_held()); 168 spin_lock(&sighand->siglock); 169 170 #ifdef CONFIG_POSIX_TIMERS 171 posix_cpu_timers_exit(tsk); 172 if (group_dead) 173 posix_cpu_timers_exit_group(tsk); 174 #endif 175 176 if (group_dead) { 177 tty = sig->tty; 178 sig->tty = NULL; 179 } else { 180 /* 181 * If there is any task waiting for the group exit 182 * then notify it: 183 */ 184 if (sig->notify_count > 0 && !--sig->notify_count) 185 wake_up_process(sig->group_exec_task); 186 187 if (tsk == sig->curr_target) 188 sig->curr_target = next_thread(tsk); 189 } 190 191 /* 192 * Accumulate here the counters for all threads as they die. We could 193 * skip the group leader because it is the last user of signal_struct, 194 * but we want to avoid the race with thread_group_cputime() which can 195 * see the empty ->thread_head list. 196 */ 197 task_cputime(tsk, &utime, &stime); 198 write_seqlock(&sig->stats_lock); 199 sig->utime += utime; 200 sig->stime += stime; 201 sig->gtime += task_gtime(tsk); 202 sig->min_flt += tsk->min_flt; 203 sig->maj_flt += tsk->maj_flt; 204 sig->nvcsw += tsk->nvcsw; 205 sig->nivcsw += tsk->nivcsw; 206 sig->inblock += task_io_get_inblock(tsk); 207 sig->oublock += task_io_get_oublock(tsk); 208 task_io_accounting_add(&sig->ioac, &tsk->ioac); 209 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 210 sig->nr_threads--; 211 __unhash_process(post, tsk, group_dead); 212 write_sequnlock(&sig->stats_lock); 213 214 tsk->sighand = NULL; 215 spin_unlock(&sighand->siglock); 216 217 __cleanup_sighand(sighand); 218 if (group_dead) 219 tty_kref_put(tty); 220 } 221 222 static void delayed_put_task_struct(struct rcu_head *rhp) 223 { 224 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 225 226 kprobe_flush_task(tsk); 227 rethook_flush_task(tsk); 228 perf_event_delayed_put(tsk); 229 trace_sched_process_free(tsk); 230 put_task_struct(tsk); 231 } 232 233 void put_task_struct_rcu_user(struct task_struct *task) 234 { 235 if (refcount_dec_and_test(&task->rcu_users)) 236 call_rcu(&task->rcu, delayed_put_task_struct); 237 } 238 239 void __weak release_thread(struct task_struct *dead_task) 240 { 241 } 242 243 void release_task(struct task_struct *p) 244 { 245 struct release_task_post post; 246 struct task_struct *leader; 247 struct pid *thread_pid; 248 int zap_leader; 249 repeat: 250 memset(&post, 0, sizeof(post)); 251 252 /* don't need to get the RCU readlock here - the process is dead and 253 * can't be modifying its own credentials. But shut RCU-lockdep up */ 254 rcu_read_lock(); 255 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 256 rcu_read_unlock(); 257 258 pidfs_exit(p); 259 cgroup_release(p); 260 261 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */ 262 thread_pid = task_pid(p); 263 264 write_lock_irq(&tasklist_lock); 265 ptrace_release_task(p); 266 __exit_signal(&post, p); 267 268 /* 269 * If we are the last non-leader member of the thread 270 * group, and the leader is zombie, then notify the 271 * group leader's parent process. (if it wants notification.) 272 */ 273 zap_leader = 0; 274 leader = p->group_leader; 275 if (leader != p && thread_group_empty(leader) 276 && leader->exit_state == EXIT_ZOMBIE) { 277 /* for pidfs_exit() and do_notify_parent() */ 278 if (leader->signal->flags & SIGNAL_GROUP_EXIT) 279 leader->exit_code = leader->signal->group_exit_code; 280 /* 281 * If we were the last child thread and the leader has 282 * exited already, and the leader's parent ignores SIGCHLD, 283 * then we are the one who should release the leader. 284 */ 285 zap_leader = do_notify_parent(leader, leader->exit_signal); 286 if (zap_leader) 287 leader->exit_state = EXIT_DEAD; 288 } 289 290 write_unlock_irq(&tasklist_lock); 291 /* @thread_pid can't go away until free_pids() below */ 292 proc_flush_pid(thread_pid); 293 add_device_randomness(&p->se.sum_exec_runtime, 294 sizeof(p->se.sum_exec_runtime)); 295 free_pids(post.pids); 296 release_thread(p); 297 /* 298 * This task was already removed from the process/thread/pid lists 299 * and lock_task_sighand(p) can't succeed. Nobody else can touch 300 * ->pending or, if group dead, signal->shared_pending. We can call 301 * flush_sigqueue() lockless. 302 */ 303 flush_sigqueue(&p->pending); 304 if (thread_group_leader(p)) 305 flush_sigqueue(&p->signal->shared_pending); 306 307 put_task_struct_rcu_user(p); 308 309 p = leader; 310 if (unlikely(zap_leader)) 311 goto repeat; 312 } 313 314 int rcuwait_wake_up(struct rcuwait *w) 315 { 316 int ret = 0; 317 struct task_struct *task; 318 319 rcu_read_lock(); 320 321 /* 322 * Order condition vs @task, such that everything prior to the load 323 * of @task is visible. This is the condition as to why the user called 324 * rcuwait_wake() in the first place. Pairs with set_current_state() 325 * barrier (A) in rcuwait_wait_event(). 326 * 327 * WAIT WAKE 328 * [S] tsk = current [S] cond = true 329 * MB (A) MB (B) 330 * [L] cond [L] tsk 331 */ 332 smp_mb(); /* (B) */ 333 334 task = rcu_dereference(w->task); 335 if (task) 336 ret = wake_up_process(task); 337 rcu_read_unlock(); 338 339 return ret; 340 } 341 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 342 343 /* 344 * Determine if a process group is "orphaned", according to the POSIX 345 * definition in 2.2.2.52. Orphaned process groups are not to be affected 346 * by terminal-generated stop signals. Newly orphaned process groups are 347 * to receive a SIGHUP and a SIGCONT. 348 * 349 * "I ask you, have you ever known what it is to be an orphan?" 350 */ 351 static int will_become_orphaned_pgrp(struct pid *pgrp, 352 struct task_struct *ignored_task) 353 { 354 struct task_struct *p; 355 356 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 357 if ((p == ignored_task) || 358 (p->exit_state && thread_group_empty(p)) || 359 is_global_init(p->real_parent)) 360 continue; 361 362 if (task_pgrp(p->real_parent) != pgrp && 363 task_session(p->real_parent) == task_session(p)) 364 return 0; 365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 366 367 return 1; 368 } 369 370 int is_current_pgrp_orphaned(void) 371 { 372 int retval; 373 374 read_lock(&tasklist_lock); 375 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 376 read_unlock(&tasklist_lock); 377 378 return retval; 379 } 380 381 static bool has_stopped_jobs(struct pid *pgrp) 382 { 383 struct task_struct *p; 384 385 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 386 if (p->signal->flags & SIGNAL_STOP_STOPPED) 387 return true; 388 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 389 390 return false; 391 } 392 393 /* 394 * Check to see if any process groups have become orphaned as 395 * a result of our exiting, and if they have any stopped jobs, 396 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 397 */ 398 static void 399 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 400 { 401 struct pid *pgrp = task_pgrp(tsk); 402 struct task_struct *ignored_task = tsk; 403 404 if (!parent) 405 /* exit: our father is in a different pgrp than 406 * we are and we were the only connection outside. 