xref: /linux/kernel/exit.c (revision 02e2af20f4f9f2aa0c84e9a30a35c02f0fbb7daa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66 #include <linux/kprobes.h>
67 #include <linux/rethook.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 	nr_threads--;
76 	detach_pid(p, PIDTYPE_PID);
77 	if (group_dead) {
78 		detach_pid(p, PIDTYPE_TGID);
79 		detach_pid(p, PIDTYPE_PGID);
80 		detach_pid(p, PIDTYPE_SID);
81 
82 		list_del_rcu(&p->tasks);
83 		list_del_init(&p->sibling);
84 		__this_cpu_dec(process_counts);
85 	}
86 	list_del_rcu(&p->thread_group);
87 	list_del_rcu(&p->thread_node);
88 }
89 
90 /*
91  * This function expects the tasklist_lock write-locked.
92  */
93 static void __exit_signal(struct task_struct *tsk)
94 {
95 	struct signal_struct *sig = tsk->signal;
96 	bool group_dead = thread_group_leader(tsk);
97 	struct sighand_struct *sighand;
98 	struct tty_struct *tty;
99 	u64 utime, stime;
100 
101 	sighand = rcu_dereference_check(tsk->sighand,
102 					lockdep_tasklist_lock_is_held());
103 	spin_lock(&sighand->siglock);
104 
105 #ifdef CONFIG_POSIX_TIMERS
106 	posix_cpu_timers_exit(tsk);
107 	if (group_dead)
108 		posix_cpu_timers_exit_group(tsk);
109 #endif
110 
111 	if (group_dead) {
112 		tty = sig->tty;
113 		sig->tty = NULL;
114 	} else {
115 		/*
116 		 * If there is any task waiting for the group exit
117 		 * then notify it:
118 		 */
119 		if (sig->notify_count > 0 && !--sig->notify_count)
120 			wake_up_process(sig->group_exec_task);
121 
122 		if (tsk == sig->curr_target)
123 			sig->curr_target = next_thread(tsk);
124 	}
125 
126 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 			      sizeof(unsigned long long));
128 
129 	/*
130 	 * Accumulate here the counters for all threads as they die. We could
131 	 * skip the group leader because it is the last user of signal_struct,
132 	 * but we want to avoid the race with thread_group_cputime() which can
133 	 * see the empty ->thread_head list.
134 	 */
135 	task_cputime(tsk, &utime, &stime);
136 	write_seqlock(&sig->stats_lock);
137 	sig->utime += utime;
138 	sig->stime += stime;
139 	sig->gtime += task_gtime(tsk);
140 	sig->min_flt += tsk->min_flt;
141 	sig->maj_flt += tsk->maj_flt;
142 	sig->nvcsw += tsk->nvcsw;
143 	sig->nivcsw += tsk->nivcsw;
144 	sig->inblock += task_io_get_inblock(tsk);
145 	sig->oublock += task_io_get_oublock(tsk);
146 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 	sig->nr_threads--;
149 	__unhash_process(tsk, group_dead);
150 	write_sequnlock(&sig->stats_lock);
151 
152 	/*
153 	 * Do this under ->siglock, we can race with another thread
154 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 	 */
156 	flush_sigqueue(&tsk->pending);
157 	tsk->sighand = NULL;
158 	spin_unlock(&sighand->siglock);
159 
160 	__cleanup_sighand(sighand);
161 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 	if (group_dead) {
163 		flush_sigqueue(&sig->shared_pending);
164 		tty_kref_put(tty);
165 	}
166 }
167 
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 
172 	kprobe_flush_task(tsk);
173 	rethook_flush_task(tsk);
174 	perf_event_delayed_put(tsk);
175 	trace_sched_process_free(tsk);
176 	put_task_struct(tsk);
177 }
178 
179 void put_task_struct_rcu_user(struct task_struct *task)
180 {
181 	if (refcount_dec_and_test(&task->rcu_users))
182 		call_rcu(&task->rcu, delayed_put_task_struct);
183 }
184 
185 void release_task(struct task_struct *p)
186 {
187 	struct task_struct *leader;
188 	struct pid *thread_pid;
189 	int zap_leader;
190 repeat:
191 	/* don't need to get the RCU readlock here - the process is dead and
192 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 	rcu_read_lock();
194 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
195 	rcu_read_unlock();
196 
197 	cgroup_release(p);
198 
199 	write_lock_irq(&tasklist_lock);
200 	ptrace_release_task(p);
201 	thread_pid = get_pid(p->thread_pid);
202 	__exit_signal(p);
203 
204 	/*
205 	 * If we are the last non-leader member of the thread
206 	 * group, and the leader is zombie, then notify the
207 	 * group leader's parent process. (if it wants notification.)
208 	 */
209 	zap_leader = 0;
210 	leader = p->group_leader;
211 	if (leader != p && thread_group_empty(leader)
212 			&& leader->exit_state == EXIT_ZOMBIE) {
213 		/*
214 		 * If we were the last child thread and the leader has
215 		 * exited already, and the leader's parent ignores SIGCHLD,
216 		 * then we are the one who should release the leader.
217 		 */
218 		zap_leader = do_notify_parent(leader, leader->exit_signal);
219 		if (zap_leader)
220 			leader->exit_state = EXIT_DEAD;
221 	}
222 
223 	write_unlock_irq(&tasklist_lock);
224 	seccomp_filter_release(p);
225 	proc_flush_pid(thread_pid);
226 	put_pid(thread_pid);
227 	release_thread(p);
228 	put_task_struct_rcu_user(p);
229 
230 	p = leader;
231 	if (unlikely(zap_leader))
232 		goto repeat;
233 }
234 
235 int rcuwait_wake_up(struct rcuwait *w)
236 {
237 	int ret = 0;
238 	struct task_struct *task;
239 
240 	rcu_read_lock();
241 
242 	/*
243 	 * Order condition vs @task, such that everything prior to the load
244 	 * of @task is visible. This is the condition as to why the user called
245 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
246 	 * barrier (A) in rcuwait_wait_event().
247 	 *
248 	 *    WAIT                WAKE
249 	 *    [S] tsk = current	  [S] cond = true
250 	 *        MB (A)	      MB (B)
251 	 *    [L] cond		  [L] tsk
252 	 */
253 	smp_mb(); /* (B) */
254 
255 	task = rcu_dereference(w->task);
256 	if (task)
257 		ret = wake_up_process(task);
258 	rcu_read_unlock();
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
263 
264 /*
265  * Determine if a process group is "orphaned", according to the POSIX
266  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
267  * by terminal-generated stop signals.  Newly orphaned process groups are
268  * to receive a SIGHUP and a SIGCONT.
269  *
270  * "I ask you, have you ever known what it is to be an orphan?"
