xref: /linux/kernel/exit.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60 #include <asm/pgtable.h>
61 #include <asm/mmu_context.h>
62 
63 static void __unhash_process(struct task_struct *p, bool group_dead)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (group_dead) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		list_del_init(&p->sibling);
73 		__this_cpu_dec(process_counts);
74 	}
75 	list_del_rcu(&p->thread_group);
76 	list_del_rcu(&p->thread_node);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 	cputime_t utime, stime;
89 
90 	sighand = rcu_dereference_check(tsk->sighand,
91 					lockdep_tasklist_lock_is_held());
92 	spin_lock(&sighand->siglock);
93 
94 	posix_cpu_timers_exit(tsk);
95 	if (group_dead) {
96 		posix_cpu_timers_exit_group(tsk);
97 		tty = sig->tty;
98 		sig->tty = NULL;
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 
108 		/*
109 		 * If there is any task waiting for the group exit
110 		 * then notify it:
111 		 */
112 		if (sig->notify_count > 0 && !--sig->notify_count)
113 			wake_up_process(sig->group_exit_task);
114 
115 		if (tsk == sig->curr_target)
116 			sig->curr_target = next_thread(tsk);
117 	}
118 
119 	/*
120 	 * Accumulate here the counters for all threads as they die. We could
121 	 * skip the group leader because it is the last user of signal_struct,
122 	 * but we want to avoid the race with thread_group_cputime() which can
123 	 * see the empty ->thread_head list.
124 	 */
125 	task_cputime(tsk, &utime, &stime);
126 	write_seqlock(&sig->stats_lock);
127 	sig->utime += utime;
128 	sig->stime += stime;
129 	sig->gtime += task_gtime(tsk);
130 	sig->min_flt += tsk->min_flt;
131 	sig->maj_flt += tsk->maj_flt;
132 	sig->nvcsw += tsk->nvcsw;
133 	sig->nivcsw += tsk->nivcsw;
134 	sig->inblock += task_io_get_inblock(tsk);
135 	sig->oublock += task_io_get_oublock(tsk);
136 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
137 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 	write_sequnlock(&sig->stats_lock);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct *p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader)
193 			&& leader->exit_state == EXIT_ZOMBIE) {
194 		/*
195 		 * If we were the last child thread and the leader has
196 		 * exited already, and the leader's parent ignores SIGCHLD,
197 		 * then we are the one who should release the leader.
198 		 */
199 		zap_leader = do_notify_parent(leader, leader->exit_signal);
200 		if (zap_leader)
201 			leader->exit_state = EXIT_DEAD;
202 	}
203 
204 	write_unlock_irq(&tasklist_lock);
205 	release_thread(p);
206 	call_rcu(&p->rcu, delayed_put_task_struct);
207 
208 	p = leader;
209 	if (unlikely(zap_leader))
210 		goto repeat;
211 }
212 
213 /*
214  * Determine if a process group is "orphaned", according to the POSIX
215  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
216  * by terminal-generated stop signals.  Newly orphaned process groups are
217  * to receive a SIGHUP and a SIGCONT.
218  *
219  * "I ask you, have you ever known what it is to be an orphan?"
220  */
221 static int will_become_orphaned_pgrp(struct pid *pgrp,
222 					struct task_struct *ignored_task)
223 {
224 	struct task_struct *p;
225 
226 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
227 		if ((p == ignored_task) ||
228 		    (p->exit_state && thread_group_empty(p)) ||
229 		    is_global_init(p->real_parent))
230 			continue;
231 
232 		if (task_pgrp(p->real_parent) != pgrp &&
233 		    task_session(p->real_parent) == task_session(p))
234 			return 0;
235 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
236 
237 	return 1;
238 }
239 
240 int is_current_pgrp_orphaned(void)
241 {
242 	int retval;
243 
244 	read_lock(&tasklist_lock);
245 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
246 	read_unlock(&tasklist_lock);
247 
248 	return retval;
249 }
250 
251 static bool has_stopped_jobs(struct pid *pgrp)
252 {
253 	struct task_struct *p;
254 
255 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
257 			return true;
258 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 
260 	return false;
261 }
262 
263 /*
264  * Check to see if any process groups have become orphaned as
265  * a result of our exiting, and if they have any stopped jobs,
266  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
267  */
268 static void
269 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
270 {
271 	struct pid *pgrp = task_pgrp(tsk);
272 	struct task_struct *ignored_task = tsk;
273 
274 	if (!parent)
275 		/* exit: our father is in a different pgrp than
276 		 * we are and we were the only connection outside.
277 		 */
278 		parent = tsk->real_parent;
279 	else
280 		/* reparent: our child is in a different pgrp than
281 		 * we are, and it was the only connection outside.
282 		 */
283 		ignored_task = NULL;
284 
285 	if (task_pgrp(parent) != pgrp &&
286 	    task_session(parent) == task_session(tsk) &&
287 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
288 	    has_stopped_jobs(pgrp)) {
289 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
290 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
291 	}
292 }
293 
294 #ifdef CONFIG_MEMCG
295 /*
296  * A task is exiting.   If it owned this mm, find a new owner for the mm.
297  */
298 void mm_update_next_owner(struct mm_struct *mm)
299 {
300 	struct task_struct *c, *g, *p = current;
301 
302 retry:
303 	/*
304 	 * If the exiting or execing task is not the owner, it's
305 	 * someone else's problem.
306 	 */
307 	if (mm->owner != p)
308 		return;
309 	/*
310 	 * The current owner is exiting/execing and there are no other
311 	 * candidates.  Do not leave the mm pointing to a possibly
312 	 * freed task structure.
313 	 */
314 	if (atomic_read(&mm->mm_users) <= 1) {
315 		mm->owner = NULL;
316 		return;
317 	}
318 
319 	read_lock(&tasklist_lock);
320 	/*
321 	 * Search in the children
322 	 */
323 	list_for_each_entry(c, &p->children, sibling) {
324 		if (c->mm == mm)
325 			goto assign_new_owner;
326 	}
327 
328 	/*
329 	 * Search in the siblings
330 	 */
331 	list_for_each_entry(c, &p->real_parent->children, sibling) {
332 		if (c->mm == mm)
333 			goto assign_new_owner;
334 	}
335 
336 	/*
337 	 * Search through everything else, we should not get here often.
