1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 54 #include <asm/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/pgtable.h> 57 #include <asm/mmu_context.h> 58 59 static void exit_mm(struct task_struct * tsk); 60 61 static void __unhash_process(struct task_struct *p, bool group_dead) 62 { 63 nr_threads--; 64 detach_pid(p, PIDTYPE_PID); 65 if (group_dead) { 66 detach_pid(p, PIDTYPE_PGID); 67 detach_pid(p, PIDTYPE_SID); 68 69 list_del_rcu(&p->tasks); 70 list_del_init(&p->sibling); 71 __get_cpu_var(process_counts)--; 72 } 73 list_del_rcu(&p->thread_group); 74 } 75 76 /* 77 * This function expects the tasklist_lock write-locked. 78 */ 79 static void __exit_signal(struct task_struct *tsk) 80 { 81 struct signal_struct *sig = tsk->signal; 82 bool group_dead = thread_group_leader(tsk); 83 struct sighand_struct *sighand; 84 struct tty_struct *uninitialized_var(tty); 85 86 sighand = rcu_dereference_check(tsk->sighand, 87 rcu_read_lock_held() || 88 lockdep_tasklist_lock_is_held()); 89 spin_lock(&sighand->siglock); 90 91 posix_cpu_timers_exit(tsk); 92 if (group_dead) { 93 posix_cpu_timers_exit_group(tsk); 94 tty = sig->tty; 95 sig->tty = NULL; 96 } else { 97 /* 98 * If there is any task waiting for the group exit 99 * then notify it: 100 */ 101 if (sig->notify_count > 0 && !--sig->notify_count) 102 wake_up_process(sig->group_exit_task); 103 104 if (tsk == sig->curr_target) 105 sig->curr_target = next_thread(tsk); 106 /* 107 * Accumulate here the counters for all threads but the 108 * group leader as they die, so they can be added into 109 * the process-wide totals when those are taken. 110 * The group leader stays around as a zombie as long 111 * as there are other threads. When it gets reaped, 112 * the exit.c code will add its counts into these totals. 113 * We won't ever get here for the group leader, since it 114 * will have been the last reference on the signal_struct. 115 */ 116 sig->utime = cputime_add(sig->utime, tsk->utime); 117 sig->stime = cputime_add(sig->stime, tsk->stime); 118 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 119 sig->min_flt += tsk->min_flt; 120 sig->maj_flt += tsk->maj_flt; 121 sig->nvcsw += tsk->nvcsw; 122 sig->nivcsw += tsk->nivcsw; 123 sig->inblock += task_io_get_inblock(tsk); 124 sig->oublock += task_io_get_oublock(tsk); 125 task_io_accounting_add(&sig->ioac, &tsk->ioac); 126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 127 } 128 129 sig->nr_threads--; 130 __unhash_process(tsk, group_dead); 131 132 /* 133 * Do this under ->siglock, we can race with another thread 134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 135 */ 136 flush_sigqueue(&tsk->pending); 137 tsk->sighand = NULL; 138 spin_unlock(&sighand->siglock); 139 140 __cleanup_sighand(sighand); 141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 142 if (group_dead) { 143 flush_sigqueue(&sig->shared_pending); 144 tty_kref_put(tty); 145 } 146 } 147 148 static void delayed_put_task_struct(struct rcu_head *rhp) 149 { 150 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 151 152 #ifdef CONFIG_PERF_EVENTS 153 WARN_ON_ONCE(tsk->perf_event_ctxp); 154 #endif 155 trace_sched_process_free(tsk); 156 put_task_struct(tsk); 157 } 158 159 160 void release_task(struct task_struct * p) 161 { 162 struct task_struct *leader; 163 int zap_leader; 164 repeat: 165 tracehook_prepare_release_task(p); 166 /* don't need to get the RCU readlock here - the process is dead and 167 * can't be modifying its own credentials. But shut RCU-lockdep up */ 168 rcu_read_lock(); 169 atomic_dec(&__task_cred(p)->user->processes); 170 rcu_read_unlock(); 171 172 proc_flush_task(p); 173 174 write_lock_irq(&tasklist_lock); 175 tracehook_finish_release_task(p); 176 __exit_signal(p); 177 178 /* 179 * If we are the last non-leader member of the thread 180 * group, and the leader is zombie, then notify the 181 * group leader's parent process. (if it wants notification.) 182 */ 183 zap_leader = 0; 184 leader = p->group_leader; 185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 186 BUG_ON(task_detached(leader)); 187 do_notify_parent(leader, leader->exit_signal); 188 /* 189 * If we were the last child thread and the leader has 190 * exited already, and the leader's parent ignores SIGCHLD, 191 * then we are the one who should release the leader. 192 * 193 * do_notify_parent() will have marked it self-reaping in 194 * that case. 195 */ 196 zap_leader = task_detached(leader); 197 198 /* 199 * This maintains the invariant that release_task() 200 * only runs on a task in EXIT_DEAD, just for sanity. 201 */ 202 if (zap_leader) 203 leader->exit_state = EXIT_DEAD; 204 } 205 206 write_unlock_irq(&tasklist_lock); 207 release_thread(p); 208 call_rcu(&p->rcu, delayed_put_task_struct); 209 210 p = leader; 211 if (unlikely(zap_leader)) 212 goto repeat; 213 } 214 215 /* 216 * This checks not only the pgrp, but falls back on the pid if no 217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 218 * without this... 219 * 220 * The caller must hold rcu lock or the tasklist lock. 221 */ 222 struct pid *session_of_pgrp(struct pid *pgrp) 223 { 224 struct task_struct *p; 225 struct pid *sid = NULL; 226 227 p = pid_task(pgrp, PIDTYPE_PGID); 228 if (p == NULL) 229 p = pid_task(pgrp, PIDTYPE_PID); 230 if (p != NULL) 231 sid = task_session(p); 232 233 return sid; 234 } 235 236 /* 237 * Determine if a process group is "orphaned", according to the POSIX 238 * definition in 2.2.2.52. Orphaned process groups are not to be affected 239 * by terminal-generated stop signals. Newly orphaned process groups are 240 * to receive a SIGHUP and a SIGCONT. 241 * 242 * "I ask you, have you ever known what it is to be an orphan?" 