271  */
272 static int will_become_orphaned_pgrp(struct pid *pgrp,
273 					struct task_struct *ignored_task)
274 {
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if ((p == ignored_task) ||
279 		    (p->exit_state && thread_group_empty(p)) ||
280 		    is_global_init(p->real_parent))
281 			continue;
282 
283 		if (task_pgrp(p->real_parent) != pgrp &&
284 		    task_session(p->real_parent) == task_session(p))
285 			return 0;
286 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 
288 	return 1;
289 }
290 
291 int is_current_pgrp_orphaned(void)
292 {
293 	int retval;
294 
295 	read_lock(&tasklist_lock);
296 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
297 	read_unlock(&tasklist_lock);
298 
299 	return retval;
300 }
301 
302 static bool has_stopped_jobs(struct pid *pgrp)
303 {
304 	struct task_struct *p;
305 
306 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
307 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
308 			return true;
309 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
310 
311 	return false;
312 }
313 
314 /*
315  * Check to see if any process groups have become orphaned as
316  * a result of our exiting, and if they have any stopped jobs,
317  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
318  */
319 static void
320 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
321 {
322 	struct pid *pgrp = task_pgrp(tsk);
323 	struct task_struct *ignored_task = tsk;
324 
325 	if (!parent)
326 		/* exit: our father is in a different pgrp than
327 		 * we are and we were the only connection outside.
328 		 */
329 		parent = tsk->real_parent;
330 	else
331 		/* reparent: our child is in a different pgrp than
332 		 * we are, and it was the only connection outside.
333 		 */
334 		ignored_task = NULL;
335 
336 	if (task_pgrp(parent) != pgrp &&
337 	    task_session(parent) == task_session(tsk) &&
338 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
339 	    has_stopped_jobs(pgrp)) {
340 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
341 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
342 	}
343 }
344 
345 static void coredump_task_exit(struct task_struct *tsk)
346 {
347 	struct core_state *core_state;
348 
349 	/*
350 	 * Serialize with any possible pending coredump.
351 	 * We must hold siglock around checking core_state
352 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
353 	 * will increment ->nr_threads for each thread in the
354 	 * group without PF_POSTCOREDUMP set.
355 	 */
356 	spin_lock_irq(&tsk->sighand->siglock);
357 	tsk->flags |= PF_POSTCOREDUMP;
358 	core_state = tsk->signal->core_state;
359 	spin_unlock_irq(&tsk->sighand->siglock);
360 	if (core_state) {
361 		struct core_thread self;
362 
363 		self.task = current;
364 		if (self.task->flags & PF_SIGNALED)
365 			self.next = xchg(&core_state->dumper.next, &self);
366 		else
367 			self.task = NULL;
368 		/*
369 		 * Implies mb(), the result of xchg() must be visible
370 		 * to core_state->dumper.
371 		 */
372 		if (atomic_dec_and_test(&core_state->nr_threads))
373 			complete(&core_state->startup);
374 
375 		for (;;) {
376 			set_current_state(TASK_UNINTERRUPTIBLE);
377 			if (!self.task) /* see coredump_finish() */
378 				break;
379 			freezable_schedule();
380 		}
381 		__set_current_state(TASK_RUNNING);
382 	}
383 }
384 
385 #ifdef CONFIG_MEMCG
386 /*
387  * A task is exiting.   If it owned this mm, find a new owner for the mm.
388  */
389 void mm_update_next_owner(struct mm_struct *mm)
390 {
391 	struct task_struct *c, *g, *p = current;
392 
393 retry:
394 	/*
395 	 * If the exiting or execing task is not the owner, it's
396 	 * someone else's problem.
397 	 */
398 	if (mm->owner != p)
399 		return;
400 	/*
401 	 * The current owner is exiting/execing and there are no other
402 	 * candidates.  Do not leave the mm pointing to a possibly
403 	 * freed task structure.
404 	 */
405 	if (atomic_read(&mm->mm_users) <= 1) {
406 		WRITE_ONCE(mm->owner, NULL);
407 		return;
408 	}
409 
410 	read_lock(&tasklist_lock);
411 	/*
412 	 * Search in the children
413 	 */
414 	list_for_each_entry(c, &p->children, sibling) {
415 		if (c->mm == mm)
416 			goto assign_new_owner;
417 	}
418 
419 	/*
420 	 * Search in the siblings
421 	 */
422 	list_for_each_entry(c, &p->real_parent->children, sibling) {
423 		if (c->mm == mm)
424 			goto assign_new_owner;
425 	}
426 
427 	/*
428 	 * Search through everything else, we should not get here often.
429 	 */
430 	for_each_process(g) {
431 		if (g->flags & PF_KTHREAD)
432 			continue;
433 		for_each_thread(g, c) {
434 			if (c->mm == mm)
435 				goto assign_new_owner;
436 			if (c->mm)
437 				break;
438 		}
439 	}
440 	read_unlock(&tasklist_lock);
441 	/*
442 	 * We found no owner yet mm_users > 1: this implies that we are
443 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
444 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
445 	 */
446 	WRITE_ONCE(mm->owner, NULL);
447 	return;
448 
449 assign_new_owner:
450 	BUG_ON(c == p);
451 	get_task_struct(c);
452 	/*
453 	 * The task_lock protects c->mm from changing.
454 	 * We always want mm->owner->mm == mm
455 	 */
456 	task_lock(c);
457 	/*
458 	 * Delay read_unlock() till we have the task_lock()
459 	 * to ensure that c does not slip away underneath us
460 	 */
461 	read_unlock(&tasklist_lock);
462 	if (c->mm != mm) {
463 		task_unlock(c);
464 		put_task_struct(c);
465 		goto retry;
466 	}
467 	WRITE_ONCE(mm->owner, c);
468 	task_unlock(c);
469 	put_task_struct(c);
470 }
471 #endif /* CONFIG_MEMCG */
472 
473 /*
474  * Turn us into a lazy TLB process if we
475  * aren't already..
476  */
477 static void exit_mm(void)
478 {
479 	struct mm_struct *mm = current->mm;
480 
481 	exit_mm_release(current, mm);
482 	if (!mm)
483 		return;
484 	sync_mm_rss(mm);
485 	mmap_read_lock(mm);
486 	mmgrab(mm);
487 	BUG_ON(mm != current->active_mm);
488 	/* more a memory barrier than a real lock */
489 	task_lock(current);
490 	/*
491 	 * When a thread stops operating on an address space, the loop
492 	 * in membarrier_private_expedited() may not observe that
493 	 * tsk->mm, and the loop in membarrier_global_expedited() may
494 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
495 	 * rq->membarrier_state, so those would not issue an IPI.
496 	 * Membarrier requires a memory barrier after accessing
497 	 * user-space memory, before clearing tsk->mm or the
498 	 * rq->membarrier_state.
