1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cpuset.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 extern void sem_exit (void); 54 55 static void exit_mm(struct task_struct * tsk); 56 57 static void __unhash_process(struct task_struct *p) 58 { 59 nr_threads--; 60 detach_pid(p, PIDTYPE_PID); 61 if (thread_group_leader(p)) { 62 detach_pid(p, PIDTYPE_PGID); 63 detach_pid(p, PIDTYPE_SID); 64 65 list_del_rcu(&p->tasks); 66 __get_cpu_var(process_counts)--; 67 } 68 list_del_rcu(&p->thread_group); 69 remove_parent(p); 70 } 71 72 /* 73 * This function expects the tasklist_lock write-locked. 74 */ 75 static void __exit_signal(struct task_struct *tsk) 76 { 77 struct signal_struct *sig = tsk->signal; 78 struct sighand_struct *sighand; 79 80 BUG_ON(!sig); 81 BUG_ON(!atomic_read(&sig->count)); 82 83 rcu_read_lock(); 84 sighand = rcu_dereference(tsk->sighand); 85 spin_lock(&sighand->siglock); 86 87 posix_cpu_timers_exit(tsk); 88 if (atomic_dec_and_test(&sig->count)) 89 posix_cpu_timers_exit_group(tsk); 90 else { 91 /* 92 * If there is any task waiting for the group exit 93 * then notify it: 94 */ 95 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 96 wake_up_process(sig->group_exit_task); 97 sig->group_exit_task = NULL; 98 } 99 if (tsk == sig->curr_target) 100 sig->curr_target = next_thread(tsk); 101 /* 102 * Accumulate here the counters for all threads but the 103 * group leader as they die, so they can be added into 104 * the process-wide totals when those are taken. 105 * The group leader stays around as a zombie as long 106 * as there are other threads. When it gets reaped, 107 * the exit.c code will add its counts into these totals. 108 * We won't ever get here for the group leader, since it 109 * will have been the last reference on the signal_struct. 110 */ 111 sig->utime = cputime_add(sig->utime, tsk->utime); 112 sig->stime = cputime_add(sig->stime, tsk->stime); 113 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 114 sig->min_flt += tsk->min_flt; 115 sig->maj_flt += tsk->maj_flt; 116 sig->nvcsw += tsk->nvcsw; 117 sig->nivcsw += tsk->nivcsw; 118 sig->inblock += task_io_get_inblock(tsk); 119 sig->oublock += task_io_get_oublock(tsk); 120 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 121 sig = NULL; /* Marker for below. */ 122 } 123 124 __unhash_process(tsk); 125 126 tsk->signal = NULL; 127 tsk->sighand = NULL; 128 spin_unlock(&sighand->siglock); 129 rcu_read_unlock(); 130 131 __cleanup_sighand(sighand); 132 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 133 flush_sigqueue(&tsk->pending); 134 if (sig) { 135 flush_sigqueue(&sig->shared_pending); 136 taskstats_tgid_free(sig); 137 __cleanup_signal(sig); 138 } 139 } 140 141 static void delayed_put_task_struct(struct rcu_head *rhp) 142 { 143 put_task_struct(container_of(rhp, struct task_struct, rcu)); 144 } 145 146 void release_task(struct task_struct * p) 147 { 148 struct task_struct *leader; 149 int zap_leader; 150 repeat: 151 atomic_dec(&p->user->processes); 152 write_lock_irq(&tasklist_lock); 153 ptrace_unlink(p); 154 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 155 __exit_signal(p); 156 157 /* 158 * If we are the last non-leader member of the thread 159 * group, and the leader is zombie, then notify the 160 * group leader's parent process. (if it wants notification.) 161 */ 162 zap_leader = 0; 163 leader = p->group_leader; 164 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 165 BUG_ON(leader->exit_signal == -1); 166 do_notify_parent(leader, leader->exit_signal); 167 /* 168 * If we were the last child thread and the leader has 169 * exited already, and the leader's parent ignores SIGCHLD, 170 * then we are the one who should release the leader. 171 * 172 * do_notify_parent() will have marked it self-reaping in 173 * that case. 174 */ 175 zap_leader = (leader->exit_signal == -1); 176 } 177 178 write_unlock_irq(&tasklist_lock); 179 proc_flush_task(p); 180 release_thread(p); 181 call_rcu(&p->rcu, delayed_put_task_struct); 182 183 p = leader; 184 if (unlikely(zap_leader)) 185 goto repeat; 186 } 187 188 /* 189 * This checks not only the pgrp, but falls back on the pid if no 190 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 191 * without this... 192 * 193 * The caller must hold rcu lock or the tasklist lock. 194 */ 195 struct pid *session_of_pgrp(struct pid *pgrp) 196 { 197 struct task_struct *p; 198 struct pid *sid = NULL; 199 200 p = pid_task(pgrp, PIDTYPE_PGID); 201 if (p == NULL) 202 p = pid_task(pgrp, PIDTYPE_PID); 203 if (p != NULL) 204 sid = task_session(p); 205 206 return sid; 207 } 208 209 /* 210 * Determine if a process group is "orphaned", according to the POSIX 211 * definition in 2.2.2.52. Orphaned process groups are not to be affected 212 * by terminal-generated stop signals. Newly orphaned process groups are 213 * to receive a SIGHUP and a SIGCONT. 214 * 215 * "I ask you, have you ever known what it is to be an orphan?" 216 */ 217 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 218 { 219 struct task_struct *p; 220 int ret = 1; 221 222 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 223 if (p == ignored_task 224 || p->exit_state 225 || is_init(p->real_parent)) 226 continue; 227 if (task_pgrp(p->real_parent) != pgrp && 228 task_session(p->real_parent) == task_session(p)) { 229 ret = 0; 230 break; 231 } 232 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 233 return ret; /* (sighing) "Often!" */ 234 } 235 236 int is_current_pgrp_orphaned(void) 237 { 238 int retval; 239 240 read_lock(&tasklist_lock); 241 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 242 read_unlock(&tasklist_lock); 243 244 return retval; 245 } 246 247 static int has_stopped_jobs(struct pid *pgrp) 248 { 249 int retval = 0; 250 struct task_struct *p; 251 252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 253 if (p->state != TASK_STOPPED) 254 continue; 255 retval = 1; 256 break; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 return retval; 259 } 260 261 /** 262 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 263 * 264 * If a kernel thread is launched as a result of a system call, or if 265 * it ever exits, it should generally reparent itself to kthreadd so it 266 * isn't in the way of other processes and is correctly cleaned up on exit. 267 * 268 * The various task state such as scheduling policy and priority may have 269 * been inherited from a user process, so we reset them to sane values here. 270 * 271 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 272 */ 273 static void reparent_to_kthreadd(void) 274 { 275 write_lock_irq(&tasklist_lock); 276 277 ptrace_unlink(current); 278 /* Reparent to init */ 279 remove_parent(current); 280 current->real_parent = current->parent = kthreadd_task; 281 add_parent(current); 282 283 /* Set the exit signal to SIGCHLD so we signal init on exit */ 284 current->exit_signal = SIGCHLD; 285 286 if (task_nice(current) < 0) 287 set_user_nice(current, 0); 288 /* cpus_allowed? */ 289 /* rt_priority? */ 290 /* signals? */ 291 security_task_reparent_to_init(current); 292 memcpy(current->signal->rlim, init_task.signal->rlim, 293 sizeof(current->signal->rlim)); 294 atomic_inc(&(INIT_USER->__count)); 295 write_unlock_irq(&tasklist_lock); 296 switch_uid(INIT_USER); 297 } 298 299 void __set_special_pids(pid_t session, pid_t pgrp) 300 { 301 struct task_struct *curr = current->group_leader; 302 303 if (process_session(curr) != session) { 304 detach_pid(curr, PIDTYPE_SID); 305 set_signal_session(curr->signal, session); 306 attach_pid(curr, PIDTYPE_SID, find_pid(session)); 307 } 308 if (process_group(curr) != pgrp) { 309 detach_pid(curr, PIDTYPE_PGID); 310 curr->signal->pgrp = pgrp; 311 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp)); 312 } 313 } 314 315 static void set_special_pids(pid_t session, pid_t pgrp) 316 { 317 write_lock_irq(&tasklist_lock); 318 __set_special_pids(session, pgrp); 319 write_unlock_irq(&tasklist_lock); 320 } 321 322 /* 323 * Let kernel threads use this to say that they 324 * allow a certain signal (since daemonize() will 325 * have disabled all of them by default). 326 */ 327 int allow_signal(int sig) 328 { 329 if (!valid_signal(sig) || sig < 1) 330 return -EINVAL; 331 332 spin_lock_irq(¤t->sighand->siglock); 333 sigdelset(¤t->blocked, sig); 334 if (!current->mm) { 335 /* Kernel threads handle their own signals. 336 Let the signal code know it'll be handled, so 337 that they don't get converted to SIGKILL or 338 just silently dropped */ 339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 340 } 341 recalc_sigpending(); 342 spin_unlock_irq(¤t->sighand->siglock); 343 return 0; 344 } 345 346 EXPORT_SYMBOL(allow_signal); 347 348 int disallow_signal(int sig) 349 { 350 if (!valid_signal(sig) || sig < 1) 351 return -EINVAL; 352 353 spin_lock_irq(¤t->sighand->siglock); 354 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 355 recalc_sigpending(); 356 spin_unlock_irq(¤t->sighand->siglock); 357 return 0; 358 } 359 360 EXPORT_SYMBOL(disallow_signal); 361 362 /* 363 * Put all the gunge required to become a kernel thread without 364 * attached user resources in one place where it belongs. 365 */ 366 367 void daemonize(const char *name, ...) 368 { 369 va_list args; 370 struct fs_struct *fs; 371 sigset_t blocked; 372 373 va_start(args, name); 374 vsnprintf(current->comm, sizeof(current->comm), name, args); 375 va_end(args); 376 377 /* 378 * If we were started as result of loading a module, close all of the 379 * user space pages. We don't need them, and if we didn't close them 380 * they would be locked into memory. 381 */ 382 exit_mm(current); 383 /* 384 * We don't want to have TIF_FREEZE set if the system-wide hibernation 385 * or suspend transition begins right now. 386 */ 387 current->flags |= PF_NOFREEZE; 388 389 set_special_pids(1, 1); 390 proc_clear_tty(current); 391 392 /* Block and flush all signals */ 393 sigfillset(&blocked); 394 sigprocmask(SIG_BLOCK, &blocked, NULL); 395 flush_signals(current); 396 397 /* Become as one with the init task */ 398 399 exit_fs(current); /* current->fs->count--; */ 400 fs = init_task.fs; 401 current->fs = fs; 402 atomic_inc(&fs->count); 403 404 exit_task_namespaces(current); 405 current->nsproxy = init_task.nsproxy; 406 get_task_namespaces(current); 407 408 exit_files(current); 409 current->files = init_task.files; 410 atomic_inc(¤t->files->count); 411 412 reparent_to_kthreadd(); 413 } 414 415 EXPORT_SYMBOL(daemonize); 416 417 static void close_files(struct files_struct * files) 418 { 419 int i, j; 420 struct fdtable *fdt; 421 422 j = 0; 423 424 /* 425 * It is safe to dereference the fd table without RCU or 426 * ->file_lock because this is the last reference to the 427 * files structure. 428 */ 429 fdt = files_fdtable(files); 430 for (;;) { 431 unsigned long set; 432 i = j * __NFDBITS; 433 if (i >= fdt->max_fds) 434 break; 435 set = fdt->open_fds->fds_bits[j++]; 436 while (set) { 437 if (set & 1) { 438 struct file * file = xchg(&fdt->fd[i], NULL); 439 if (file) { 440 filp_close(file, files); 441 cond_resched(); 442 } 443 } 444 i++; 445 set >>= 1; 446 } 447 } 448 } 449 450 struct files_struct *get_files_struct(struct task_struct *task) 451 { 452 struct files_struct *files; 453 454 task_lock(task); 455 files = task->files; 456 if (files) 457 atomic_inc(&files->count); 458 task_unlock(task); 459 460 return files; 461 } 462 463 void fastcall put_files_struct(struct files_struct *files) 464 { 465 struct fdtable *fdt; 466 467 if (atomic_dec_and_test(&files->count)) { 468 close_files(files); 469 /* 470 * Free the fd and fdset arrays if we expanded them. 471 * If the fdtable was embedded, pass files for freeing 472 * at the end of the RCU grace period. Otherwise, 473 * you can free files immediately. 