xref: /linux/kernel/exit.c (revision 023ff3eee6255390384e050d9daab1490c88edf8)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/cpuset.h>
34 #include <linux/syscalls.h>
35 #include <linux/signal.h>
36 #include <linux/posix-timers.h>
37 #include <linux/cn_proc.h>
38 #include <linux/mutex.h>
39 #include <linux/futex.h>
40 #include <linux/compat.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/pgtable.h>
49 #include <asm/mmu_context.h>
50 
51 extern void sem_exit (void);
52 
53 static void exit_mm(struct task_struct * tsk);
54 
55 static void __unhash_process(struct task_struct *p)
56 {
57 	nr_threads--;
58 	detach_pid(p, PIDTYPE_PID);
59 	if (thread_group_leader(p)) {
60 		detach_pid(p, PIDTYPE_PGID);
61 		detach_pid(p, PIDTYPE_SID);
62 
63 		list_del_rcu(&p->tasks);
64 		__get_cpu_var(process_counts)--;
65 	}
66 	list_del_rcu(&p->thread_group);
67 	remove_parent(p);
68 }
69 
70 /*
71  * This function expects the tasklist_lock write-locked.
72  */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 	struct signal_struct *sig = tsk->signal;
76 	struct sighand_struct *sighand;
77 
78 	BUG_ON(!sig);
79 	BUG_ON(!atomic_read(&sig->count));
80 
81 	rcu_read_lock();
82 	sighand = rcu_dereference(tsk->sighand);
83 	spin_lock(&sighand->siglock);
84 
85 	posix_cpu_timers_exit(tsk);
86 	if (atomic_dec_and_test(&sig->count))
87 		posix_cpu_timers_exit_group(tsk);
88 	else {
89 		/*
90 		 * If there is any task waiting for the group exit
91 		 * then notify it:
92 		 */
93 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
94 			wake_up_process(sig->group_exit_task);
95 			sig->group_exit_task = NULL;
96 		}
97 		if (tsk == sig->curr_target)
98 			sig->curr_target = next_thread(tsk);
99 		/*
100 		 * Accumulate here the counters for all threads but the
101 		 * group leader as they die, so they can be added into
102 		 * the process-wide totals when those are taken.
103 		 * The group leader stays around as a zombie as long
104 		 * as there are other threads.  When it gets reaped,
105 		 * the exit.c code will add its counts into these totals.
106 		 * We won't ever get here for the group leader, since it
107 		 * will have been the last reference on the signal_struct.
108 		 */
109 		sig->utime = cputime_add(sig->utime, tsk->utime);
110 		sig->stime = cputime_add(sig->stime, tsk->stime);
111 		sig->min_flt += tsk->min_flt;
112 		sig->maj_flt += tsk->maj_flt;
113 		sig->nvcsw += tsk->nvcsw;
114 		sig->nivcsw += tsk->nivcsw;
115 		sig->sched_time += tsk->sched_time;
116 		sig = NULL; /* Marker for below. */
117 	}
118 
119 	__unhash_process(tsk);
120 
121 	tsk->signal = NULL;
122 	tsk->sighand = NULL;
123 	spin_unlock(&sighand->siglock);
124 	rcu_read_unlock();
125 
126 	__cleanup_sighand(sighand);
127 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
128 	flush_sigqueue(&tsk->pending);
129 	if (sig) {
130 		flush_sigqueue(&sig->shared_pending);
131 		taskstats_tgid_free(sig);
132 		__cleanup_signal(sig);
133 	}
134 }
135 
136 static void delayed_put_task_struct(struct rcu_head *rhp)
137 {
138 	put_task_struct(container_of(rhp, struct task_struct, rcu));
139 }
140 
141 void release_task(struct task_struct * p)
142 {
143 	struct task_struct *leader;
144 	int zap_leader;
145 repeat:
146 	atomic_dec(&p->user->processes);
147 	write_lock_irq(&tasklist_lock);
148 	ptrace_unlink(p);
149 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 	__exit_signal(p);
151 
152 	/*
153 	 * If we are the last non-leader member of the thread
154 	 * group, and the leader is zombie, then notify the
155 	 * group leader's parent process. (if it wants notification.)
156 	 */
157 	zap_leader = 0;
158 	leader = p->group_leader;
159 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 		BUG_ON(leader->exit_signal == -1);
161 		do_notify_parent(leader, leader->exit_signal);
162 		/*
163 		 * If we were the last child thread and the leader has
164 		 * exited already, and the leader's parent ignores SIGCHLD,
165 		 * then we are the one who should release the leader.
166 		 *
167 		 * do_notify_parent() will have marked it self-reaping in
168 		 * that case.
169 		 */
170 		zap_leader = (leader->exit_signal == -1);
171 	}
172 
173 	sched_exit(p);
174 	write_unlock_irq(&tasklist_lock);
175 	proc_flush_task(p);
176 	release_thread(p);
177 	call_rcu(&p->rcu, delayed_put_task_struct);
178 
179 	p = leader;
180 	if (unlikely(zap_leader))
181 		goto repeat;
182 }
183 
184 /*
185  * This checks not only the pgrp, but falls back on the pid if no
186  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
187  * without this...
188  *
189  * The caller must hold rcu lock or the tasklist lock.
190  */
191 struct pid *session_of_pgrp(struct pid *pgrp)
192 {
193 	struct task_struct *p;
194 	struct pid *sid = NULL;
195 
196 	p = pid_task(pgrp, PIDTYPE_PGID);
197 	if (p == NULL)
198 		p = pid_task(pgrp, PIDTYPE_PID);
199 	if (p != NULL)
200 		sid = task_session(p);
201 
202 	return sid;
203 }
204 
205 /*
206  * Determine if a process group is "orphaned", according to the POSIX
207  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
208  * by terminal-generated stop signals.  Newly orphaned process groups are
209  * to receive a SIGHUP and a SIGCONT.
210  *
211  * "I ask you, have you ever known what it is to be an orphan?"
212  */
213 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
214 {
215 	struct task_struct *p;
216 	int ret = 1;
217 
218 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
219 		if (p == ignored_task
220 				|| p->exit_state
221 				|| is_init(p->real_parent))
222 			continue;
223 		if (task_pgrp(p->real_parent) != pgrp &&
224 		    task_session(p->real_parent) == task_session(p)) {
225 			ret = 0;
226 			break;
227 		}
228 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
229 	return ret;	/* (sighing) "Often!" */
230 }
231 
232 int is_current_pgrp_orphaned(void)
233 {
234 	int retval;
235 
236 	read_lock(&tasklist_lock);
237 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
238 	read_unlock(&tasklist_lock);
239 
240 	return retval;
241 }
242 
243 static int has_stopped_jobs(struct pid *pgrp)
244 {
245 	int retval = 0;
246 	struct task_struct *p;
247 
248 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 		if (p->state != TASK_STOPPED)
250 			continue;
251 		retval = 1;
252 		break;
253 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 	return retval;
255 }
256 
257 /**
258  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
259  *
260  * If a kernel thread is launched as a result of a system call, or if
261  * it ever exits, it should generally reparent itself to kthreadd so it
262  * isn't in the way of other processes and is correctly cleaned up on exit.