499 	 */
500 	smp_mb__after_spinlock();
501 	local_irq_disable();
502 	current->mm = NULL;
503 	membarrier_update_current_mm(NULL);
504 	enter_lazy_tlb(mm, current);
505 	local_irq_enable();
506 	task_unlock(current);
507 	mmap_read_unlock(mm);
508 	mm_update_next_owner(mm);
509 	mmput(mm);
510 	if (test_thread_flag(TIF_MEMDIE))
511 		exit_oom_victim();
512 }
513 
514 static struct task_struct *find_alive_thread(struct task_struct *p)
515 {
516 	struct task_struct *t;
517 
518 	for_each_thread(p, t) {
519 		if (!(t->flags & PF_EXITING))
520 			return t;
521 	}
522 	return NULL;
523 }
524 
525 static struct task_struct *find_child_reaper(struct task_struct *father,
526 						struct list_head *dead)
527 	__releases(&tasklist_lock)
528 	__acquires(&tasklist_lock)
529 {
530 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
531 	struct task_struct *reaper = pid_ns->child_reaper;
532 	struct task_struct *p, *n;
533 
534 	if (likely(reaper != father))
535 		return reaper;
536 
537 	reaper = find_alive_thread(father);
538 	if (reaper) {
539 		pid_ns->child_reaper = reaper;
540 		return reaper;
541 	}
542 
543 	write_unlock_irq(&tasklist_lock);
544 
545 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
546 		list_del_init(&p->ptrace_entry);
547 		release_task(p);
548 	}
549 
550 	zap_pid_ns_processes(pid_ns);
551 	write_lock_irq(&tasklist_lock);
552 
553 	return father;
554 }
555 
556 /*
557  * When we die, we re-parent all our children, and try to:
558  * 1. give them to another thread in our thread group, if such a member exists
559  * 2. give it to the first ancestor process which prctl'd itself as a
560  *    child_subreaper for its children (like a service manager)
561  * 3. give it to the init process (PID 1) in our pid namespace
562  */
563 static struct task_struct *find_new_reaper(struct task_struct *father,
564 					   struct task_struct *child_reaper)
565 {
566 	struct task_struct *thread, *reaper;
567 
568 	thread = find_alive_thread(father);
569 	if (thread)
570 		return thread;
571 
572 	if (father->signal->has_child_subreaper) {
573 		unsigned int ns_level = task_pid(father)->level;
574 		/*
575 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
576 		 * We can't check reaper != child_reaper to ensure we do not
577 		 * cross the namespaces, the exiting parent could be injected
578 		 * by setns() + fork().
579 		 * We check pid->level, this is slightly more efficient than
580 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
581 		 */
582 		for (reaper = father->real_parent;
583 		     task_pid(reaper)->level == ns_level;
584 		     reaper = reaper->real_parent) {
585 			if (reaper == &init_task)
586 				break;
587 			if (!reaper->signal->is_child_subreaper)
588 				continue;
589 			thread = find_alive_thread(reaper);
590 			if (thread)
591 				return thread;
592 		}
593 	}
594 
595 	return child_reaper;
596 }
597 
598 /*
599 * Any that need to be release_task'd are put on the @dead list.
600  */
601 static void reparent_leader(struct task_struct *father, struct task_struct *p,
602 				struct list_head *dead)
603 {
604 	if (unlikely(p->exit_state == EXIT_DEAD))
605 		return;
606 
607 	/* We don't want people slaying init. */
608 	p->exit_signal = SIGCHLD;
609 
610 	/* If it has exited notify the new parent about this child's death. */
611 	if (!p->ptrace &&
612 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
613 		if (do_notify_parent(p, p->exit_signal)) {
614 			p->exit_state = EXIT_DEAD;
615 			list_add(&p->ptrace_entry, dead);
616 		}
617 	}
618 
619 	kill_orphaned_pgrp(p, father);
620 }
621 
622 /*
623  * This does two things:
624  *
625  * A.  Make init inherit all the child processes
626  * B.  Check to see if any process groups have become orphaned
627  *	as a result of our exiting, and if they have any stopped
628  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
629  */
630 static void forget_original_parent(struct task_struct *father,
631 					struct list_head *dead)
632 {
633 	struct task_struct *p, *t, *reaper;
634 
635 	if (unlikely(!list_empty(&father->ptraced)))
636 		exit_ptrace(father, dead);
637 
638 	/* Can drop and reacquire tasklist_lock */
639 	reaper = find_child_reaper(father, dead);
640 	if (list_empty(&father->children))
641 		return;
642 
643 	reaper = find_new_reaper(father, reaper);
644 	list_for_each_entry(p, &father->children, sibling) {
645 		for_each_thread(p, t) {
646 			RCU_INIT_POINTER(t->real_parent, reaper);
647 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
648 			if (likely(!t->ptrace))
649 				t->parent = t->real_parent;
650 			if (t->pdeath_signal)
651 				group_send_sig_info(t->pdeath_signal,
652 						    SEND_SIG_NOINFO, t,
653 						    PIDTYPE_TGID);
654 		}
655 		/*
656 		 * If this is a threaded reparent there is no need to
657 		 * notify anyone anything has happened.
658 		 */
659 		if (!same_thread_group(reaper, father))
660 			reparent_leader(father, p, dead);
661 	}
662 	list_splice_tail_init(&father->children, &reaper->children);
663 }
664 
665 /*
666  * Send signals to all our closest relatives so that they know
667  * to properly mourn us..
668  */
669 static void exit_notify(struct task_struct *tsk, int group_dead)
670 {
671 	bool autoreap;
672 	struct task_struct *p, *n;
673 	LIST_HEAD(dead);
674 
675 	write_lock_irq(&tasklist_lock);
676 	forget_original_parent(tsk, &dead);
677 
678 	if (group_dead)
679 		kill_orphaned_pgrp(tsk->group_leader, NULL);
680 
681 	tsk->exit_state = EXIT_ZOMBIE;
682 	if (unlikely(tsk->ptrace)) {
683 		int sig = thread_group_leader(tsk) &&
684 				thread_group_empty(tsk) &&
685 				!ptrace_reparented(tsk) ?
