xref: /linux/kernel/exit.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/unistd.h>
60 #include <asm/pgtable.h>
61 #include <asm/mmu_context.h>
62 
63 static void __unhash_process(struct task_struct *p, bool group_dead)
64 {
65 	nr_threads--;
66 	detach_pid(p, PIDTYPE_PID);
67 	if (group_dead) {
68 		detach_pid(p, PIDTYPE_PGID);
69 		detach_pid(p, PIDTYPE_SID);
70 
71 		list_del_rcu(&p->tasks);
72 		list_del_init(&p->sibling);
73 		__this_cpu_dec(process_counts);
74 	}
75 	list_del_rcu(&p->thread_group);
76 	list_del_rcu(&p->thread_node);
77 }
78 
79 /*
80  * This function expects the tasklist_lock write-locked.
81  */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 	struct signal_struct *sig = tsk->signal;
85 	bool group_dead = thread_group_leader(tsk);
86 	struct sighand_struct *sighand;
87 	struct tty_struct *uninitialized_var(tty);
88 	cputime_t utime, stime;
89 
90 	sighand = rcu_dereference_check(tsk->sighand,
91 					lockdep_tasklist_lock_is_held());
92 	spin_lock(&sighand->siglock);
93 
94 	posix_cpu_timers_exit(tsk);
95 	if (group_dead) {
96 		posix_cpu_timers_exit_group(tsk);
97 		tty = sig->tty;
98 		sig->tty = NULL;
99 	} else {
100 		/*
101 		 * This can only happen if the caller is de_thread().
102 		 * FIXME: this is the temporary hack, we should teach
103 		 * posix-cpu-timers to handle this case correctly.
104 		 */
105 		if (unlikely(has_group_leader_pid(tsk)))
106 			posix_cpu_timers_exit_group(tsk);
107 
108 		/*
109 		 * If there is any task waiting for the group exit
110 		 * then notify it:
111 		 */
112 		if (sig->notify_count > 0 && !--sig->notify_count)
113 			wake_up_process(sig->group_exit_task);
114 
115 		if (tsk == sig->curr_target)
116 			sig->curr_target = next_thread(tsk);
117 	}
118 
119 	/*
120 	 * Accumulate here the counters for all threads as they die. We could
121 	 * skip the group leader because it is the last user of signal_struct,
122 	 * but we want to avoid the race with thread_group_cputime() which can
123 	 * see the empty ->thread_head list.
124 	 */
125 	task_cputime(tsk, &utime, &stime);
126 	write_seqlock(&sig->stats_lock);
127 	sig->utime += utime;
128 	sig->stime += stime;
129 	sig->gtime += task_gtime(tsk);
130 	sig->min_flt += tsk->min_flt;
131 	sig->maj_flt += tsk->maj_flt;
132 	sig->nvcsw += tsk->nvcsw;
133 	sig->nivcsw += tsk->nivcsw;
134 	sig->inblock += task_io_get_inblock(tsk);
135 	sig->oublock += task_io_get_oublock(tsk);
136 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
137 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 	sig->nr_threads--;
139 	__unhash_process(tsk, group_dead);
140 	write_sequnlock(&sig->stats_lock);
141 
142 	/*
143 	 * Do this under ->siglock, we can race with another thread
144 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 	 */
146 	flush_sigqueue(&tsk->pending);
147 	tsk->sighand = NULL;
148 	spin_unlock(&sighand->siglock);
149 
150 	__cleanup_sighand(sighand);
151 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
152 	if (group_dead) {
153 		flush_sigqueue(&sig->shared_pending);
154 		tty_kref_put(tty);
155 	}
156 }
157 
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 
162 	perf_event_delayed_put(tsk);
163 	trace_sched_process_free(tsk);
164 	put_task_struct(tsk);
165 }
166 
167 
168 void release_task(struct task_struct *p)
169 {
170 	struct task_struct *leader;
171 	int zap_leader;
172 repeat:
173 	/* don't need to get the RCU readlock here - the process is dead and
174 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 	rcu_read_lock();
176 	atomic_dec(&__task_cred(p)->user->processes);
177 	rcu_read_unlock();
178 
179 	proc_flush_task(p);
180 
181 	write_lock_irq(&tasklist_lock);
182 	ptrace_release_task(p);
183 	__exit_signal(p);
184 
185 	/*
186 	 * If we are the last non-leader member of the thread
187 	 * group, and the leader is zombie, then notify the
188 	 * group leader's parent process. (if it wants notification.)
189 	 */
190 	zap_leader = 0;
191 	leader = p->group_leader;
192 	if (leader != p && thread_group_empty(leader)
193 			&& leader->exit_state == EXIT_ZOMBIE) {
194 		/*
195 		 * If we were the last child thread and the leader has
196 		 * exited already, and the leader's parent ignores SIGCHLD,
197 		 * then we are the one who should release the leader.
198 		 */
199 		zap_leader = do_notify_parent(leader, leader->exit_signal);
200 		if (zap_leader)
201 			leader->exit_state = EXIT_DEAD;
202 	}
203 
204 	write_unlock_irq(&tasklist_lock);
205 	release_thread(p);
206 	call_rcu(&p->rcu, delayed_put_task_struct);
207 
208 	p = leader;
209 	if (unlikely(zap_leader))
210 		goto repeat;
211 }
212 
213 /*
214  * Note that if this function returns a valid task_struct pointer (!NULL)
215  * task->usage must remain >0 for the duration of the RCU critical section.
216  */
217 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
218 {
219 	struct sighand_struct *sighand;
220 	struct task_struct *task;
221 
222 	/*
223 	 * We need to verify that release_task() was not called and thus
224 	 * delayed_put_task_struct() can't run and drop the last reference
225 	 * before rcu_read_unlock(). We check task->sighand != NULL,
226 	 * but we can read the already freed and reused memory.
227 	 */
228 retry:
229 	task = rcu_dereference(*ptask);
230 	if (!task)
231 		return NULL;
232 
233 	probe_kernel_address(&task->sighand, sighand);
234 
235 	/*
236 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
237 	 * was already freed we can not miss the preceding update of this
238 	 * pointer.
239 	 */
240 	smp_rmb();
241 	if (unlikely(task != READ_ONCE(*ptask)))
242 		goto retry;
243 
244 	/*
245 	 * We've re-checked that "task == *ptask", now we have two different
246 	 * cases:
247 	 *
248 	 * 1. This is actually the same task/task_struct. In this case
249 	 *    sighand != NULL tells us it is still alive.
250 	 *
251 	 * 2. This is another task which got the same memory for task_struct.
252 	 *    We can't know this of course, and we can not trust
253 	 *    sighand != NULL.
254 	 *
255 	 *    In this case we actually return a random value, but this is
256 	 *    correct.
