xref: /linux/kernel/exit.c (revision 04c71976500352d02f60616d2b960267d8c5fe24)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52 
53 extern void sem_exit (void);
54 
55 static void exit_mm(struct task_struct * tsk);
56 
57 static void __unhash_process(struct task_struct *p)
58 {
59 	nr_threads--;
60 	detach_pid(p, PIDTYPE_PID);
61 	if (thread_group_leader(p)) {
62 		detach_pid(p, PIDTYPE_PGID);
63 		detach_pid(p, PIDTYPE_SID);
64 
65 		list_del_rcu(&p->tasks);
66 		__get_cpu_var(process_counts)--;
67 	}
68 	list_del_rcu(&p->thread_group);
69 	remove_parent(p);
70 }
71 
72 /*
73  * This function expects the tasklist_lock write-locked.
74  */
75 static void __exit_signal(struct task_struct *tsk)
76 {
77 	struct signal_struct *sig = tsk->signal;
78 	struct sighand_struct *sighand;
79 
80 	BUG_ON(!sig);
81 	BUG_ON(!atomic_read(&sig->count));
82 
83 	rcu_read_lock();
84 	sighand = rcu_dereference(tsk->sighand);
85 	spin_lock(&sighand->siglock);
86 
87 	posix_cpu_timers_exit(tsk);
88 	if (atomic_dec_and_test(&sig->count))
89 		posix_cpu_timers_exit_group(tsk);
90 	else {
91 		/*
92 		 * If there is any task waiting for the group exit
93 		 * then notify it:
94 		 */
95 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
96 			wake_up_process(sig->group_exit_task);
97 			sig->group_exit_task = NULL;
98 		}
99 		if (tsk == sig->curr_target)
100 			sig->curr_target = next_thread(tsk);
101 		/*
102 		 * Accumulate here the counters for all threads but the
103 		 * group leader as they die, so they can be added into
104 		 * the process-wide totals when those are taken.
105 		 * The group leader stays around as a zombie as long
106 		 * as there are other threads.  When it gets reaped,
107 		 * the exit.c code will add its counts into these totals.
108 		 * We won't ever get here for the group leader, since it
109 		 * will have been the last reference on the signal_struct.
110 		 */
111 		sig->utime = cputime_add(sig->utime, tsk->utime);
112 		sig->stime = cputime_add(sig->stime, tsk->stime);
113 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
114 		sig->min_flt += tsk->min_flt;
115 		sig->maj_flt += tsk->maj_flt;
116 		sig->nvcsw += tsk->nvcsw;
117 		sig->nivcsw += tsk->nivcsw;
118 		sig->inblock += task_io_get_inblock(tsk);
119 		sig->oublock += task_io_get_oublock(tsk);
120 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
121 		sig = NULL; /* Marker for below. */
122 	}
123 
124 	__unhash_process(tsk);
125 
126 	tsk->signal = NULL;
127 	tsk->sighand = NULL;
128 	spin_unlock(&sighand->siglock);
129 	rcu_read_unlock();
130 
131 	__cleanup_sighand(sighand);
132 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
133 	flush_sigqueue(&tsk->pending);
134 	if (sig) {
135 		flush_sigqueue(&sig->shared_pending);
136 		taskstats_tgid_free(sig);
137 		__cleanup_signal(sig);
138 	}
139 }
140 
141 static void delayed_put_task_struct(struct rcu_head *rhp)
142 {
143 	put_task_struct(container_of(rhp, struct task_struct, rcu));
144 }
145 
146 void release_task(struct task_struct * p)
147 {
148 	struct task_struct *leader;
149 	int zap_leader;
150 repeat:
151 	atomic_dec(&p->user->processes);
152 	write_lock_irq(&tasklist_lock);
153 	ptrace_unlink(p);
154 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
155 	__exit_signal(p);
156 
157 	/*
158 	 * If we are the last non-leader member of the thread
159 	 * group, and the leader is zombie, then notify the
160 	 * group leader's parent process. (if it wants notification.)
161 	 */
162 	zap_leader = 0;
163 	leader = p->group_leader;
164 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
165 		BUG_ON(leader->exit_signal == -1);
166 		do_notify_parent(leader, leader->exit_signal);
167 		/*
168 		 * If we were the last child thread and the leader has
169 		 * exited already, and the leader's parent ignores SIGCHLD,
170 		 * then we are the one who should release the leader.
171 		 *
172 		 * do_notify_parent() will have marked it self-reaping in
173 		 * that case.
174 		 */
175 		zap_leader = (leader->exit_signal == -1);
176 	}
177 
178 	write_unlock_irq(&tasklist_lock);
179 	proc_flush_task(p);
180 	release_thread(p);
181 	call_rcu(&p->rcu, delayed_put_task_struct);
182 
183 	p = leader;
184 	if (unlikely(zap_leader))
185 		goto repeat;
186 }
187 
188 /*
189  * This checks not only the pgrp, but falls back on the pid if no
190  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
191  * without this...
192  *
193  * The caller must hold rcu lock or the tasklist lock.
194  */
195 struct pid *session_of_pgrp(struct pid *pgrp)
196 {
197 	struct task_struct *p;
198 	struct pid *sid = NULL;
199 
200 	p = pid_task(pgrp, PIDTYPE_PGID);
201 	if (p == NULL)
202 		p = pid_task(pgrp, PIDTYPE_PID);
203 	if (p != NULL)
204 		sid = task_session(p);
205 
206 	return sid;
207 }
208 
209 /*
210  * Determine if a process group is "orphaned", according to the POSIX
211  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
212  * by terminal-generated stop signals.  Newly orphaned process groups are
213  * to receive a SIGHUP and a SIGCONT.
214  *
215  * "I ask you, have you ever known what it is to be an orphan?"
216  */
217 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
218 {
219 	struct task_struct *p;
220 	int ret = 1;
221 
222 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
223 		if (p == ignored_task
224 				|| p->exit_state
225 				|| is_init(p->real_parent))
226 			continue;
227 		if (task_pgrp(p->real_parent) != pgrp &&
228 		    task_session(p->real_parent) == task_session(p)) {
229 			ret = 0;
230 			break;
231 		}
232 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
233 	return ret;	/* (sighing) "Often!" */
234 }
235 
236 int is_current_pgrp_orphaned(void)
237 {
238 	int retval;
239 
240 	read_lock(&tasklist_lock);
241 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
242 	read_unlock(&tasklist_lock);
243 
244 	return retval;
245 }
246 
247 static int has_stopped_jobs(struct pid *pgrp)
248 {
249 	int retval = 0;
250 	struct task_struct *p;
251 
252 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 		if (p->state != TASK_STOPPED)
254 			continue;
255 		retval = 1;
256 		break;
257 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 	return retval;
259 }
260 
261 /**
262  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
263  *
264  * If a kernel thread is launched as a result of a system call, or if
265  * it ever exits, it should generally reparent itself to kthreadd so it
266  * isn't in the way of other processes and is correctly cleaned up on exit.
