1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/unistd.h> 69 #include <asm/pgtable.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *uninitialized_var(tty); 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) { 107 posix_cpu_timers_exit_group(tsk); 108 } else { 109 /* 110 * This can only happen if the caller is de_thread(). 111 * FIXME: this is the temporary hack, we should teach 112 * posix-cpu-timers to handle this case correctly. 113 */ 114 if (unlikely(has_group_leader_pid(tsk))) 115 posix_cpu_timers_exit_group(tsk); 116 } 117 #endif 118 119 if (group_dead) { 120 tty = sig->tty; 121 sig->tty = NULL; 122 } else { 123 /* 124 * If there is any task waiting for the group exit 125 * then notify it: 126 */ 127 if (sig->notify_count > 0 && !--sig->notify_count) 128 wake_up_process(sig->group_exit_task); 129 130 if (tsk == sig->curr_target) 131 sig->curr_target = next_thread(tsk); 132 } 133 134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 135 sizeof(unsigned long long)); 136 137 /* 138 * Accumulate here the counters for all threads as they die. We could 139 * skip the group leader because it is the last user of signal_struct, 140 * but we want to avoid the race with thread_group_cputime() which can 141 * see the empty ->thread_head list. 142 */ 143 task_cputime(tsk, &utime, &stime); 144 write_seqlock(&sig->stats_lock); 145 sig->utime += utime; 146 sig->stime += stime; 147 sig->gtime += task_gtime(tsk); 148 sig->min_flt += tsk->min_flt; 149 sig->maj_flt += tsk->maj_flt; 150 sig->nvcsw += tsk->nvcsw; 151 sig->nivcsw += tsk->nivcsw; 152 sig->inblock += task_io_get_inblock(tsk); 153 sig->oublock += task_io_get_oublock(tsk); 154 task_io_accounting_add(&sig->ioac, &tsk->ioac); 155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 156 sig->nr_threads--; 157 __unhash_process(tsk, group_dead); 158 write_sequnlock(&sig->stats_lock); 159 160 /* 161 * Do this under ->siglock, we can race with another thread 162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 163 */ 164 flush_sigqueue(&tsk->pending); 165 tsk->sighand = NULL; 166 spin_unlock(&sighand->siglock); 167 168 __cleanup_sighand(sighand); 169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 170 if (group_dead) { 171 flush_sigqueue(&sig->shared_pending); 172 tty_kref_put(tty); 173 } 174 } 175 176 static void delayed_put_task_struct(struct rcu_head *rhp) 177 { 178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 179 180 perf_event_delayed_put(tsk); 181 trace_sched_process_free(tsk); 182 put_task_struct(tsk); 183 } 184 185 void put_task_struct_rcu_user(struct task_struct *task) 186 { 187 if (refcount_dec_and_test(&task->rcu_users)) 188 call_rcu(&task->rcu, delayed_put_task_struct); 189 } 190 191 void release_task(struct task_struct *p) 192 { 193 struct task_struct *leader; 194 int zap_leader; 195 repeat: 196 /* don't need to get the RCU readlock here - the process is dead and 197 * can't be modifying its own credentials. But shut RCU-lockdep up */ 198 rcu_read_lock(); 199 atomic_dec(&__task_cred(p)->user->processes); 200 rcu_read_unlock(); 201 202 proc_flush_task(p); 203 cgroup_release(p); 204 205 write_lock_irq(&tasklist_lock); 206 ptrace_release_task(p); 207 __exit_signal(p); 208 209 /* 210 * If we are the last non-leader member of the thread 211 * group, and the leader is zombie, then notify the 212 * group leader's parent process. (if it wants notification.) 213 */ 214 zap_leader = 0; 215 leader = p->group_leader; 216 if (leader != p && thread_group_empty(leader) 217 && leader->exit_state == EXIT_ZOMBIE) { 218 /* 219 * If we were the last child thread and the leader has 220 * exited already, and the leader's parent ignores SIGCHLD, 221 * then we are the one who should release the leader. 222 */ 223 zap_leader = do_notify_parent(leader, leader->exit_signal); 224 if (zap_leader) 225 leader->exit_state = EXIT_DEAD; 226 } 227 228 write_unlock_irq(&tasklist_lock); 229 release_thread(p); 230 put_task_struct_rcu_user(p); 231 232 p = leader; 233 if (unlikely(zap_leader)) 234 goto repeat; 235 } 236 237 void rcuwait_wake_up(struct rcuwait *w) 238 { 239 struct task_struct *task; 240 241 rcu_read_lock(); 242 243 /* 244 * Order condition vs @task, such that everything prior to the load 245 * of @task is visible. This is the condition as to why the user called 246 * rcuwait_trywake() in the first place. Pairs with set_current_state() 247 * barrier (A) in rcuwait_wait_event(). 248 * 249 * WAIT WAKE 250 * [S] tsk = current [S] cond = true 251 * MB (A) MB (B) 252 * [L] cond [L] tsk 253 */ 254 smp_mb(); /* (B) */ 255 256 task = rcu_dereference(w->task); 257 if (task) 258 wake_up_process(task); 259 rcu_read_unlock(); 260 } 261 262 /* 263 * Determine if a process group is "orphaned", according to the POSIX 264 * definition in 2.2.2.52. Orphaned process groups are not to be affected 265 * by terminal-generated stop signals. Newly orphaned process groups are 266 * to receive a SIGHUP and a SIGCONT. 267 * 268 * "I ask you, have you ever known what it is to be an orphan?" 