257 	 *
258 	 *    If we return NULL - we can pretend that we actually noticed that
259 	 *    *ptask was updated when the previous task has exited. Or pretend
260 	 *    that probe_slab_address(&sighand) reads NULL.
261 	 *
262 	 *    If we return the new task (because sighand is not NULL for any
263 	 *    reason) - this is fine too. This (new) task can't go away before
264 	 *    another gp pass.
265 	 *
266 	 *    And note: We could even eliminate the false positive if re-read
267 	 *    task->sighand once again to avoid the falsely NULL. But this case
268 	 *    is very unlikely so we don't care.
269 	 */
270 	if (!sighand)
271 		return NULL;
272 
273 	return task;
274 }
275 
276 struct task_struct *try_get_task_struct(struct task_struct **ptask)
277 {
278 	struct task_struct *task;
279 
280 	rcu_read_lock();
281 	task = task_rcu_dereference(ptask);
282 	if (task)
283 		get_task_struct(task);
284 	rcu_read_unlock();
285 
286 	return task;
287 }
288 
289 /*
290  * Determine if a process group is "orphaned", according to the POSIX
291  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
292  * by terminal-generated stop signals.  Newly orphaned process groups are
293  * to receive a SIGHUP and a SIGCONT.
294  *
295  * "I ask you, have you ever known what it is to be an orphan?"
296  */
297 static int will_become_orphaned_pgrp(struct pid *pgrp,
298 					struct task_struct *ignored_task)
299 {
300 	struct task_struct *p;
301 
302 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 		if ((p == ignored_task) ||
304 		    (p->exit_state && thread_group_empty(p)) ||
305 		    is_global_init(p->real_parent))
306 			continue;
307 
308 		if (task_pgrp(p->real_parent) != pgrp &&
309 		    task_session(p->real_parent) == task_session(p))
310 			return 0;
311 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
312 
313 	return 1;
314 }
315 
316 int is_current_pgrp_orphaned(void)
317 {
318 	int retval;
319 
320 	read_lock(&tasklist_lock);
321 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
322 	read_unlock(&tasklist_lock);
323 
324 	return retval;
325 }
326 
327 static bool has_stopped_jobs(struct pid *pgrp)
328 {
329 	struct task_struct *p;
330 
331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
333 			return true;
334 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
335 
336 	return false;
337 }
338 
339 /*
340  * Check to see if any process groups have become orphaned as
341  * a result of our exiting, and if they have any stopped jobs,
342  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
343  */
344 static void
345 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
346 {
347 	struct pid *pgrp = task_pgrp(tsk);
348 	struct task_struct *ignored_task = tsk;
349 
350 	if (!parent)
351 		/* exit: our father is in a different pgrp than
352 		 * we are and we were the only connection outside.
353 		 */
354 		parent = tsk->real_parent;
355 	else
356 		/* reparent: our child is in a different pgrp than
357 		 * we are, and it was the only connection outside.
358 		 */
359 		ignored_task = NULL;
360 
361 	if (task_pgrp(parent) != pgrp &&
362 	    task_session(parent) == task_session(tsk) &&
363 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
364 	    has_stopped_jobs(pgrp)) {
365 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
366 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
367 	}
368 }
369 
370 #ifdef CONFIG_MEMCG
371 /*
372  * A task is exiting.   If it owned this mm, find a new owner for the mm.
373  */
374 void mm_update_next_owner(struct mm_struct *mm)
375 {
376 	struct task_struct *c, *g, *p = current;
377 
378 retry:
379 	/*
380 	 * If the exiting or execing task is not the owner, it's
381 	 * someone else's problem.
382 	 */
383 	if (mm->owner != p)
384 		return;
385 	/*
386 	 * The current owner is exiting/execing and there are no other
387 	 * candidates.  Do not leave the mm pointing to a possibly
388 	 * freed task structure.
389 	 */
390 	if (atomic_read(&mm->mm_users) <= 1) {
391 		mm->owner = NULL;
392 		return;
393 	}
394 
395 	read_lock(&tasklist_lock);
396 	/*
397 	 * Search in the children
398 	 */
399 	list_for_each_entry(c, &p->children, sibling) {
400 		if (c->mm == mm)
401 			goto assign_new_owner;
402 	}
403 
404 	/*
405 	 * Search in the siblings
406 	 */
407 	list_for_each_entry(c, &p->real_parent->children, sibling) {
408 		if (c->mm == mm)
409 			goto assign_new_owner;
410 	}
411 
412 	/*
413 	 * Search through everything else, we should not get here often.
414 	 */
415 	for_each_process(g) {
416 		if (g->flags & PF_KTHREAD)
417 			continue;
418 		for_each_thread(g, c) {
419 			if (c->mm == mm)
420 				goto assign_new_owner;
421 			if (c->mm)
422 				break;
423 		}
424 	}
425 	read_unlock(&tasklist_lock);
426 	/*
427 	 * We found no owner yet mm_users > 1: this implies that we are
428 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
429 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
430 	 */
431 	mm->owner = NULL;
432 	return;
433 
434 assign_new_owner:
435 	BUG_ON(c == p);
436 	get_task_struct(c);
437 	/*
438 	 * The task_lock protects c->mm from changing.
439 	 * We always want mm->owner->mm == mm
440 	 */
441 	task_lock(c);
442 	/*
443 	 * Delay read_unlock() till we have the task_lock()
444 	 * to ensure that c does not slip away underneath us
445 	 */
446 	read_unlock(&tasklist_lock);
447 	if (c->mm != mm) {
448 		task_unlock(c);
449 		put_task_struct(c);
450 		goto retry;
451 	}
452 	mm->owner = c;
453 	task_unlock(c);
454 	put_task_struct(c);
455 }
456 #endif /* CONFIG_MEMCG */
457 
458 /*
459  * Turn us into a lazy TLB process if we
460  * aren't already..
461  */
462 static void exit_mm(struct task_struct *tsk)
463 {
464 	struct mm_struct *mm = tsk->mm;
465 	struct core_state *core_state;
466 
467 	mm_release(tsk, mm);
468 	if (!mm)
469 		return;
470 	sync_mm_rss(mm);
471 	/*
472 	 * Serialize with any possible pending coredump.
473 	 * We must hold mmap_sem around checking core_state
474 	 * and clearing tsk->mm.  The core-inducing thread
475 	 * will increment ->nr_threads for each thread in the
476 	 * group with ->mm != NULL.
477 	 */
478 	down_read(&mm->mmap_sem);
479 	core_state = mm->core_state;
480 	if (core_state) {
481 		struct core_thread self;
482 
483 		up_read(&mm->mmap_sem);
484 
485 		self.task = tsk;
486 		self.next = xchg(&core_state->dumper.next, &self);
487 		/*
488 		 * Implies mb(), the result of xchg() must be visible
489 		 * to core_state->dumper.
