1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 #include <linux/kcov.h> 57 58 #include <asm/uaccess.h> 59 #include <asm/unistd.h> 60 #include <asm/pgtable.h> 61 #include <asm/mmu_context.h> 62 63 static void __unhash_process(struct task_struct *p, bool group_dead) 64 { 65 nr_threads--; 66 detach_pid(p, PIDTYPE_PID); 67 if (group_dead) { 68 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_SID); 70 71 list_del_rcu(&p->tasks); 72 list_del_init(&p->sibling); 73 __this_cpu_dec(process_counts); 74 } 75 list_del_rcu(&p->thread_group); 76 list_del_rcu(&p->thread_node); 77 } 78 79 /* 80 * This function expects the tasklist_lock write-locked. 81 */ 82 static void __exit_signal(struct task_struct *tsk) 83 { 84 struct signal_struct *sig = tsk->signal; 85 bool group_dead = thread_group_leader(tsk); 86 struct sighand_struct *sighand; 87 struct tty_struct *uninitialized_var(tty); 88 cputime_t utime, stime; 89 90 sighand = rcu_dereference_check(tsk->sighand, 91 lockdep_tasklist_lock_is_held()); 92 spin_lock(&sighand->siglock); 93 94 posix_cpu_timers_exit(tsk); 95 if (group_dead) { 96 posix_cpu_timers_exit_group(tsk); 97 tty = sig->tty; 98 sig->tty = NULL; 99 } else { 100 /* 101 * This can only happen if the caller is de_thread(). 102 * FIXME: this is the temporary hack, we should teach 103 * posix-cpu-timers to handle this case correctly. 104 */ 105 if (unlikely(has_group_leader_pid(tsk))) 106 posix_cpu_timers_exit_group(tsk); 107 108 /* 109 * If there is any task waiting for the group exit 110 * then notify it: 111 */ 112 if (sig->notify_count > 0 && !--sig->notify_count) 113 wake_up_process(sig->group_exit_task); 114 115 if (tsk == sig->curr_target) 116 sig->curr_target = next_thread(tsk); 117 } 118 119 /* 120 * Accumulate here the counters for all threads as they die. We could 121 * skip the group leader because it is the last user of signal_struct, 122 * but we want to avoid the race with thread_group_cputime() which can 123 * see the empty ->thread_head list. 124 */ 125 task_cputime(tsk, &utime, &stime); 126 write_seqlock(&sig->stats_lock); 127 sig->utime += utime; 128 sig->stime += stime; 129 sig->gtime += task_gtime(tsk); 130 sig->min_flt += tsk->min_flt; 131 sig->maj_flt += tsk->maj_flt; 132 sig->nvcsw += tsk->nvcsw; 133 sig->nivcsw += tsk->nivcsw; 134 sig->inblock += task_io_get_inblock(tsk); 135 sig->oublock += task_io_get_oublock(tsk); 136 task_io_accounting_add(&sig->ioac, &tsk->ioac); 137 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 138 sig->nr_threads--; 139 __unhash_process(tsk, group_dead); 140 write_sequnlock(&sig->stats_lock); 141 142 /* 143 * Do this under ->siglock, we can race with another thread 144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 145 */ 146 flush_sigqueue(&tsk->pending); 147 tsk->sighand = NULL; 148 spin_unlock(&sighand->siglock); 149 150 __cleanup_sighand(sighand); 151 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 152 if (group_dead) { 153 flush_sigqueue(&sig->shared_pending); 154 tty_kref_put(tty); 155 } 156 } 157 158 static void delayed_put_task_struct(struct rcu_head *rhp) 159 { 160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 161 162 perf_event_delayed_put(tsk); 163 trace_sched_process_free(tsk); 164 put_task_struct(tsk); 165 } 166 167 168 void release_task(struct task_struct *p) 169 { 170 struct task_struct *leader; 171 int zap_leader; 172 repeat: 173 /* don't need to get the RCU readlock here - the process is dead and 174 * can't be modifying its own credentials. But shut RCU-lockdep up */ 175 rcu_read_lock(); 176 atomic_dec(&__task_cred(p)->user->processes); 177 rcu_read_unlock(); 178 179 proc_flush_task(p); 180 181 write_lock_irq(&tasklist_lock); 182 ptrace_release_task(p); 183 __exit_signal(p); 184 185 /* 186 * If we are the last non-leader member of the thread 187 * group, and the leader is zombie, then notify the 188 * group leader's parent process. (if it wants notification.) 189 */ 190 zap_leader = 0; 191 leader = p->group_leader; 192 if (leader != p && thread_group_empty(leader) 193 && leader->exit_state == EXIT_ZOMBIE) { 194 /* 195 * If we were the last child thread and the leader has 196 * exited already, and the leader's parent ignores SIGCHLD, 197 * then we are the one who should release the leader. 198 */ 199 zap_leader = do_notify_parent(leader, leader->exit_signal); 200 if (zap_leader) 201 leader->exit_state = EXIT_DEAD; 202 } 203 204 write_unlock_irq(&tasklist_lock); 205 release_thread(p); 206 call_rcu(&p->rcu, delayed_put_task_struct); 207 208 p = leader; 209 if (unlikely(zap_leader)) 210 goto repeat; 211 } 212 213 /* 214 * Determine if a process group is "orphaned", according to the POSIX 215 * definition in 2.2.2.52. Orphaned process groups are not to be affected 216 * by terminal-generated stop signals. Newly orphaned process groups are 217 * to receive a SIGHUP and a SIGCONT. 218 * 219 * "I ask you, have you ever known what it is to be an orphan?" 