269 */ 270 static int will_become_orphaned_pgrp(struct pid *pgrp, 271 struct task_struct *ignored_task) 272 { 273 struct task_struct *p; 274 275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 276 if ((p == ignored_task) || 277 (p->exit_state && thread_group_empty(p)) || 278 is_global_init(p->real_parent)) 279 continue; 280 281 if (task_pgrp(p->real_parent) != pgrp && 282 task_session(p->real_parent) == task_session(p)) 283 return 0; 284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 285 286 return 1; 287 } 288 289 int is_current_pgrp_orphaned(void) 290 { 291 int retval; 292 293 read_lock(&tasklist_lock); 294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 295 read_unlock(&tasklist_lock); 296 297 return retval; 298 } 299 300 static bool has_stopped_jobs(struct pid *pgrp) 301 { 302 struct task_struct *p; 303 304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 305 if (p->signal->flags & SIGNAL_STOP_STOPPED) 306 return true; 307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 308 309 return false; 310 } 311 312 /* 313 * Check to see if any process groups have become orphaned as 314 * a result of our exiting, and if they have any stopped jobs, 315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 316 */ 317 static void 318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 319 { 320 struct pid *pgrp = task_pgrp(tsk); 321 struct task_struct *ignored_task = tsk; 322 323 if (!parent) 324 /* exit: our father is in a different pgrp than 325 * we are and we were the only connection outside. 326 */ 327 parent = tsk->real_parent; 328 else 329 /* reparent: our child is in a different pgrp than 330 * we are, and it was the only connection outside. 331 */ 332 ignored_task = NULL; 333 334 if (task_pgrp(parent) != pgrp && 335 task_session(parent) == task_session(tsk) && 336 will_become_orphaned_pgrp(pgrp, ignored_task) && 337 has_stopped_jobs(pgrp)) { 338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 340 } 341 } 342 343 #ifdef CONFIG_MEMCG 344 /* 345 * A task is exiting. If it owned this mm, find a new owner for the mm. 346 */ 347 void mm_update_next_owner(struct mm_struct *mm) 348 { 349 struct task_struct *c, *g, *p = current; 350 351 retry: 352 /* 353 * If the exiting or execing task is not the owner, it's 354 * someone else's problem. 355 */ 356 if (mm->owner != p) 357 return; 358 /* 359 * The current owner is exiting/execing and there are no other 360 * candidates. Do not leave the mm pointing to a possibly 361 * freed task structure. 362 */ 363 if (atomic_read(&mm->mm_users) <= 1) { 364 WRITE_ONCE(mm->owner, NULL); 365 return; 366 } 367 368 read_lock(&tasklist_lock); 369 /* 370 * Search in the children 371 */ 372 list_for_each_entry(c, &p->children, sibling) { 373 if (c->mm == mm) 374 goto assign_new_owner; 375 } 376 377 /* 378 * Search in the siblings 379 */ 380 list_for_each_entry(c, &p->real_parent->children, sibling) { 381 if (c->mm == mm) 382 goto assign_new_owner; 383 } 384 385 /* 386 * Search through everything else, we should not get here often. 387 */ 388 for_each_process(g) { 389 if (g->flags & PF_KTHREAD) 390 continue; 391 for_each_thread(g, c) { 392 if (c->mm == mm) 393 goto assign_new_owner; 394 if (c->mm) 395 break; 396 } 397 } 398 read_unlock(&tasklist_lock); 399 /* 400 * We found no owner yet mm_users > 1: this implies that we are 401 * most likely racing with swapoff (try_to_unuse()) or /proc or 402 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 403 */ 404 WRITE_ONCE(mm->owner, NULL); 405 return; 406 407 assign_new_owner: 408 BUG_ON(c == p); 409 get_task_struct(c); 410 /* 411 * The task_lock protects c->mm from changing. 412 * We always want mm->owner->mm == mm 413 */ 414 task_lock(c); 415 /* 416 * Delay read_unlock() till we have the task_lock() 417 * to ensure that c does not slip away underneath us 418 */ 419 read_unlock(&tasklist_lock); 420 if (c->mm != mm) { 421 task_unlock(c); 422 put_task_struct(c); 423 goto retry; 424 } 425 WRITE_ONCE(mm->owner, c); 426 task_unlock(c); 427 put_task_struct(c); 428 } 429 #endif /* CONFIG_MEMCG */ 430 431 /* 432 * Turn us into a lazy TLB process if we 433 * aren't already.. 434 */ 435 static void exit_mm(void) 436 { 437 struct mm_struct *mm = current->mm; 438 struct core_state *core_state; 439 440 mm_release(current, mm); 441 if (!mm) 442 return; 443 sync_mm_rss(mm); 444 /* 445 * Serialize with any possible pending coredump. 446 * We must hold mmap_sem around checking core_state 447 * and clearing tsk->mm. The core-inducing thread 448 * will increment ->nr_threads for each thread in the 449 * group with ->mm != NULL. 450 */ 451 down_read(&mm->mmap_sem); 452 core_state = mm->core_state; 453 if (core_state) { 454 struct core_thread self; 455 456 up_read(&mm->mmap_sem); 457 458 self.task = current; 459 self.next = xchg(&core_state->dumper.next, &self); 460 /* 461 * Implies mb(), the result of xchg() must be visible 462 * to core_state->dumper. 463 */ 464 if (atomic_dec_and_test(&core_state->nr_threads)) 465 complete(&core_state->startup); 466 467 for (;;) { 468 set_current_state(TASK_UNINTERRUPTIBLE); 469 if (!self.task) /* see coredump_finish() */ 470 break; 471 freezable_schedule(); 472 } 473 __set_current_state(TASK_RUNNING); 474 down_read(&mm->mmap_sem); 475 } 476 mmgrab(mm); 477 BUG_ON(mm != current->active_mm); 478 /* more a memory barrier than a real lock */ 479 task_lock(current); 480 current->mm = NULL; 481 up_read(&mm->mmap_sem); 482 enter_lazy_tlb(mm, current); 483 task_unlock(current); 484 mm_update_next_owner(mm); 485 mmput(mm); 486 if (test_thread_flag(TIF_MEMDIE)) 487 exit_oom_victim(); 488 } 489 490 static struct task_struct *find_alive_thread(struct task_struct *p) 491 { 492 struct task_struct *t; 493 494 for_each_thread(p, t) { 495 if (!