xref: /linux/kernel/exit.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/cpuset.h>
29 #include <linux/syscalls.h>
30 #include <linux/signal.h>
31 #include <linux/posix-timers.h>
32 #include <linux/cn_proc.h>
33 #include <linux/mutex.h>
34 #include <linux/futex.h>
35 #include <linux/compat.h>
36 #include <linux/pipe_fs_i.h>
37 #include <linux/audit.h> /* for audit_free() */
38 #include <linux/resource.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu_context.h>
44 
45 extern void sem_exit (void);
46 extern struct task_struct *child_reaper;
47 
48 static void exit_mm(struct task_struct * tsk);
49 
50 static void __unhash_process(struct task_struct *p)
51 {
52 	nr_threads--;
53 	detach_pid(p, PIDTYPE_PID);
54 	if (thread_group_leader(p)) {
55 		detach_pid(p, PIDTYPE_PGID);
56 		detach_pid(p, PIDTYPE_SID);
57 
58 		list_del_rcu(&p->tasks);
59 		__get_cpu_var(process_counts)--;
60 	}
61 	list_del_rcu(&p->thread_group);
62 	remove_parent(p);
63 }
64 
65 /*
66  * This function expects the tasklist_lock write-locked.
67  */
68 static void __exit_signal(struct task_struct *tsk)
69 {
70 	struct signal_struct *sig = tsk->signal;
71 	struct sighand_struct *sighand;
72 
73 	BUG_ON(!sig);
74 	BUG_ON(!atomic_read(&sig->count));
75 
76 	rcu_read_lock();
77 	sighand = rcu_dereference(tsk->sighand);
78 	spin_lock(&sighand->siglock);
79 
80 	posix_cpu_timers_exit(tsk);
81 	if (atomic_dec_and_test(&sig->count))
82 		posix_cpu_timers_exit_group(tsk);
83 	else {
84 		/*
85 		 * If there is any task waiting for the group exit
86 		 * then notify it:
87 		 */
88 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
89 			wake_up_process(sig->group_exit_task);
90 			sig->group_exit_task = NULL;
91 		}
92 		if (tsk == sig->curr_target)
93 			sig->curr_target = next_thread(tsk);
94 		/*
95 		 * Accumulate here the counters for all threads but the
96 		 * group leader as they die, so they can be added into
97 		 * the process-wide totals when those are taken.
98 		 * The group leader stays around as a zombie as long
99 		 * as there are other threads.  When it gets reaped,
100 		 * the exit.c code will add its counts into these totals.
101 		 * We won't ever get here for the group leader, since it
102 		 * will have been the last reference on the signal_struct.
103 		 */
104 		sig->utime = cputime_add(sig->utime, tsk->utime);
105 		sig->stime = cputime_add(sig->stime, tsk->stime);
106 		sig->min_flt += tsk->min_flt;
107 		sig->maj_flt += tsk->maj_flt;
108 		sig->nvcsw += tsk->nvcsw;
109 		sig->nivcsw += tsk->nivcsw;
110 		sig->sched_time += tsk->sched_time;
111 		sig = NULL; /* Marker for below. */
112 	}
113 
114 	__unhash_process(tsk);
115 
116 	tsk->signal = NULL;
117 	tsk->sighand = NULL;
118 	spin_unlock(&sighand->siglock);
119 	rcu_read_unlock();
120 
121 	__cleanup_sighand(sighand);
122 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
123 	flush_sigqueue(&tsk->pending);
124 	if (sig) {
125 		flush_sigqueue(&sig->shared_pending);
126 		__cleanup_signal(sig);
127 	}
128 }
129 
130 static void delayed_put_task_struct(struct rcu_head *rhp)
131 {
132 	put_task_struct(container_of(rhp, struct task_struct, rcu));
133 }
134 
135 void release_task(struct task_struct * p)
136 {
137 	struct task_struct *leader;
138 	int zap_leader;
139 repeat:
140 	atomic_dec(&p->user->processes);
141 	write_lock_irq(&tasklist_lock);
142 	ptrace_unlink(p);
143 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
144 	__exit_signal(p);
145 
146 	/*
147 	 * If we are the last non-leader member of the thread
148 	 * group, and the leader is zombie, then notify the
149 	 * group leader's parent process. (if it wants notification.)
150 	 */
151 	zap_leader = 0;
152 	leader = p->group_leader;
153 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
154 		BUG_ON(leader->exit_signal == -1);
155 		do_notify_parent(leader, leader->exit_signal);
156 		/*
157 		 * If we were the last child thread and the leader has
158 		 * exited already, and the leader's parent ignores SIGCHLD,
159 		 * then we are the one who should release the leader.
160 		 *
161 		 * do_notify_parent() will have marked it self-reaping in
162 		 * that case.
163 		 */
164 		zap_leader = (leader->exit_signal == -1);
165 	}
166 
167 	sched_exit(p);
168 	write_unlock_irq(&tasklist_lock);
169 	proc_flush_task(p);
170 	release_thread(p);
171 	call_rcu(&p->rcu, delayed_put_task_struct);
172 
173 	p = leader;
174 	if (unlikely(zap_leader))
175 		goto repeat;
176 }
177 
178 /*
179  * This checks not only the pgrp, but falls back on the pid if no
180  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
181  * without this...
182  */
183 int session_of_pgrp(int pgrp)
184 {
185 	struct task_struct *p;
186 	int sid = -1;
187 
188 	read_lock(&tasklist_lock);
189 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
190 		if (p->signal->session > 0) {
191 			sid = p->signal->session;
192 			goto out;
193 		}
194 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
195 	p = find_task_by_pid(pgrp);
196 	if (p)
197 		sid = p->signal->session;
198 out:
199 	read_unlock(&tasklist_lock);
200 
201 	return sid;
202 }
203 
204 /*
205  * Determine if a process group is "orphaned", according to the POSIX
206  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
207  * by terminal-generated stop signals.  Newly orphaned process groups are
208  * to receive a SIGHUP and a SIGCONT.
209  *
210  * "I ask you, have you ever known what it is to be an orphan?"