243 */ 244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 245 { 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if ((p == ignored_task) || 250 (p->exit_state && thread_group_empty(p)) || 251 is_global_init(p->real_parent)) 252 continue; 253 254 if (task_pgrp(p->real_parent) != pgrp && 255 task_session(p->real_parent) == task_session(p)) 256 return 0; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return 1; 260 } 261 262 int is_current_pgrp_orphaned(void) 263 { 264 int retval; 265 266 read_lock(&tasklist_lock); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 268 read_unlock(&tasklist_lock); 269 270 return retval; 271 } 272 273 static int has_stopped_jobs(struct pid *pgrp) 274 { 275 int retval = 0; 276 struct task_struct *p; 277 278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 279 if (!task_is_stopped(p)) 280 continue; 281 retval = 1; 282 break; 283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 284 return retval; 285 } 286 287 /* 288 * Check to see if any process groups have become orphaned as 289 * a result of our exiting, and if they have any stopped jobs, 290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 291 */ 292 static void 293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 294 { 295 struct pid *pgrp = task_pgrp(tsk); 296 struct task_struct *ignored_task = tsk; 297 298 if (!parent) 299 /* exit: our father is in a different pgrp than 300 * we are and we were the only connection outside. 301 */ 302 parent = tsk->real_parent; 303 else 304 /* reparent: our child is in a different pgrp than 305 * we are, and it was the only connection outside. 306 */ 307 ignored_task = NULL; 308 309 if (task_pgrp(parent) != pgrp && 310 task_session(parent) == task_session(tsk) && 311 will_become_orphaned_pgrp(pgrp, ignored_task) && 312 has_stopped_jobs(pgrp)) { 313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 315 } 316 } 317 318 /** 319 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 320 * 321 * If a kernel thread is launched as a result of a system call, or if 322 * it ever exits, it should generally reparent itself to kthreadd so it 323 * isn't in the way of other processes and is correctly cleaned up on exit. 324 * 325 * The various task state such as scheduling policy and priority may have 326 * been inherited from a user process, so we reset them to sane values here. 327 * 328 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 329 */ 330 static void reparent_to_kthreadd(void) 331 { 332 write_lock_irq(&tasklist_lock); 333 334 ptrace_unlink(current); 335 /* Reparent to init */ 336 current->real_parent = current->parent = kthreadd_task; 337 list_move_tail(¤t->sibling, ¤t->real_parent->children); 338 339 /* Set the exit signal to SIGCHLD so we signal init on exit */ 340 current->exit_signal = SIGCHLD; 341 342 if (task_nice(current) < 0) 343 set_user_nice(current, 0); 344 /* cpus_allowed? */ 345 /* rt_priority? */ 346 /* signals? */ 347 memcpy(current->signal->rlim, init_task.signal->rlim, 348 sizeof(current->signal->rlim)); 349 350 atomic_inc(&init_cred.usage); 351 commit_creds(&init_cred); 352 write_unlock_irq(&tasklist_lock); 353 } 354 355 void __set_special_pids(struct pid *pid) 356 { 357 struct task_struct *curr = current->group_leader; 358 359 if (task_session(curr) != pid) 360 change_pid(curr, PIDTYPE_SID, pid); 361 362 if (task_pgrp(curr) != pid) 363 change_pid(curr, PIDTYPE_PGID, pid); 364 } 365 366 static void set_special_pids(struct pid *pid) 367 { 368 write_lock_irq(&tasklist_lock); 369 __set_special_pids(pid); 370 write_unlock_irq(&tasklist_lock); 371 } 372 373 /* 374 * Let kernel threads use this to say that they allow a certain signal. 375 * Must not be used if kthread was cloned with CLONE_SIGHAND. 376 */ 377 int allow_signal(int sig) 378 { 379 if (!valid_signal(sig) || sig < 1) 380 return -EINVAL; 381 382 spin_lock_irq(¤t->sighand->siglock); 383 /* This is only needed for daemonize()'ed kthreads */ 384 sigdelset(¤t->blocked, sig); 385 /* 386 * Kernel threads handle their own signals. Let the signal code 387 * know it'll be handled, so that they don't get converted to 388 * SIGKILL or just silently dropped. 389 */ 390 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 391 recalc_sigpending(); 392 spin_unlock_irq(¤t->sighand->siglock); 393 return 0; 394 } 395 396 EXPORT_SYMBOL(allow_signal); 397 398 int disallow_signal(int sig) 399 { 400 if (!valid_signal(sig) || sig < 1) 401 return -EINVAL; 402 403 spin_lock_irq(¤t->sighand->siglock); 404 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 405 recalc_sigpending(); 406 spin_unlock_irq(¤t->sighand->siglock); 407 return 0; 408 } 409 410 EXPORT_SYMBOL(disallow_signal); 411 412 /* 413 * Put all the gunge required to become a kernel thread without 414 * attached user resources in one place where it belongs. 415 */ 416 417 void daemonize(const char *name, ...) 418 { 419 va_list args; 420 sigset_t blocked; 421 422 va_start(args, name); 423 vsnprintf(current->comm, sizeof(current->comm), name, args); 424 va_end(args); 425 426 /* 427 * If we were started as result of loading a module, close all of the 428 * user space pages. We don't need them, and if we didn't close them 429 * they would be locked into memory. 430 */ 431 exit_mm(current); 432 /* 433 * We don't want to have TIF_FREEZE set if the system-wide hibernation 434 * or suspend transition begins right now. 435 */ 436 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 437 438 if (current->nsproxy != &init_nsproxy) { 439 get_nsproxy(&init_nsproxy); 440 switch_task_namespaces(current, &init_nsproxy); 441 } 442 set_special_pids(&init_struct_pid); 443 proc_clear_tty(current); 444 445 /* Block and flush all signals */ 446 sigfillset(&blocked); 447 sigprocmask(SIG_BLOCK, &blocked, NULL); 448 flush_signals(current); 449 450 /* Become as one with the init task */ 451 452 daemonize_fs_struct(); 453 exit_files(current); 454 current->files = init_task.files; 455 atomic_inc(¤t->files->count); 456 457 reparent_to_kthreadd(); 458 } 459 460 EXPORT_SYMBOL(daemonize); 461 462 static void close_files(struct files_struct * files) 463 { 464 int i, j; 465 struct fdtable *fdt; 466 467 j = 0; 468 469 /* 470 * It is safe to dereference the fd table without RCU or 471 * ->file_lock because this is the last