1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/random.h> 63 #include <linux/rcuwait.h> 64 #include <linux/compat.h> 65 #include <linux/io_uring.h> 66 #include <linux/kprobes.h> 67 #include <linux/rethook.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/unistd.h> 71 #include <asm/mmu_context.h> 72 73 static void __unhash_process(struct task_struct *p, bool group_dead) 74 { 75 nr_threads--; 76 detach_pid(p, PIDTYPE_PID); 77 if (group_dead) { 78 detach_pid(p, PIDTYPE_TGID); 79 detach_pid(p, PIDTYPE_PGID); 80 detach_pid(p, PIDTYPE_SID); 81 82 list_del_rcu(&p->tasks); 83 list_del_init(&p->sibling); 84 __this_cpu_dec(process_counts); 85 } 86 list_del_rcu(&p->thread_group); 87 list_del_rcu(&p->thread_node); 88 } 89 90 /* 91 * This function expects the tasklist_lock write-locked. 92 */ 93 static void __exit_signal(struct task_struct *tsk) 94 { 95 struct signal_struct *sig = tsk->signal; 96 bool group_dead = thread_group_leader(tsk); 97 struct sighand_struct *sighand; 98 struct tty_struct *tty; 99 u64 utime, stime; 100 101 sighand = rcu_dereference_check(tsk->sighand, 102 lockdep_tasklist_lock_is_held()); 103 spin_lock(&sighand->siglock); 104 105 #ifdef CONFIG_POSIX_TIMERS 106 posix_cpu_timers_exit(tsk); 107 if (group_dead) 108 posix_cpu_timers_exit_group(tsk); 109 #endif 110 111 if (group_dead) { 112 tty = sig->tty; 113 sig->tty = NULL; 114 } else { 115 /* 116 * If there is any task waiting for the group exit 117 * then notify it: 118 */ 119 if (sig->notify_count > 0 && !--sig->notify_count) 120 wake_up_process(sig->group_exec_task); 121 122 if (tsk == sig->curr_target) 123 sig->curr_target = next_thread(tsk); 124 } 125 126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 127 sizeof(unsigned long long)); 128 129 /* 130 * Accumulate here the counters for all threads as they die. We could 131 * skip the group leader because it is the last user of signal_struct, 132 * but we want to avoid the race with thread_group_cputime() which can 133 * see the empty ->thread_head list. 134 */ 135 task_cputime(tsk, &utime, &stime); 136 write_seqlock(&sig->stats_lock); 137 sig->utime += utime; 138 sig->stime += stime; 139 sig->gtime += task_gtime(tsk); 140 sig->min_flt += tsk->min_flt; 141 sig->maj_flt += tsk->maj_flt; 142 sig->nvcsw += tsk->nvcsw; 143 sig->nivcsw += tsk->nivcsw; 144 sig->inblock += task_io_get_inblock(tsk); 145 sig->oublock += task_io_get_oublock(tsk); 146 task_io_accounting_add(&sig->ioac, &tsk->ioac); 147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 148 sig->nr_threads--; 149 __unhash_process(tsk, group_dead); 150 write_sequnlock(&sig->stats_lock); 151 152 /* 153 * Do this under ->siglock, we can race with another thread 154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 155 */ 156 flush_sigqueue(&tsk->pending); 157 tsk->sighand = NULL; 158 spin_unlock(&sighand->siglock); 159 160 __cleanup_sighand(sighand); 161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 162 if (group_dead) { 163 flush_sigqueue(&sig->shared_pending); 164 tty_kref_put(tty); 165 } 166 } 167 168 static void delayed_put_task_struct(struct rcu_head *rhp) 169 { 170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 171 172 kprobe_flush_task(tsk); 173 rethook_flush_task(tsk); 174 perf_event_delayed_put(tsk); 175 trace_sched_process_free(tsk); 176 put_task_struct(tsk); 177 } 178 179 void put_task_struct_rcu_user(struct task_struct *task) 180 { 181 if (refcount_dec_and_test(&task->rcu_users)) 182 call_rcu(&task->rcu, delayed_put_task_struct); 183 } 184 185 void release_task(struct task_struct *p) 186 { 187 struct task_struct *leader; 188 struct pid *thread_pid; 189 int zap_leader; 190 repeat: 191 /* don't need to get the RCU readlock here - the process is dead and 192 * can't be modifying its own credentials. But shut RCU-lockdep up */ 193 rcu_read_lock(); 194 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 195 rcu_read_unlock(); 196 197 cgroup_release(p); 198 199 write_lock_irq(&tasklist_lock); 200 ptrace_release_task(p); 201 thread_pid = get_pid(p->thread_pid); 202 __exit_signal(p); 203 204 /* 205 * If we are the last non-leader member of the thread 206 * group, and the leader is zombie, then notify the 207 * group leader's parent process. (if it wants notification.) 208 */ 209 zap_leader = 0; 210 leader = p->group_leader; 211 if (leader != p && thread_group_empty(leader) 212 && leader->exit_state == EXIT_ZOMBIE) { 213 /* 214 * If we were the last child thread and the leader has 215 * exited already, and the leader's parent ignores SIGCHLD, 216 * then we are the one who should release the leader. 217 */ 218 zap_leader = do_notify_parent(leader, leader->exit_signal); 219 if (zap_leader) 220 leader->exit_state = EXIT_DEAD; 221 } 222 223 write_unlock_irq(&tasklist_lock); 224 seccomp_filter_release(p); 225 proc_flush_pid(thread_pid); 226 put_pid(thread_pid); 227 release_thread(p); 228 put_task_struct_rcu_user(p); 229 230 p = leader; 231 if (unlikely(zap_leader)) 232 goto repeat; 233 } 234 235 int rcuwait_wake_up(struct rcuwait *w) 236 { 237 int ret = 0; 238 struct task_struct *task; 239 240 rcu_read_lock(); 241 242 /* 243 * Order condition vs @task, such that everything prior to the load 244 * of @task is visible. This is the condition as to why the user called 245 * rcuwait_wake() in the first place. Pairs with set_current_state() 246 * barrier (A) in rcuwait_wait_event(). 247 * 248 * WAIT WAKE 249 * [S] tsk = current [S] cond = true 250 * MB (A) MB (B) 251 * [L] cond [L] tsk 252 */ 253 smp_mb(); /* (B) */ 254 255 task = rcu_dereference(w->task); 256 if (task) 257 ret = wake_up_process(task); 258 rcu_read_unlock(); 259 260 return ret; 261 } 262 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 263 264 /* 265 * Determine if a process group is "orphaned", according to the POSIX 266 * definition in 2.2.2.52. Orphaned process groups are not to be affected 267 * by terminal-generated stop signals. Newly orphaned process groups are 268 * to receive a SIGHUP and a SIGCONT. 269 * 270 * "I ask you, have you ever known what it is to be an orphan?" 