686 			tsk->exit_signal : SIGCHLD;
687 		autoreap = do_notify_parent(tsk, sig);
688 	} else if (thread_group_leader(tsk)) {
689 		autoreap = thread_group_empty(tsk) &&
690 			do_notify_parent(tsk, tsk->exit_signal);
691 	} else {
692 		autoreap = true;
693 	}
694 
695 	if (autoreap) {
696 		tsk->exit_state = EXIT_DEAD;
697 		list_add(&tsk->ptrace_entry, &dead);
698 	}
699 
700 	/* mt-exec, de_thread() is waiting for group leader */
701 	if (unlikely(tsk->signal->notify_count < 0))
702 		wake_up_process(tsk->signal->group_exec_task);
703 	write_unlock_irq(&tasklist_lock);
704 
705 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
706 		list_del_init(&p->ptrace_entry);
707 		release_task(p);
708 	}
709 }
710 
711 #ifdef CONFIG_DEBUG_STACK_USAGE
712 static void check_stack_usage(void)
713 {
714 	static DEFINE_SPINLOCK(low_water_lock);
715 	static int lowest_to_date = THREAD_SIZE;
716 	unsigned long free;
717 
718 	free = stack_not_used(current);
719 
720 	if (free >= lowest_to_date)
721 		return;
722 
723 	spin_lock(&low_water_lock);
724 	if (free < lowest_to_date) {
725 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
726 			current->comm, task_pid_nr(current), free);
727 		lowest_to_date = free;
728 	}
729 	spin_unlock(&low_water_lock);
730 }
731 #else
732 static inline void check_stack_usage(void) {}
733 #endif
734 
735 void __noreturn do_exit(long code)
736 {
737 	struct task_struct *tsk = current;
738 	int group_dead;
739 
740 	WARN_ON(tsk->plug);
741 
742 	kcov_task_exit(tsk);
743 
744 	coredump_task_exit(tsk);
745 	ptrace_event(PTRACE_EVENT_EXIT, code);
746 
747 	validate_creds_for_do_exit(tsk);
748 
749 	io_uring_files_cancel();
750 	exit_signals(tsk);  /* sets PF_EXITING */
751 
752 	/* sync mm's RSS info before statistics gathering */
753 	if (tsk->mm)
754 		sync_mm_rss(tsk->mm);
755 	acct_update_integrals(tsk);
756 	group_dead = atomic_dec_and_test(&tsk->signal->live);
757 	if (group_dead) {
758 		/*
759 		 * If the last thread of global init has exited, panic
760 		 * immediately to get a useable coredump.
761 		 */
762 		if (unlikely(is_global_init(tsk)))
763 			panic("Attempted to kill init! exitcode=0x%08x\n",
764 				tsk->signal->group_exit_code ?: (int)code);
765 
766 #ifdef CONFIG_POSIX_TIMERS
767 		hrtimer_cancel(&tsk->signal->real_timer);
768 		exit_itimers(tsk->signal);
769 #endif
770 		if (tsk->mm)
771 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
772 	}
773 	acct_collect(code, group_dead);
774 	if (group_dead)
775 		tty_audit_exit();
776 	audit_free(tsk);
777 
778 	tsk->exit_code = code;
779 	taskstats_exit(tsk, group_dead);
780 
781 	exit_mm();
782 
783 	if (group_dead)
784 		acct_process();
785 	trace_sched_process_exit(tsk);
786 
787 	exit_sem(tsk);
788 	exit_shm(tsk);
789 	exit_files(tsk);
790 	exit_fs(tsk);
791 	if (group_dead)
792 		disassociate_ctty(1);
793 	exit_task_namespaces(tsk);
794 	exit_task_work(tsk);
795 	exit_thread(tsk);
796 
797 	/*
798 	 * Flush inherited counters to the parent - before the parent
799 	 * gets woken up by child-exit notifications.
800 	 *
801 	 * because of cgroup mode, must be called before cgroup_exit()
802 	 */
803 	perf_event_exit_task(tsk);
804 
805 	sched_autogroup_exit_task(tsk);
806 	cgroup_exit(tsk);
807 
808 	/*
809 	 * FIXME: do that only when needed, using sched_exit tracepoint
810 	 */
811 	flush_ptrace_hw_breakpoint(tsk);
812 
813 	exit_tasks_rcu_start();
814 	exit_notify(tsk, group_dead);
815 	proc_exit_connector(tsk);
816 	mpol_put_task_policy(tsk);
817 #ifdef CONFIG_FUTEX
818 	if (unlikely(current->pi_state_cache))
819 		kfree(current->pi_state_cache);
820 #endif
821 	/*
822 	 * Make sure we are holding no locks:
823 	 */
824 	debug_check_no_locks_held();
825 
826 	if (tsk->io_context)
827 		exit_io_context(tsk);
828 
829 	if (tsk->splice_pipe)
830 		free_pipe_info(tsk->splice_pipe);
831 
832 	if (tsk->task_frag.page)
833 		put_page(tsk->task_frag.page);
834 
835 	validate_creds_for_do_exit(tsk);
836 	exit_task_stack_account(tsk);
837 
838 	check_stack_usage();
839 	preempt_disable();
840 	if (tsk->nr_dirtied)
841 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
842 	exit_rcu();
843 	exit_tasks_rcu_finish();
844 
845 	lockdep_free_task(tsk);
846 	do_task_dead();
847 }
848 
849 void __noreturn make_task_dead(int signr)
850 {
851 	/*
852 	 * Take the task off the cpu after something catastrophic has
853 	 * happened.
854 	 *
855 	 * We can get here from a kernel oops, sometimes with preemption off.
856 	 * Start by checking for critical errors.
857 	 * Then fix up important state like USER_DS and preemption.
858 	 * Then do everything else.
859 	 */
860 	struct task_struct *tsk = current;
861 
862 	if (unlikely(in_interrupt()))
863 		panic("Aiee, killing interrupt handler!");
864 	if (unlikely(!tsk->pid))
865 		panic("Attempted to kill the idle task!");
866 
867 	if (unlikely(in_atomic())) {
868 		pr_info("note: %s[%d] exited with preempt_count %d\n",
869 			current->comm, task_pid_nr(current),
870 			preempt_count());
871 		preempt_count_set(PREEMPT_ENABLED);
872 	}
873 
874 	/*
875 	 * We're taking recursive faults here in make_task_dead. Safest is to just
876 	 * leave this task alone and wait for reboot.
877 	 */
878 	if (unlikely(tsk->flags & PF_EXITING)) {
879 		pr_alert("Fixing recursive fault but reboot is needed!\n");
880 		futex_exit_recursive(tsk);
881 		tsk->exit_state = EXIT_DEAD;
882 		refcount_inc(&tsk->rcu_users);
883 		do_task_dead();
884 	}
885 
886 	do_exit(signr);
887 }
888 
889 SYSCALL_DEFINE1(exit, int, error_code)
890 {
891 	do_exit((error_code&0xff)<<8);
892 }
893 
894 /*
895  * Take down every thread in the group.  This is called by fatal signals
896  * as well as by sys_exit_group (below).
897  */
898 void __noreturn
899 do_group_exit(int exit_code)
900 {
901 	struct signal_struct *sig = current->signal;
902 
903 	if (sig->flags & SIGNAL_GROUP_EXIT)
904 		exit_code = sig->group_exit_code;
905 	else if (sig->group_exec_task)
906 		exit_code = 0;
907 	else if (!thread_group_empty(current)) {
908 		struct sighand_struct *const sighand = current->sighand;
909 
910 		spin_lock_irq(&sighand->siglock);
911 		if (sig->flags & SIGNAL_GROUP_EXIT)
912 			/* Another thread got here before we took the lock.  */
913 			exit_code = sig->group_exit_code;
914 		else if (sig->group_exec_task)
915 			exit_code = 0;
916 		else {
917 			sig->group_exit_code = exit_code;
918 			sig->flags = SIGNAL_GROUP_EXIT;
919 			zap_other_threads(current);
920 		}
921 		spin_unlock_irq(&sighand->siglock);
922 	}
923 
924 	do_exit(exit_code);
925 	/* NOTREACHED */
926 }
927 
928 /*
929  * this kills every thread in the thread group. Note that any externally
930  * wait4()-ing process will get the correct exit code - even if this
931  * thread is not the thread group leader.