reference to the 472 * files structure. But use RCU to shut RCU-lockdep up. 473 */ 474 rcu_read_lock(); 475 fdt = files_fdtable(files); 476 rcu_read_unlock(); 477 for (;;) { 478 unsigned long set; 479 i = j * __NFDBITS; 480 if (i >= fdt->max_fds) 481 break; 482 set = fdt->open_fds->fds_bits[j++]; 483 while (set) { 484 if (set & 1) { 485 struct file * file = xchg(&fdt->fd[i], NULL); 486 if (file) { 487 filp_close(file, files); 488 cond_resched(); 489 } 490 } 491 i++; 492 set >>= 1; 493 } 494 } 495 } 496 497 struct files_struct *get_files_struct(struct task_struct *task) 498 { 499 struct files_struct *files; 500 501 task_lock(task); 502 files = task->files; 503 if (files) 504 atomic_inc(&files->count); 505 task_unlock(task); 506 507 return files; 508 } 509 510 void put_files_struct(struct files_struct *files) 511 { 512 struct fdtable *fdt; 513 514 if (atomic_dec_and_test(&files->count)) { 515 close_files(files); 516 /* 517 * Free the fd and fdset arrays if we expanded them. 518 * If the fdtable was embedded, pass files for freeing 519 * at the end of the RCU grace period. Otherwise, 520 * you can free files immediately. 521 */ 522 rcu_read_lock(); 523 fdt = files_fdtable(files); 524 if (fdt != &files->fdtab) 525 kmem_cache_free(files_cachep, files); 526 free_fdtable(fdt); 527 rcu_read_unlock(); 528 } 529 } 530 531 void reset_files_struct(struct files_struct *files) 532 { 533 struct task_struct *tsk = current; 534 struct files_struct *old; 535 536 old = tsk->files; 537 task_lock(tsk); 538 tsk->files = files; 539 task_unlock(tsk); 540 put_files_struct(old); 541 } 542 543 void exit_files(struct task_struct *tsk) 544 { 545 struct files_struct * files = tsk->files; 546 547 if (files) { 548 task_lock(tsk); 549 tsk->files = NULL; 550 task_unlock(tsk); 551 put_files_struct(files); 552 } 553 } 554 555 #ifdef CONFIG_MM_OWNER 556 /* 557 * Task p is exiting and it owned mm, lets find a new owner for it 558 */ 559 static inline int 560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 561 { 562 /* 563 * If there are other users of the mm and the owner (us) is exiting 564 * we need to find a new owner to take on the responsibility. 565 */ 566 if (atomic_read(&mm->mm_users) <= 1) 567 return 0; 568 if (mm->owner != p) 569 return 0; 570 return 1; 571 } 572 573 void mm_update_next_owner(struct mm_struct *mm) 574 { 575 struct task_struct *c, *g, *p = current; 576 577 retry: 578 if (!mm_need_new_owner(mm, p)) 579 return; 580 581 read_lock(&tasklist_lock); 582 /* 583 * Search in the children 584 */ 585 list_for_each_entry(c, &p->children, sibling) { 586 if (c->mm == mm) 587 goto assign_new_owner; 588 } 589 590 /* 591 * Search in the siblings 592 */ 593 list_for_each_entry(c, &p->real_parent->children, sibling) { 594 if (c->mm == mm) 595 goto assign_new_owner; 596 } 597 598 /* 599 * Search through everything else. We should not get 600 * here often 601 */ 602 do_each_thread(g, c) { 603 if (c->mm == mm) 604 goto assign_new_owner; 605 } while_each_thread(g, c); 606 607 read_unlock(&tasklist_lock); 608 /* 609 * We found no owner yet mm_users > 1: this implies that we are 610 * most likely racing with swapoff (try_to_unuse()) or /proc or 611 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 612 */ 613 mm->owner = NULL; 614 return; 615 616 assign_new_owner: 617 BUG_ON(c == p); 618 get_task_struct(c); 619 /* 620 * The task_lock protects c->mm from changing. 621 * We always want mm->owner->mm == mm 622 */ 623 task_lock(c); 624 /* 625 * Delay read_unlock() till we have the task_lock() 626 * to ensure that c does not slip away underneath us 627 */ 628 read_unlock(&tasklist_lock); 629 if (c->mm != mm) { 630 task_unlock(c); 631 put_task_struct(c); 632 goto retry; 633 } 634 mm->owner = c; 635 task_unlock(c); 636 put_task_struct(c); 637 } 638 #endif /* CONFIG_MM_OWNER */ 639 640 /* 641 * Turn us into a lazy TLB process if we 642 * aren't already.. 643 */ 644 static void exit_mm(struct task_struct * tsk) 645 { 646 struct mm_struct *mm = tsk->mm; 647 struct core_state *core_state; 648 649 mm_release(tsk, mm); 650 if (!mm) 651 return; 652 /* 653 * Serialize with any possible pending coredump. 654 * We must hold mmap_sem around checking core_state 655 * and clearing tsk->mm. The core-inducing thread 656 * will increment ->nr_threads for each thread in the 657 * group with ->mm != NULL. 658 */ 659 down_read(&mm->mmap_sem); 660 core_state = mm->core_state; 661 if (core_state) { 662 struct core_thread self; 663 up_read(&mm->mmap_sem); 664 665 self.task = tsk; 666 self.next = xchg(&core_state->dumper.next, &self); 667 /* 668 * Implies mb(), the result of xchg() must be visible 669 * to core_state->dumper. 670 */ 671 if (atomic_dec_and_test(&core_state->nr_threads)) 672 complete(&core_state->startup); 673 674 for (;;) { 675 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 676 if (!self.task) /* see coredump_finish() */ 677 break; 678 schedule(); 679 } 680 __set_task_state(tsk, TASK_RUNNING); 681 down_read(&mm->mmap_sem); 682 } 683 atomic_inc(&mm->mm_count); 684 BUG_ON(mm != tsk->active_mm); 685 /* more a memory barrier than a real lock */ 686 task_lock(tsk); 687 tsk->mm = NULL; 688 up_read(&mm->mmap_sem); 689 enter_lazy_tlb(mm, current); 690 /* We don't want this task to be frozen prematurely */ 691 clear_freeze_flag(tsk); 692 task_unlock(tsk); 693 mm_update_next_owner(mm); 694 mmput(mm); 695 } 696 697 /* 698 * When we die, we re-parent all our children. 699 * Try to give them to another thread in our thread 700 * group, and if no such member exists, give it to 701 * the child reaper process (ie "init") in our pid 702 * space. 703 */ 704 static struct task_struct *find_new_reaper(struct task_struct *father) 705 { 706 struct pid_namespace *pid_ns = task_active_pid_ns(father); 707 struct task_struct *thread; 708 709 thread = father; 710 while_each_thread(father, thread) { 711 if (thread->flags & PF_EXITING) 712 continue; 713 if (unlikely(pid_ns->child_reaper == father)) 714 pid_ns->child_reaper = thread; 715 return thread; 716 } 717 718 if (unlikely(pid_ns->child_reaper == father)) { 719 write_unlock_irq(&tasklist_lock); 720 if (unlikely(pid_ns == &init_pid_ns)) 721 panic("Attempted to kill init!"); 722 723 zap_pid_ns_processes(pid_ns); 724 write_lock_irq(&tasklist_lock); 725 /* 726 * We can not clear ->child_reaper or leave it alone. 