211  */
212 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
213 {
214 	struct task_struct *p;
215 	int ret = 1;
216 
217 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
218 		if (p == ignored_task
219 				|| p->exit_state
220 				|| p->real_parent->pid == 1)
221 			continue;
222 		if (process_group(p->real_parent) != pgrp
223 			    && p->real_parent->signal->session == p->signal->session) {
224 			ret = 0;
225 			break;
226 		}
227 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
228 	return ret;	/* (sighing) "Often!" */
229 }
230 
231 int is_orphaned_pgrp(int pgrp)
232 {
233 	int retval;
234 
235 	read_lock(&tasklist_lock);
236 	retval = will_become_orphaned_pgrp(pgrp, NULL);
237 	read_unlock(&tasklist_lock);
238 
239 	return retval;
240 }
241 
242 static int has_stopped_jobs(int pgrp)
243 {
244 	int retval = 0;
245 	struct task_struct *p;
246 
247 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
248 		if (p->state != TASK_STOPPED)
249 			continue;
250 
251 		/* If p is stopped by a debugger on a signal that won't
252 		   stop it, then don't count p as stopped.  This isn't
253 		   perfect but it's a good approximation.  */
254 		if (unlikely (p->ptrace)
255 		    && p->exit_code != SIGSTOP
256 		    && p->exit_code != SIGTSTP
257 		    && p->exit_code != SIGTTOU
258 		    && p->exit_code != SIGTTIN)
259 			continue;
260 
261 		retval = 1;
262 		break;
263 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
264 	return retval;
265 }
266 
267 /**
268  * reparent_to_init - Reparent the calling kernel thread to the init task.
269  *
270  * If a kernel thread is launched as a result of a system call, or if
271  * it ever exits, it should generally reparent itself to init so that
272  * it is correctly cleaned up on exit.
273  *
274  * The various task state such as scheduling policy and priority may have
275  * been inherited from a user process, so we reset them to sane values here.
276  *
277  * NOTE that reparent_to_init() gives the caller full capabilities.
278  */
279 static void reparent_to_init(void)
280 {
281 	write_lock_irq(&tasklist_lock);
282 
283 	ptrace_unlink(current);
284 	/* Reparent to init */
285 	remove_parent(current);
286 	current->parent = child_reaper;
287 	current->real_parent = child_reaper;
288 	add_parent(current);
289 
290 	/* Set the exit signal to SIGCHLD so we signal init on exit */
291 	current->exit_signal = SIGCHLD;
292 
293 	if ((current->policy == SCHED_NORMAL ||
294 			current->policy == SCHED_BATCH)
295 				&& (task_nice(current) < 0))
296 		set_user_nice(current, 0);
297 	/* cpus_allowed? */
298 	/* rt_priority? */
299 	/* signals? */
300 	security_task_reparent_to_init(current);
301 	memcpy(current->signal->rlim, init_task.signal->rlim,
302 	       sizeof(current->signal->rlim));
303 	atomic_inc(&(INIT_USER->__count));
304 	write_unlock_irq(&tasklist_lock);
305 	switch_uid(INIT_USER);
306 }
307 
308 void __set_special_pids(pid_t session, pid_t pgrp)
309 {
310 	struct task_struct *curr = current->group_leader;
311 
312 	if (curr->signal->session != session) {
313 		detach_pid(curr, PIDTYPE_SID);
314 		curr->signal->session = session;
315 		attach_pid(curr, PIDTYPE_SID, session);
316 	}
317 	if (process_group(curr) != pgrp) {
318 		detach_pid(curr, PIDTYPE_PGID);
319 		curr->signal->pgrp = pgrp;
320 		attach_pid(curr, PIDTYPE_PGID, pgrp);
321 	}
322 }
323 
324 void set_special_pids(pid_t session, pid_t pgrp)
325 {
326 	write_lock_irq(&tasklist_lock);
327 	__set_special_pids(session, pgrp);
328 	write_unlock_irq(&tasklist_lock);
329 }
330 
331 /*
332  * Let kernel threads use this to say that they
333  * allow a certain signal (since daemonize() will
334  * have disabled all of them by default).
335  */
336 int allow_signal(int sig)
337 {
338 	if (!valid_signal(sig) || sig < 1)
339 		return -EINVAL;
340 
341 	spin_lock_irq(&current->sighand->siglock);
342 	sigdelset(&current->blocked, sig);
343 	if (!current->mm) {
344 		/* Kernel threads handle their own signals.
345 		   Let the signal code know it'll be handled, so
346 		   that they don't get converted to SIGKILL or
347 		   just silently dropped */
348 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
349 	}
350 	recalc_sigpending();
351 	spin_unlock_irq(&current->sighand->siglock);
352 	return 0;
353 }
354 
355 EXPORT_SYMBOL(allow_signal);
356 
357 int disallow_signal(int sig)
358 {
359 	if (!valid_signal(sig) || sig < 1)
360 		return -EINVAL;
361 
362 	spin_lock_irq(&current->sighand->siglock);
363 	sigaddset(&current->blocked, sig);
364 	recalc_sigpending();
365 	spin_unlock_irq(&current->sighand->siglock);
366 	return 0;
367 }
368 
369 EXPORT_SYMBOL(disallow_signal);
370 
371 /*
372  *	Put all the gunge required to become a kernel thread without
373  *	attached user resources in one place where it belongs.
374  */
375 
376 void daemonize(const char *name, ...)
377 {
378 	va_list args;
379 	struct fs_struct *fs;
380 	sigset_t blocked;
381 
382 	va_start(args, name);
383 	vsnprintf(current->comm, sizeof(current->comm), name, args);
384 	va_end(args);
385 
386 	/*
387 	 * If we were started as result of loading a module, close all of the
388 	 * user space pages.  We don't need them, and if we didn't close them
389 	 * they would be locked into memory.
390 	 */
391 	exit_mm(current);
392 
393 	set_special_pids(1, 1);
394 	mutex_lock(&tty_mutex);
395 	current->signal->tty = NULL;
396 	mutex_unlock(&tty_mutex);
397 
398 	/* Block and flush all signals */
399 	sigfillset(&blocked);
400 	sigprocmask(SIG_BLOCK, &blocked, NULL);
401 	flush_signals(current);
402 
403 	/* Become as one with the init task */
404 
405 	exit_fs(current);	/* current->fs->count--; */
406 	fs = init_task.fs;
407 	current->fs = fs;
408 	atomic_inc(&fs->count);
409 	exit_namespace(current);
410 	current->namespace = init_task.namespace;
411 	get_namespace(current->namespace);
412  	exit_files(current);
413 	current->files = init_task.files;
414 	atomic_inc(&current->files->count);
415 
416 	reparent_to_init();
417 }
418 
419 EXPORT_SYMBOL(daemonize);
420 
421 static void close_files(struct files_struct * files)
422 {
423 	int i, j;
424 	struct fdtable *fdt;
425 
426 	j = 0;
427 
428 	/*
429 	 * It is safe to dereference the fd table without RCU or
430 	 * ->file_lock because this is the last reference to the
431 	 * files structure.