338 	 */
339 	for_each_process(g) {
340 		if (g->flags & PF_KTHREAD)
341 			continue;
342 		for_each_thread(g, c) {
343 			if (c->mm == mm)
344 				goto assign_new_owner;
345 			if (c->mm)
346 				break;
347 		}
348 	}
349 	read_unlock(&tasklist_lock);
350 	/*
351 	 * We found no owner yet mm_users > 1: this implies that we are
352 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
353 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
354 	 */
355 	mm->owner = NULL;
356 	return;
357 
358 assign_new_owner:
359 	BUG_ON(c == p);
360 	get_task_struct(c);
361 	/*
362 	 * The task_lock protects c->mm from changing.
363 	 * We always want mm->owner->mm == mm
364 	 */
365 	task_lock(c);
366 	/*
367 	 * Delay read_unlock() till we have the task_lock()
368 	 * to ensure that c does not slip away underneath us
369 	 */
370 	read_unlock(&tasklist_lock);
371 	if (c->mm != mm) {
372 		task_unlock(c);
373 		put_task_struct(c);
374 		goto retry;
375 	}
376 	mm->owner = c;
377 	task_unlock(c);
378 	put_task_struct(c);
379 }
380 #endif /* CONFIG_MEMCG */
381 
382 /*
383  * Turn us into a lazy TLB process if we
384  * aren't already..
385  */
386 static void exit_mm(struct task_struct *tsk)
387 {
388 	struct mm_struct *mm = tsk->mm;
389 	struct core_state *core_state;
390 
391 	mm_release(tsk, mm);
392 	if (!mm)
393 		return;
394 	sync_mm_rss(mm);
395 	/*
396 	 * Serialize with any possible pending coredump.
397 	 * We must hold mmap_sem around checking core_state
398 	 * and clearing tsk->mm.  The core-inducing thread
399 	 * will increment ->nr_threads for each thread in the
400 	 * group with ->mm != NULL.
401 	 */
402 	down_read(&mm->mmap_sem);
403 	core_state = mm->core_state;
404 	if (core_state) {
405 		struct core_thread self;
406 
407 		up_read(&mm->mmap_sem);
408 
409 		self.task = tsk;
410 		self.next = xchg(&core_state->dumper.next, &self);
411 		/*
412 		 * Implies mb(), the result of xchg() must be visible
413 		 * to core_state->dumper.
414 		 */
415 		if (atomic_dec_and_test(&core_state->nr_threads))
416 			complete(&core_state->startup);
417 
418 		for (;;) {
419 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
420 			if (!self.task) /* see coredump_finish() */
421 				break;
422 			freezable_schedule();
423 		}
424 		__set_task_state(tsk, TASK_RUNNING);
425 		down_read(&mm->mmap_sem);
426 	}
427 	atomic_inc(&mm->mm_count);
428 	BUG_ON(mm != tsk->active_mm);
429 	/* more a memory barrier than a real lock */
430 	task_lock(tsk);
431 	tsk->mm = NULL;
432 	up_read(&mm->mmap_sem);
433 	enter_lazy_tlb(mm, current);
434 	task_unlock(tsk);
435 	mm_update_next_owner(mm);
436 	mmput(mm);
437 	if (test_thread_flag(TIF_MEMDIE))
438 		exit_oom_victim(tsk);
439 }
440 
441 static struct task_struct *find_alive_thread(struct task_struct *p)
442 {
443 	struct task_struct *t;
444 
445 	for_each_thread(p, t) {
446 		if (!(t->flags & PF_EXITING))
447 			return t;
448 	}
449 	return NULL;
450 }
451 
452 static struct task_struct *find_child_reaper(struct task_struct *father)
453 	__releases(&tasklist_lock)
454 	__acquires(&tasklist_lock)
455 {
456 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
457 	struct task_struct *reaper = pid_ns->child_reaper;
458 
459 	if (likely(reaper != father))
460 		return reaper;
461 
462 	reaper = find_alive_thread(father);
463 	if (reaper) {
464 		pid_ns->child_reaper = reaper;
465 		return reaper;
466 	}
467 
468 	write_unlock_irq(&tasklist_lock);
469 	if (unlikely(pid_ns == &init_pid_ns)) {
470 		panic("Attempted to kill init! exitcode=0x%08x\n",
471 			father->signal->group_exit_code ?: father->exit_code);
472 	}
473 	zap_pid_ns_processes(pid_ns);
474 	write_lock_irq(&tasklist_lock);
475 
476 	return father;
477 }
478 
479 /*
480  * When we die, we re-parent all our children, and try to:
481  * 1. give them to another thread in our thread group, if such a member exists
482  * 2. give it to the first ancestor process which prctl'd itself as a
483  *    child_subreaper for its children (like a service manager)
484  * 3. give it to the init process (PID 1) in our pid namespace
485  */
486 static struct task_struct *find_new_reaper(struct task_struct *father,
487 					   struct task_struct *child_reaper)
488 {
489 	struct task_struct *thread, *reaper;
490 
491 	thread = find_alive_thread(father);
492 	if (thread)
493 		return thread;
494 
495 	if (father->signal->has_child_subreaper) {
496 		/*
497 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
498 		 * We start from father to ensure we can not look into another
499 		 * namespace, this is safe because all its threads are dead.
500 		 */
501 		for (reaper = father;
502 		     !same_thread_group(reaper, child_reaper);
503 		     reaper = reaper->real_parent) {
504 			/* call_usermodehelper() descendants need this check */
505 			if (reaper == &init_task)
506 				break;
507 			if (!reaper->signal->is_child_subreaper)
508 				continue;
509 			thread = find_alive_thread(reaper);
510 			if (thread)
511 				return thread;
512 		}
513 	}
514 
515 	return child_reaper;
516 }
517 
518 /*
519 * Any that need to be release_task'd are put on the @dead list.