932  */
933 SYSCALL_DEFINE1(exit_group, int, error_code)
934 {
935 	do_group_exit((error_code & 0xff) << 8);
936 	/* NOTREACHED */
937 	return 0;
938 }
939 
940 struct waitid_info {
941 	pid_t pid;
942 	uid_t uid;
943 	int status;
944 	int cause;
945 };
946 
947 struct wait_opts {
948 	enum pid_type		wo_type;
949 	int			wo_flags;
950 	struct pid		*wo_pid;
951 
952 	struct waitid_info	*wo_info;
953 	int			wo_stat;
954 	struct rusage		*wo_rusage;
955 
956 	wait_queue_entry_t		child_wait;
957 	int			notask_error;
958 };
959 
960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
961 {
962 	return	wo->wo_type == PIDTYPE_MAX ||
963 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
964 }
965 
966 static int
967 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
968 {
969 	if (!eligible_pid(wo, p))
970 		return 0;
971 
972 	/*
973 	 * Wait for all children (clone and not) if __WALL is set or
974 	 * if it is traced by us.
975 	 */
976 	if (ptrace || (wo->wo_flags & __WALL))
977 		return 1;
978 
979 	/*
980 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
981 	 * otherwise, wait for non-clone children *only*.
982 	 *
983 	 * Note: a "clone" child here is one that reports to its parent
984 	 * using a signal other than SIGCHLD, or a non-leader thread which
985 	 * we can only see if it is traced by us.
986 	 */
987 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
988 		return 0;
989 
990 	return 1;
991 }
992 
993 /*
994  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
995  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
996  * the lock and this task is uninteresting.  If we return nonzero, we have
997  * released the lock and the system call should return.
998  */
999 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1000 {
1001 	int state, status;
1002 	pid_t pid = task_pid_vnr(p);
1003 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1004 	struct waitid_info *infop;
1005 
1006 	if (!likely(wo->wo_flags & WEXITED))
1007 		return 0;
1008 
1009 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1010 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1011 			? p->signal->group_exit_code : p->exit_code;
1012 		get_task_struct(p);
1013 		read_unlock(&tasklist_lock);
1014 		sched_annotate_sleep();
1015 		if (wo->wo_rusage)
1016 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1017 		put_task_struct(p);
1018 		goto out_info;
1019 	}
1020 	/*
1021 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1022 	 */
1023 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1024 		EXIT_TRACE : EXIT_DEAD;
1025 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1026 		return 0;
1027 	/*
1028 	 * We own this thread, nobody else can reap it.
1029 	 */
1030 	read_unlock(&tasklist_lock);
1031 	sched_annotate_sleep();
1032 
1033 	/*
1034 	 * Check thread_group_leader() to exclude the traced sub-threads.
1035 	 */
1036 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1037 		struct signal_struct *sig = p->signal;
1038 		struct signal_struct *psig = current->signal;
1039 		unsigned long maxrss;
1040 		u64 tgutime, tgstime;
1041 
1042 		/*
1043 		 * The resource counters for the group leader are in its
1044 		 * own task_struct.  Those for dead threads in the group
1045 		 * are in its signal_struct, as are those for the child
1046 		 * processes it has previously reaped.  All these
1047 		 * accumulate in the parent's signal_struct c* fields.
1048 		 *
1049 		 * We don't bother to take a lock here to protect these
1050 		 * p->signal fields because the whole thread group is dead
1051 		 * and nobody can change them.
1052 		 *
1053 		 * psig->stats_lock also protects us from our sub-theads
1054 		 * which can reap other children at the same time. Until
1055 		 * we change k_getrusage()-like users to rely on this lock
1056 		 * we have to take ->siglock as well.
1057 		 *
1058 		 * We use thread_group_cputime_adjusted() to get times for
1059 		 * the thread group, which consolidates times for all threads
1060 		 * in the group including the group leader.
1061 		 */
1062 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1063 		spin_lock_irq(&current->sighand->siglock);
1064 		write_seqlock(&psig->stats_lock);
1065 		psig->cutime += tgutime + sig->cutime;
1066 		psig->cstime += tgstime + sig->cstime;
1067 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1068 		psig->cmin_flt +=
1069 			p->min_flt + sig->min_flt + sig->cmin_flt;
1070 		psig->cmaj_flt +=
1071 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1072 		psig->cnvcsw +=
1073 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1074 		psig->cnivcsw +=
1075 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1076 		psig->cinblock +=
1077 			task_io_get_inblock(p) +
1078 			sig->inblock + sig->cinblock;
1079 		psig->coublock +=
1080 			task_io_get_oublock(p) +
1081 			sig->oublock + sig->coublock;
1082 		maxrss = max(sig->maxrss, sig->cmaxrss);
1083 		if (psig->cmaxrss < maxrss)
1084 			psig->cmaxrss = maxrss;
1085 		task_io_accounting_add(&psig->ioac, &p->ioac);
1086 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1087 		write_sequnlock(&psig->stats_lock);
1088 		spin_unlock_irq(&current->sighand->siglock);
1089 	}
1090 
1091 	if (wo->wo_rusage)
1092 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1093 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1094 		? p->signal->group_exit_code : p->exit_code;
1095 	wo->wo_stat = status;
1096 
1097 	if (state == EXIT_TRACE) {
1098 		write_lock_irq(&tasklist_lock);
1099 		/* We dropped tasklist, ptracer could die and untrace */
1100 		ptrace_unlink(p);
1101 
1102 		/* If parent wants a zombie, don't release it now */
1103 		state = EXIT_ZOMBIE;
1104 		if (do_notify_parent(p, p->exit_signal))
1105 			state = EXIT_DEAD;
1106 		p->exit_state = state;
1107 		write_unlock_irq(&tasklist_lock);
1108 	}
1109 	if (state == EXIT_DEAD)
1110 		release_task(p);
1111 
1112 out_info:
1113 	infop = wo->wo_info;
1114 	if (infop) {
1115 		if ((status & 0x7f) == 0) {
1116 			infop->cause = CLD_EXITED;
1117 			infop->status = status >> 8;
1118 		} else {
1119 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1120 			infop->status = status & 0x7f;
1121 		}
1122 		infop->pid = pid;
1123 		infop->uid = uid;
1124 	}
1125 
1126 	return pid;
1127 }
1128 
1129 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1130 {
1131 	if (ptrace) {
1132 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1133 			return &p->exit_code;
1134 	} else {
1135 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1136 			return &p->signal->group_exit_code;
1137 	}
1138 	return NULL;
1139 }
1140 
1141 /**
1142  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1143  * @wo: wait options
1144  * @ptrace: is the wait for ptrace
1145  * @p: task to wait for
1146  *
1147  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1148  *
1149  * CONTEXT:
1150  * read_lock(&tasklist_lock), which is released if return value is
1151  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1152  *
1153  * RETURNS:
1154  * 0 if wait condition didn't exist and search for other wait conditions
1155  * should continue.  Non-zero return, -errno on failure and @p's pid on
1156  * success, implies that tasklist_lock is released and wait condition
1157  * search should terminate.