267  *
268  * The various task state such as scheduling policy and priority may have
269  * been inherited from a user process, so we reset them to sane values here.
270  *
271  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
272  */
273 static void reparent_to_kthreadd(void)
274 {
275 	write_lock_irq(&tasklist_lock);
276 
277 	ptrace_unlink(current);
278 	/* Reparent to init */
279 	remove_parent(current);
280 	current->real_parent = current->parent = kthreadd_task;
281 	add_parent(current);
282 
283 	/* Set the exit signal to SIGCHLD so we signal init on exit */
284 	current->exit_signal = SIGCHLD;
285 
286 	if (task_nice(current) < 0)
287 		set_user_nice(current, 0);
288 	/* cpus_allowed? */
289 	/* rt_priority? */
290 	/* signals? */
291 	security_task_reparent_to_init(current);
292 	memcpy(current->signal->rlim, init_task.signal->rlim,
293 	       sizeof(current->signal->rlim));
294 	atomic_inc(&(INIT_USER->__count));
295 	write_unlock_irq(&tasklist_lock);
296 	switch_uid(INIT_USER);
297 }
298 
299 void __set_special_pids(pid_t session, pid_t pgrp)
300 {
301 	struct task_struct *curr = current->group_leader;
302 
303 	if (process_session(curr) != session) {
304 		detach_pid(curr, PIDTYPE_SID);
305 		set_signal_session(curr->signal, session);
306 		attach_pid(curr, PIDTYPE_SID, find_pid(session));
307 	}
308 	if (process_group(curr) != pgrp) {
309 		detach_pid(curr, PIDTYPE_PGID);
310 		curr->signal->pgrp = pgrp;
311 		attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
312 	}
313 }
314 
315 static void set_special_pids(pid_t session, pid_t pgrp)
316 {
317 	write_lock_irq(&tasklist_lock);
318 	__set_special_pids(session, pgrp);
319 	write_unlock_irq(&tasklist_lock);
320 }
321 
322 /*
323  * Let kernel threads use this to say that they
324  * allow a certain signal (since daemonize() will
325  * have disabled all of them by default).
326  */
327 int allow_signal(int sig)
328 {
329 	if (!valid_signal(sig) || sig < 1)
330 		return -EINVAL;
331 
332 	spin_lock_irq(&current->sighand->siglock);
333 	sigdelset(&current->blocked, sig);
334 	if (!current->mm) {
335 		/* Kernel threads handle their own signals.
336 		   Let the signal code know it'll be handled, so
337 		   that they don't get converted to SIGKILL or
338 		   just silently dropped */
339 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
340 	}
341 	recalc_sigpending();
342 	spin_unlock_irq(&current->sighand->siglock);
343 	return 0;
344 }
345 
346 EXPORT_SYMBOL(allow_signal);
347 
348 int disallow_signal(int sig)
349 {
350 	if (!valid_signal(sig) || sig < 1)
351 		return -EINVAL;
352 
353 	spin_lock_irq(&current->sighand->siglock);
354 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
355 	recalc_sigpending();
356 	spin_unlock_irq(&current->sighand->siglock);
357 	return 0;
358 }
359 
360 EXPORT_SYMBOL(disallow_signal);
361 
362 /*
363  *	Put all the gunge required to become a kernel thread without
364  *	attached user resources in one place where it belongs.
365  */
366 
367 void daemonize(const char *name, ...)
368 {
369 	va_list args;
370 	struct fs_struct *fs;
371 	sigset_t blocked;
372 
373 	va_start(args, name);
374 	vsnprintf(current->comm, sizeof(current->comm), name, args);
375 	va_end(args);
376 
377 	/*
378 	 * If we were started as result of loading a module, close all of the
379 	 * user space pages.  We don't need them, and if we didn't close them
380 	 * they would be locked into memory.
381 	 */
382 	exit_mm(current);
383 	/*
384 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
385 	 * or suspend transition begins right now.
386 	 */
387 	current->flags |= PF_NOFREEZE;
388 
389 	set_special_pids(1, 1);
390 	proc_clear_tty(current);
391 
392 	/* Block and flush all signals */
393 	sigfillset(&blocked);
394 	sigprocmask(SIG_BLOCK, &blocked, NULL);
395 	flush_signals(current);
396 
397 	/* Become as one with the init task */
398 
399 	exit_fs(current);	/* current->fs->count--; */
400 	fs = init_task.fs;
401 	current->fs = fs;
402 	atomic_inc(&fs->count);
403 
404 	exit_task_namespaces(current);
405 	current->nsproxy = init_task.nsproxy;
406 	get_task_namespaces(current);
407 
408  	exit_files(current);
409 	current->files = init_task.files;
410 	atomic_inc(&current->files->count);
411 
412 	reparent_to_kthreadd();
413 }
414 
415 EXPORT_SYMBOL(daemonize);
416 
417 static void close_files(struct files_struct * files)
418 {
419 	int i, j;
420 	struct fdtable *fdt;
421 
422 	j = 0;
423 
424 	/*
425 	 * It is safe to dereference the fd table without RCU or
426 	 * ->file_lock because this is the last reference to the
427 	 * files structure.
428 	 */
429 	fdt = files_fdtable(files);
430 	for (;;) {
431 		unsigned long set;
432 		i = j * __NFDBITS;
433 		if (i >= fdt->max_fds)
434 			break;
435 		set = fdt->open_fds->fds_bits[j++];
436 		while (set) {
437 			if (set & 1) {
438 				struct file * file = xchg(&fdt->fd[i], NULL);
439 				if (file) {
440 					filp_close(file, files);
441 					cond_resched();
442 				}
443 			}
444 			i++;
445 			set >>= 1;
446 		}
447 	}
448 }
449 
450 struct files_struct *get_files_struct(struct task_struct *task)
451 {
452 	struct files_struct *files;
453 
454 	task_lock(task);
455 	files = task->files;
456 	if (files)
457 		atomic_inc(&files->count);
458 	task_unlock(task);
459 
460 	return files;
461 }
462 
463 void fastcall put_files_struct(struct files_struct *files)
464 {
465 	struct fdtable *fdt;
466 
467 	if (atomic_dec_and_test(&files->count)) {
468 		close_files(files);
469 		/*
470 		 * Free the fd and fdset arrays if we expanded them.
471 		 * If the fdtable was embedded, pass files for freeing
472 		 * at the end of the RCU grace period. Otherwise,
473 		 * you can free files immediately.