520  */
521 static void reparent_leader(struct task_struct *father, struct task_struct *p,
522 				struct list_head *dead)
523 {
524 	if (unlikely(p->exit_state == EXIT_DEAD))
525 		return;
526 
527 	/* We don't want people slaying init. */
528 	p->exit_signal = SIGCHLD;
529 
530 	/* If it has exited notify the new parent about this child's death. */
531 	if (!p->ptrace &&
532 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
533 		if (do_notify_parent(p, p->exit_signal)) {
534 			p->exit_state = EXIT_DEAD;
535 			list_add(&p->ptrace_entry, dead);
536 		}
537 	}
538 
539 	kill_orphaned_pgrp(p, father);
540 }
541 
542 /*
543  * This does two things:
544  *
545  * A.  Make init inherit all the child processes
546  * B.  Check to see if any process groups have become orphaned
547  *	as a result of our exiting, and if they have any stopped
548  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
549  */
550 static void forget_original_parent(struct task_struct *father,
551 					struct list_head *dead)
552 {
553 	struct task_struct *p, *t, *reaper;
554 
555 	if (unlikely(!list_empty(&father->ptraced)))
556 		exit_ptrace(father, dead);
557 
558 	/* Can drop and reacquire tasklist_lock */
559 	reaper = find_child_reaper(father);
560 	if (list_empty(&father->children))
561 		return;
562 
563 	reaper = find_new_reaper(father, reaper);
564 	list_for_each_entry(p, &father->children, sibling) {
565 		for_each_thread(p, t) {
566 			t->real_parent = reaper;
567 			BUG_ON((!t->ptrace) != (t->parent == father));
568 			if (likely(!t->ptrace))
569 				t->parent = t->real_parent;
570 			if (t->pdeath_signal)
571 				group_send_sig_info(t->pdeath_signal,
572 						    SEND_SIG_NOINFO, t);
573 		}
574 		/*
575 		 * If this is a threaded reparent there is no need to
576 		 * notify anyone anything has happened.
577 		 */
578 		if (!same_thread_group(reaper, father))
579 			reparent_leader(father, p, dead);
580 	}
581 	list_splice_tail_init(&father->children, &reaper->children);
582 }
583 
584 /*
585  * Send signals to all our closest relatives so that they know
586  * to properly mourn us..
587  */
588 static void exit_notify(struct task_struct *tsk, int group_dead)
589 {
590 	bool autoreap;
591 	struct task_struct *p, *n;
592 	LIST_HEAD(dead);
593 
594 	write_lock_irq(&tasklist_lock);
595 	forget_original_parent(tsk, &dead);
596 
597 	if (group_dead)
598 		kill_orphaned_pgrp(tsk->group_leader, NULL);
599 
600 	if (unlikely(tsk->ptrace)) {
601 		int sig = thread_group_leader(tsk) &&
602 				thread_group_empty(tsk) &&
603 				!ptrace_reparented(tsk) ?
604 			tsk->exit_signal : SIGCHLD;
605 		autoreap = do_notify_parent(tsk, sig);
606 	} else if (thread_group_leader(tsk)) {
607 		autoreap = thread_group_empty(tsk) &&
608 			do_notify_parent(tsk, tsk->exit_signal);
609 	} else {
610 		autoreap = true;
611 	}
612 
613 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
614 	if (tsk->exit_state == EXIT_DEAD)
615 		list_add(&tsk->ptrace_entry, &dead);
616 
617 	/* mt-exec, de_thread() is waiting for group leader */
618 	if (unlikely(tsk->signal->notify_count < 0))
619 		wake_up_process(tsk->signal->group_exit_task);
620 	write_unlock_irq(&tasklist_lock);
621 
622 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
623 		list_del_init(&p->ptrace_entry);
624 		release_task(p);
625 	}
626 }
627 
628 #ifdef CONFIG_DEBUG_STACK_USAGE
629 static void check_stack_usage(void)
630 {
631 	static DEFINE_SPINLOCK(low_water_lock);
632 	static int lowest_to_date = THREAD_SIZE;
633 	unsigned long free;
634 
635 	free = stack_not_used(current);
636 
637 	if (free >= lowest_to_date)
638 		return;
639 
640 	spin_lock(&low_water_lock);
641 	if (free < lowest_to_date) {
642 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
643 			current->comm, task_pid_nr(current), free);
644 		lowest_to_date = free;
645 	}
646 	spin_unlock(&low_water_lock);
647 }
648 #else
649 static inline void check_stack_usage(void) {}
650 #endif
651 
652 void do_exit(long code)
653 {
654 	struct task_struct *tsk = current;
655 	int group_dead;
656 	TASKS_RCU(int tasks_rcu_i);
657 
658 	profile_task_exit(tsk);
659 	kcov_task_exit(tsk);
660 
661 	WARN_ON(blk_needs_flush_plug(tsk));
662 
663 	if (unlikely(in_interrupt()))
664 		panic("Aiee, killing interrupt handler!");
665 	if (unlikely(!tsk->pid))
666 		panic("Attempted to kill the idle task!");
667 
668 	/*
669 	 * If do_exit is called because this processes oopsed, it's possible
670 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
671 	 * continuing. Amongst other possible reasons, this is to prevent
672 	 * mm_release()->clear_child_tid() from writing to a user-controlled
673 	 * kernel address.
674 	 */
675 	set_fs(USER_DS);
676 
677 	ptrace_event(PTRACE_EVENT_EXIT, code);
678 
679 	validate_creds_for_do_exit(tsk);
680 
681 	/*
682 	 * We're taking recursive faults here in do_exit. Safest is to just
683 	 * leave this task alone and wait for reboot.
684 	 */
685 	if (unlikely(tsk->flags & PF_EXITING)) {
686 		pr_alert("Fixing recursive fault but reboot is needed!\n");
687 		/*
688 		 * We can do this unlocked here. The futex code uses
689 		 * this flag just to verify whether the pi state
690 		 * cleanup has been done or not. In the worst case it
691 		 * loops once more. We pretend that the cleanup was
692 		 * done as there is no way to return. Either the
693 		 * OWNER_DIED bit is set by now or we push the blocked
694 		 * task into the wait for ever nirwana as well.