490 		 */
491 		if (atomic_dec_and_test(&core_state->nr_threads))
492 			complete(&core_state->startup);
493 
494 		for (;;) {
495 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
496 			if (!self.task) /* see coredump_finish() */
497 				break;
498 			freezable_schedule();
499 		}
500 		__set_task_state(tsk, TASK_RUNNING);
501 		down_read(&mm->mmap_sem);
502 	}
503 	atomic_inc(&mm->mm_count);
504 	BUG_ON(mm != tsk->active_mm);
505 	/* more a memory barrier than a real lock */
506 	task_lock(tsk);
507 	tsk->mm = NULL;
508 	up_read(&mm->mmap_sem);
509 	enter_lazy_tlb(mm, current);
510 	task_unlock(tsk);
511 	mm_update_next_owner(mm);
512 	mmput(mm);
513 	if (test_thread_flag(TIF_MEMDIE))
514 		exit_oom_victim(tsk);
515 }
516 
517 static struct task_struct *find_alive_thread(struct task_struct *p)
518 {
519 	struct task_struct *t;
520 
521 	for_each_thread(p, t) {
522 		if (!(t->flags & PF_EXITING))
523 			return t;
524 	}
525 	return NULL;
526 }
527 
528 static struct task_struct *find_child_reaper(struct task_struct *father)
529 	__releases(&tasklist_lock)
530 	__acquires(&tasklist_lock)
531 {
532 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
533 	struct task_struct *reaper = pid_ns->child_reaper;
534 
535 	if (likely(reaper != father))
536 		return reaper;
537 
538 	reaper = find_alive_thread(father);
539 	if (reaper) {
540 		pid_ns->child_reaper = reaper;
541 		return reaper;
542 	}
543 
544 	write_unlock_irq(&tasklist_lock);
545 	if (unlikely(pid_ns == &init_pid_ns)) {
546 		panic("Attempted to kill init! exitcode=0x%08x\n",
547 			father->signal->group_exit_code ?: father->exit_code);
548 	}
549 	zap_pid_ns_processes(pid_ns);
550 	write_lock_irq(&tasklist_lock);
551 
552 	return father;
553 }
554 
555 /*
556  * When we die, we re-parent all our children, and try to:
557  * 1. give them to another thread in our thread group, if such a member exists
558  * 2. give it to the first ancestor process which prctl'd itself as a
559  *    child_subreaper for its children (like a service manager)
560  * 3. give it to the init process (PID 1) in our pid namespace
561  */
562 static struct task_struct *find_new_reaper(struct task_struct *father,
563 					   struct task_struct *child_reaper)
564 {
565 	struct task_struct *thread, *reaper;
566 
567 	thread = find_alive_thread(father);
568 	if (thread)
569 		return thread;
570 
571 	if (father->signal->has_child_subreaper) {
572 		/*
573 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
574 		 * We start from father to ensure we can not look into another
575 		 * namespace, this is safe because all its threads are dead.
576 		 */
577 		for (reaper = father;
578 		     !same_thread_group(reaper, child_reaper);
579 		     reaper = reaper->real_parent) {
580 			/* call_usermodehelper() descendants need this check */
581 			if (reaper == &init_task)
582 				break;
583 			if (!reaper->signal->is_child_subreaper)
584 				continue;
585 			thread = find_alive_thread(reaper);
586 			if (thread)
587 				return thread;
588 		}
589 	}
590 
591 	return child_reaper;
592 }
593 
594 /*
595 * Any that need to be release_task'd are put on the @dead list.
596  */
597 static void reparent_leader(struct task_struct *father, struct task_struct *p,
598 				struct list_head *dead)
599 {
600 	if (unlikely(p->exit_state == EXIT_DEAD))
601 		return;
602 
603 	/* We don't want people slaying init. */
604 	p->exit_signal = SIGCHLD;
605 
606 	/* If it has exited notify the new parent about this child's death. */
607 	if (!p->ptrace &&
608 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
609 		if (do_notify_parent(p, p->exit_signal)) {
610 			p->exit_state = EXIT_DEAD;
611 			list_add(&p->ptrace_entry, dead);
612 		}
613 	}
614 
615 	kill_orphaned_pgrp(p, father);
616 }
617 
618 /*
619  * This does two things:
620  *
621  * A.  Make init inherit all the child processes
622  * B.  Check to see if any process groups have become orphaned
623  *	as a result of our exiting, and if they have any stopped
624  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
625  */
626 static void forget_original_parent(struct task_struct *father,
627 					struct list_head *dead)
628 {
629 	struct task_struct *p, *t, *reaper;
630 
631 	if (unlikely(!list_empty(&father->ptraced)))
632 		exit_ptrace(father, dead);
633 
634 	/* Can drop and reacquire tasklist_lock */
635 	reaper = find_child_reaper(father);
636 	if (list_empty(&father->children))
637 		return;
638 
639 	reaper = find_new_reaper(father, reaper);
640 	list_for_each_entry(p, &father->children, sibling) {
641 		for_each_thread(p, t) {
642 			t->real_parent = reaper;
643 			BUG_ON((!t->ptrace) != (t->parent == father));
644 			if (likely(!t->ptrace))
645 				t->parent = t->real_parent;
646 			if (t->pdeath_signal)
647 				group_send_sig_info(t->pdeath_signal,
648 						    SEND_SIG_NOINFO, t);
649 		}
650 		/*
651 		 * If this is a threaded reparent there is no need to
652 		 * notify anyone anything has happened.
653 		 */
654 		if (!same_thread_group(reaper, father))
655 			reparent_leader(father, p, dead);
656 	}
657 	list_splice_tail_init(&father->children, &reaper->children);
658 }
659 
660 /*
661  * Send signals to all our closest relatives so that they know
662  * to properly mourn us..
663  */
664 static void exit_notify(struct task_struct *tsk, int group_dead)
665 {
666 	bool autoreap;
667 	struct task_struct *p, *n;
668 	LIST_HEAD(dead);
669 
670 	write_lock_irq(&tasklist_lock);
671 	forget_original_parent(tsk, &dead);
672 
673 	if (group_dead)
674 		kill_orphaned_pgrp(tsk->group_leader, NULL);
675 
676 	if (unlikely(tsk->ptrace)) {
677 		int sig = thread_group_leader(tsk) &&
678 				thread_group_empty(tsk) &&
679 				!ptrace_reparented(tsk) ?