474 		 */
475 		fdt = files_fdtable(files);
476 		if (fdt != &files->fdtab)
477 			kmem_cache_free(files_cachep, files);
478 		free_fdtable(fdt);
479 	}
480 }
481 
482 EXPORT_SYMBOL(put_files_struct);
483 
484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
485 {
486 	struct files_struct *old;
487 
488 	old = tsk->files;
489 	task_lock(tsk);
490 	tsk->files = files;
491 	task_unlock(tsk);
492 	put_files_struct(old);
493 }
494 EXPORT_SYMBOL(reset_files_struct);
495 
496 static inline void __exit_files(struct task_struct *tsk)
497 {
498 	struct files_struct * files = tsk->files;
499 
500 	if (files) {
501 		task_lock(tsk);
502 		tsk->files = NULL;
503 		task_unlock(tsk);
504 		put_files_struct(files);
505 	}
506 }
507 
508 void exit_files(struct task_struct *tsk)
509 {
510 	__exit_files(tsk);
511 }
512 
513 static inline void __put_fs_struct(struct fs_struct *fs)
514 {
515 	/* No need to hold fs->lock if we are killing it */
516 	if (atomic_dec_and_test(&fs->count)) {
517 		dput(fs->root);
518 		mntput(fs->rootmnt);
519 		dput(fs->pwd);
520 		mntput(fs->pwdmnt);
521 		if (fs->altroot) {
522 			dput(fs->altroot);
523 			mntput(fs->altrootmnt);
524 		}
525 		kmem_cache_free(fs_cachep, fs);
526 	}
527 }
528 
529 void put_fs_struct(struct fs_struct *fs)
530 {
531 	__put_fs_struct(fs);
532 }
533 
534 static inline void __exit_fs(struct task_struct *tsk)
535 {
536 	struct fs_struct * fs = tsk->fs;
537 
538 	if (fs) {
539 		task_lock(tsk);
540 		tsk->fs = NULL;
541 		task_unlock(tsk);
542 		__put_fs_struct(fs);
543 	}
544 }
545 
546 void exit_fs(struct task_struct *tsk)
547 {
548 	__exit_fs(tsk);
549 }
550 
551 EXPORT_SYMBOL_GPL(exit_fs);
552 
553 /*
554  * Turn us into a lazy TLB process if we
555  * aren't already..
556  */
557 static void exit_mm(struct task_struct * tsk)
558 {
559 	struct mm_struct *mm = tsk->mm;
560 
561 	mm_release(tsk, mm);
562 	if (!mm)
563 		return;
564 	/*
565 	 * Serialize with any possible pending coredump.
566 	 * We must hold mmap_sem around checking core_waiters
567 	 * and clearing tsk->mm.  The core-inducing thread
568 	 * will increment core_waiters for each thread in the
569 	 * group with ->mm != NULL.
570 	 */
571 	down_read(&mm->mmap_sem);
572 	if (mm->core_waiters) {
573 		up_read(&mm->mmap_sem);
574 		down_write(&mm->mmap_sem);
575 		if (!--mm->core_waiters)
576 			complete(mm->core_startup_done);
577 		up_write(&mm->mmap_sem);
578 
579 		wait_for_completion(&mm->core_done);
580 		down_read(&mm->mmap_sem);
581 	}
582 	atomic_inc(&mm->mm_count);
583 	BUG_ON(mm != tsk->active_mm);
584 	/* more a memory barrier than a real lock */
585 	task_lock(tsk);
586 	tsk->mm = NULL;
587 	up_read(&mm->mmap_sem);
588 	enter_lazy_tlb(mm, current);
589 	/* We don't want this task to be frozen prematurely */
590 	clear_freeze_flag(tsk);
591 	task_unlock(tsk);
592 	mmput(mm);
593 }
594 
595 static void
596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
597 {
598 	if (p->pdeath_signal)
599 		/* We already hold the tasklist_lock here.  */
600 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
601 
602 	/* Move the child from its dying parent to the new one.  */
603 	if (unlikely(traced)) {
604 		/* Preserve ptrace links if someone else is tracing this child.  */
605 		list_del_init(&p->ptrace_list);
606 		if (p->parent != p->real_parent)
607 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
608 	} else {
609 		/* If this child is being traced, then we're the one tracing it
610 		 * anyway, so let go of it.
611 		 */
612 		p->ptrace = 0;
613 		remove_parent(p);
614 		p->parent = p->real_parent;
615 		add_parent(p);
616 
617 		if (p->state == TASK_TRACED) {
618 			/*
619 			 * If it was at a trace stop, turn it into
620 			 * a normal stop since it's no longer being
621 			 * traced.
622 			 */
623 			ptrace_untrace(p);
624 		}
625 	}
626 
627 	/* If this is a threaded reparent there is no need to
628 	 * notify anyone anything has happened.
629 	 */
630 	if (p->real_parent->group_leader == father->group_leader)
631 		return;
632 
633 	/* We don't want people slaying init.  */
634 	if (p->exit_signal != -1)
635 		p->exit_signal = SIGCHLD;
636 
637 	/* If we'd notified the old parent about this child's death,
638 	 * also notify the new parent.
639 	 */
640 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
641 	    p->exit_signal != -1 && thread_group_empty(p))
642 		do_notify_parent(p, p->exit_signal);
643 
644 	/*
645 	 * process group orphan check
646 	 * Case ii: Our child is in a different pgrp
647 	 * than we are, and it was the only connection
648 	 * outside, so the child pgrp is now orphaned.
649 	 */
650 	if ((task_pgrp(p) != task_pgrp(father)) &&
651 	    (task_session(p) == task_session(father))) {
652 		struct pid *pgrp = task_pgrp(p);
653 
654 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
655 		    has_stopped_jobs(pgrp)) {
656 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
658 		}
659 	}
660 }
661 
662 /*
663  * When we die, we re-parent all our children.
664  * Try to give them to another thread in our thread
665  * group, and if no such member exists, give it to
666  * the child reaper process (ie "init") in our pid
667  * space.
668  */
669 static void
670 forget_original_parent(struct task_struct *father, struct list_head *to_release)
671 {
672 	struct task_struct *p, *reaper = father;
673 	struct list_head *_p, *_n;
674 
675 	do {
676 		reaper = next_thread(reaper);
677 		if (reaper == father) {
678 			reaper = child_reaper(father);
679 			break;
680 		}
681 	} while (reaper->exit_state);
682 
683 	/*
684 	 * There are only two places where our children can be:
685 	 *
686 	 * - in our child list
687 	 * - in our ptraced child list
688 	 *
689 	 * Search them and reparent children.
690 	 */
691 	list_for_each_safe(_p, _n, &father->children) {
692 		int ptrace;
693 		p = list_entry(_p, struct task_struct, sibling);
694 
695 		ptrace = p->ptrace;
696 
697 		/* if father isn't the real parent, then ptrace must be enabled */
698 		BUG_ON(father != p->real_parent && !ptrace);
699 
700 		if (father == p->real_parent) {
701 			/* reparent with a reaper, real father it's us */
702 			p->real_parent = reaper;
703 			reparent_thread(p, father, 0);
704 		} else {
705 			/* reparent ptraced task to its real parent */
706 			__ptrace_unlink (p);
707 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 			    thread_group_empty(p))
709 				do_notify_parent(p, p->exit_signal);
710 		}
711 
712 		/*
713 		 * if the ptraced child is a zombie with exit_signal == -1
714 		 * we must collect it before we exit, or it will remain
715 		 * zombie forever since we prevented it from self-reap itself
716 		 * while it was being traced by us, to be able to see it in wait4.