263  *
264  * The various task state such as scheduling policy and priority may have
265  * been inherited from a user process, so we reset them to sane values here.
266  *
267  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
268  */
269 static void reparent_to_kthreadd(void)
270 {
271 	write_lock_irq(&tasklist_lock);
272 
273 	ptrace_unlink(current);
274 	/* Reparent to init */
275 	remove_parent(current);
276 	current->real_parent = current->parent = kthreadd_task;
277 	add_parent(current);
278 
279 	/* Set the exit signal to SIGCHLD so we signal init on exit */
280 	current->exit_signal = SIGCHLD;
281 
282 	if (!has_rt_policy(current) && (task_nice(current) < 0))
283 		set_user_nice(current, 0);
284 	/* cpus_allowed? */
285 	/* rt_priority? */
286 	/* signals? */
287 	security_task_reparent_to_init(current);
288 	memcpy(current->signal->rlim, init_task.signal->rlim,
289 	       sizeof(current->signal->rlim));
290 	atomic_inc(&(INIT_USER->__count));
291 	write_unlock_irq(&tasklist_lock);
292 	switch_uid(INIT_USER);
293 }
294 
295 void __set_special_pids(pid_t session, pid_t pgrp)
296 {
297 	struct task_struct *curr = current->group_leader;
298 
299 	if (process_session(curr) != session) {
300 		detach_pid(curr, PIDTYPE_SID);
301 		set_signal_session(curr->signal, session);
302 		attach_pid(curr, PIDTYPE_SID, session);
303 	}
304 	if (process_group(curr) != pgrp) {
305 		detach_pid(curr, PIDTYPE_PGID);
306 		curr->signal->pgrp = pgrp;
307 		attach_pid(curr, PIDTYPE_PGID, pgrp);
308 	}
309 }
310 
311 static void set_special_pids(pid_t session, pid_t pgrp)
312 {
313 	write_lock_irq(&tasklist_lock);
314 	__set_special_pids(session, pgrp);
315 	write_unlock_irq(&tasklist_lock);
316 }
317 
318 /*
319  * Let kernel threads use this to say that they
320  * allow a certain signal (since daemonize() will
321  * have disabled all of them by default).
322  */
323 int allow_signal(int sig)
324 {
325 	if (!valid_signal(sig) || sig < 1)
326 		return -EINVAL;
327 
328 	spin_lock_irq(&current->sighand->siglock);
329 	sigdelset(&current->blocked, sig);
330 	if (!current->mm) {
331 		/* Kernel threads handle their own signals.
332 		   Let the signal code know it'll be handled, so
333 		   that they don't get converted to SIGKILL or
334 		   just silently dropped */
335 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
336 	}
337 	recalc_sigpending();
338 	spin_unlock_irq(&current->sighand->siglock);
339 	return 0;
340 }
341 
342 EXPORT_SYMBOL(allow_signal);
343 
344 int disallow_signal(int sig)
345 {
346 	if (!valid_signal(sig) || sig < 1)
347 		return -EINVAL;
348 
349 	spin_lock_irq(&current->sighand->siglock);
350 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
351 	recalc_sigpending();
352 	spin_unlock_irq(&current->sighand->siglock);
353 	return 0;
354 }
355 
356 EXPORT_SYMBOL(disallow_signal);
357 
358 /*
359  *	Put all the gunge required to become a kernel thread without
360  *	attached user resources in one place where it belongs.
361  */
362 
363 void daemonize(const char *name, ...)
364 {
365 	va_list args;
366 	struct fs_struct *fs;
367 	sigset_t blocked;
368 
369 	va_start(args, name);
370 	vsnprintf(current->comm, sizeof(current->comm), name, args);
371 	va_end(args);
372 
373 	/*
374 	 * If we were started as result of loading a module, close all of the
375 	 * user space pages.  We don't need them, and if we didn't close them
376 	 * they would be locked into memory.
377 	 */
378 	exit_mm(current);
379 
380 	set_special_pids(1, 1);
381 	proc_clear_tty(current);
382 
383 	/* Block and flush all signals */
384 	sigfillset(&blocked);
385 	sigprocmask(SIG_BLOCK, &blocked, NULL);
386 	flush_signals(current);
387 
388 	/* Become as one with the init task */
389 
390 	exit_fs(current);	/* current->fs->count--; */
391 	fs = init_task.fs;
392 	current->fs = fs;
393 	atomic_inc(&fs->count);
394 
395 	exit_task_namespaces(current);
396 	current->nsproxy = init_task.nsproxy;
397 	get_task_namespaces(current);
398 
399  	exit_files(current);
400 	current->files = init_task.files;
401 	atomic_inc(&current->files->count);
402 
403 	reparent_to_kthreadd();
404 }
405 
406 EXPORT_SYMBOL(daemonize);
407 
408 static void close_files(struct files_struct * files)
409 {
410 	int i, j;
411 	struct fdtable *fdt;
412 
413 	j = 0;
414 
415 	/*
416 	 * It is safe to dereference the fd table without RCU or
417 	 * ->file_lock because this is the last reference to the
418 	 * files structure.
419 	 */
420 	fdt = files_fdtable(files);
421 	for (;;) {
422 		unsigned long set;
423 		i = j * __NFDBITS;
424 		if (i >= fdt->max_fds)
425 			break;
426 		set = fdt->open_fds->fds_bits[j++];
427 		while (set) {
428 			if (set & 1) {
429 				struct file * file = xchg(&fdt->fd[i], NULL);
430 				if (file) {
431 					filp_close(file, files);
432 					cond_resched();
433 				}
434 			}
435 			i++;
436 			set >>= 1;
437 		}
438 	}
439 }
440 
441 struct files_struct *get_files_struct(struct task_struct *task)
442 {
443 	struct files_struct *files;
444 
445 	task_lock(task);
446 	files = task->files;
447 	if (files)
448 		atomic_inc(&files->count);
449 	task_unlock(task);
450 
451 	return files;
452 }
453 
454 void fastcall put_files_struct(struct files_struct *files)
455 {
456 	struct fdtable *fdt;
457 
458 	if (atomic_dec_and_test(&files->count)) {
459 		close_files(files);
460 		/*
461 		 * Free the fd and fdset arrays if we expanded them.