432 	 */
433 	fdt = files_fdtable(files);
434 	for (;;) {
435 		unsigned long set;
436 		i = j * __NFDBITS;
437 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
438 			break;
439 		set = fdt->open_fds->fds_bits[j++];
440 		while (set) {
441 			if (set & 1) {
442 				struct file * file = xchg(&fdt->fd[i], NULL);
443 				if (file)
444 					filp_close(file, files);
445 			}
446 			i++;
447 			set >>= 1;
448 		}
449 	}
450 }
451 
452 struct files_struct *get_files_struct(struct task_struct *task)
453 {
454 	struct files_struct *files;
455 
456 	task_lock(task);
457 	files = task->files;
458 	if (files)
459 		atomic_inc(&files->count);
460 	task_unlock(task);
461 
462 	return files;
463 }
464 
465 void fastcall put_files_struct(struct files_struct *files)
466 {
467 	struct fdtable *fdt;
468 
469 	if (atomic_dec_and_test(&files->count)) {
470 		close_files(files);
471 		/*
472 		 * Free the fd and fdset arrays if we expanded them.
473 		 * If the fdtable was embedded, pass files for freeing
474 		 * at the end of the RCU grace period. Otherwise,
475 		 * you can free files immediately.
476 		 */
477 		fdt = files_fdtable(files);
478 		if (fdt == &files->fdtab)
479 			fdt->free_files = files;
480 		else
481 			kmem_cache_free(files_cachep, files);
482 		free_fdtable(fdt);
483 	}
484 }
485 
486 EXPORT_SYMBOL(put_files_struct);
487 
488 static inline void __exit_files(struct task_struct *tsk)
489 {
490 	struct files_struct * files = tsk->files;
491 
492 	if (files) {
493 		task_lock(tsk);
494 		tsk->files = NULL;
495 		task_unlock(tsk);
496 		put_files_struct(files);
497 	}
498 }
499 
500 void exit_files(struct task_struct *tsk)
501 {
502 	__exit_files(tsk);
503 }
504 
505 static inline void __put_fs_struct(struct fs_struct *fs)
506 {
507 	/* No need to hold fs->lock if we are killing it */
508 	if (atomic_dec_and_test(&fs->count)) {
509 		dput(fs->root);
510 		mntput(fs->rootmnt);
511 		dput(fs->pwd);
512 		mntput(fs->pwdmnt);
513 		if (fs->altroot) {
514 			dput(fs->altroot);
515 			mntput(fs->altrootmnt);
516 		}
517 		kmem_cache_free(fs_cachep, fs);
518 	}
519 }
520 
521 void put_fs_struct(struct fs_struct *fs)
522 {
523 	__put_fs_struct(fs);
524 }
525 
526 static inline void __exit_fs(struct task_struct *tsk)
527 {
528 	struct fs_struct * fs = tsk->fs;
529 
530 	if (fs) {
531 		task_lock(tsk);
532 		tsk->fs = NULL;
533 		task_unlock(tsk);
534 		__put_fs_struct(fs);
535 	}
536 }
537 
538 void exit_fs(struct task_struct *tsk)
539 {
540 	__exit_fs(tsk);
541 }
542 
543 EXPORT_SYMBOL_GPL(exit_fs);
544 
545 /*
546  * Turn us into a lazy TLB process if we
547  * aren't already..
548  */
549 static void exit_mm(struct task_struct * tsk)
550 {
551 	struct mm_struct *mm = tsk->mm;
552 
553 	mm_release(tsk, mm);
554 	if (!mm)
555 		return;
556 	/*
557 	 * Serialize with any possible pending coredump.
558 	 * We must hold mmap_sem around checking core_waiters
559 	 * and clearing tsk->mm.  The core-inducing thread
560 	 * will increment core_waiters for each thread in the
561 	 * group with ->mm != NULL.
562 	 */
563 	down_read(&mm->mmap_sem);
564 	if (mm->core_waiters) {
565 		up_read(&mm->mmap_sem);
566 		down_write(&mm->mmap_sem);
567 		if (!--mm->core_waiters)
568 			complete(mm->core_startup_done);
569 		up_write(&mm->mmap_sem);
570 
571 		wait_for_completion(&mm->core_done);
572 		down_read(&mm->mmap_sem);
573 	}
574 	atomic_inc(&mm->mm_count);
575 	BUG_ON(mm != tsk->active_mm);
576 	/* more a memory barrier than a real lock */
577 	task_lock(tsk);
578 	tsk->mm = NULL;
579 	up_read(&mm->mmap_sem);
580 	enter_lazy_tlb(mm, current);
581 	task_unlock(tsk);
582 	mmput(mm);
583 }
584 
585 static inline void
586 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
587 {
588 	/*
589 	 * Make sure we're not reparenting to ourselves and that
590 	 * the parent is not a zombie.
591 	 */
592 	BUG_ON(p == reaper || reaper->exit_state);
593 	p->real_parent = reaper;
594 }
595 
596 static void
597 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
598 {
599 	/* We don't want people slaying init.  */
600 	if (p->exit_signal != -1)
601 		p->exit_signal = SIGCHLD;
602 
603 	if (p->pdeath_signal)
604 		/* We already hold the tasklist_lock here.  */
605 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
606 
607 	/* Move the child from its dying parent to the new one.  */
608 	if (unlikely(traced)) {
609 		/* Preserve ptrace links if someone else is tracing this child.  */
610 		list_del_init(&p->ptrace_list);
611 		if (p->parent != p->real_parent)
612 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
613 	} else {
614 		/* If this child is being traced, then we're the one tracing it
615 		 * anyway, so let go of it.
616 		 */
617 		p->ptrace = 0;
618 		remove_parent(p);
619 		p->parent = p->real_parent;
620 		add_parent(p);
621 
622 		/* If we'd notified the old parent about this child's death,
623 		 * also notify the new parent.
624 		 */
625 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
626 		    thread_group_empty(p))
627 			do_notify_parent(p, p->exit_signal);
628 		else if (p->state == TASK_TRACED) {
629 			/*
630 			 * If it was at a trace stop, turn it into
631 			 * a normal stop since it's no longer being
632 			 * traced.
633 			 */
634 			ptrace_untrace(p);
635 		}
636 	}
637 
638 	/*
639 	 * process group orphan check
640 	 * Case ii: Our child is in a different pgrp
641 	 * than we are, and it was the only connection
642 	 * outside, so the child pgrp is now orphaned.
643 	 */
644 	if ((process_group(p) != process_group(father)) &&
645 	    (p->signal->session == father->signal->session)) {
646 		int pgrp = process_group(p);
647 
648 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
649 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
650 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
651 		}
652 	}
653 }
654 
655 /*
656  * When we die, we re-parent all our children.
