xref: /linux/kernel/exit.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71 
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *uninitialized_var(tty);
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead) {
107 		posix_cpu_timers_exit_group(tsk);
108 	} else {
109 		/*
110 		 * This can only happen if the caller is de_thread().
111 		 * FIXME: this is the temporary hack, we should teach
112 		 * posix-cpu-timers to handle this case correctly.
113 		 */
114 		if (unlikely(has_group_leader_pid(tsk)))
115 			posix_cpu_timers_exit_group(tsk);
116 	}
117 #endif
118 
119 	if (group_dead) {
120 		tty = sig->tty;
121 		sig->tty = NULL;
122 	} else {
123 		/*
124 		 * If there is any task waiting for the group exit
125 		 * then notify it:
126 		 */
127 		if (sig->notify_count > 0 && !--sig->notify_count)
128 			wake_up_process(sig->group_exit_task);
129 
130 		if (tsk == sig->curr_target)
131 			sig->curr_target = next_thread(tsk);
132 	}
133 
134 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 			      sizeof(unsigned long long));
136 
137 	/*
138 	 * Accumulate here the counters for all threads as they die. We could
139 	 * skip the group leader because it is the last user of signal_struct,
140 	 * but we want to avoid the race with thread_group_cputime() which can
141 	 * see the empty ->thread_head list.
142 	 */
143 	task_cputime(tsk, &utime, &stime);
144 	write_seqlock(&sig->stats_lock);
145 	sig->utime += utime;
146 	sig->stime += stime;
147 	sig->gtime += task_gtime(tsk);
148 	sig->min_flt += tsk->min_flt;
149 	sig->maj_flt += tsk->maj_flt;
150 	sig->nvcsw += tsk->nvcsw;
151 	sig->nivcsw += tsk->nivcsw;
152 	sig->inblock += task_io_get_inblock(tsk);
153 	sig->oublock += task_io_get_oublock(tsk);
154 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 	sig->nr_threads--;
157 	__unhash_process(tsk, group_dead);
158 	write_sequnlock(&sig->stats_lock);
159 
160 	/*
161 	 * Do this under ->siglock, we can race with another thread
162 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 	 */
164 	flush_sigqueue(&tsk->pending);
165 	tsk->sighand = NULL;
166 	spin_unlock(&sighand->siglock);
167 
168 	__cleanup_sighand(sighand);
169 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 	if (group_dead) {
171 		flush_sigqueue(&sig->shared_pending);
172 		tty_kref_put(tty);
173 	}
174 }
175 
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179 
180 	perf_event_delayed_put(tsk);
181 	trace_sched_process_free(tsk);
182 	put_task_struct(tsk);
183 }
184 
185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187 	if (refcount_dec_and_test(&task->rcu_users))
188 		call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190 
191 void release_task(struct task_struct *p)
192 {
193 	struct task_struct *leader;
194 	int zap_leader;
195 repeat:
196 	/* don't need to get the RCU readlock here - the process is dead and
197 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
198 	rcu_read_lock();
199 	atomic_dec(&__task_cred(p)->user->processes);
200 	rcu_read_unlock();
201 
202 	proc_flush_task(p);
203 	cgroup_release(p);
204 
205 	write_lock_irq(&tasklist_lock);
206 	ptrace_release_task(p);
207 	__exit_signal(p);
208 
209 	/*
210 	 * If we are the last non-leader member of the thread
211 	 * group, and the leader is zombie, then notify the
212 	 * group leader's parent process. (if it wants notification.)
213 	 */
214 	zap_leader = 0;
215 	leader = p->group_leader;
216 	if (leader != p && thread_group_empty(leader)
217 			&& leader->exit_state == EXIT_ZOMBIE) {
218 		/*
219 		 * If we were the last child thread and the leader has
220 		 * exited already, and the leader's parent ignores SIGCHLD,
221 		 * then we are the one who should release the leader.
222 		 */
223 		zap_leader = do_notify_parent(leader, leader->exit_signal);
224 		if (zap_leader)
225 			leader->exit_state = EXIT_DEAD;
226 	}
227 
228 	write_unlock_irq(&tasklist_lock);
229 	release_thread(p);
230 	put_task_struct_rcu_user(p);
231 
232 	p = leader;
233 	if (unlikely(zap_leader))
234 		goto repeat;
235 }
236 
237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239 	struct task_struct *task;
240 
241 	rcu_read_lock();
242 
243 	/*
244 	 * Order condition vs @task, such that everything prior to the load
245 	 * of @task is visible. This is the condition as to why the user called
246 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
247 	 * barrier (A) in rcuwait_wait_event().
248 	 *
249 	 *    WAIT                WAKE
250 	 *    [S] tsk = current	  [S] cond = true
251 	 *        MB (A)	      MB (B)
252 	 *    [L] cond		  [L] tsk
253 	 */
254 	smp_mb(); /* (B) */
255 
256 	task = rcu_dereference(w->task);
257 	if (task)
258 		wake_up_process(task);
259 	rcu_read_unlock();
260 }
261 
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 					struct task_struct *ignored_task)
272 {
273 	struct task_struct *p;
274 
275 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 		if ((p == ignored_task) ||
277 		    (p->exit_state && thread_group_empty(p)) ||
278 		    is_global_init(p->real_parent))
279 			continue;
280 
281 		if (task_pgrp(p->real_parent) != pgrp &&
282 		    task_session(p->real_parent) == task_session(p))
283 			return 0;
284 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285 
286 	return 1;
287 }
288 
289 int is_current_pgrp_orphaned(void)
290 {
291 	int retval;
292 
293 	read_lock(&tasklist_lock);
294 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 	read_unlock(&tasklist_lock);
296 
297 	return retval;
298 }
299 
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 	struct task_struct *p;
303 
304 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 			return true;
307 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308 
309 	return false;
310 }
311 
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 	struct pid *pgrp = task_pgrp(tsk);
321 	struct task_struct *ignored_task = tsk;
322 
323 	if (!parent)
324 		/* exit: our father is in a different pgrp than
325 		 * we are and we were the only connection outside.
326 		 */
327 		parent = tsk->real_parent;
328 	else
329 		/* reparent: our child is in a different pgrp than
330 		 * we are, and it was the only connection outside.