474 */ 475 fdt = files_fdtable(files); 476 if (fdt != &files->fdtab) 477 kmem_cache_free(files_cachep, files); 478 free_fdtable(fdt); 479 } 480 } 481 482 EXPORT_SYMBOL(put_files_struct); 483 484 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 485 { 486 struct files_struct *old; 487 488 old = tsk->files; 489 task_lock(tsk); 490 tsk->files = files; 491 task_unlock(tsk); 492 put_files_struct(old); 493 } 494 EXPORT_SYMBOL(reset_files_struct); 495 496 static inline void __exit_files(struct task_struct *tsk) 497 { 498 struct files_struct * files = tsk->files; 499 500 if (files) { 501 task_lock(tsk); 502 tsk->files = NULL; 503 task_unlock(tsk); 504 put_files_struct(files); 505 } 506 } 507 508 void exit_files(struct task_struct *tsk) 509 { 510 __exit_files(tsk); 511 } 512 513 static inline void __put_fs_struct(struct fs_struct *fs) 514 { 515 /* No need to hold fs->lock if we are killing it */ 516 if (atomic_dec_and_test(&fs->count)) { 517 dput(fs->root); 518 mntput(fs->rootmnt); 519 dput(fs->pwd); 520 mntput(fs->pwdmnt); 521 if (fs->altroot) { 522 dput(fs->altroot); 523 mntput(fs->altrootmnt); 524 } 525 kmem_cache_free(fs_cachep, fs); 526 } 527 } 528 529 void put_fs_struct(struct fs_struct *fs) 530 { 531 __put_fs_struct(fs); 532 } 533 534 static inline void __exit_fs(struct task_struct *tsk) 535 { 536 struct fs_struct * fs = tsk->fs; 537 538 if (fs) { 539 task_lock(tsk); 540 tsk->fs = NULL; 541 task_unlock(tsk); 542 __put_fs_struct(fs); 543 } 544 } 545 546 void exit_fs(struct task_struct *tsk) 547 { 548 __exit_fs(tsk); 549 } 550 551 EXPORT_SYMBOL_GPL(exit_fs); 552 553 /* 554 * Turn us into a lazy TLB process if we 555 * aren't already.. 556 */ 557 static void exit_mm(struct task_struct * tsk) 558 { 559 struct mm_struct *mm = tsk->mm; 560 561 mm_release(tsk, mm); 562 if (!mm) 563 return; 564 /* 565 * Serialize with any possible pending coredump. 566 * We must hold mmap_sem around checking core_waiters 567 * and clearing tsk->mm. The core-inducing thread 568 * will increment core_waiters for each thread in the 569 * group with ->mm != NULL. 570 */ 571 down_read(&mm->mmap_sem); 572 if (mm->core_waiters) { 573 up_read(&mm->mmap_sem); 574 down_write(&mm->mmap_sem); 575 if (!--mm->core_waiters) 576 complete(mm->core_startup_done); 577 up_write(&mm->mmap_sem); 578 579 wait_for_completion(&mm->core_done); 580 down_read(&mm->mmap_sem); 581 } 582 atomic_inc(&mm->mm_count); 583 BUG_ON(mm != tsk->active_mm); 584 /* more a memory barrier than a real lock */ 585 task_lock(tsk); 586 tsk->mm = NULL; 587 up_read(&mm->mmap_sem); 588 enter_lazy_tlb(mm, current); 589 /* We don't want this task to be frozen prematurely */ 590 clear_freeze_flag(tsk); 591 task_unlock(tsk); 592 mmput(mm); 593 } 594 595 static void 596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 597 { 598 if (p->pdeath_signal) 599 /* We already hold the tasklist_lock here. */ 600 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 601 602 /* Move the child from its dying parent to the new one. */ 603 if (unlikely(traced)) { 604 /* Preserve ptrace links if someone else is tracing this child. */ 605 list_del_init(&p->ptrace_list); 606 if (p->parent != p->real_parent) 607 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 608 } else { 609 /* If this child is being traced, then we're the one tracing it 610 * anyway, so let go of it. 611 */ 612 p->ptrace = 0; 613 remove_parent(p); 614 p->parent = p->real_parent; 615 add_parent(p); 616 617 if (p->state == TASK_TRACED) { 618 /* 619 * If it was at a trace stop, turn it into 620 * a normal stop since it's no longer being 621 * traced. 622 */ 623 ptrace_untrace(p); 624 } 625 } 626 627 /* If this is a threaded reparent there is no need to 628 * notify anyone anything has happened. 629 */ 630 if (p->real_parent->group_leader == father->group_leader) 631 return; 632 633 /* We don't want people slaying init. */ 634 if (p->exit_signal != -1) 635 p->exit_signal = SIGCHLD; 636 637 /* If we'd notified the old parent about this child's death, 638 * also notify the new parent. 639 */ 640 if (!traced && p->exit_state == EXIT_ZOMBIE && 641 p->exit_signal != -1 && thread_group_empty(p)) 642 do_notify_parent(p, p->exit_signal); 643 644 /* 645 * process group orphan check 646 * Case ii: Our child is in a different pgrp 647 * than we are, and it was the only connection 648 * outside, so the child pgrp is now orphaned. 649 */ 650 if ((task_pgrp(p) != task_pgrp(father)) && 651 (task_session(p) == task_session(father))) { 652 struct pid *pgrp = task_pgrp(p); 653 654 if (will_become_orphaned_pgrp(pgrp, NULL) && 655 has_stopped_jobs(pgrp)) { 656 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 657 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 658 } 659 } 660 } 661 662 /* 663 * When we die, we re-parent all our children. 664 * Try to give them to another thread in our thread 665 * group, and if no such member exists, give it to 666 * the child reaper process (ie "init") in our pid 667 * space. 668 */ 669 static void 670 forget_original_parent(struct task_struct *father, struct list_head *to_release) 671 { 672 struct task_struct *p, *reaper = father; 673 struct list_head *_p, *_n; 674 675 do { 676 reaper = next_thread(reaper); 677 if (reaper == father) { 678 reaper = child_reaper(father); 679 break; 680 } 681 } while (reaper->exit_state); 682 683 /* 684 * There are only two places where our children can be: 685 * 686 * - in our child list 687 * - in our ptraced child list 688 * 689 * Search them and reparent children. 