657  * Try to give them to another thread in our thread
658  * group, and if no such member exists, give it to
659  * the global child reaper process (ie "init")
660  */
661 static void
662 forget_original_parent(struct task_struct *father, struct list_head *to_release)
663 {
664 	struct task_struct *p, *reaper = father;
665 	struct list_head *_p, *_n;
666 
667 	do {
668 		reaper = next_thread(reaper);
669 		if (reaper == father) {
670 			reaper = child_reaper;
671 			break;
672 		}
673 	} while (reaper->exit_state);
674 
675 	/*
676 	 * There are only two places where our children can be:
677 	 *
678 	 * - in our child list
679 	 * - in our ptraced child list
680 	 *
681 	 * Search them and reparent children.
682 	 */
683 	list_for_each_safe(_p, _n, &father->children) {
684 		int ptrace;
685 		p = list_entry(_p, struct task_struct, sibling);
686 
687 		ptrace = p->ptrace;
688 
689 		/* if father isn't the real parent, then ptrace must be enabled */
690 		BUG_ON(father != p->real_parent && !ptrace);
691 
692 		if (father == p->real_parent) {
693 			/* reparent with a reaper, real father it's us */
694 			choose_new_parent(p, reaper);
695 			reparent_thread(p, father, 0);
696 		} else {
697 			/* reparent ptraced task to its real parent */
698 			__ptrace_unlink (p);
699 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
700 			    thread_group_empty(p))
701 				do_notify_parent(p, p->exit_signal);
702 		}
703 
704 		/*
705 		 * if the ptraced child is a zombie with exit_signal == -1
706 		 * we must collect it before we exit, or it will remain
707 		 * zombie forever since we prevented it from self-reap itself
708 		 * while it was being traced by us, to be able to see it in wait4.
709 		 */
710 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
711 			list_add(&p->ptrace_list, to_release);
712 	}
713 	list_for_each_safe(_p, _n, &father->ptrace_children) {
714 		p = list_entry(_p, struct task_struct, ptrace_list);
715 		choose_new_parent(p, reaper);
716 		reparent_thread(p, father, 1);
717 	}
718 }
719 
720 /*
721  * Send signals to all our closest relatives so that they know
722  * to properly mourn us..
723  */
724 static void exit_notify(struct task_struct *tsk)
725 {
726 	int state;
727 	struct task_struct *t;
728 	struct list_head ptrace_dead, *_p, *_n;
729 
730 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
731 	    && !thread_group_empty(tsk)) {
732 		/*
733 		 * This occurs when there was a race between our exit
734 		 * syscall and a group signal choosing us as the one to
735 		 * wake up.  It could be that we are the only thread
736 		 * alerted to check for pending signals, but another thread
737 		 * should be woken now to take the signal since we will not.
738 		 * Now we'll wake all the threads in the group just to make
739 		 * sure someone gets all the pending signals.
740 		 */
741 		read_lock(&tasklist_lock);
742 		spin_lock_irq(&tsk->sighand->siglock);
743 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
744 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
745 				recalc_sigpending_tsk(t);
746 				if (signal_pending(t))
747 					signal_wake_up(t, 0);
748 			}
749 		spin_unlock_irq(&tsk->sighand->siglock);
750 		read_unlock(&tasklist_lock);
751 	}
752 
753 	write_lock_irq(&tasklist_lock);
754 
755 	/*
756 	 * This does two things:
757 	 *
758   	 * A.  Make init inherit all the child processes
759 	 * B.  Check to see if any process groups have become orphaned
760 	 *	as a result of our exiting, and if they have any stopped
761 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
762 	 */
763 
764 	INIT_LIST_HEAD(&ptrace_dead);
765 	forget_original_parent(tsk, &ptrace_dead);
766 	BUG_ON(!list_empty(&tsk->children));
767 	BUG_ON(!list_empty(&tsk->ptrace_children));
768 
769 	/*
770 	 * Check to see if any process groups have become orphaned
771 	 * as a result of our exiting, and if they have any stopped
772 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
773 	 *
774 	 * Case i: Our father is in a different pgrp than we are
775 	 * and we were the only connection outside, so our pgrp
776 	 * is about to become orphaned.
777 	 */
778 
779 	t = tsk->real_parent;
780 
781 	if ((process_group(t) != process_group(tsk)) &&
782 	    (t->signal->session == tsk->signal->session) &&
783 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
784 	    has_stopped_jobs(process_group(tsk))) {
785 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
786 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
787 	}
788 
789 	/* Let father know we died
790 	 *
791 	 * Thread signals are configurable, but you aren't going to use
792 	 * that to send signals to arbitary processes.
793 	 * That stops right now.
794 	 *
795 	 * If the parent exec id doesn't match the exec id we saved
796 	 * when we started then we know the parent has changed security
797 	 * domain.
798 	 *
799 	 * If our self_exec id doesn't match our parent_exec_id then
800 	 * we have changed execution domain as these two values started
801 	 * the same after a fork.
802 	 *
803 	 */
804 
805 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
806 	    ( tsk->parent_exec_id != t->self_exec_id  ||
807 	      tsk->self_exec_id != tsk->parent_exec_id)
808 	    && !capable(CAP_KILL))
809 		tsk->exit_signal = SIGCHLD;
810 
811 
812 	/* If something other than our normal parent is ptracing us, then
813 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
814 	 * only has special meaning to our real parent.
815 	 */
816 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
817 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
818 		do_notify_parent(tsk, signal);
819 	} else if (tsk->ptrace) {
820 		do_notify_parent(tsk, SIGCHLD);
821 	}
822 
823 	state = EXIT_ZOMBIE;
824 	if (tsk->exit_signal == -1 &&
825 	    (likely(tsk->ptrace == 0) ||
826 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
827 		state = EXIT_DEAD;
828 	tsk->exit_state = state;
829 
830 	write_unlock_irq(&tasklist_lock);
831 
832 	list_for_each_safe(_p, _n, &ptrace_dead) {
833 		list_del_init(_p);
834 		t = list_entry(_p, struct task_struct, ptrace_list);
835 		release_task(t);
836 	}
837 
838 	/* If the process is dead, release it - nobody will wait for it */
839 	if (state == EXIT_DEAD)
840 		release_task(tsk);
841 }
842 
843 fastcall NORET_TYPE void do_exit(long code)
844 {
845 	struct task_struct *tsk = current;
846 	int group_dead;
847 
848 	profile_task_exit(tsk);
849 
850 	WARN_ON(atomic_read(&tsk->fs_excl));
851 
852 	if (unlikely(in_interrupt()))
853 		panic("Aiee, killing interrupt handler!");
854 	if (unlikely(!tsk->pid))
855 		panic("Attempted to kill the idle task!");
856 	if (unlikely(tsk == child_reaper))
857 		panic("Attempted to kill init!");
858 
859 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
860 		current->ptrace_message = code;
861 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
862 	}
863 
864 	/*
865 	 * We're taking recursive faults here in do_exit. Safest is to just
866 	 * leave this task alone and wait for reboot.