(t->flags & PF_EXITING)) 496 return t; 497 } 498 return NULL; 499 } 500 501 static struct task_struct *find_child_reaper(struct task_struct *father, 502 struct list_head *dead) 503 __releases(&tasklist_lock) 504 __acquires(&tasklist_lock) 505 { 506 struct pid_namespace *pid_ns = task_active_pid_ns(father); 507 struct task_struct *reaper = pid_ns->child_reaper; 508 struct task_struct *p, *n; 509 510 if (likely(reaper != father)) 511 return reaper; 512 513 reaper = find_alive_thread(father); 514 if (reaper) { 515 pid_ns->child_reaper = reaper; 516 return reaper; 517 } 518 519 write_unlock_irq(&tasklist_lock); 520 if (unlikely(pid_ns == &init_pid_ns)) { 521 panic("Attempted to kill init! exitcode=0x%08x\n", 522 father->signal->group_exit_code ?: father->exit_code); 523 } 524 525 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 526 list_del_init(&p->ptrace_entry); 527 release_task(p); 528 } 529 530 zap_pid_ns_processes(pid_ns); 531 write_lock_irq(&tasklist_lock); 532 533 return father; 534 } 535 536 /* 537 * When we die, we re-parent all our children, and try to: 538 * 1. give them to another thread in our thread group, if such a member exists 539 * 2. give it to the first ancestor process which prctl'd itself as a 540 * child_subreaper for its children (like a service manager) 541 * 3. give it to the init process (PID 1) in our pid namespace 542 */ 543 static struct task_struct *find_new_reaper(struct task_struct *father, 544 struct task_struct *child_reaper) 545 { 546 struct task_struct *thread, *reaper; 547 548 thread = find_alive_thread(father); 549 if (thread) 550 return thread; 551 552 if (father->signal->has_child_subreaper) { 553 unsigned int ns_level = task_pid(father)->level; 554 /* 555 * Find the first ->is_child_subreaper ancestor in our pid_ns. 556 * We can't check reaper != child_reaper to ensure we do not 557 * cross the namespaces, the exiting parent could be injected 558 * by setns() + fork(). 559 * We check pid->level, this is slightly more efficient than 560 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 561 */ 562 for (reaper = father->real_parent; 563 task_pid(reaper)->level == ns_level; 564 reaper = reaper->real_parent) { 565 if (reaper == &init_task) 566 break; 567 if (!reaper->signal->is_child_subreaper) 568 continue; 569 thread = find_alive_thread(reaper); 570 if (thread) 571 return thread; 572 } 573 } 574 575 return child_reaper; 576 } 577 578 /* 579 * Any that need to be release_task'd are put on the @dead list. 580 */ 581 static void reparent_leader(struct task_struct *father, struct task_struct *p, 582 struct list_head *dead) 583 { 584 if (unlikely(p->exit_state == EXIT_DEAD)) 585 return; 586 587 /* We don't want people slaying init. */ 588 p->exit_signal = SIGCHLD; 589 590 /* If it has exited notify the new parent about this child's death. */ 591 if (!p->ptrace && 592 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 593 if (do_notify_parent(p, p->exit_signal)) { 594 p->exit_state = EXIT_DEAD; 595 list_add(&p->ptrace_entry, dead); 596 } 597 } 598 599 kill_orphaned_pgrp(p, father); 600 } 601 602 /* 603 * This does two things: 604 * 605 * A. Make init inherit all the child processes 606 * B. Check to see if any process groups have become orphaned 607 * as a result of our exiting, and if they have any stopped 608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 609 */ 610 static void forget_original_parent(struct task_struct *father, 611 struct list_head *dead) 612 { 613 struct task_struct *p, *t, *reaper; 614 615 if (unlikely(!list_empty(&father->ptraced))) 616 exit_ptrace(father, dead); 617 618 /* Can drop and reacquire tasklist_lock */ 619 reaper = find_child_reaper(father, dead); 620 if (list_empty(&father->children)) 621 return; 622 623 reaper = find_new_reaper(father, reaper); 624 list_for_each_entry(p, &father->children, sibling) { 625 for_each_thread(p, t) { 626 t->real_parent = reaper; 627 BUG_ON((!t->ptrace) != (t->parent == father)); 628 if (likely(!t->ptrace)) 629 t->parent = t->real_parent; 630 if (t->pdeath_signal) 631 group_send_sig_info(t->pdeath_signal, 632 SEND_SIG_NOINFO, t, 633 PIDTYPE_TGID); 634 } 635 /* 636 * If this is a threaded reparent there is no need to 637 * notify anyone anything has happened. 638 */ 639 if (!same_thread_group(reaper, father)) 640 reparent_leader(father, p, dead); 641 } 642 list_splice_tail_init(&father->children, &reaper->children); 643 } 644 645 /* 646 * Send signals to all our closest relatives so that they know 647 * to properly mourn us.. 648 */ 649 static void exit_notify(struct task_struct *tsk, int group_dead) 650 { 651 bool autoreap; 652 struct task_struct *p, *n; 653 LIST_HEAD(dead); 654 655 write_lock_irq(&tasklist_lock); 656 forget_original_parent(tsk, &dead); 657 658 if (group_dead) 659 kill_orphaned_pgrp(tsk->group_leader, NULL); 660 661 tsk->exit_state = EXIT_ZOMBIE; 662 if (unlikely(tsk->ptrace)) { 663 int sig = thread_group_leader(tsk) && 664 thread_group_empty(tsk) && 665 !ptrace_reparented(tsk) ? 666 tsk->exit_signal : SIGCHLD; 667 autoreap = do_notify_parent(tsk, sig); 668 } else if (thread_group_leader(tsk)) { 669 autoreap = thread_group_empty(tsk) && 670 do_notify_parent(tsk, tsk->exit_signal); 671 } else { 672 autoreap = true; 673 } 674 675 if (autoreap) { 676 tsk->exit_state = EXIT_DEAD; 677 list_add(&tsk->ptrace_entry, &dead); 678 } 679 680 /* mt-exec, de_thread() is waiting for group leader */ 681 if (unlikely(tsk->signal->notify_count < 0)) 682 wake_up_process(tsk->signal->group_exit_task); 683 write_unlock_irq(&tasklist_lock); 684 685 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 686 list_del_init(&p->ptrace_entry); 687 release_task(p); 688 } 689 } 690 691 #ifdef CONFIG_DEBUG_STACK_USAGE 692 static void check_stack_usage(void) 693 { 694 static DEFINE_SPINLOCK(low_water_lock); 695 static int lowest_to_date = THREAD_SIZE; 696 unsigned long free; 697 698 free = stack_not_used(current); 699 700 if (free >= lowest_to_date) 701 return; 702 703 spin_lock(&low_water_lock); 704 if (free < lowest_to_date) { 705 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 706 current->comm, task_pid_nr(current), free); 707 lowest_to_date = free; 708 } 709 spin_unlock(&low_water_lock); 710 } 711 #else 712 static inline void check_stack_usage(void) {} 713 #endif 714 715 void __noreturn do_exit(long code) 716 { 717 struct task_struct *tsk = current; 718 int group_dead; 719 720 profile_task_exit(tsk); 721 kcov_task_exit(tsk); 722 723 WARN_ON(blk_needs_flush_plug(tsk)); 724 725 if (unlikely(in_interrupt())) 726 panic("Aiee, killing interrupt handler!"); 727 if (unlikely(!tsk->pid)) 728 panic("Attempted to kill the idle task!"); 729 730 /* 731 * If do_exit is called because this processes oopsed, it's possible 732 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 733 * continuing. Amongst other possible reasons, this is to prevent 734 * mm_release()->clear_child_tid() from writing to a user-controlled 735 * kernel address. 