407 */ 408 parent = tsk->real_parent; 409 else 410 /* reparent: our child is in a different pgrp than 411 * we are, and it was the only connection outside. 412 */ 413 ignored_task = NULL; 414 415 if (task_pgrp(parent) != pgrp && 416 task_session(parent) == task_session(tsk) && 417 will_become_orphaned_pgrp(pgrp, ignored_task) && 418 has_stopped_jobs(pgrp)) { 419 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 420 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 421 } 422 } 423 424 static void coredump_task_exit(struct task_struct *tsk, 425 struct core_state *core_state) 426 { 427 struct core_thread self; 428 429 self.task = tsk; 430 if (self.task->flags & PF_SIGNALED) 431 self.next = xchg(&core_state->dumper.next, &self); 432 else 433 self.task = NULL; 434 /* 435 * Implies mb(), the result of xchg() must be visible 436 * to core_state->dumper. 437 */ 438 if (atomic_dec_and_test(&core_state->nr_threads)) 439 complete(&core_state->startup); 440 441 for (;;) { 442 set_current_state(TASK_IDLE|TASK_FREEZABLE); 443 if (!self.task) /* see coredump_finish() */ 444 break; 445 schedule(); 446 } 447 __set_current_state(TASK_RUNNING); 448 } 449 450 #ifdef CONFIG_MEMCG 451 /* drops tasklist_lock if succeeds */ 452 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 453 { 454 bool ret = false; 455 456 task_lock(tsk); 457 if (likely(tsk->mm == mm)) { 458 /* tsk can't pass exit_mm/exec_mmap and exit */ 459 read_unlock(&tasklist_lock); 460 WRITE_ONCE(mm->owner, tsk); 461 lru_gen_migrate_mm(mm); 462 ret = true; 463 } 464 task_unlock(tsk); 465 return ret; 466 } 467 468 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 469 { 470 struct task_struct *t; 471 472 for_each_thread(g, t) { 473 struct mm_struct *t_mm = READ_ONCE(t->mm); 474 if (t_mm == mm) { 475 if (__try_to_set_owner(t, mm)) 476 return true; 477 } else if (t_mm) 478 break; 479 } 480 481 return false; 482 } 483 484 /* 485 * A task is exiting. If it owned this mm, find a new owner for the mm. 486 */ 487 void mm_update_next_owner(struct mm_struct *mm) 488 { 489 struct task_struct *g, *p = current; 490 491 /* 492 * If the exiting or execing task is not the owner, it's 493 * someone else's problem. 494 */ 495 if (mm->owner != p) 496 return; 497 /* 498 * The current owner is exiting/execing and there are no other 499 * candidates. Do not leave the mm pointing to a possibly 500 * freed task structure. 501 */ 502 if (atomic_read(&mm->mm_users) <= 1) { 503 WRITE_ONCE(mm->owner, NULL); 504 return; 505 } 506 507 read_lock(&tasklist_lock); 508 /* 509 * Search in the children 510 */ 511 list_for_each_entry(g, &p->children, sibling) { 512 if (try_to_set_owner(g, mm)) 513 goto ret; 514 } 515 /* 516 * Search in the siblings 517 */ 518 list_for_each_entry(g, &p->real_parent->children, sibling) { 519 if (try_to_set_owner(g, mm)) 520 goto ret; 521 } 522 /* 523 * Search through everything else, we should not get here often. 524 */ 525 for_each_process(g) { 526 if (atomic_read(&mm->mm_users) <= 1) 527 break; 528 if (g->flags & PF_KTHREAD) 529 continue; 530 if (try_to_set_owner(g, mm)) 531 goto ret; 532 } 533 read_unlock(&tasklist_lock); 534 /* 535 * We found no owner yet mm_users > 1: this implies that we are 536 * most likely racing with swapoff (try_to_unuse()) or /proc or 537 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 538 */ 539 WRITE_ONCE(mm->owner, NULL); 540 ret: 541 return; 542 543 } 544 #endif /* CONFIG_MEMCG */ 545 546 /* 547 * Turn us into a lazy TLB process if we 548 * aren't already.. 549 */ 550 static void exit_mm(void) 551 { 552 struct mm_struct *mm = current->mm; 553 554 exit_mm_release(current, mm); 555 if (!mm) 556 return; 557 mmap_read_lock(mm); 558 mmgrab_lazy_tlb(mm); 559 BUG_ON(mm != current->active_mm); 560 /* more a memory barrier than a real lock */ 561 task_lock(current); 562 /* 563 * When a thread stops operating on an address space, the loop 564 * in membarrier_private_expedited() may not observe that 565 * tsk->mm, and the loop in membarrier_global_expedited() may 566 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 567 * rq->membarrier_state, so those would not issue an IPI. 568 * Membarrier requires a memory barrier after accessing 569 * user-space memory, before clearing tsk->mm or the 570 * rq->membarrier_state. 571 */ 572 smp_mb__after_spinlock(); 573 local_irq_disable(); 574 current->mm = NULL; 575 membarrier_update_current_mm(NULL); 576 enter_lazy_tlb(mm, current); 577 local_irq_enable(); 578 task_unlock(current); 579 mmap_read_unlock(mm); 580 mm_update_next_owner(mm); 581 mmput(mm); 582 if (test_thread_flag(TIF_MEMDIE)) 583 exit_oom_victim(); 584 } 585 586 static struct task_struct *find_alive_thread(struct task_struct *p) 587 { 588 struct task_struct *t; 589 590 for_each_thread(p, t) { 591 if (!(t->flags & PF_EXITING)) 592 return t; 593 } 594 return NULL; 595 } 596 597 static struct task_struct *find_child_reaper(struct task_struct *father, 598 struct list_head *dead) 599 __releases(&tasklist_lock) 600 __acquires(&tasklist_lock) 601 { 602 struct pid_namespace *pid_ns = task_active_pid_ns(father); 603 struct task_struct *reaper = pid_ns->child_reaper; 604 struct task_struct *p, *n; 605 606 if (likely(reaper != father)) 607 return reaper; 608 609 reaper = find_alive_thread(father); 610 if (reaper) { 611 pid_ns->child_reaper = reaper; 612 return reaper; 613 } 614 615 write_unlock_irq(&tasklist_lock); 616 617 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 618 list_del_init(&p->ptrace_entry); 619 release_task(p); 620 } 621 622 zap_pid_ns_processes(pid_ns); 623 write_lock_irq(&tasklist_lock); 624 625 return father; 626 } 627 628 /* 629 * When we die, we re-parent all our children, and try to: 630 * 1. give them to another thread in our thread group, if such a member exists 631 * 2. give it to the first ancestor process which prctl'd itself as a 632 * child_subreaper for its children (like a service manager) 633 * 3. give it to the init process (PID 1) in our pid namespace 634 */ 635 static struct task_struct *find_new_reaper(struct task_struct *father, 636 struct task_struct *child_reaper) 637 { 638 struct task_struct *thread, *reaper; 639 640 thread = find_alive_thread(father); 641 if (thread) 642 return thread; 643 644 if (father->signal->has_child_subreaper) { 645 unsigned int ns_level = task_pid(father)->level; 646 /* 647 * Find the first ->is_child_subreaper ancestor in our pid_ns. 648 * We can't check reaper != child_reaper to ensure we do not 649 * cross the namespaces, the exiting parent could be injected 650 * by setns() + fork(). 