331 		 */
332 		ignored_task = NULL;
333 
334 	if (task_pgrp(parent) != pgrp &&
335 	    task_session(parent) == task_session(tsk) &&
336 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 	    has_stopped_jobs(pgrp)) {
338 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 	}
341 }
342 
343 #ifdef CONFIG_MEMCG
344 /*
345  * A task is exiting.   If it owned this mm, find a new owner for the mm.
346  */
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 	struct task_struct *c, *g, *p = current;
350 
351 retry:
352 	/*
353 	 * If the exiting or execing task is not the owner, it's
354 	 * someone else's problem.
355 	 */
356 	if (mm->owner != p)
357 		return;
358 	/*
359 	 * The current owner is exiting/execing and there are no other
360 	 * candidates.  Do not leave the mm pointing to a possibly
361 	 * freed task structure.
362 	 */
363 	if (atomic_read(&mm->mm_users) <= 1) {
364 		WRITE_ONCE(mm->owner, NULL);
365 		return;
366 	}
367 
368 	read_lock(&tasklist_lock);
369 	/*
370 	 * Search in the children
371 	 */
372 	list_for_each_entry(c, &p->children, sibling) {
373 		if (c->mm == mm)
374 			goto assign_new_owner;
375 	}
376 
377 	/*
378 	 * Search in the siblings
379 	 */
380 	list_for_each_entry(c, &p->real_parent->children, sibling) {
381 		if (c->mm == mm)
382 			goto assign_new_owner;
383 	}
384 
385 	/*
386 	 * Search through everything else, we should not get here often.
387 	 */
388 	for_each_process(g) {
389 		if (g->flags & PF_KTHREAD)
390 			continue;
391 		for_each_thread(g, c) {
392 			if (c->mm == mm)
393 				goto assign_new_owner;
394 			if (c->mm)
395 				break;
396 		}
397 	}
398 	read_unlock(&tasklist_lock);
399 	/*
400 	 * We found no owner yet mm_users > 1: this implies that we are
401 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
403 	 */
404 	WRITE_ONCE(mm->owner, NULL);
405 	return;
406 
407 assign_new_owner:
408 	BUG_ON(c == p);
409 	get_task_struct(c);
410 	/*
411 	 * The task_lock protects c->mm from changing.
412 	 * We always want mm->owner->mm == mm
413 	 */
414 	task_lock(c);
415 	/*
416 	 * Delay read_unlock() till we have the task_lock()
417 	 * to ensure that c does not slip away underneath us
418 	 */
419 	read_unlock(&tasklist_lock);
420 	if (c->mm != mm) {
421 		task_unlock(c);
422 		put_task_struct(c);
423 		goto retry;
424 	}
425 	WRITE_ONCE(mm->owner, c);
426 	task_unlock(c);
427 	put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430 
431 /*
432  * Turn us into a lazy TLB process if we
433  * aren't already..
434  */
435 static void exit_mm(void)
436 {
437 	struct mm_struct *mm = current->mm;
438 	struct core_state *core_state;
439 
440 	exit_mm_release(current, mm);
441 	if (!mm)
442 		return;
443 	sync_mm_rss(mm);
444 	/*
445 	 * Serialize with any possible pending coredump.
446 	 * We must hold mmap_sem around checking core_state
447 	 * and clearing tsk->mm.  The core-inducing thread
448 	 * will increment ->nr_threads for each thread in the
449 	 * group with ->mm != NULL.
450 	 */
451 	down_read(&mm->mmap_sem);
452 	core_state = mm->core_state;
453 	if (core_state) {
454 		struct core_thread self;
455 
456 		up_read(&mm->mmap_sem);
457 
458 		self.task = current;
459 		self.next = xchg(&core_state->dumper.next, &self);
460 		/*
461 		 * Implies mb(), the result of xchg() must be visible
462 		 * to core_state->dumper.
463 		 */
464 		if (atomic_dec_and_test(&core_state->nr_threads))
465 			complete(&core_state->startup);
466 
467 		for (;;) {
468 			set_current_state(TASK_UNINTERRUPTIBLE);
469 			if (!self.task) /* see coredump_finish() */
470 				break;
471 			freezable_schedule();
472 		}
473 		__set_current_state(TASK_RUNNING);
474 		down_read(&mm->mmap_sem);
475 	}
476 	mmgrab(mm);
477 	BUG_ON(mm != current->active_mm);
478 	/* more a memory barrier than a real lock */
479 	task_lock(current);
480 	current->mm = NULL;
481 	up_read(&mm->mmap_sem);
482 	enter_lazy_tlb(mm, current);
483 	task_unlock(current);
484 	mm_update_next_owner(mm);
485 	mmput(mm);
486 	if (test_thread_flag(TIF_MEMDIE))
487 		exit_oom_victim();
488 }
489 
490 static struct task_struct *find_alive_thread(struct task_struct *p)
491 {
492 	struct task_struct *t;
493 
494 	for_each_thread(p, t) {
495 		if (!(t->flags & PF_EXITING))
496 			return t;
497 	}
498 	return NULL;
499 }
500 
501 static struct task_struct *find_child_reaper(struct task_struct *father,
502 						struct list_head *dead)
503 	__releases(&tasklist_lock)
504 	__acquires(&tasklist_lock)
505 {
506 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 	struct task_struct *reaper = pid_ns->child_reaper;
508 	struct task_struct *p, *n;
509 
510 	if (likely(reaper != father))
511 		return reaper;
512 
513 	reaper = find_alive_thread(father);
514 	if (reaper) {
515 		pid_ns->child_reaper = reaper;
516 		return reaper;
517 	}
518 
519 	write_unlock_irq(&tasklist_lock);
520 
521 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
522 		list_del_init(&p->ptrace_entry);
523 		release_task(p);
524 	}
525 
526 	zap_pid_ns_processes(pid_ns);
527 	write_lock_irq(&tasklist_lock);
528 
529 	return father;
530 }
531 
532 /*
533  * When we die, we re-parent all our children, and try to:
534  * 1. give them to another thread in our thread group, if such a member exists
535  * 2. give it to the first ancestor process which prctl'd itself as a
536  *    child_subreaper for its children (like a service manager)
537  * 3. give it to the init process (PID 1) in our pid namespace
538  */
539 static struct task_struct *find_new_reaper(struct task_struct *father,
540 					   struct task_struct *child_reaper)
541 {
542 	struct task_struct *thread, *reaper;
543 
544 	thread = find_alive_thread(father);
545 	if (thread)
546 		return thread;
547 
548 	if (father->signal->has_child_subreaper) {
549 		unsigned int ns_level = task_pid(father)->level;
550 		/*
551 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
552 		 * We can't check reaper != child_reaper to ensure we do not
553 		 * cross the namespaces, the exiting parent could be injected
554 		 * by setns() + fork().