680 			tsk->exit_signal : SIGCHLD;
681 		autoreap = do_notify_parent(tsk, sig);
682 	} else if (thread_group_leader(tsk)) {
683 		autoreap = thread_group_empty(tsk) &&
684 			do_notify_parent(tsk, tsk->exit_signal);
685 	} else {
686 		autoreap = true;
687 	}
688 
689 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
690 	if (tsk->exit_state == EXIT_DEAD)
691 		list_add(&tsk->ptrace_entry, &dead);
692 
693 	/* mt-exec, de_thread() is waiting for group leader */
694 	if (unlikely(tsk->signal->notify_count < 0))
695 		wake_up_process(tsk->signal->group_exit_task);
696 	write_unlock_irq(&tasklist_lock);
697 
698 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
699 		list_del_init(&p->ptrace_entry);
700 		release_task(p);
701 	}
702 }
703 
704 #ifdef CONFIG_DEBUG_STACK_USAGE
705 static void check_stack_usage(void)
706 {
707 	static DEFINE_SPINLOCK(low_water_lock);
708 	static int lowest_to_date = THREAD_SIZE;
709 	unsigned long free;
710 
711 	free = stack_not_used(current);
712 
713 	if (free >= lowest_to_date)
714 		return;
715 
716 	spin_lock(&low_water_lock);
717 	if (free < lowest_to_date) {
718 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
719 			current->comm, task_pid_nr(current), free);
720 		lowest_to_date = free;
721 	}
722 	spin_unlock(&low_water_lock);
723 }
724 #else
725 static inline void check_stack_usage(void) {}
726 #endif
727 
728 void do_exit(long code)
729 {
730 	struct task_struct *tsk = current;
731 	int group_dead;
732 	TASKS_RCU(int tasks_rcu_i);
733 
734 	profile_task_exit(tsk);
735 	kcov_task_exit(tsk);
736 
737 	WARN_ON(blk_needs_flush_plug(tsk));
738 
739 	if (unlikely(in_interrupt()))
740 		panic("Aiee, killing interrupt handler!");
741 	if (unlikely(!tsk->pid))
742 		panic("Attempted to kill the idle task!");
743 
744 	/*
745 	 * If do_exit is called because this processes oopsed, it's possible
746 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
747 	 * continuing. Amongst other possible reasons, this is to prevent
748 	 * mm_release()->clear_child_tid() from writing to a user-controlled
749 	 * kernel address.
750 	 */
751 	set_fs(USER_DS);
752 
753 	ptrace_event(PTRACE_EVENT_EXIT, code);
754 
755 	validate_creds_for_do_exit(tsk);
756 
757 	/*
758 	 * We're taking recursive faults here in do_exit. Safest is to just
759 	 * leave this task alone and wait for reboot.
760 	 */
761 	if (unlikely(tsk->flags & PF_EXITING)) {
762 		pr_alert("Fixing recursive fault but reboot is needed!\n");
763 		/*
764 		 * We can do this unlocked here. The futex code uses
765 		 * this flag just to verify whether the pi state
766 		 * cleanup has been done or not. In the worst case it
767 		 * loops once more. We pretend that the cleanup was
768 		 * done as there is no way to return. Either the
769 		 * OWNER_DIED bit is set by now or we push the blocked
770 		 * task into the wait for ever nirwana as well.
771 		 */
772 		tsk->flags |= PF_EXITPIDONE;
773 		set_current_state(TASK_UNINTERRUPTIBLE);
774 		schedule();
775 	}
776 
777 	exit_signals(tsk);  /* sets PF_EXITING */
778 	/*
779 	 * Ensure that all new tsk->pi_lock acquisitions must observe
780 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
781 	 */
782 	smp_mb();
783 	/*
784 	 * Ensure that we must observe the pi_state in exit_mm() ->
785 	 * mm_release() -> exit_pi_state_list().
786 	 */
787 	raw_spin_unlock_wait(&tsk->pi_lock);
788 
789 	if (unlikely(in_atomic())) {
790 		pr_info("note: %s[%d] exited with preempt_count %d\n",
791 			current->comm, task_pid_nr(current),
792 			preempt_count());
793 		preempt_count_set(PREEMPT_ENABLED);
794 	}
795 
796 	/* sync mm's RSS info before statistics gathering */
797 	if (tsk->mm)
798 		sync_mm_rss(tsk->mm);
799 	acct_update_integrals(tsk);
800 	group_dead = atomic_dec_and_test(&tsk->signal->live);
801 	if (group_dead) {
802 		hrtimer_cancel(&tsk->signal->real_timer);
803 		exit_itimers(tsk->signal);
804 		if (tsk->mm)
805 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
806 	}
807 	acct_collect(code, group_dead);
808 	if (group_dead)
809 		tty_audit_exit();
810 	audit_free(tsk);
811 
812 	tsk->exit_code = code;
813 	taskstats_exit(tsk, group_dead);
814 
815 	exit_mm(tsk);
816 
817 	if (group_dead)
818 		acct_process();
819 	trace_sched_process_exit(tsk);
820 
821 	exit_sem(tsk);
822 	exit_shm(tsk);
823 	exit_files(tsk);
824 	exit_fs(tsk);
825 	if (group_dead)
826 		disassociate_ctty(1);
827 	exit_task_namespaces(tsk);
828 	exit_task_work(tsk);
829 	exit_thread(tsk);
830 
831 	/*
832 	 * Flush inherited counters to the parent - before the parent
833 	 * gets woken up by child-exit notifications.
834 	 *
835 	 * because of cgroup mode, must be called before cgroup_exit()
836 	 */
837 	perf_event_exit_task(tsk);
838 
839 	cgroup_exit(tsk);
840 
841 	/*
842 	 * FIXME: do that only when needed, using sched_exit tracepoint
843 	 */
844 	flush_ptrace_hw_breakpoint(tsk);
845 
846 	TASKS_RCU(preempt_disable());
847 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
848 	TASKS_RCU(preempt_enable());
849 	exit_notify(tsk, group_dead);
850 	proc_exit_connector(tsk);
851 #ifdef CONFIG_NUMA
852 	task_lock(tsk);
853 	mpol_put(tsk->mempolicy);
854 	tsk->mempolicy = NULL;
855 	task_unlock(tsk);
856 #endif
857 #ifdef CONFIG_FUTEX
858 	if (unlikely(current->pi_state_cache))
859 		kfree(current->pi_state_cache);
860 #endif
861 	/*
862 	 * Make sure we are holding no locks:
863 	 */
864 	debug_check_no_locks_held();
865 	/*
866 	 * We can do this unlocked here. The futex code uses this flag
867 	 * just to verify whether the pi state cleanup has been done
868 	 * or not. In the worst case it loops once more.
869 	 */
870 	tsk->flags |= PF_EXITPIDONE;
871 
872 	if (tsk->io_context)
873 		exit_io_context(tsk);
874 
875 	if (tsk->splice_pipe)
876 		free_pipe_info(tsk->splice_pipe);
877 
878 	if (tsk->task_frag.page)
879 		put_page(tsk->task_frag.page);
880 
881 	validate_creds_for_do_exit(tsk);
882 
883 	check_stack_usage();
884 	preempt_disable();
885 	if (tsk->nr_dirtied)
886 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
887 	exit_rcu();
888 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
889 
890 	/*
891 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
892 	 * when the following two conditions become true.