271 */ 272 static int will_become_orphaned_pgrp(struct pid *pgrp, 273 struct task_struct *ignored_task) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if ((p == ignored_task) || 279 (p->exit_state && thread_group_empty(p)) || 280 is_global_init(p->real_parent)) 281 continue; 282 283 if (task_pgrp(p->real_parent) != pgrp && 284 task_session(p->real_parent) == task_session(p)) 285 return 0; 286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 287 288 return 1; 289 } 290 291 int is_current_pgrp_orphaned(void) 292 { 293 int retval; 294 295 read_lock(&tasklist_lock); 296 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 297 read_unlock(&tasklist_lock); 298 299 return retval; 300 } 301 302 static bool has_stopped_jobs(struct pid *pgrp) 303 { 304 struct task_struct *p; 305 306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 307 if (p->signal->flags & SIGNAL_STOP_STOPPED) 308 return true; 309 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 310 311 return false; 312 } 313 314 /* 315 * Check to see if any process groups have become orphaned as 316 * a result of our exiting, and if they have any stopped jobs, 317 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 318 */ 319 static void 320 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 321 { 322 struct pid *pgrp = task_pgrp(tsk); 323 struct task_struct *ignored_task = tsk; 324 325 if (!parent) 326 /* exit: our father is in a different pgrp than 327 * we are and we were the only connection outside. 328 */ 329 parent = tsk->real_parent; 330 else 331 /* reparent: our child is in a different pgrp than 332 * we are, and it was the only connection outside. 333 */ 334 ignored_task = NULL; 335 336 if (task_pgrp(parent) != pgrp && 337 task_session(parent) == task_session(tsk) && 338 will_become_orphaned_pgrp(pgrp, ignored_task) && 339 has_stopped_jobs(pgrp)) { 340 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 341 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 342 } 343 } 344 345 static void coredump_task_exit(struct task_struct *tsk) 346 { 347 struct core_state *core_state; 348 349 /* 350 * Serialize with any possible pending coredump. 351 * We must hold siglock around checking core_state 352 * and setting PF_POSTCOREDUMP. The core-inducing thread 353 * will increment ->nr_threads for each thread in the 354 * group without PF_POSTCOREDUMP set. 355 */ 356 spin_lock_irq(&tsk->sighand->siglock); 357 tsk->flags |= PF_POSTCOREDUMP; 358 core_state = tsk->signal->core_state; 359 spin_unlock_irq(&tsk->sighand->siglock); 360 if (core_state) { 361 struct core_thread self; 362 363 self.task = current; 364 if (self.task->flags & PF_SIGNALED) 365 self.next = xchg(&core_state->dumper.next, &self); 366 else 367 self.task = NULL; 368 /* 369 * Implies mb(), the result of xchg() must be visible 370 * to core_state->dumper. 371 */ 372 if (atomic_dec_and_test(&core_state->nr_threads)) 373 complete(&core_state->startup); 374 375 for (;;) { 376 set_current_state(TASK_UNINTERRUPTIBLE); 377 if (!self.task) /* see coredump_finish() */ 378 break; 379 freezable_schedule(); 380 } 381 __set_current_state(TASK_RUNNING); 382 } 383 } 384 385 #ifdef CONFIG_MEMCG 386 /* 387 * A task is exiting. If it owned this mm, find a new owner for the mm. 388 */ 389 void mm_update_next_owner(struct mm_struct *mm) 390 { 391 struct task_struct *c, *g, *p = current; 392 393 retry: 394 /* 395 * If the exiting or execing task is not the owner, it's 396 * someone else's problem. 397 */ 398 if (mm->owner != p) 399 return; 400 /* 401 * The current owner is exiting/execing and there are no other 402 * candidates. Do not leave the mm pointing to a possibly 403 * freed task structure. 404 */ 405 if (atomic_read(&mm->mm_users) <= 1) { 406 WRITE_ONCE(mm->owner, NULL); 407 return; 408 } 409 410 read_lock(&tasklist_lock); 411 /* 412 * Search in the children 413 */ 414 list_for_each_entry(c, &p->children, sibling) { 415 if (c->mm == mm) 416 goto assign_new_owner; 417 } 418 419 /* 420 * Search in the siblings 421 */ 422 list_for_each_entry(c, &p->real_parent->children, sibling) { 423 if (c->mm == mm) 424 goto assign_new_owner; 425 } 426 427 /* 428 * Search through everything else, we should not get here often. 429 */ 430 for_each_process(g) { 431 if (g->flags & PF_KTHREAD) 432 continue; 433 for_each_thread(g, c) { 434 if (c->mm == mm) 435 goto assign_new_owner; 436 if (c->mm) 437 break; 438 } 439 } 440 read_unlock(&tasklist_lock); 441 /* 442 * We found no owner yet mm_users > 1: this implies that we are 443 * most likely racing with swapoff (try_to_unuse()) or /proc or 444 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 445 */ 446 WRITE_ONCE(mm->owner, NULL); 447 return; 448 449 assign_new_owner: 450 BUG_ON(c == p); 451 get_task_struct(c); 452 /* 453 * The task_lock protects c->mm from changing. 454 * We always want mm->owner->mm == mm 455 */ 456 task_lock(c); 457 /* 458 * Delay read_unlock() till we have the task_lock() 459 * to ensure that c does not slip away underneath us 460 */ 461 read_unlock(&tasklist_lock); 462 if (c->mm != mm) { 463 task_unlock(c); 464 put_task_struct(c); 465 goto retry; 466 } 467 WRITE_ONCE(mm->owner, c); 468 task_unlock(c); 469 put_task_struct(c); 470 } 471 #endif /* CONFIG_MEMCG */ 472 473 /* 474 * Turn us into a lazy TLB process if we 475 * aren't already.. 476 */ 477 static void exit_mm(void) 478 { 479 struct mm_struct *mm = current->mm; 480 481 exit_mm_release(current, mm); 482 if (!mm) 483 return; 484 sync_mm_rss(mm); 485 mmap_read_lock(mm); 486 mmgrab(mm); 487 BUG_ON(mm != current->active_mm); 488 /* more a memory barrier than a real lock */ 489 task_lock(current); 490 /* 491 * When a thread stops operating on an address space, the loop 492 * in membarrier_private_expedited() may not observe that 493 * tsk->mm, and the loop in membarrier_global_expedited() may 494 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 495 * rq->membarrier_state, so those would not issue an IPI. 496 * Membarrier requires a memory barrier after accessing 497 * user-space memory, before clearing tsk->mm or the 498 * rq->membarrier_state. 