867 	 */
868 	if (unlikely(tsk->flags & PF_EXITING)) {
869 		printk(KERN_ALERT
870 			"Fixing recursive fault but reboot is needed!\n");
871 		if (tsk->io_context)
872 			exit_io_context();
873 		set_current_state(TASK_UNINTERRUPTIBLE);
874 		schedule();
875 	}
876 
877 	tsk->flags |= PF_EXITING;
878 
879 	if (unlikely(in_atomic()))
880 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
881 				current->comm, current->pid,
882 				preempt_count());
883 
884 	acct_update_integrals(tsk);
885 	if (tsk->mm) {
886 		update_hiwater_rss(tsk->mm);
887 		update_hiwater_vm(tsk->mm);
888 	}
889 	group_dead = atomic_dec_and_test(&tsk->signal->live);
890 	if (group_dead) {
891  		hrtimer_cancel(&tsk->signal->real_timer);
892 		exit_itimers(tsk->signal);
893 	}
894 	acct_collect(code, group_dead);
895 	if (unlikely(tsk->robust_list))
896 		exit_robust_list(tsk);
897 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
898 	if (unlikely(tsk->compat_robust_list))
899 		compat_exit_robust_list(tsk);
900 #endif
901 	if (unlikely(tsk->audit_context))
902 		audit_free(tsk);
903 	exit_mm(tsk);
904 
905 	if (group_dead)
906 		acct_process();
907 	exit_sem(tsk);
908 	__exit_files(tsk);
909 	__exit_fs(tsk);
910 	exit_namespace(tsk);
911 	exit_thread();
912 	cpuset_exit(tsk);
913 	exit_keys(tsk);
914 
915 	if (group_dead && tsk->signal->leader)
916 		disassociate_ctty(1);
917 
918 	module_put(task_thread_info(tsk)->exec_domain->module);
919 	if (tsk->binfmt)
920 		module_put(tsk->binfmt->module);
921 
922 	tsk->exit_code = code;
923 	proc_exit_connector(tsk);
924 	exit_notify(tsk);
925 #ifdef CONFIG_NUMA
926 	mpol_free(tsk->mempolicy);
927 	tsk->mempolicy = NULL;
928 #endif
929 	/*
930 	 * This must happen late, after the PID is not
931 	 * hashed anymore:
932 	 */
933 	if (unlikely(!list_empty(&tsk->pi_state_list)))
934 		exit_pi_state_list(tsk);
935 	if (unlikely(current->pi_state_cache))
936 		kfree(current->pi_state_cache);
937 	/*
938 	 * Make sure we are holding no locks:
939 	 */
940 	debug_check_no_locks_held(tsk);
941 
942 	if (tsk->io_context)
943 		exit_io_context();
944 
945 	if (tsk->splice_pipe)
946 		__free_pipe_info(tsk->splice_pipe);
947 
948 	/* PF_DEAD causes final put_task_struct after we schedule. */
949 	preempt_disable();
950 	BUG_ON(tsk->flags & PF_DEAD);
951 	tsk->flags |= PF_DEAD;
952 
953 	schedule();
954 	BUG();
955 	/* Avoid "noreturn function does return".  */
956 	for (;;) ;
957 }
958 
959 EXPORT_SYMBOL_GPL(do_exit);
960 
961 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
962 {
963 	if (comp)
964 		complete(comp);
965 
966 	do_exit(code);
967 }
968 
969 EXPORT_SYMBOL(complete_and_exit);
970 
971 asmlinkage long sys_exit(int error_code)
972 {
973 	do_exit((error_code&0xff)<<8);
974 }
975 
976 /*
977  * Take down every thread in the group.  This is called by fatal signals
978  * as well as by sys_exit_group (below).
979  */
980 NORET_TYPE void
981 do_group_exit(int exit_code)
982 {
983 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
984 
985 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
986 		exit_code = current->signal->group_exit_code;
987 	else if (!thread_group_empty(current)) {
988 		struct signal_struct *const sig = current->signal;
989 		struct sighand_struct *const sighand = current->sighand;
990 		spin_lock_irq(&sighand->siglock);
991 		if (sig->flags & SIGNAL_GROUP_EXIT)
992 			/* Another thread got here before we took the lock.  */
993 			exit_code = sig->group_exit_code;
994 		else {
995 			sig->group_exit_code = exit_code;
996 			zap_other_threads(current);
997 		}
998 		spin_unlock_irq(&sighand->siglock);
999 	}
1000 
1001 	do_exit(exit_code);
1002 	/* NOTREACHED */
1003 }
1004 
1005 /*
1006  * this kills every thread in the thread group. Note that any externally
1007  * wait4()-ing process will get the correct exit code - even if this
1008  * thread is not the thread group leader.
1009  */
1010 asmlinkage void sys_exit_group(int error_code)
1011 {
1012 	do_group_exit((error_code & 0xff) << 8);
1013 }
1014 
1015 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1016 {
1017 	if (pid > 0) {
1018 		if (p->pid != pid)
1019 			return 0;
1020 	} else if (!pid) {
1021 		if (process_group(p) != process_group(current))
1022 			return 0;
1023 	} else if (pid != -1) {
1024 		if (process_group(p) != -pid)
1025 			return 0;
1026 	}
1027 
1028 	/*
1029 	 * Do not consider detached threads that are
1030 	 * not ptraced:
1031 	 */
1032 	if (p->exit_signal == -1 && !p->ptrace)
1033 		return 0;
1034 
1035 	/* Wait for all children (clone and not) if __WALL is set;
1036 	 * otherwise, wait for clone children *only* if __WCLONE is
1037 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1038 	 * A "clone" child here is one that reports to its parent
1039 	 * using a signal other than SIGCHLD.) */
1040 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1041 	    && !(options & __WALL))
1042 		return 0;
1043 	/*
1044 	 * Do not consider thread group leaders that are
1045 	 * in a non-empty thread group:
1046 	 */
1047 	if (current->tgid != p->tgid && delay_group_leader(p))
1048 		return 2;
1049 
1050 	if (security_task_wait(p))
1051 		return 0;
1052 
1053 	return 1;
1054 }
1055 
1056 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1057 			       int why, int status,
1058 			       struct siginfo __user *infop,
1059 			       struct rusage __user *rusagep)
1060 {
1061 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1062 
1063 	put_task_struct(p);
1064 	if (!retval)
1065 		retval = put_user(SIGCHLD, &infop->si_signo);
1066 	if (!retval)
1067 		retval = put_user(0, &infop->si_errno);
1068 	if (!retval)
1069 		retval = put_user((short)why, &infop->si_code);
1070 	if (!retval)
1071 		retval = put_user(pid, &infop->si_pid);
1072 	if (!retval)
1073 		retval = put_user(uid, &infop->si_uid);
1074 	if (!retval)
1075 		retval = put_user(status, &infop->si_status);
1076 	if (!retval)
1077 		retval = pid;
1078 	return retval;
1079 }
1080 
1081 /*
1082  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1083  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1084  * the lock and this task is uninteresting.  If we return nonzero, we have
1085  * released the lock and the system call should return.