690 */ 691 list_for_each_safe(_p, _n, &father->children) { 692 int ptrace; 693 p = list_entry(_p, struct task_struct, sibling); 694 695 ptrace = p->ptrace; 696 697 /* if father isn't the real parent, then ptrace must be enabled */ 698 BUG_ON(father != p->real_parent && !ptrace); 699 700 if (father == p->real_parent) { 701 /* reparent with a reaper, real father it's us */ 702 p->real_parent = reaper; 703 reparent_thread(p, father, 0); 704 } else { 705 /* reparent ptraced task to its real parent */ 706 __ptrace_unlink (p); 707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 708 thread_group_empty(p)) 709 do_notify_parent(p, p->exit_signal); 710 } 711 712 /* 713 * if the ptraced child is a zombie with exit_signal == -1 714 * we must collect it before we exit, or it will remain 715 * zombie forever since we prevented it from self-reap itself 716 * while it was being traced by us, to be able to see it in wait4. 717 */ 718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 719 list_add(&p->ptrace_list, to_release); 720 } 721 list_for_each_safe(_p, _n, &father->ptrace_children) { 722 p = list_entry(_p, struct task_struct, ptrace_list); 723 p->real_parent = reaper; 724 reparent_thread(p, father, 1); 725 } 726 } 727 728 /* 729 * Send signals to all our closest relatives so that they know 730 * to properly mourn us.. 731 */ 732 static void exit_notify(struct task_struct *tsk) 733 { 734 int state; 735 struct task_struct *t; 736 struct list_head ptrace_dead, *_p, *_n; 737 struct pid *pgrp; 738 739 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 740 && !thread_group_empty(tsk)) { 741 /* 742 * This occurs when there was a race between our exit 743 * syscall and a group signal choosing us as the one to 744 * wake up. It could be that we are the only thread 745 * alerted to check for pending signals, but another thread 746 * should be woken now to take the signal since we will not. 747 * Now we'll wake all the threads in the group just to make 748 * sure someone gets all the pending signals. 749 */ 750 spin_lock_irq(&tsk->sighand->siglock); 751 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 752 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 753 recalc_sigpending_and_wake(t); 754 spin_unlock_irq(&tsk->sighand->siglock); 755 } 756 757 write_lock_irq(&tasklist_lock); 758 759 /* 760 * This does two things: 761 * 762 * A. Make init inherit all the child processes 763 * B. Check to see if any process groups have become orphaned 764 * as a result of our exiting, and if they have any stopped 765 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 766 */ 767 768 INIT_LIST_HEAD(&ptrace_dead); 769 forget_original_parent(tsk, &ptrace_dead); 770 BUG_ON(!list_empty(&tsk->children)); 771 BUG_ON(!list_empty(&tsk->ptrace_children)); 772 773 /* 774 * Check to see if any process groups have become orphaned 775 * as a result of our exiting, and if they have any stopped 776 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 777 * 778 * Case i: Our father is in a different pgrp than we are 779 * and we were the only connection outside, so our pgrp 780 * is about to become orphaned. 781 */ 782 t = tsk->real_parent; 783 784 pgrp = task_pgrp(tsk); 785 if ((task_pgrp(t) != pgrp) && 786 (task_session(t) == task_session(tsk)) && 787 will_become_orphaned_pgrp(pgrp, tsk) && 788 has_stopped_jobs(pgrp)) { 789 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 790 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 791 } 792 793 /* Let father know we died 794 * 795 * Thread signals are configurable, but you aren't going to use 796 * that to send signals to arbitary processes. 797 * That stops right now. 798 * 799 * If the parent exec id doesn't match the exec id we saved 800 * when we started then we know the parent has changed security 801 * domain. 802 * 803 * If our self_exec id doesn't match our parent_exec_id then 804 * we have changed execution domain as these two values started 805 * the same after a fork. 806 */ 807 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 808 ( tsk->parent_exec_id != t->self_exec_id || 809 tsk->self_exec_id != tsk->parent_exec_id) 810 && !capable(CAP_KILL)) 811 tsk->exit_signal = SIGCHLD; 812 813 814 /* If something other than our normal parent is ptracing us, then 815 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 816 * only has special meaning to our real parent. 817 */ 818 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 819 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 820 do_notify_parent(tsk, signal); 821 } else if (tsk->ptrace) { 822 do_notify_parent(tsk, SIGCHLD); 823 } 824 825 state = EXIT_ZOMBIE; 826 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 827 state = EXIT_DEAD; 828 tsk->exit_state = state; 829 830 write_unlock_irq(&tasklist_lock); 831 832 list_for_each_safe(_p, _n, &ptrace_dead) { 833 list_del_init(_p); 834 t = list_entry(_p, struct task_struct, ptrace_list); 835 release_task(t); 836 } 837 838 /* If the process is dead, release it - nobody will wait for it */ 839 if (state == EXIT_DEAD) 840 release_task(tsk); 841 } 842 843 #ifdef CONFIG_DEBUG_STACK_USAGE 844 static void check_stack_usage(void) 845 { 846 static DEFINE_SPINLOCK(low_water_lock); 847 static int lowest_to_date = THREAD_SIZE; 848 unsigned long *n = end_of_stack(current); 849 unsigned long free; 850 851 while (*n == 0) 852 n++; 853 free = (unsigned long)n - (unsigned long)end_of_stack(current); 854 855 if (free >= lowest_to_date) 856 return; 857 858 spin_lock(&low_water_lock); 859 if (free < lowest_to_date) { 860 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 861 "left\n", 862 current->comm, free); 863 lowest_to_date = free; 864 } 865 spin_unlock(&low_water_lock); 866 } 867 #else 868 static inline void check_stack_usage(void) {} 869 #endif 870 871 static inline void exit_child_reaper(struct task_struct *tsk) 872 { 873 if (likely(tsk->group_leader != child_reaper(tsk))) 874 return; 875 876 panic("Attempted to kill init!"); 877 } 878 879 fastcall NORET_TYPE void do_exit(long code) 880 { 881 struct task_struct *tsk = current; 882 int group_dead; 883 884 profile_task_exit(tsk); 885 886 WARN_ON(atomic_read(&tsk->fs_excl)); 887 888 if (unlikely(in_interrupt())) 889 panic("Aiee, killing interrupt handler!"); 890 if (unlikely(!tsk->pid)) 891 panic("Attempted to kill the idle task!"); 892 893 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 894 current->ptrace_message = code; 895 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 896 } 897 898 /* 899 * We're taking recursive faults here in do_exit. Safest is to just 900 * leave this task alone and wait for reboot. 