1158  */
1159 static int wait_task_stopped(struct wait_opts *wo,
1160 				int ptrace, struct task_struct *p)
1161 {
1162 	struct waitid_info *infop;
1163 	int exit_code, *p_code, why;
1164 	uid_t uid = 0; /* unneeded, required by compiler */
1165 	pid_t pid;
1166 
1167 	/*
1168 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1169 	 */
1170 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1171 		return 0;
1172 
1173 	if (!task_stopped_code(p, ptrace))
1174 		return 0;
1175 
1176 	exit_code = 0;
1177 	spin_lock_irq(&p->sighand->siglock);
1178 
1179 	p_code = task_stopped_code(p, ptrace);
1180 	if (unlikely(!p_code))
1181 		goto unlock_sig;
1182 
1183 	exit_code = *p_code;
1184 	if (!exit_code)
1185 		goto unlock_sig;
1186 
1187 	if (!unlikely(wo->wo_flags & WNOWAIT))
1188 		*p_code = 0;
1189 
1190 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1191 unlock_sig:
1192 	spin_unlock_irq(&p->sighand->siglock);
1193 	if (!exit_code)
1194 		return 0;
1195 
1196 	/*
1197 	 * Now we are pretty sure this task is interesting.
1198 	 * Make sure it doesn't get reaped out from under us while we
1199 	 * give up the lock and then examine it below.  We don't want to
1200 	 * keep holding onto the tasklist_lock while we call getrusage and
1201 	 * possibly take page faults for user memory.
1202 	 */
1203 	get_task_struct(p);
1204 	pid = task_pid_vnr(p);
1205 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1206 	read_unlock(&tasklist_lock);
1207 	sched_annotate_sleep();
1208 	if (wo->wo_rusage)
1209 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1210 	put_task_struct(p);
1211 
1212 	if (likely(!(wo->wo_flags & WNOWAIT)))
1213 		wo->wo_stat = (exit_code << 8) | 0x7f;
1214 
1215 	infop = wo->wo_info;
1216 	if (infop) {
1217 		infop->cause = why;
1218 		infop->status = exit_code;
1219 		infop->pid = pid;
1220 		infop->uid = uid;
1221 	}
1222 	return pid;
1223 }
1224 
1225 /*
1226  * Handle do_wait work for one task in a live, non-stopped state.
1227  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1228  * the lock and this task is uninteresting.  If we return nonzero, we have
1229  * released the lock and the system call should return.
1230  */
1231 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1232 {
1233 	struct waitid_info *infop;
1234 	pid_t pid;
1235 	uid_t uid;
1236 
1237 	if (!unlikely(wo->wo_flags & WCONTINUED))
1238 		return 0;
1239 
1240 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1241 		return 0;
1242 
1243 	spin_lock_irq(&p->sighand->siglock);
1244 	/* Re-check with the lock held.  */
1245 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1246 		spin_unlock_irq(&p->sighand->siglock);
1247 		return 0;
1248 	}
1249 	if (!unlikely(wo->wo_flags & WNOWAIT))
1250 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1251 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1252 	spin_unlock_irq(&p->sighand->siglock);
1253 
1254 	pid = task_pid_vnr(p);
1255 	get_task_struct(p);
1256 	read_unlock(&tasklist_lock);
1257 	sched_annotate_sleep();
1258 	if (wo->wo_rusage)
1259 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1260 	put_task_struct(p);
1261 
1262 	infop = wo->wo_info;
1263 	if (!infop) {
1264 		wo->wo_stat = 0xffff;
1265 	} else {
1266 		infop->cause = CLD_CONTINUED;
1267 		infop->pid = pid;
1268 		infop->uid = uid;
1269 		infop->status = SIGCONT;
1270 	}
1271 	return pid;
1272 }
1273 
1274 /*
1275  * Consider @p for a wait by @parent.
1276  *
1277  * -ECHILD should be in ->notask_error before the first call.
1278  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1279  * Returns zero if the search for a child should continue;
1280  * then ->notask_error is 0 if @p is an eligible child,
1281  * or still -ECHILD.
1282  */
1283 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1284 				struct task_struct *p)
1285 {
1286 	/*
1287 	 * We can race with wait_task_zombie() from another thread.
1288 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1289 	 * can't confuse the checks below.
1290 	 */
1291 	int exit_state = READ_ONCE(p->exit_state);
1292 	int ret;
1293 
1294 	if (unlikely(exit_state == EXIT_DEAD))
1295 		return 0;
1296 
1297 	ret = eligible_child(wo, ptrace, p);
1298 	if (!ret)
1299 		return ret;
1300 
1301 	if (unlikely(exit_state == EXIT_TRACE)) {
1302 		/*
1303 		 * ptrace == 0 means we are the natural parent. In this case
1304 		 * we should clear notask_error, debugger will notify us.
1305 		 */
1306 		if (likely(!ptrace))
1307 			wo->notask_error = 0;
1308 		return 0;
1309 	}
1310 
1311 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1312 		/*
1313 		 * If it is traced by its real parent's group, just pretend
1314 		 * the caller is ptrace_do_wait() and reap this child if it
1315 		 * is zombie.
1316 		 *
1317 		 * This also hides group stop state from real parent; otherwise
1318 		 * a single stop can be reported twice as group and ptrace stop.
1319 		 * If a ptracer wants to distinguish these two events for its
1320 		 * own children it should create a separate process which takes
1321 		 * the role of real parent.
1322 		 */
1323 		if (!ptrace_reparented(p))
1324 			ptrace = 1;
1325 	}
1326 
1327 	/* slay zombie? */
1328 	if (exit_state == EXIT_ZOMBIE) {
1329 		/* we don't reap group leaders with subthreads */
1330 		if (!delay_group_leader(p)) {
1331 			/*
1332 			 * A zombie ptracee is only visible to its ptracer.
1333 			 * Notification and reaping will be cascaded to the
1334 			 * real parent when the ptracer detaches.
1335 			 */
1336 			if (unlikely(ptrace) || likely(!p->ptrace))
1337 				return wait_task_zombie(wo, p);
1338 		}
1339 
1340 		/*
1341 		 * Allow access to stopped/continued state via zombie by
1342 		 * falling through.  Clearing of notask_error is complex.
1343 		 *
1344 		 * When !@ptrace:
1345 		 *
1346 		 * If WEXITED is set, notask_error should naturally be
1347 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1348 		 * so, if there are live subthreads, there are events to
1349 		 * wait for.  If all subthreads are dead, it's still safe
1350 		 * to clear - this function will be called again in finite
1351 		 * amount time once all the subthreads are released and
1352 		 * will then return without clearing.