1086  */
1087 static int wait_task_zombie(struct task_struct *p, int noreap,
1088 			    struct siginfo __user *infop,
1089 			    int __user *stat_addr, struct rusage __user *ru)
1090 {
1091 	unsigned long state;
1092 	int retval;
1093 	int status;
1094 
1095 	if (unlikely(noreap)) {
1096 		pid_t pid = p->pid;
1097 		uid_t uid = p->uid;
1098 		int exit_code = p->exit_code;
1099 		int why, status;
1100 
1101 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1102 			return 0;
1103 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1104 			return 0;
1105 		get_task_struct(p);
1106 		read_unlock(&tasklist_lock);
1107 		if ((exit_code & 0x7f) == 0) {
1108 			why = CLD_EXITED;
1109 			status = exit_code >> 8;
1110 		} else {
1111 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1112 			status = exit_code & 0x7f;
1113 		}
1114 		return wait_noreap_copyout(p, pid, uid, why,
1115 					   status, infop, ru);
1116 	}
1117 
1118 	/*
1119 	 * Try to move the task's state to DEAD
1120 	 * only one thread is allowed to do this:
1121 	 */
1122 	state = xchg(&p->exit_state, EXIT_DEAD);
1123 	if (state != EXIT_ZOMBIE) {
1124 		BUG_ON(state != EXIT_DEAD);
1125 		return 0;
1126 	}
1127 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1128 		/*
1129 		 * This can only happen in a race with a ptraced thread
1130 		 * dying on another processor.
1131 		 */
1132 		return 0;
1133 	}
1134 
1135 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1136 		struct signal_struct *psig;
1137 		struct signal_struct *sig;
1138 
1139 		/*
1140 		 * The resource counters for the group leader are in its
1141 		 * own task_struct.  Those for dead threads in the group
1142 		 * are in its signal_struct, as are those for the child
1143 		 * processes it has previously reaped.  All these
1144 		 * accumulate in the parent's signal_struct c* fields.
1145 		 *
1146 		 * We don't bother to take a lock here to protect these
1147 		 * p->signal fields, because they are only touched by
1148 		 * __exit_signal, which runs with tasklist_lock
1149 		 * write-locked anyway, and so is excluded here.  We do
1150 		 * need to protect the access to p->parent->signal fields,
1151 		 * as other threads in the parent group can be right
1152 		 * here reaping other children at the same time.
1153 		 */
1154 		spin_lock_irq(&p->parent->sighand->siglock);
1155 		psig = p->parent->signal;
1156 		sig = p->signal;
1157 		psig->cutime =
1158 			cputime_add(psig->cutime,
1159 			cputime_add(p->utime,
1160 			cputime_add(sig->utime,
1161 				    sig->cutime)));
1162 		psig->cstime =
1163 			cputime_add(psig->cstime,
1164 			cputime_add(p->stime,
1165 			cputime_add(sig->stime,
1166 				    sig->cstime)));
1167 		psig->cmin_flt +=
1168 			p->min_flt + sig->min_flt + sig->cmin_flt;
1169 		psig->cmaj_flt +=
1170 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1171 		psig->cnvcsw +=
1172 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1173 		psig->cnivcsw +=
1174 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1175 		spin_unlock_irq(&p->parent->sighand->siglock);
1176 	}
1177 
1178 	/*
1179 	 * Now we are sure this task is interesting, and no other
1180 	 * thread can reap it because we set its state to EXIT_DEAD.
1181 	 */
1182 	read_unlock(&tasklist_lock);
1183 
1184 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1185 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1186 		? p->signal->group_exit_code : p->exit_code;
1187 	if (!retval && stat_addr)
1188 		retval = put_user(status, stat_addr);
1189 	if (!retval && infop)
1190 		retval = put_user(SIGCHLD, &infop->si_signo);
1191 	if (!retval && infop)
1192 		retval = put_user(0, &infop->si_errno);
1193 	if (!retval && infop) {
1194 		int why;
1195 
1196 		if ((status & 0x7f) == 0) {
1197 			why = CLD_EXITED;
1198 			status >>= 8;
1199 		} else {
1200 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1201 			status &= 0x7f;
1202 		}
1203 		retval = put_user((short)why, &infop->si_code);
1204 		if (!retval)
1205 			retval = put_user(status, &infop->si_status);
1206 	}
1207 	if (!retval && infop)
1208 		retval = put_user(p->pid, &infop->si_pid);
1209 	if (!retval && infop)
1210 		retval = put_user(p->uid, &infop->si_uid);
1211 	if (retval) {
1212 		// TODO: is this safe?
1213 		p->exit_state = EXIT_ZOMBIE;
1214 		return retval;
1215 	}
1216 	retval = p->pid;
1217 	if (p->real_parent != p->parent) {
1218 		write_lock_irq(&tasklist_lock);
1219 		/* Double-check with lock held.  */
1220 		if (p->real_parent != p->parent) {
1221 			__ptrace_unlink(p);
1222 			// TODO: is this safe?
1223 			p->exit_state = EXIT_ZOMBIE;
1224 			/*
1225 			 * If this is not a detached task, notify the parent.
1226 			 * If it's still not detached after that, don't release
1227 			 * it now.
1228 			 */
1229 			if (p->exit_signal != -1) {
1230 				do_notify_parent(p, p->exit_signal);
1231 				if (p->exit_signal != -1)
1232 					p = NULL;
1233 			}
1234 		}
1235 		write_unlock_irq(&tasklist_lock);
1236 	}
1237 	if (p != NULL)
1238 		release_task(p);
1239 	BUG_ON(!retval);
1240 	return retval;
1241 }
1242 
1243 /*
1244  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1245  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1246  * the lock and this task is uninteresting.  If we return nonzero, we have
1247  * released the lock and the system call should return.