499 */ 500 smp_mb__after_spinlock(); 501 local_irq_disable(); 502 current->mm = NULL; 503 membarrier_update_current_mm(NULL); 504 enter_lazy_tlb(mm, current); 505 local_irq_enable(); 506 task_unlock(current); 507 mmap_read_unlock(mm); 508 mm_update_next_owner(mm); 509 mmput(mm); 510 if (test_thread_flag(TIF_MEMDIE)) 511 exit_oom_victim(); 512 } 513 514 static struct task_struct *find_alive_thread(struct task_struct *p) 515 { 516 struct task_struct *t; 517 518 for_each_thread(p, t) { 519 if (!(t->flags & PF_EXITING)) 520 return t; 521 } 522 return NULL; 523 } 524 525 static struct task_struct *find_child_reaper(struct task_struct *father, 526 struct list_head *dead) 527 __releases(&tasklist_lock) 528 __acquires(&tasklist_lock) 529 { 530 struct pid_namespace *pid_ns = task_active_pid_ns(father); 531 struct task_struct *reaper = pid_ns->child_reaper; 532 struct task_struct *p, *n; 533 534 if (likely(reaper != father)) 535 return reaper; 536 537 reaper = find_alive_thread(father); 538 if (reaper) { 539 pid_ns->child_reaper = reaper; 540 return reaper; 541 } 542 543 write_unlock_irq(&tasklist_lock); 544 545 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 546 list_del_init(&p->ptrace_entry); 547 release_task(p); 548 } 549 550 zap_pid_ns_processes(pid_ns); 551 write_lock_irq(&tasklist_lock); 552 553 return father; 554 } 555 556 /* 557 * When we die, we re-parent all our children, and try to: 558 * 1. give them to another thread in our thread group, if such a member exists 559 * 2. give it to the first ancestor process which prctl'd itself as a 560 * child_subreaper for its children (like a service manager) 561 * 3. give it to the init process (PID 1) in our pid namespace 562 */ 563 static struct task_struct *find_new_reaper(struct task_struct *father, 564 struct task_struct *child_reaper) 565 { 566 struct task_struct *thread, *reaper; 567 568 thread = find_alive_thread(father); 569 if (thread) 570 return thread; 571 572 if (father->signal->has_child_subreaper) { 573 unsigned int ns_level = task_pid(father)->level; 574 /* 575 * Find the first ->is_child_subreaper ancestor in our pid_ns. 576 * We can't check reaper != child_reaper to ensure we do not 577 * cross the namespaces, the exiting parent could be injected 578 * by setns() + fork(). 579 * We check pid->level, this is slightly more efficient than 580 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 581 */ 582 for (reaper = father->real_parent; 583 task_pid(reaper)->level == ns_level; 584 reaper = reaper->real_parent) { 585 if (reaper == &init_task) 586 break; 587 if (!reaper->signal->is_child_subreaper) 588 continue; 589 thread = find_alive_thread(reaper); 590 if (thread) 591 return thread; 592 } 593 } 594 595 return child_reaper; 596 } 597 598 /* 599 * Any that need to be release_task'd are put on the @dead list. 600 */ 601 static void reparent_leader(struct task_struct *father, struct task_struct *p, 602 struct list_head *dead) 603 { 604 if (unlikely(p->exit_state == EXIT_DEAD)) 605 return; 606 607 /* We don't want people slaying init. */ 608 p->exit_signal = SIGCHLD; 609 610 /* If it has exited notify the new parent about this child's death. */ 611 if (!p->ptrace && 612 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 613 if (do_notify_parent(p, p->exit_signal)) { 614 p->exit_state = EXIT_DEAD; 615 list_add(&p->ptrace_entry, dead); 616 } 617 } 618 619 kill_orphaned_pgrp(p, father); 620 } 621 622 /* 623 * This does two things: 624 * 625 * A. Make init inherit all the child processes 626 * B. Check to see if any process groups have become orphaned 627 * as a result of our exiting, and if they have any stopped 628 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 629 */ 630 static void forget_original_parent(struct task_struct *father, 631 struct list_head *dead) 632 { 633 struct task_struct *p, *t, *reaper; 634 635 if (unlikely(!list_empty(&father->ptraced))) 636 exit_ptrace(father, dead); 637 638 /* Can drop and reacquire tasklist_lock */ 639 reaper = find_child_reaper(father, dead); 640 if (list_empty(&father->children)) 641 return; 642 643 reaper = find_new_reaper(father, reaper); 644 list_for_each_entry(p, &father->children, sibling) { 645 for_each_thread(p, t) { 646 RCU_INIT_POINTER(t->real_parent, reaper); 647 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 648 if (likely(!t->ptrace)) 649 t->parent = t->real_parent; 650 if (t->pdeath_signal) 651 group_send_sig_info(t->pdeath_signal, 652 SEND_SIG_NOINFO, t, 653 PIDTYPE_TGID); 654 } 655 /* 656 * If this is a threaded reparent there is no need to 657 * notify anyone anything has happened. 658 */ 659 if (!same_thread_group(reaper, father)) 660 reparent_leader(father, p, dead); 661 } 662 list_splice_tail_init(&father->children, &reaper->children); 663 } 664 665 /* 666 * Send signals to all our closest relatives so that they know 667 * to properly mourn us.. 668 */ 669 static void exit_notify(struct task_struct *tsk, int group_dead) 670 { 671 bool autoreap; 672 struct task_struct *p, *n; 673 LIST_HEAD(dead); 674 675 write_lock_irq(&tasklist_lock); 676 forget_original_parent(tsk, &dead); 677 678 if (group_dead) 679 kill_orphaned_pgrp(tsk->group_leader, NULL); 680 681 tsk->exit_state = EXIT_ZOMBIE; 682 if (unlikely(tsk->ptrace)) { 683 int sig = thread_group_leader(tsk) && 684 thread_group_empty(tsk) && 685 !ptrace_reparented(tsk) ? 