555 		 * We check pid->level, this is slightly more efficient than
556 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
557 		 */
558 		for (reaper = father->real_parent;
559 		     task_pid(reaper)->level == ns_level;
560 		     reaper = reaper->real_parent) {
561 			if (reaper == &init_task)
562 				break;
563 			if (!reaper->signal->is_child_subreaper)
564 				continue;
565 			thread = find_alive_thread(reaper);
566 			if (thread)
567 				return thread;
568 		}
569 	}
570 
571 	return child_reaper;
572 }
573 
574 /*
575 * Any that need to be release_task'd are put on the @dead list.
576  */
577 static void reparent_leader(struct task_struct *father, struct task_struct *p,
578 				struct list_head *dead)
579 {
580 	if (unlikely(p->exit_state == EXIT_DEAD))
581 		return;
582 
583 	/* We don't want people slaying init. */
584 	p->exit_signal = SIGCHLD;
585 
586 	/* If it has exited notify the new parent about this child's death. */
587 	if (!p->ptrace &&
588 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
589 		if (do_notify_parent(p, p->exit_signal)) {
590 			p->exit_state = EXIT_DEAD;
591 			list_add(&p->ptrace_entry, dead);
592 		}
593 	}
594 
595 	kill_orphaned_pgrp(p, father);
596 }
597 
598 /*
599  * This does two things:
600  *
601  * A.  Make init inherit all the child processes
602  * B.  Check to see if any process groups have become orphaned
603  *	as a result of our exiting, and if they have any stopped
604  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
605  */
606 static void forget_original_parent(struct task_struct *father,
607 					struct list_head *dead)
608 {
609 	struct task_struct *p, *t, *reaper;
610 
611 	if (unlikely(!list_empty(&father->ptraced)))
612 		exit_ptrace(father, dead);
613 
614 	/* Can drop and reacquire tasklist_lock */
615 	reaper = find_child_reaper(father, dead);
616 	if (list_empty(&father->children))
617 		return;
618 
619 	reaper = find_new_reaper(father, reaper);
620 	list_for_each_entry(p, &father->children, sibling) {
621 		for_each_thread(p, t) {
622 			t->real_parent = reaper;
623 			BUG_ON((!t->ptrace) != (t->parent == father));
624 			if (likely(!t->ptrace))
625 				t->parent = t->real_parent;
626 			if (t->pdeath_signal)
627 				group_send_sig_info(t->pdeath_signal,
628 						    SEND_SIG_NOINFO, t,
629 						    PIDTYPE_TGID);
630 		}
631 		/*
632 		 * If this is a threaded reparent there is no need to
633 		 * notify anyone anything has happened.
634 		 */
635 		if (!same_thread_group(reaper, father))
636 			reparent_leader(father, p, dead);
637 	}
638 	list_splice_tail_init(&father->children, &reaper->children);
639 }
640 
641 /*
642  * Send signals to all our closest relatives so that they know
643  * to properly mourn us..
644  */
645 static void exit_notify(struct task_struct *tsk, int group_dead)
646 {
647 	bool autoreap;
648 	struct task_struct *p, *n;
649 	LIST_HEAD(dead);
650 
651 	write_lock_irq(&tasklist_lock);
652 	forget_original_parent(tsk, &dead);
653 
654 	if (group_dead)
655 		kill_orphaned_pgrp(tsk->group_leader, NULL);
656 
657 	tsk->exit_state = EXIT_ZOMBIE;
658 	if (unlikely(tsk->ptrace)) {
659 		int sig = thread_group_leader(tsk) &&
660 				thread_group_empty(tsk) &&
661 				!ptrace_reparented(tsk) ?
662 			tsk->exit_signal : SIGCHLD;
663 		autoreap = do_notify_parent(tsk, sig);
664 	} else if (thread_group_leader(tsk)) {
665 		autoreap = thread_group_empty(tsk) &&
666 			do_notify_parent(tsk, tsk->exit_signal);
667 	} else {
668 		autoreap = true;
669 	}
670 
671 	if (autoreap) {
672 		tsk->exit_state = EXIT_DEAD;
673 		list_add(&tsk->ptrace_entry, &dead);
674 	}
675 
676 	/* mt-exec, de_thread() is waiting for group leader */
677 	if (unlikely(tsk->signal->notify_count < 0))
678 		wake_up_process(tsk->signal->group_exit_task);
679 	write_unlock_irq(&tasklist_lock);
680 
681 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
682 		list_del_init(&p->ptrace_entry);
683 		release_task(p);
684 	}
685 }
686 
687 #ifdef CONFIG_DEBUG_STACK_USAGE
688 static void check_stack_usage(void)
689 {
690 	static DEFINE_SPINLOCK(low_water_lock);
691 	static int lowest_to_date = THREAD_SIZE;
692 	unsigned long free;
693 
694 	free = stack_not_used(current);
695 
696 	if (free >= lowest_to_date)
697 		return;
698 
699 	spin_lock(&low_water_lock);
700 	if (free < lowest_to_date) {
701 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
702 			current->comm, task_pid_nr(current), free);
703 		lowest_to_date = free;
704 	}
705 	spin_unlock(&low_water_lock);
706 }
707 #else
708 static inline void check_stack_usage(void) {}
709 #endif
710 
711 void __noreturn do_exit(long code)
712 {
713 	struct task_struct *tsk = current;
714 	int group_dead;
715 
716 	profile_task_exit(tsk);
717 	kcov_task_exit(tsk);
718 
719 	WARN_ON(blk_needs_flush_plug(tsk));
720 
721 	if (unlikely(in_interrupt()))
722 		panic("Aiee, killing interrupt handler!");
723 	if (unlikely(!tsk->pid))
724 		panic("Attempted to kill the idle task!");
725 
726 	/*
727 	 * If do_exit is called because this processes oopsed, it's possible
728 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
729 	 * continuing. Amongst other possible reasons, this is to prevent
730 	 * mm_release()->clear_child_tid() from writing to a user-controlled
731 	 * kernel address.