220 */ 221 static int will_become_orphaned_pgrp(struct pid *pgrp, 222 struct task_struct *ignored_task) 223 { 224 struct task_struct *p; 225 226 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 227 if ((p == ignored_task) || 228 (p->exit_state && thread_group_empty(p)) || 229 is_global_init(p->real_parent)) 230 continue; 231 232 if (task_pgrp(p->real_parent) != pgrp && 233 task_session(p->real_parent) == task_session(p)) 234 return 0; 235 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 236 237 return 1; 238 } 239 240 int is_current_pgrp_orphaned(void) 241 { 242 int retval; 243 244 read_lock(&tasklist_lock); 245 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 246 read_unlock(&tasklist_lock); 247 248 return retval; 249 } 250 251 static bool has_stopped_jobs(struct pid *pgrp) 252 { 253 struct task_struct *p; 254 255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 256 if (p->signal->flags & SIGNAL_STOP_STOPPED) 257 return true; 258 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 259 260 return false; 261 } 262 263 /* 264 * Check to see if any process groups have become orphaned as 265 * a result of our exiting, and if they have any stopped jobs, 266 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 267 */ 268 static void 269 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 270 { 271 struct pid *pgrp = task_pgrp(tsk); 272 struct task_struct *ignored_task = tsk; 273 274 if (!parent) 275 /* exit: our father is in a different pgrp than 276 * we are and we were the only connection outside. 277 */ 278 parent = tsk->real_parent; 279 else 280 /* reparent: our child is in a different pgrp than 281 * we are, and it was the only connection outside. 282 */ 283 ignored_task = NULL; 284 285 if (task_pgrp(parent) != pgrp && 286 task_session(parent) == task_session(tsk) && 287 will_become_orphaned_pgrp(pgrp, ignored_task) && 288 has_stopped_jobs(pgrp)) { 289 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 290 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 291 } 292 } 293 294 #ifdef CONFIG_MEMCG 295 /* 296 * A task is exiting. If it owned this mm, find a new owner for the mm. 297 */ 298 void mm_update_next_owner(struct mm_struct *mm) 299 { 300 struct task_struct *c, *g, *p = current; 301 302 retry: 303 /* 304 * If the exiting or execing task is not the owner, it's 305 * someone else's problem. 306 */ 307 if (mm->owner != p) 308 return; 309 /* 310 * The current owner is exiting/execing and there are no other 311 * candidates. Do not leave the mm pointing to a possibly 312 * freed task structure. 313 */ 314 if (atomic_read(&mm->mm_users) <= 1) { 315 mm->owner = NULL; 316 return; 317 } 318 319 read_lock(&tasklist_lock); 320 /* 321 * Search in the children 322 */ 323 list_for_each_entry(c, &p->children, sibling) { 324 if (c->mm == mm) 325 goto assign_new_owner; 326 } 327 328 /* 329 * Search in the siblings 330 */ 331 list_for_each_entry(c, &p->real_parent->children, sibling) { 332 if (c->mm == mm) 333 goto assign_new_owner; 334 } 335 336 /* 337 * Search through everything else, we should not get here often. 338 */ 339 for_each_process(g) { 340 if (g->flags & PF_KTHREAD) 341 continue; 342 for_each_thread(g, c) { 343 if (c->mm == mm) 344 goto assign_new_owner; 345 if (c->mm) 346 break; 347 } 348 } 349 read_unlock(&tasklist_lock); 350 /* 351 * We found no owner yet mm_users > 1: this implies that we are 352 * most likely racing with swapoff (try_to_unuse()) or /proc or 353 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 354 */ 355 mm->owner = NULL; 356 return; 357 358 assign_new_owner: 359 BUG_ON(c == p); 360 get_task_struct(c); 361 /* 362 * The task_lock protects c->mm from changing. 363 * We always want mm->owner->mm == mm 364 */ 365 task_lock(c); 366 /* 367 * Delay read_unlock() till we have the task_lock() 368 * to ensure that c does not slip away underneath us 369 */ 370 read_unlock(&tasklist_lock); 371 if (c->mm != mm) { 372 task_unlock(c); 373 put_task_struct(c); 374 goto retry; 375 } 376 mm->owner = c; 377 task_unlock(c); 378 put_task_struct(c); 379 } 380 #endif /* CONFIG_MEMCG */ 381 382 /* 383 * Turn us into a lazy TLB process if we 384 * aren't already.. 385 */ 386 static void exit_mm(struct task_struct *tsk) 387 { 388 struct mm_struct *mm = tsk->mm; 389 struct core_state *core_state; 390 391 mm_release(tsk, mm); 392 if (!mm) 393 return; 394 sync_mm_rss(mm); 395 /* 396 * Serialize with any possible pending coredump. 397 * We must hold mmap_sem around checking core_state 398 * and clearing tsk->mm. The core-inducing thread 399 * will increment ->nr_threads for each thread in the 400 * group with ->mm != NULL. 401 */ 402 down_read(&mm->mmap_sem); 403 core_state = mm->core_state; 404 if (core_state) { 405 struct core_thread self; 406 407 up_read(&mm->mmap_sem); 408 409 self.task = tsk; 410 self.next = xchg(&core_state->dumper.next, &self); 411 /* 412 * Implies mb(), the result of xchg() must be visible 413 * to core_state->dumper. 414 */ 415 if (atomic_dec_and_test(&core_state->nr_threads)) 416 complete(&core_state->startup); 417 418 for (;;) { 419 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 420 if (!self.task) /* see coredump_finish() */ 421 break; 422 freezable_schedule(); 423 } 424 __set_task_state(tsk, TASK_RUNNING); 425 down_read(&mm->mmap_sem); 426 } 427 atomic_inc(&mm->mm_count); 428 BUG_ON(mm != tsk->active_mm); 429 /* more a memory barrier than a real lock */ 430 task_lock(tsk); 431 tsk->mm = NULL; 432 up_read(&mm->mmap_sem); 433 enter_lazy_tlb(mm, current); 434 task_unlock(tsk); 435 mm_update_next_owner(mm); 436 mmput(mm); 437 if (test_thread_flag(TIF_MEMDIE)) 438 exit_oom_victim(tsk); 439 } 440 441 static struct task_struct *find_alive_thread(struct task_struct *p) 442 { 443 struct task_struct *t; 444 445 for_each_thread(p, t) { 446 if (!