736 */ 737 set_fs(USER_DS); 738 739 ptrace_event(PTRACE_EVENT_EXIT, code); 740 741 validate_creds_for_do_exit(tsk); 742 743 /* 744 * We're taking recursive faults here in do_exit. Safest is to just 745 * leave this task alone and wait for reboot. 746 */ 747 if (unlikely(tsk->flags & PF_EXITING)) { 748 pr_alert("Fixing recursive fault but reboot is needed!\n"); 749 /* 750 * We can do this unlocked here. The futex code uses 751 * this flag just to verify whether the pi state 752 * cleanup has been done or not. In the worst case it 753 * loops once more. We pretend that the cleanup was 754 * done as there is no way to return. Either the 755 * OWNER_DIED bit is set by now or we push the blocked 756 * task into the wait for ever nirwana as well. 757 */ 758 tsk->flags |= PF_EXITPIDONE; 759 set_current_state(TASK_UNINTERRUPTIBLE); 760 schedule(); 761 } 762 763 exit_signals(tsk); /* sets PF_EXITING */ 764 /* 765 * Ensure that all new tsk->pi_lock acquisitions must observe 766 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 767 */ 768 smp_mb(); 769 /* 770 * Ensure that we must observe the pi_state in exit_mm() -> 771 * mm_release() -> exit_pi_state_list(). 772 */ 773 raw_spin_lock_irq(&tsk->pi_lock); 774 raw_spin_unlock_irq(&tsk->pi_lock); 775 776 if (unlikely(in_atomic())) { 777 pr_info("note: %s[%d] exited with preempt_count %d\n", 778 current->comm, task_pid_nr(current), 779 preempt_count()); 780 preempt_count_set(PREEMPT_ENABLED); 781 } 782 783 /* sync mm's RSS info before statistics gathering */ 784 if (tsk->mm) 785 sync_mm_rss(tsk->mm); 786 acct_update_integrals(tsk); 787 group_dead = atomic_dec_and_test(&tsk->signal->live); 788 if (group_dead) { 789 #ifdef CONFIG_POSIX_TIMERS 790 hrtimer_cancel(&tsk->signal->real_timer); 791 exit_itimers(tsk->signal); 792 #endif 793 if (tsk->mm) 794 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 795 } 796 acct_collect(code, group_dead); 797 if (group_dead) 798 tty_audit_exit(); 799 audit_free(tsk); 800 801 tsk->exit_code = code; 802 taskstats_exit(tsk, group_dead); 803 804 exit_mm(); 805 806 if (group_dead) 807 acct_process(); 808 trace_sched_process_exit(tsk); 809 810 exit_sem(tsk); 811 exit_shm(tsk); 812 exit_files(tsk); 813 exit_fs(tsk); 814 if (group_dead) 815 disassociate_ctty(1); 816 exit_task_namespaces(tsk); 817 exit_task_work(tsk); 818 exit_thread(tsk); 819 exit_umh(tsk); 820 821 /* 822 * Flush inherited counters to the parent - before the parent 823 * gets woken up by child-exit notifications. 824 * 825 * because of cgroup mode, must be called before cgroup_exit() 826 */ 827 perf_event_exit_task(tsk); 828 829 sched_autogroup_exit_task(tsk); 830 cgroup_exit(tsk); 831 832 /* 833 * FIXME: do that only when needed, using sched_exit tracepoint 834 */ 835 flush_ptrace_hw_breakpoint(tsk); 836 837 exit_tasks_rcu_start(); 838 exit_notify(tsk, group_dead); 839 proc_exit_connector(tsk); 840 mpol_put_task_policy(tsk); 841 #ifdef CONFIG_FUTEX 842 if (unlikely(current->pi_state_cache)) 843 kfree(current->pi_state_cache); 844 #endif 845 /* 846 * Make sure we are holding no locks: 847 */ 848 debug_check_no_locks_held(); 849 /* 850 * We can do this unlocked here. The futex code uses this flag 851 * just to verify whether the pi state cleanup has been done 852 * or not. In the worst case it loops once more. 853 */ 854 tsk->flags |= PF_EXITPIDONE; 855 856 if (tsk->io_context) 857 exit_io_context(tsk); 858 859 if (tsk->splice_pipe) 860 free_pipe_info(tsk->splice_pipe); 861 862 if (tsk->task_frag.page) 863 put_page(tsk->task_frag.page); 864 865 validate_creds_for_do_exit(tsk); 866 867 check_stack_usage(); 868 preempt_disable(); 869 if (tsk->nr_dirtied) 870 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 871 exit_rcu(); 872 exit_tasks_rcu_finish(); 873 874 lockdep_free_task(tsk); 875 do_task_dead(); 876 } 877 EXPORT_SYMBOL_GPL(do_exit); 878 879 void complete_and_exit(struct completion *comp, long code) 880 { 881 if (comp) 882 complete(comp); 883 884 do_exit(code); 885 } 886 EXPORT_SYMBOL(complete_and_exit); 887 888 SYSCALL_DEFINE1(exit, int, error_code) 889 { 890 do_exit((error_code&0xff)<<8); 891 } 892 893 /* 894 * Take down every thread in the group. This is called by fatal signals 895 * as well as by sys_exit_group (below). 896 */ 897 void 898 do_group_exit(int exit_code) 899 { 900 struct signal_struct *sig = current->signal; 901 902 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 903 904 if (signal_group_exit(sig)) 905 exit_code = sig->group_exit_code; 906 else if (!thread_group_empty(current)) { 907 struct sighand_struct *const sighand = current->sighand; 908 909 spin_lock_irq(&sighand->siglock); 910 if (signal_group_exit(sig)) 911 /* Another thread got here before we took the lock. */ 912 exit_code = sig->group_exit_code; 913 else { 914 sig->group_exit_code = exit_code; 915 sig->flags = SIGNAL_GROUP_EXIT; 916 zap_other_threads(current); 917 } 918 spin_unlock_irq(&sighand->siglock); 919 } 920 921 do_exit(exit_code); 922 /* NOTREACHED */ 923 } 924 925 /* 926 * this kills every thread in the thread group. Note that any externally 927 * wait4()-ing process will get the correct exit code - even if this 928 * thread is not the thread group leader. 