732 	 */
733 	set_fs(USER_DS);
734 
735 	ptrace_event(PTRACE_EVENT_EXIT, code);
736 
737 	validate_creds_for_do_exit(tsk);
738 
739 	/*
740 	 * We're taking recursive faults here in do_exit. Safest is to just
741 	 * leave this task alone and wait for reboot.
742 	 */
743 	if (unlikely(tsk->flags & PF_EXITING)) {
744 		pr_alert("Fixing recursive fault but reboot is needed!\n");
745 		futex_exit_recursive(tsk);
746 		set_current_state(TASK_UNINTERRUPTIBLE);
747 		schedule();
748 	}
749 
750 	exit_signals(tsk);  /* sets PF_EXITING */
751 
752 	if (unlikely(in_atomic())) {
753 		pr_info("note: %s[%d] exited with preempt_count %d\n",
754 			current->comm, task_pid_nr(current),
755 			preempt_count());
756 		preempt_count_set(PREEMPT_ENABLED);
757 	}
758 
759 	/* sync mm's RSS info before statistics gathering */
760 	if (tsk->mm)
761 		sync_mm_rss(tsk->mm);
762 	acct_update_integrals(tsk);
763 	group_dead = atomic_dec_and_test(&tsk->signal->live);
764 	if (group_dead) {
765 		/*
766 		 * If the last thread of global init has exited, panic
767 		 * immediately to get a useable coredump.
768 		 */
769 		if (unlikely(is_global_init(tsk)))
770 			panic("Attempted to kill init! exitcode=0x%08x\n",
771 				tsk->signal->group_exit_code ?: (int)code);
772 
773 #ifdef CONFIG_POSIX_TIMERS
774 		hrtimer_cancel(&tsk->signal->real_timer);
775 		exit_itimers(tsk->signal);
776 #endif
777 		if (tsk->mm)
778 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779 	}
780 	acct_collect(code, group_dead);
781 	if (group_dead)
782 		tty_audit_exit();
783 	audit_free(tsk);
784 
785 	tsk->exit_code = code;
786 	taskstats_exit(tsk, group_dead);
787 
788 	exit_mm();
789 
790 	if (group_dead)
791 		acct_process();
792 	trace_sched_process_exit(tsk);
793 
794 	exit_sem(tsk);
795 	exit_shm(tsk);
796 	exit_files(tsk);
797 	exit_fs(tsk);
798 	if (group_dead)
799 		disassociate_ctty(1);
800 	exit_task_namespaces(tsk);
801 	exit_task_work(tsk);
802 	exit_thread(tsk);
803 	exit_umh(tsk);
804 
805 	/*
806 	 * Flush inherited counters to the parent - before the parent
807 	 * gets woken up by child-exit notifications.
808 	 *
809 	 * because of cgroup mode, must be called before cgroup_exit()
810 	 */
811 	perf_event_exit_task(tsk);
812 
813 	sched_autogroup_exit_task(tsk);
814 	cgroup_exit(tsk);
815 
816 	/*
817 	 * FIXME: do that only when needed, using sched_exit tracepoint
818 	 */
819 	flush_ptrace_hw_breakpoint(tsk);
820 
821 	exit_tasks_rcu_start();
822 	exit_notify(tsk, group_dead);
823 	proc_exit_connector(tsk);
824 	mpol_put_task_policy(tsk);
825 #ifdef CONFIG_FUTEX
826 	if (unlikely(current->pi_state_cache))
827 		kfree(current->pi_state_cache);
828 #endif
829 	/*
830 	 * Make sure we are holding no locks:
831 	 */
832 	debug_check_no_locks_held();
833 
834 	if (tsk->io_context)
835 		exit_io_context(tsk);
836 
837 	if (tsk->splice_pipe)
838 		free_pipe_info(tsk->splice_pipe);
839 
840 	if (tsk->task_frag.page)
841 		put_page(tsk->task_frag.page);
842 
843 	validate_creds_for_do_exit(tsk);
844 
845 	check_stack_usage();
846 	preempt_disable();
847 	if (tsk->nr_dirtied)
848 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
849 	exit_rcu();
850 	exit_tasks_rcu_finish();
851 
852 	lockdep_free_task(tsk);
853 	do_task_dead();
854 }
855 EXPORT_SYMBOL_GPL(do_exit);
856 
857 void complete_and_exit(struct completion *comp, long code)
858 {
859 	if (comp)
860 		complete(comp);
861 
862 	do_exit(code);
863 }
864 EXPORT_SYMBOL(complete_and_exit);
865 
866 SYSCALL_DEFINE1(exit, int, error_code)
867 {
868 	do_exit((error_code&0xff)<<8);
869 }
870 
871 /*
872  * Take down every thread in the group.  This is called by fatal signals
873  * as well as by sys_exit_group (below).
874  */
875 void
876 do_group_exit(int exit_code)
877 {
878 	struct signal_struct *sig = current->signal;
879 
880 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
881 
882 	if (signal_group_exit(sig))
883 		exit_code = sig->group_exit_code;
884 	else if (!thread_group_empty(current)) {
885 		struct sighand_struct *const sighand = current->sighand;
886 
887 		spin_lock_irq(&sighand->siglock);
888 		if (signal_group_exit(sig))
889 			/* Another thread got here before we took the lock.  */
890 			exit_code = sig->group_exit_code;
891 		else {
892 			sig->group_exit_code = exit_code;
893 			sig->flags = SIGNAL_GROUP_EXIT;
894 			zap_other_threads(current);
895 		}
896 		spin_unlock_irq(&sighand->siglock);
897 	}
898 
899 	do_exit(exit_code);
900 	/* NOTREACHED */
901 }
902 
903 /*
904  * this kills every thread in the thread group. Note that any externally
905  * wait4()-ing process will get the correct exit code - even if this
906  * thread is not the thread group leader.