717 		 */
718 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 			list_add(&p->ptrace_list, to_release);
720 	}
721 	list_for_each_safe(_p, _n, &father->ptrace_children) {
722 		p = list_entry(_p, struct task_struct, ptrace_list);
723 		p->real_parent = reaper;
724 		reparent_thread(p, father, 1);
725 	}
726 }
727 
728 /*
729  * Send signals to all our closest relatives so that they know
730  * to properly mourn us..
731  */
732 static void exit_notify(struct task_struct *tsk)
733 {
734 	int state;
735 	struct task_struct *t;
736 	struct list_head ptrace_dead, *_p, *_n;
737 	struct pid *pgrp;
738 
739 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
740 	    && !thread_group_empty(tsk)) {
741 		/*
742 		 * This occurs when there was a race between our exit
743 		 * syscall and a group signal choosing us as the one to
744 		 * wake up.  It could be that we are the only thread
745 		 * alerted to check for pending signals, but another thread
746 		 * should be woken now to take the signal since we will not.
747 		 * Now we'll wake all the threads in the group just to make
748 		 * sure someone gets all the pending signals.
749 		 */
750 		spin_lock_irq(&tsk->sighand->siglock);
751 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
752 			if (!signal_pending(t) && !(t->flags & PF_EXITING))
753 				recalc_sigpending_and_wake(t);
754 		spin_unlock_irq(&tsk->sighand->siglock);
755 	}
756 
757 	write_lock_irq(&tasklist_lock);
758 
759 	/*
760 	 * This does two things:
761 	 *
762   	 * A.  Make init inherit all the child processes
763 	 * B.  Check to see if any process groups have become orphaned
764 	 *	as a result of our exiting, and if they have any stopped
765 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
766 	 */
767 
768 	INIT_LIST_HEAD(&ptrace_dead);
769 	forget_original_parent(tsk, &ptrace_dead);
770 	BUG_ON(!list_empty(&tsk->children));
771 	BUG_ON(!list_empty(&tsk->ptrace_children));
772 
773 	/*
774 	 * Check to see if any process groups have become orphaned
775 	 * as a result of our exiting, and if they have any stopped
776 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
777 	 *
778 	 * Case i: Our father is in a different pgrp than we are
779 	 * and we were the only connection outside, so our pgrp
780 	 * is about to become orphaned.
781 	 */
782 	t = tsk->real_parent;
783 
784 	pgrp = task_pgrp(tsk);
785 	if ((task_pgrp(t) != pgrp) &&
786 	    (task_session(t) == task_session(tsk)) &&
787 	    will_become_orphaned_pgrp(pgrp, tsk) &&
788 	    has_stopped_jobs(pgrp)) {
789 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
790 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
791 	}
792 
793 	/* Let father know we died
794 	 *
795 	 * Thread signals are configurable, but you aren't going to use
796 	 * that to send signals to arbitary processes.
797 	 * That stops right now.
798 	 *
799 	 * If the parent exec id doesn't match the exec id we saved
800 	 * when we started then we know the parent has changed security
801 	 * domain.
802 	 *
803 	 * If our self_exec id doesn't match our parent_exec_id then
804 	 * we have changed execution domain as these two values started
805 	 * the same after a fork.
806 	 */
807 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
808 	    ( tsk->parent_exec_id != t->self_exec_id  ||
809 	      tsk->self_exec_id != tsk->parent_exec_id)
810 	    && !capable(CAP_KILL))
811 		tsk->exit_signal = SIGCHLD;
812 
813 
814 	/* If something other than our normal parent is ptracing us, then
815 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
816 	 * only has special meaning to our real parent.
817 	 */
818 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
819 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
820 		do_notify_parent(tsk, signal);
821 	} else if (tsk->ptrace) {
822 		do_notify_parent(tsk, SIGCHLD);
823 	}
824 
825 	state = EXIT_ZOMBIE;
826 	if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
827 		state = EXIT_DEAD;
828 	tsk->exit_state = state;
829 
830 	write_unlock_irq(&tasklist_lock);
831 
832 	list_for_each_safe(_p, _n, &ptrace_dead) {
833 		list_del_init(_p);
834 		t = list_entry(_p, struct task_struct, ptrace_list);
835 		release_task(t);
836 	}
837 
838 	/* If the process is dead, release it - nobody will wait for it */
839 	if (state == EXIT_DEAD)
840 		release_task(tsk);
841 }
842 
843 #ifdef CONFIG_DEBUG_STACK_USAGE
844 static void check_stack_usage(void)
845 {
846 	static DEFINE_SPINLOCK(low_water_lock);
847 	static int lowest_to_date = THREAD_SIZE;
848 	unsigned long *n = end_of_stack(current);
849 	unsigned long free;
850 
851 	while (*n == 0)
852 		n++;
853 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
854 
855 	if (free >= lowest_to_date)
856 		return;
857 
858 	spin_lock(&low_water_lock);
859 	if (free < lowest_to_date) {
860 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
861 				"left\n",
862 				current->comm, free);
863 		lowest_to_date = free;
864 	}
865 	spin_unlock(&low_water_lock);
866 }
867 #else
868 static inline void check_stack_usage(void) {}
869 #endif
870 
871 static inline void exit_child_reaper(struct task_struct *tsk)
872 {
873 	if (likely(tsk->group_leader != child_reaper(tsk)))
874 		return;
875 
876 	panic("Attempted to kill init!");
877 }
878 
879 fastcall NORET_TYPE void do_exit(long code)
880 {
881 	struct task_struct *tsk = current;
882 	int group_dead;
883 
884 	profile_task_exit(tsk);
885 
886 	WARN_ON(atomic_read(&tsk->fs_excl));
887 
888 	if (unlikely(in_interrupt()))
889 		panic("Aiee, killing interrupt handler!");
890 	if (unlikely(!tsk->pid))
891 		panic("Attempted to kill the idle task!");
892 
893 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
894 		current->ptrace_message = code;
895 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
896 	}
897 
898 	/*
899 	 * We're taking recursive faults here in do_exit. Safest is to just
900 	 * leave this task alone and wait for reboot.