929 */ 930 SYSCALL_DEFINE1(exit_group, int, error_code) 931 { 932 do_group_exit((error_code & 0xff) << 8); 933 /* NOTREACHED */ 934 return 0; 935 } 936 937 struct waitid_info { 938 pid_t pid; 939 uid_t uid; 940 int status; 941 int cause; 942 }; 943 944 struct wait_opts { 945 enum pid_type wo_type; 946 int wo_flags; 947 struct pid *wo_pid; 948 949 struct waitid_info *wo_info; 950 int wo_stat; 951 struct rusage *wo_rusage; 952 953 wait_queue_entry_t child_wait; 954 int notask_error; 955 }; 956 957 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 958 { 959 return wo->wo_type == PIDTYPE_MAX || 960 task_pid_type(p, wo->wo_type) == wo->wo_pid; 961 } 962 963 static int 964 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 965 { 966 if (!eligible_pid(wo, p)) 967 return 0; 968 969 /* 970 * Wait for all children (clone and not) if __WALL is set or 971 * if it is traced by us. 972 */ 973 if (ptrace || (wo->wo_flags & __WALL)) 974 return 1; 975 976 /* 977 * Otherwise, wait for clone children *only* if __WCLONE is set; 978 * otherwise, wait for non-clone children *only*. 979 * 980 * Note: a "clone" child here is one that reports to its parent 981 * using a signal other than SIGCHLD, or a non-leader thread which 982 * we can only see if it is traced by us. 983 */ 984 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 985 return 0; 986 987 return 1; 988 } 989 990 /* 991 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 992 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 993 * the lock and this task is uninteresting. If we return nonzero, we have 994 * released the lock and the system call should return. 995 */ 996 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 997 { 998 int state, status; 999 pid_t pid = task_pid_vnr(p); 1000 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1001 struct waitid_info *infop; 1002 1003 if (!likely(wo->wo_flags & WEXITED)) 1004 return 0; 1005 1006 if (unlikely(wo->wo_flags & WNOWAIT)) { 1007 status = p->exit_code; 1008 get_task_struct(p); 1009 read_unlock(&tasklist_lock); 1010 sched_annotate_sleep(); 1011 if (wo->wo_rusage) 1012 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1013 put_task_struct(p); 1014 goto out_info; 1015 } 1016 /* 1017 * Move the task's state to DEAD/TRACE, only one thread can do this. 1018 */ 1019 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1020 EXIT_TRACE : EXIT_DEAD; 1021 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1022 return 0; 1023 /* 1024 * We own this thread, nobody else can reap it. 1025 */ 1026 read_unlock(&tasklist_lock); 1027 sched_annotate_sleep(); 1028 1029 /* 1030 * Check thread_group_leader() to exclude the traced sub-threads. 1031 */ 1032 if (state == EXIT_DEAD && thread_group_leader(p)) { 1033 struct signal_struct *sig = p->signal; 1034 struct signal_struct *psig = current->signal; 1035 unsigned long maxrss; 1036 u64 tgutime, tgstime; 1037 1038 /* 1039 * The resource counters for the group leader are in its 1040 * own task_struct. Those for dead threads in the group 1041 * are in its signal_struct, as are those for the child 1042 * processes it has previously reaped. All these 1043 * accumulate in the parent's signal_struct c* fields. 1044 * 1045 * We don't bother to take a lock here to protect these 1046 * p->signal fields because the whole thread group is dead 1047 * and nobody can change them. 1048 * 1049 * psig->stats_lock also protects us from our sub-theads 1050 * which can reap other children at the same time. Until 1051 * we change k_getrusage()-like users to rely on this lock 1052 * we have to take ->siglock as well. 1053 * 1054 * We use thread_group_cputime_adjusted() to get times for 1055 * the thread group, which consolidates times for all threads 1056 * in the group including the group leader. 1057 */ 1058 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1059 spin_lock_irq(¤t->sighand->siglock); 1060 write_seqlock(&psig->stats_lock); 1061 psig->cutime += tgutime + sig->cutime; 1062 psig->cstime += tgstime + sig->cstime; 1063 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1064 psig->cmin_flt += 1065 p->min_flt + sig->min_flt + sig->cmin_flt; 1066 psig->cmaj_flt += 1067 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1068 psig->cnvcsw += 1069 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1070 psig->cnivcsw += 1071 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1072 psig->cinblock += 1073 task_io_get_inblock(p) + 1074 sig->inblock + sig->cinblock; 1075 psig->coublock += 1076 task_io_get_oublock(p) + 1077 sig->oublock + sig->coublock; 1078 maxrss = max(sig->maxrss, sig->cmaxrss); 1079 if (psig->cmaxrss < maxrss) 1080 psig->cmaxrss = maxrss; 1081 task_io_accounting_add(&psig->ioac, &p->ioac); 1082 task_io_accounting_add(&psig->ioac, &sig->ioac); 1083 write_sequnlock(&psig->stats_lock); 1084 spin_unlock_irq(¤t->sighand->siglock); 1085 } 1086 1087 if (wo->wo_rusage) 1088 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1089 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1090 ? p->signal->group_exit_code : p->exit_code; 1091 wo->wo_stat = status; 1092 1093 if (state == EXIT_TRACE) { 1094 write_lock_irq(&tasklist_lock); 1095 /* We dropped tasklist, ptracer could die and untrace */ 1096 ptrace_unlink(p); 1097 1098 /* If parent wants a zombie, don't release it now */ 1099 state = EXIT_ZOMBIE; 1100 if (do_notify_parent(p, p->exit_signal)) 1101 state = EXIT_DEAD; 1102 p->exit_state = state; 1103 write_unlock_irq(&tasklist_lock); 1104 } 1105 if (state == EXIT_DEAD) 1106 release_task(p); 1107 1108 out_info: 1109 infop = wo->wo_info; 1110 if (infop) { 