901 */ 902 if (unlikely(tsk->flags & PF_EXITING)) { 903 printk(KERN_ALERT 904 "Fixing recursive fault but reboot is needed!\n"); 905 /* 906 * We can do this unlocked here. The futex code uses 907 * this flag just to verify whether the pi state 908 * cleanup has been done or not. In the worst case it 909 * loops once more. We pretend that the cleanup was 910 * done as there is no way to return. Either the 911 * OWNER_DIED bit is set by now or we push the blocked 912 * task into the wait for ever nirwana as well. 913 */ 914 tsk->flags |= PF_EXITPIDONE; 915 if (tsk->io_context) 916 exit_io_context(); 917 set_current_state(TASK_UNINTERRUPTIBLE); 918 schedule(); 919 } 920 921 tsk->flags |= PF_EXITING; 922 /* 923 * tsk->flags are checked in the futex code to protect against 924 * an exiting task cleaning up the robust pi futexes. 925 */ 926 smp_mb(); 927 spin_unlock_wait(&tsk->pi_lock); 928 929 if (unlikely(in_atomic())) 930 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 931 current->comm, current->pid, 932 preempt_count()); 933 934 acct_update_integrals(tsk); 935 if (tsk->mm) { 936 update_hiwater_rss(tsk->mm); 937 update_hiwater_vm(tsk->mm); 938 } 939 group_dead = atomic_dec_and_test(&tsk->signal->live); 940 if (group_dead) { 941 exit_child_reaper(tsk); 942 hrtimer_cancel(&tsk->signal->real_timer); 943 exit_itimers(tsk->signal); 944 } 945 acct_collect(code, group_dead); 946 if (unlikely(tsk->robust_list)) 947 exit_robust_list(tsk); 948 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 949 if (unlikely(tsk->compat_robust_list)) 950 compat_exit_robust_list(tsk); 951 #endif 952 if (group_dead) 953 tty_audit_exit(); 954 if (unlikely(tsk->audit_context)) 955 audit_free(tsk); 956 957 tsk->exit_code = code; 958 taskstats_exit(tsk, group_dead); 959 960 exit_mm(tsk); 961 962 if (group_dead) 963 acct_process(); 964 exit_sem(tsk); 965 __exit_files(tsk); 966 __exit_fs(tsk); 967 check_stack_usage(); 968 exit_thread(); 969 cpuset_exit(tsk); 970 exit_keys(tsk); 971 972 if (group_dead && tsk->signal->leader) 973 disassociate_ctty(1); 974 975 module_put(task_thread_info(tsk)->exec_domain->module); 976 if (tsk->binfmt) 977 module_put(tsk->binfmt->module); 978 979 proc_exit_connector(tsk); 980 exit_task_namespaces(tsk); 981 exit_notify(tsk); 982 #ifdef CONFIG_NUMA 983 mpol_free(tsk->mempolicy); 984 tsk->mempolicy = NULL; 985 #endif 986 /* 987 * This must happen late, after the PID is not 988 * hashed anymore: 989 */ 990 if (unlikely(!list_empty(&tsk->pi_state_list))) 991 exit_pi_state_list(tsk); 992 if (unlikely(current->pi_state_cache)) 993 kfree(current->pi_state_cache); 994 /* 995 * Make sure we are holding no locks: 996 */ 997 debug_check_no_locks_held(tsk); 998 /* 999 * We can do this unlocked here. The futex code uses this flag 1000 * just to verify whether the pi state cleanup has been done 1001 * or not. In the worst case it loops once more. 1002 */ 1003 tsk->flags |= PF_EXITPIDONE; 1004 1005 if (tsk->io_context) 1006 exit_io_context(); 1007 1008 if (tsk->splice_pipe) 1009 __free_pipe_info(tsk->splice_pipe); 1010 1011 preempt_disable(); 1012 /* causes final put_task_struct in finish_task_switch(). */ 1013 tsk->state = TASK_DEAD; 1014 1015 schedule(); 1016 BUG(); 1017 /* Avoid "noreturn function does return". */ 1018 for (;;) 1019 cpu_relax(); /* For when BUG is null */ 1020 } 1021 1022 EXPORT_SYMBOL_GPL(do_exit); 1023 1024 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1025 { 1026 if (comp) 1027 complete(comp); 1028 1029 do_exit(code); 1030 } 1031 1032 EXPORT_SYMBOL(complete_and_exit); 1033 1034 asmlinkage long sys_exit(int error_code) 1035 { 1036 do_exit((error_code&0xff)<<8); 1037 } 1038 1039 /* 1040 * Take down every thread in the group. This is called by fatal signals 1041 * as well as by sys_exit_group (below). 1042 */ 1043 NORET_TYPE void 1044 do_group_exit(int exit_code) 1045 { 1046 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1047 1048 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1049 exit_code = current->signal->group_exit_code; 1050 else if (!thread_group_empty(current)) { 1051 struct signal_struct *const sig = current->signal; 1052 struct sighand_struct *const sighand = current->sighand; 1053 spin_lock_irq(&sighand->siglock); 1054 if (sig->flags & SIGNAL_GROUP_EXIT) 1055 /* Another thread got here before we took the lock. */ 1056 exit_code = sig->group_exit_code; 1057 else { 1058 sig->group_exit_code = exit_code; 1059 zap_other_threads(current); 1060 } 1061 spin_unlock_irq(&sighand->siglock); 1062 } 1063 1064 do_exit(exit_code); 1065 /* NOTREACHED */ 1066 } 1067 1068 /* 1069 * this kills every thread in the thread group. Note that any externally 1070 * wait4()-ing process will get the correct exit code - even if this 1071 * thread is not the thread group leader. 1072 */ 1073 asmlinkage void sys_exit_group(int error_code) 1074 { 1075 do_group_exit((error_code & 0xff) << 8); 1076 } 1077 1078 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1079 { 1080 int err; 1081 1082 if (pid > 0) { 1083 if (p->pid != pid) 1084 return 0; 1085 } else if (!pid) { 1086 if (process_group(p) != process_group(current)) 1087 return 0; 1088 } else if (pid != -1) { 1089 if (process_group(p) != -pid) 1090 return 0; 1091 } 1092 1093 /* 1094 * Do not consider detached threads that are 1095 * not ptraced: 1096 */ 1097 if (p->exit_signal == -1 && !p->ptrace) 1098 return 0; 1099 1100 /* Wait for all children (clone and not) if __WALL is set; 1101 * otherwise, wait for clone children *only* if __WCLONE is 1102 * set; otherwise, wait for non-clone children *only*. (Note: 1103 * A "clone" child here is one that reports to its parent 1104 * using a signal other than SIGCHLD.) */ 1105 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1106 && !