727 * There may by stealth EXIT_DEAD tasks on ->children, 728 * forget_original_parent() must move them somewhere. 729 */ 730 pid_ns->child_reaper = init_pid_ns.child_reaper; 731 } 732 733 return pid_ns->child_reaper; 734 } 735 736 /* 737 * Any that need to be release_task'd are put on the @dead list. 738 */ 739 static void reparent_leader(struct task_struct *father, struct task_struct *p, 740 struct list_head *dead) 741 { 742 list_move_tail(&p->sibling, &p->real_parent->children); 743 744 if (task_detached(p)) 745 return; 746 /* 747 * If this is a threaded reparent there is no need to 748 * notify anyone anything has happened. 749 */ 750 if (same_thread_group(p->real_parent, father)) 751 return; 752 753 /* We don't want people slaying init. */ 754 p->exit_signal = SIGCHLD; 755 756 /* If it has exited notify the new parent about this child's death. */ 757 if (!task_ptrace(p) && 758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 759 do_notify_parent(p, p->exit_signal); 760 if (task_detached(p)) { 761 p->exit_state = EXIT_DEAD; 762 list_move_tail(&p->sibling, dead); 763 } 764 } 765 766 kill_orphaned_pgrp(p, father); 767 } 768 769 static void forget_original_parent(struct task_struct *father) 770 { 771 struct task_struct *p, *n, *reaper; 772 LIST_HEAD(dead_children); 773 774 exit_ptrace(father); 775 776 write_lock_irq(&tasklist_lock); 777 reaper = find_new_reaper(father); 778 779 list_for_each_entry_safe(p, n, &father->children, sibling) { 780 struct task_struct *t = p; 781 do { 782 t->real_parent = reaper; 783 if (t->parent == father) { 784 BUG_ON(task_ptrace(t)); 785 t->parent = t->real_parent; 786 } 787 if (t->pdeath_signal) 788 group_send_sig_info(t->pdeath_signal, 789 SEND_SIG_NOINFO, t); 790 } while_each_thread(p, t); 791 reparent_leader(father, p, &dead_children); 792 } 793 write_unlock_irq(&tasklist_lock); 794 795 BUG_ON(!list_empty(&father->children)); 796 797 list_for_each_entry_safe(p, n, &dead_children, sibling) { 798 list_del_init(&p->sibling); 799 release_task(p); 800 } 801 } 802 803 /* 804 * Send signals to all our closest relatives so that they know 805 * to properly mourn us.. 806 */ 807 static void exit_notify(struct task_struct *tsk, int group_dead) 808 { 809 int signal; 810 void *cookie; 811 812 /* 813 * This does two things: 814 * 815 * A. Make init inherit all the child processes 816 * B. Check to see if any process groups have become orphaned 817 * as a result of our exiting, and if they have any stopped 818 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 819 */ 820 forget_original_parent(tsk); 821 exit_task_namespaces(tsk); 822 823 write_lock_irq(&tasklist_lock); 824 if (group_dead) 825 kill_orphaned_pgrp(tsk->group_leader, NULL); 826 827 /* Let father know we died 828 * 829 * Thread signals are configurable, but you aren't going to use 830 * that to send signals to arbitary processes. 831 * That stops right now. 832 * 833 * If the parent exec id doesn't match the exec id we saved 834 * when we started then we know the parent has changed security 835 * domain. 836 * 837 * If our self_exec id doesn't match our parent_exec_id then 838 * we have changed execution domain as these two values started 839 * the same after a fork. 840 */ 841 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 842 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 843 tsk->self_exec_id != tsk->parent_exec_id)) 844 tsk->exit_signal = SIGCHLD; 845 846 signal = tracehook_notify_death(tsk, &cookie, group_dead); 847 if (signal >= 0) 848 signal = do_notify_parent(tsk, signal); 849 850 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 851 852 /* mt-exec, de_thread() is waiting for group leader */ 853 if (unlikely(tsk->signal->notify_count < 0)) 854 wake_up_process(tsk->signal->group_exit_task); 855 write_unlock_irq(&tasklist_lock); 856 857 tracehook_report_death(tsk, signal, cookie, group_dead); 858 859 /* If the process is dead, release it - nobody will wait for it */ 860 if (signal == DEATH_REAP) 861 release_task(tsk); 862 } 863 864 #ifdef CONFIG_DEBUG_STACK_USAGE 865 static void check_stack_usage(void) 866 { 867 static DEFINE_SPINLOCK(low_water_lock); 868 static int lowest_to_date = THREAD_SIZE; 869 unsigned long free; 870 871 free = stack_not_used(current); 872 873 if (free >= lowest_to_date) 874 return; 875 876 spin_lock(&low_water_lock); 877 if (free < lowest_to_date) { 878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 879 "left\n", 880 current->comm, free); 881 lowest_to_date = free; 882 } 883 spin_unlock(&low_water_lock); 884 } 885 #else 886 static inline void check_stack_usage(void) {} 887 #endif 888 889 NORET_TYPE void do_exit(long code) 890 { 891 struct task_struct *tsk = current; 892 int group_dead; 893 894 profile_task_exit(tsk); 895 896 WARN_ON(atomic_read(&tsk->fs_excl)); 897 898 if (unlikely(in_interrupt())) 899 panic("Aiee, killing interrupt handler!"); 900 if (unlikely(!tsk->pid)) 901 panic("Attempted to kill the idle task!"); 902 903 tracehook_report_exit(&code); 904 905 validate_creds_for_do_exit(tsk); 906 907 /* 908 * We're taking recursive faults here in do_exit. Safest is to just 909 * leave this task alone and wait for reboot. 910 */ 911 if (unlikely(tsk->flags & PF_EXITING)) { 912 printk(KERN_ALERT 913 "Fixing recursive fault but reboot is needed!