907  */
908 SYSCALL_DEFINE1(exit_group, int, error_code)
909 {
910 	do_group_exit((error_code & 0xff) << 8);
911 	/* NOTREACHED */
912 	return 0;
913 }
914 
915 struct waitid_info {
916 	pid_t pid;
917 	uid_t uid;
918 	int status;
919 	int cause;
920 };
921 
922 struct wait_opts {
923 	enum pid_type		wo_type;
924 	int			wo_flags;
925 	struct pid		*wo_pid;
926 
927 	struct waitid_info	*wo_info;
928 	int			wo_stat;
929 	struct rusage		*wo_rusage;
930 
931 	wait_queue_entry_t		child_wait;
932 	int			notask_error;
933 };
934 
935 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
936 {
937 	return	wo->wo_type == PIDTYPE_MAX ||
938 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
939 }
940 
941 static int
942 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
943 {
944 	if (!eligible_pid(wo, p))
945 		return 0;
946 
947 	/*
948 	 * Wait for all children (clone and not) if __WALL is set or
949 	 * if it is traced by us.
950 	 */
951 	if (ptrace || (wo->wo_flags & __WALL))
952 		return 1;
953 
954 	/*
955 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
956 	 * otherwise, wait for non-clone children *only*.
957 	 *
958 	 * Note: a "clone" child here is one that reports to its parent
959 	 * using a signal other than SIGCHLD, or a non-leader thread which
960 	 * we can only see if it is traced by us.
961 	 */
962 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
963 		return 0;
964 
965 	return 1;
966 }
967 
968 /*
969  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
970  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
971  * the lock and this task is uninteresting.  If we return nonzero, we have
972  * released the lock and the system call should return.
973  */
974 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
975 {
976 	int state, status;
977 	pid_t pid = task_pid_vnr(p);
978 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
979 	struct waitid_info *infop;
980 
981 	if (!likely(wo->wo_flags & WEXITED))
982 		return 0;
983 
984 	if (unlikely(wo->wo_flags & WNOWAIT)) {
985 		status = p->exit_code;
986 		get_task_struct(p);
987 		read_unlock(&tasklist_lock);
988 		sched_annotate_sleep();
989 		if (wo->wo_rusage)
990 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
991 		put_task_struct(p);
992 		goto out_info;
993 	}
994 	/*
995 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
996 	 */
997 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
998 		EXIT_TRACE : EXIT_DEAD;
999 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1000 		return 0;
1001 	/*
1002 	 * We own this thread, nobody else can reap it.
1003 	 */
1004 	read_unlock(&tasklist_lock);
1005 	sched_annotate_sleep();
1006 
1007 	/*
1008 	 * Check thread_group_leader() to exclude the traced sub-threads.
1009 	 */
1010 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1011 		struct signal_struct *sig = p->signal;
1012 		struct signal_struct *psig = current->signal;
1013 		unsigned long maxrss;
1014 		u64 tgutime, tgstime;
1015 
1016 		/*
1017 		 * The resource counters for the group leader are in its
1018 		 * own task_struct.  Those for dead threads in the group
1019 		 * are in its signal_struct, as are those for the child
1020 		 * processes it has previously reaped.  All these
1021 		 * accumulate in the parent's signal_struct c* fields.
1022 		 *
1023 		 * We don't bother to take a lock here to protect these
1024 		 * p->signal fields because the whole thread group is dead
1025 		 * and nobody can change them.
1026 		 *
1027 		 * psig->stats_lock also protects us from our sub-theads
1028 		 * which can reap other children at the same time. Until
1029 		 * we change k_getrusage()-like users to rely on this lock
1030 		 * we have to take ->siglock as well.
1031 		 *
1032 		 * We use thread_group_cputime_adjusted() to get times for
1033 		 * the thread group, which consolidates times for all threads
1034 		 * in the group including the group leader.
1035 		 */
1036 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1037 		spin_lock_irq(&current->sighand->siglock);
1038 		write_seqlock(&psig->stats_lock);
1039 		psig->cutime += tgutime + sig->cutime;
1040 		psig->cstime += tgstime + sig->cstime;
1041 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1042 		psig->cmin_flt +=
1043 			p->min_flt + sig->min_flt + sig->cmin_flt;
1044 		psig->cmaj_flt +=
1045 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1046 		psig->cnvcsw +=
1047 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1048 		psig->cnivcsw +=
1049 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1050 		psig->cinblock +=
1051 			task_io_get_inblock(p) +
1052 			sig->inblock + sig->cinblock;
1053 		psig->coublock +=
1054 			task_io_get_oublock(p) +
1055 			sig->oublock + sig->coublock;
1056 		maxrss = max(sig->maxrss, sig->cmaxrss);
1057 		if (psig->cmaxrss < maxrss)
1058 			psig->cmaxrss = maxrss;
1059 		task_io_accounting_add(&psig->ioac, &p->ioac);
1060 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1061 		write_sequnlock(&psig->stats_lock);
1062 		spin_unlock_irq(&current->sighand->siglock);
1063 	}
1064 
1065 	if (wo->wo_rusage)
1066 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1067 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1068 		? p->signal->group_exit_code : p->exit_code;
1069 	wo->wo_stat = status;
1070 
1071 	if (state == EXIT_TRACE) {
1072 		write_lock_irq(&tasklist_lock);
1073 		/* We dropped tasklist, ptracer could die and untrace */
1074 		ptrace_unlink(p);
1075 
1076 		/* If parent wants a zombie, don't release it now */
1077 		state = EXIT_ZOMBIE;
1078 		if (do_notify_parent(p, p->exit_signal))
1079 			state = EXIT_DEAD;
1080 		p->exit_state = state;
1081 		write_unlock_irq(&tasklist_lock);
1082 	}
1083 	if (state == EXIT_DEAD)
1084 		release_task(p);
1085 
1086 out_info:
1087 	infop = wo->wo_info;
1088 	if (infop) {
1089 		if ((status & 0x7f) == 0) {
1090 			infop->cause = CLD_EXITED;
1091 			infop->status = status >> 8;
1092 		} else {
1093 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1094 			infop->status = status & 0x7f;
1095 		}
1096 		infop->pid = pid;
1097 		infop->uid = uid;
1098 	}
1099 
1100 	return pid;
1101 }
1102 
1103 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1104 {
1105 	if (ptrace) {
1106 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1107 			return &p->exit_code;
1108 	} else {
1109 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1110 			return &p->signal->group_exit_code;
1111 	}
1112 	return NULL;
1113 }
1114 
1115 /**
1116  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1117  * @wo: wait options
1118  * @ptrace: is the wait for ptrace
1119  * @p: task to wait for
1120  *
1121  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1122  *
1123  * CONTEXT:
1124  * read_lock(&tasklist_lock), which is released if return value is
1125  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1126  *
1127  * RETURNS:
1128  * 0 if wait condition didn't exist and search for other wait conditions
1129  * should continue.  Non-zero return, -errno on failure and @p's pid on
1130  * success, implies that tasklist_lock is released and wait condition
1131  * search should terminate.