(t->flags & PF_EXITING)) 447 return t; 448 } 449 return NULL; 450 } 451 452 static struct task_struct *find_child_reaper(struct task_struct *father) 453 __releases(&tasklist_lock) 454 __acquires(&tasklist_lock) 455 { 456 struct pid_namespace *pid_ns = task_active_pid_ns(father); 457 struct task_struct *reaper = pid_ns->child_reaper; 458 459 if (likely(reaper != father)) 460 return reaper; 461 462 reaper = find_alive_thread(father); 463 if (reaper) { 464 pid_ns->child_reaper = reaper; 465 return reaper; 466 } 467 468 write_unlock_irq(&tasklist_lock); 469 if (unlikely(pid_ns == &init_pid_ns)) { 470 panic("Attempted to kill init! exitcode=0x%08x\n", 471 father->signal->group_exit_code ?: father->exit_code); 472 } 473 zap_pid_ns_processes(pid_ns); 474 write_lock_irq(&tasklist_lock); 475 476 return father; 477 } 478 479 /* 480 * When we die, we re-parent all our children, and try to: 481 * 1. give them to another thread in our thread group, if such a member exists 482 * 2. give it to the first ancestor process which prctl'd itself as a 483 * child_subreaper for its children (like a service manager) 484 * 3. give it to the init process (PID 1) in our pid namespace 485 */ 486 static struct task_struct *find_new_reaper(struct task_struct *father, 487 struct task_struct *child_reaper) 488 { 489 struct task_struct *thread, *reaper; 490 491 thread = find_alive_thread(father); 492 if (thread) 493 return thread; 494 495 if (father->signal->has_child_subreaper) { 496 /* 497 * Find the first ->is_child_subreaper ancestor in our pid_ns. 498 * We start from father to ensure we can not look into another 499 * namespace, this is safe because all its threads are dead. 500 */ 501 for (reaper = father; 502 !same_thread_group(reaper, child_reaper); 503 reaper = reaper->real_parent) { 504 /* call_usermodehelper() descendants need this check */ 505 if (reaper == &init_task) 506 break; 507 if (!reaper->signal->is_child_subreaper) 508 continue; 509 thread = find_alive_thread(reaper); 510 if (thread) 511 return thread; 512 } 513 } 514 515 return child_reaper; 516 } 517 518 /* 519 * Any that need to be release_task'd are put on the @dead list. 520 */ 521 static void reparent_leader(struct task_struct *father, struct task_struct *p, 522 struct list_head *dead) 523 { 524 if (unlikely(p->exit_state == EXIT_DEAD)) 525 return; 526 527 /* We don't want people slaying init. */ 528 p->exit_signal = SIGCHLD; 529 530 /* If it has exited notify the new parent about this child's death. */ 531 if (!p->ptrace && 532 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 533 if (do_notify_parent(p, p->exit_signal)) { 534 p->exit_state = EXIT_DEAD; 535 list_add(&p->ptrace_entry, dead); 536 } 537 } 538 539 kill_orphaned_pgrp(p, father); 540 } 541 542 /* 543 * This does two things: 544 * 545 * A. Make init inherit all the child processes 546 * B. Check to see if any process groups have become orphaned 547 * as a result of our exiting, and if they have any stopped 548 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 549 */ 550 static void forget_original_parent(struct task_struct *father, 551 struct list_head *dead) 552 { 553 struct task_struct *p, *t, *reaper; 554 555 if (unlikely(!list_empty(&father->ptraced))) 556 exit_ptrace(father, dead); 557 558 /* Can drop and reacquire tasklist_lock */ 559 reaper = find_child_reaper(father); 560 if (list_empty(&father->children)) 561 return; 562 563 reaper = find_new_reaper(father, reaper); 564 list_for_each_entry(p, &father->children, sibling) { 565 for_each_thread(p, t) { 566 t->real_parent = reaper; 567 BUG_ON((!t->ptrace) != (t->parent == father)); 568 if (likely(!t->ptrace)) 569 t->parent = t->real_parent; 570 if (t->pdeath_signal) 571 group_send_sig_info(t->pdeath_signal, 572 SEND_SIG_NOINFO, t); 573 } 574 /* 575 * If this is a threaded reparent there is no need to 576 * notify anyone anything has happened. 577 */ 578 if (!same_thread_group(reaper, father)) 579 reparent_leader(father, p, dead); 580 } 581 list_splice_tail_init(&father->children, &reaper->children); 582 } 583 584 /* 585 * Send signals to all our closest relatives so that they know 586 * to properly mourn us.. 587 */ 588 static void exit_notify(struct task_struct *tsk, int group_dead) 589 { 590 bool autoreap; 591 struct task_struct *p, *n; 592 LIST_HEAD(dead); 593 594 write_lock_irq(&tasklist_lock); 595 forget_original_parent(tsk, &dead); 596 597 if (group_dead) 598 kill_orphaned_pgrp(tsk->group_leader, NULL); 599 600 if (unlikely(tsk->ptrace)) { 601 int sig = thread_group_leader(tsk) && 602 thread_group_empty(tsk) && 603 !ptrace_reparented(tsk) ? 604 tsk->exit_signal : SIGCHLD; 605 autoreap = do_notify_parent(tsk, sig); 606 } else if (thread_group_leader(tsk)) { 607 autoreap = thread_group_empty(tsk) && 608 do_notify_parent(tsk, tsk->exit_signal); 609 } else { 610 autoreap = true; 611 } 612 613 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 614 if (tsk->exit_state == EXIT_DEAD) 615 list_add(&tsk->ptrace_entry, &dead); 616 617 /* mt-exec, de_thread() is waiting for group leader */ 618 if (unlikely(tsk->signal->notify_count < 0)) 619 wake_up_process(tsk->signal->group_exit_task); 620 write_unlock_irq(&tasklist_lock); 621 622 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 623 list_del_init(&p->ptrace_entry); 624 release_task(p); 625 } 626 } 627 628 #ifdef CONFIG_DEBUG_STACK_USAGE 629 static void check_stack_usage(void) 630 { 631 static DEFINE_SPINLOCK(low_water_lock); 632 static int lowest_to_date = THREAD_SIZE; 633 unsigned long free; 634 635 free = stack_not_used(current); 636 637 if (free >= lowest_to_date) 638 return; 639 640 spin_lock(&low_water_lock); 641 if (free < lowest_to_date) { 642 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 643 current->comm, task_pid_nr(current), free); 644 lowest_to_date = free; 645 } 646 spin_unlock(&low_water_lock); 647 } 648 #else 649 static inline void check_stack_usage(void) {} 650 #endif 651 652 void do_exit(long code) 653 { 654 struct task_struct *tsk = current; 655 int group_dead; 656 TASKS_RCU(int tasks_rcu_i); 657 658 profile_task_exit(tsk); 659 kcov_task_exit(tsk); 660 661 WARN_ON(blk_needs_flush_plug(tsk)); 662 663 if (unlikely(in_interrupt())) 664 panic("Aiee, killing interrupt handler!"); 665 if (unlikely(!tsk->pid)) 666 panic("Attempted to kill the idle task!"); 667 668 /* 669 * If do_exit is called because this processes oopsed, it's possible 670 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 671 * continuing. Amongst other possible reasons, this is to prevent 672 * mm_release()->clear_child_tid() from writing to a user-controlled 673 * kernel address. 