651 * We check pid->level, this is slightly more efficient than 652 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 653 */ 654 for (reaper = father->real_parent; 655 task_pid(reaper)->level == ns_level; 656 reaper = reaper->real_parent) { 657 if (reaper == &init_task) 658 break; 659 if (!reaper->signal->is_child_subreaper) 660 continue; 661 thread = find_alive_thread(reaper); 662 if (thread) 663 return thread; 664 } 665 } 666 667 return child_reaper; 668 } 669 670 /* 671 * Any that need to be release_task'd are put on the @dead list. 672 */ 673 static void reparent_leader(struct task_struct *father, struct task_struct *p, 674 struct list_head *dead) 675 { 676 if (unlikely(p->exit_state == EXIT_DEAD)) 677 return; 678 679 /* We don't want people slaying init. */ 680 p->exit_signal = SIGCHLD; 681 682 /* If it has exited notify the new parent about this child's death. */ 683 if (!p->ptrace && 684 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 685 if (do_notify_parent(p, p->exit_signal)) { 686 p->exit_state = EXIT_DEAD; 687 list_add(&p->ptrace_entry, dead); 688 } 689 } 690 691 kill_orphaned_pgrp(p, father); 692 } 693 694 /* 695 * Make init inherit all the child processes 696 */ 697 static void forget_original_parent(struct task_struct *father, 698 struct list_head *dead) 699 { 700 struct task_struct *p, *t, *reaper; 701 702 if (unlikely(!list_empty(&father->ptraced))) 703 exit_ptrace(father, dead); 704 705 /* Can drop and reacquire tasklist_lock */ 706 reaper = find_child_reaper(father, dead); 707 if (list_empty(&father->children)) 708 return; 709 710 reaper = find_new_reaper(father, reaper); 711 list_for_each_entry(p, &father->children, sibling) { 712 for_each_thread(p, t) { 713 RCU_INIT_POINTER(t->real_parent, reaper); 714 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 715 if (likely(!t->ptrace)) 716 t->parent = t->real_parent; 717 if (t->pdeath_signal) 718 group_send_sig_info(t->pdeath_signal, 719 SEND_SIG_NOINFO, t, 720 PIDTYPE_TGID); 721 } 722 /* 723 * If this is a threaded reparent there is no need to 724 * notify anyone anything has happened. 725 */ 726 if (!same_thread_group(reaper, father)) 727 reparent_leader(father, p, dead); 728 } 729 list_splice_tail_init(&father->children, &reaper->children); 730 } 731 732 /* 733 * Send signals to all our closest relatives so that they know 734 * to properly mourn us.. 735 */ 736 static void exit_notify(struct task_struct *tsk, int group_dead) 737 { 738 bool autoreap; 739 struct task_struct *p, *n; 740 LIST_HEAD(dead); 741 742 write_lock_irq(&tasklist_lock); 743 forget_original_parent(tsk, &dead); 744 745 if (group_dead) 746 kill_orphaned_pgrp(tsk->group_leader, NULL); 747 748 tsk->exit_state = EXIT_ZOMBIE; 749 750 if (unlikely(tsk->ptrace)) { 751 int sig = thread_group_leader(tsk) && 752 thread_group_empty(tsk) && 753 !ptrace_reparented(tsk) ? 754 tsk->exit_signal : SIGCHLD; 755 autoreap = do_notify_parent(tsk, sig); 756 } else if (thread_group_leader(tsk)) { 757 autoreap = thread_group_empty(tsk) && 758 do_notify_parent(tsk, tsk->exit_signal); 759 } else { 760 autoreap = true; 761 /* untraced sub-thread */ 762 do_notify_pidfd(tsk); 763 } 764 765 if (autoreap) { 766 tsk->exit_state = EXIT_DEAD; 767 list_add(&tsk->ptrace_entry, &dead); 768 } 769 770 /* mt-exec, de_thread() is waiting for group leader */ 771 if (unlikely(tsk->signal->notify_count < 0)) 772 wake_up_process(tsk->signal->group_exec_task); 773 write_unlock_irq(&tasklist_lock); 774 775 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 776 list_del_init(&p->ptrace_entry); 777 release_task(p); 778 } 779 } 780 781 #ifdef CONFIG_DEBUG_STACK_USAGE 782 unsigned long stack_not_used(struct task_struct *p) 783 { 784 unsigned long *n = end_of_stack(p); 785 786 do { /* Skip over canary */ 787 # ifdef CONFIG_STACK_GROWSUP 788 n--; 789 # else 790 n++; 791 # endif 792 } while (!*n); 793 794 # ifdef CONFIG_STACK_GROWSUP 795 return (unsigned long)end_of_stack(p) - (unsigned long)n; 796 # else 797 return (unsigned long)n - (unsigned long)end_of_stack(p); 798 # endif 799 } 800 801 /* Count the maximum pages reached in kernel stacks */ 802 static inline void kstack_histogram(unsigned long used_stack) 803 { 804 #ifdef CONFIG_VM_EVENT_COUNTERS 805 if (used_stack <= 1024) 806 count_vm_event(KSTACK_1K); 807 #if THREAD_SIZE > 1024 808 else if (used_stack <= 2048) 809 count_vm_event(KSTACK_2K); 810 #endif 811 #if THREAD_SIZE > 2048 812 else if (used_stack <= 4096) 813 count_vm_event(KSTACK_4K); 814 #endif 815 #if THREAD_SIZE > 4096 816 else if (used_stack <= 8192) 817 count_vm_event(KSTACK_8K); 818 #endif 819 #if THREAD_SIZE > 8192 820 else if (used_stack <= 16384) 821 count_vm_event(KSTACK_16K); 822 #endif 823 #if THREAD_SIZE > 16384 824 else if (used_stack <= 32768) 825 count_vm_event(KSTACK_32K); 826 #endif 827 #if THREAD_SIZE > 32768 828 else if (used_stack <= 65536) 829 count_vm_event(KSTACK_64K); 830 #endif 831 #if THREAD_SIZE > 65536 832 else 833 count_vm_event(KSTACK_REST); 834 #endif 835 #endif /* CONFIG_VM_EVENT_COUNTERS */ 836 } 837 838 static void check_stack_usage(void) 839 { 840 static DEFINE_SPINLOCK(low_water_lock); 841 static int lowest_to_date = THREAD_SIZE; 842 unsigned long free; 843 844 free = stack_not_used(current); 845 kstack_histogram(THREAD_SIZE - free); 846 847 if (free >= lowest_to_date) 848 return; 849 850 spin_lock(&low_water_lock); 851 if (free < lowest_to_date) { 852 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 853 current->comm, task_pid_nr(current), free); 854 lowest_to_date = free; 855 } 856 spin_unlock(&low_water_lock); 857 } 858 #else 859 static inline void check_stack_usage(void) {} 860 #endif 861 862 static void synchronize_group_exit(struct task_struct *tsk, long code) 863 { 864 struct sighand_struct *sighand = tsk->sighand; 865 struct signal_struct *signal = tsk->signal; 866 struct core_state *core_state; 867 868 spin_lock_irq(&sighand->siglock); 869 signal->quick_threads--; 870 if ((signal->quick_threads == 0) && 871 !