1132  */
1133 static int wait_task_stopped(struct wait_opts *wo,
1134 				int ptrace, struct task_struct *p)
1135 {
1136 	struct waitid_info *infop;
1137 	int exit_code, *p_code, why;
1138 	uid_t uid = 0; /* unneeded, required by compiler */
1139 	pid_t pid;
1140 
1141 	/*
1142 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1143 	 */
1144 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1145 		return 0;
1146 
1147 	if (!task_stopped_code(p, ptrace))
1148 		return 0;
1149 
1150 	exit_code = 0;
1151 	spin_lock_irq(&p->sighand->siglock);
1152 
1153 	p_code = task_stopped_code(p, ptrace);
1154 	if (unlikely(!p_code))
1155 		goto unlock_sig;
1156 
1157 	exit_code = *p_code;
1158 	if (!exit_code)
1159 		goto unlock_sig;
1160 
1161 	if (!unlikely(wo->wo_flags & WNOWAIT))
1162 		*p_code = 0;
1163 
1164 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1165 unlock_sig:
1166 	spin_unlock_irq(&p->sighand->siglock);
1167 	if (!exit_code)
1168 		return 0;
1169 
1170 	/*
1171 	 * Now we are pretty sure this task is interesting.
1172 	 * Make sure it doesn't get reaped out from under us while we
1173 	 * give up the lock and then examine it below.  We don't want to
1174 	 * keep holding onto the tasklist_lock while we call getrusage and
1175 	 * possibly take page faults for user memory.
1176 	 */
1177 	get_task_struct(p);
1178 	pid = task_pid_vnr(p);
1179 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1180 	read_unlock(&tasklist_lock);
1181 	sched_annotate_sleep();
1182 	if (wo->wo_rusage)
1183 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1184 	put_task_struct(p);
1185 
1186 	if (likely(!(wo->wo_flags & WNOWAIT)))
1187 		wo->wo_stat = (exit_code << 8) | 0x7f;
1188 
1189 	infop = wo->wo_info;
1190 	if (infop) {
1191 		infop->cause = why;
1192 		infop->status = exit_code;
1193 		infop->pid = pid;
1194 		infop->uid = uid;
1195 	}
1196 	return pid;
1197 }
1198 
1199 /*
1200  * Handle do_wait work for one task in a live, non-stopped state.
1201  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1202  * the lock and this task is uninteresting.  If we return nonzero, we have
1203  * released the lock and the system call should return.
1204  */
1205 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1206 {
1207 	struct waitid_info *infop;
1208 	pid_t pid;
1209 	uid_t uid;
1210 
1211 	if (!unlikely(wo->wo_flags & WCONTINUED))
1212 		return 0;
1213 
1214 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1215 		return 0;
1216 
1217 	spin_lock_irq(&p->sighand->siglock);
1218 	/* Re-check with the lock held.  */
1219 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1220 		spin_unlock_irq(&p->sighand->siglock);
1221 		return 0;
1222 	}
1223 	if (!unlikely(wo->wo_flags & WNOWAIT))
1224 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1225 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1226 	spin_unlock_irq(&p->sighand->siglock);
1227 
1228 	pid = task_pid_vnr(p);
1229 	get_task_struct(p);
1230 	read_unlock(&tasklist_lock);
1231 	sched_annotate_sleep();
1232 	if (wo->wo_rusage)
1233 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1234 	put_task_struct(p);
1235 
1236 	infop = wo->wo_info;
1237 	if (!infop) {
1238 		wo->wo_stat = 0xffff;
1239 	} else {
1240 		infop->cause = CLD_CONTINUED;
1241 		infop->pid = pid;
1242 		infop->uid = uid;
1243 		infop->status = SIGCONT;
1244 	}
1245 	return pid;
1246 }
1247 
1248 /*
1249  * Consider @p for a wait by @parent.
1250  *
1251  * -ECHILD should be in ->notask_error before the first call.
1252  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1253  * Returns zero if the search for a child should continue;
1254  * then ->notask_error is 0 if @p is an eligible child,
1255  * or still -ECHILD.
1256  */
1257 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1258 				struct task_struct *p)
1259 {
1260 	/*
1261 	 * We can race with wait_task_zombie() from another thread.
1262 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1263 	 * can't confuse the checks below.
1264 	 */
1265 	int exit_state = READ_ONCE(p->exit_state);
1266 	int ret;
1267 
1268 	if (unlikely(exit_state == EXIT_DEAD))
1269 		return 0;
1270 
1271 	ret = eligible_child(wo, ptrace, p);
1272 	if (!ret)
1273 		return ret;
1274 
1275 	if (unlikely(exit_state == EXIT_TRACE)) {
1276 		/*
1277 		 * ptrace == 0 means we are the natural parent. In this case
1278 		 * we should clear notask_error, debugger will notify us.
1279 		 */
1280 		if (likely(!ptrace))
1281 			wo->notask_error = 0;
1282 		return 0;
1283 	}
1284 
1285 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1286 		/*
1287 		 * If it is traced by its real parent's group, just pretend
1288 		 * the caller is ptrace_do_wait() and reap this child if it
1289 		 * is zombie.
1290 		 *
1291 		 * This also hides group stop state from real parent; otherwise
1292 		 * a single stop can be reported twice as group and ptrace stop.
1293 		 * If a ptracer wants to distinguish these two events for its
1294 		 * own children it should create a separate process which takes
1295 		 * the role of real parent.