674 */ 675 set_fs(USER_DS); 676 677 ptrace_event(PTRACE_EVENT_EXIT, code); 678 679 validate_creds_for_do_exit(tsk); 680 681 /* 682 * We're taking recursive faults here in do_exit. Safest is to just 683 * leave this task alone and wait for reboot. 684 */ 685 if (unlikely(tsk->flags & PF_EXITING)) { 686 pr_alert("Fixing recursive fault but reboot is needed!\n"); 687 /* 688 * We can do this unlocked here. The futex code uses 689 * this flag just to verify whether the pi state 690 * cleanup has been done or not. In the worst case it 691 * loops once more. We pretend that the cleanup was 692 * done as there is no way to return. Either the 693 * OWNER_DIED bit is set by now or we push the blocked 694 * task into the wait for ever nirwana as well. 695 */ 696 tsk->flags |= PF_EXITPIDONE; 697 set_current_state(TASK_UNINTERRUPTIBLE); 698 schedule(); 699 } 700 701 exit_signals(tsk); /* sets PF_EXITING */ 702 /* 703 * tsk->flags are checked in the futex code to protect against 704 * an exiting task cleaning up the robust pi futexes. 705 */ 706 smp_mb(); 707 raw_spin_unlock_wait(&tsk->pi_lock); 708 709 if (unlikely(in_atomic())) { 710 pr_info("note: %s[%d] exited with preempt_count %d\n", 711 current->comm, task_pid_nr(current), 712 preempt_count()); 713 preempt_count_set(PREEMPT_ENABLED); 714 } 715 716 /* sync mm's RSS info before statistics gathering */ 717 if (tsk->mm) 718 sync_mm_rss(tsk->mm); 719 acct_update_integrals(tsk); 720 group_dead = atomic_dec_and_test(&tsk->signal->live); 721 if (group_dead) { 722 hrtimer_cancel(&tsk->signal->real_timer); 723 exit_itimers(tsk->signal); 724 if (tsk->mm) 725 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 726 } 727 acct_collect(code, group_dead); 728 if (group_dead) 729 tty_audit_exit(); 730 audit_free(tsk); 731 732 tsk->exit_code = code; 733 taskstats_exit(tsk, group_dead); 734 735 exit_mm(tsk); 736 737 if (group_dead) 738 acct_process(); 739 trace_sched_process_exit(tsk); 740 741 exit_sem(tsk); 742 exit_shm(tsk); 743 exit_files(tsk); 744 exit_fs(tsk); 745 if (group_dead) 746 disassociate_ctty(1); 747 exit_task_namespaces(tsk); 748 exit_task_work(tsk); 749 exit_thread(tsk); 750 751 /* 752 * Flush inherited counters to the parent - before the parent 753 * gets woken up by child-exit notifications. 754 * 755 * because of cgroup mode, must be called before cgroup_exit() 756 */ 757 perf_event_exit_task(tsk); 758 759 cgroup_exit(tsk); 760 761 /* 762 * FIXME: do that only when needed, using sched_exit tracepoint 763 */ 764 flush_ptrace_hw_breakpoint(tsk); 765 766 TASKS_RCU(preempt_disable()); 767 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 768 TASKS_RCU(preempt_enable()); 769 exit_notify(tsk, group_dead); 770 proc_exit_connector(tsk); 771 #ifdef CONFIG_NUMA 772 task_lock(tsk); 773 mpol_put(tsk->mempolicy); 774 tsk->mempolicy = NULL; 775 task_unlock(tsk); 776 #endif 777 #ifdef CONFIG_FUTEX 778 if (unlikely(current->pi_state_cache)) 779 kfree(current->pi_state_cache); 780 #endif 781 /* 782 * Make sure we are holding no locks: 783 */ 784 debug_check_no_locks_held(); 785 /* 786 * We can do this unlocked here. The futex code uses this flag 787 * just to verify whether the pi state cleanup has been done 788 * or not. In the worst case it loops once more. 789 */ 790 tsk->flags |= PF_EXITPIDONE; 791 792 if (tsk->io_context) 793 exit_io_context(tsk); 794 795 if (tsk->splice_pipe) 796 free_pipe_info(tsk->splice_pipe); 797 798 if (tsk->task_frag.page) 799 put_page(tsk->task_frag.page); 800 801 validate_creds_for_do_exit(tsk); 802 803 check_stack_usage(); 804 preempt_disable(); 805 if (tsk->nr_dirtied) 806 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 807 exit_rcu(); 808 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 809 810 /* 811 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 812 * when the following two conditions become true. 813 * - There is race condition of mmap_sem (It is acquired by 814 * exit_mm()), and 815 * - SMI occurs before setting TASK_RUNINNG. 816 * (or hypervisor of virtual machine switches to other guest) 817 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 818 * 819 * To avoid it, we have to wait for releasing tsk->pi_lock which 820 * is held by try_to_wake_up() 821 */ 822 smp_mb(); 823 raw_spin_unlock_wait(&tsk->pi_lock); 824 825 /* causes final put_task_struct in finish_task_switch(). */ 826 tsk->state = TASK_DEAD; 827 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 828 schedule(); 829 BUG(); 830 /* Avoid "noreturn function does return". */ 831 for (;;) 832 cpu_relax(); /* For when BUG is null */ 833 } 834 EXPORT_SYMBOL_GPL(do_exit); 835 836 void complete_and_exit(struct completion *comp, long code) 837 { 838 if (comp) 839 complete(comp); 840 841 do_exit(code); 842 } 843 EXPORT_SYMBOL(complete_and_exit); 844 845 SYSCALL_DEFINE1(exit, int, error_code) 846 { 847 do_exit((error_code&0xff)<<8); 848 } 849 850 /* 851 * Take down every thread in the group. This is called by fatal signals 852 * as well as by sys_exit_group (below). 