(signal->flags & SIGNAL_GROUP_EXIT)) { 872 signal->flags = SIGNAL_GROUP_EXIT; 873 signal->group_exit_code = code; 874 signal->group_stop_count = 0; 875 } 876 /* 877 * Serialize with any possible pending coredump. 878 * We must hold siglock around checking core_state 879 * and setting PF_POSTCOREDUMP. The core-inducing thread 880 * will increment ->nr_threads for each thread in the 881 * group without PF_POSTCOREDUMP set. 882 */ 883 tsk->flags |= PF_POSTCOREDUMP; 884 core_state = signal->core_state; 885 spin_unlock_irq(&sighand->siglock); 886 887 if (unlikely(core_state)) 888 coredump_task_exit(tsk, core_state); 889 } 890 891 void __noreturn do_exit(long code) 892 { 893 struct task_struct *tsk = current; 894 int group_dead; 895 896 WARN_ON(irqs_disabled()); 897 WARN_ON(tsk->plug); 898 899 kcov_task_exit(tsk); 900 kmsan_task_exit(tsk); 901 902 synchronize_group_exit(tsk, code); 903 ptrace_event(PTRACE_EVENT_EXIT, code); 904 user_events_exit(tsk); 905 906 io_uring_files_cancel(); 907 exit_signals(tsk); /* sets PF_EXITING */ 908 909 seccomp_filter_release(tsk); 910 911 acct_update_integrals(tsk); 912 group_dead = atomic_dec_and_test(&tsk->signal->live); 913 if (group_dead) { 914 /* 915 * If the last thread of global init has exited, panic 916 * immediately to get a useable coredump. 917 */ 918 if (unlikely(is_global_init(tsk))) 919 panic("Attempted to kill init! exitcode=0x%08x\n", 920 tsk->signal->group_exit_code ?: (int)code); 921 922 #ifdef CONFIG_POSIX_TIMERS 923 hrtimer_cancel(&tsk->signal->real_timer); 924 exit_itimers(tsk); 925 #endif 926 if (tsk->mm) 927 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 928 } 929 acct_collect(code, group_dead); 930 if (group_dead) 931 tty_audit_exit(); 932 audit_free(tsk); 933 934 tsk->exit_code = code; 935 taskstats_exit(tsk, group_dead); 936 trace_sched_process_exit(tsk, group_dead); 937 938 /* 939 * Since sampling can touch ->mm, make sure to stop everything before we 940 * tear it down. 941 * 942 * Also flushes inherited counters to the parent - before the parent 943 * gets woken up by child-exit notifications. 944 */ 945 perf_event_exit_task(tsk); 946 947 exit_mm(); 948 949 if (group_dead) 950 acct_process(); 951 952 exit_sem(tsk); 953 exit_shm(tsk); 954 exit_files(tsk); 955 exit_fs(tsk); 956 if (group_dead) 957 disassociate_ctty(1); 958 exit_task_namespaces(tsk); 959 exit_task_work(tsk); 960 exit_thread(tsk); 961 962 sched_autogroup_exit_task(tsk); 963 cgroup_exit(tsk); 964 965 /* 966 * FIXME: do that only when needed, using sched_exit tracepoint 967 */ 968 flush_ptrace_hw_breakpoint(tsk); 969 970 exit_tasks_rcu_start(); 971 exit_notify(tsk, group_dead); 972 proc_exit_connector(tsk); 973 mpol_put_task_policy(tsk); 974 #ifdef CONFIG_FUTEX 975 if (unlikely(current->pi_state_cache)) 976 kfree(current->pi_state_cache); 977 #endif 978 /* 979 * Make sure we are holding no locks: 980 */ 981 debug_check_no_locks_held(); 982 983 if (tsk->io_context) 984 exit_io_context(tsk); 985 986 if (tsk->splice_pipe) 987 free_pipe_info(tsk->splice_pipe); 988 989 if (tsk->task_frag.page) 990 put_page(tsk->task_frag.page); 991 992 exit_task_stack_account(tsk); 993 994 check_stack_usage(); 995 preempt_disable(); 996 if (tsk->nr_dirtied) 997 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 998 exit_rcu(); 999 exit_tasks_rcu_finish(); 1000 1001 lockdep_free_task(tsk); 1002 do_task_dead(); 1003 } 1004 1005 void __noreturn make_task_dead(int signr) 1006 { 1007 /* 1008 * Take the task off the cpu after something catastrophic has 1009 * happened. 1010 * 1011 * We can get here from a kernel oops, sometimes with preemption off. 1012 * Start by checking for critical errors. 1013 * Then fix up important state like USER_DS and preemption. 1014 * Then do everything else. 1015 */ 1016 struct task_struct *tsk = current; 1017 unsigned int limit; 1018 1019 if (unlikely(in_interrupt())) 1020 panic("Aiee, killing interrupt handler!"); 1021 if (unlikely(!tsk->pid)) 1022 panic("Attempted to kill the idle task!"); 1023 1024 if (unlikely(irqs_disabled())) { 1025 pr_info("note: %s[%d] exited with irqs disabled\n", 1026 current->comm, task_pid_nr(current)); 1027 local_irq_enable(); 1028 } 1029 if (unlikely(in_atomic())) { 1030 pr_info("note: %s[%d] exited with preempt_count %d\n", 1031 current->comm, task_pid_nr(current), 1032 preempt_count()); 1033 preempt_count_set(PREEMPT_ENABLED); 1034 } 1035 1036 /* 1037 * Every time the system oopses, if the oops happens while a reference 1038 * to an object was held, the reference leaks. 1039 * If the oops doesn't also leak memory, repeated oopsing can cause 1040 * reference counters to wrap around (if they're not using refcount_t). 1041 * This means that repeated oopsing can make unexploitable-looking bugs 1042 * exploitable through repeated oopsing. 1043 * To make sure this can't happen, place an upper bound on how often the 1044 * kernel may oops without panic(). 1045 */ 1046 limit = READ_ONCE(oops_limit); 1047 if (atomic_inc_return(&oops_count) >= limit && limit) 1048 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1049 1050 /* 1051 * We're taking recursive faults here in make_task_dead. Safest is to just 1052 * leave this task alone and wait for reboot. 1053 */ 1054 if (unlikely(tsk->flags & PF_EXITING)) { 1055 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1056 futex_exit_recursive(tsk); 1057 tsk->exit_state = EXIT_DEAD; 1058 refcount_inc(&tsk->rcu_users); 1059 do_task_dead(); 1060 } 1061 1062 do_exit(signr); 1063 } 1064 1065 SYSCALL_DEFINE1(exit, int, error_code) 1066 { 1067 do_exit((error_code&0xff)<<8); 1068 } 1069 1070 /* 1071 * Take down every thread in the group. This is called by fatal signals 1072 * as well as by sys_exit_group (below). 