(options & __WALL)) 1107 return 0; 1108 /* 1109 * Do not consider thread group leaders that are 1110 * in a non-empty thread group: 1111 */ 1112 if (delay_group_leader(p)) 1113 return 2; 1114 1115 err = security_task_wait(p); 1116 if (err) 1117 return err; 1118 1119 return 1; 1120 } 1121 1122 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1123 int why, int status, 1124 struct siginfo __user *infop, 1125 struct rusage __user *rusagep) 1126 { 1127 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1128 1129 put_task_struct(p); 1130 if (!retval) 1131 retval = put_user(SIGCHLD, &infop->si_signo); 1132 if (!retval) 1133 retval = put_user(0, &infop->si_errno); 1134 if (!retval) 1135 retval = put_user((short)why, &infop->si_code); 1136 if (!retval) 1137 retval = put_user(pid, &infop->si_pid); 1138 if (!retval) 1139 retval = put_user(uid, &infop->si_uid); 1140 if (!retval) 1141 retval = put_user(status, &infop->si_status); 1142 if (!retval) 1143 retval = pid; 1144 return retval; 1145 } 1146 1147 /* 1148 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1149 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1150 * the lock and this task is uninteresting. If we return nonzero, we have 1151 * released the lock and the system call should return. 1152 */ 1153 static int wait_task_zombie(struct task_struct *p, int noreap, 1154 struct siginfo __user *infop, 1155 int __user *stat_addr, struct rusage __user *ru) 1156 { 1157 unsigned long state; 1158 int retval, status, traced; 1159 1160 if (unlikely(noreap)) { 1161 pid_t pid = p->pid; 1162 uid_t uid = p->uid; 1163 int exit_code = p->exit_code; 1164 int why, status; 1165 1166 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1167 return 0; 1168 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1169 return 0; 1170 get_task_struct(p); 1171 read_unlock(&tasklist_lock); 1172 if ((exit_code & 0x7f) == 0) { 1173 why = CLD_EXITED; 1174 status = exit_code >> 8; 1175 } else { 1176 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1177 status = exit_code & 0x7f; 1178 } 1179 return wait_noreap_copyout(p, pid, uid, why, 1180 status, infop, ru); 1181 } 1182 1183 /* 1184 * Try to move the task's state to DEAD 1185 * only one thread is allowed to do this: 1186 */ 1187 state = xchg(&p->exit_state, EXIT_DEAD); 1188 if (state != EXIT_ZOMBIE) { 1189 BUG_ON(state != EXIT_DEAD); 1190 return 0; 1191 } 1192 1193 /* traced means p->ptrace, but not vice versa */ 1194 traced = (p->real_parent != p->parent); 1195 1196 if (likely(!traced)) { 1197 struct signal_struct *psig; 1198 struct signal_struct *sig; 1199 1200 /* 1201 * The resource counters for the group leader are in its 1202 * own task_struct. Those for dead threads in the group 1203 * are in its signal_struct, as are those for the child 1204 * processes it has previously reaped. All these 1205 * accumulate in the parent's signal_struct c* fields. 1206 * 1207 * We don't bother to take a lock here to protect these 1208 * p->signal fields, because they are only touched by 1209 * __exit_signal, which runs with tasklist_lock 1210 * write-locked anyway, and so is excluded here. We do 1211 * need to protect the access to p->parent->signal fields, 1212 * as other threads in the parent group can be right 1213 * here reaping other children at the same time. 1214 */ 1215 spin_lock_irq(&p->parent->sighand->siglock); 1216 psig = p->parent->signal; 1217 sig = p->signal; 1218 psig->cutime = 1219 cputime_add(psig->cutime, 1220 cputime_add(p->utime, 1221 cputime_add(sig->utime, 1222 sig->cutime))); 1223 psig->cstime = 1224 cputime_add(psig->cstime, 1225 cputime_add(p->stime, 1226 cputime_add(sig->stime, 1227 sig->cstime))); 1228 psig->cgtime = 1229 cputime_add(psig->cgtime, 1230 cputime_add(p->gtime, 1231 cputime_add(sig->gtime, 1232 sig->cgtime))); 1233 psig->cmin_flt += 1234 p->min_flt + sig->min_flt + sig->cmin_flt; 1235 psig->cmaj_flt += 1236 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1237 psig->cnvcsw += 1238 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1239 psig->cnivcsw += 1240 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1241 psig->cinblock += 1242 task_io_get_inblock(p) + 1243 sig->inblock + sig->cinblock; 1244 psig->coublock += 1245 task_io_get_oublock(p) + 1246 sig->oublock + sig->coublock; 1247 spin_unlock_irq(&p->parent->sighand->siglock); 1248 } 1249 1250 /* 1251 * Now we are sure this task is interesting, and no other 1252 * thread can reap it because we set its state to EXIT_DEAD. 1253 */ 1254 read_unlock(&tasklist_lock); 1255 1256 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1257 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1258 ? p->signal->group_exit_code : p->exit_code; 1259 if (!retval && stat_addr) 1260 retval = put_user(status, stat_addr); 1261 if (!retval && infop) 1262 retval = put_user(SIGCHLD, &infop->si_signo); 1263 if (!retval && infop) 1264 retval = put_user(0, &infop->si_errno); 1265 if (!retval && infop) { 1266 int why; 1267 1268 if ((status & 0x7f) == 0) { 1269 why = CLD_EXITED; 1270 status >>= 8; 1271 } else { 1272 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1273 status &= 0x7f; 1274 } 1275 retval = put_user((short)why, &infop->si_code); 1276 if (!retval) 1277 retval = put_user(status, &infop->si_status); 1278 } 1279 if (!retval && infop) 1280 retval = put_user(p->pid, &infop->si_pid); 1281 if (!retval && infop) 1282 retval = put_user(p->uid, &infop->si_uid); 1283 if (!retval) 1284 retval = p->pid; 1285 1286 if (traced) { 1287 write_lock_irq(&tasklist_lock); 1288 /* We dropped tasklist, ptracer could die and untrace */ 1289 ptrace_unlink(p); 1290 /* 1291 * If this is not a detached task, notify the parent. 