853 */ 854 void 855 do_group_exit(int exit_code) 856 { 857 struct signal_struct *sig = current->signal; 858 859 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 860 861 if (signal_group_exit(sig)) 862 exit_code = sig->group_exit_code; 863 else if (!thread_group_empty(current)) { 864 struct sighand_struct *const sighand = current->sighand; 865 866 spin_lock_irq(&sighand->siglock); 867 if (signal_group_exit(sig)) 868 /* Another thread got here before we took the lock. */ 869 exit_code = sig->group_exit_code; 870 else { 871 sig->group_exit_code = exit_code; 872 sig->flags = SIGNAL_GROUP_EXIT; 873 zap_other_threads(current); 874 } 875 spin_unlock_irq(&sighand->siglock); 876 } 877 878 do_exit(exit_code); 879 /* NOTREACHED */ 880 } 881 882 /* 883 * this kills every thread in the thread group. Note that any externally 884 * wait4()-ing process will get the correct exit code - even if this 885 * thread is not the thread group leader. 886 */ 887 SYSCALL_DEFINE1(exit_group, int, error_code) 888 { 889 do_group_exit((error_code & 0xff) << 8); 890 /* NOTREACHED */ 891 return 0; 892 } 893 894 struct wait_opts { 895 enum pid_type wo_type; 896 int wo_flags; 897 struct pid *wo_pid; 898 899 struct siginfo __user *wo_info; 900 int __user *wo_stat; 901 struct rusage __user *wo_rusage; 902 903 wait_queue_t child_wait; 904 int notask_error; 905 }; 906 907 static inline 908 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 909 { 910 if (type != PIDTYPE_PID) 911 task = task->group_leader; 912 return task->pids[type].pid; 913 } 914 915 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 916 { 917 return wo->wo_type == PIDTYPE_MAX || 918 task_pid_type(p, wo->wo_type) == wo->wo_pid; 919 } 920 921 static int 922 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 923 { 924 if (!eligible_pid(wo, p)) 925 return 0; 926 927 /* 928 * Wait for all children (clone and not) if __WALL is set or 929 * if it is traced by us. 930 */ 931 if (ptrace || (wo->wo_flags & __WALL)) 932 return 1; 933 934 /* 935 * Otherwise, wait for clone children *only* if __WCLONE is set; 936 * otherwise, wait for non-clone children *only*. 937 * 938 * Note: a "clone" child here is one that reports to its parent 939 * using a signal other than SIGCHLD, or a non-leader thread which 940 * we can only see if it is traced by us. 941 */ 942 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 943 return 0; 944 945 return 1; 946 } 947 948 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 949 pid_t pid, uid_t uid, int why, int status) 950 { 951 struct siginfo __user *infop; 952 int retval = wo->wo_rusage 953 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 954 955 put_task_struct(p); 956 infop = wo->wo_info; 957 if (infop) { 958 if (!retval) 959 retval = put_user(SIGCHLD, &infop->si_signo); 960 if (!retval) 961 retval = put_user(0, &infop->si_errno); 962 if (!retval) 963 retval = put_user((short)why, &infop->si_code); 964 if (!retval) 965 retval = put_user(pid, &infop->si_pid); 966 if (!retval) 967 retval = put_user(uid, &infop->si_uid); 968 if (!retval) 969 retval = put_user(status, &infop->si_status); 970 } 971 if (!retval) 972 retval = pid; 973 return retval; 974 } 975 976 /* 977 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 978 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 979 * the lock and this task is uninteresting. If we return nonzero, we have 980 * released the lock and the system call should return. 981 */ 982 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 983 { 984 int state, retval, status; 985 pid_t pid = task_pid_vnr(p); 986 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 987 struct siginfo __user *infop; 988 989 if (!likely(wo->wo_flags & WEXITED)) 990 return 0; 991 992 if (unlikely(wo->wo_flags & WNOWAIT)) { 993 int exit_code = p->exit_code; 994 int why; 995 996 get_task_struct(p); 997 read_unlock(&tasklist_lock); 998 sched_annotate_sleep(); 999 1000 if ((exit_code & 0x7f) == 0) { 1001 why = CLD_EXITED; 1002 status = exit_code >> 8; 1003 } else { 1004 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1005 status = exit_code & 0x7f; 1006 } 1007 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1008 } 1009 /* 1010 * Move the task's state to DEAD/TRACE, only one thread can do this. 1011 */ 1012 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1013 EXIT_TRACE : EXIT_DEAD; 1014 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1015 return 0; 1016 /* 1017 * We own this thread, nobody else can reap it. 1018 */ 1019 read_unlock(&tasklist_lock); 1020 sched_annotate_sleep(); 1021 1022 /* 1023 * Check thread_group_leader() to exclude the traced sub-threads. 1024 */ 1025 if (state == EXIT_DEAD && thread_group_leader(p)) { 1026 struct signal_struct *sig = p->signal; 1027 struct signal_struct *psig = current->signal; 1028 unsigned long maxrss; 1029 cputime_t tgutime, tgstime; 1030 1031 /* 1032 * The resource counters for the group leader are in its 1033 * own task_struct. Those for dead threads in the group 1034 * are in its signal_struct, as are those for the child 1035 * processes it has previously reaped. All these 1036 * accumulate in the parent's signal_struct c* fields. 1037 * 1038 * We don't bother to take a lock here to protect these 1039 * p->signal fields because the whole thread group is dead 1040 * and nobody can change them. 1041 * 1042 * psig->stats_lock also protects us from our sub-theads 1043 * which can reap other children at the same time. Until 1044 * we change k_getrusage()-like users to rely on this lock 1045 * we have to take ->siglock as well. 1046 * 1047 * We use thread_group_cputime_adjusted() to get times for 1048 * the thread group, which consolidates times for all threads 1049 * in the group including the group leader. 