901 	 */
902 	if (unlikely(tsk->flags & PF_EXITING)) {
903 		printk(KERN_ALERT
904 			"Fixing recursive fault but reboot is needed!\n");
905 		/*
906 		 * We can do this unlocked here. The futex code uses
907 		 * this flag just to verify whether the pi state
908 		 * cleanup has been done or not. In the worst case it
909 		 * loops once more. We pretend that the cleanup was
910 		 * done as there is no way to return. Either the
911 		 * OWNER_DIED bit is set by now or we push the blocked
912 		 * task into the wait for ever nirwana as well.
913 		 */
914 		tsk->flags |= PF_EXITPIDONE;
915 		if (tsk->io_context)
916 			exit_io_context();
917 		set_current_state(TASK_UNINTERRUPTIBLE);
918 		schedule();
919 	}
920 
921 	tsk->flags |= PF_EXITING;
922 	/*
923 	 * tsk->flags are checked in the futex code to protect against
924 	 * an exiting task cleaning up the robust pi futexes.
925 	 */
926 	smp_mb();
927 	spin_unlock_wait(&tsk->pi_lock);
928 
929 	if (unlikely(in_atomic()))
930 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
931 				current->comm, current->pid,
932 				preempt_count());
933 
934 	acct_update_integrals(tsk);
935 	if (tsk->mm) {
936 		update_hiwater_rss(tsk->mm);
937 		update_hiwater_vm(tsk->mm);
938 	}
939 	group_dead = atomic_dec_and_test(&tsk->signal->live);
940 	if (group_dead) {
941 		exit_child_reaper(tsk);
942 		hrtimer_cancel(&tsk->signal->real_timer);
943 		exit_itimers(tsk->signal);
944 	}
945 	acct_collect(code, group_dead);
946 	if (unlikely(tsk->robust_list))
947 		exit_robust_list(tsk);
948 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
949 	if (unlikely(tsk->compat_robust_list))
950 		compat_exit_robust_list(tsk);
951 #endif
952 	if (group_dead)
953 		tty_audit_exit();
954 	if (unlikely(tsk->audit_context))
955 		audit_free(tsk);
956 
957 	tsk->exit_code = code;
958 	taskstats_exit(tsk, group_dead);
959 
960 	exit_mm(tsk);
961 
962 	if (group_dead)
963 		acct_process();
964 	exit_sem(tsk);
965 	__exit_files(tsk);
966 	__exit_fs(tsk);
967 	check_stack_usage();
968 	exit_thread();
969 	cpuset_exit(tsk);
970 	exit_keys(tsk);
971 
972 	if (group_dead && tsk->signal->leader)
973 		disassociate_ctty(1);
974 
975 	module_put(task_thread_info(tsk)->exec_domain->module);
976 	if (tsk->binfmt)
977 		module_put(tsk->binfmt->module);
978 
979 	proc_exit_connector(tsk);
980 	exit_task_namespaces(tsk);
981 	exit_notify(tsk);
982 #ifdef CONFIG_NUMA
983 	mpol_free(tsk->mempolicy);
984 	tsk->mempolicy = NULL;
985 #endif
986 	/*
987 	 * This must happen late, after the PID is not
988 	 * hashed anymore:
989 	 */
990 	if (unlikely(!list_empty(&tsk->pi_state_list)))
991 		exit_pi_state_list(tsk);
992 	if (unlikely(current->pi_state_cache))
993 		kfree(current->pi_state_cache);
994 	/*
995 	 * Make sure we are holding no locks:
996 	 */
997 	debug_check_no_locks_held(tsk);
998 	/*
999 	 * We can do this unlocked here. The futex code uses this flag
1000 	 * just to verify whether the pi state cleanup has been done
1001 	 * or not. In the worst case it loops once more.
1002 	 */
1003 	tsk->flags |= PF_EXITPIDONE;
1004 
1005 	if (tsk->io_context)
1006 		exit_io_context();
1007 
1008 	if (tsk->splice_pipe)
1009 		__free_pipe_info(tsk->splice_pipe);
1010 
1011 	preempt_disable();
1012 	/* causes final put_task_struct in finish_task_switch(). */
1013 	tsk->state = TASK_DEAD;
1014 
1015 	schedule();
1016 	BUG();
1017 	/* Avoid "noreturn function does return".  */
1018 	for (;;)
1019 		cpu_relax();	/* For when BUG is null */
1020 }
1021 
1022 EXPORT_SYMBOL_GPL(do_exit);
1023 
1024 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1025 {
1026 	if (comp)
1027 		complete(comp);
1028 
1029 	do_exit(code);
1030 }
1031 
1032 EXPORT_SYMBOL(complete_and_exit);
1033 
1034 asmlinkage long sys_exit(int error_code)
1035 {
1036 	do_exit((error_code&0xff)<<8);
1037 }
1038 
1039 /*
1040  * Take down every thread in the group.  This is called by fatal signals
1041  * as well as by sys_exit_group (below).
1042  */
1043 NORET_TYPE void
1044 do_group_exit(int exit_code)
1045 {
1046 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1047 
1048 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1049 		exit_code = current->signal->group_exit_code;
1050 	else if (!thread_group_empty(current)) {
1051 		struct signal_struct *const sig = current->signal;
1052 		struct sighand_struct *const sighand = current->sighand;
1053 		spin_lock_irq(&sighand->siglock);
1054 		if (sig->flags & SIGNAL_GROUP_EXIT)
1055 			/* Another thread got here before we took the lock.  */
1056 			exit_code = sig->group_exit_code;
1057 		else {
1058 			sig->group_exit_code = exit_code;
1059 			zap_other_threads(current);
1060 		}
1061 		spin_unlock_irq(&sighand->siglock);
1062 	}
1063 
1064 	do_exit(exit_code);
1065 	/* NOTREACHED */
1066 }
1067 
1068 /*
1069  * this kills every thread in the thread group. Note that any externally
1070  * wait4()-ing process will get the correct exit code - even if this
1071  * thread is not the thread group leader.