462 		 * If the fdtable was embedded, pass files for freeing
463 		 * at the end of the RCU grace period. Otherwise,
464 		 * you can free files immediately.
465 		 */
466 		fdt = files_fdtable(files);
467 		if (fdt != &files->fdtab)
468 			kmem_cache_free(files_cachep, files);
469 		free_fdtable(fdt);
470 	}
471 }
472 
473 EXPORT_SYMBOL(put_files_struct);
474 
475 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
476 {
477 	struct files_struct *old;
478 
479 	old = tsk->files;
480 	task_lock(tsk);
481 	tsk->files = files;
482 	task_unlock(tsk);
483 	put_files_struct(old);
484 }
485 EXPORT_SYMBOL(reset_files_struct);
486 
487 static inline void __exit_files(struct task_struct *tsk)
488 {
489 	struct files_struct * files = tsk->files;
490 
491 	if (files) {
492 		task_lock(tsk);
493 		tsk->files = NULL;
494 		task_unlock(tsk);
495 		put_files_struct(files);
496 	}
497 }
498 
499 void exit_files(struct task_struct *tsk)
500 {
501 	__exit_files(tsk);
502 }
503 
504 static inline void __put_fs_struct(struct fs_struct *fs)
505 {
506 	/* No need to hold fs->lock if we are killing it */
507 	if (atomic_dec_and_test(&fs->count)) {
508 		dput(fs->root);
509 		mntput(fs->rootmnt);
510 		dput(fs->pwd);
511 		mntput(fs->pwdmnt);
512 		if (fs->altroot) {
513 			dput(fs->altroot);
514 			mntput(fs->altrootmnt);
515 		}
516 		kmem_cache_free(fs_cachep, fs);
517 	}
518 }
519 
520 void put_fs_struct(struct fs_struct *fs)
521 {
522 	__put_fs_struct(fs);
523 }
524 
525 static inline void __exit_fs(struct task_struct *tsk)
526 {
527 	struct fs_struct * fs = tsk->fs;
528 
529 	if (fs) {
530 		task_lock(tsk);
531 		tsk->fs = NULL;
532 		task_unlock(tsk);
533 		__put_fs_struct(fs);
534 	}
535 }
536 
537 void exit_fs(struct task_struct *tsk)
538 {
539 	__exit_fs(tsk);
540 }
541 
542 EXPORT_SYMBOL_GPL(exit_fs);
543 
544 /*
545  * Turn us into a lazy TLB process if we
546  * aren't already..
547  */
548 static void exit_mm(struct task_struct * tsk)
549 {
550 	struct mm_struct *mm = tsk->mm;
551 
552 	mm_release(tsk, mm);
553 	if (!mm)
554 		return;
555 	/*
556 	 * Serialize with any possible pending coredump.
557 	 * We must hold mmap_sem around checking core_waiters
558 	 * and clearing tsk->mm.  The core-inducing thread
559 	 * will increment core_waiters for each thread in the
560 	 * group with ->mm != NULL.
561 	 */
562 	down_read(&mm->mmap_sem);
563 	if (mm->core_waiters) {
564 		up_read(&mm->mmap_sem);
565 		down_write(&mm->mmap_sem);
566 		if (!--mm->core_waiters)
567 			complete(mm->core_startup_done);
568 		up_write(&mm->mmap_sem);
569 
570 		wait_for_completion(&mm->core_done);
571 		down_read(&mm->mmap_sem);
572 	}
573 	atomic_inc(&mm->mm_count);
574 	BUG_ON(mm != tsk->active_mm);
575 	/* more a memory barrier than a real lock */
576 	task_lock(tsk);
577 	tsk->mm = NULL;
578 	up_read(&mm->mmap_sem);
579 	enter_lazy_tlb(mm, current);
580 	task_unlock(tsk);
581 	mmput(mm);
582 }
583 
584 static inline void
585 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
586 {
587 	/*
588 	 * Make sure we're not reparenting to ourselves and that
589 	 * the parent is not a zombie.
590 	 */
591 	BUG_ON(p == reaper || reaper->exit_state);
592 	p->real_parent = reaper;
593 }
594 
595 static void
596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
597 {
598 	if (p->pdeath_signal)
599 		/* We already hold the tasklist_lock here.  */
600 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
601 
602 	/* Move the child from its dying parent to the new one.  */
603 	if (unlikely(traced)) {
604 		/* Preserve ptrace links if someone else is tracing this child.  */
605 		list_del_init(&p->ptrace_list);
606 		if (p->parent != p->real_parent)
607 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
608 	} else {
609 		/* If this child is being traced, then we're the one tracing it
610 		 * anyway, so let go of it.
611 		 */
612 		p->ptrace = 0;
613 		remove_parent(p);
614 		p->parent = p->real_parent;
615 		add_parent(p);
616 
617 		if (p->state == TASK_TRACED) {
618 			/*
619 			 * If it was at a trace stop, turn it into
620 			 * a normal stop since it's no longer being
621 			 * traced.
622 			 */
623 			ptrace_untrace(p);
624 		}
625 	}
626 
627 	/* If this is a threaded reparent there is no need to
628 	 * notify anyone anything has happened.
629 	 */
630 	if (p->real_parent->group_leader == father->group_leader)
631 		return;
632 
633 	/* We don't want people slaying init.  */
634 	if (p->exit_signal != -1)
635 		p->exit_signal = SIGCHLD;
636 
637 	/* If we'd notified the old parent about this child's death,
638 	 * also notify the new parent.
639 	 */
640 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
641 	    p->exit_signal != -1 && thread_group_empty(p))
642 		do_notify_parent(p, p->exit_signal);
643 
644 	/*
645 	 * process group orphan check
646 	 * Case ii: Our child is in a different pgrp
647 	 * than we are, and it was the only connection
648 	 * outside, so the child pgrp is now orphaned.
649 	 */
650 	if ((task_pgrp(p) != task_pgrp(father)) &&
651 	    (task_session(p) == task_session(father))) {
652 		struct pid *pgrp = task_pgrp(p);
653 
654 		if (will_become_orphaned_pgrp(pgrp, NULL) &&
655 		    has_stopped_jobs(pgrp)) {
656 			__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 			__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
658 		}
659 	}
660 }
661 
662 /*
663  * When we die, we re-parent all our children.
664  * Try to give them to another thread in our thread
665  * group, and if no such member exists, give it to
666  * the child reaper process (ie "init") in our pid
667  * space.