1050 */ 1051 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1052 spin_lock_irq(¤t->sighand->siglock); 1053 write_seqlock(&psig->stats_lock); 1054 psig->cutime += tgutime + sig->cutime; 1055 psig->cstime += tgstime + sig->cstime; 1056 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1057 psig->cmin_flt += 1058 p->min_flt + sig->min_flt + sig->cmin_flt; 1059 psig->cmaj_flt += 1060 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1061 psig->cnvcsw += 1062 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1063 psig->cnivcsw += 1064 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1065 psig->cinblock += 1066 task_io_get_inblock(p) + 1067 sig->inblock + sig->cinblock; 1068 psig->coublock += 1069 task_io_get_oublock(p) + 1070 sig->oublock + sig->coublock; 1071 maxrss = max(sig->maxrss, sig->cmaxrss); 1072 if (psig->cmaxrss < maxrss) 1073 psig->cmaxrss = maxrss; 1074 task_io_accounting_add(&psig->ioac, &p->ioac); 1075 task_io_accounting_add(&psig->ioac, &sig->ioac); 1076 write_sequnlock(&psig->stats_lock); 1077 spin_unlock_irq(¤t->sighand->siglock); 1078 } 1079 1080 retval = wo->wo_rusage 1081 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1082 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1083 ? p->signal->group_exit_code : p->exit_code; 1084 if (!retval && wo->wo_stat) 1085 retval = put_user(status, wo->wo_stat); 1086 1087 infop = wo->wo_info; 1088 if (!retval && infop) 1089 retval = put_user(SIGCHLD, &infop->si_signo); 1090 if (!retval && infop) 1091 retval = put_user(0, &infop->si_errno); 1092 if (!retval && infop) { 1093 int why; 1094 1095 if ((status & 0x7f) == 0) { 1096 why = CLD_EXITED; 1097 status >>= 8; 1098 } else { 1099 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1100 status &= 0x7f; 1101 } 1102 retval = put_user((short)why, &infop->si_code); 1103 if (!retval) 1104 retval = put_user(status, &infop->si_status); 1105 } 1106 if (!retval && infop) 1107 retval = put_user(pid, &infop->si_pid); 1108 if (!retval && infop) 1109 retval = put_user(uid, &infop->si_uid); 1110 if (!retval) 1111 retval = pid; 1112 1113 if (state == EXIT_TRACE) { 1114 write_lock_irq(&tasklist_lock); 1115 /* We dropped tasklist, ptracer could die and untrace */ 1116 ptrace_unlink(p); 1117 1118 /* If parent wants a zombie, don't release it now */ 1119 state = EXIT_ZOMBIE; 1120 if (do_notify_parent(p, p->exit_signal)) 1121 state = EXIT_DEAD; 1122 p->exit_state = state; 1123 write_unlock_irq(&tasklist_lock); 1124 } 1125 if (state == EXIT_DEAD) 1126 release_task(p); 1127 1128 return retval; 1129 } 1130 1131 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1132 { 1133 if (ptrace) { 1134 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1135 return &p->exit_code; 1136 } else { 1137 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1138 return &p->signal->group_exit_code; 1139 } 1140 return NULL; 1141 } 1142 1143 /** 1144 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1145 * @wo: wait options 1146 * @ptrace: is the wait for ptrace 1147 * @p: task to wait for 1148 * 1149 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1150 * 1151 * CONTEXT: 1152 * read_lock(&tasklist_lock), which is released if return value is 1153 * non-zero. Also, grabs and releases @p->sighand->siglock. 1154 * 1155 * RETURNS: 1156 * 0 if wait condition didn't exist and search for other wait conditions 1157 * should continue. Non-zero return, -errno on failure and @p's pid on 1158 * success, implies that tasklist_lock is released and wait condition 1159 * search should terminate. 1160 */ 1161 static int wait_task_stopped(struct wait_opts *wo, 1162 int ptrace, struct task_struct *p) 1163 { 1164 struct siginfo __user *infop; 1165 int retval, exit_code, *p_code, why; 1166 uid_t uid = 0; /* unneeded, required by compiler */ 1167 pid_t pid; 1168 1169 /* 1170 * Traditionally we see ptrace'd stopped tasks regardless of options. 1171 */ 1172 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1173 return 0; 1174 1175 if (!task_stopped_code(p, ptrace)) 1176 return 0; 1177 1178 exit_code = 0; 1179 spin_lock_irq(&p->sighand->siglock); 1180 1181 p_code = task_stopped_code(p, ptrace); 1182 if (unlikely(!p_code)) 1183 goto unlock_sig; 1184 1185 exit_code = *p_code; 1186 if (!exit_code) 1187 goto unlock_sig; 1188 1189 if (!unlikely(wo->wo_flags & WNOWAIT)) 1190 *p_code = 0; 1191 1192 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1193 unlock_sig: 1194 spin_unlock_irq(&p->sighand->siglock); 1195 if (!exit_code) 1196 return 0; 1197 1198 /* 1199 * Now we are pretty sure this task is interesting. 1200 * Make sure it doesn't get reaped out from under us while we 1201 * give up the lock and then examine it below. We don't want to 1202 * keep holding onto the tasklist_lock while we call getrusage and 1203 * possibly take page faults for user memory. 1204 */ 1205 get_task_struct(p); 1206 pid = task_pid_vnr(p); 1207 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1208 read_unlock(&tasklist_lock); 1209 sched_annotate_sleep(); 1210 1211 if (unlikely(wo->wo_flags & WNOWAIT)) 1212 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1213 1214 retval = wo->wo_rusage 1215 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1216 if (!retval && wo->wo_stat) 1217 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1218 1219 infop = wo->wo_info; 1220 if (!retval && infop) 1221 retval = put_user(SIGCHLD, &infop->si_signo); 1222 if (!retval && infop) 1223 retval = put_user(0, &infop->si_errno); 1224 if (!retval && infop) 1225 retval = put_user((short)why, &infop->si_code); 1226 if (!retval && infop) 1227 retval = put_user(exit_code, &infop->si_status); 1228 if (!retval && infop) 1229 retval = put_user(pid, &infop->si_pid); 1230 if (!retval && infop) 1231 retval = put_user(uid, &infop->si_uid); 1232 if (!retval) 1233 retval = pid; 1234 put_task_struct(p); 1235 1236 BUG_ON(!retval); 1237 return retval; 1238 } 1239 1240 /* 1241 * Handle do_wait work for one task in a live, non-stopped state. 