893 	 *   - There is race condition of mmap_sem (It is acquired by
894 	 *     exit_mm()), and
895 	 *   - SMI occurs before setting TASK_RUNINNG.
896 	 *     (or hypervisor of virtual machine switches to other guest)
897 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
898 	 *
899 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
900 	 * is held by try_to_wake_up()
901 	 */
902 	smp_mb();
903 	raw_spin_unlock_wait(&tsk->pi_lock);
904 
905 	/* causes final put_task_struct in finish_task_switch(). */
906 	tsk->state = TASK_DEAD;
907 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
908 	schedule();
909 	BUG();
910 	/* Avoid "noreturn function does return".  */
911 	for (;;)
912 		cpu_relax();	/* For when BUG is null */
913 }
914 EXPORT_SYMBOL_GPL(do_exit);
915 
916 void complete_and_exit(struct completion *comp, long code)
917 {
918 	if (comp)
919 		complete(comp);
920 
921 	do_exit(code);
922 }
923 EXPORT_SYMBOL(complete_and_exit);
924 
925 SYSCALL_DEFINE1(exit, int, error_code)
926 {
927 	do_exit((error_code&0xff)<<8);
928 }
929 
930 /*
931  * Take down every thread in the group.  This is called by fatal signals
932  * as well as by sys_exit_group (below).
933  */
934 void
935 do_group_exit(int exit_code)
936 {
937 	struct signal_struct *sig = current->signal;
938 
939 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
940 
941 	if (signal_group_exit(sig))
942 		exit_code = sig->group_exit_code;
943 	else if (!thread_group_empty(current)) {
944 		struct sighand_struct *const sighand = current->sighand;
945 
946 		spin_lock_irq(&sighand->siglock);
947 		if (signal_group_exit(sig))
948 			/* Another thread got here before we took the lock.  */
949 			exit_code = sig->group_exit_code;
950 		else {
951 			sig->group_exit_code = exit_code;
952 			sig->flags = SIGNAL_GROUP_EXIT;
953 			zap_other_threads(current);
954 		}
955 		spin_unlock_irq(&sighand->siglock);
956 	}
957 
958 	do_exit(exit_code);
959 	/* NOTREACHED */
960 }
961 
962 /*
963  * this kills every thread in the thread group. Note that any externally
964  * wait4()-ing process will get the correct exit code - even if this
965  * thread is not the thread group leader.
966  */
967 SYSCALL_DEFINE1(exit_group, int, error_code)
968 {
969 	do_group_exit((error_code & 0xff) << 8);
970 	/* NOTREACHED */
971 	return 0;
972 }
973 
974 struct wait_opts {
975 	enum pid_type		wo_type;
976 	int			wo_flags;
977 	struct pid		*wo_pid;
978 
979 	struct siginfo __user	*wo_info;
980 	int __user		*wo_stat;
981 	struct rusage __user	*wo_rusage;
982 
983 	wait_queue_t		child_wait;
984 	int			notask_error;
985 };
986 
987 static inline
988 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
989 {
990 	if (type != PIDTYPE_PID)
991 		task = task->group_leader;
992 	return task->pids[type].pid;
993 }
994 
995 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
996 {
997 	return	wo->wo_type == PIDTYPE_MAX ||
998 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
999 }
1000 
1001 static int
1002 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1003 {
1004 	if (!eligible_pid(wo, p))
1005 		return 0;
1006 
1007 	/*
1008 	 * Wait for all children (clone and not) if __WALL is set or
1009 	 * if it is traced by us.
1010 	 */
1011 	if (ptrace || (wo->wo_flags & __WALL))
1012 		return 1;
1013 
1014 	/*
1015 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1016 	 * otherwise, wait for non-clone children *only*.
1017 	 *
1018 	 * Note: a "clone" child here is one that reports to its parent
1019 	 * using a signal other than SIGCHLD, or a non-leader thread which
1020 	 * we can only see if it is traced by us.
1021 	 */
1022 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1023 		return 0;
1024 
1025 	return 1;
1026 }
1027 
1028 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1029 				pid_t pid, uid_t uid, int why, int status)
1030 {
1031 	struct siginfo __user *infop;
1032 	int retval = wo->wo_rusage
1033 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1034 
1035 	put_task_struct(p);
1036 	infop = wo->wo_info;
1037 	if (infop) {
1038 		if (!retval)
1039 			retval = put_user(SIGCHLD, &infop->si_signo);
1040 		if (!retval)
1041 			retval = put_user(0, &infop->si_errno);
1042 		if (!retval)
1043 			retval = put_user((short)why, &infop->si_code);
1044 		if (!retval)
1045 			retval = put_user(pid, &infop->si_pid);
1046 		if (!retval)
1047 			retval = put_user(uid, &infop->si_uid);
1048 		if (!retval)
1049 			retval = put_user(status, &infop->si_status);
1050 	}
1051 	if (!retval)
1052 		retval = pid;
1053 	return retval;
1054 }
1055 
1056 /*
1057  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1058  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1059  * the lock and this task is uninteresting.  If we return nonzero, we have
1060  * released the lock and the system call should return.
1061  */
1062 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1063 {
1064 	int state, retval, status;
1065 	pid_t pid = task_pid_vnr(p);
1066 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1067 	struct siginfo __user *infop;
1068 
1069 	if (!likely(wo->wo_flags & WEXITED))
1070 		return 0;
1071 
1072 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1073 		int exit_code = p->exit_code;
1074 		int why;
1075 
1076 		get_task_struct(p);
1077 		read_unlock(&tasklist_lock);
1078 		sched_annotate_sleep();
1079 
1080 		if ((exit_code & 0x7f) == 0) {
1081 			why = CLD_EXITED;
1082 			status = exit_code >> 8;
1083 		} else {
1084 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1085 			status = exit_code & 0x7f;
1086 		}
1087 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1088 	}
1089 	/*
1090 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1091 	 */
1092 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1093 		EXIT_TRACE : EXIT_DEAD;
1094 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1095 		return 0;
1096 	/*
1097 	 * We own this thread, nobody else can reap it.
1098 	 */
1099 	read_unlock(&tasklist_lock);
1100 	sched_annotate_sleep();
1101 
1102 	/*
1103 	 * Check thread_group_leader() to exclude the traced sub-threads.