1296 		 */
1297 		if (!ptrace_reparented(p))
1298 			ptrace = 1;
1299 	}
1300 
1301 	/* slay zombie? */
1302 	if (exit_state == EXIT_ZOMBIE) {
1303 		/* we don't reap group leaders with subthreads */
1304 		if (!delay_group_leader(p)) {
1305 			/*
1306 			 * A zombie ptracee is only visible to its ptracer.
1307 			 * Notification and reaping will be cascaded to the
1308 			 * real parent when the ptracer detaches.
1309 			 */
1310 			if (unlikely(ptrace) || likely(!p->ptrace))
1311 				return wait_task_zombie(wo, p);
1312 		}
1313 
1314 		/*
1315 		 * Allow access to stopped/continued state via zombie by
1316 		 * falling through.  Clearing of notask_error is complex.
1317 		 *
1318 		 * When !@ptrace:
1319 		 *
1320 		 * If WEXITED is set, notask_error should naturally be
1321 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1322 		 * so, if there are live subthreads, there are events to
1323 		 * wait for.  If all subthreads are dead, it's still safe
1324 		 * to clear - this function will be called again in finite
1325 		 * amount time once all the subthreads are released and
1326 		 * will then return without clearing.
1327 		 *
1328 		 * When @ptrace:
1329 		 *
1330 		 * Stopped state is per-task and thus can't change once the
1331 		 * target task dies.  Only continued and exited can happen.
1332 		 * Clear notask_error if WCONTINUED | WEXITED.
1333 		 */
1334 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1335 			wo->notask_error = 0;
1336 	} else {
1337 		/*
1338 		 * @p is alive and it's gonna stop, continue or exit, so
1339 		 * there always is something to wait for.
1340 		 */
1341 		wo->notask_error = 0;
1342 	}
1343 
1344 	/*
1345 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1346 	 * is used and the two don't interact with each other.
1347 	 */
1348 	ret = wait_task_stopped(wo, ptrace, p);
1349 	if (ret)
1350 		return ret;
1351 
1352 	/*
1353 	 * Wait for continued.  There's only one continued state and the
1354 	 * ptracer can consume it which can confuse the real parent.  Don't
1355 	 * use WCONTINUED from ptracer.  You don't need or want it.
1356 	 */
1357 	return wait_task_continued(wo, p);
1358 }
1359 
1360 /*
1361  * Do the work of do_wait() for one thread in the group, @tsk.
1362  *
1363  * -ECHILD should be in ->notask_error before the first call.
1364  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1365  * Returns zero if the search for a child should continue; then
1366  * ->notask_error is 0 if there were any eligible children,
1367  * or still -ECHILD.
1368  */
1369 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1370 {
1371 	struct task_struct *p;
1372 
1373 	list_for_each_entry(p, &tsk->children, sibling) {
1374 		int ret = wait_consider_task(wo, 0, p);
1375 
1376 		if (ret)
1377 			return ret;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1384 {
1385 	struct task_struct *p;
1386 
1387 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1388 		int ret = wait_consider_task(wo, 1, p);
1389 
1390 		if (ret)
1391 			return ret;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1398 				int sync, void *key)
1399 {
1400 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1401 						child_wait);
1402 	struct task_struct *p = key;
1403 
1404 	if (!eligible_pid(wo, p))
1405 		return 0;
1406 
1407 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1408 		return 0;
1409 
1410 	return default_wake_function(wait, mode, sync, key);
1411 }
1412 
1413 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1414 {
1415 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1416 			   TASK_INTERRUPTIBLE, p);
1417 }
1418 
1419 static long do_wait(struct wait_opts *wo)
1420 {
1421 	struct task_struct *tsk;
1422 	int retval;
1423 
1424 	trace_sched_process_wait(wo->wo_pid);
1425 
1426 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1427 	wo->child_wait.private = current;
1428 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1429 repeat:
1430 	/*
1431 	 * If there is nothing that can match our criteria, just get out.
1432 	 * We will clear ->notask_error to zero if we see any child that
1433 	 * might later match our criteria, even if we are not able to reap
1434 	 * it yet.
1435 	 */
1436 	wo->notask_error = -ECHILD;
1437 	if ((wo->wo_type < PIDTYPE_MAX) &&
1438 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1439 		goto notask;
1440 
1441 	set_current_state(TASK_INTERRUPTIBLE);
1442 	read_lock(&tasklist_lock);
1443 	tsk = current;
1444 	do {
1445 		retval = do_wait_thread(wo, tsk);
1446 		if (retval)
1447 			goto end;
1448 
1449 		retval = ptrace_do_wait(wo, tsk);
1450 		if (retval)
1451 			goto end;
1452 
1453 		if (wo->wo_flags & __WNOTHREAD)
1454 			break;
1455 	} while_each_thread(current, tsk);
1456 	read_unlock(&tasklist_lock);
1457 
1458 notask:
1459 	retval = wo->notask_error;
1460 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1461 		retval = -ERESTARTSYS;
1462 		if (!signal_pending(current)) {
1463 			schedule();
1464 			goto repeat;
1465 		}
1466 	}
1467 end:
1468 	__set_current_state(TASK_RUNNING);
1469 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1470 	return retval;
1471 }
1472 
1473 static struct pid *pidfd_get_pid(unsigned int fd)
1474 {
1475 	struct fd f;
1476 	struct pid *pid;
1477 
1478 	f = fdget(fd);
1479 	if (!f.file)
1480 		return ERR_PTR(-EBADF);
1481 
1482 	pid = pidfd_pid(f.file);
1483 	if (!IS_ERR(pid))
1484 		get_pid(pid);
1485 
1486 	fdput(f);
1487 	return pid;
1488 }
1489 
1490 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1491 			  int options, struct rusage *ru)
1492 {
1493 	struct wait_opts wo;
1494 	struct pid *pid = NULL;
1495 	enum pid_type type;
1496 	long ret;
1497 