1072  */
1073 asmlinkage void sys_exit_group(int error_code)
1074 {
1075 	do_group_exit((error_code & 0xff) << 8);
1076 }
1077 
1078 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1079 {
1080 	int err;
1081 
1082 	if (pid > 0) {
1083 		if (p->pid != pid)
1084 			return 0;
1085 	} else if (!pid) {
1086 		if (process_group(p) != process_group(current))
1087 			return 0;
1088 	} else if (pid != -1) {
1089 		if (process_group(p) != -pid)
1090 			return 0;
1091 	}
1092 
1093 	/*
1094 	 * Do not consider detached threads that are
1095 	 * not ptraced:
1096 	 */
1097 	if (p->exit_signal == -1 && !p->ptrace)
1098 		return 0;
1099 
1100 	/* Wait for all children (clone and not) if __WALL is set;
1101 	 * otherwise, wait for clone children *only* if __WCLONE is
1102 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1103 	 * A "clone" child here is one that reports to its parent
1104 	 * using a signal other than SIGCHLD.) */
1105 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1106 	    && !(options & __WALL))
1107 		return 0;
1108 	/*
1109 	 * Do not consider thread group leaders that are
1110 	 * in a non-empty thread group:
1111 	 */
1112 	if (delay_group_leader(p))
1113 		return 2;
1114 
1115 	err = security_task_wait(p);
1116 	if (err)
1117 		return err;
1118 
1119 	return 1;
1120 }
1121 
1122 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1123 			       int why, int status,
1124 			       struct siginfo __user *infop,
1125 			       struct rusage __user *rusagep)
1126 {
1127 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1128 
1129 	put_task_struct(p);
1130 	if (!retval)
1131 		retval = put_user(SIGCHLD, &infop->si_signo);
1132 	if (!retval)
1133 		retval = put_user(0, &infop->si_errno);
1134 	if (!retval)
1135 		retval = put_user((short)why, &infop->si_code);
1136 	if (!retval)
1137 		retval = put_user(pid, &infop->si_pid);
1138 	if (!retval)
1139 		retval = put_user(uid, &infop->si_uid);
1140 	if (!retval)
1141 		retval = put_user(status, &infop->si_status);
1142 	if (!retval)
1143 		retval = pid;
1144 	return retval;
1145 }
1146 
1147 /*
1148  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1149  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1150  * the lock and this task is uninteresting.  If we return nonzero, we have
1151  * released the lock and the system call should return.
1152  */
1153 static int wait_task_zombie(struct task_struct *p, int noreap,
1154 			    struct siginfo __user *infop,
1155 			    int __user *stat_addr, struct rusage __user *ru)
1156 {
1157 	unsigned long state;
1158 	int retval, status, traced;
1159 
1160 	if (unlikely(noreap)) {
1161 		pid_t pid = p->pid;
1162 		uid_t uid = p->uid;
1163 		int exit_code = p->exit_code;
1164 		int why, status;
1165 
1166 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1167 			return 0;
1168 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1169 			return 0;
1170 		get_task_struct(p);
1171 		read_unlock(&tasklist_lock);
1172 		if ((exit_code & 0x7f) == 0) {
1173 			why = CLD_EXITED;
1174 			status = exit_code >> 8;
1175 		} else {
1176 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1177 			status = exit_code & 0x7f;
1178 		}
1179 		return wait_noreap_copyout(p, pid, uid, why,
1180 					   status, infop, ru);
1181 	}
1182 
1183 	/*
1184 	 * Try to move the task's state to DEAD
1185 	 * only one thread is allowed to do this:
1186 	 */
1187 	state = xchg(&p->exit_state, EXIT_DEAD);
1188 	if (state != EXIT_ZOMBIE) {
1189 		BUG_ON(state != EXIT_DEAD);
1190 		return 0;
1191 	}
1192 
1193 	/* traced means p->ptrace, but not vice versa */
1194 	traced = (p->real_parent != p->parent);
1195 
1196 	if (likely(!traced)) {
1197 		struct signal_struct *psig;
1198 		struct signal_struct *sig;
1199 
1200 		/*
1201 		 * The resource counters for the group leader are in its
1202 		 * own task_struct.  Those for dead threads in the group
1203 		 * are in its signal_struct, as are those for the child
1204 		 * processes it has previously reaped.  All these
1205 		 * accumulate in the parent's signal_struct c* fields.
1206 		 *
1207 		 * We don't bother to take a lock here to protect these
1208 		 * p->signal fields, because they are only touched by
1209 		 * __exit_signal, which runs with tasklist_lock
1210 		 * write-locked anyway, and so is excluded here.  We do
1211 		 * need to protect the access to p->parent->signal fields,
1212 		 * as other threads in the parent group can be right
1213 		 * here reaping other children at the same time.
1214 		 */
1215 		spin_lock_irq(&p->parent->sighand->siglock);
1216 		psig = p->parent->signal;
1217 		sig = p->signal;
1218 		psig->cutime =
1219 			cputime_add(psig->cutime,
1220 			cputime_add(p->utime,
1221 			cputime_add(sig->utime,
1222 				    sig->cutime)));
1223 		psig->cstime =
1224 			cputime_add(psig->cstime,
1225 			cputime_add(p->stime,
1226 			cputime_add(sig->stime,
1227 				    sig->cstime)));
1228 		psig->cgtime =
1229 			cputime_add(psig->cgtime,
1230 			cputime_add(p->gtime,
1231 			cputime_add(sig->gtime,
1232 				    sig->cgtime)));
1233 		psig->cmin_flt +=
1234 			p->min_flt + sig->min_flt + sig->cmin_flt;
1235 		psig->cmaj_flt +=
1236 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1237 		psig->cnvcsw +=
1238 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1239 		psig->cnivcsw +=
1240 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1241 		psig->cinblock +=
1242 			task_io_get_inblock(p) +
1243 			sig->inblock + sig->cinblock;
1244 		psig->coublock +=
1245 			task_io_get_oublock(p) +
1246 			sig->oublock + sig->coublock;
1247 		spin_unlock_irq(&p->parent->sighand->siglock);
1248 	}
1249 
1250 	/*
1251 	 * Now we are sure this task is interesting, and no other
1252 	 * thread can reap it because we set its state to EXIT_DEAD.
1253 	 */
1254 	read_unlock(&tasklist_lock);
1255 
1256 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1257 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1258 		? p->signal->group_exit_code : p->exit_code;
1259 	if (!retval && stat_addr)
1260 		retval = put_user(status, stat_addr);
1261 	if (!retval && infop)
1262 		retval = put_user(SIGCHLD, &infop->si_signo);
1263 	if (!retval && infop)
1264 		retval = put_user(0, &infop->si_errno);
1265 	if (!retval && infop) {
1266 		int why;
1267 
1268 		if ((status & 0x7f) == 0) {
1269 			why = CLD_EXITED;
1270 			status >>= 8;
1271 		} else {
1272 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1273 			status &= 0x7f;
1274 		}
1275 		retval = put_user((short)why, &infop->si_code);
1276 		if (!retval)
1277 			retval = put_user(status, &infop->si_status);
1278 	}
1279 	if (!retval && infop)
1280 		retval = put_user(p->pid, &infop->si_pid);
1281 	if (!retval && infop)
1282 		retval = put_user(p->uid, &infop->si_uid);
1283 	if (!retval)
1284 		retval = p->pid;
1285 
1286 	if (traced) {
1287 		write_lock_irq(&tasklist_lock);
1288 		/* We dropped tasklist, ptracer could die and untrace */
1289 		ptrace_unlink(p);
1290 		/*
1291 		 * If this is not a detached task, notify the parent.
1292 		 * If it's still not detached after that, don't release
1293 		 * it now.