1104 	 */
1105 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1106 		struct signal_struct *sig = p->signal;
1107 		struct signal_struct *psig = current->signal;
1108 		unsigned long maxrss;
1109 		cputime_t tgutime, tgstime;
1110 
1111 		/*
1112 		 * The resource counters for the group leader are in its
1113 		 * own task_struct.  Those for dead threads in the group
1114 		 * are in its signal_struct, as are those for the child
1115 		 * processes it has previously reaped.  All these
1116 		 * accumulate in the parent's signal_struct c* fields.
1117 		 *
1118 		 * We don't bother to take a lock here to protect these
1119 		 * p->signal fields because the whole thread group is dead
1120 		 * and nobody can change them.
1121 		 *
1122 		 * psig->stats_lock also protects us from our sub-theads
1123 		 * which can reap other children at the same time. Until
1124 		 * we change k_getrusage()-like users to rely on this lock
1125 		 * we have to take ->siglock as well.
1126 		 *
1127 		 * We use thread_group_cputime_adjusted() to get times for
1128 		 * the thread group, which consolidates times for all threads
1129 		 * in the group including the group leader.
1130 		 */
1131 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1132 		spin_lock_irq(&current->sighand->siglock);
1133 		write_seqlock(&psig->stats_lock);
1134 		psig->cutime += tgutime + sig->cutime;
1135 		psig->cstime += tgstime + sig->cstime;
1136 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1137 		psig->cmin_flt +=
1138 			p->min_flt + sig->min_flt + sig->cmin_flt;
1139 		psig->cmaj_flt +=
1140 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1141 		psig->cnvcsw +=
1142 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1143 		psig->cnivcsw +=
1144 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1145 		psig->cinblock +=
1146 			task_io_get_inblock(p) +
1147 			sig->inblock + sig->cinblock;
1148 		psig->coublock +=
1149 			task_io_get_oublock(p) +
1150 			sig->oublock + sig->coublock;
1151 		maxrss = max(sig->maxrss, sig->cmaxrss);
1152 		if (psig->cmaxrss < maxrss)
1153 			psig->cmaxrss = maxrss;
1154 		task_io_accounting_add(&psig->ioac, &p->ioac);
1155 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1156 		write_sequnlock(&psig->stats_lock);
1157 		spin_unlock_irq(&current->sighand->siglock);
1158 	}
1159 
1160 	retval = wo->wo_rusage
1161 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1162 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1163 		? p->signal->group_exit_code : p->exit_code;
1164 	if (!retval && wo->wo_stat)
1165 		retval = put_user(status, wo->wo_stat);
1166 
1167 	infop = wo->wo_info;
1168 	if (!retval && infop)
1169 		retval = put_user(SIGCHLD, &infop->si_signo);
1170 	if (!retval && infop)
1171 		retval = put_user(0, &infop->si_errno);
1172 	if (!retval && infop) {
1173 		int why;
1174 
1175 		if ((status & 0x7f) == 0) {
1176 			why = CLD_EXITED;
1177 			status >>= 8;
1178 		} else {
1179 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1180 			status &= 0x7f;
1181 		}
1182 		retval = put_user((short)why, &infop->si_code);
1183 		if (!retval)
1184 			retval = put_user(status, &infop->si_status);
1185 	}
1186 	if (!retval && infop)
1187 		retval = put_user(pid, &infop->si_pid);
1188 	if (!retval && infop)
1189 		retval = put_user(uid, &infop->si_uid);
1190 	if (!retval)
1191 		retval = pid;
1192 
1193 	if (state == EXIT_TRACE) {
1194 		write_lock_irq(&tasklist_lock);
1195 		/* We dropped tasklist, ptracer could die and untrace */
1196 		ptrace_unlink(p);
1197 
1198 		/* If parent wants a zombie, don't release it now */
1199 		state = EXIT_ZOMBIE;
1200 		if (do_notify_parent(p, p->exit_signal))
1201 			state = EXIT_DEAD;
1202 		p->exit_state = state;
1203 		write_unlock_irq(&tasklist_lock);
1204 	}
1205 	if (state == EXIT_DEAD)
1206 		release_task(p);
1207 
1208 	return retval;
1209 }
1210 
1211 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1212 {
1213 	if (ptrace) {
1214 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1215 			return &p->exit_code;
1216 	} else {
1217 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1218 			return &p->signal->group_exit_code;
1219 	}
1220 	return NULL;
1221 }
1222 
1223 /**
1224  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1225  * @wo: wait options
1226  * @ptrace: is the wait for ptrace
1227  * @p: task to wait for
1228  *
1229  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1230  *
1231  * CONTEXT:
1232  * read_lock(&tasklist_lock), which is released if return value is
1233  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1234  *
1235  * RETURNS:
1236  * 0 if wait condition didn't exist and search for other wait conditions
1237  * should continue.  Non-zero return, -errno on failure and @p's pid on
1238  * success, implies that tasklist_lock is released and wait condition
1239  * search should terminate.
1240  */
1241 static int wait_task_stopped(struct wait_opts *wo,
1242 				int ptrace, struct task_struct *p)
1243 {
1244 	struct siginfo __user *infop;
1245 	int retval, exit_code, *p_code, why;
1246 	uid_t uid = 0; /* unneeded, required by compiler */
1247 	pid_t pid;
1248 
1249 	/*
1250 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1251 	 */
1252 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1253 		return 0;
1254 
1255 	if (!task_stopped_code(p, ptrace))
1256 		return 0;
1257 
1258 	exit_code = 0;
1259 	spin_lock_irq(&p->sighand->siglock);
1260 
1261 	p_code = task_stopped_code(p, ptrace);
1262 	if (unlikely(!p_code))
1263 		goto unlock_sig;
1264 
1265 	exit_code = *p_code;
1266 	if (!exit_code)
1267 		goto unlock_sig;
1268 
1269 	if (!unlikely(wo->wo_flags & WNOWAIT))
1270 		*p_code = 0;
1271 
1272 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1273 unlock_sig:
1274 	spin_unlock_irq(&p->sighand->siglock);
1275 	if (!exit_code)
1276 		return 0;
1277 
1278 	/*
1279 	 * Now we are pretty sure this task is interesting.
1280 	 * Make sure it doesn't get reaped out from under us while we
1281 	 * give up the lock and then examine it below.  We don't want to
1282 	 * keep holding onto the tasklist_lock while we call getrusage and
1283 	 * possibly take page faults for user memory.