695 		 */
696 		tsk->flags |= PF_EXITPIDONE;
697 		set_current_state(TASK_UNINTERRUPTIBLE);
698 		schedule();
699 	}
700 
701 	exit_signals(tsk);  /* sets PF_EXITING */
702 	/*
703 	 * tsk->flags are checked in the futex code to protect against
704 	 * an exiting task cleaning up the robust pi futexes.
705 	 */
706 	smp_mb();
707 	raw_spin_unlock_wait(&tsk->pi_lock);
708 
709 	if (unlikely(in_atomic())) {
710 		pr_info("note: %s[%d] exited with preempt_count %d\n",
711 			current->comm, task_pid_nr(current),
712 			preempt_count());
713 		preempt_count_set(PREEMPT_ENABLED);
714 	}
715 
716 	/* sync mm's RSS info before statistics gathering */
717 	if (tsk->mm)
718 		sync_mm_rss(tsk->mm);
719 	acct_update_integrals(tsk);
720 	group_dead = atomic_dec_and_test(&tsk->signal->live);
721 	if (group_dead) {
722 		hrtimer_cancel(&tsk->signal->real_timer);
723 		exit_itimers(tsk->signal);
724 		if (tsk->mm)
725 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
726 	}
727 	acct_collect(code, group_dead);
728 	if (group_dead)
729 		tty_audit_exit();
730 	audit_free(tsk);
731 
732 	tsk->exit_code = code;
733 	taskstats_exit(tsk, group_dead);
734 
735 	exit_mm(tsk);
736 
737 	if (group_dead)
738 		acct_process();
739 	trace_sched_process_exit(tsk);
740 
741 	exit_sem(tsk);
742 	exit_shm(tsk);
743 	exit_files(tsk);
744 	exit_fs(tsk);
745 	if (group_dead)
746 		disassociate_ctty(1);
747 	exit_task_namespaces(tsk);
748 	exit_task_work(tsk);
749 	exit_thread(tsk);
750 
751 	/*
752 	 * Flush inherited counters to the parent - before the parent
753 	 * gets woken up by child-exit notifications.
754 	 *
755 	 * because of cgroup mode, must be called before cgroup_exit()
756 	 */
757 	perf_event_exit_task(tsk);
758 
759 	cgroup_exit(tsk);
760 
761 	/*
762 	 * FIXME: do that only when needed, using sched_exit tracepoint
763 	 */
764 	flush_ptrace_hw_breakpoint(tsk);
765 
766 	TASKS_RCU(preempt_disable());
767 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
768 	TASKS_RCU(preempt_enable());
769 	exit_notify(tsk, group_dead);
770 	proc_exit_connector(tsk);
771 #ifdef CONFIG_NUMA
772 	task_lock(tsk);
773 	mpol_put(tsk->mempolicy);
774 	tsk->mempolicy = NULL;
775 	task_unlock(tsk);
776 #endif
777 #ifdef CONFIG_FUTEX
778 	if (unlikely(current->pi_state_cache))
779 		kfree(current->pi_state_cache);
780 #endif
781 	/*
782 	 * Make sure we are holding no locks:
783 	 */
784 	debug_check_no_locks_held();
785 	/*
786 	 * We can do this unlocked here. The futex code uses this flag
787 	 * just to verify whether the pi state cleanup has been done
788 	 * or not. In the worst case it loops once more.
789 	 */
790 	tsk->flags |= PF_EXITPIDONE;
791 
792 	if (tsk->io_context)
793 		exit_io_context(tsk);
794 
795 	if (tsk->splice_pipe)
796 		free_pipe_info(tsk->splice_pipe);
797 
798 	if (tsk->task_frag.page)
799 		put_page(tsk->task_frag.page);
800 
801 	validate_creds_for_do_exit(tsk);
802 
803 	check_stack_usage();
804 	preempt_disable();
805 	if (tsk->nr_dirtied)
806 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
807 	exit_rcu();
808 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
809 
810 	/*
811 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
812 	 * when the following two conditions become true.
813 	 *   - There is race condition of mmap_sem (It is acquired by
814 	 *     exit_mm()), and
815 	 *   - SMI occurs before setting TASK_RUNINNG.
816 	 *     (or hypervisor of virtual machine switches to other guest)
817 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
818 	 *
819 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
820 	 * is held by try_to_wake_up()
821 	 */
822 	smp_mb();
823 	raw_spin_unlock_wait(&tsk->pi_lock);
824 
825 	/* causes final put_task_struct in finish_task_switch(). */
826 	tsk->state = TASK_DEAD;
827 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
828 	schedule();
829 	BUG();
830 	/* Avoid "noreturn function does return".  */
831 	for (;;)
832 		cpu_relax();	/* For when BUG is null */
833 }
834 EXPORT_SYMBOL_GPL(do_exit);
835 
836 void complete_and_exit(struct completion *comp, long code)
837 {
838 	if (comp)
839 		complete(comp);
840 
841 	do_exit(code);
842 }
843 EXPORT_SYMBOL(complete_and_exit);
844 
845 SYSCALL_DEFINE1(exit, int, error_code)
846 {
847 	do_exit((error_code&0xff)<<8);
848 }
849 
850 /*
851  * Take down every thread in the group.  This is called by fatal signals
852  * as well as by sys_exit_group (below).
853  */
854 void
855 do_group_exit(int exit_code)
856 {
857 	struct signal_struct *sig = current->signal;
858 
859 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
860 
861 	if (signal_group_exit(sig))
862 		exit_code = sig->group_exit_code;
863 	else if (!thread_group_empty(current)) {
864 		struct sighand_struct *const sighand = current->sighand;
865 
866 		spin_lock_irq(&sighand->siglock);
867 		if (signal_group_exit(sig))
868 			/* Another thread got here before we took the lock.  */
869 			exit_code = sig->group_exit_code;
870 		else {
871 			sig->group_exit_code = exit_code;
872 			sig->flags = SIGNAL_GROUP_EXIT;
873 			zap_other_threads(current);
874 		}
875 		spin_unlock_irq(&sighand->siglock);
876 	}
877 
878 	do_exit(exit_code);
879 	/* NOTREACHED */
880 }
881 
882 /*
883  * this kills every thread in the thread group. Note that any externally
884  * wait4()-ing process will get the correct exit code - even if this
885  * thread is not the thread group leader.