1292 * If it's still not detached after that, don't release 1293 * it now. 1294 */ 1295 if (p->exit_signal != -1) { 1296 do_notify_parent(p, p->exit_signal); 1297 if (p->exit_signal != -1) { 1298 p->exit_state = EXIT_ZOMBIE; 1299 p = NULL; 1300 } 1301 } 1302 write_unlock_irq(&tasklist_lock); 1303 } 1304 if (p != NULL) 1305 release_task(p); 1306 1307 return retval; 1308 } 1309 1310 /* 1311 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1312 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1313 * the lock and this task is uninteresting. If we return nonzero, we have 1314 * released the lock and the system call should return. 1315 */ 1316 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1317 int noreap, struct siginfo __user *infop, 1318 int __user *stat_addr, struct rusage __user *ru) 1319 { 1320 int retval, exit_code; 1321 1322 if (!p->exit_code) 1323 return 0; 1324 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1325 p->signal->group_stop_count > 0) 1326 /* 1327 * A group stop is in progress and this is the group leader. 1328 * We won't report until all threads have stopped. 1329 */ 1330 return 0; 1331 1332 /* 1333 * Now we are pretty sure this task is interesting. 1334 * Make sure it doesn't get reaped out from under us while we 1335 * give up the lock and then examine it below. We don't want to 1336 * keep holding onto the tasklist_lock while we call getrusage and 1337 * possibly take page faults for user memory. 1338 */ 1339 get_task_struct(p); 1340 read_unlock(&tasklist_lock); 1341 1342 if (unlikely(noreap)) { 1343 pid_t pid = p->pid; 1344 uid_t uid = p->uid; 1345 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1346 1347 exit_code = p->exit_code; 1348 if (unlikely(!exit_code) || 1349 unlikely(p->state & TASK_TRACED)) 1350 goto bail_ref; 1351 return wait_noreap_copyout(p, pid, uid, 1352 why, (exit_code << 8) | 0x7f, 1353 infop, ru); 1354 } 1355 1356 write_lock_irq(&tasklist_lock); 1357 1358 /* 1359 * This uses xchg to be atomic with the thread resuming and setting 1360 * it. It must also be done with the write lock held to prevent a 1361 * race with the EXIT_ZOMBIE case. 1362 */ 1363 exit_code = xchg(&p->exit_code, 0); 1364 if (unlikely(p->exit_state)) { 1365 /* 1366 * The task resumed and then died. Let the next iteration 1367 * catch it in EXIT_ZOMBIE. Note that exit_code might 1368 * already be zero here if it resumed and did _exit(0). 1369 * The task itself is dead and won't touch exit_code again; 1370 * other processors in this function are locked out. 1371 */ 1372 p->exit_code = exit_code; 1373 exit_code = 0; 1374 } 1375 if (unlikely(exit_code == 0)) { 1376 /* 1377 * Another thread in this function got to it first, or it 1378 * resumed, or it resumed and then died. 1379 */ 1380 write_unlock_irq(&tasklist_lock); 1381 bail_ref: 1382 put_task_struct(p); 1383 /* 1384 * We are returning to the wait loop without having successfully 1385 * removed the process and having released the lock. We cannot 1386 * continue, since the "p" task pointer is potentially stale. 1387 * 1388 * Return -EAGAIN, and do_wait() will restart the loop from the 1389 * beginning. Do _not_ re-acquire the lock. 1390 */ 1391 return -EAGAIN; 1392 } 1393 1394 /* move to end of parent's list to avoid starvation */ 1395 remove_parent(p); 1396 add_parent(p); 1397 1398 write_unlock_irq(&tasklist_lock); 1399 1400 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1401 if (!retval && stat_addr) 1402 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1403 if (!retval && infop) 1404 retval = put_user(SIGCHLD, &infop->si_signo); 1405 if (!retval && infop) 1406 retval = put_user(0, &infop->si_errno); 1407 if (!retval && infop) 1408 retval = put_user((short)((p->ptrace & PT_PTRACED) 1409 ? CLD_TRAPPED : CLD_STOPPED), 1410 &infop->si_code); 1411 if (!retval && infop) 1412 retval = put_user(exit_code, &infop->si_status); 1413 if (!retval && infop) 1414 retval = put_user(p->pid, &infop->si_pid); 1415 if (!retval && infop) 1416 retval = put_user(p->uid, &infop->si_uid); 1417 if (!retval) 1418 retval = p->pid; 1419 put_task_struct(p); 1420 1421 BUG_ON(!retval); 1422 return retval; 1423 } 1424 1425 /* 1426 * Handle do_wait work for one task in a live, non-stopped state. 1427 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1428 * the lock and this task is uninteresting. If we return nonzero, we have 1429 * released the lock and the system call should return. 1430 */ 1431 static int wait_task_continued(struct task_struct *p, int noreap, 1432 struct siginfo __user *infop, 1433 int __user *stat_addr, struct rusage __user *ru) 1434 { 1435 int retval; 1436 pid_t pid; 1437 uid_t uid; 1438 1439 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1440 return 0; 1441 1442 spin_lock_irq(&p->sighand->siglock); 1443 /* Re-check with the lock held. */ 1444 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1445 spin_unlock_irq(&p->sighand->siglock); 1446 return 0; 1447 } 1448 if (!noreap) 1449 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1450 spin_unlock_irq(&p->sighand->siglock); 1451 1452 pid = p->pid; 1453 uid = p->uid; 1454 get_task_struct(p); 1455 read_unlock(&tasklist_lock); 1456 1457 if (!infop) { 1458 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1459 put_task_struct(p); 1460 if (!retval && stat_addr) 1461 retval = put_user(0xffff, stat_addr); 1462 if (!retval) 1463 retval = p->pid; 1464 } else { 1465 retval = wait_noreap_copyout(p, pid, uid, 1466 CLD_CONTINUED, SIGCONT, 1467 infop, ru); 1468 BUG_ON(retval == 0); 1469 } 1470 1471 return retval; 1472 } 1473 1474 1475 static inline int my_ptrace_child(struct task_struct *p) 1476 { 1477 if (!(p->ptrace & PT_PTRACED)) 1478 return 0; 1479 if (!