1284 	 */
1285 	get_task_struct(p);
1286 	pid = task_pid_vnr(p);
1287 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1288 	read_unlock(&tasklist_lock);
1289 	sched_annotate_sleep();
1290 
1291 	if (unlikely(wo->wo_flags & WNOWAIT))
1292 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1293 
1294 	retval = wo->wo_rusage
1295 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1296 	if (!retval && wo->wo_stat)
1297 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1298 
1299 	infop = wo->wo_info;
1300 	if (!retval && infop)
1301 		retval = put_user(SIGCHLD, &infop->si_signo);
1302 	if (!retval && infop)
1303 		retval = put_user(0, &infop->si_errno);
1304 	if (!retval && infop)
1305 		retval = put_user((short)why, &infop->si_code);
1306 	if (!retval && infop)
1307 		retval = put_user(exit_code, &infop->si_status);
1308 	if (!retval && infop)
1309 		retval = put_user(pid, &infop->si_pid);
1310 	if (!retval && infop)
1311 		retval = put_user(uid, &infop->si_uid);
1312 	if (!retval)
1313 		retval = pid;
1314 	put_task_struct(p);
1315 
1316 	BUG_ON(!retval);
1317 	return retval;
1318 }
1319 
1320 /*
1321  * Handle do_wait work for one task in a live, non-stopped state.
1322  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1323  * the lock and this task is uninteresting.  If we return nonzero, we have
1324  * released the lock and the system call should return.
1325  */
1326 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1327 {
1328 	int retval;
1329 	pid_t pid;
1330 	uid_t uid;
1331 
1332 	if (!unlikely(wo->wo_flags & WCONTINUED))
1333 		return 0;
1334 
1335 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1336 		return 0;
1337 
1338 	spin_lock_irq(&p->sighand->siglock);
1339 	/* Re-check with the lock held.  */
1340 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1341 		spin_unlock_irq(&p->sighand->siglock);
1342 		return 0;
1343 	}
1344 	if (!unlikely(wo->wo_flags & WNOWAIT))
1345 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1346 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1347 	spin_unlock_irq(&p->sighand->siglock);
1348 
1349 	pid = task_pid_vnr(p);
1350 	get_task_struct(p);
1351 	read_unlock(&tasklist_lock);
1352 	sched_annotate_sleep();
1353 
1354 	if (!wo->wo_info) {
1355 		retval = wo->wo_rusage
1356 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1357 		put_task_struct(p);
1358 		if (!retval && wo->wo_stat)
1359 			retval = put_user(0xffff, wo->wo_stat);
1360 		if (!retval)
1361 			retval = pid;
1362 	} else {
1363 		retval = wait_noreap_copyout(wo, p, pid, uid,
1364 					     CLD_CONTINUED, SIGCONT);
1365 		BUG_ON(retval == 0);
1366 	}
1367 
1368 	return retval;
1369 }
1370 
1371 /*
1372  * Consider @p for a wait by @parent.
1373  *
1374  * -ECHILD should be in ->notask_error before the first call.
1375  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1376  * Returns zero if the search for a child should continue;
1377  * then ->notask_error is 0 if @p is an eligible child,
1378  * or another error from security_task_wait(), or still -ECHILD.
1379  */
1380 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1381 				struct task_struct *p)
1382 {
1383 	/*
1384 	 * We can race with wait_task_zombie() from another thread.
1385 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1386 	 * can't confuse the checks below.
1387 	 */
1388 	int exit_state = ACCESS_ONCE(p->exit_state);
1389 	int ret;
1390 
1391 	if (unlikely(exit_state == EXIT_DEAD))
1392 		return 0;
1393 
1394 	ret = eligible_child(wo, ptrace, p);
1395 	if (!ret)
1396 		return ret;
1397 
1398 	ret = security_task_wait(p);
1399 	if (unlikely(ret < 0)) {
1400 		/*
1401 		 * If we have not yet seen any eligible child,
1402 		 * then let this error code replace -ECHILD.
1403 		 * A permission error will give the user a clue
1404 		 * to look for security policy problems, rather
1405 		 * than for mysterious wait bugs.
1406 		 */
1407 		if (wo->notask_error)
1408 			wo->notask_error = ret;
1409 		return 0;
1410 	}
1411 
1412 	if (unlikely(exit_state == EXIT_TRACE)) {
1413 		/*
1414 		 * ptrace == 0 means we are the natural parent. In this case
1415 		 * we should clear notask_error, debugger will notify us.
1416 		 */
1417 		if (likely(!ptrace))
1418 			wo->notask_error = 0;
1419 		return 0;
1420 	}
1421 
1422 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1423 		/*
1424 		 * If it is traced by its real parent's group, just pretend
1425 		 * the caller is ptrace_do_wait() and reap this child if it
1426 		 * is zombie.
1427 		 *
1428 		 * This also hides group stop state from real parent; otherwise
1429 		 * a single stop can be reported twice as group and ptrace stop.
1430 		 * If a ptracer wants to distinguish these two events for its
1431 		 * own children it should create a separate process which takes
1432 		 * the role of real parent.
1433 		 */
1434 		if (!ptrace_reparented(p))
1435 			ptrace = 1;
1436 	}
1437 
1438 	/* slay zombie? */
1439 	if (exit_state == EXIT_ZOMBIE) {
1440 		/* we don't reap group leaders with subthreads */
1441 		if (!delay_group_leader(p)) {
1442 			/*
1443 			 * A zombie ptracee is only visible to its ptracer.
1444 			 * Notification and reaping will be cascaded to the
1445 			 * real parent when the ptracer detaches.
1446 			 */
1447 			if (unlikely(ptrace) || likely(!p->ptrace))
1448 				return wait_task_zombie(wo, p);
1449 		}
1450 
1451 		/*
1452 		 * Allow access to stopped/continued state via zombie by
1453 		 * falling through.  Clearing of notask_error is complex.
1454 		 *
1455 		 * When !@ptrace:
1456 		 *
1457 		 * If WEXITED is set, notask_error should naturally be
1458 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1459 		 * so, if there are live subthreads, there are events to
1460 		 * wait for.  If all subthreads are dead, it's still safe
1461 		 * to clear - this function will be called again in finite
1462 		 * amount time once all the subthreads are released and
1463 		 * will then return without clearing.
1464 		 *
1465 		 * When @ptrace:
1466 		 *
1467 		 * Stopped state is per-task and thus can't change once the
1468 		 * target task dies.  Only continued and exited can happen.
1469 		 * Clear notask_error if WCONTINUED | WEXITED.
1470 		 */
1471 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1472 			wo->notask_error = 0;
1473 	} else {
1474 		/*
1475 		 * @p is alive and it's gonna stop, continue or exit, so
1476 		 * there always is something to wait for.
1477 		 */
1478 		wo->notask_error = 0;
1479 	}
1480 
1481 	/*
1482 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1483 	 * is used and the two don't interact with each other.
1484 	 */
1485 	ret = wait_task_stopped(wo, ptrace, p);
1486 	if (ret)
1487 		return ret;
1488 
1489 	/*
1490 	 * Wait for continued.  There's only one continued state and the
1491 	 * ptracer can consume it which can confuse the real parent.  Don't
1492 	 * use WCONTINUED from ptracer.  You don't need or want it.