886  */
887 SYSCALL_DEFINE1(exit_group, int, error_code)
888 {
889 	do_group_exit((error_code & 0xff) << 8);
890 	/* NOTREACHED */
891 	return 0;
892 }
893 
894 struct wait_opts {
895 	enum pid_type		wo_type;
896 	int			wo_flags;
897 	struct pid		*wo_pid;
898 
899 	struct siginfo __user	*wo_info;
900 	int __user		*wo_stat;
901 	struct rusage __user	*wo_rusage;
902 
903 	wait_queue_t		child_wait;
904 	int			notask_error;
905 };
906 
907 static inline
908 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
909 {
910 	if (type != PIDTYPE_PID)
911 		task = task->group_leader;
912 	return task->pids[type].pid;
913 }
914 
915 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
916 {
917 	return	wo->wo_type == PIDTYPE_MAX ||
918 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
919 }
920 
921 static int
922 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
923 {
924 	if (!eligible_pid(wo, p))
925 		return 0;
926 
927 	/*
928 	 * Wait for all children (clone and not) if __WALL is set or
929 	 * if it is traced by us.
930 	 */
931 	if (ptrace || (wo->wo_flags & __WALL))
932 		return 1;
933 
934 	/*
935 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
936 	 * otherwise, wait for non-clone children *only*.
937 	 *
938 	 * Note: a "clone" child here is one that reports to its parent
939 	 * using a signal other than SIGCHLD, or a non-leader thread which
940 	 * we can only see if it is traced by us.
941 	 */
942 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
943 		return 0;
944 
945 	return 1;
946 }
947 
948 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
949 				pid_t pid, uid_t uid, int why, int status)
950 {
951 	struct siginfo __user *infop;
952 	int retval = wo->wo_rusage
953 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
954 
955 	put_task_struct(p);
956 	infop = wo->wo_info;
957 	if (infop) {
958 		if (!retval)
959 			retval = put_user(SIGCHLD, &infop->si_signo);
960 		if (!retval)
961 			retval = put_user(0, &infop->si_errno);
962 		if (!retval)
963 			retval = put_user((short)why, &infop->si_code);
964 		if (!retval)
965 			retval = put_user(pid, &infop->si_pid);
966 		if (!retval)
967 			retval = put_user(uid, &infop->si_uid);
968 		if (!retval)
969 			retval = put_user(status, &infop->si_status);
970 	}
971 	if (!retval)
972 		retval = pid;
973 	return retval;
974 }
975 
976 /*
977  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
978  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
979  * the lock and this task is uninteresting.  If we return nonzero, we have
980  * released the lock and the system call should return.
981  */
982 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
983 {
984 	int state, retval, status;
985 	pid_t pid = task_pid_vnr(p);
986 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
987 	struct siginfo __user *infop;
988 
989 	if (!likely(wo->wo_flags & WEXITED))
990 		return 0;
991 
992 	if (unlikely(wo->wo_flags & WNOWAIT)) {
993 		int exit_code = p->exit_code;
994 		int why;
995 
996 		get_task_struct(p);
997 		read_unlock(&tasklist_lock);
998 		sched_annotate_sleep();
999 
1000 		if ((exit_code & 0x7f) == 0) {
1001 			why = CLD_EXITED;
1002 			status = exit_code >> 8;
1003 		} else {
1004 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1005 			status = exit_code & 0x7f;
1006 		}
1007 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1008 	}
1009 	/*
1010 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1011 	 */
1012 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1013 		EXIT_TRACE : EXIT_DEAD;
1014 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1015 		return 0;
1016 	/*
1017 	 * We own this thread, nobody else can reap it.
1018 	 */
1019 	read_unlock(&tasklist_lock);
1020 	sched_annotate_sleep();
1021 
1022 	/*
1023 	 * Check thread_group_leader() to exclude the traced sub-threads.
1024 	 */
1025 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1026 		struct signal_struct *sig = p->signal;
1027 		struct signal_struct *psig = current->signal;
1028 		unsigned long maxrss;
1029 		cputime_t tgutime, tgstime;
1030 
1031 		/*
1032 		 * The resource counters for the group leader are in its
1033 		 * own task_struct.  Those for dead threads in the group
1034 		 * are in its signal_struct, as are those for the child
1035 		 * processes it has previously reaped.  All these
1036 		 * accumulate in the parent's signal_struct c* fields.
1037 		 *
1038 		 * We don't bother to take a lock here to protect these
1039 		 * p->signal fields because the whole thread group is dead
1040 		 * and nobody can change them.
1041 		 *
1042 		 * psig->stats_lock also protects us from our sub-theads
1043 		 * which can reap other children at the same time. Until
1044 		 * we change k_getrusage()-like users to rely on this lock
1045 		 * we have to take ->siglock as well.
1046 		 *
1047 		 * We use thread_group_cputime_adjusted() to get times for
1048 		 * the thread group, which consolidates times for all threads
1049 		 * in the group including the group leader.