686 tsk->exit_signal : SIGCHLD; 687 autoreap = do_notify_parent(tsk, sig); 688 } else if (thread_group_leader(tsk)) { 689 autoreap = thread_group_empty(tsk) && 690 do_notify_parent(tsk, tsk->exit_signal); 691 } else { 692 autoreap = true; 693 } 694 695 if (autoreap) { 696 tsk->exit_state = EXIT_DEAD; 697 list_add(&tsk->ptrace_entry, &dead); 698 } 699 700 /* mt-exec, de_thread() is waiting for group leader */ 701 if (unlikely(tsk->signal->notify_count < 0)) 702 wake_up_process(tsk->signal->group_exec_task); 703 write_unlock_irq(&tasklist_lock); 704 705 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 706 list_del_init(&p->ptrace_entry); 707 release_task(p); 708 } 709 } 710 711 #ifdef CONFIG_DEBUG_STACK_USAGE 712 static void check_stack_usage(void) 713 { 714 static DEFINE_SPINLOCK(low_water_lock); 715 static int lowest_to_date = THREAD_SIZE; 716 unsigned long free; 717 718 free = stack_not_used(current); 719 720 if (free >= lowest_to_date) 721 return; 722 723 spin_lock(&low_water_lock); 724 if (free < lowest_to_date) { 725 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 726 current->comm, task_pid_nr(current), free); 727 lowest_to_date = free; 728 } 729 spin_unlock(&low_water_lock); 730 } 731 #else 732 static inline void check_stack_usage(void) {} 733 #endif 734 735 void __noreturn do_exit(long code) 736 { 737 struct task_struct *tsk = current; 738 int group_dead; 739 740 WARN_ON(tsk->plug); 741 742 kcov_task_exit(tsk); 743 744 coredump_task_exit(tsk); 745 ptrace_event(PTRACE_EVENT_EXIT, code); 746 747 validate_creds_for_do_exit(tsk); 748 749 io_uring_files_cancel(); 750 exit_signals(tsk); /* sets PF_EXITING */ 751 752 /* sync mm's RSS info before statistics gathering */ 753 if (tsk->mm) 754 sync_mm_rss(tsk->mm); 755 acct_update_integrals(tsk); 756 group_dead = atomic_dec_and_test(&tsk->signal->live); 757 if (group_dead) { 758 /* 759 * If the last thread of global init has exited, panic 760 * immediately to get a useable coredump. 761 */ 762 if (unlikely(is_global_init(tsk))) 763 panic("Attempted to kill init! exitcode=0x%08x\n", 764 tsk->signal->group_exit_code ?: (int)code); 765 766 #ifdef CONFIG_POSIX_TIMERS 767 hrtimer_cancel(&tsk->signal->real_timer); 768 exit_itimers(tsk->signal); 769 #endif 770 if (tsk->mm) 771 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 772 } 773 acct_collect(code, group_dead); 774 if (group_dead) 775 tty_audit_exit(); 776 audit_free(tsk); 777 778 tsk->exit_code = code; 779 taskstats_exit(tsk, group_dead); 780 781 exit_mm(); 782 783 if (group_dead) 784 acct_process(); 785 trace_sched_process_exit(tsk); 786 787 exit_sem(tsk); 788 exit_shm(tsk); 789 exit_files(tsk); 790 exit_fs(tsk); 791 if (group_dead) 792 disassociate_ctty(1); 793 exit_task_namespaces(tsk); 794 exit_task_work(tsk); 795 exit_thread(tsk); 796 797 /* 798 * Flush inherited counters to the parent - before the parent 799 * gets woken up by child-exit notifications. 800 * 801 * because of cgroup mode, must be called before cgroup_exit() 802 */ 803 perf_event_exit_task(tsk); 804 805 sched_autogroup_exit_task(tsk); 806 cgroup_exit(tsk); 807 808 /* 809 * FIXME: do that only when needed, using sched_exit tracepoint 810 */ 811 flush_ptrace_hw_breakpoint(tsk); 812 813 exit_tasks_rcu_start(); 814 exit_notify(tsk, group_dead); 815 proc_exit_connector(tsk); 816 mpol_put_task_policy(tsk); 817 #ifdef CONFIG_FUTEX 818 if (unlikely(current->pi_state_cache)) 819 kfree(current->pi_state_cache); 820 #endif 821 /* 822 * Make sure we are holding no locks: 823 */ 824 debug_check_no_locks_held(); 825 826 if (tsk->io_context) 827 exit_io_context(tsk); 828 829 if (tsk->splice_pipe) 830 free_pipe_info(tsk->splice_pipe); 831 832 if (tsk->task_frag.page) 833 put_page(tsk->task_frag.page); 834 835 validate_creds_for_do_exit(tsk); 836 exit_task_stack_account(tsk); 837 838 check_stack_usage(); 839 preempt_disable(); 840 if (tsk->nr_dirtied) 841 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 842 exit_rcu(); 843 exit_tasks_rcu_finish(); 844 845 lockdep_free_task(tsk); 846 do_task_dead(); 847 } 848 849 void __noreturn make_task_dead(int signr) 850 { 851 /* 852 * Take the task off the cpu after something catastrophic has 853 * happened. 854 * 855 * We can get here from a kernel oops, sometimes with preemption off. 856 * Start by checking for critical errors. 857 * Then fix up important state like USER_DS and preemption. 858 * Then do everything else. 859 */ 860 struct task_struct *tsk = current; 861 862 if (unlikely(in_interrupt())) 863 panic("Aiee, killing interrupt handler!"); 864 if (unlikely(!tsk->pid)) 865 panic("Attempted to kill the idle task!"); 866 867 if (unlikely(in_atomic())) { 868 pr_info("note: %s[%d] exited with preempt_count %d\n", 869 current->comm, task_pid_nr(current), 870 preempt_count()); 871 preempt_count_set(PREEMPT_ENABLED); 872 } 873 874 /* 875 * We're taking recursive faults here in make_task_dead. Safest is to just 876 * leave this task alone and wait for reboot. 877 */ 878 if (unlikely(tsk->flags & PF_EXITING)) { 879 pr_alert("Fixing recursive fault but reboot is needed!\n"); 880 futex_exit_recursive(tsk); 881 tsk->exit_state = EXIT_DEAD; 882 refcount_inc(&tsk->rcu_users); 883 do_task_dead(); 884 } 885 886 do_exit(signr); 887 } 888 889 SYSCALL_DEFINE1(exit, int, error_code) 890 { 891 do_exit((error_code&0xff)<<8); 892 } 893 894 /* 895 * Take down every thread in the group. This is called by fatal signals 896 * as well as by sys_exit_group (below). 897 */ 898 void __noreturn 899 do_group_exit(int exit_code) 900 { 901 struct signal_struct *sig = current->signal; 902 903 if (sig->flags & SIGNAL_GROUP_EXIT) 904 exit_code = sig->group_exit_code; 905 else if (sig->group_exec_task) 906 exit_code = 0; 907 else if (!thread_group_empty(current)) { 908 struct sighand_struct *const sighand = current->sighand; 909 910 spin_lock_irq(&sighand->siglock); 911 if (sig->flags & SIGNAL_GROUP_EXIT) 912 /* Another thread got here before we took the lock. */ 913 exit_code = sig->group_exit_code; 914 else if (sig->group_exec_task) 915 exit_code = 0; 916 else { 917 sig->group_exit_code = exit_code; 918 sig->flags = SIGNAL_GROUP_EXIT; 919 zap_other_threads(current); 920 } 921 spin_unlock_irq(&sighand->siglock); 922 } 923 924 do_exit(exit_code); 925 /* NOTREACHED */ 926 } 927 928 /* 929 * this kills every thread in the thread group. Note that any externally 930 * wait4()-ing process will get the correct exit code - even if this 931 * thread is not the thread group leader. 