1111 if ((status & 0x7f) == 0) { 1112 infop->cause = CLD_EXITED; 1113 infop->status = status >> 8; 1114 } else { 1115 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1116 infop->status = status & 0x7f; 1117 } 1118 infop->pid = pid; 1119 infop->uid = uid; 1120 } 1121 1122 return pid; 1123 } 1124 1125 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1126 { 1127 if (ptrace) { 1128 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1129 return &p->exit_code; 1130 } else { 1131 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1132 return &p->signal->group_exit_code; 1133 } 1134 return NULL; 1135 } 1136 1137 /** 1138 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1139 * @wo: wait options 1140 * @ptrace: is the wait for ptrace 1141 * @p: task to wait for 1142 * 1143 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1144 * 1145 * CONTEXT: 1146 * read_lock(&tasklist_lock), which is released if return value is 1147 * non-zero. Also, grabs and releases @p->sighand->siglock. 1148 * 1149 * RETURNS: 1150 * 0 if wait condition didn't exist and search for other wait conditions 1151 * should continue. Non-zero return, -errno on failure and @p's pid on 1152 * success, implies that tasklist_lock is released and wait condition 1153 * search should terminate. 1154 */ 1155 static int wait_task_stopped(struct wait_opts *wo, 1156 int ptrace, struct task_struct *p) 1157 { 1158 struct waitid_info *infop; 1159 int exit_code, *p_code, why; 1160 uid_t uid = 0; /* unneeded, required by compiler */ 1161 pid_t pid; 1162 1163 /* 1164 * Traditionally we see ptrace'd stopped tasks regardless of options. 1165 */ 1166 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1167 return 0; 1168 1169 if (!task_stopped_code(p, ptrace)) 1170 return 0; 1171 1172 exit_code = 0; 1173 spin_lock_irq(&p->sighand->siglock); 1174 1175 p_code = task_stopped_code(p, ptrace); 1176 if (unlikely(!p_code)) 1177 goto unlock_sig; 1178 1179 exit_code = *p_code; 1180 if (!exit_code) 1181 goto unlock_sig; 1182 1183 if (!unlikely(wo->wo_flags & WNOWAIT)) 1184 *p_code = 0; 1185 1186 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1187 unlock_sig: 1188 spin_unlock_irq(&p->sighand->siglock); 1189 if (!exit_code) 1190 return 0; 1191 1192 /* 1193 * Now we are pretty sure this task is interesting. 1194 * Make sure it doesn't get reaped out from under us while we 1195 * give up the lock and then examine it below. We don't want to 1196 * keep holding onto the tasklist_lock while we call getrusage and 1197 * possibly take page faults for user memory. 1198 */ 1199 get_task_struct(p); 1200 pid = task_pid_vnr(p); 1201 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1202 read_unlock(&tasklist_lock); 1203 sched_annotate_sleep(); 1204 if (wo->wo_rusage) 1205 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1206 put_task_struct(p); 1207 1208 if (likely(!(wo->wo_flags & WNOWAIT))) 1209 wo->wo_stat = (exit_code << 8) | 0x7f; 1210 1211 infop = wo->wo_info; 1212 if (infop) { 1213 infop->cause = why; 1214 infop->status = exit_code; 1215 infop->pid = pid; 1216 infop->uid = uid; 1217 } 1218 return pid; 1219 } 1220 1221 /* 1222 * Handle do_wait work for one task in a live, non-stopped state. 1223 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1224 * the lock and this task is uninteresting. If we return nonzero, we have 1225 * released the lock and the system call should return. 1226 */ 1227 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1228 { 1229 struct waitid_info *infop; 1230 pid_t pid; 1231 uid_t uid; 1232 1233 if (!unlikely(wo->wo_flags & WCONTINUED)) 1234 return 0; 1235 1236 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1237 return 0; 1238 1239 spin_lock_irq(&p->sighand->siglock); 1240 /* Re-check with the lock held. */ 1241 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1242 spin_unlock_irq(&p->sighand->siglock); 1243 return 0; 1244 } 1245 if (!unlikely(wo->wo_flags & WNOWAIT)) 1246 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1247 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1248 spin_unlock_irq(&p->sighand->siglock); 1249 1250 pid = task_pid_vnr(p); 1251 get_task_struct(p); 1252 read_unlock(&tasklist_lock); 1253 sched_annotate_sleep(); 1254 if (wo->wo_rusage) 1255 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1256 put_task_struct(p); 1257 1258 infop = wo->wo_info; 1259 if (!infop) { 1260 wo->wo_stat = 0xffff; 1261 } else { 1262 infop->cause = CLD_CONTINUED; 1263 infop->pid = pid; 1264 infop->uid = uid; 1265 infop->status = SIGCONT; 1266 } 1267 return pid; 1268 } 1269 1270 /* 1271 * Consider @p for a wait by @parent. 1272 * 1273 * -ECHILD should be in ->notask_error before the first call. 1274 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1275 * Returns zero if the search for a child should continue; 1276 * then ->notask_error is 0 if @p is an eligible child, 1277 * or still -ECHILD. 1278 */ 1279 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1280 struct task_struct *p) 1281 { 1282 /* 1283 * We can race with wait_task_zombie() from another thread. 1284 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1285 * can't confuse the checks below. 1286 */ 1287 int exit_state = READ_ONCE(p->exit_state); 1288 int ret; 1289 1290 if (unlikely(exit_state == EXIT_DEAD)) 1291 return 0; 1292 1293 ret = eligible_child(wo, ptrace, p); 1294 if (!ret) 1295 return ret; 1296 1297 if (unlikely(exit_state == EXIT_TRACE)) { 1298 /* 1299 * ptrace == 0 means we are the natural parent. In this case 1300 * we should clear notask_error, debugger will notify us. 1301 */ 1302 if (likely(!ptrace)) 1303 wo->notask_error = 0; 1304 return 0; 1305 } 1306 1307 if (likely(!ptrace) && unlikely(p->ptrace)) { 1308 /* 1309 * If it is traced by its real parent's group, just pretend 1310 * the caller is ptrace_do_wait() and reap this child if it 1311 * is zombie. 