668  */
669 static void
670 forget_original_parent(struct task_struct *father, struct list_head *to_release)
671 {
672 	struct task_struct *p, *reaper = father;
673 	struct list_head *_p, *_n;
674 
675 	do {
676 		reaper = next_thread(reaper);
677 		if (reaper == father) {
678 			reaper = child_reaper(father);
679 			break;
680 		}
681 	} while (reaper->exit_state);
682 
683 	/*
684 	 * There are only two places where our children can be:
685 	 *
686 	 * - in our child list
687 	 * - in our ptraced child list
688 	 *
689 	 * Search them and reparent children.
690 	 */
691 	list_for_each_safe(_p, _n, &father->children) {
692 		int ptrace;
693 		p = list_entry(_p, struct task_struct, sibling);
694 
695 		ptrace = p->ptrace;
696 
697 		/* if father isn't the real parent, then ptrace must be enabled */
698 		BUG_ON(father != p->real_parent && !ptrace);
699 
700 		if (father == p->real_parent) {
701 			/* reparent with a reaper, real father it's us */
702 			choose_new_parent(p, reaper);
703 			reparent_thread(p, father, 0);
704 		} else {
705 			/* reparent ptraced task to its real parent */
706 			__ptrace_unlink (p);
707 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 			    thread_group_empty(p))
709 				do_notify_parent(p, p->exit_signal);
710 		}
711 
712 		/*
713 		 * if the ptraced child is a zombie with exit_signal == -1
714 		 * we must collect it before we exit, or it will remain
715 		 * zombie forever since we prevented it from self-reap itself
716 		 * while it was being traced by us, to be able to see it in wait4.
717 		 */
718 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 			list_add(&p->ptrace_list, to_release);
720 	}
721 	list_for_each_safe(_p, _n, &father->ptrace_children) {
722 		p = list_entry(_p, struct task_struct, ptrace_list);
723 		choose_new_parent(p, reaper);
724 		reparent_thread(p, father, 1);
725 	}
726 }
727 
728 /*
729  * Send signals to all our closest relatives so that they know
730  * to properly mourn us..
731  */
732 static void exit_notify(struct task_struct *tsk)
733 {
734 	int state;
735 	struct task_struct *t;
736 	struct list_head ptrace_dead, *_p, *_n;
737 	struct pid *pgrp;
738 
739 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
740 	    && !thread_group_empty(tsk)) {
741 		/*
742 		 * This occurs when there was a race between our exit
743 		 * syscall and a group signal choosing us as the one to
744 		 * wake up.  It could be that we are the only thread
745 		 * alerted to check for pending signals, but another thread
746 		 * should be woken now to take the signal since we will not.
747 		 * Now we'll wake all the threads in the group just to make
748 		 * sure someone gets all the pending signals.
749 		 */
750 		read_lock(&tasklist_lock);
751 		spin_lock_irq(&tsk->sighand->siglock);
752 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
753 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
754 				recalc_sigpending_tsk(t);
755 				if (signal_pending(t))
756 					signal_wake_up(t, 0);
757 			}
758 		spin_unlock_irq(&tsk->sighand->siglock);
759 		read_unlock(&tasklist_lock);
760 	}
761 
762 	write_lock_irq(&tasklist_lock);
763 
764 	/*
765 	 * This does two things:
766 	 *
767   	 * A.  Make init inherit all the child processes
768 	 * B.  Check to see if any process groups have become orphaned
769 	 *	as a result of our exiting, and if they have any stopped
770 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
771 	 */
772 
773 	INIT_LIST_HEAD(&ptrace_dead);
774 	forget_original_parent(tsk, &ptrace_dead);
775 	BUG_ON(!list_empty(&tsk->children));
776 	BUG_ON(!list_empty(&tsk->ptrace_children));
777 
778 	/*
779 	 * Check to see if any process groups have become orphaned
780 	 * as a result of our exiting, and if they have any stopped
781 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
782 	 *
783 	 * Case i: Our father is in a different pgrp than we are
784 	 * and we were the only connection outside, so our pgrp
785 	 * is about to become orphaned.
786 	 */
787 
788 	t = tsk->real_parent;
789 
790 	pgrp = task_pgrp(tsk);
791 	if ((task_pgrp(t) != pgrp) &&
792 	    (task_session(t) == task_session(tsk)) &&
793 	    will_become_orphaned_pgrp(pgrp, tsk) &&
794 	    has_stopped_jobs(pgrp)) {
795 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
796 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
797 	}
798 
799 	/* Let father know we died
800 	 *
801 	 * Thread signals are configurable, but you aren't going to use
802 	 * that to send signals to arbitary processes.
803 	 * That stops right now.
804 	 *
805 	 * If the parent exec id doesn't match the exec id we saved
806 	 * when we started then we know the parent has changed security
807 	 * domain.
808 	 *
809 	 * If our self_exec id doesn't match our parent_exec_id then
810 	 * we have changed execution domain as these two values started
811 	 * the same after a fork.
812 	 *
813 	 */
814 
815 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
816 	    ( tsk->parent_exec_id != t->self_exec_id  ||
817 	      tsk->self_exec_id != tsk->parent_exec_id)
818 	    && !capable(CAP_KILL))
819 		tsk->exit_signal = SIGCHLD;
820 
821 
822 	/* If something other than our normal parent is ptracing us, then
823 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
824 	 * only has special meaning to our real parent.
825 	 */
826 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
827 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
828 		do_notify_parent(tsk, signal);
829 	} else if (tsk->ptrace) {
830 		do_notify_parent(tsk, SIGCHLD);
831 	}
832 
833 	state = EXIT_ZOMBIE;
834 	if (tsk->exit_signal == -1 &&
835 	    (likely(tsk->ptrace == 0) ||
836 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
837 		state = EXIT_DEAD;
838 	tsk->exit_state = state;
839 
840 	write_unlock_irq(&tasklist_lock);
841 
842 	list_for_each_safe(_p, _n, &ptrace_dead) {
843 		list_del_init(_p);
844 		t = list_entry(_p, struct task_struct, ptrace_list);
845 		release_task(t);
846 	}
847 
848 	/* If the process is dead, release it - nobody will wait for it */
849 	if (state == EXIT_DEAD)
850 		release_task(tsk);
851 }
852 
853 fastcall NORET_TYPE void do_exit(long code)
854 {
855 	struct task_struct *tsk = current;
856 	int group_dead;
857 
858 	profile_task_exit(tsk);
859 
860 	WARN_ON(atomic_read(&tsk->fs_excl));
861 
862 	if (unlikely(in_interrupt()))
863 		panic("Aiee, killing interrupt handler!");
864 	if (unlikely(!tsk->pid))
865 		panic("Attempted to kill the idle task!");
866 	if (unlikely(tsk == child_reaper(tsk))) {
867 		if (tsk->nsproxy->pid_ns != &init_pid_ns)
868 			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
869 		else
870 			panic("Attempted to kill init!");
871 	}
872 
873 
874 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
875 		current->ptrace_message = code;
876 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
877 	}
878 
879 	/*
880 	 * We're taking recursive faults here in do_exit. Safest is to just
881 	 * leave this task alone and wait for reboot.