932 */ 933 SYSCALL_DEFINE1(exit_group, int, error_code) 934 { 935 do_group_exit((error_code & 0xff) << 8); 936 /* NOTREACHED */ 937 return 0; 938 } 939 940 struct waitid_info { 941 pid_t pid; 942 uid_t uid; 943 int status; 944 int cause; 945 }; 946 947 struct wait_opts { 948 enum pid_type wo_type; 949 int wo_flags; 950 struct pid *wo_pid; 951 952 struct waitid_info *wo_info; 953 int wo_stat; 954 struct rusage *wo_rusage; 955 956 wait_queue_entry_t child_wait; 957 int notask_error; 958 }; 959 960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 961 { 962 return wo->wo_type == PIDTYPE_MAX || 963 task_pid_type(p, wo->wo_type) == wo->wo_pid; 964 } 965 966 static int 967 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 968 { 969 if (!eligible_pid(wo, p)) 970 return 0; 971 972 /* 973 * Wait for all children (clone and not) if __WALL is set or 974 * if it is traced by us. 975 */ 976 if (ptrace || (wo->wo_flags & __WALL)) 977 return 1; 978 979 /* 980 * Otherwise, wait for clone children *only* if __WCLONE is set; 981 * otherwise, wait for non-clone children *only*. 982 * 983 * Note: a "clone" child here is one that reports to its parent 984 * using a signal other than SIGCHLD, or a non-leader thread which 985 * we can only see if it is traced by us. 986 */ 987 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 988 return 0; 989 990 return 1; 991 } 992 993 /* 994 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 995 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 996 * the lock and this task is uninteresting. If we return nonzero, we have 997 * released the lock and the system call should return. 998 */ 999 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1000 { 1001 int state, status; 1002 pid_t pid = task_pid_vnr(p); 1003 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1004 struct waitid_info *infop; 1005 1006 if (!likely(wo->wo_flags & WEXITED)) 1007 return 0; 1008 1009 if (unlikely(wo->wo_flags & WNOWAIT)) { 1010 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1011 ? p->signal->group_exit_code : p->exit_code; 1012 get_task_struct(p); 1013 read_unlock(&tasklist_lock); 1014 sched_annotate_sleep(); 1015 if (wo->wo_rusage) 1016 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1017 put_task_struct(p); 1018 goto out_info; 1019 } 1020 /* 1021 * Move the task's state to DEAD/TRACE, only one thread can do this. 1022 */ 1023 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1024 EXIT_TRACE : EXIT_DEAD; 1025 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1026 return 0; 1027 /* 1028 * We own this thread, nobody else can reap it. 1029 */ 1030 read_unlock(&tasklist_lock); 1031 sched_annotate_sleep(); 1032 1033 /* 1034 * Check thread_group_leader() to exclude the traced sub-threads. 1035 */ 1036 if (state == EXIT_DEAD && thread_group_leader(p)) { 1037 struct signal_struct *sig = p->signal; 1038 struct signal_struct *psig = current->signal; 1039 unsigned long maxrss; 1040 u64 tgutime, tgstime; 1041 1042 /* 1043 * The resource counters for the group leader are in its 1044 * own task_struct. Those for dead threads in the group 1045 * are in its signal_struct, as are those for the child 1046 * processes it has previously reaped. All these 1047 * accumulate in the parent's signal_struct c* fields. 1048 * 1049 * We don't bother to take a lock here to protect these 1050 * p->signal fields because the whole thread group is dead 1051 * and nobody can change them. 1052 * 1053 * psig->stats_lock also protects us from our sub-theads 1054 * which can reap other children at the same time. Until 1055 * we change k_getrusage()-like users to rely on this lock 1056 * we have to take ->siglock as well. 1057 * 1058 * We use thread_group_cputime_adjusted() to get times for 1059 * the thread group, which consolidates times for all threads 1060 * in the group including the group leader. 1061 */ 1062 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1063 spin_lock_irq(¤t->sighand->siglock); 1064 write_seqlock(&psig->stats_lock); 1065 psig->cutime += tgutime + sig->cutime; 1066 psig->cstime += tgstime + sig->cstime; 1067 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1068 psig->cmin_flt += 1069 p->min_flt + sig->min_flt + sig->cmin_flt; 1070 psig->cmaj_flt += 1071 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1072 psig->cnvcsw += 1073 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1074 psig->cnivcsw += 1075 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1076 psig->cinblock += 1077 task_io_get_inblock(p) + 1078 sig->inblock + sig->cinblock; 1079 psig->coublock += 1080 task_io_get_oublock(p) + 1081 sig->oublock + sig->coublock; 1082 maxrss = max(sig->maxrss, sig->cmaxrss); 1083 if (psig->cmaxrss < maxrss) 1084 psig->cmaxrss = maxrss; 1085 task_io_accounting_add(&psig->ioac, &p->ioac); 1086 task_io_accounting_add(&psig->ioac, &sig->ioac); 1087 write_sequnlock(&psig->stats_lock); 1088 spin_unlock_irq(¤t->sighand->siglock); 1089 } 1090 1091 if (wo->wo_rusage) 1092 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1093 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1094 ? p->signal->group_exit_code : p->exit_code; 1095 wo->wo_stat = status; 1096 1097 if (state == EXIT_TRACE) { 1098 write_lock_irq(&tasklist_lock); 1099 /* We dropped tasklist, ptracer could die and untrace */ 1100 ptrace_unlink(p); 1101 1102 /* If parent wants a zombie, don't release it now */ 1103 state = EXIT_ZOMBIE; 1104 if (do_notify_parent(p, p->exit_signal)) 1105 state = EXIT_DEAD; 1106 p->exit_state = state; 1107 write_unlock_irq(&tasklist_lock); 1108 } 1109 if (state == EXIT_DEAD) 1110 release_task(p); 1111 1112 out_info: 1113 infop = wo->wo_info; 1114 if (infop) { 1115 if ((status & 0x7f) == 0) { 1116 infop->cause = CLD_EXITED; 1117 infop->status = status >> 8; 1118 } else { 1119 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1120 infop->status = status & 0x7f; 1121 } 1122 infop->pid = pid; 1123 infop->uid = uid; 1124 } 1125 1126 return pid; 1127 } 1128 1129 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1130 { 1131 if (ptrace) { 1132 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1133 return &p->exit_code; 1134 } else { 1135 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1136 return &p->signal->group_exit_code; 1137 } 1138 return NULL; 1139 } 1140 1141 /** 1142 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1143 * @wo: wait options 1144 * @ptrace: is the wait for ptrace 1145 * @p: task to wait for 1146 * 1147 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1148 * 1149 * CONTEXT: 1150 * read_lock(&tasklist_lock), which is released if return value is 1151 * non-zero. Also, grabs and releases @p->sighand->siglock. 