1073 */ 1074 void __noreturn 1075 do_group_exit(int exit_code) 1076 { 1077 struct signal_struct *sig = current->signal; 1078 1079 if (sig->flags & SIGNAL_GROUP_EXIT) 1080 exit_code = sig->group_exit_code; 1081 else if (sig->group_exec_task) 1082 exit_code = 0; 1083 else { 1084 struct sighand_struct *const sighand = current->sighand; 1085 1086 spin_lock_irq(&sighand->siglock); 1087 if (sig->flags & SIGNAL_GROUP_EXIT) 1088 /* Another thread got here before we took the lock. */ 1089 exit_code = sig->group_exit_code; 1090 else if (sig->group_exec_task) 1091 exit_code = 0; 1092 else { 1093 sig->group_exit_code = exit_code; 1094 sig->flags = SIGNAL_GROUP_EXIT; 1095 zap_other_threads(current); 1096 } 1097 spin_unlock_irq(&sighand->siglock); 1098 } 1099 1100 do_exit(exit_code); 1101 /* NOTREACHED */ 1102 } 1103 1104 /* 1105 * this kills every thread in the thread group. Note that any externally 1106 * wait4()-ing process will get the correct exit code - even if this 1107 * thread is not the thread group leader. 1108 */ 1109 SYSCALL_DEFINE1(exit_group, int, error_code) 1110 { 1111 do_group_exit((error_code & 0xff) << 8); 1112 /* NOTREACHED */ 1113 return 0; 1114 } 1115 1116 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1117 { 1118 return wo->wo_type == PIDTYPE_MAX || 1119 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1120 } 1121 1122 static int 1123 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1124 { 1125 if (!eligible_pid(wo, p)) 1126 return 0; 1127 1128 /* 1129 * Wait for all children (clone and not) if __WALL is set or 1130 * if it is traced by us. 1131 */ 1132 if (ptrace || (wo->wo_flags & __WALL)) 1133 return 1; 1134 1135 /* 1136 * Otherwise, wait for clone children *only* if __WCLONE is set; 1137 * otherwise, wait for non-clone children *only*. 1138 * 1139 * Note: a "clone" child here is one that reports to its parent 1140 * using a signal other than SIGCHLD, or a non-leader thread which 1141 * we can only see if it is traced by us. 1142 */ 1143 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1144 return 0; 1145 1146 return 1; 1147 } 1148 1149 /* 1150 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1151 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1152 * the lock and this task is uninteresting. If we return nonzero, we have 1153 * released the lock and the system call should return. 1154 */ 1155 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1156 { 1157 int state, status; 1158 pid_t pid = task_pid_vnr(p); 1159 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1160 struct waitid_info *infop; 1161 1162 if (!likely(wo->wo_flags & WEXITED)) 1163 return 0; 1164 1165 if (unlikely(wo->wo_flags & WNOWAIT)) { 1166 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1167 ? p->signal->group_exit_code : p->exit_code; 1168 get_task_struct(p); 1169 read_unlock(&tasklist_lock); 1170 sched_annotate_sleep(); 1171 if (wo->wo_rusage) 1172 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1173 put_task_struct(p); 1174 goto out_info; 1175 } 1176 /* 1177 * Move the task's state to DEAD/TRACE, only one thread can do this. 1178 */ 1179 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1180 EXIT_TRACE : EXIT_DEAD; 1181 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1182 return 0; 1183 /* 1184 * We own this thread, nobody else can reap it. 1185 */ 1186 read_unlock(&tasklist_lock); 1187 sched_annotate_sleep(); 1188 1189 /* 1190 * Check thread_group_leader() to exclude the traced sub-threads. 1191 */ 1192 if (state == EXIT_DEAD && thread_group_leader(p)) { 1193 struct signal_struct *sig = p->signal; 1194 struct signal_struct *psig = current->signal; 1195 unsigned long maxrss; 1196 u64 tgutime, tgstime; 1197 1198 /* 1199 * The resource counters for the group leader are in its 1200 * own task_struct. Those for dead threads in the group 1201 * are in its signal_struct, as are those for the child 1202 * processes it has previously reaped. All these 1203 * accumulate in the parent's signal_struct c* fields. 1204 * 1205 * We don't bother to take a lock here to protect these 1206 * p->signal fields because the whole thread group is dead 1207 * and nobody can change them. 1208 * 1209 * psig->stats_lock also protects us from our sub-threads 1210 * which can reap other children at the same time. 1211 * 1212 * We use thread_group_cputime_adjusted() to get times for 1213 * the thread group, which consolidates times for all threads 1214 * in the group including the group leader. 1215 */ 1216 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1217 write_seqlock_irq(&psig->stats_lock); 1218 psig->cutime += tgutime + sig->cutime; 1219 psig->cstime += tgstime + sig->cstime; 1220 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1221 psig->cmin_flt += 1222 p->min_flt + sig->min_flt + sig->cmin_flt; 1223 psig->cmaj_flt += 1224 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1225 psig->cnvcsw += 1226 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1227 psig->cnivcsw += 1228 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1229 psig->cinblock += 1230 task_io_get_inblock(p) + 1231 sig->inblock + sig->cinblock; 1232 psig->coublock += 1233 task_io_get_oublock(p) + 1234 sig->oublock + sig->coublock; 1235 maxrss = max(sig->maxrss, sig->cmaxrss); 1236 if (psig->cmaxrss < maxrss) 1237 psig->cmaxrss = maxrss; 1238 task_io_accounting_add(&psig->ioac, &p->ioac); 1239 task_io_accounting_add(&psig->ioac, &sig->ioac); 1240 write_sequnlock_irq(&psig->stats_lock); 1241 } 1242 1243 if (wo->wo_rusage) 1244 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1245 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1246 ? p->signal->group_exit_code : p->exit_code; 1247 wo->wo_stat = status; 1248 1249 if (state == EXIT_TRACE) { 1250 write_lock_irq(&tasklist_lock); 1251 /* We dropped tasklist, ptracer could die and untrace */ 1252 ptrace_unlink(p); 1253 1254 /* If parent wants a zombie, don't release it now */ 1255 state = EXIT_ZOMBIE; 1256 if (do_notify_parent(p, p->exit_signal)) 1257 state = EXIT_DEAD; 1258 p->exit_state = state; 1259 write_unlock_irq(&tasklist_lock); 1260 } 1261 if (state == EXIT_DEAD) 1262 release_task(p); 1263 1264 out_info: 1265 infop = wo->wo_info; 1266 if (infop) { 1267 if ((status & 0x7f) == 0) { 1268 infop->cause = CLD_EXITED; 1269 infop->status = status >> 8; 1270 } else { 1271 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1272 infop->status = status & 0x7f; 1273 } 1274 infop->pid = pid; 1275 infop->uid = uid; 1276 } 1277 1278 return pid; 1279 } 1280 1281 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1282 { 1283 if (ptrace) { 1284 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1285 return &p->exit_code; 1286 } else { 1287 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1288 return &p->signal->group_exit_code; 1289 } 1290 return NULL; 1291 } 1292 1293 /** 1294 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1295 * @wo: wait options 1296 * @ptrace: is the wait for ptrace 1297 * @p: task to wait for 1298 * 1299 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1300 * 1301 * CONTEXT: 1302 * read_lock(&tasklist_lock), which is released if return value is 1303 * non-zero. Also, grabs and releases @p->sighand->siglock. 