1248  */
1249 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1250 			     int noreap, struct siginfo __user *infop,
1251 			     int __user *stat_addr, struct rusage __user *ru)
1252 {
1253 	int retval, exit_code;
1254 
1255 	if (!p->exit_code)
1256 		return 0;
1257 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1258 	    p->signal && p->signal->group_stop_count > 0)
1259 		/*
1260 		 * A group stop is in progress and this is the group leader.
1261 		 * We won't report until all threads have stopped.
1262 		 */
1263 		return 0;
1264 
1265 	/*
1266 	 * Now we are pretty sure this task is interesting.
1267 	 * Make sure it doesn't get reaped out from under us while we
1268 	 * give up the lock and then examine it below.  We don't want to
1269 	 * keep holding onto the tasklist_lock while we call getrusage and
1270 	 * possibly take page faults for user memory.
1271 	 */
1272 	get_task_struct(p);
1273 	read_unlock(&tasklist_lock);
1274 
1275 	if (unlikely(noreap)) {
1276 		pid_t pid = p->pid;
1277 		uid_t uid = p->uid;
1278 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1279 
1280 		exit_code = p->exit_code;
1281 		if (unlikely(!exit_code) ||
1282 		    unlikely(p->state & TASK_TRACED))
1283 			goto bail_ref;
1284 		return wait_noreap_copyout(p, pid, uid,
1285 					   why, (exit_code << 8) | 0x7f,
1286 					   infop, ru);
1287 	}
1288 
1289 	write_lock_irq(&tasklist_lock);
1290 
1291 	/*
1292 	 * This uses xchg to be atomic with the thread resuming and setting
1293 	 * it.  It must also be done with the write lock held to prevent a
1294 	 * race with the EXIT_ZOMBIE case.
1295 	 */
1296 	exit_code = xchg(&p->exit_code, 0);
1297 	if (unlikely(p->exit_state)) {
1298 		/*
1299 		 * The task resumed and then died.  Let the next iteration
1300 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1301 		 * already be zero here if it resumed and did _exit(0).
1302 		 * The task itself is dead and won't touch exit_code again;
1303 		 * other processors in this function are locked out.
1304 		 */
1305 		p->exit_code = exit_code;
1306 		exit_code = 0;
1307 	}
1308 	if (unlikely(exit_code == 0)) {
1309 		/*
1310 		 * Another thread in this function got to it first, or it
1311 		 * resumed, or it resumed and then died.
1312 		 */
1313 		write_unlock_irq(&tasklist_lock);
1314 bail_ref:
1315 		put_task_struct(p);
1316 		/*
1317 		 * We are returning to the wait loop without having successfully
1318 		 * removed the process and having released the lock. We cannot
1319 		 * continue, since the "p" task pointer is potentially stale.
1320 		 *
1321 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1322 		 * beginning. Do _not_ re-acquire the lock.
1323 		 */
1324 		return -EAGAIN;
1325 	}
1326 
1327 	/* move to end of parent's list to avoid starvation */
1328 	remove_parent(p);
1329 	add_parent(p);
1330 
1331 	write_unlock_irq(&tasklist_lock);
1332 
1333 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1334 	if (!retval && stat_addr)
1335 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1336 	if (!retval && infop)
1337 		retval = put_user(SIGCHLD, &infop->si_signo);
1338 	if (!retval && infop)
1339 		retval = put_user(0, &infop->si_errno);
1340 	if (!retval && infop)
1341 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1342 					  ? CLD_TRAPPED : CLD_STOPPED),
1343 				  &infop->si_code);
1344 	if (!retval && infop)
1345 		retval = put_user(exit_code, &infop->si_status);
1346 	if (!retval && infop)
1347 		retval = put_user(p->pid, &infop->si_pid);
1348 	if (!retval && infop)
1349 		retval = put_user(p->uid, &infop->si_uid);
1350 	if (!retval)
1351 		retval = p->pid;
1352 	put_task_struct(p);
1353 
1354 	BUG_ON(!retval);
1355 	return retval;
1356 }
1357 
1358 /*
1359  * Handle do_wait work for one task in a live, non-stopped state.
1360  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1361  * the lock and this task is uninteresting.  If we return nonzero, we have
1362  * released the lock and the system call should return.
1363  */
1364 static int wait_task_continued(struct task_struct *p, int noreap,
1365 			       struct siginfo __user *infop,
1366 			       int __user *stat_addr, struct rusage __user *ru)
1367 {
1368 	int retval;
1369 	pid_t pid;
1370 	uid_t uid;
1371 
1372 	if (unlikely(!p->signal))
1373 		return 0;
1374 
1375 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1376 		return 0;
1377 
1378 	spin_lock_irq(&p->sighand->siglock);
1379 	/* Re-check with the lock held.  */
1380 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1381 		spin_unlock_irq(&p->sighand->siglock);
1382 		return 0;
1383 	}
1384 	if (!noreap)
1385 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1386 	spin_unlock_irq(&p->sighand->siglock);
1387 
1388 	pid = p->pid;
1389 	uid = p->uid;
1390 	get_task_struct(p);
1391 	read_unlock(&tasklist_lock);
1392 
1393 	if (!infop) {
1394 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1395 		put_task_struct(p);
1396 		if (!retval && stat_addr)
1397 			retval = put_user(0xffff, stat_addr);
1398 		if (!retval)
1399 			retval = p->pid;
1400 	} else {
1401 		retval = wait_noreap_copyout(p, pid, uid,
1402 					     CLD_CONTINUED, SIGCONT,
1403 					     infop, ru);
1404 		BUG_ON(retval == 0);
1405 	}
1406 
1407 	return retval;
1408 }
1409 
1410 
1411 static inline int my_ptrace_child(struct task_struct *p)
1412 {
1413 	if (!(p->ptrace & PT_PTRACED))
1414 		return 0;
1415 	if (!(p->ptrace & PT_ATTACHED))
1416 		return 1;
1417 	/*
1418 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1419 	 * we are the attacher.  If we are the real parent, this is a race
1420 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1421 	 * which we have to switch the parent links, but has already set
1422 	 * the flags in p->ptrace.
1423 	 */
1424 	return (p->parent != p->real_parent);
1425 }
1426 
1427 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1428 		    int __user *stat_addr, struct rusage __user *ru)
1429 {
1430 	DECLARE_WAITQUEUE(wait, current);
1431 	struct task_struct *tsk;
1432 	int flag, retval;
1433 
1434 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1435 repeat:
1436 	/*
1437 	 * We will set this flag if we see any child that might later
1438 	 * match our criteria, even if we are not able to reap it yet.