1312 * 1313 * This also hides group stop state from real parent; otherwise 1314 * a single stop can be reported twice as group and ptrace stop. 1315 * If a ptracer wants to distinguish these two events for its 1316 * own children it should create a separate process which takes 1317 * the role of real parent. 1318 */ 1319 if (!ptrace_reparented(p)) 1320 ptrace = 1; 1321 } 1322 1323 /* slay zombie? */ 1324 if (exit_state == EXIT_ZOMBIE) { 1325 /* we don't reap group leaders with subthreads */ 1326 if (!delay_group_leader(p)) { 1327 /* 1328 * A zombie ptracee is only visible to its ptracer. 1329 * Notification and reaping will be cascaded to the 1330 * real parent when the ptracer detaches. 1331 */ 1332 if (unlikely(ptrace) || likely(!p->ptrace)) 1333 return wait_task_zombie(wo, p); 1334 } 1335 1336 /* 1337 * Allow access to stopped/continued state via zombie by 1338 * falling through. Clearing of notask_error is complex. 1339 * 1340 * When !@ptrace: 1341 * 1342 * If WEXITED is set, notask_error should naturally be 1343 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1344 * so, if there are live subthreads, there are events to 1345 * wait for. If all subthreads are dead, it's still safe 1346 * to clear - this function will be called again in finite 1347 * amount time once all the subthreads are released and 1348 * will then return without clearing. 1349 * 1350 * When @ptrace: 1351 * 1352 * Stopped state is per-task and thus can't change once the 1353 * target task dies. Only continued and exited can happen. 1354 * Clear notask_error if WCONTINUED | WEXITED. 1355 */ 1356 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1357 wo->notask_error = 0; 1358 } else { 1359 /* 1360 * @p is alive and it's gonna stop, continue or exit, so 1361 * there always is something to wait for. 1362 */ 1363 wo->notask_error = 0; 1364 } 1365 1366 /* 1367 * Wait for stopped. Depending on @ptrace, different stopped state 1368 * is used and the two don't interact with each other. 1369 */ 1370 ret = wait_task_stopped(wo, ptrace, p); 1371 if (ret) 1372 return ret; 1373 1374 /* 1375 * Wait for continued. There's only one continued state and the 1376 * ptracer can consume it which can confuse the real parent. Don't 1377 * use WCONTINUED from ptracer. You don't need or want it. 1378 */ 1379 return wait_task_continued(wo, p); 1380 } 1381 1382 /* 1383 * Do the work of do_wait() for one thread in the group, @tsk. 1384 * 1385 * -ECHILD should be in ->notask_error before the first call. 1386 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1387 * Returns zero if the search for a child should continue; then 1388 * ->notask_error is 0 if there were any eligible children, 1389 * or still -ECHILD. 1390 */ 1391 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1392 { 1393 struct task_struct *p; 1394 1395 list_for_each_entry(p, &tsk->children, sibling) { 1396 int ret = wait_consider_task(wo, 0, p); 1397 1398 if (ret) 1399 return ret; 1400 } 1401 1402 return 0; 1403 } 1404 1405 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1406 { 1407 struct task_struct *p; 1408 1409 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1410 int ret = wait_consider_task(wo, 1, p); 1411 1412 if (ret) 1413 return ret; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1420 int sync, void *key) 1421 { 1422 struct wait_opts *wo = container_of(wait, struct wait_opts, 1423 child_wait); 1424 struct task_struct *p = key; 1425 1426 if (!eligible_pid(wo, p)) 1427 return 0; 1428 1429 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1430 return 0; 1431 1432 return default_wake_function(wait, mode, sync, key); 1433 } 1434 1435 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1436 { 1437 __wake_up_sync_key(&parent->signal->wait_chldexit, 1438 TASK_INTERRUPTIBLE, 1, p); 1439 } 1440 1441 static long do_wait(struct wait_opts *wo) 1442 { 1443 struct task_struct *tsk; 1444 int retval; 1445 1446 trace_sched_process_wait(wo->wo_pid); 1447 1448 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1449 wo->child_wait.private = current; 1450 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1451 repeat: 1452 /* 1453 * If there is nothing that can match our criteria, just get out. 1454 * We will clear ->notask_error to zero if we see any child that 1455 * might later match our criteria, even if we are not able to reap 1456 * it yet. 1457 */ 1458 wo->notask_error = -ECHILD; 1459 if ((wo->wo_type < PIDTYPE_MAX) && 1460 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1461 goto notask; 1462 1463 set_current_state(TASK_INTERRUPTIBLE); 1464 read_lock(&tasklist_lock); 1465 tsk = current; 1466 do { 1467 retval = do_wait_thread(wo, tsk); 1468 if (retval) 1469 goto end; 1470 1471 retval = ptrace_do_wait(wo, tsk); 1472 if (retval) 1473 goto end; 1474 1475 if (wo->wo_flags & __WNOTHREAD) 1476 break; 1477 } while_each_thread(current, tsk); 1478 read_unlock(&tasklist_lock); 1479 1480 notask: 1481 retval = wo->notask_error; 1482 if (!retval && !