1304 * 1305 * RETURNS: 1306 * 0 if wait condition didn't exist and search for other wait conditions 1307 * should continue. Non-zero return, -errno on failure and @p's pid on 1308 * success, implies that tasklist_lock is released and wait condition 1309 * search should terminate. 1310 */ 1311 static int wait_task_stopped(struct wait_opts *wo, 1312 int ptrace, struct task_struct *p) 1313 { 1314 struct waitid_info *infop; 1315 int exit_code, *p_code, why; 1316 uid_t uid = 0; /* unneeded, required by compiler */ 1317 pid_t pid; 1318 1319 /* 1320 * Traditionally we see ptrace'd stopped tasks regardless of options. 1321 */ 1322 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1323 return 0; 1324 1325 if (!task_stopped_code(p, ptrace)) 1326 return 0; 1327 1328 exit_code = 0; 1329 spin_lock_irq(&p->sighand->siglock); 1330 1331 p_code = task_stopped_code(p, ptrace); 1332 if (unlikely(!p_code)) 1333 goto unlock_sig; 1334 1335 exit_code = *p_code; 1336 if (!exit_code) 1337 goto unlock_sig; 1338 1339 if (!unlikely(wo->wo_flags & WNOWAIT)) 1340 *p_code = 0; 1341 1342 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1343 unlock_sig: 1344 spin_unlock_irq(&p->sighand->siglock); 1345 if (!exit_code) 1346 return 0; 1347 1348 /* 1349 * Now we are pretty sure this task is interesting. 1350 * Make sure it doesn't get reaped out from under us while we 1351 * give up the lock and then examine it below. We don't want to 1352 * keep holding onto the tasklist_lock while we call getrusage and 1353 * possibly take page faults for user memory. 1354 */ 1355 get_task_struct(p); 1356 pid = task_pid_vnr(p); 1357 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1358 read_unlock(&tasklist_lock); 1359 sched_annotate_sleep(); 1360 if (wo->wo_rusage) 1361 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1362 put_task_struct(p); 1363 1364 if (likely(!(wo->wo_flags & WNOWAIT))) 1365 wo->wo_stat = (exit_code << 8) | 0x7f; 1366 1367 infop = wo->wo_info; 1368 if (infop) { 1369 infop->cause = why; 1370 infop->status = exit_code; 1371 infop->pid = pid; 1372 infop->uid = uid; 1373 } 1374 return pid; 1375 } 1376 1377 /* 1378 * Handle do_wait work for one task in a live, non-stopped state. 1379 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1380 * the lock and this task is uninteresting. If we return nonzero, we have 1381 * released the lock and the system call should return. 1382 */ 1383 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1384 { 1385 struct waitid_info *infop; 1386 pid_t pid; 1387 uid_t uid; 1388 1389 if (!unlikely(wo->wo_flags & WCONTINUED)) 1390 return 0; 1391 1392 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1393 return 0; 1394 1395 spin_lock_irq(&p->sighand->siglock); 1396 /* Re-check with the lock held. */ 1397 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1398 spin_unlock_irq(&p->sighand->siglock); 1399 return 0; 1400 } 1401 if (!unlikely(wo->wo_flags & WNOWAIT)) 1402 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1403 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1404 spin_unlock_irq(&p->sighand->siglock); 1405 1406 pid = task_pid_vnr(p); 1407 get_task_struct(p); 1408 read_unlock(&tasklist_lock); 1409 sched_annotate_sleep(); 1410 if (wo->wo_rusage) 1411 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1412 put_task_struct(p); 1413 1414 infop = wo->wo_info; 1415 if (!infop) { 1416 wo->wo_stat = 0xffff; 1417 } else { 1418 infop->cause = CLD_CONTINUED; 1419 infop->pid = pid; 1420 infop->uid = uid; 1421 infop->status = SIGCONT; 1422 } 1423 return pid; 1424 } 1425 1426 /* 1427 * Consider @p for a wait by @parent. 1428 * 1429 * -ECHILD should be in ->notask_error before the first call. 1430 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1431 * Returns zero if the search for a child should continue; 1432 * then ->notask_error is 0 if @p is an eligible child, 1433 * or still -ECHILD. 1434 */ 1435 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1436 struct task_struct *p) 1437 { 1438 /* 1439 * We can race with wait_task_zombie() from another thread. 1440 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1441 * can't confuse the checks below. 1442 */ 1443 int exit_state = READ_ONCE(p->exit_state); 1444 int ret; 1445 1446 if (unlikely(exit_state == EXIT_DEAD)) 1447 return 0; 1448 1449 ret = eligible_child(wo, ptrace, p); 1450 if (!ret) 1451 return ret; 1452 1453 if (unlikely(exit_state == EXIT_TRACE)) { 1454 /* 1455 * ptrace == 0 means we are the natural parent. In this case 1456 * we should clear notask_error, debugger will notify us. 1457 */ 1458 if (likely(!ptrace)) 1459 wo->notask_error = 0; 1460 return 0; 1461 } 1462 1463 if (likely(!ptrace) && unlikely(p->ptrace)) { 1464 /* 1465 * If it is traced by its real parent's group, just pretend 1466 * the caller is ptrace_do_wait() and reap this child if it 1467 * is zombie. 1468 * 1469 * This also hides group stop state from real parent; otherwise 1470 * a single stop can be reported twice as group and ptrace stop. 1471 * If a ptracer wants to distinguish these two events for its 1472 * own children it should create a separate process which takes 1473 * the role of real parent. 1474 */ 1475 if (!ptrace_reparented(p)) 1476 ptrace = 1; 1477 } 1478 1479 /* slay zombie? */ 1480 if (exit_state == EXIT_ZOMBIE) { 1481 /* we don't reap group leaders with subthreads */ 1482 if (!delay_group_leader(p)) { 1483 /* 1484 * A zombie ptracee is only visible to its ptracer. 1485 * Notification and reaping will be cascaded to the 1486 * real parent when the ptracer detaches. 1487 */ 1488 if (unlikely(ptrace) || likely(!p->ptrace)) 1489 return wait_task_zombie(wo, p); 1490 } 1491 1492 /* 1493 * Allow access to stopped/continued state via zombie by 1494 * falling through. Clearing of notask_error is complex. 