1353 		 *
1354 		 * When @ptrace:
1355 		 *
1356 		 * Stopped state is per-task and thus can't change once the
1357 		 * target task dies.  Only continued and exited can happen.
1358 		 * Clear notask_error if WCONTINUED | WEXITED.
1359 		 */
1360 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1361 			wo->notask_error = 0;
1362 	} else {
1363 		/*
1364 		 * @p is alive and it's gonna stop, continue or exit, so
1365 		 * there always is something to wait for.
1366 		 */
1367 		wo->notask_error = 0;
1368 	}
1369 
1370 	/*
1371 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1372 	 * is used and the two don't interact with each other.
1373 	 */
1374 	ret = wait_task_stopped(wo, ptrace, p);
1375 	if (ret)
1376 		return ret;
1377 
1378 	/*
1379 	 * Wait for continued.  There's only one continued state and the
1380 	 * ptracer can consume it which can confuse the real parent.  Don't
1381 	 * use WCONTINUED from ptracer.  You don't need or want it.
1382 	 */
1383 	return wait_task_continued(wo, p);
1384 }
1385 
1386 /*
1387  * Do the work of do_wait() for one thread in the group, @tsk.
1388  *
1389  * -ECHILD should be in ->notask_error before the first call.
1390  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1391  * Returns zero if the search for a child should continue; then
1392  * ->notask_error is 0 if there were any eligible children,
1393  * or still -ECHILD.
1394  */
1395 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1396 {
1397 	struct task_struct *p;
1398 
1399 	list_for_each_entry(p, &tsk->children, sibling) {
1400 		int ret = wait_consider_task(wo, 0, p);
1401 
1402 		if (ret)
1403 			return ret;
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1410 {
1411 	struct task_struct *p;
1412 
1413 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1414 		int ret = wait_consider_task(wo, 1, p);
1415 
1416 		if (ret)
1417 			return ret;
1418 	}
1419 
1420 	return 0;
1421 }
1422 
1423 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1424 				int sync, void *key)
1425 {
1426 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1427 						child_wait);
1428 	struct task_struct *p = key;
1429 
1430 	if (!eligible_pid(wo, p))
1431 		return 0;
1432 
1433 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1434 		return 0;
1435 
1436 	return default_wake_function(wait, mode, sync, key);
1437 }
1438 
1439 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1440 {
1441 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1442 			   TASK_INTERRUPTIBLE, p);
1443 }
1444 
1445 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1446 				 struct task_struct *target)
1447 {
1448 	struct task_struct *parent =
1449 		!ptrace ? target->real_parent : target->parent;
1450 
1451 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1452 				     same_thread_group(current, parent));
1453 }
1454 
1455 /*
1456  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1457  * and tracee lists to find the target task.
1458  */
1459 static int do_wait_pid(struct wait_opts *wo)
1460 {
1461 	bool ptrace;
1462 	struct task_struct *target;
1463 	int retval;
1464 
1465 	ptrace = false;
1466 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1467 	if (target && is_effectively_child(wo, ptrace, target)) {
1468 		retval = wait_consider_task(wo, ptrace, target);
1469 		if (retval)
1470 			return retval;
1471 	}
1472 
1473 	ptrace = true;
1474 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1475 	if (target && target->ptrace &&
1476 	    is_effectively_child(wo, ptrace, target)) {
1477 		retval = wait_consider_task(wo, ptrace, target);
1478 		if (retval)
1479 			return retval;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 static long do_wait(struct wait_opts *wo)
1486 {
1487 	int retval;
1488 
1489 	trace_sched_process_wait(wo->wo_pid);
1490 
1491 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1492 	wo->child_wait.private = current;
1493 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1494 repeat:
1495 	/*
1496 	 * If there is nothing that can match our criteria, just get out.
1497 	 * We will clear ->notask_error to zero if we see any child that
1498 	 * might later match our criteria, even if we are not able to reap
1499 	 * it yet.
1500 	 */
1501 	wo->notask_error = -ECHILD;
1502 	if ((wo->wo_type < PIDTYPE_MAX) &&
1503 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1504 		goto notask;
1505 
1506 	set_current_state(TASK_INTERRUPTIBLE);
1507 	read_lock(&tasklist_lock);
1508 
1509 	if (wo->wo_type == PIDTYPE_PID) {
1510 		retval = do_wait_pid(wo);
1511 		if (retval)
1512 			goto end;
1513 	} else {
1514 		struct task_struct *tsk = current;
1515 
1516 		do {
1517 			retval = do_wait_thread(wo, tsk);
1518 			if (retval)
1519 				goto end;
1520 
1521 			retval = ptrace_do_wait(wo, tsk);
1522 			if (retval)
1523 				goto end;
1524 
1525 			if (wo->wo_flags & __WNOTHREAD)
1526 				break;
1527 		} while_each_thread(current, tsk);
1528 	}
1529 	read_unlock(&tasklist_lock);
1530 
1531 notask:
1532 	retval = wo->notask_error;
1533 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1534 		retval = -ERESTARTSYS;
1535 		if (!signal_pending(current)) {
1536 			schedule();
1537 			goto repeat;
1538 		}
1539 	}
1540 end:
1541 	__set_current_state(TASK_RUNNING);
1542 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1543 	return retval;
1544 }
1545 
1546 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1547 			  int options, struct rusage *ru)
1548 {
1549 	struct wait_opts wo;
1550 	struct pid *pid = NULL;
1551 	enum pid_type type;
1552 	long ret;
1553 	unsigned int f_flags = 0;
1554 
1555 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1556 			__WNOTHREAD|__WCLONE|__WALL))
1557 		return -EINVAL;
1558 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1559 		return -EINVAL;
1560 
1561 	switch (which) {
1562 	case P_ALL:
1563 		type = PIDTYPE_MAX;
1564 		break;
1565 	case P_PID:
1566 		type = PIDTYPE_PID;
1567 		if (upid <= 0)
1568 			return -EINVAL;
1569 
1570 		pid = find_get_pid(upid);
1571 		break;
1572 	case P_PGID:
1573 		type = PIDTYPE_PGID;
1574 		if (upid < 0)
1575 			return -EINVAL;
1576 
1577 		if (upid)
1578 			pid = find_get_pid(upid);
1579 		else
1580 			pid = get_task_pid(current, PIDTYPE_PGID);
1581 		break;
1582 	case P_PIDFD:
1583 		type = PIDTYPE_PID;