1498 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1499 			__WNOTHREAD|__WCLONE|__WALL))
1500 		return -EINVAL;
1501 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1502 		return -EINVAL;
1503 
1504 	switch (which) {
1505 	case P_ALL:
1506 		type = PIDTYPE_MAX;
1507 		break;
1508 	case P_PID:
1509 		type = PIDTYPE_PID;
1510 		if (upid <= 0)
1511 			return -EINVAL;
1512 
1513 		pid = find_get_pid(upid);
1514 		break;
1515 	case P_PGID:
1516 		type = PIDTYPE_PGID;
1517 		if (upid < 0)
1518 			return -EINVAL;
1519 
1520 		if (upid)
1521 			pid = find_get_pid(upid);
1522 		else
1523 			pid = get_task_pid(current, PIDTYPE_PGID);
1524 		break;
1525 	case P_PIDFD:
1526 		type = PIDTYPE_PID;
1527 		if (upid < 0)
1528 			return -EINVAL;
1529 
1530 		pid = pidfd_get_pid(upid);
1531 		if (IS_ERR(pid))
1532 			return PTR_ERR(pid);
1533 		break;
1534 	default:
1535 		return -EINVAL;
1536 	}
1537 
1538 	wo.wo_type	= type;
1539 	wo.wo_pid	= pid;
1540 	wo.wo_flags	= options;
1541 	wo.wo_info	= infop;
1542 	wo.wo_rusage	= ru;
1543 	ret = do_wait(&wo);
1544 
1545 	put_pid(pid);
1546 	return ret;
1547 }
1548 
1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1550 		infop, int, options, struct rusage __user *, ru)
1551 {
1552 	struct rusage r;
1553 	struct waitid_info info = {.status = 0};
1554 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1555 	int signo = 0;
1556 
1557 	if (err > 0) {
1558 		signo = SIGCHLD;
1559 		err = 0;
1560 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1561 			return -EFAULT;
1562 	}
1563 	if (!infop)
1564 		return err;
1565 
1566 	if (!user_access_begin(infop, sizeof(*infop)))
1567 		return -EFAULT;
1568 
1569 	unsafe_put_user(signo, &infop->si_signo, Efault);
1570 	unsafe_put_user(0, &infop->si_errno, Efault);
1571 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1572 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1573 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1574 	unsafe_put_user(info.status, &infop->si_status, Efault);
1575 	user_access_end();
1576 	return err;
1577 Efault:
1578 	user_access_end();
1579 	return -EFAULT;
1580 }
1581 
1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1583 		  struct rusage *ru)
1584 {
1585 	struct wait_opts wo;
1586 	struct pid *pid = NULL;
1587 	enum pid_type type;
1588 	long ret;
1589 
1590 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1591 			__WNOTHREAD|__WCLONE|__WALL))
1592 		return -EINVAL;
1593 
1594 	/* -INT_MIN is not defined */
1595 	if (upid == INT_MIN)
1596 		return -ESRCH;
1597 
1598 	if (upid == -1)
1599 		type = PIDTYPE_MAX;
1600 	else if (upid < 0) {
1601 		type = PIDTYPE_PGID;
1602 		pid = find_get_pid(-upid);
1603 	} else if (upid == 0) {
1604 		type = PIDTYPE_PGID;
1605 		pid = get_task_pid(current, PIDTYPE_PGID);
1606 	} else /* upid > 0 */ {
1607 		type = PIDTYPE_PID;
1608 		pid = find_get_pid(upid);
1609 	}
1610 
1611 	wo.wo_type	= type;
1612 	wo.wo_pid	= pid;
1613 	wo.wo_flags	= options | WEXITED;
1614 	wo.wo_info	= NULL;
1615 	wo.wo_stat	= 0;
1616 	wo.wo_rusage	= ru;
1617 	ret = do_wait(&wo);
1618 	put_pid(pid);
1619 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1620 		ret = -EFAULT;
1621 
1622 	return ret;
1623 }
1624 
1625 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1626 		int, options, struct rusage __user *, ru)
1627 {
1628 	struct rusage r;
1629 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1630 
1631 	if (err > 0) {
1632 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1633 			return -EFAULT;
1634 	}
1635 	return err;
1636 }
1637 
1638 #ifdef __ARCH_WANT_SYS_WAITPID
1639 
1640 /*
1641  * sys_waitpid() remains for compatibility. waitpid() should be
1642  * implemented by calling sys_wait4() from libc.a.
1643  */
1644 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1645 {
1646 	return kernel_wait4(pid, stat_addr, options, NULL);
1647 }
1648 
1649 #endif
1650 
1651 #ifdef CONFIG_COMPAT
1652 COMPAT_SYSCALL_DEFINE4(wait4,
1653 	compat_pid_t, pid,
1654 	compat_uint_t __user *, stat_addr,
1655 	int, options,
1656 	struct compat_rusage __user *, ru)
1657 {
1658 	struct rusage r;
1659 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1660 	if (err > 0) {
1661 		if (ru && put_compat_rusage(&r, ru))
1662 			return -EFAULT;
1663 	}
1664 	return err;
1665 }
1666 
1667 COMPAT_SYSCALL_DEFINE5(waitid,
1668 		int, which, compat_pid_t, pid,
1669 		struct compat_siginfo __user *, infop, int, options,
1670 		struct compat_rusage __user *, uru)
1671 {
1672 	struct rusage ru;
1673 	struct waitid_info info = {.status = 0};
1674 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1675 	int signo = 0;
1676 	if (err > 0) {
1677 		signo = SIGCHLD;
1678 		err = 0;
1679 		if (uru) {
1680 			/* kernel_waitid() overwrites everything in ru */
1681 			if (COMPAT_USE_64BIT_TIME)
1682 				err = copy_to_user(uru, &ru, sizeof(ru));
1683 			else
1684 				err = put_compat_rusage(&ru, uru);
1685 			if (err)
1686 				return -EFAULT;
1687 		}
1688 	}
1689 
1690 	if (!infop)
1691 		return err;
1692 
1693 	if (!user_access_begin(infop, sizeof(*infop)))
1694 		return -EFAULT;
1695 
1696 	unsafe_put_user(signo, &infop->si_signo, Efault);
1697 	unsafe_put_user(0, &infop->si_errno, Efault);
1698 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1699 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1700 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1701 	unsafe_put_user(info.status, &infop->si_status, Efault);
1702 	user_access_end();
1703 	return err;
1704 Efault:
1705 	user_access_end();
1706 	return -EFAULT;
1707 }
1708 #endif
1709 
1710 __weak void abort(void)
1711 {
1712 	BUG();
1713 
1714 	/* if that doesn't kill us, halt */
1715 	panic("Oops failed to kill thread");
1716 }
1717 EXPORT_SYMBOL(abort);
1718