882 	 */
883 	if (unlikely(tsk->flags & PF_EXITING)) {
884 		printk(KERN_ALERT
885 			"Fixing recursive fault but reboot is needed!\n");
886 		if (tsk->io_context)
887 			exit_io_context();
888 		set_current_state(TASK_UNINTERRUPTIBLE);
889 		schedule();
890 	}
891 
892 	tsk->flags |= PF_EXITING;
893 
894 	if (unlikely(in_atomic()))
895 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
896 				current->comm, current->pid,
897 				preempt_count());
898 
899 	acct_update_integrals(tsk);
900 	if (tsk->mm) {
901 		update_hiwater_rss(tsk->mm);
902 		update_hiwater_vm(tsk->mm);
903 	}
904 	group_dead = atomic_dec_and_test(&tsk->signal->live);
905 	if (group_dead) {
906  		hrtimer_cancel(&tsk->signal->real_timer);
907 		exit_itimers(tsk->signal);
908 	}
909 	acct_collect(code, group_dead);
910 	if (unlikely(tsk->robust_list))
911 		exit_robust_list(tsk);
912 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
913 	if (unlikely(tsk->compat_robust_list))
914 		compat_exit_robust_list(tsk);
915 #endif
916 	if (unlikely(tsk->audit_context))
917 		audit_free(tsk);
918 
919 	taskstats_exit(tsk, group_dead);
920 
921 	exit_mm(tsk);
922 
923 	if (group_dead)
924 		acct_process();
925 	exit_sem(tsk);
926 	__exit_files(tsk);
927 	__exit_fs(tsk);
928 	exit_thread();
929 	cpuset_exit(tsk);
930 	exit_keys(tsk);
931 
932 	if (group_dead && tsk->signal->leader)
933 		disassociate_ctty(1);
934 
935 	module_put(task_thread_info(tsk)->exec_domain->module);
936 	if (tsk->binfmt)
937 		module_put(tsk->binfmt->module);
938 
939 	tsk->exit_code = code;
940 	proc_exit_connector(tsk);
941 	exit_task_namespaces(tsk);
942 	exit_notify(tsk);
943 #ifdef CONFIG_NUMA
944 	mpol_free(tsk->mempolicy);
945 	tsk->mempolicy = NULL;
946 #endif
947 	/*
948 	 * This must happen late, after the PID is not
949 	 * hashed anymore:
950 	 */
951 	if (unlikely(!list_empty(&tsk->pi_state_list)))
952 		exit_pi_state_list(tsk);
953 	if (unlikely(current->pi_state_cache))
954 		kfree(current->pi_state_cache);
955 	/*
956 	 * Make sure we are holding no locks:
957 	 */
958 	debug_check_no_locks_held(tsk);
959 
960 	if (tsk->io_context)
961 		exit_io_context();
962 
963 	if (tsk->splice_pipe)
964 		__free_pipe_info(tsk->splice_pipe);
965 
966 	preempt_disable();
967 	/* causes final put_task_struct in finish_task_switch(). */
968 	tsk->state = TASK_DEAD;
969 
970 	schedule();
971 	BUG();
972 	/* Avoid "noreturn function does return".  */
973 	for (;;)
974 		cpu_relax();	/* For when BUG is null */
975 }
976 
977 EXPORT_SYMBOL_GPL(do_exit);
978 
979 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
980 {
981 	if (comp)
982 		complete(comp);
983 
984 	do_exit(code);
985 }
986 
987 EXPORT_SYMBOL(complete_and_exit);
988 
989 asmlinkage long sys_exit(int error_code)
990 {
991 	do_exit((error_code&0xff)<<8);
992 }
993 
994 /*
995  * Take down every thread in the group.  This is called by fatal signals
996  * as well as by sys_exit_group (below).
997  */
998 NORET_TYPE void
999 do_group_exit(int exit_code)
1000 {
1001 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1002 
1003 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1004 		exit_code = current->signal->group_exit_code;
1005 	else if (!thread_group_empty(current)) {
1006 		struct signal_struct *const sig = current->signal;
1007 		struct sighand_struct *const sighand = current->sighand;
1008 		spin_lock_irq(&sighand->siglock);
1009 		if (sig->flags & SIGNAL_GROUP_EXIT)
1010 			/* Another thread got here before we took the lock.  */
1011 			exit_code = sig->group_exit_code;
1012 		else {
1013 			sig->group_exit_code = exit_code;
1014 			zap_other_threads(current);
1015 		}
1016 		spin_unlock_irq(&sighand->siglock);
1017 	}
1018 
1019 	do_exit(exit_code);
1020 	/* NOTREACHED */
1021 }
1022 
1023 /*
1024  * this kills every thread in the thread group. Note that any externally
1025  * wait4()-ing process will get the correct exit code - even if this
1026  * thread is not the thread group leader.
1027  */
1028 asmlinkage void sys_exit_group(int error_code)
1029 {
1030 	do_group_exit((error_code & 0xff) << 8);
1031 }
1032 
1033 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1034 {
1035 	int err;
1036 
1037 	if (pid > 0) {
1038 		if (p->pid != pid)
1039 			return 0;
1040 	} else if (!pid) {
1041 		if (process_group(p) != process_group(current))
1042 			return 0;
1043 	} else if (pid != -1) {
1044 		if (process_group(p) != -pid)
1045 			return 0;
1046 	}
1047 
1048 	/*
1049 	 * Do not consider detached threads that are
1050 	 * not ptraced:
1051 	 */
1052 	if (p->exit_signal == -1 && !p->ptrace)
1053 		return 0;
1054 
1055 	/* Wait for all children (clone and not) if __WALL is set;
1056 	 * otherwise, wait for clone children *only* if __WCLONE is
1057 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1058 	 * A "clone" child here is one that reports to its parent
1059 	 * using a signal other than SIGCHLD.) */
1060 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1061 	    && !(options & __WALL))
1062 		return 0;
1063 	/*
1064 	 * Do not consider thread group leaders that are
1065 	 * in a non-empty thread group:
1066 	 */
1067 	if (delay_group_leader(p))
1068 		return 2;
1069 
1070 	err = security_task_wait(p);
1071 	if (err)
1072 		return err;
1073 
1074 	return 1;
1075 }
1076 
1077 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1078 			       int why, int status,
1079 			       struct siginfo __user *infop,
1080 			       struct rusage __user *rusagep)
1081 {
1082 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1083 
1084 	put_task_struct(p);
1085 	if (!retval)
1086 		retval = put_user(SIGCHLD, &infop->si_signo);
1087 	if (!retval)
1088 		retval = put_user(0, &infop->si_errno);
1089 	if (!retval)
1090 		retval = put_user((short)why, &infop->si_code);
1091 	if (!retval)
1092 		retval = put_user(pid, &infop->si_pid);
1093 	if (!retval)
1094 		retval = put_user(uid, &infop->si_uid);
1095 	if (!retval)
1096 		retval = put_user(status, &infop->si_status);
1097 	if (!retval)
1098 		retval = pid;
1099 	return retval;
1100 }
1101 
1102 /*
1103  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1104  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1105  * the lock and this task is uninteresting.  If we return nonzero, we have
1106  * released the lock and the system call should return.