\n"); 914 /* 915 * We can do this unlocked here. The futex code uses 916 * this flag just to verify whether the pi state 917 * cleanup has been done or not. In the worst case it 918 * loops once more. We pretend that the cleanup was 919 * done as there is no way to return. Either the 920 * OWNER_DIED bit is set by now or we push the blocked 921 * task into the wait for ever nirwana as well. 922 */ 923 tsk->flags |= PF_EXITPIDONE; 924 set_current_state(TASK_UNINTERRUPTIBLE); 925 schedule(); 926 } 927 928 exit_irq_thread(); 929 930 exit_signals(tsk); /* sets PF_EXITING */ 931 /* 932 * tsk->flags are checked in the futex code to protect against 933 * an exiting task cleaning up the robust pi futexes. 934 */ 935 smp_mb(); 936 raw_spin_unlock_wait(&tsk->pi_lock); 937 938 if (unlikely(in_atomic())) 939 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 940 current->comm, task_pid_nr(current), 941 preempt_count()); 942 943 acct_update_integrals(tsk); 944 /* sync mm's RSS info before statistics gathering */ 945 if (tsk->mm) 946 sync_mm_rss(tsk, tsk->mm); 947 group_dead = atomic_dec_and_test(&tsk->signal->live); 948 if (group_dead) { 949 hrtimer_cancel(&tsk->signal->real_timer); 950 exit_itimers(tsk->signal); 951 if (tsk->mm) 952 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 953 } 954 acct_collect(code, group_dead); 955 if (group_dead) 956 tty_audit_exit(); 957 if (unlikely(tsk->audit_context)) 958 audit_free(tsk); 959 960 tsk->exit_code = code; 961 taskstats_exit(tsk, group_dead); 962 963 exit_mm(tsk); 964 965 if (group_dead) 966 acct_process(); 967 trace_sched_process_exit(tsk); 968 969 exit_sem(tsk); 970 exit_files(tsk); 971 exit_fs(tsk); 972 check_stack_usage(); 973 exit_thread(); 974 cgroup_exit(tsk, 1); 975 976 if (group_dead) 977 disassociate_ctty(1); 978 979 module_put(task_thread_info(tsk)->exec_domain->module); 980 981 proc_exit_connector(tsk); 982 983 /* 984 * FIXME: do that only when needed, using sched_exit tracepoint 985 */ 986 flush_ptrace_hw_breakpoint(tsk); 987 /* 988 * Flush inherited counters to the parent - before the parent 989 * gets woken up by child-exit notifications. 990 */ 991 perf_event_exit_task(tsk); 992 993 exit_notify(tsk, group_dead); 994 #ifdef CONFIG_NUMA 995 task_lock(tsk); 996 mpol_put(tsk->mempolicy); 997 tsk->mempolicy = NULL; 998 task_unlock(tsk); 999 #endif 1000 #ifdef CONFIG_FUTEX 1001 if (unlikely(current->pi_state_cache)) 1002 kfree(current->pi_state_cache); 1003 #endif 1004 /* 1005 * Make sure we are holding no locks: 1006 */ 1007 debug_check_no_locks_held(tsk); 1008 /* 1009 * We can do this unlocked here. The futex code uses this flag 1010 * just to verify whether the pi state cleanup has been done 1011 * or not. In the worst case it loops once more. 1012 */ 1013 tsk->flags |= PF_EXITPIDONE; 1014 1015 if (tsk->io_context) 1016 exit_io_context(tsk); 1017 1018 if (tsk->splice_pipe) 1019 __free_pipe_info(tsk->splice_pipe); 1020 1021 validate_creds_for_do_exit(tsk); 1022 1023 preempt_disable(); 1024 exit_rcu(); 1025 /* causes final put_task_struct in finish_task_switch(). */ 1026 tsk->state = TASK_DEAD; 1027 schedule(); 1028 BUG(); 1029 /* Avoid "noreturn function does return". */ 1030 for (;;) 1031 cpu_relax(); /* For when BUG is null */ 1032 } 1033 1034 EXPORT_SYMBOL_GPL(do_exit); 1035 1036 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1037 { 1038 if (comp) 1039 complete(comp); 1040 1041 do_exit(code); 1042 } 1043 1044 EXPORT_SYMBOL(complete_and_exit); 1045 1046 SYSCALL_DEFINE1(exit, int, error_code) 1047 { 1048 do_exit((error_code&0xff)<<8); 1049 } 1050 1051 /* 1052 * Take down every thread in the group. This is called by fatal signals 1053 * as well as by sys_exit_group (below). 1054 */ 1055 NORET_TYPE void 1056 do_group_exit(int exit_code) 1057 { 1058 struct signal_struct *sig = current->signal; 1059 1060 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1061 1062 if (signal_group_exit(sig)) 1063 exit_code = sig->group_exit_code; 1064 else if (!thread_group_empty(current)) { 1065 struct sighand_struct *const sighand = current->sighand; 1066 spin_lock_irq(&sighand->siglock); 1067 if (signal_group_exit(sig)) 1068 /* Another thread got here before we took the lock. */ 1069 exit_code = sig->group_exit_code; 1070 else { 1071 sig->group_exit_code = exit_code; 1072 sig->flags = SIGNAL_GROUP_EXIT; 1073 zap_other_threads(current); 1074 } 1075 spin_unlock_irq(&sighand->siglock); 1076 } 1077 1078 do_exit(exit_code); 1079 /* NOTREACHED */ 1080 } 1081 1082 /* 1083 * this kills every thread in the thread group. Note that any externally 1084 * wait4()-ing process will get the correct exit code - even if this 1085 * thread is not the thread group leader. 1086 */ 1087 SYSCALL_DEFINE1(exit_group, int, error_code) 1088 { 1089 do_group_exit((error_code & 0xff) << 8); 1090 /* NOTREACHED */ 1091 return 0; 1092 } 1093 1094 struct wait_opts { 1095 enum pid_type wo_type; 1096 int wo_flags; 1097 struct pid *wo_pid; 1098 1099 struct siginfo __user *wo_info; 1100 int __user *wo_stat; 1101 struct rusage __user *wo_rusage; 1102 1103 wait_queue_t child_wait; 1104 int notask_error; 1105 }; 1106 1107 static inline 1108 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1109 { 1110 if (type != PIDTYPE_PID) 1111 task = task->group_leader; 1112 return task->pids[type].pid; 1113 } 1114 1115 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1116 { 1117 return wo->wo_type == PIDTYPE_MAX || 1118 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1119 } 1120 1121 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1122 { 1123 if (!eligible_pid(wo, p)) 1124 return 0; 1125 /* Wait for all children (clone and not) if __WALL is set; 1126 * otherwise, wait for clone children *only* if __WCLONE is 1127 * set; otherwise, wait for non-clone children *only*. (Note: 1128 * A "clone" child here is one that reports to its parent 1129 * using a signal other than SIGCHLD.) */ 1130 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1131 && !