(p->ptrace & PT_ATTACHED)) 1480 return 1; 1481 /* 1482 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1483 * we are the attacher. If we are the real parent, this is a race 1484 * inside ptrace_attach. It is waiting for the tasklist_lock, 1485 * which we have to switch the parent links, but has already set 1486 * the flags in p->ptrace. 1487 */ 1488 return (p->parent != p->real_parent); 1489 } 1490 1491 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1492 int __user *stat_addr, struct rusage __user *ru) 1493 { 1494 DECLARE_WAITQUEUE(wait, current); 1495 struct task_struct *tsk; 1496 int flag, retval; 1497 int allowed, denied; 1498 1499 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1500 repeat: 1501 /* 1502 * We will set this flag if we see any child that might later 1503 * match our criteria, even if we are not able to reap it yet. 1504 */ 1505 flag = 0; 1506 allowed = denied = 0; 1507 current->state = TASK_INTERRUPTIBLE; 1508 read_lock(&tasklist_lock); 1509 tsk = current; 1510 do { 1511 struct task_struct *p; 1512 struct list_head *_p; 1513 int ret; 1514 1515 list_for_each(_p,&tsk->children) { 1516 p = list_entry(_p, struct task_struct, sibling); 1517 1518 ret = eligible_child(pid, options, p); 1519 if (!ret) 1520 continue; 1521 1522 if (unlikely(ret < 0)) { 1523 denied = ret; 1524 continue; 1525 } 1526 allowed = 1; 1527 1528 switch (p->state) { 1529 case TASK_TRACED: 1530 /* 1531 * When we hit the race with PTRACE_ATTACH, 1532 * we will not report this child. But the 1533 * race means it has not yet been moved to 1534 * our ptrace_children list, so we need to 1535 * set the flag here to avoid a spurious ECHILD 1536 * when the race happens with the only child. 1537 */ 1538 flag = 1; 1539 if (!my_ptrace_child(p)) 1540 continue; 1541 /*FALLTHROUGH*/ 1542 case TASK_STOPPED: 1543 /* 1544 * It's stopped now, so it might later 1545 * continue, exit, or stop again. 1546 */ 1547 flag = 1; 1548 if (!(options & WUNTRACED) && 1549 !my_ptrace_child(p)) 1550 continue; 1551 retval = wait_task_stopped(p, ret == 2, 1552 (options & WNOWAIT), 1553 infop, 1554 stat_addr, ru); 1555 if (retval == -EAGAIN) 1556 goto repeat; 1557 if (retval != 0) /* He released the lock. */ 1558 goto end; 1559 break; 1560 default: 1561 // case EXIT_DEAD: 1562 if (p->exit_state == EXIT_DEAD) 1563 continue; 1564 // case EXIT_ZOMBIE: 1565 if (p->exit_state == EXIT_ZOMBIE) { 1566 /* 1567 * Eligible but we cannot release 1568 * it yet: 1569 */ 1570 if (ret == 2) 1571 goto check_continued; 1572 if (!likely(options & WEXITED)) 1573 continue; 1574 retval = wait_task_zombie( 1575 p, (options & WNOWAIT), 1576 infop, stat_addr, ru); 1577 /* He released the lock. */ 1578 if (retval != 0) 1579 goto end; 1580 break; 1581 } 1582 check_continued: 1583 /* 1584 * It's running now, so it might later 1585 * exit, stop, or stop and then continue. 1586 */ 1587 flag = 1; 1588 if (!unlikely(options & WCONTINUED)) 1589 continue; 1590 retval = wait_task_continued( 1591 p, (options & WNOWAIT), 1592 infop, stat_addr, ru); 1593 if (retval != 0) /* He released the lock. */ 1594 goto end; 1595 break; 1596 } 1597 } 1598 if (!flag) { 1599 list_for_each(_p, &tsk->ptrace_children) { 1600 p = list_entry(_p, struct task_struct, 1601 ptrace_list); 1602 if (!eligible_child(pid, options, p)) 1603 continue; 1604 flag = 1; 1605 break; 1606 } 1607 } 1608 if (options & __WNOTHREAD) 1609 break; 1610 tsk = next_thread(tsk); 1611 BUG_ON(tsk->signal != current->signal); 1612 } while (tsk != current); 1613 1614 read_unlock(&tasklist_lock); 1615 if (flag) { 1616 retval = 0; 1617 if (options & WNOHANG) 1618 goto end; 1619 retval = -ERESTARTSYS; 1620 if (signal_pending(current)) 1621 goto end; 1622 schedule(); 1623 goto repeat; 1624 } 1625 retval = -ECHILD; 1626 if (unlikely(denied) && !allowed) 1627 retval = denied; 1628 end: 1629 current->state = TASK_RUNNING; 1630 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1631 if (infop) { 1632 if (retval > 0) 1633 retval = 0; 1634 else { 1635 /* 1636 * For a WNOHANG return, clear out all the fields 1637 * we would set so the user can easily tell the 1638 * difference. 1639 */ 1640 if (!retval) 1641 retval = put_user(0, &infop->si_signo); 1642 if (!retval) 1643 retval = put_user(0, &infop->si_errno); 1644 if (!retval) 1645 retval = put_user(0, &infop->si_code); 1646 if (!retval) 1647 retval = put_user(0, &infop->si_pid); 1648 if (!retval) 1649 retval = put_user(0, &infop->si_uid); 1650 if (!retval) 1651 retval = put_user(0, &infop->si_status); 1652 } 1653 } 1654 return retval; 1655 } 1656 1657 asmlinkage long sys_waitid(int which, pid_t pid, 1658 struct siginfo __user *infop, int options, 1659 struct rusage __user *ru) 1660 { 1661 long ret; 1662 1663 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1664 return -EINVAL; 1665 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1666 return -EINVAL; 1667 1668 switch (which) { 1669 case P_ALL: 1670 pid = -1; 1671 break; 1672 case P_PID: 1673 if (pid <= 0) 1674 return -EINVAL; 1675 break; 1676 case P_PGID: 1677 if (pid <= 0) 1678 return -EINVAL; 1679 pid = -pid; 1680 break; 1681 default: 1682 return -EINVAL; 1683 } 1684 1685 ret = do_wait(pid, options, infop, NULL, ru); 1686 1687 /* avoid REGPARM breakage on x86: */ 1688 prevent_tail_call(ret); 1689 return ret; 1690 } 1691 1692 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1693 int options, struct rusage __user *ru) 1694 { 1695 long ret; 1696 1697 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1698 __WNOTHREAD|__WCLONE|__WALL)) 1699 return -EINVAL; 1700 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1701 1702 /* avoid REGPARM breakage on x86: */ 1703 prevent_tail_call(ret); 1704 return ret; 1705 } 1706 1707 #ifdef __ARCH_WANT_SYS_WAITPID 1708 1709 /* 1710 * sys_waitpid() remains for compatibility. waitpid() should be 1711 * implemented by calling sys_wait4() from libc.a. 1712 */ 1713 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1714 { 1715 return sys_wait4(pid, stat_addr, options, NULL); 1716 } 1717 1718 #endif 1719