(wo->wo_flags & WNOHANG)) { 1483 retval = -ERESTARTSYS; 1484 if (!signal_pending(current)) { 1485 schedule(); 1486 goto repeat; 1487 } 1488 } 1489 end: 1490 __set_current_state(TASK_RUNNING); 1491 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1492 return retval; 1493 } 1494 1495 static struct pid *pidfd_get_pid(unsigned int fd) 1496 { 1497 struct fd f; 1498 struct pid *pid; 1499 1500 f = fdget(fd); 1501 if (!f.file) 1502 return ERR_PTR(-EBADF); 1503 1504 pid = pidfd_pid(f.file); 1505 if (!IS_ERR(pid)) 1506 get_pid(pid); 1507 1508 fdput(f); 1509 return pid; 1510 } 1511 1512 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1513 int options, struct rusage *ru) 1514 { 1515 struct wait_opts wo; 1516 struct pid *pid = NULL; 1517 enum pid_type type; 1518 long ret; 1519 1520 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1521 __WNOTHREAD|__WCLONE|__WALL)) 1522 return -EINVAL; 1523 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1524 return -EINVAL; 1525 1526 switch (which) { 1527 case P_ALL: 1528 type = PIDTYPE_MAX; 1529 break; 1530 case P_PID: 1531 type = PIDTYPE_PID; 1532 if (upid <= 0) 1533 return -EINVAL; 1534 1535 pid = find_get_pid(upid); 1536 break; 1537 case P_PGID: 1538 type = PIDTYPE_PGID; 1539 if (upid < 0) 1540 return -EINVAL; 1541 1542 if (upid) 1543 pid = find_get_pid(upid); 1544 else 1545 pid = get_task_pid(current, PIDTYPE_PGID); 1546 break; 1547 case P_PIDFD: 1548 type = PIDTYPE_PID; 1549 if (upid < 0) 1550 return -EINVAL; 1551 1552 pid = pidfd_get_pid(upid); 1553 if (IS_ERR(pid)) 1554 return PTR_ERR(pid); 1555 break; 1556 default: 1557 return -EINVAL; 1558 } 1559 1560 wo.wo_type = type; 1561 wo.wo_pid = pid; 1562 wo.wo_flags = options; 1563 wo.wo_info = infop; 1564 wo.wo_rusage = ru; 1565 ret = do_wait(&wo); 1566 1567 put_pid(pid); 1568 return ret; 1569 } 1570 1571 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1572 infop, int, options, struct rusage __user *, ru) 1573 { 1574 struct rusage r; 1575 struct waitid_info info = {.status = 0}; 1576 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1577 int signo = 0; 1578 1579 if (err > 0) { 1580 signo = SIGCHLD; 1581 err = 0; 1582 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1583 return -EFAULT; 1584 } 1585 if (!infop) 1586 return err; 1587 1588 if (!user_access_begin(infop, sizeof(*infop))) 1589 return -EFAULT; 1590 1591 unsafe_put_user(signo, &infop->si_signo, Efault); 1592 unsafe_put_user(0, &infop->si_errno, Efault); 1593 unsafe_put_user(info.cause, &infop->si_code, Efault); 1594 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1595 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1596 unsafe_put_user(info.status, &infop->si_status, Efault); 1597 user_access_end(); 1598 return err; 1599 Efault: 1600 user_access_end(); 1601 return -EFAULT; 1602 } 1603 1604 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1605 struct rusage *ru) 1606 { 1607 struct wait_opts wo; 1608 struct pid *pid = NULL; 1609 enum pid_type type; 1610 long ret; 1611 1612 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1613 __WNOTHREAD|__WCLONE|__WALL)) 1614 return -EINVAL; 1615 1616 /* -INT_MIN is not defined */ 1617 if (upid == INT_MIN) 1618 return -ESRCH; 1619 1620 if (upid == -1) 1621 type = PIDTYPE_MAX; 1622 else if (upid < 0) { 1623 type = PIDTYPE_PGID; 1624 pid = find_get_pid(-upid); 1625 } else if (upid == 0) { 1626 type = PIDTYPE_PGID; 1627 pid = get_task_pid(current, PIDTYPE_PGID); 1628 } else /* upid > 0 */ { 1629 type = PIDTYPE_PID; 1630 pid = find_get_pid(upid); 1631 } 1632 1633 wo.wo_type = type; 1634 wo.wo_pid = pid; 1635 wo.wo_flags = options | WEXITED; 1636 wo.wo_info = NULL; 1637 wo.wo_stat = 0; 1638 wo.wo_rusage = ru; 1639 ret = do_wait(&wo); 1640 put_pid(pid); 1641 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1642 ret = -EFAULT; 1643 1644 return ret; 1645 } 1646 1647 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1648 int, options, struct rusage __user *, ru) 1649 { 1650 struct rusage r; 1651 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1652 1653 if (err > 0) { 1654 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1655 return -EFAULT; 1656 } 1657 return err; 1658 } 1659 1660 #ifdef __ARCH_WANT_SYS_WAITPID 1661 1662 /* 1663 * sys_waitpid() remains for compatibility. waitpid() should be 1664 * implemented by calling sys_wait4() from libc.a. 1665 */ 1666 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1667 { 1668 return kernel_wait4(pid, stat_addr, options, NULL); 1669 } 1670 1671 #endif 1672 1673 #ifdef CONFIG_COMPAT 1674 COMPAT_SYSCALL_DEFINE4(wait4, 1675 compat_pid_t, pid, 1676 compat_uint_t __user *, stat_addr, 1677 int, options, 1678 struct compat_rusage __user *, ru) 1679 { 1680 struct rusage r; 1681 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1682 if (err > 0) { 1683 if (ru && put_compat_rusage(&r, ru)) 1684 return -EFAULT; 1685 } 1686 return err; 1687 } 1688 1689 COMPAT_SYSCALL_DEFINE5(waitid, 1690 int, which, compat_pid_t, pid, 1691 struct compat_siginfo __user *, infop, int, options, 1692 struct compat_rusage __user *, uru) 1693 { 1694 struct rusage ru; 1695 struct waitid_info info = {.status = 0}; 1696 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1697 int signo = 0; 1698 if (err > 0) { 1699 signo = SIGCHLD; 1700 err = 0; 1701 if (uru) { 1702 /* kernel_waitid() overwrites everything in ru */ 1703 if (COMPAT_USE_64BIT_TIME) 1704 err = copy_to_user(uru, &ru, sizeof(ru)); 1705 else 1706 err = put_compat_rusage(&ru, uru); 1707 if (err) 1708 return -EFAULT; 1709 } 1710 } 1711 1712 if (!infop) 1713 return err; 1714 1715 if (!user_access_begin(infop, sizeof(*infop))) 1716 return -EFAULT; 1717 1718 unsafe_put_user(signo, &infop->si_signo, Efault); 1719 unsafe_put_user(0, &infop->si_errno, Efault); 1720 unsafe_put_user(info.cause, &infop->si_code, Efault); 1721 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1722 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1723 unsafe_put_user(info.status, &infop->si_status, Efault); 1724 user_access_end(); 1725 return err; 1726 Efault: 1727 user_access_end(); 1728 return -EFAULT; 1729 } 1730 #endif 1731 1732 __weak void abort(void) 1733 { 1734 BUG(); 1735 1736 /* if that doesn't kill us, halt */ 1737 panic("Oops failed to kill thread"); 1738 } 1739 EXPORT_SYMBOL(abort); 1740