1439 	 */
1440 	flag = 0;
1441 	current->state = TASK_INTERRUPTIBLE;
1442 	read_lock(&tasklist_lock);
1443 	tsk = current;
1444 	do {
1445 		struct task_struct *p;
1446 		struct list_head *_p;
1447 		int ret;
1448 
1449 		list_for_each(_p,&tsk->children) {
1450 			p = list_entry(_p, struct task_struct, sibling);
1451 
1452 			ret = eligible_child(pid, options, p);
1453 			if (!ret)
1454 				continue;
1455 
1456 			switch (p->state) {
1457 			case TASK_TRACED:
1458 				/*
1459 				 * When we hit the race with PTRACE_ATTACH,
1460 				 * we will not report this child.  But the
1461 				 * race means it has not yet been moved to
1462 				 * our ptrace_children list, so we need to
1463 				 * set the flag here to avoid a spurious ECHILD
1464 				 * when the race happens with the only child.
1465 				 */
1466 				flag = 1;
1467 				if (!my_ptrace_child(p))
1468 					continue;
1469 				/*FALLTHROUGH*/
1470 			case TASK_STOPPED:
1471 				/*
1472 				 * It's stopped now, so it might later
1473 				 * continue, exit, or stop again.
1474 				 */
1475 				flag = 1;
1476 				if (!(options & WUNTRACED) &&
1477 				    !my_ptrace_child(p))
1478 					continue;
1479 				retval = wait_task_stopped(p, ret == 2,
1480 							   (options & WNOWAIT),
1481 							   infop,
1482 							   stat_addr, ru);
1483 				if (retval == -EAGAIN)
1484 					goto repeat;
1485 				if (retval != 0) /* He released the lock.  */
1486 					goto end;
1487 				break;
1488 			default:
1489 			// case EXIT_DEAD:
1490 				if (p->exit_state == EXIT_DEAD)
1491 					continue;
1492 			// case EXIT_ZOMBIE:
1493 				if (p->exit_state == EXIT_ZOMBIE) {
1494 					/*
1495 					 * Eligible but we cannot release
1496 					 * it yet:
1497 					 */
1498 					if (ret == 2)
1499 						goto check_continued;
1500 					if (!likely(options & WEXITED))
1501 						continue;
1502 					retval = wait_task_zombie(
1503 						p, (options & WNOWAIT),
1504 						infop, stat_addr, ru);
1505 					/* He released the lock.  */
1506 					if (retval != 0)
1507 						goto end;
1508 					break;
1509 				}
1510 check_continued:
1511 				/*
1512 				 * It's running now, so it might later
1513 				 * exit, stop, or stop and then continue.
1514 				 */
1515 				flag = 1;
1516 				if (!unlikely(options & WCONTINUED))
1517 					continue;
1518 				retval = wait_task_continued(
1519 					p, (options & WNOWAIT),
1520 					infop, stat_addr, ru);
1521 				if (retval != 0) /* He released the lock.  */
1522 					goto end;
1523 				break;
1524 			}
1525 		}
1526 		if (!flag) {
1527 			list_for_each(_p, &tsk->ptrace_children) {
1528 				p = list_entry(_p, struct task_struct,
1529 						ptrace_list);
1530 				if (!eligible_child(pid, options, p))
1531 					continue;
1532 				flag = 1;
1533 				break;
1534 			}
1535 		}
1536 		if (options & __WNOTHREAD)
1537 			break;
1538 		tsk = next_thread(tsk);
1539 		BUG_ON(tsk->signal != current->signal);
1540 	} while (tsk != current);
1541 
1542 	read_unlock(&tasklist_lock);
1543 	if (flag) {
1544 		retval = 0;
1545 		if (options & WNOHANG)
1546 			goto end;
1547 		retval = -ERESTARTSYS;
1548 		if (signal_pending(current))
1549 			goto end;
1550 		schedule();
1551 		goto repeat;
1552 	}
1553 	retval = -ECHILD;
1554 end:
1555 	current->state = TASK_RUNNING;
1556 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1557 	if (infop) {
1558 		if (retval > 0)
1559 		retval = 0;
1560 		else {
1561 			/*
1562 			 * For a WNOHANG return, clear out all the fields
1563 			 * we would set so the user can easily tell the
1564 			 * difference.
1565 			 */
1566 			if (!retval)
1567 				retval = put_user(0, &infop->si_signo);
1568 			if (!retval)
1569 				retval = put_user(0, &infop->si_errno);
1570 			if (!retval)
1571 				retval = put_user(0, &infop->si_code);
1572 			if (!retval)
1573 				retval = put_user(0, &infop->si_pid);
1574 			if (!retval)
1575 				retval = put_user(0, &infop->si_uid);
1576 			if (!retval)
1577 				retval = put_user(0, &infop->si_status);
1578 		}
1579 	}
1580 	return retval;
1581 }
1582 
1583 asmlinkage long sys_waitid(int which, pid_t pid,
1584 			   struct siginfo __user *infop, int options,
1585 			   struct rusage __user *ru)
1586 {
1587 	long ret;
1588 
1589 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1590 		return -EINVAL;
1591 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1592 		return -EINVAL;
1593 
1594 	switch (which) {
1595 	case P_ALL:
1596 		pid = -1;
1597 		break;
1598 	case P_PID:
1599 		if (pid <= 0)
1600 			return -EINVAL;
1601 		break;
1602 	case P_PGID:
1603 		if (pid <= 0)
1604 			return -EINVAL;
1605 		pid = -pid;
1606 		break;
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 
1611 	ret = do_wait(pid, options, infop, NULL, ru);
1612 
1613 	/* avoid REGPARM breakage on x86: */
1614 	prevent_tail_call(ret);
1615 	return ret;
1616 }
1617 
1618 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1619 			  int options, struct rusage __user *ru)
1620 {
1621 	long ret;
1622 
1623 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1624 			__WNOTHREAD|__WCLONE|__WALL))
1625 		return -EINVAL;
1626 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1627 
1628 	/* avoid REGPARM breakage on x86: */
1629 	prevent_tail_call(ret);
1630 	return ret;
1631 }
1632 
1633 #ifdef __ARCH_WANT_SYS_WAITPID
1634 
1635 /*
1636  * sys_waitpid() remains for compatibility. waitpid() should be
1637  * implemented by calling sys_wait4() from libc.a.
1638  */
1639 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1640 {
1641 	return sys_wait4(pid, stat_addr, options, NULL);
1642 }
1643 
1644 #endif
1645