1242 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1243 * the lock and this task is uninteresting. If we return nonzero, we have 1244 * released the lock and the system call should return. 1245 */ 1246 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1247 { 1248 int retval; 1249 pid_t pid; 1250 uid_t uid; 1251 1252 if (!unlikely(wo->wo_flags & WCONTINUED)) 1253 return 0; 1254 1255 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1256 return 0; 1257 1258 spin_lock_irq(&p->sighand->siglock); 1259 /* Re-check with the lock held. */ 1260 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1261 spin_unlock_irq(&p->sighand->siglock); 1262 return 0; 1263 } 1264 if (!unlikely(wo->wo_flags & WNOWAIT)) 1265 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1266 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1267 spin_unlock_irq(&p->sighand->siglock); 1268 1269 pid = task_pid_vnr(p); 1270 get_task_struct(p); 1271 read_unlock(&tasklist_lock); 1272 sched_annotate_sleep(); 1273 1274 if (!wo->wo_info) { 1275 retval = wo->wo_rusage 1276 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1277 put_task_struct(p); 1278 if (!retval && wo->wo_stat) 1279 retval = put_user(0xffff, wo->wo_stat); 1280 if (!retval) 1281 retval = pid; 1282 } else { 1283 retval = wait_noreap_copyout(wo, p, pid, uid, 1284 CLD_CONTINUED, SIGCONT); 1285 BUG_ON(retval == 0); 1286 } 1287 1288 return retval; 1289 } 1290 1291 /* 1292 * Consider @p for a wait by @parent. 1293 * 1294 * -ECHILD should be in ->notask_error before the first call. 1295 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1296 * Returns zero if the search for a child should continue; 1297 * then ->notask_error is 0 if @p is an eligible child, 1298 * or another error from security_task_wait(), or still -ECHILD. 1299 */ 1300 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1301 struct task_struct *p) 1302 { 1303 /* 1304 * We can race with wait_task_zombie() from another thread. 1305 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1306 * can't confuse the checks below. 1307 */ 1308 int exit_state = ACCESS_ONCE(p->exit_state); 1309 int ret; 1310 1311 if (unlikely(exit_state == EXIT_DEAD)) 1312 return 0; 1313 1314 ret = eligible_child(wo, ptrace, p); 1315 if (!ret) 1316 return ret; 1317 1318 ret = security_task_wait(p); 1319 if (unlikely(ret < 0)) { 1320 /* 1321 * If we have not yet seen any eligible child, 1322 * then let this error code replace -ECHILD. 1323 * A permission error will give the user a clue 1324 * to look for security policy problems, rather 1325 * than for mysterious wait bugs. 1326 */ 1327 if (wo->notask_error) 1328 wo->notask_error = ret; 1329 return 0; 1330 } 1331 1332 if (unlikely(exit_state == EXIT_TRACE)) { 1333 /* 1334 * ptrace == 0 means we are the natural parent. In this case 1335 * we should clear notask_error, debugger will notify us. 1336 */ 1337 if (likely(!ptrace)) 1338 wo->notask_error = 0; 1339 return 0; 1340 } 1341 1342 if (likely(!ptrace) && unlikely(p->ptrace)) { 1343 /* 1344 * If it is traced by its real parent's group, just pretend 1345 * the caller is ptrace_do_wait() and reap this child if it 1346 * is zombie. 1347 * 1348 * This also hides group stop state from real parent; otherwise 1349 * a single stop can be reported twice as group and ptrace stop. 1350 * If a ptracer wants to distinguish these two events for its 1351 * own children it should create a separate process which takes 1352 * the role of real parent. 1353 */ 1354 if (!ptrace_reparented(p)) 1355 ptrace = 1; 1356 } 1357 1358 /* slay zombie? */ 1359 if (exit_state == EXIT_ZOMBIE) { 1360 /* we don't reap group leaders with subthreads */ 1361 if (!delay_group_leader(p)) { 1362 /* 1363 * A zombie ptracee is only visible to its ptracer. 1364 * Notification and reaping will be cascaded to the 1365 * real parent when the ptracer detaches. 1366 */ 1367 if (unlikely(ptrace) || likely(!p->ptrace)) 1368 return wait_task_zombie(wo, p); 1369 } 1370 1371 /* 1372 * Allow access to stopped/continued state via zombie by 1373 * falling through. Clearing of notask_error is complex. 1374 * 1375 * When !@ptrace: 1376 * 1377 * If WEXITED is set, notask_error should naturally be 1378 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1379 * so, if there are live subthreads, there are events to 1380 * wait for. If all subthreads are dead, it's still safe 1381 * to clear - this function will be called again in finite 1382 * amount time once all the subthreads are released and 1383 * will then return without clearing. 1384 * 1385 * When @ptrace: 1386 * 1387 * Stopped state is per-task and thus can't change once the 1388 * target task dies. Only continued and exited can happen. 1389 * Clear notask_error if WCONTINUED | WEXITED. 1390 */ 1391 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1392 wo->notask_error = 0; 1393 } else { 1394 /* 1395 * @p is alive and it's gonna stop, continue or exit, so 1396 * there always is something to wait for. 1397 */ 1398 wo->notask_error = 0; 1399 } 1400 1401 /* 1402 * Wait for stopped. Depending on @ptrace, different stopped state 1403 * is used and the two don't interact with each other. 1404 */ 1405 ret = wait_task_stopped(wo, ptrace, p); 1406 if (ret) 1407 return ret; 1408 1409 /* 1410 * Wait for continued. There's only one continued state and the 1411 * ptracer can consume it which can confuse the real parent. Don't 1412 * use WCONTINUED from ptracer. You don't need or want it. 1413 */ 1414 return wait_task_continued(wo, p); 1415 } 1416 1417 /* 1418 * Do the work of do_wait() for one thread in the group, @tsk. 1419 * 1420 * -ECHILD should be in ->notask_error before the first call. 1421 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1422 * Returns zero if the search for a child should continue; then 1423 * ->notask_error is 0 if there were any eligible children, 1424 * or another error from security_task_wait(), or still -ECHILD. 