1493 	 */
1494 	return wait_task_continued(wo, p);
1495 }
1496 
1497 /*
1498  * Do the work of do_wait() for one thread in the group, @tsk.
1499  *
1500  * -ECHILD should be in ->notask_error before the first call.
1501  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1502  * Returns zero if the search for a child should continue; then
1503  * ->notask_error is 0 if there were any eligible children,
1504  * or another error from security_task_wait(), or still -ECHILD.
1505  */
1506 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1507 {
1508 	struct task_struct *p;
1509 
1510 	list_for_each_entry(p, &tsk->children, sibling) {
1511 		int ret = wait_consider_task(wo, 0, p);
1512 
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1521 {
1522 	struct task_struct *p;
1523 
1524 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1525 		int ret = wait_consider_task(wo, 1, p);
1526 
1527 		if (ret)
1528 			return ret;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1535 				int sync, void *key)
1536 {
1537 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1538 						child_wait);
1539 	struct task_struct *p = key;
1540 
1541 	if (!eligible_pid(wo, p))
1542 		return 0;
1543 
1544 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1545 		return 0;
1546 
1547 	return default_wake_function(wait, mode, sync, key);
1548 }
1549 
1550 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1551 {
1552 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1553 				TASK_INTERRUPTIBLE, 1, p);
1554 }
1555 
1556 static long do_wait(struct wait_opts *wo)
1557 {
1558 	struct task_struct *tsk;
1559 	int retval;
1560 
1561 	trace_sched_process_wait(wo->wo_pid);
1562 
1563 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1564 	wo->child_wait.private = current;
1565 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1566 repeat:
1567 	/*
1568 	 * If there is nothing that can match our criteria, just get out.
1569 	 * We will clear ->notask_error to zero if we see any child that
1570 	 * might later match our criteria, even if we are not able to reap
1571 	 * it yet.
1572 	 */
1573 	wo->notask_error = -ECHILD;
1574 	if ((wo->wo_type < PIDTYPE_MAX) &&
1575 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1576 		goto notask;
1577 
1578 	set_current_state(TASK_INTERRUPTIBLE);
1579 	read_lock(&tasklist_lock);
1580 	tsk = current;
1581 	do {
1582 		retval = do_wait_thread(wo, tsk);
1583 		if (retval)
1584 			goto end;
1585 
1586 		retval = ptrace_do_wait(wo, tsk);
1587 		if (retval)
1588 			goto end;
1589 
1590 		if (wo->wo_flags & __WNOTHREAD)
1591 			break;
1592 	} while_each_thread(current, tsk);
1593 	read_unlock(&tasklist_lock);
1594 
1595 notask:
1596 	retval = wo->notask_error;
1597 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1598 		retval = -ERESTARTSYS;
1599 		if (!signal_pending(current)) {
1600 			schedule();
1601 			goto repeat;
1602 		}
1603 	}
1604 end:
1605 	__set_current_state(TASK_RUNNING);
1606 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1607 	return retval;
1608 }
1609 
1610 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1611 		infop, int, options, struct rusage __user *, ru)
1612 {
1613 	struct wait_opts wo;
1614 	struct pid *pid = NULL;
1615 	enum pid_type type;
1616 	long ret;
1617 
1618 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1619 			__WNOTHREAD|__WCLONE|__WALL))
1620 		return -EINVAL;
1621 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1622 		return -EINVAL;
1623 
1624 	switch (which) {
1625 	case P_ALL:
1626 		type = PIDTYPE_MAX;
1627 		break;
1628 	case P_PID:
1629 		type = PIDTYPE_PID;
1630 		if (upid <= 0)
1631 			return -EINVAL;
1632 		break;
1633 	case P_PGID:
1634 		type = PIDTYPE_PGID;
1635 		if (upid <= 0)
1636 			return -EINVAL;
1637 		break;
1638 	default:
1639 		return -EINVAL;
1640 	}
1641 
1642 	if (type < PIDTYPE_MAX)
1643 		pid = find_get_pid(upid);
1644 
1645 	wo.wo_type	= type;
1646 	wo.wo_pid	= pid;
1647 	wo.wo_flags	= options;
1648 	wo.wo_info	= infop;
1649 	wo.wo_stat	= NULL;
1650 	wo.wo_rusage	= ru;
1651 	ret = do_wait(&wo);
1652 
1653 	if (ret > 0) {
1654 		ret = 0;
1655 	} else if (infop) {
1656 		/*
1657 		 * For a WNOHANG return, clear out all the fields
1658 		 * we would set so the user can easily tell the
1659 		 * difference.
1660 		 */
1661 		if (!ret)
1662 			ret = put_user(0, &infop->si_signo);
1663 		if (!ret)
1664 			ret = put_user(0, &infop->si_errno);
1665 		if (!ret)
1666 			ret = put_user(0, &infop->si_code);
1667 		if (!ret)
1668 			ret = put_user(0, &infop->si_pid);
1669 		if (!ret)
1670 			ret = put_user(0, &infop->si_uid);
1671 		if (!ret)
1672 			ret = put_user(0, &infop->si_status);
1673 	}
1674 
1675 	put_pid(pid);
1676 	return ret;
1677 }
1678 
1679 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1680 		int, options, struct rusage __user *, ru)
1681 {
1682 	struct wait_opts wo;
1683 	struct pid *pid = NULL;
1684 	enum pid_type type;
1685 	long ret;
1686 
1687 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1688 			__WNOTHREAD|__WCLONE|__WALL))
1689 		return -EINVAL;
1690 
1691 	if (upid == -1)
1692 		type = PIDTYPE_MAX;
1693 	else if (upid < 0) {
1694 		type = PIDTYPE_PGID;
1695 		pid = find_get_pid(-upid);
1696 	} else if (upid == 0) {
1697 		type = PIDTYPE_PGID;
1698 		pid = get_task_pid(current, PIDTYPE_PGID);
1699 	} else /* upid > 0 */ {
1700 		type = PIDTYPE_PID;
1701 		pid = find_get_pid(upid);
1702 	}
1703 
1704 	wo.wo_type	= type;
1705 	wo.wo_pid	= pid;
1706 	wo.wo_flags	= options | WEXITED;
1707 	wo.wo_info	= NULL;
1708 	wo.wo_stat	= stat_addr;
1709 	wo.wo_rusage	= ru;
1710 	ret = do_wait(&wo);
1711 	put_pid(pid);
1712 
1713 	return ret;
1714 }
1715 
1716 #ifdef __ARCH_WANT_SYS_WAITPID
1717 
1718 /*
1719  * sys_waitpid() remains for compatibility. waitpid() should be
1720  * implemented by calling sys_wait4() from libc.a.
1721  */
1722 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1723 {
1724 	return sys_wait4(pid, stat_addr, options, NULL);
1725 }
1726 
1727 #endif
1728