1495 * 1496 * When !@ptrace: 1497 * 1498 * If WEXITED is set, notask_error should naturally be 1499 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1500 * so, if there are live subthreads, there are events to 1501 * wait for. If all subthreads are dead, it's still safe 1502 * to clear - this function will be called again in finite 1503 * amount time once all the subthreads are released and 1504 * will then return without clearing. 1505 * 1506 * When @ptrace: 1507 * 1508 * Stopped state is per-task and thus can't change once the 1509 * target task dies. Only continued and exited can happen. 1510 * Clear notask_error if WCONTINUED | WEXITED. 1511 */ 1512 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1513 wo->notask_error = 0; 1514 } else { 1515 /* 1516 * @p is alive and it's gonna stop, continue or exit, so 1517 * there always is something to wait for. 1518 */ 1519 wo->notask_error = 0; 1520 } 1521 1522 /* 1523 * Wait for stopped. Depending on @ptrace, different stopped state 1524 * is used and the two don't interact with each other. 1525 */ 1526 ret = wait_task_stopped(wo, ptrace, p); 1527 if (ret) 1528 return ret; 1529 1530 /* 1531 * Wait for continued. There's only one continued state and the 1532 * ptracer can consume it which can confuse the real parent. Don't 1533 * use WCONTINUED from ptracer. You don't need or want it. 1534 */ 1535 return wait_task_continued(wo, p); 1536 } 1537 1538 /* 1539 * Do the work of do_wait() for one thread in the group, @tsk. 1540 * 1541 * -ECHILD should be in ->notask_error before the first call. 1542 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1543 * Returns zero if the search for a child should continue; then 1544 * ->notask_error is 0 if there were any eligible children, 1545 * or still -ECHILD. 1546 */ 1547 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1548 { 1549 struct task_struct *p; 1550 1551 list_for_each_entry(p, &tsk->children, sibling) { 1552 int ret = wait_consider_task(wo, 0, p); 1553 1554 if (ret) 1555 return ret; 1556 } 1557 1558 return 0; 1559 } 1560 1561 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1562 { 1563 struct task_struct *p; 1564 1565 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1566 int ret = wait_consider_task(wo, 1, p); 1567 1568 if (ret) 1569 return ret; 1570 } 1571 1572 return 0; 1573 } 1574 1575 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1576 { 1577 if (!eligible_pid(wo, p)) 1578 return false; 1579 1580 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1581 return false; 1582 1583 return true; 1584 } 1585 1586 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1587 int sync, void *key) 1588 { 1589 struct wait_opts *wo = container_of(wait, struct wait_opts, 1590 child_wait); 1591 struct task_struct *p = key; 1592 1593 if (pid_child_should_wake(wo, p)) 1594 return default_wake_function(wait, mode, sync, key); 1595 1596 return 0; 1597 } 1598 1599 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1600 { 1601 __wake_up_sync_key(&parent->signal->wait_chldexit, 1602 TASK_INTERRUPTIBLE, p); 1603 } 1604 1605 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1606 struct task_struct *target) 1607 { 1608 struct task_struct *parent = 1609 !ptrace ? target->real_parent : target->parent; 1610 1611 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1612 same_thread_group(current, parent)); 1613 } 1614 1615 /* 1616 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1617 * and tracee lists to find the target task. 1618 */ 1619 static int do_wait_pid(struct wait_opts *wo) 1620 { 1621 bool ptrace; 1622 struct task_struct *target; 1623 int retval; 1624 1625 ptrace = false; 1626 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1627 if (target && is_effectively_child(wo, ptrace, target)) { 1628 retval = wait_consider_task(wo, ptrace, target); 1629 if (retval) 1630 return retval; 1631 } 1632 1633 ptrace = true; 1634 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1635 if (target && target->ptrace && 1636 is_effectively_child(wo, ptrace, target)) { 1637 retval = wait_consider_task(wo, ptrace, target); 1638 if (retval) 1639 return retval; 1640 } 1641 1642 return 0; 1643 } 1644 1645 long __do_wait(struct wait_opts *wo) 1646 { 1647 long retval; 1648 1649 /* 1650 * If there is nothing that can match our criteria, just get out. 1651 * We will clear ->notask_error to zero if we see any child that 1652 * might later match our criteria, even if we are not able to reap 1653 * it yet. 1654 */ 1655 wo->notask_error = -ECHILD; 1656 if ((wo->wo_type < PIDTYPE_MAX) && 1657 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1658 goto notask; 1659 1660 read_lock(&tasklist_lock); 1661 1662 if (wo->wo_type == PIDTYPE_PID) { 1663 retval = do_wait_pid(wo); 1664 if (retval) 1665 return retval; 1666 } else { 1667 struct task_struct *tsk = current; 1668 1669 do { 1670 retval = do_wait_thread(wo, tsk); 1671 if (retval) 1672 return retval; 1673 1674 retval = ptrace_do_wait(wo, tsk); 1675 if (retval) 1676 return retval; 1677 1678 if (wo->wo_flags & __WNOTHREAD) 1679 break; 1680 } while_each_thread(current, tsk); 1681 } 1682 read_unlock(&tasklist_lock); 1683 1684 notask: 1685 retval = wo->notask_error; 1686 if (!retval && !(wo->wo_flags & WNOHANG)) 1687 return -ERESTARTSYS; 1688 1689 return retval; 1690 } 1691 1692 static long do_wait(struct wait_opts *wo) 1693 { 1694 int retval; 1695 1696 trace_sched_process_wait(wo->wo_pid); 1697 1698 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1699 wo->child_wait.private = current; 1700 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1701 1702 do { 1703 set_current_state(TASK_INTERRUPTIBLE); 1704 retval = __do_wait(wo); 1705 if (retval != -ERESTARTSYS) 1706 break; 1707 if (signal_pending(current)) 1708 break; 1709 schedule(); 1710 } while (1); 1711 1712 __set_current_state(TASK_RUNNING); 1713 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1714 return retval; 1715 } 1716 1717 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1718 struct waitid_info *infop, int options, 1719 struct rusage *ru) 1720 { 1721 unsigned int f_flags = 0; 1722 struct pid *pid = NULL; 1723 enum pid_type type; 1724 1725 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1726 __WNOTHREAD|__WCLONE|__WALL)) 1727 return -EINVAL; 1728 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1729 return -EINVAL; 1730 1731 