1425 */ 1426 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1427 { 1428 struct task_struct *p; 1429 1430 list_for_each_entry(p, &tsk->children, sibling) { 1431 int ret = wait_consider_task(wo, 0, p); 1432 1433 if (ret) 1434 return ret; 1435 } 1436 1437 return 0; 1438 } 1439 1440 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1441 { 1442 struct task_struct *p; 1443 1444 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1445 int ret = wait_consider_task(wo, 1, p); 1446 1447 if (ret) 1448 return ret; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1455 int sync, void *key) 1456 { 1457 struct wait_opts *wo = container_of(wait, struct wait_opts, 1458 child_wait); 1459 struct task_struct *p = key; 1460 1461 if (!eligible_pid(wo, p)) 1462 return 0; 1463 1464 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1465 return 0; 1466 1467 return default_wake_function(wait, mode, sync, key); 1468 } 1469 1470 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1471 { 1472 __wake_up_sync_key(&parent->signal->wait_chldexit, 1473 TASK_INTERRUPTIBLE, 1, p); 1474 } 1475 1476 static long do_wait(struct wait_opts *wo) 1477 { 1478 struct task_struct *tsk; 1479 int retval; 1480 1481 trace_sched_process_wait(wo->wo_pid); 1482 1483 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1484 wo->child_wait.private = current; 1485 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1486 repeat: 1487 /* 1488 * If there is nothing that can match our criteria, just get out. 1489 * We will clear ->notask_error to zero if we see any child that 1490 * might later match our criteria, even if we are not able to reap 1491 * it yet. 1492 */ 1493 wo->notask_error = -ECHILD; 1494 if ((wo->wo_type < PIDTYPE_MAX) && 1495 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1496 goto notask; 1497 1498 set_current_state(TASK_INTERRUPTIBLE); 1499 read_lock(&tasklist_lock); 1500 tsk = current; 1501 do { 1502 retval = do_wait_thread(wo, tsk); 1503 if (retval) 1504 goto end; 1505 1506 retval = ptrace_do_wait(wo, tsk); 1507 if (retval) 1508 goto end; 1509 1510 if (wo->wo_flags & __WNOTHREAD) 1511 break; 1512 } while_each_thread(current, tsk); 1513 read_unlock(&tasklist_lock); 1514 1515 notask: 1516 retval = wo->notask_error; 1517 if (!retval && !(wo->wo_flags & WNOHANG)) { 1518 retval = -ERESTARTSYS; 1519 if (!signal_pending(current)) { 1520 schedule(); 1521 goto repeat; 1522 } 1523 } 1524 end: 1525 __set_current_state(TASK_RUNNING); 1526 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1527 return retval; 1528 } 1529 1530 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1531 infop, int, options, struct rusage __user *, ru) 1532 { 1533 struct wait_opts wo; 1534 struct pid *pid = NULL; 1535 enum pid_type type; 1536 long ret; 1537 1538 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1539 __WNOTHREAD|__WCLONE|__WALL)) 1540 return -EINVAL; 1541 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1542 return -EINVAL; 1543 1544 switch (which) { 1545 case P_ALL: 1546 type = PIDTYPE_MAX; 1547 break; 1548 case P_PID: 1549 type = PIDTYPE_PID; 1550 if (upid <= 0) 1551 return -EINVAL; 1552 break; 1553 case P_PGID: 1554 type = PIDTYPE_PGID; 1555 if (upid <= 0) 1556 return -EINVAL; 1557 break; 1558 default: 1559 return -EINVAL; 1560 } 1561 1562 if (type < PIDTYPE_MAX) 1563 pid = find_get_pid(upid); 1564 1565 wo.wo_type = type; 1566 wo.wo_pid = pid; 1567 wo.wo_flags = options; 1568 wo.wo_info = infop; 1569 wo.wo_stat = NULL; 1570 wo.wo_rusage = ru; 1571 ret = do_wait(&wo); 1572 1573 if (ret > 0) { 1574 ret = 0; 1575 } else if (infop) { 1576 /* 1577 * For a WNOHANG return, clear out all the fields 1578 * we would set so the user can easily tell the 1579 * difference. 1580 */ 1581 if (!ret) 1582 ret = put_user(0, &infop->si_signo); 1583 if (!ret) 1584 ret = put_user(0, &infop->si_errno); 1585 if (!ret) 1586 ret = put_user(0, &infop->si_code); 1587 if (!ret) 1588 ret = put_user(0, &infop->si_pid); 1589 if (!ret) 1590 ret = put_user(0, &infop->si_uid); 1591 if (!ret) 1592 ret = put_user(0, &infop->si_status); 1593 } 1594 1595 put_pid(pid); 1596 return ret; 1597 } 1598 1599 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1600 int, options, struct rusage __user *, ru) 1601 { 1602 struct wait_opts wo; 1603 struct pid *pid = NULL; 1604 enum pid_type type; 1605 long ret; 1606 1607 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1608 __WNOTHREAD|__WCLONE|__WALL)) 1609 return -EINVAL; 1610 1611 if (upid == -1) 1612 type = PIDTYPE_MAX; 1613 else if (upid < 0) { 1614 type = PIDTYPE_PGID; 1615 pid = find_get_pid(-upid); 1616 } else if (upid == 0) { 1617 type = PIDTYPE_PGID; 1618 pid = get_task_pid(current, PIDTYPE_PGID); 1619 } else /* upid > 0 */ { 1620 type = PIDTYPE_PID; 1621 pid = find_get_pid(upid); 1622 } 1623 1624 wo.wo_type = type; 1625 wo.wo_pid = pid; 1626 wo.wo_flags = options | WEXITED; 1627 wo.wo_info = NULL; 1628 wo.wo_stat = stat_addr; 1629 wo.wo_rusage = ru; 1630 ret = do_wait(&wo); 1631 put_pid(pid); 1632 1633 return ret; 1634 } 1635 1636 #ifdef __ARCH_WANT_SYS_WAITPID 1637 1638 /* 1639 * sys_waitpid() remains for compatibility. waitpid() should be 1640 * implemented by calling sys_wait4() from libc.a. 1641 */ 1642 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1643 { 1644 return sys_wait4(pid, stat_addr, options, NULL); 1645 } 1646 1647 #endif 1648