1584 		if (upid < 0)
1585 			return -EINVAL;
1586 
1587 		pid = pidfd_get_pid(upid, &f_flags);
1588 		if (IS_ERR(pid))
1589 			return PTR_ERR(pid);
1590 
1591 		break;
1592 	default:
1593 		return -EINVAL;
1594 	}
1595 
1596 	wo.wo_type	= type;
1597 	wo.wo_pid	= pid;
1598 	wo.wo_flags	= options;
1599 	wo.wo_info	= infop;
1600 	wo.wo_rusage	= ru;
1601 	if (f_flags & O_NONBLOCK)
1602 		wo.wo_flags |= WNOHANG;
1603 
1604 	ret = do_wait(&wo);
1605 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1606 		ret = -EAGAIN;
1607 
1608 	put_pid(pid);
1609 	return ret;
1610 }
1611 
1612 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1613 		infop, int, options, struct rusage __user *, ru)
1614 {
1615 	struct rusage r;
1616 	struct waitid_info info = {.status = 0};
1617 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1618 	int signo = 0;
1619 
1620 	if (err > 0) {
1621 		signo = SIGCHLD;
1622 		err = 0;
1623 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1624 			return -EFAULT;
1625 	}
1626 	if (!infop)
1627 		return err;
1628 
1629 	if (!user_write_access_begin(infop, sizeof(*infop)))
1630 		return -EFAULT;
1631 
1632 	unsafe_put_user(signo, &infop->si_signo, Efault);
1633 	unsafe_put_user(0, &infop->si_errno, Efault);
1634 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1635 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1636 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1637 	unsafe_put_user(info.status, &infop->si_status, Efault);
1638 	user_write_access_end();
1639 	return err;
1640 Efault:
1641 	user_write_access_end();
1642 	return -EFAULT;
1643 }
1644 
1645 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1646 		  struct rusage *ru)
1647 {
1648 	struct wait_opts wo;
1649 	struct pid *pid = NULL;
1650 	enum pid_type type;
1651 	long ret;
1652 
1653 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1654 			__WNOTHREAD|__WCLONE|__WALL))
1655 		return -EINVAL;
1656 
1657 	/* -INT_MIN is not defined */
1658 	if (upid == INT_MIN)
1659 		return -ESRCH;
1660 
1661 	if (upid == -1)
1662 		type = PIDTYPE_MAX;
1663 	else if (upid < 0) {
1664 		type = PIDTYPE_PGID;
1665 		pid = find_get_pid(-upid);
1666 	} else if (upid == 0) {
1667 		type = PIDTYPE_PGID;
1668 		pid = get_task_pid(current, PIDTYPE_PGID);
1669 	} else /* upid > 0 */ {
1670 		type = PIDTYPE_PID;
1671 		pid = find_get_pid(upid);
1672 	}
1673 
1674 	wo.wo_type	= type;
1675 	wo.wo_pid	= pid;
1676 	wo.wo_flags	= options | WEXITED;
1677 	wo.wo_info	= NULL;
1678 	wo.wo_stat	= 0;
1679 	wo.wo_rusage	= ru;
1680 	ret = do_wait(&wo);
1681 	put_pid(pid);
1682 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1683 		ret = -EFAULT;
1684 
1685 	return ret;
1686 }
1687 
1688 int kernel_wait(pid_t pid, int *stat)
1689 {
1690 	struct wait_opts wo = {
1691 		.wo_type	= PIDTYPE_PID,
1692 		.wo_pid		= find_get_pid(pid),
1693 		.wo_flags	= WEXITED,
1694 	};
1695 	int ret;
1696 
1697 	ret = do_wait(&wo);
1698 	if (ret > 0 && wo.wo_stat)
1699 		*stat = wo.wo_stat;
1700 	put_pid(wo.wo_pid);
1701 	return ret;
1702 }
1703 
1704 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1705 		int, options, struct rusage __user *, ru)
1706 {
1707 	struct rusage r;
1708 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1709 
1710 	if (err > 0) {
1711 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1712 			return -EFAULT;
1713 	}
1714 	return err;
1715 }
1716 
1717 #ifdef __ARCH_WANT_SYS_WAITPID
1718 
1719 /*
1720  * sys_waitpid() remains for compatibility. waitpid() should be
1721  * implemented by calling sys_wait4() from libc.a.
1722  */
1723 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1724 {
1725 	return kernel_wait4(pid, stat_addr, options, NULL);
1726 }
1727 
1728 #endif
1729 
1730 #ifdef CONFIG_COMPAT
1731 COMPAT_SYSCALL_DEFINE4(wait4,
1732 	compat_pid_t, pid,
1733 	compat_uint_t __user *, stat_addr,
1734 	int, options,
1735 	struct compat_rusage __user *, ru)
1736 {
1737 	struct rusage r;
1738 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1739 	if (err > 0) {
1740 		if (ru && put_compat_rusage(&r, ru))
1741 			return -EFAULT;
1742 	}
1743 	return err;
1744 }
1745 
1746 COMPAT_SYSCALL_DEFINE5(waitid,
1747 		int, which, compat_pid_t, pid,
1748 		struct compat_siginfo __user *, infop, int, options,
1749 		struct compat_rusage __user *, uru)
1750 {
1751 	struct rusage ru;
1752 	struct waitid_info info = {.status = 0};
1753 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1754 	int signo = 0;
1755 	if (err > 0) {
1756 		signo = SIGCHLD;
1757 		err = 0;
1758 		if (uru) {
1759 			/* kernel_waitid() overwrites everything in ru */
1760 			if (COMPAT_USE_64BIT_TIME)
1761 				err = copy_to_user(uru, &ru, sizeof(ru));
1762 			else
1763 				err = put_compat_rusage(&ru, uru);
1764 			if (err)
1765 				return -EFAULT;
1766 		}
1767 	}
1768 
1769 	if (!infop)
1770 		return err;
1771 
1772 	if (!user_write_access_begin(infop, sizeof(*infop)))
1773 		return -EFAULT;
1774 
1775 	unsafe_put_user(signo, &infop->si_signo, Efault);
1776 	unsafe_put_user(0, &infop->si_errno, Efault);
1777 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1778 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1779 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1780 	unsafe_put_user(info.status, &infop->si_status, Efault);
1781 	user_write_access_end();
1782 	return err;
1783 Efault:
1784 	user_write_access_end();
1785 	return -EFAULT;
1786 }
1787 #endif
1788 
1789 /**
1790  * thread_group_exited - check that a thread group has exited
1791  * @pid: tgid of thread group to be checked.
1792  *
1793  * Test if the thread group represented by tgid has exited (all
1794  * threads are zombies, dead or completely gone).
1795  *
1796  * Return: true if the thread group has exited. false otherwise.
1797  */
1798 bool thread_group_exited(struct pid *pid)
1799 {
1800 	struct task_struct *task;
1801 	bool exited;
1802 
1803 	rcu_read_lock();
1804 	task = pid_task(pid, PIDTYPE_PID);
1805 	exited = !task ||
1806 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1807 	rcu_read_unlock();
1808 
1809 	return exited;
1810 }
1811 EXPORT_SYMBOL(thread_group_exited);
1812 
1813 __weak void abort(void)
1814 {
1815 	BUG();
1816 
1817 	/* if that doesn't kill us, halt */
1818 	panic("Oops failed to kill thread");
1819 }
1820 EXPORT_SYMBOL(abort);
1821