1050 		 */
1051 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1052 		spin_lock_irq(&current->sighand->siglock);
1053 		write_seqlock(&psig->stats_lock);
1054 		psig->cutime += tgutime + sig->cutime;
1055 		psig->cstime += tgstime + sig->cstime;
1056 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1057 		psig->cmin_flt +=
1058 			p->min_flt + sig->min_flt + sig->cmin_flt;
1059 		psig->cmaj_flt +=
1060 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1061 		psig->cnvcsw +=
1062 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1063 		psig->cnivcsw +=
1064 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1065 		psig->cinblock +=
1066 			task_io_get_inblock(p) +
1067 			sig->inblock + sig->cinblock;
1068 		psig->coublock +=
1069 			task_io_get_oublock(p) +
1070 			sig->oublock + sig->coublock;
1071 		maxrss = max(sig->maxrss, sig->cmaxrss);
1072 		if (psig->cmaxrss < maxrss)
1073 			psig->cmaxrss = maxrss;
1074 		task_io_accounting_add(&psig->ioac, &p->ioac);
1075 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1076 		write_sequnlock(&psig->stats_lock);
1077 		spin_unlock_irq(&current->sighand->siglock);
1078 	}
1079 
1080 	retval = wo->wo_rusage
1081 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1082 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1083 		? p->signal->group_exit_code : p->exit_code;
1084 	if (!retval && wo->wo_stat)
1085 		retval = put_user(status, wo->wo_stat);
1086 
1087 	infop = wo->wo_info;
1088 	if (!retval && infop)
1089 		retval = put_user(SIGCHLD, &infop->si_signo);
1090 	if (!retval && infop)
1091 		retval = put_user(0, &infop->si_errno);
1092 	if (!retval && infop) {
1093 		int why;
1094 
1095 		if ((status & 0x7f) == 0) {
1096 			why = CLD_EXITED;
1097 			status >>= 8;
1098 		} else {
1099 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1100 			status &= 0x7f;
1101 		}
1102 		retval = put_user((short)why, &infop->si_code);
1103 		if (!retval)
1104 			retval = put_user(status, &infop->si_status);
1105 	}
1106 	if (!retval && infop)
1107 		retval = put_user(pid, &infop->si_pid);
1108 	if (!retval && infop)
1109 		retval = put_user(uid, &infop->si_uid);
1110 	if (!retval)
1111 		retval = pid;
1112 
1113 	if (state == EXIT_TRACE) {
1114 		write_lock_irq(&tasklist_lock);
1115 		/* We dropped tasklist, ptracer could die and untrace */
1116 		ptrace_unlink(p);
1117 
1118 		/* If parent wants a zombie, don't release it now */
1119 		state = EXIT_ZOMBIE;
1120 		if (do_notify_parent(p, p->exit_signal))
1121 			state = EXIT_DEAD;
1122 		p->exit_state = state;
1123 		write_unlock_irq(&tasklist_lock);
1124 	}
1125 	if (state == EXIT_DEAD)
1126 		release_task(p);
1127 
1128 	return retval;
1129 }
1130 
1131 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1132 {
1133 	if (ptrace) {
1134 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1135 			return &p->exit_code;
1136 	} else {
1137 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1138 			return &p->signal->group_exit_code;
1139 	}
1140 	return NULL;
1141 }
1142 
1143 /**
1144  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1145  * @wo: wait options
1146  * @ptrace: is the wait for ptrace
1147  * @p: task to wait for
1148  *
1149  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1150  *
1151  * CONTEXT:
1152  * read_lock(&tasklist_lock), which is released if return value is
1153  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1154  *
1155  * RETURNS:
1156  * 0 if wait condition didn't exist and search for other wait conditions
1157  * should continue.  Non-zero return, -errno on failure and @p's pid on
1158  * success, implies that tasklist_lock is released and wait condition
1159  * search should terminate.
1160  */
1161 static int wait_task_stopped(struct wait_opts *wo,
1162 				int ptrace, struct task_struct *p)
1163 {
1164 	struct siginfo __user *infop;
1165 	int retval, exit_code, *p_code, why;
1166 	uid_t uid = 0; /* unneeded, required by compiler */
1167 	pid_t pid;
1168 
1169 	/*
1170 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1171 	 */
1172 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1173 		return 0;
1174 
1175 	if (!task_stopped_code(p, ptrace))
1176 		return 0;
1177 
1178 	exit_code = 0;
1179 	spin_lock_irq(&p->sighand->siglock);
1180 
1181 	p_code = task_stopped_code(p, ptrace);
1182 	if (unlikely(!p_code))
1183 		goto unlock_sig;
1184 
1185 	exit_code = *p_code;
1186 	if (!exit_code)
1187 		goto unlock_sig;
1188 
1189 	if (!unlikely(wo->wo_flags & WNOWAIT))
1190 		*p_code = 0;
1191 
1192 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1193 unlock_sig:
1194 	spin_unlock_irq(&p->sighand->siglock);
1195 	if (!exit_code)
1196 		return 0;
1197 
1198 	/*
1199 	 * Now we are pretty sure this task is interesting.
1200 	 * Make sure it doesn't get reaped out from under us while we
1201 	 * give up the lock and then examine it below.  We don't want to
1202 	 * keep holding onto the tasklist_lock while we call getrusage and
1203 	 * possibly take page faults for user memory.
1204 	 */
1205 	get_task_struct(p);
1206 	pid = task_pid_vnr(p);
1207 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1208 	read_unlock(&tasklist_lock);
1209 	sched_annotate_sleep();
1210 
1211 	if (unlikely(wo->wo_flags & WNOWAIT))
1212 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1213 
1214 	retval = wo->wo_rusage
1215 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1216 	if (!retval && wo->wo_stat)
1217 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1218 
1219 	infop = wo->wo_info;
1220 	if (!retval && infop)
1221 		retval = put_user(SIGCHLD, &infop->si_signo);
1222 	if (!retval && infop)
1223 		retval = put_user(0, &infop->si_errno);
1224 	if (!retval && infop)
1225 		retval = put_user((short)why, &infop->si_code);
1226 	if (!retval && infop)
1227 		retval = put_user(exit_code, &infop->si_status);
1228 	if (!retval && infop)
1229 		retval = put_user(pid, &infop->si_pid);
1230 	if (!retval && infop)
1231 		retval = put_user(uid, &infop->si_uid);
1232 	if (!retval)
1233 		retval = pid;
1234 	put_task_struct(p);
1235 
1236 	BUG_ON(!retval);
1237 	return retval;
1238 }
1239 
1240 /*
1241  * Handle do_wait work for one task in a live, non-stopped state.
1242  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1243  * the lock and this task is uninteresting.  If we return nonzero, we have
1244  * released the lock and the system call should return.