(wo->wo_flags & __WALL)) 1132 return 0; 1133 1134 return 1; 1135 } 1136 1137 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1138 pid_t pid, uid_t uid, int why, int status) 1139 { 1140 struct siginfo __user *infop; 1141 int retval = wo->wo_rusage 1142 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1143 1144 put_task_struct(p); 1145 infop = wo->wo_info; 1146 if (infop) { 1147 if (!retval) 1148 retval = put_user(SIGCHLD, &infop->si_signo); 1149 if (!retval) 1150 retval = put_user(0, &infop->si_errno); 1151 if (!retval) 1152 retval = put_user((short)why, &infop->si_code); 1153 if (!retval) 1154 retval = put_user(pid, &infop->si_pid); 1155 if (!retval) 1156 retval = put_user(uid, &infop->si_uid); 1157 if (!retval) 1158 retval = put_user(status, &infop->si_status); 1159 } 1160 if (!retval) 1161 retval = pid; 1162 return retval; 1163 } 1164 1165 /* 1166 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1167 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1168 * the lock and this task is uninteresting. If we return nonzero, we have 1169 * released the lock and the system call should return. 1170 */ 1171 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1172 { 1173 unsigned long state; 1174 int retval, status, traced; 1175 pid_t pid = task_pid_vnr(p); 1176 uid_t uid = __task_cred(p)->uid; 1177 struct siginfo __user *infop; 1178 1179 if (!likely(wo->wo_flags & WEXITED)) 1180 return 0; 1181 1182 if (unlikely(wo->wo_flags & WNOWAIT)) { 1183 int exit_code = p->exit_code; 1184 int why; 1185 1186 get_task_struct(p); 1187 read_unlock(&tasklist_lock); 1188 if ((exit_code & 0x7f) == 0) { 1189 why = CLD_EXITED; 1190 status = exit_code >> 8; 1191 } else { 1192 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1193 status = exit_code & 0x7f; 1194 } 1195 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1196 } 1197 1198 /* 1199 * Try to move the task's state to DEAD 1200 * only one thread is allowed to do this: 1201 */ 1202 state = xchg(&p->exit_state, EXIT_DEAD); 1203 if (state != EXIT_ZOMBIE) { 1204 BUG_ON(state != EXIT_DEAD); 1205 return 0; 1206 } 1207 1208 traced = ptrace_reparented(p); 1209 /* 1210 * It can be ptraced but not reparented, check 1211 * !task_detached() to filter out sub-threads. 1212 */ 1213 if (likely(!traced) && likely(!task_detached(p))) { 1214 struct signal_struct *psig; 1215 struct signal_struct *sig; 1216 unsigned long maxrss; 1217 cputime_t tgutime, tgstime; 1218 1219 /* 1220 * The resource counters for the group leader are in its 1221 * own task_struct. Those for dead threads in the group 1222 * are in its signal_struct, as are those for the child 1223 * processes it has previously reaped. All these 1224 * accumulate in the parent's signal_struct c* fields. 1225 * 1226 * We don't bother to take a lock here to protect these 1227 * p->signal fields, because they are only touched by 1228 * __exit_signal, which runs with tasklist_lock 1229 * write-locked anyway, and so is excluded here. We do 1230 * need to protect the access to parent->signal fields, 1231 * as other threads in the parent group can be right 1232 * here reaping other children at the same time. 1233 * 1234 * We use thread_group_times() to get times for the thread 1235 * group, which consolidates times for all threads in the 1236 * group including the group leader. 1237 */ 1238 thread_group_times(p, &tgutime, &tgstime); 1239 spin_lock_irq(&p->real_parent->sighand->siglock); 1240 psig = p->real_parent->signal; 1241 sig = p->signal; 1242 psig->cutime = 1243 cputime_add(psig->cutime, 1244 cputime_add(tgutime, 1245 sig->cutime)); 1246 psig->cstime = 1247 cputime_add(psig->cstime, 1248 cputime_add(tgstime, 1249 sig->cstime)); 1250 psig->cgtime = 1251 cputime_add(psig->cgtime, 1252 cputime_add(p->gtime, 1253 cputime_add(sig->gtime, 1254 sig->cgtime))); 1255 psig->cmin_flt += 1256 p->min_flt + sig->min_flt + sig->cmin_flt; 1257 psig->cmaj_flt += 1258 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1259 psig->cnvcsw += 1260 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1261 psig->cnivcsw += 1262 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1263 psig->cinblock += 1264 task_io_get_inblock(p) + 1265 sig->inblock + sig->cinblock; 1266 psig->coublock += 1267 task_io_get_oublock(p) + 1268 sig->oublock + sig->coublock; 1269 maxrss = max(sig->maxrss, sig->cmaxrss); 1270 if (psig->cmaxrss < maxrss) 1271 psig->cmaxrss = maxrss; 1272 task_io_accounting_add(&psig->ioac, &p->ioac); 1273 task_io_accounting_add(&psig->ioac, &sig->ioac); 1274 spin_unlock_irq(&p->real_parent->sighand->siglock); 1275 } 1276 1277 /* 1278 * Now we are sure this task is interesting, and no other 1279 * thread can reap it because we set its state to EXIT_DEAD. 1280 */ 1281 read_unlock(&tasklist_lock); 1282 1283 retval = wo->wo_rusage 1284 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1285 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1286 ? p->signal->group_exit_code : p->exit_code; 1287 if (!retval && wo->wo_stat) 1288 retval = put_user(status, wo->wo_stat); 1289 1290 infop = wo->wo_info; 1291 if (!retval && infop) 1292 retval = put_user(SIGCHLD, &infop->si_signo); 1293 if (!retval && infop) 1294 retval = put_user(0, &infop->si_errno); 1295 if (!retval && infop) { 1296 int why; 1297 1298 if ((status & 0x7f) == 0) { 1299 why = CLD_EXITED; 1300 status >>= 8; 1301 } else { 1302 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1303 status &= 0x7f; 1304 } 1305 retval = put_user((short)why, &infop->si_code); 1306 if (!retval) 1307 retval = put_user(status, &infop->si_status); 1308 } 1309 if (!retval && infop) 1310 retval = put_user(pid, &infop->si_pid); 1311 if (!retval && infop) 1312 retval = put_user(uid, &infop->si_uid); 1313 if (!retval) 1314 retval = pid; 1315 1316 if (traced) { 1317 write_lock_irq(&tasklist_lock); 1318 /* We dropped tasklist, ptracer could die and untrace */ 1319 ptrace_unlink(p); 1320 /* 1321 * If this is not a detached task, notify the parent. 