1152 * 1153 * RETURNS: 1154 * 0 if wait condition didn't exist and search for other wait conditions 1155 * should continue. Non-zero return, -errno on failure and @p's pid on 1156 * success, implies that tasklist_lock is released and wait condition 1157 * search should terminate. 1158 */ 1159 static int wait_task_stopped(struct wait_opts *wo, 1160 int ptrace, struct task_struct *p) 1161 { 1162 struct waitid_info *infop; 1163 int exit_code, *p_code, why; 1164 uid_t uid = 0; /* unneeded, required by compiler */ 1165 pid_t pid; 1166 1167 /* 1168 * Traditionally we see ptrace'd stopped tasks regardless of options. 1169 */ 1170 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1171 return 0; 1172 1173 if (!task_stopped_code(p, ptrace)) 1174 return 0; 1175 1176 exit_code = 0; 1177 spin_lock_irq(&p->sighand->siglock); 1178 1179 p_code = task_stopped_code(p, ptrace); 1180 if (unlikely(!p_code)) 1181 goto unlock_sig; 1182 1183 exit_code = *p_code; 1184 if (!exit_code) 1185 goto unlock_sig; 1186 1187 if (!unlikely(wo->wo_flags & WNOWAIT)) 1188 *p_code = 0; 1189 1190 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1191 unlock_sig: 1192 spin_unlock_irq(&p->sighand->siglock); 1193 if (!exit_code) 1194 return 0; 1195 1196 /* 1197 * Now we are pretty sure this task is interesting. 1198 * Make sure it doesn't get reaped out from under us while we 1199 * give up the lock and then examine it below. We don't want to 1200 * keep holding onto the tasklist_lock while we call getrusage and 1201 * possibly take page faults for user memory. 1202 */ 1203 get_task_struct(p); 1204 pid = task_pid_vnr(p); 1205 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1206 read_unlock(&tasklist_lock); 1207 sched_annotate_sleep(); 1208 if (wo->wo_rusage) 1209 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1210 put_task_struct(p); 1211 1212 if (likely(!(wo->wo_flags & WNOWAIT))) 1213 wo->wo_stat = (exit_code << 8) | 0x7f; 1214 1215 infop = wo->wo_info; 1216 if (infop) { 1217 infop->cause = why; 1218 infop->status = exit_code; 1219 infop->pid = pid; 1220 infop->uid = uid; 1221 } 1222 return pid; 1223 } 1224 1225 /* 1226 * Handle do_wait work for one task in a live, non-stopped state. 1227 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1228 * the lock and this task is uninteresting. If we return nonzero, we have 1229 * released the lock and the system call should return. 1230 */ 1231 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1232 { 1233 struct waitid_info *infop; 1234 pid_t pid; 1235 uid_t uid; 1236 1237 if (!unlikely(wo->wo_flags & WCONTINUED)) 1238 return 0; 1239 1240 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1241 return 0; 1242 1243 spin_lock_irq(&p->sighand->siglock); 1244 /* Re-check with the lock held. */ 1245 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1246 spin_unlock_irq(&p->sighand->siglock); 1247 return 0; 1248 } 1249 if (!unlikely(wo->wo_flags & WNOWAIT)) 1250 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1251 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1252 spin_unlock_irq(&p->sighand->siglock); 1253 1254 pid = task_pid_vnr(p); 1255 get_task_struct(p); 1256 read_unlock(&tasklist_lock); 1257 sched_annotate_sleep(); 1258 if (wo->wo_rusage) 1259 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1260 put_task_struct(p); 1261 1262 infop = wo->wo_info; 1263 if (!infop) { 1264 wo->wo_stat = 0xffff; 1265 } else { 1266 infop->cause = CLD_CONTINUED; 1267 infop->pid = pid; 1268 infop->uid = uid; 1269 infop->status = SIGCONT; 1270 } 1271 return pid; 1272 } 1273 1274 /* 1275 * Consider @p for a wait by @parent. 1276 * 1277 * -ECHILD should be in ->notask_error before the first call. 1278 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1279 * Returns zero if the search for a child should continue; 1280 * then ->notask_error is 0 if @p is an eligible child, 1281 * or still -ECHILD. 1282 */ 1283 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1284 struct task_struct *p) 1285 { 1286 /* 1287 * We can race with wait_task_zombie() from another thread. 1288 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1289 * can't confuse the checks below. 1290 */ 1291 int exit_state = READ_ONCE(p->exit_state); 1292 int ret; 1293 1294 if (unlikely(exit_state == EXIT_DEAD)) 1295 return 0; 1296 1297 ret = eligible_child(wo, ptrace, p); 1298 if (!ret) 1299 return ret; 1300 1301 if (unlikely(exit_state == EXIT_TRACE)) { 1302 /* 1303 * ptrace == 0 means we are the natural parent. In this case 1304 * we should clear notask_error, debugger will notify us. 1305 */ 1306 if (likely(!ptrace)) 1307 wo->notask_error = 0; 1308 return 0; 1309 } 1310 1311 if (likely(!ptrace) && unlikely(p->ptrace)) { 1312 /* 1313 * If it is traced by its real parent's group, just pretend 1314 * the caller is ptrace_do_wait() and reap this child if it 1315 * is zombie. 1316 * 1317 * This also hides group stop state from real parent; otherwise 1318 * a single stop can be reported twice as group and ptrace stop. 1319 * If a ptracer wants to distinguish these two events for its 1320 * own children it should create a separate process which takes 1321 * the role of real parent. 1322 */ 1323 if (!ptrace_reparented(p)) 1324 ptrace = 1; 1325 } 1326 1327 /* slay zombie? */ 1328 if (exit_state == EXIT_ZOMBIE) { 1329 /* we don't reap group leaders with subthreads */ 1330 if (!delay_group_leader(p)) { 1331 /* 1332 * A zombie ptracee is only visible to its ptracer. 1333 * Notification and reaping will be cascaded to the 1334 * real parent when the ptracer detaches. 1335 */ 1336 if (unlikely(ptrace) || likely(!p->ptrace)) 1337 return wait_task_zombie(wo, p); 1338 } 1339 1340 /* 1341 * Allow access to stopped/continued state via zombie by 1342 * falling through. Clearing of notask_error is complex. 1343 * 1344 * When !@ptrace: 1345 * 1346 * If WEXITED is set, notask_error should naturally be 1347 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1348 * so, if there are live subthreads, there are events to 1349 * wait for. If all subthreads are dead, it's still safe 1350 * to clear - this function will be called again in finite 1351 * amount time once all the subthreads are released and 1352 * will then return without clearing. 