1107  */
1108 static int wait_task_zombie(struct task_struct *p, int noreap,
1109 			    struct siginfo __user *infop,
1110 			    int __user *stat_addr, struct rusage __user *ru)
1111 {
1112 	unsigned long state;
1113 	int retval;
1114 	int status;
1115 
1116 	if (unlikely(noreap)) {
1117 		pid_t pid = p->pid;
1118 		uid_t uid = p->uid;
1119 		int exit_code = p->exit_code;
1120 		int why, status;
1121 
1122 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1123 			return 0;
1124 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1125 			return 0;
1126 		get_task_struct(p);
1127 		read_unlock(&tasklist_lock);
1128 		if ((exit_code & 0x7f) == 0) {
1129 			why = CLD_EXITED;
1130 			status = exit_code >> 8;
1131 		} else {
1132 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1133 			status = exit_code & 0x7f;
1134 		}
1135 		return wait_noreap_copyout(p, pid, uid, why,
1136 					   status, infop, ru);
1137 	}
1138 
1139 	/*
1140 	 * Try to move the task's state to DEAD
1141 	 * only one thread is allowed to do this:
1142 	 */
1143 	state = xchg(&p->exit_state, EXIT_DEAD);
1144 	if (state != EXIT_ZOMBIE) {
1145 		BUG_ON(state != EXIT_DEAD);
1146 		return 0;
1147 	}
1148 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1149 		/*
1150 		 * This can only happen in a race with a ptraced thread
1151 		 * dying on another processor.
1152 		 */
1153 		return 0;
1154 	}
1155 
1156 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1157 		struct signal_struct *psig;
1158 		struct signal_struct *sig;
1159 
1160 		/*
1161 		 * The resource counters for the group leader are in its
1162 		 * own task_struct.  Those for dead threads in the group
1163 		 * are in its signal_struct, as are those for the child
1164 		 * processes it has previously reaped.  All these
1165 		 * accumulate in the parent's signal_struct c* fields.
1166 		 *
1167 		 * We don't bother to take a lock here to protect these
1168 		 * p->signal fields, because they are only touched by
1169 		 * __exit_signal, which runs with tasklist_lock
1170 		 * write-locked anyway, and so is excluded here.  We do
1171 		 * need to protect the access to p->parent->signal fields,
1172 		 * as other threads in the parent group can be right
1173 		 * here reaping other children at the same time.
1174 		 */
1175 		spin_lock_irq(&p->parent->sighand->siglock);
1176 		psig = p->parent->signal;
1177 		sig = p->signal;
1178 		psig->cutime =
1179 			cputime_add(psig->cutime,
1180 			cputime_add(p->utime,
1181 			cputime_add(sig->utime,
1182 				    sig->cutime)));
1183 		psig->cstime =
1184 			cputime_add(psig->cstime,
1185 			cputime_add(p->stime,
1186 			cputime_add(sig->stime,
1187 				    sig->cstime)));
1188 		psig->cmin_flt +=
1189 			p->min_flt + sig->min_flt + sig->cmin_flt;
1190 		psig->cmaj_flt +=
1191 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1192 		psig->cnvcsw +=
1193 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1194 		psig->cnivcsw +=
1195 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1196 		spin_unlock_irq(&p->parent->sighand->siglock);
1197 	}
1198 
1199 	/*
1200 	 * Now we are sure this task is interesting, and no other
1201 	 * thread can reap it because we set its state to EXIT_DEAD.
1202 	 */
1203 	read_unlock(&tasklist_lock);
1204 
1205 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1206 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1207 		? p->signal->group_exit_code : p->exit_code;
1208 	if (!retval && stat_addr)
1209 		retval = put_user(status, stat_addr);
1210 	if (!retval && infop)
1211 		retval = put_user(SIGCHLD, &infop->si_signo);
1212 	if (!retval && infop)
1213 		retval = put_user(0, &infop->si_errno);
1214 	if (!retval && infop) {
1215 		int why;
1216 
1217 		if ((status & 0x7f) == 0) {
1218 			why = CLD_EXITED;
1219 			status >>= 8;
1220 		} else {
1221 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1222 			status &= 0x7f;
1223 		}
1224 		retval = put_user((short)why, &infop->si_code);
1225 		if (!retval)
1226 			retval = put_user(status, &infop->si_status);
1227 	}
1228 	if (!retval && infop)
1229 		retval = put_user(p->pid, &infop->si_pid);
1230 	if (!retval && infop)
1231 		retval = put_user(p->uid, &infop->si_uid);
1232 	if (retval) {
1233 		// TODO: is this safe?
1234 		p->exit_state = EXIT_ZOMBIE;
1235 		return retval;
1236 	}
1237 	retval = p->pid;
1238 	if (p->real_parent != p->parent) {
1239 		write_lock_irq(&tasklist_lock);
1240 		/* Double-check with lock held.  */
1241 		if (p->real_parent != p->parent) {
1242 			__ptrace_unlink(p);
1243 			// TODO: is this safe?
1244 			p->exit_state = EXIT_ZOMBIE;
1245 			/*
1246 			 * If this is not a detached task, notify the parent.
1247 			 * If it's still not detached after that, don't release
1248 			 * it now.
1249 			 */
1250 			if (p->exit_signal != -1) {
1251 				do_notify_parent(p, p->exit_signal);
1252 				if (p->exit_signal != -1)
1253 					p = NULL;
1254 			}
1255 		}
1256 		write_unlock_irq(&tasklist_lock);
1257 	}
1258 	if (p != NULL)
1259 		release_task(p);
1260 	BUG_ON(!retval);
1261 	return retval;
1262 }
1263 
1264 /*
1265  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1266  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1267  * the lock and this task is uninteresting.  If we return nonzero, we have
1268  * released the lock and the system call should return.