1322 * If it's still not detached after that, don't release 1323 * it now. 1324 */ 1325 if (!task_detached(p)) { 1326 do_notify_parent(p, p->exit_signal); 1327 if (!task_detached(p)) { 1328 p->exit_state = EXIT_ZOMBIE; 1329 p = NULL; 1330 } 1331 } 1332 write_unlock_irq(&tasklist_lock); 1333 } 1334 if (p != NULL) 1335 release_task(p); 1336 1337 return retval; 1338 } 1339 1340 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1341 { 1342 if (ptrace) { 1343 if (task_is_stopped_or_traced(p)) 1344 return &p->exit_code; 1345 } else { 1346 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1347 return &p->signal->group_exit_code; 1348 } 1349 return NULL; 1350 } 1351 1352 /* 1353 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1354 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1355 * the lock and this task is uninteresting. If we return nonzero, we have 1356 * released the lock and the system call should return. 1357 */ 1358 static int wait_task_stopped(struct wait_opts *wo, 1359 int ptrace, struct task_struct *p) 1360 { 1361 struct siginfo __user *infop; 1362 int retval, exit_code, *p_code, why; 1363 uid_t uid = 0; /* unneeded, required by compiler */ 1364 pid_t pid; 1365 1366 /* 1367 * Traditionally we see ptrace'd stopped tasks regardless of options. 1368 */ 1369 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1370 return 0; 1371 1372 exit_code = 0; 1373 spin_lock_irq(&p->sighand->siglock); 1374 1375 p_code = task_stopped_code(p, ptrace); 1376 if (unlikely(!p_code)) 1377 goto unlock_sig; 1378 1379 exit_code = *p_code; 1380 if (!exit_code) 1381 goto unlock_sig; 1382 1383 if (!unlikely(wo->wo_flags & WNOWAIT)) 1384 *p_code = 0; 1385 1386 /* don't need the RCU readlock here as we're holding a spinlock */ 1387 uid = __task_cred(p)->uid; 1388 unlock_sig: 1389 spin_unlock_irq(&p->sighand->siglock); 1390 if (!exit_code) 1391 return 0; 1392 1393 /* 1394 * Now we are pretty sure this task is interesting. 1395 * Make sure it doesn't get reaped out from under us while we 1396 * give up the lock and then examine it below. We don't want to 1397 * keep holding onto the tasklist_lock while we call getrusage and 1398 * possibly take page faults for user memory. 1399 */ 1400 get_task_struct(p); 1401 pid = task_pid_vnr(p); 1402 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1403 read_unlock(&tasklist_lock); 1404 1405 if (unlikely(wo->wo_flags & WNOWAIT)) 1406 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1407 1408 retval = wo->wo_rusage 1409 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1410 if (!retval && wo->wo_stat) 1411 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1412 1413 infop = wo->wo_info; 1414 if (!retval && infop) 1415 retval = put_user(SIGCHLD, &infop->si_signo); 1416 if (!retval && infop) 1417 retval = put_user(0, &infop->si_errno); 1418 if (!retval && infop) 1419 retval = put_user((short)why, &infop->si_code); 1420 if (!retval && infop) 1421 retval = put_user(exit_code, &infop->si_status); 1422 if (!retval && infop) 1423 retval = put_user(pid, &infop->si_pid); 1424 if (!retval && infop) 1425 retval = put_user(uid, &infop->si_uid); 1426 if (!retval) 1427 retval = pid; 1428 put_task_struct(p); 1429 1430 BUG_ON(!retval); 1431 return retval; 1432 } 1433 1434 /* 1435 * Handle do_wait work for one task in a live, non-stopped state. 1436 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1437 * the lock and this task is uninteresting. If we return nonzero, we have 1438 * released the lock and the system call should return. 1439 */ 1440 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1441 { 1442 int retval; 1443 pid_t pid; 1444 uid_t uid; 1445 1446 if (!unlikely(wo->wo_flags & WCONTINUED)) 1447 return 0; 1448 1449 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1450 return 0; 1451 1452 spin_lock_irq(&p->sighand->siglock); 1453 /* Re-check with the lock held. */ 1454 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1455 spin_unlock_irq(&p->sighand->siglock); 1456 return 0; 1457 } 1458 if (!unlikely(wo->wo_flags & WNOWAIT)) 1459 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1460 uid = __task_cred(p)->uid; 1461 spin_unlock_irq(&p->sighand->siglock); 1462 1463 pid = task_pid_vnr(p); 1464 get_task_struct(p); 1465 read_unlock(&tasklist_lock); 1466 1467 if (!wo->wo_info) { 1468 retval = wo->wo_rusage 1469 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1470 put_task_struct(p); 1471 if (!retval && wo->wo_stat) 1472 retval = put_user(0xffff, wo->wo_stat); 1473 if (!retval) 1474 retval = pid; 1475 } else { 1476 retval = wait_noreap_copyout(wo, p, pid, uid, 1477 CLD_CONTINUED, SIGCONT); 1478 BUG_ON(retval == 0); 1479 } 1480 1481 return retval; 1482 } 1483 1484 /* 1485 * Consider @p for a wait by @parent. 1486 * 1487 * -ECHILD should be in ->notask_error before the first call. 1488 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1489 * Returns zero if the search for a child should continue; 1490 * then ->notask_error is 0 if @p is an eligible child, 1491 * or another error from security_task_wait(), or still -ECHILD. 1492 */ 1493 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1494 struct task_struct *p) 1495 { 1496 int ret = eligible_child(wo, p); 1497 if (!ret) 1498 return ret; 1499 1500 ret = security_task_wait(p); 1501 if (unlikely(ret < 0)) { 1502 /* 1503 * If we have not yet seen any eligible child, 1504 * then let this error code replace -ECHILD. 1505 * A permission error will give the user a clue 1506 * to look for security policy problems, rather 1507 * than for mysterious wait bugs. 1508 */ 1509 if (wo->notask_error) 1510 wo->notask_error = ret; 1511 return 0; 1512 } 1513 1514 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1515 /* 1516 * This child is hidden by ptrace. 1517 * We aren't allowed to see it now, but eventually we will. 1518 */ 1519 wo->notask_error = 0; 1520 return 0; 1521 } 1522 1523 if (p->exit_state == EXIT_DEAD) 1524 return 0; 1525 1526 /* 1527 * We don't reap group leaders with subthreads. 1528 */ 1529 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1530 return wait_task_zombie(wo, p); 1531 1532 /* 1533 * It's stopped or running now, so it might 1534 * later continue, exit, or stop again. 