1353 * 1354 * When @ptrace: 1355 * 1356 * Stopped state is per-task and thus can't change once the 1357 * target task dies. Only continued and exited can happen. 1358 * Clear notask_error if WCONTINUED | WEXITED. 1359 */ 1360 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1361 wo->notask_error = 0; 1362 } else { 1363 /* 1364 * @p is alive and it's gonna stop, continue or exit, so 1365 * there always is something to wait for. 1366 */ 1367 wo->notask_error = 0; 1368 } 1369 1370 /* 1371 * Wait for stopped. Depending on @ptrace, different stopped state 1372 * is used and the two don't interact with each other. 1373 */ 1374 ret = wait_task_stopped(wo, ptrace, p); 1375 if (ret) 1376 return ret; 1377 1378 /* 1379 * Wait for continued. There's only one continued state and the 1380 * ptracer can consume it which can confuse the real parent. Don't 1381 * use WCONTINUED from ptracer. You don't need or want it. 1382 */ 1383 return wait_task_continued(wo, p); 1384 } 1385 1386 /* 1387 * Do the work of do_wait() for one thread in the group, @tsk. 1388 * 1389 * -ECHILD should be in ->notask_error before the first call. 1390 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1391 * Returns zero if the search for a child should continue; then 1392 * ->notask_error is 0 if there were any eligible children, 1393 * or still -ECHILD. 1394 */ 1395 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1396 { 1397 struct task_struct *p; 1398 1399 list_for_each_entry(p, &tsk->children, sibling) { 1400 int ret = wait_consider_task(wo, 0, p); 1401 1402 if (ret) 1403 return ret; 1404 } 1405 1406 return 0; 1407 } 1408 1409 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1410 { 1411 struct task_struct *p; 1412 1413 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1414 int ret = wait_consider_task(wo, 1, p); 1415 1416 if (ret) 1417 return ret; 1418 } 1419 1420 return 0; 1421 } 1422 1423 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1424 int sync, void *key) 1425 { 1426 struct wait_opts *wo = container_of(wait, struct wait_opts, 1427 child_wait); 1428 struct task_struct *p = key; 1429 1430 if (!eligible_pid(wo, p)) 1431 return 0; 1432 1433 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1434 return 0; 1435 1436 return default_wake_function(wait, mode, sync, key); 1437 } 1438 1439 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1440 { 1441 __wake_up_sync_key(&parent->signal->wait_chldexit, 1442 TASK_INTERRUPTIBLE, p); 1443 } 1444 1445 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1446 struct task_struct *target) 1447 { 1448 struct task_struct *parent = 1449 !ptrace ? target->real_parent : target->parent; 1450 1451 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1452 same_thread_group(current, parent)); 1453 } 1454 1455 /* 1456 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1457 * and tracee lists to find the target task. 1458 */ 1459 static int do_wait_pid(struct wait_opts *wo) 1460 { 1461 bool ptrace; 1462 struct task_struct *target; 1463 int retval; 1464 1465 ptrace = false; 1466 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1467 if (target && is_effectively_child(wo, ptrace, target)) { 1468 retval = wait_consider_task(wo, ptrace, target); 1469 if (retval) 1470 return retval; 1471 } 1472 1473 ptrace = true; 1474 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1475 if (target && target->ptrace && 1476 is_effectively_child(wo, ptrace, target)) { 1477 retval = wait_consider_task(wo, ptrace, target); 1478 if (retval) 1479 return retval; 1480 } 1481 1482 return 0; 1483 } 1484 1485 static long do_wait(struct wait_opts *wo) 1486 { 1487 int retval; 1488 1489 trace_sched_process_wait(wo->wo_pid); 1490 1491 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1492 wo->child_wait.private = current; 1493 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1494 repeat: 1495 /* 1496 * If there is nothing that can match our criteria, just get out. 1497 * We will clear ->notask_error to zero if we see any child that 1498 * might later match our criteria, even if we are not able to reap 1499 * it yet. 1500 */ 1501 wo->notask_error = -ECHILD; 1502 if ((wo->wo_type < PIDTYPE_MAX) && 1503 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1504 goto notask; 1505 1506 set_current_state(TASK_INTERRUPTIBLE); 1507 read_lock(&tasklist_lock); 1508 1509 if (wo->wo_type == PIDTYPE_PID) { 1510 retval = do_wait_pid(wo); 1511 if (retval) 1512 goto end; 1513 } else { 1514 struct task_struct *tsk = current; 1515 1516 do { 1517 retval = do_wait_thread(wo, tsk); 1518 if (retval) 1519 goto end; 1520 1521 retval = ptrace_do_wait(wo, tsk); 1522 if (retval) 1523 goto end; 1524 1525 if (wo->wo_flags & __WNOTHREAD) 1526 break; 1527 } while_each_thread(current, tsk); 1528 } 1529 read_unlock(&tasklist_lock); 1530 1531 notask: 1532 retval = wo->notask_error; 1533 if (!retval && !(wo->wo_flags & WNOHANG)) { 1534 retval = -ERESTARTSYS; 1535 if (!signal_pending(current)) { 1536 schedule(); 1537 goto repeat; 1538 } 1539 } 1540 end: 1541 __set_current_state(TASK_RUNNING); 1542 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1543 return retval; 1544 } 1545 1546 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1547 int options, struct rusage *ru) 1548 { 1549 struct wait_opts wo; 1550 struct pid *pid = NULL; 1551 enum pid_type type; 1552 long ret; 1553 unsigned int f_flags = 0; 1554 1555 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1556 __WNOTHREAD|__WCLONE|__WALL)) 1557 return -EINVAL; 1558 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1559 return -EINVAL; 1560 1561 switch (which) { 1562 case P_ALL: 1563 type = PIDTYPE_MAX; 1564 break; 1565 case P_PID: 1566 type = PIDTYPE_PID; 1567 if (upid <= 0) 1568 return -EINVAL; 1569 1570 pid = find_get_pid(upid); 1571 break; 1572 case P_PGID: 1573 type = PIDTYPE_PGID; 1574 if (upid < 0) 1575 return -EINVAL; 1576 1577 if (upid) 1578 pid = find_get_pid(upid); 1579 else 1580 pid = get_task_pid(current, PIDTYPE_PGID); 