switch (which) { 1732 case P_ALL: 1733 type = PIDTYPE_MAX; 1734 break; 1735 case P_PID: 1736 type = PIDTYPE_PID; 1737 if (upid <= 0) 1738 return -EINVAL; 1739 1740 pid = find_get_pid(upid); 1741 break; 1742 case P_PGID: 1743 type = PIDTYPE_PGID; 1744 if (upid < 0) 1745 return -EINVAL; 1746 1747 if (upid) 1748 pid = find_get_pid(upid); 1749 else 1750 pid = get_task_pid(current, PIDTYPE_PGID); 1751 break; 1752 case P_PIDFD: 1753 type = PIDTYPE_PID; 1754 if (upid < 0) 1755 return -EINVAL; 1756 1757 pid = pidfd_get_pid(upid, &f_flags); 1758 if (IS_ERR(pid)) 1759 return PTR_ERR(pid); 1760 1761 break; 1762 default: 1763 return -EINVAL; 1764 } 1765 1766 wo->wo_type = type; 1767 wo->wo_pid = pid; 1768 wo->wo_flags = options; 1769 wo->wo_info = infop; 1770 wo->wo_rusage = ru; 1771 if (f_flags & O_NONBLOCK) 1772 wo->wo_flags |= WNOHANG; 1773 1774 return 0; 1775 } 1776 1777 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1778 int options, struct rusage *ru) 1779 { 1780 struct wait_opts wo; 1781 long ret; 1782 1783 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1784 if (ret) 1785 return ret; 1786 1787 ret = do_wait(&wo); 1788 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1789 ret = -EAGAIN; 1790 1791 put_pid(wo.wo_pid); 1792 return ret; 1793 } 1794 1795 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1796 infop, int, options, struct rusage __user *, ru) 1797 { 1798 struct rusage r; 1799 struct waitid_info info = {.status = 0}; 1800 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1801 int signo = 0; 1802 1803 if (err > 0) { 1804 signo = SIGCHLD; 1805 err = 0; 1806 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1807 return -EFAULT; 1808 } 1809 if (!infop) 1810 return err; 1811 1812 if (!user_write_access_begin(infop, sizeof(*infop))) 1813 return -EFAULT; 1814 1815 unsafe_put_user(signo, &infop->si_signo, Efault); 1816 unsafe_put_user(0, &infop->si_errno, Efault); 1817 unsafe_put_user(info.cause, &infop->si_code, Efault); 1818 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1819 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1820 unsafe_put_user(info.status, &infop->si_status, Efault); 1821 user_write_access_end(); 1822 return err; 1823 Efault: 1824 user_write_access_end(); 1825 return -EFAULT; 1826 } 1827 1828 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1829 struct rusage *ru) 1830 { 1831 struct wait_opts wo; 1832 struct pid *pid = NULL; 1833 enum pid_type type; 1834 long ret; 1835 1836 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1837 __WNOTHREAD|__WCLONE|__WALL)) 1838 return -EINVAL; 1839 1840 /* -INT_MIN is not defined */ 1841 if (upid == INT_MIN) 1842 return -ESRCH; 1843 1844 if (upid == -1) 1845 type = PIDTYPE_MAX; 1846 else if (upid < 0) { 1847 type = PIDTYPE_PGID; 1848 pid = find_get_pid(-upid); 1849 } else if (upid == 0) { 1850 type = PIDTYPE_PGID; 1851 pid = get_task_pid(current, PIDTYPE_PGID); 1852 } else /* upid > 0 */ { 1853 type = PIDTYPE_PID; 1854 pid = find_get_pid(upid); 1855 } 1856 1857 wo.wo_type = type; 1858 wo.wo_pid = pid; 1859 wo.wo_flags = options | WEXITED; 1860 wo.wo_info = NULL; 1861 wo.wo_stat = 0; 1862 wo.wo_rusage = ru; 1863 ret = do_wait(&wo); 1864 put_pid(pid); 1865 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1866 ret = -EFAULT; 1867 1868 return ret; 1869 } 1870 1871 int kernel_wait(pid_t pid, int *stat) 1872 { 1873 struct wait_opts wo = { 1874 .wo_type = PIDTYPE_PID, 1875 .wo_pid = find_get_pid(pid), 1876 .wo_flags = WEXITED, 1877 }; 1878 int ret; 1879 1880 ret = do_wait(&wo); 1881 if (ret > 0 && wo.wo_stat) 1882 *stat = wo.wo_stat; 1883 put_pid(wo.wo_pid); 1884 return ret; 1885 } 1886 1887 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1888 int, options, struct rusage __user *, ru) 1889 { 1890 struct rusage r; 1891 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1892 1893 if (err > 0) { 1894 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1895 return -EFAULT; 1896 } 1897 return err; 1898 } 1899 1900 #ifdef __ARCH_WANT_SYS_WAITPID 1901 1902 /* 1903 * sys_waitpid() remains for compatibility. waitpid() should be 1904 * implemented by calling sys_wait4() from libc.a. 1905 */ 1906 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1907 { 1908 return kernel_wait4(pid, stat_addr, options, NULL); 1909 } 1910 1911 #endif 1912 1913 #ifdef CONFIG_COMPAT 1914 COMPAT_SYSCALL_DEFINE4(wait4, 1915 compat_pid_t, pid, 1916 compat_uint_t __user *, stat_addr, 1917 int, options, 1918 struct compat_rusage __user *, ru) 1919 { 1920 struct rusage r; 1921 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1922 if (err > 0) { 1923 if (ru && put_compat_rusage(&r, ru)) 1924 return -EFAULT; 1925 } 1926 return err; 1927 } 1928 1929 COMPAT_SYSCALL_DEFINE5(waitid, 1930 int, which, compat_pid_t, pid, 1931 struct compat_siginfo __user *, infop, int, options, 1932 struct compat_rusage __user *, uru) 1933 { 1934 struct rusage ru; 1935 struct waitid_info info = {.status = 0}; 1936 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1937 int signo = 0; 1938 if (err > 0) { 1939 signo = SIGCHLD; 1940 err = 0; 1941 if (uru) { 1942 /* kernel_waitid() overwrites everything in ru */ 1943 if (COMPAT_USE_64BIT_TIME) 1944 err = copy_to_user(uru, &ru, sizeof(ru)); 1945 else 1946 err = put_compat_rusage(&ru, uru); 1947 if (err) 1948 return -EFAULT; 1949 } 1950 } 1951 1952 if (!infop) 1953 return err; 1954 1955 if (!user_write_access_begin(infop, sizeof(*infop))) 1956 return -EFAULT; 1957 1958 unsafe_put_user(signo, &infop->si_signo, Efault); 1959 unsafe_put_user(0, &infop->si_errno, Efault); 1960 unsafe_put_user(info.cause, &infop->si_code, Efault); 1961 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1962 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1963 unsafe_put_user(info.status, &infop->si_status, Efault); 1964 user_write_access_end(); 1965 return err; 1966 Efault: 1967 user_write_access_end(); 1968 return -EFAULT; 1969 } 1970 #endif 1971 1972 /* 1973 * This needs to be __function_aligned as GCC implicitly makes any 1974 * implementation of abort() cold and drops alignment specified by 1975 * -falign-functions=N. 1976 * 1977 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1978 */ 1979 __weak __function_aligned void abort(void) 1980 { 1981 BUG(); 1982 1983 /* if that doesn't kill us, halt */ 1984 panic("Oops failed to kill thread"); 1985 } 1986 EXPORT_SYMBOL(abort); 1987