1535 */ 1536 wo->notask_error = 0; 1537 1538 if (task_stopped_code(p, ptrace)) 1539 return wait_task_stopped(wo, ptrace, p); 1540 1541 return wait_task_continued(wo, p); 1542 } 1543 1544 /* 1545 * Do the work of do_wait() for one thread in the group, @tsk. 1546 * 1547 * -ECHILD should be in ->notask_error before the first call. 1548 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1549 * Returns zero if the search for a child should continue; then 1550 * ->notask_error is 0 if there were any eligible children, 1551 * or another error from security_task_wait(), or still -ECHILD. 1552 */ 1553 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1554 { 1555 struct task_struct *p; 1556 1557 list_for_each_entry(p, &tsk->children, sibling) { 1558 int ret = wait_consider_task(wo, 0, p); 1559 if (ret) 1560 return ret; 1561 } 1562 1563 return 0; 1564 } 1565 1566 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1567 { 1568 struct task_struct *p; 1569 1570 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1571 int ret = wait_consider_task(wo, 1, p); 1572 if (ret) 1573 return ret; 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1580 int sync, void *key) 1581 { 1582 struct wait_opts *wo = container_of(wait, struct wait_opts, 1583 child_wait); 1584 struct task_struct *p = key; 1585 1586 if (!eligible_pid(wo, p)) 1587 return 0; 1588 1589 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1590 return 0; 1591 1592 return default_wake_function(wait, mode, sync, key); 1593 } 1594 1595 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1596 { 1597 __wake_up_sync_key(&parent->signal->wait_chldexit, 1598 TASK_INTERRUPTIBLE, 1, p); 1599 } 1600 1601 static long do_wait(struct wait_opts *wo) 1602 { 1603 struct task_struct *tsk; 1604 int retval; 1605 1606 trace_sched_process_wait(wo->wo_pid); 1607 1608 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1609 wo->child_wait.private = current; 1610 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1611 repeat: 1612 /* 1613 * If there is nothing that can match our critiera just get out. 1614 * We will clear ->notask_error to zero if we see any child that 1615 * might later match our criteria, even if we are not able to reap 1616 * it yet. 1617 */ 1618 wo->notask_error = -ECHILD; 1619 if ((wo->wo_type < PIDTYPE_MAX) && 1620 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1621 goto notask; 1622 1623 set_current_state(TASK_INTERRUPTIBLE); 1624 read_lock(&tasklist_lock); 1625 tsk = current; 1626 do { 1627 retval = do_wait_thread(wo, tsk); 1628 if (retval) 1629 goto end; 1630 1631 retval = ptrace_do_wait(wo, tsk); 1632 if (retval) 1633 goto end; 1634 1635 if (wo->wo_flags & __WNOTHREAD) 1636 break; 1637 } while_each_thread(current, tsk); 1638 read_unlock(&tasklist_lock); 1639 1640 notask: 1641 retval = wo->notask_error; 1642 if (!retval && !(wo->wo_flags & WNOHANG)) { 1643 retval = -ERESTARTSYS; 1644 if (!signal_pending(current)) { 1645 schedule(); 1646 goto repeat; 1647 } 1648 } 1649 end: 1650 __set_current_state(TASK_RUNNING); 1651 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1652 return retval; 1653 } 1654 1655 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1656 infop, int, options, struct rusage __user *, ru) 1657 { 1658 struct wait_opts wo; 1659 struct pid *pid = NULL; 1660 enum pid_type type; 1661 long ret; 1662 1663 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1664 return -EINVAL; 1665 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1666 return -EINVAL; 1667 1668 switch (which) { 1669 case P_ALL: 1670 type = PIDTYPE_MAX; 1671 break; 1672 case P_PID: 1673 type = PIDTYPE_PID; 1674 if (upid <= 0) 1675 return -EINVAL; 1676 break; 1677 case P_PGID: 1678 type = PIDTYPE_PGID; 1679 if (upid <= 0) 1680 return -EINVAL; 1681 break; 1682 default: 1683 return -EINVAL; 1684 } 1685 1686 if (type < PIDTYPE_MAX) 1687 pid = find_get_pid(upid); 1688 1689 wo.wo_type = type; 1690 wo.wo_pid = pid; 1691 wo.wo_flags = options; 1692 wo.wo_info = infop; 1693 wo.wo_stat = NULL; 1694 wo.wo_rusage = ru; 1695 ret = do_wait(&wo); 1696 1697 if (ret > 0) { 1698 ret = 0; 1699 } else if (infop) { 1700 /* 1701 * For a WNOHANG return, clear out all the fields 1702 * we would set so the user can easily tell the 1703 * difference. 1704 */ 1705 if (!ret) 1706 ret = put_user(0, &infop->si_signo); 1707 if (!ret) 1708 ret = put_user(0, &infop->si_errno); 1709 if (!ret) 1710 ret = put_user(0, &infop->si_code); 1711 if (!ret) 1712 ret = put_user(0, &infop->si_pid); 1713 if (!ret) 1714 ret = put_user(0, &infop->si_uid); 1715 if (!ret) 1716 ret = put_user(0, &infop->si_status); 1717 } 1718 1719 put_pid(pid); 1720 1721 /* avoid REGPARM breakage on x86: */ 1722 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1723 return ret; 1724 } 1725 1726 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1727 int, options, struct rusage __user *, ru) 1728 { 1729 struct wait_opts wo; 1730 struct pid *pid = NULL; 1731 enum pid_type type; 1732 long ret; 1733 1734 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1735 __WNOTHREAD|__WCLONE|__WALL)) 1736 return -EINVAL; 1737 1738 if (upid == -1) 1739 type = PIDTYPE_MAX; 1740 else if (upid < 0) { 1741 type = PIDTYPE_PGID; 1742 pid = find_get_pid(-upid); 1743 } else if (upid == 0) { 1744 type = PIDTYPE_PGID; 1745 pid = get_task_pid(current, PIDTYPE_PGID); 1746 } else /* upid > 0 */ { 1747 type = PIDTYPE_PID; 1748 pid = find_get_pid(upid); 1749 } 1750 1751 wo.wo_type = type; 1752 wo.wo_pid = pid; 1753 wo.wo_flags = options | WEXITED; 1754 wo.wo_info = NULL; 1755 wo.wo_stat = stat_addr; 1756 wo.wo_rusage = ru; 1757 ret = do_wait(&wo); 1758 put_pid(pid); 1759 1760 /* avoid REGPARM breakage on x86: */ 1761 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1762 return ret; 1763 } 1764 1765 #ifdef __ARCH_WANT_SYS_WAITPID 1766 1767 /* 1768 * sys_waitpid() remains for compatibility. waitpid() should be 1769 * implemented by calling sys_wait4() from libc.a. 1770 */ 1771 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1772 { 1773 return sys_wait4(pid, stat_addr, options, NULL); 1774 } 1775 1776 #endif 1777