1294 		 */
1295 		if (p->exit_signal != -1) {
1296 			do_notify_parent(p, p->exit_signal);
1297 			if (p->exit_signal != -1) {
1298 				p->exit_state = EXIT_ZOMBIE;
1299 				p = NULL;
1300 			}
1301 		}
1302 		write_unlock_irq(&tasklist_lock);
1303 	}
1304 	if (p != NULL)
1305 		release_task(p);
1306 
1307 	return retval;
1308 }
1309 
1310 /*
1311  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1312  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1313  * the lock and this task is uninteresting.  If we return nonzero, we have
1314  * released the lock and the system call should return.
1315  */
1316 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1317 			     int noreap, struct siginfo __user *infop,
1318 			     int __user *stat_addr, struct rusage __user *ru)
1319 {
1320 	int retval, exit_code;
1321 
1322 	if (!p->exit_code)
1323 		return 0;
1324 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1325 	    p->signal->group_stop_count > 0)
1326 		/*
1327 		 * A group stop is in progress and this is the group leader.
1328 		 * We won't report until all threads have stopped.
1329 		 */
1330 		return 0;
1331 
1332 	/*
1333 	 * Now we are pretty sure this task is interesting.
1334 	 * Make sure it doesn't get reaped out from under us while we
1335 	 * give up the lock and then examine it below.  We don't want to
1336 	 * keep holding onto the tasklist_lock while we call getrusage and
1337 	 * possibly take page faults for user memory.
1338 	 */
1339 	get_task_struct(p);
1340 	read_unlock(&tasklist_lock);
1341 
1342 	if (unlikely(noreap)) {
1343 		pid_t pid = p->pid;
1344 		uid_t uid = p->uid;
1345 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1346 
1347 		exit_code = p->exit_code;
1348 		if (unlikely(!exit_code) ||
1349 		    unlikely(p->state & TASK_TRACED))
1350 			goto bail_ref;
1351 		return wait_noreap_copyout(p, pid, uid,
1352 					   why, (exit_code << 8) | 0x7f,
1353 					   infop, ru);
1354 	}
1355 
1356 	write_lock_irq(&tasklist_lock);
1357 
1358 	/*
1359 	 * This uses xchg to be atomic with the thread resuming and setting
1360 	 * it.  It must also be done with the write lock held to prevent a
1361 	 * race with the EXIT_ZOMBIE case.
1362 	 */
1363 	exit_code = xchg(&p->exit_code, 0);
1364 	if (unlikely(p->exit_state)) {
1365 		/*
1366 		 * The task resumed and then died.  Let the next iteration
1367 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1368 		 * already be zero here if it resumed and did _exit(0).
1369 		 * The task itself is dead and won't touch exit_code again;
1370 		 * other processors in this function are locked out.
1371 		 */
1372 		p->exit_code = exit_code;
1373 		exit_code = 0;
1374 	}
1375 	if (unlikely(exit_code == 0)) {
1376 		/*
1377 		 * Another thread in this function got to it first, or it
1378 		 * resumed, or it resumed and then died.
1379 		 */
1380 		write_unlock_irq(&tasklist_lock);
1381 bail_ref:
1382 		put_task_struct(p);
1383 		/*
1384 		 * We are returning to the wait loop without having successfully
1385 		 * removed the process and having released the lock. We cannot
1386 		 * continue, since the "p" task pointer is potentially stale.
1387 		 *
1388 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1389 		 * beginning. Do _not_ re-acquire the lock.
1390 		 */
1391 		return -EAGAIN;
1392 	}
1393 
1394 	/* move to end of parent's list to avoid starvation */
1395 	remove_parent(p);
1396 	add_parent(p);
1397 
1398 	write_unlock_irq(&tasklist_lock);
1399 
1400 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1401 	if (!retval && stat_addr)
1402 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1403 	if (!retval && infop)
1404 		retval = put_user(SIGCHLD, &infop->si_signo);
1405 	if (!retval && infop)
1406 		retval = put_user(0, &infop->si_errno);
1407 	if (!retval && infop)
1408 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1409 					  ? CLD_TRAPPED : CLD_STOPPED),
1410 				  &infop->si_code);
1411 	if (!retval && infop)
1412 		retval = put_user(exit_code, &infop->si_status);
1413 	if (!retval && infop)
1414 		retval = put_user(p->pid, &infop->si_pid);
1415 	if (!retval && infop)
1416 		retval = put_user(p->uid, &infop->si_uid);
1417 	if (!retval)
1418 		retval = p->pid;
1419 	put_task_struct(p);
1420 
1421 	BUG_ON(!retval);
1422 	return retval;
1423 }
1424 
1425 /*
1426  * Handle do_wait work for one task in a live, non-stopped state.
1427  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1428  * the lock and this task is uninteresting.  If we return nonzero, we have
1429  * released the lock and the system call should return.
1430  */
1431 static int wait_task_continued(struct task_struct *p, int noreap,
1432 			       struct siginfo __user *infop,
1433 			       int __user *stat_addr, struct rusage __user *ru)
1434 {
1435 	int retval;
1436 	pid_t pid;
1437 	uid_t uid;
1438 
1439 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1440 		return 0;
1441 
1442 	spin_lock_irq(&p->sighand->siglock);
1443 	/* Re-check with the lock held.  */
1444 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1445 		spin_unlock_irq(&p->sighand->siglock);
1446 		return 0;
1447 	}
1448 	if (!noreap)
1449 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1450 	spin_unlock_irq(&p->sighand->siglock);
1451 
1452 	pid = p->pid;
1453 	uid = p->uid;
1454 	get_task_struct(p);
1455 	read_unlock(&tasklist_lock);
1456 
1457 	if (!infop) {
1458 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1459 		put_task_struct(p);
1460 		if (!retval && stat_addr)
1461 			retval = put_user(0xffff, stat_addr);
1462 		if (!retval)
1463 			retval = p->pid;
1464 	} else {
1465 		retval = wait_noreap_copyout(p, pid, uid,
1466 					     CLD_CONTINUED, SIGCONT,
1467 					     infop, ru);
1468 		BUG_ON(retval == 0);
1469 	}
1470 
1471 	return retval;
1472 }
1473 
1474 
1475 static inline int my_ptrace_child(struct task_struct *p)
1476 {
1477 	if (!(p->ptrace & PT_PTRACED))
1478 		return 0;
1479 	if (!(p->ptrace & PT_ATTACHED))
1480 		return 1;
1481 	/*
1482 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1483 	 * we are the attacher.  If we are the real parent, this is a race
1484 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1485 	 * which we have to switch the parent links, but has already set
1486 	 * the flags in p->ptrace.
1487 	 */
1488 	return (p->parent != p->real_parent);
1489 }
1490 
1491 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1492 		    int __user *stat_addr, struct rusage __user *ru)
1493 {
1494 	DECLARE_WAITQUEUE(wait, current);
1495 	struct task_struct *tsk;
1496 	int flag, retval;
1497 	int allowed, denied;
1498 
1499 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1500 repeat:
1501 	/*
1502 	 * We will set this flag if we see any child that might later
1503 	 * match our criteria, even if we are not able to reap it yet.