1269  */
1270 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1271 			     int noreap, struct siginfo __user *infop,
1272 			     int __user *stat_addr, struct rusage __user *ru)
1273 {
1274 	int retval, exit_code;
1275 
1276 	if (!p->exit_code)
1277 		return 0;
1278 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1279 	    p->signal && p->signal->group_stop_count > 0)
1280 		/*
1281 		 * A group stop is in progress and this is the group leader.
1282 		 * We won't report until all threads have stopped.
1283 		 */
1284 		return 0;
1285 
1286 	/*
1287 	 * Now we are pretty sure this task is interesting.
1288 	 * Make sure it doesn't get reaped out from under us while we
1289 	 * give up the lock and then examine it below.  We don't want to
1290 	 * keep holding onto the tasklist_lock while we call getrusage and
1291 	 * possibly take page faults for user memory.
1292 	 */
1293 	get_task_struct(p);
1294 	read_unlock(&tasklist_lock);
1295 
1296 	if (unlikely(noreap)) {
1297 		pid_t pid = p->pid;
1298 		uid_t uid = p->uid;
1299 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1300 
1301 		exit_code = p->exit_code;
1302 		if (unlikely(!exit_code) ||
1303 		    unlikely(p->state & TASK_TRACED))
1304 			goto bail_ref;
1305 		return wait_noreap_copyout(p, pid, uid,
1306 					   why, (exit_code << 8) | 0x7f,
1307 					   infop, ru);
1308 	}
1309 
1310 	write_lock_irq(&tasklist_lock);
1311 
1312 	/*
1313 	 * This uses xchg to be atomic with the thread resuming and setting
1314 	 * it.  It must also be done with the write lock held to prevent a
1315 	 * race with the EXIT_ZOMBIE case.
1316 	 */
1317 	exit_code = xchg(&p->exit_code, 0);
1318 	if (unlikely(p->exit_state)) {
1319 		/*
1320 		 * The task resumed and then died.  Let the next iteration
1321 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1322 		 * already be zero here if it resumed and did _exit(0).
1323 		 * The task itself is dead and won't touch exit_code again;
1324 		 * other processors in this function are locked out.
1325 		 */
1326 		p->exit_code = exit_code;
1327 		exit_code = 0;
1328 	}
1329 	if (unlikely(exit_code == 0)) {
1330 		/*
1331 		 * Another thread in this function got to it first, or it
1332 		 * resumed, or it resumed and then died.
1333 		 */
1334 		write_unlock_irq(&tasklist_lock);
1335 bail_ref:
1336 		put_task_struct(p);
1337 		/*
1338 		 * We are returning to the wait loop without having successfully
1339 		 * removed the process and having released the lock. We cannot
1340 		 * continue, since the "p" task pointer is potentially stale.
1341 		 *
1342 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1343 		 * beginning. Do _not_ re-acquire the lock.
1344 		 */
1345 		return -EAGAIN;
1346 	}
1347 
1348 	/* move to end of parent's list to avoid starvation */
1349 	remove_parent(p);
1350 	add_parent(p);
1351 
1352 	write_unlock_irq(&tasklist_lock);
1353 
1354 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1355 	if (!retval && stat_addr)
1356 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1357 	if (!retval && infop)
1358 		retval = put_user(SIGCHLD, &infop->si_signo);
1359 	if (!retval && infop)
1360 		retval = put_user(0, &infop->si_errno);
1361 	if (!retval && infop)
1362 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1363 					  ? CLD_TRAPPED : CLD_STOPPED),
1364 				  &infop->si_code);
1365 	if (!retval && infop)
1366 		retval = put_user(exit_code, &infop->si_status);
1367 	if (!retval && infop)
1368 		retval = put_user(p->pid, &infop->si_pid);
1369 	if (!retval && infop)
1370 		retval = put_user(p->uid, &infop->si_uid);
1371 	if (!retval)
1372 		retval = p->pid;
1373 	put_task_struct(p);
1374 
1375 	BUG_ON(!retval);
1376 	return retval;
1377 }
1378 
1379 /*
1380  * Handle do_wait work for one task in a live, non-stopped state.
1381  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1382  * the lock and this task is uninteresting.  If we return nonzero, we have
1383  * released the lock and the system call should return.
1384  */
1385 static int wait_task_continued(struct task_struct *p, int noreap,
1386 			       struct siginfo __user *infop,
1387 			       int __user *stat_addr, struct rusage __user *ru)
1388 {
1389 	int retval;
1390 	pid_t pid;
1391 	uid_t uid;
1392 
1393 	if (unlikely(!p->signal))
1394 		return 0;
1395 
1396 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1397 		return 0;
1398 
1399 	spin_lock_irq(&p->sighand->siglock);
1400 	/* Re-check with the lock held.  */
1401 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1402 		spin_unlock_irq(&p->sighand->siglock);
1403 		return 0;
1404 	}
1405 	if (!noreap)
1406 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1407 	spin_unlock_irq(&p->sighand->siglock);
1408 
1409 	pid = p->pid;
1410 	uid = p->uid;
1411 	get_task_struct(p);
1412 	read_unlock(&tasklist_lock);
1413 
1414 	if (!infop) {
1415 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1416 		put_task_struct(p);
1417 		if (!retval && stat_addr)
1418 			retval = put_user(0xffff, stat_addr);
1419 		if (!retval)
1420 			retval = p->pid;
1421 	} else {
1422 		retval = wait_noreap_copyout(p, pid, uid,
1423 					     CLD_CONTINUED, SIGCONT,
1424 					     infop, ru);
1425 		BUG_ON(retval == 0);
1426 	}
1427 
1428 	return retval;
1429 }
1430 
1431 
1432 static inline int my_ptrace_child(struct task_struct *p)
1433 {
1434 	if (!(p->ptrace & PT_PTRACED))
1435 		return 0;
1436 	if (!(p->ptrace & PT_ATTACHED))
1437 		return 1;
1438 	/*
1439 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1440 	 * we are the attacher.  If we are the real parent, this is a race
1441 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1442 	 * which we have to switch the parent links, but has already set
1443 	 * the flags in p->ptrace.
1444 	 */
1445 	return (p->parent != p->real_parent);
1446 }
1447 
1448 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1449 		    int __user *stat_addr, struct rusage __user *ru)
1450 {
1451 	DECLARE_WAITQUEUE(wait, current);
1452 	struct task_struct *tsk;
1453 	int flag, retval;
1454 	int allowed, denied;
1455 
1456 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1457 repeat:
1458 	/*
1459 	 * We will set this flag if we see any child that might later
1460 	 * match our criteria, even if we are not able to reap it yet.