1245  */
1246 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1247 {
1248 	int retval;
1249 	pid_t pid;
1250 	uid_t uid;
1251 
1252 	if (!unlikely(wo->wo_flags & WCONTINUED))
1253 		return 0;
1254 
1255 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1256 		return 0;
1257 
1258 	spin_lock_irq(&p->sighand->siglock);
1259 	/* Re-check with the lock held.  */
1260 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1261 		spin_unlock_irq(&p->sighand->siglock);
1262 		return 0;
1263 	}
1264 	if (!unlikely(wo->wo_flags & WNOWAIT))
1265 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1266 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 	spin_unlock_irq(&p->sighand->siglock);
1268 
1269 	pid = task_pid_vnr(p);
1270 	get_task_struct(p);
1271 	read_unlock(&tasklist_lock);
1272 	sched_annotate_sleep();
1273 
1274 	if (!wo->wo_info) {
1275 		retval = wo->wo_rusage
1276 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1277 		put_task_struct(p);
1278 		if (!retval && wo->wo_stat)
1279 			retval = put_user(0xffff, wo->wo_stat);
1280 		if (!retval)
1281 			retval = pid;
1282 	} else {
1283 		retval = wait_noreap_copyout(wo, p, pid, uid,
1284 					     CLD_CONTINUED, SIGCONT);
1285 		BUG_ON(retval == 0);
1286 	}
1287 
1288 	return retval;
1289 }
1290 
1291 /*
1292  * Consider @p for a wait by @parent.
1293  *
1294  * -ECHILD should be in ->notask_error before the first call.
1295  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1296  * Returns zero if the search for a child should continue;
1297  * then ->notask_error is 0 if @p is an eligible child,
1298  * or another error from security_task_wait(), or still -ECHILD.
1299  */
1300 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1301 				struct task_struct *p)
1302 {
1303 	/*
1304 	 * We can race with wait_task_zombie() from another thread.
1305 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1306 	 * can't confuse the checks below.
1307 	 */
1308 	int exit_state = ACCESS_ONCE(p->exit_state);
1309 	int ret;
1310 
1311 	if (unlikely(exit_state == EXIT_DEAD))
1312 		return 0;
1313 
1314 	ret = eligible_child(wo, ptrace, p);
1315 	if (!ret)
1316 		return ret;
1317 
1318 	ret = security_task_wait(p);
1319 	if (unlikely(ret < 0)) {
1320 		/*
1321 		 * If we have not yet seen any eligible child,
1322 		 * then let this error code replace -ECHILD.
1323 		 * A permission error will give the user a clue
1324 		 * to look for security policy problems, rather
1325 		 * than for mysterious wait bugs.
1326 		 */
1327 		if (wo->notask_error)
1328 			wo->notask_error = ret;
1329 		return 0;
1330 	}
1331 
1332 	if (unlikely(exit_state == EXIT_TRACE)) {
1333 		/*
1334 		 * ptrace == 0 means we are the natural parent. In this case
1335 		 * we should clear notask_error, debugger will notify us.
1336 		 */
1337 		if (likely(!ptrace))
1338 			wo->notask_error = 0;
1339 		return 0;
1340 	}
1341 
1342 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1343 		/*
1344 		 * If it is traced by its real parent's group, just pretend
1345 		 * the caller is ptrace_do_wait() and reap this child if it
1346 		 * is zombie.
1347 		 *
1348 		 * This also hides group stop state from real parent; otherwise
1349 		 * a single stop can be reported twice as group and ptrace stop.
1350 		 * If a ptracer wants to distinguish these two events for its
1351 		 * own children it should create a separate process which takes
1352 		 * the role of real parent.
1353 		 */
1354 		if (!ptrace_reparented(p))
1355 			ptrace = 1;
1356 	}
1357 
1358 	/* slay zombie? */
1359 	if (exit_state == EXIT_ZOMBIE) {
1360 		/* we don't reap group leaders with subthreads */
1361 		if (!delay_group_leader(p)) {
1362 			/*
1363 			 * A zombie ptracee is only visible to its ptracer.
1364 			 * Notification and reaping will be cascaded to the
1365 			 * real parent when the ptracer detaches.
1366 			 */
1367 			if (unlikely(ptrace) || likely(!p->ptrace))
1368 				return wait_task_zombie(wo, p);
1369 		}
1370 
1371 		/*
1372 		 * Allow access to stopped/continued state via zombie by
1373 		 * falling through.  Clearing of notask_error is complex.
1374 		 *
1375 		 * When !@ptrace:
1376 		 *
1377 		 * If WEXITED is set, notask_error should naturally be
1378 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1379 		 * so, if there are live subthreads, there are events to
1380 		 * wait for.  If all subthreads are dead, it's still safe
1381 		 * to clear - this function will be called again in finite
1382 		 * amount time once all the subthreads are released and
1383 		 * will then return without clearing.
1384 		 *
1385 		 * When @ptrace:
1386 		 *
1387 		 * Stopped state is per-task and thus can't change once the
1388 		 * target task dies.  Only continued and exited can happen.
1389 		 * Clear notask_error if WCONTINUED | WEXITED.
1390 		 */
1391 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1392 			wo->notask_error = 0;
1393 	} else {
1394 		/*
1395 		 * @p is alive and it's gonna stop, continue or exit, so
1396 		 * there always is something to wait for.
1397 		 */
1398 		wo->notask_error = 0;
1399 	}
1400 
1401 	/*
1402 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1403 	 * is used and the two don't interact with each other.
1404 	 */
1405 	ret = wait_task_stopped(wo, ptrace, p);
1406 	if (ret)
1407 		return ret;
1408 
1409 	/*
1410 	 * Wait for continued.  There's only one continued state and the
1411 	 * ptracer can consume it which can confuse the real parent.  Don't
1412 	 * use WCONTINUED from ptracer.  You don't need or want it.
1413 	 */
1414 	return wait_task_continued(wo, p);
1415 }
1416 
1417 /*
1418  * Do the work of do_wait() for one thread in the group, @tsk.
1419  *
1420  * -ECHILD should be in ->notask_error before the first call.
1421  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1422  * Returns zero if the search for a child should continue; then
1423  * ->notask_error is 0 if there were any eligible children,
1424  * or another error from security_task_wait(), or still -ECHILD.