1581 break; 1582 case P_PIDFD: 1583 type = PIDTYPE_PID; 1584 if (upid < 0) 1585 return -EINVAL; 1586 1587 pid = pidfd_get_pid(upid, &f_flags); 1588 if (IS_ERR(pid)) 1589 return PTR_ERR(pid); 1590 1591 break; 1592 default: 1593 return -EINVAL; 1594 } 1595 1596 wo.wo_type = type; 1597 wo.wo_pid = pid; 1598 wo.wo_flags = options; 1599 wo.wo_info = infop; 1600 wo.wo_rusage = ru; 1601 if (f_flags & O_NONBLOCK) 1602 wo.wo_flags |= WNOHANG; 1603 1604 ret = do_wait(&wo); 1605 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1606 ret = -EAGAIN; 1607 1608 put_pid(pid); 1609 return ret; 1610 } 1611 1612 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1613 infop, int, options, struct rusage __user *, ru) 1614 { 1615 struct rusage r; 1616 struct waitid_info info = {.status = 0}; 1617 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1618 int signo = 0; 1619 1620 if (err > 0) { 1621 signo = SIGCHLD; 1622 err = 0; 1623 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1624 return -EFAULT; 1625 } 1626 if (!infop) 1627 return err; 1628 1629 if (!user_write_access_begin(infop, sizeof(*infop))) 1630 return -EFAULT; 1631 1632 unsafe_put_user(signo, &infop->si_signo, Efault); 1633 unsafe_put_user(0, &infop->si_errno, Efault); 1634 unsafe_put_user(info.cause, &infop->si_code, Efault); 1635 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1636 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1637 unsafe_put_user(info.status, &infop->si_status, Efault); 1638 user_write_access_end(); 1639 return err; 1640 Efault: 1641 user_write_access_end(); 1642 return -EFAULT; 1643 } 1644 1645 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1646 struct rusage *ru) 1647 { 1648 struct wait_opts wo; 1649 struct pid *pid = NULL; 1650 enum pid_type type; 1651 long ret; 1652 1653 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1654 __WNOTHREAD|__WCLONE|__WALL)) 1655 return -EINVAL; 1656 1657 /* -INT_MIN is not defined */ 1658 if (upid == INT_MIN) 1659 return -ESRCH; 1660 1661 if (upid == -1) 1662 type = PIDTYPE_MAX; 1663 else if (upid < 0) { 1664 type = PIDTYPE_PGID; 1665 pid = find_get_pid(-upid); 1666 } else if (upid == 0) { 1667 type = PIDTYPE_PGID; 1668 pid = get_task_pid(current, PIDTYPE_PGID); 1669 } else /* upid > 0 */ { 1670 type = PIDTYPE_PID; 1671 pid = find_get_pid(upid); 1672 } 1673 1674 wo.wo_type = type; 1675 wo.wo_pid = pid; 1676 wo.wo_flags = options | WEXITED; 1677 wo.wo_info = NULL; 1678 wo.wo_stat = 0; 1679 wo.wo_rusage = ru; 1680 ret = do_wait(&wo); 1681 put_pid(pid); 1682 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1683 ret = -EFAULT; 1684 1685 return ret; 1686 } 1687 1688 int kernel_wait(pid_t pid, int *stat) 1689 { 1690 struct wait_opts wo = { 1691 .wo_type = PIDTYPE_PID, 1692 .wo_pid = find_get_pid(pid), 1693 .wo_flags = WEXITED, 1694 }; 1695 int ret; 1696 1697 ret = do_wait(&wo); 1698 if (ret > 0 && wo.wo_stat) 1699 *stat = wo.wo_stat; 1700 put_pid(wo.wo_pid); 1701 return ret; 1702 } 1703 1704 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1705 int, options, struct rusage __user *, ru) 1706 { 1707 struct rusage r; 1708 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1709 1710 if (err > 0) { 1711 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1712 return -EFAULT; 1713 } 1714 return err; 1715 } 1716 1717 #ifdef __ARCH_WANT_SYS_WAITPID 1718 1719 /* 1720 * sys_waitpid() remains for compatibility. waitpid() should be 1721 * implemented by calling sys_wait4() from libc.a. 1722 */ 1723 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1724 { 1725 return kernel_wait4(pid, stat_addr, options, NULL); 1726 } 1727 1728 #endif 1729 1730 #ifdef CONFIG_COMPAT 1731 COMPAT_SYSCALL_DEFINE4(wait4, 1732 compat_pid_t, pid, 1733 compat_uint_t __user *, stat_addr, 1734 int, options, 1735 struct compat_rusage __user *, ru) 1736 { 1737 struct rusage r; 1738 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1739 if (err > 0) { 1740 if (ru && put_compat_rusage(&r, ru)) 1741 return -EFAULT; 1742 } 1743 return err; 1744 } 1745 1746 COMPAT_SYSCALL_DEFINE5(waitid, 1747 int, which, compat_pid_t, pid, 1748 struct compat_siginfo __user *, infop, int, options, 1749 struct compat_rusage __user *, uru) 1750 { 1751 struct rusage ru; 1752 struct waitid_info info = {.status = 0}; 1753 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1754 int signo = 0; 1755 if (err > 0) { 1756 signo = SIGCHLD; 1757 err = 0; 1758 if (uru) { 1759 /* kernel_waitid() overwrites everything in ru */ 1760 if (COMPAT_USE_64BIT_TIME) 1761 err = copy_to_user(uru, &ru, sizeof(ru)); 1762 else 1763 err = put_compat_rusage(&ru, uru); 1764 if (err) 1765 return -EFAULT; 1766 } 1767 } 1768 1769 if (!infop) 1770 return err; 1771 1772 if (!user_write_access_begin(infop, sizeof(*infop))) 1773 return -EFAULT; 1774 1775 unsafe_put_user(signo, &infop->si_signo, Efault); 1776 unsafe_put_user(0, &infop->si_errno, Efault); 1777 unsafe_put_user(info.cause, &infop->si_code, Efault); 1778 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1779 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1780 unsafe_put_user(info.status, &infop->si_status, Efault); 1781 user_write_access_end(); 1782 return err; 1783 Efault: 1784 user_write_access_end(); 1785 return -EFAULT; 1786 } 1787 #endif 1788 1789 /** 1790 * thread_group_exited - check that a thread group has exited 1791 * @pid: tgid of thread group to be checked. 1792 * 1793 * Test if the thread group represented by tgid has exited (all 1794 * threads are zombies, dead or completely gone). 1795 * 1796 * Return: true if the thread group has exited. false otherwise. 1797 */ 1798 bool thread_group_exited(struct pid *pid) 1799 { 1800 struct task_struct *task; 1801 bool exited; 1802 1803 rcu_read_lock(); 1804 task = pid_task(pid, PIDTYPE_PID); 1805 exited = !task || 1806 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1807 rcu_read_unlock(); 1808 1809 return exited; 1810 } 1811 EXPORT_SYMBOL(thread_group_exited); 1812 1813 __weak void abort(void) 1814 { 1815 BUG(); 1816 1817 /* if that doesn't kill us, halt */ 1818 panic("Oops failed to kill thread"); 1819 } 1820 EXPORT_SYMBOL(abort); 1821