1461 	 */
1462 	flag = 0;
1463 	allowed = denied = 0;
1464 	current->state = TASK_INTERRUPTIBLE;
1465 	read_lock(&tasklist_lock);
1466 	tsk = current;
1467 	do {
1468 		struct task_struct *p;
1469 		struct list_head *_p;
1470 		int ret;
1471 
1472 		list_for_each(_p,&tsk->children) {
1473 			p = list_entry(_p, struct task_struct, sibling);
1474 
1475 			ret = eligible_child(pid, options, p);
1476 			if (!ret)
1477 				continue;
1478 
1479 			if (unlikely(ret < 0)) {
1480 				denied = ret;
1481 				continue;
1482 			}
1483 			allowed = 1;
1484 
1485 			switch (p->state) {
1486 			case TASK_TRACED:
1487 				/*
1488 				 * When we hit the race with PTRACE_ATTACH,
1489 				 * we will not report this child.  But the
1490 				 * race means it has not yet been moved to
1491 				 * our ptrace_children list, so we need to
1492 				 * set the flag here to avoid a spurious ECHILD
1493 				 * when the race happens with the only child.
1494 				 */
1495 				flag = 1;
1496 				if (!my_ptrace_child(p))
1497 					continue;
1498 				/*FALLTHROUGH*/
1499 			case TASK_STOPPED:
1500 				/*
1501 				 * It's stopped now, so it might later
1502 				 * continue, exit, or stop again.
1503 				 */
1504 				flag = 1;
1505 				if (!(options & WUNTRACED) &&
1506 				    !my_ptrace_child(p))
1507 					continue;
1508 				retval = wait_task_stopped(p, ret == 2,
1509 							   (options & WNOWAIT),
1510 							   infop,
1511 							   stat_addr, ru);
1512 				if (retval == -EAGAIN)
1513 					goto repeat;
1514 				if (retval != 0) /* He released the lock.  */
1515 					goto end;
1516 				break;
1517 			default:
1518 			// case EXIT_DEAD:
1519 				if (p->exit_state == EXIT_DEAD)
1520 					continue;
1521 			// case EXIT_ZOMBIE:
1522 				if (p->exit_state == EXIT_ZOMBIE) {
1523 					/*
1524 					 * Eligible but we cannot release
1525 					 * it yet:
1526 					 */
1527 					if (ret == 2)
1528 						goto check_continued;
1529 					if (!likely(options & WEXITED))
1530 						continue;
1531 					retval = wait_task_zombie(
1532 						p, (options & WNOWAIT),
1533 						infop, stat_addr, ru);
1534 					/* He released the lock.  */
1535 					if (retval != 0)
1536 						goto end;
1537 					break;
1538 				}
1539 check_continued:
1540 				/*
1541 				 * It's running now, so it might later
1542 				 * exit, stop, or stop and then continue.
1543 				 */
1544 				flag = 1;
1545 				if (!unlikely(options & WCONTINUED))
1546 					continue;
1547 				retval = wait_task_continued(
1548 					p, (options & WNOWAIT),
1549 					infop, stat_addr, ru);
1550 				if (retval != 0) /* He released the lock.  */
1551 					goto end;
1552 				break;
1553 			}
1554 		}
1555 		if (!flag) {
1556 			list_for_each(_p, &tsk->ptrace_children) {
1557 				p = list_entry(_p, struct task_struct,
1558 						ptrace_list);
1559 				if (!eligible_child(pid, options, p))
1560 					continue;
1561 				flag = 1;
1562 				break;
1563 			}
1564 		}
1565 		if (options & __WNOTHREAD)
1566 			break;
1567 		tsk = next_thread(tsk);
1568 		BUG_ON(tsk->signal != current->signal);
1569 	} while (tsk != current);
1570 
1571 	read_unlock(&tasklist_lock);
1572 	if (flag) {
1573 		retval = 0;
1574 		if (options & WNOHANG)
1575 			goto end;
1576 		retval = -ERESTARTSYS;
1577 		if (signal_pending(current))
1578 			goto end;
1579 		schedule();
1580 		goto repeat;
1581 	}
1582 	retval = -ECHILD;
1583 	if (unlikely(denied) && !allowed)
1584 		retval = denied;
1585 end:
1586 	current->state = TASK_RUNNING;
1587 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1588 	if (infop) {
1589 		if (retval > 0)
1590 		retval = 0;
1591 		else {
1592 			/*
1593 			 * For a WNOHANG return, clear out all the fields
1594 			 * we would set so the user can easily tell the
1595 			 * difference.
1596 			 */
1597 			if (!retval)
1598 				retval = put_user(0, &infop->si_signo);
1599 			if (!retval)
1600 				retval = put_user(0, &infop->si_errno);
1601 			if (!retval)
1602 				retval = put_user(0, &infop->si_code);
1603 			if (!retval)
1604 				retval = put_user(0, &infop->si_pid);
1605 			if (!retval)
1606 				retval = put_user(0, &infop->si_uid);
1607 			if (!retval)
1608 				retval = put_user(0, &infop->si_status);
1609 		}
1610 	}
1611 	return retval;
1612 }
1613 
1614 asmlinkage long sys_waitid(int which, pid_t pid,
1615 			   struct siginfo __user *infop, int options,
1616 			   struct rusage __user *ru)
1617 {
1618 	long ret;
1619 
1620 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1621 		return -EINVAL;
1622 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1623 		return -EINVAL;
1624 
1625 	switch (which) {
1626 	case P_ALL:
1627 		pid = -1;
1628 		break;
1629 	case P_PID:
1630 		if (pid <= 0)
1631 			return -EINVAL;
1632 		break;
1633 	case P_PGID:
1634 		if (pid <= 0)
1635 			return -EINVAL;
1636 		pid = -pid;
1637 		break;
1638 	default:
1639 		return -EINVAL;
1640 	}
1641 
1642 	ret = do_wait(pid, options, infop, NULL, ru);
1643 
1644 	/* avoid REGPARM breakage on x86: */
1645 	prevent_tail_call(ret);
1646 	return ret;
1647 }
1648 
1649 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1650 			  int options, struct rusage __user *ru)
1651 {
1652 	long ret;
1653 
1654 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655 			__WNOTHREAD|__WCLONE|__WALL))
1656 		return -EINVAL;
1657 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1658 
1659 	/* avoid REGPARM breakage on x86: */
1660 	prevent_tail_call(ret);
1661 	return ret;
1662 }
1663 
1664 #ifdef __ARCH_WANT_SYS_WAITPID
1665 
1666 /*
1667  * sys_waitpid() remains for compatibility. waitpid() should be
1668  * implemented by calling sys_wait4() from libc.a.
1669  */
1670 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1671 {
1672 	return sys_wait4(pid, stat_addr, options, NULL);
1673 }
1674 
1675 #endif
1676