1425  */
1426 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1427 {
1428 	struct task_struct *p;
1429 
1430 	list_for_each_entry(p, &tsk->children, sibling) {
1431 		int ret = wait_consider_task(wo, 0, p);
1432 
1433 		if (ret)
1434 			return ret;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1441 {
1442 	struct task_struct *p;
1443 
1444 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1445 		int ret = wait_consider_task(wo, 1, p);
1446 
1447 		if (ret)
1448 			return ret;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1455 				int sync, void *key)
1456 {
1457 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1458 						child_wait);
1459 	struct task_struct *p = key;
1460 
1461 	if (!eligible_pid(wo, p))
1462 		return 0;
1463 
1464 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1465 		return 0;
1466 
1467 	return default_wake_function(wait, mode, sync, key);
1468 }
1469 
1470 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1471 {
1472 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1473 				TASK_INTERRUPTIBLE, 1, p);
1474 }
1475 
1476 static long do_wait(struct wait_opts *wo)
1477 {
1478 	struct task_struct *tsk;
1479 	int retval;
1480 
1481 	trace_sched_process_wait(wo->wo_pid);
1482 
1483 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1484 	wo->child_wait.private = current;
1485 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1486 repeat:
1487 	/*
1488 	 * If there is nothing that can match our criteria, just get out.
1489 	 * We will clear ->notask_error to zero if we see any child that
1490 	 * might later match our criteria, even if we are not able to reap
1491 	 * it yet.
1492 	 */
1493 	wo->notask_error = -ECHILD;
1494 	if ((wo->wo_type < PIDTYPE_MAX) &&
1495 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1496 		goto notask;
1497 
1498 	set_current_state(TASK_INTERRUPTIBLE);
1499 	read_lock(&tasklist_lock);
1500 	tsk = current;
1501 	do {
1502 		retval = do_wait_thread(wo, tsk);
1503 		if (retval)
1504 			goto end;
1505 
1506 		retval = ptrace_do_wait(wo, tsk);
1507 		if (retval)
1508 			goto end;
1509 
1510 		if (wo->wo_flags & __WNOTHREAD)
1511 			break;
1512 	} while_each_thread(current, tsk);
1513 	read_unlock(&tasklist_lock);
1514 
1515 notask:
1516 	retval = wo->notask_error;
1517 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1518 		retval = -ERESTARTSYS;
1519 		if (!signal_pending(current)) {
1520 			schedule();
1521 			goto repeat;
1522 		}
1523 	}
1524 end:
1525 	__set_current_state(TASK_RUNNING);
1526 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1527 	return retval;
1528 }
1529 
1530 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1531 		infop, int, options, struct rusage __user *, ru)
1532 {
1533 	struct wait_opts wo;
1534 	struct pid *pid = NULL;
1535 	enum pid_type type;
1536 	long ret;
1537 
1538 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1539 			__WNOTHREAD|__WCLONE|__WALL))
1540 		return -EINVAL;
1541 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1542 		return -EINVAL;
1543 
1544 	switch (which) {
1545 	case P_ALL:
1546 		type = PIDTYPE_MAX;
1547 		break;
1548 	case P_PID:
1549 		type = PIDTYPE_PID;
1550 		if (upid <= 0)
1551 			return -EINVAL;
1552 		break;
1553 	case P_PGID:
1554 		type = PIDTYPE_PGID;
1555 		if (upid <= 0)
1556 			return -EINVAL;
1557 		break;
1558 	default:
1559 		return -EINVAL;
1560 	}
1561 
1562 	if (type < PIDTYPE_MAX)
1563 		pid = find_get_pid(upid);
1564 
1565 	wo.wo_type	= type;
1566 	wo.wo_pid	= pid;
1567 	wo.wo_flags	= options;
1568 	wo.wo_info	= infop;
1569 	wo.wo_stat	= NULL;
1570 	wo.wo_rusage	= ru;
1571 	ret = do_wait(&wo);
1572 
1573 	if (ret > 0) {
1574 		ret = 0;
1575 	} else if (infop) {
1576 		/*
1577 		 * For a WNOHANG return, clear out all the fields
1578 		 * we would set so the user can easily tell the
1579 		 * difference.
1580 		 */
1581 		if (!ret)
1582 			ret = put_user(0, &infop->si_signo);
1583 		if (!ret)
1584 			ret = put_user(0, &infop->si_errno);
1585 		if (!ret)
1586 			ret = put_user(0, &infop->si_code);
1587 		if (!ret)
1588 			ret = put_user(0, &infop->si_pid);
1589 		if (!ret)
1590 			ret = put_user(0, &infop->si_uid);
1591 		if (!ret)
1592 			ret = put_user(0, &infop->si_status);
1593 	}
1594 
1595 	put_pid(pid);
1596 	return ret;
1597 }
1598 
1599 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1600 		int, options, struct rusage __user *, ru)
1601 {
1602 	struct wait_opts wo;
1603 	struct pid *pid = NULL;
1604 	enum pid_type type;
1605 	long ret;
1606 
1607 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1608 			__WNOTHREAD|__WCLONE|__WALL))
1609 		return -EINVAL;
1610 
1611 	if (upid == -1)
1612 		type = PIDTYPE_MAX;
1613 	else if (upid < 0) {
1614 		type = PIDTYPE_PGID;
1615 		pid = find_get_pid(-upid);
1616 	} else if (upid == 0) {
1617 		type = PIDTYPE_PGID;
1618 		pid = get_task_pid(current, PIDTYPE_PGID);
1619 	} else /* upid > 0 */ {
1620 		type = PIDTYPE_PID;
1621 		pid = find_get_pid(upid);
1622 	}
1623 
1624 	wo.wo_type	= type;
1625 	wo.wo_pid	= pid;
1626 	wo.wo_flags	= options | WEXITED;
1627 	wo.wo_info	= NULL;
1628 	wo.wo_stat	= stat_addr;
1629 	wo.wo_rusage	= ru;
1630 	ret = do_wait(&wo);
1631 	put_pid(pid);
1632 
1633 	return ret;
1634 }
1635 
1636 #ifdef __ARCH_WANT_SYS_WAITPID
1637 
1638 /*
1639  * sys_waitpid() remains for compatibility. waitpid() should be
1640  * implemented by calling sys_wait4() from libc.a.
1641  */
1642 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1643 {
1644 	return sys_wait4(pid, stat_addr, options, NULL);
1645 }
1646 
1647 #endif
1648