1504 	 */
1505 	flag = 0;
1506 	allowed = denied = 0;
1507 	current->state = TASK_INTERRUPTIBLE;
1508 	read_lock(&tasklist_lock);
1509 	tsk = current;
1510 	do {
1511 		struct task_struct *p;
1512 		struct list_head *_p;
1513 		int ret;
1514 
1515 		list_for_each(_p,&tsk->children) {
1516 			p = list_entry(_p, struct task_struct, sibling);
1517 
1518 			ret = eligible_child(pid, options, p);
1519 			if (!ret)
1520 				continue;
1521 
1522 			if (unlikely(ret < 0)) {
1523 				denied = ret;
1524 				continue;
1525 			}
1526 			allowed = 1;
1527 
1528 			switch (p->state) {
1529 			case TASK_TRACED:
1530 				/*
1531 				 * When we hit the race with PTRACE_ATTACH,
1532 				 * we will not report this child.  But the
1533 				 * race means it has not yet been moved to
1534 				 * our ptrace_children list, so we need to
1535 				 * set the flag here to avoid a spurious ECHILD
1536 				 * when the race happens with the only child.
1537 				 */
1538 				flag = 1;
1539 				if (!my_ptrace_child(p))
1540 					continue;
1541 				/*FALLTHROUGH*/
1542 			case TASK_STOPPED:
1543 				/*
1544 				 * It's stopped now, so it might later
1545 				 * continue, exit, or stop again.
1546 				 */
1547 				flag = 1;
1548 				if (!(options & WUNTRACED) &&
1549 				    !my_ptrace_child(p))
1550 					continue;
1551 				retval = wait_task_stopped(p, ret == 2,
1552 							   (options & WNOWAIT),
1553 							   infop,
1554 							   stat_addr, ru);
1555 				if (retval == -EAGAIN)
1556 					goto repeat;
1557 				if (retval != 0) /* He released the lock.  */
1558 					goto end;
1559 				break;
1560 			default:
1561 			// case EXIT_DEAD:
1562 				if (p->exit_state == EXIT_DEAD)
1563 					continue;
1564 			// case EXIT_ZOMBIE:
1565 				if (p->exit_state == EXIT_ZOMBIE) {
1566 					/*
1567 					 * Eligible but we cannot release
1568 					 * it yet:
1569 					 */
1570 					if (ret == 2)
1571 						goto check_continued;
1572 					if (!likely(options & WEXITED))
1573 						continue;
1574 					retval = wait_task_zombie(
1575 						p, (options & WNOWAIT),
1576 						infop, stat_addr, ru);
1577 					/* He released the lock.  */
1578 					if (retval != 0)
1579 						goto end;
1580 					break;
1581 				}
1582 check_continued:
1583 				/*
1584 				 * It's running now, so it might later
1585 				 * exit, stop, or stop and then continue.
1586 				 */
1587 				flag = 1;
1588 				if (!unlikely(options & WCONTINUED))
1589 					continue;
1590 				retval = wait_task_continued(
1591 					p, (options & WNOWAIT),
1592 					infop, stat_addr, ru);
1593 				if (retval != 0) /* He released the lock.  */
1594 					goto end;
1595 				break;
1596 			}
1597 		}
1598 		if (!flag) {
1599 			list_for_each(_p, &tsk->ptrace_children) {
1600 				p = list_entry(_p, struct task_struct,
1601 						ptrace_list);
1602 				if (!eligible_child(pid, options, p))
1603 					continue;
1604 				flag = 1;
1605 				break;
1606 			}
1607 		}
1608 		if (options & __WNOTHREAD)
1609 			break;
1610 		tsk = next_thread(tsk);
1611 		BUG_ON(tsk->signal != current->signal);
1612 	} while (tsk != current);
1613 
1614 	read_unlock(&tasklist_lock);
1615 	if (flag) {
1616 		retval = 0;
1617 		if (options & WNOHANG)
1618 			goto end;
1619 		retval = -ERESTARTSYS;
1620 		if (signal_pending(current))
1621 			goto end;
1622 		schedule();
1623 		goto repeat;
1624 	}
1625 	retval = -ECHILD;
1626 	if (unlikely(denied) && !allowed)
1627 		retval = denied;
1628 end:
1629 	current->state = TASK_RUNNING;
1630 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1631 	if (infop) {
1632 		if (retval > 0)
1633 		retval = 0;
1634 		else {
1635 			/*
1636 			 * For a WNOHANG return, clear out all the fields
1637 			 * we would set so the user can easily tell the
1638 			 * difference.
1639 			 */
1640 			if (!retval)
1641 				retval = put_user(0, &infop->si_signo);
1642 			if (!retval)
1643 				retval = put_user(0, &infop->si_errno);
1644 			if (!retval)
1645 				retval = put_user(0, &infop->si_code);
1646 			if (!retval)
1647 				retval = put_user(0, &infop->si_pid);
1648 			if (!retval)
1649 				retval = put_user(0, &infop->si_uid);
1650 			if (!retval)
1651 				retval = put_user(0, &infop->si_status);
1652 		}
1653 	}
1654 	return retval;
1655 }
1656 
1657 asmlinkage long sys_waitid(int which, pid_t pid,
1658 			   struct siginfo __user *infop, int options,
1659 			   struct rusage __user *ru)
1660 {
1661 	long ret;
1662 
1663 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1664 		return -EINVAL;
1665 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1666 		return -EINVAL;
1667 
1668 	switch (which) {
1669 	case P_ALL:
1670 		pid = -1;
1671 		break;
1672 	case P_PID:
1673 		if (pid <= 0)
1674 			return -EINVAL;
1675 		break;
1676 	case P_PGID:
1677 		if (pid <= 0)
1678 			return -EINVAL;
1679 		pid = -pid;
1680 		break;
1681 	default:
1682 		return -EINVAL;
1683 	}
1684 
1685 	ret = do_wait(pid, options, infop, NULL, ru);
1686 
1687 	/* avoid REGPARM breakage on x86: */
1688 	prevent_tail_call(ret);
1689 	return ret;
1690 }
1691 
1692 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1693 			  int options, struct rusage __user *ru)
1694 {
1695 	long ret;
1696 
1697 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1698 			__WNOTHREAD|__WCLONE|__WALL))
1699 		return -EINVAL;
1700 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1701 
1702 	/* avoid REGPARM breakage on x86: */
1703 	prevent_tail_call(ret);
1704 	return ret;
1705 }
1706 
1707 #ifdef __ARCH_WANT_SYS_WAITPID
1708 
1709 /*
1710  * sys_waitpid() remains for compatibility. waitpid() should be
1711  * implemented by calling sys_wait4() from libc.a.
1712  */
1713 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1714 {
1715 	return sys_wait4(pid, stat_addr, options, NULL);
1716 }
1717 
1718 #endif
1719