1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/cpuset.h> 34 #include <linux/syscalls.h> 35 #include <linux/signal.h> 36 #include <linux/posix-timers.h> 37 #include <linux/cn_proc.h> 38 #include <linux/mutex.h> 39 #include <linux/futex.h> 40 #include <linux/compat.h> 41 #include <linux/pipe_fs_i.h> 42 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/resource.h> 44 #include <linux/blkdev.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/pgtable.h> 49 #include <asm/mmu_context.h> 50 51 extern void sem_exit (void); 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static void __unhash_process(struct task_struct *p) 56 { 57 nr_threads--; 58 detach_pid(p, PIDTYPE_PID); 59 if (thread_group_leader(p)) { 60 detach_pid(p, PIDTYPE_PGID); 61 detach_pid(p, PIDTYPE_SID); 62 63 list_del_rcu(&p->tasks); 64 __get_cpu_var(process_counts)--; 65 } 66 list_del_rcu(&p->thread_group); 67 remove_parent(p); 68 } 69 70 /* 71 * This function expects the tasklist_lock write-locked. 72 */ 73 static void __exit_signal(struct task_struct *tsk) 74 { 75 struct signal_struct *sig = tsk->signal; 76 struct sighand_struct *sighand; 77 78 BUG_ON(!sig); 79 BUG_ON(!atomic_read(&sig->count)); 80 81 rcu_read_lock(); 82 sighand = rcu_dereference(tsk->sighand); 83 spin_lock(&sighand->siglock); 84 85 posix_cpu_timers_exit(tsk); 86 if (atomic_dec_and_test(&sig->count)) 87 posix_cpu_timers_exit_group(tsk); 88 else { 89 /* 90 * If there is any task waiting for the group exit 91 * then notify it: 92 */ 93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 94 wake_up_process(sig->group_exit_task); 95 sig->group_exit_task = NULL; 96 } 97 if (tsk == sig->curr_target) 98 sig->curr_target = next_thread(tsk); 99 /* 100 * Accumulate here the counters for all threads but the 101 * group leader as they die, so they can be added into 102 * the process-wide totals when those are taken. 103 * The group leader stays around as a zombie as long 104 * as there are other threads. When it gets reaped, 105 * the exit.c code will add its counts into these totals. 106 * We won't ever get here for the group leader, since it 107 * will have been the last reference on the signal_struct. 108 */ 109 sig->utime = cputime_add(sig->utime, tsk->utime); 110 sig->stime = cputime_add(sig->stime, tsk->stime); 111 sig->min_flt += tsk->min_flt; 112 sig->maj_flt += tsk->maj_flt; 113 sig->nvcsw += tsk->nvcsw; 114 sig->nivcsw += tsk->nivcsw; 115 sig->sched_time += tsk->sched_time; 116 sig = NULL; /* Marker for below. */ 117 } 118 119 __unhash_process(tsk); 120 121 tsk->signal = NULL; 122 tsk->sighand = NULL; 123 spin_unlock(&sighand->siglock); 124 rcu_read_unlock(); 125 126 __cleanup_sighand(sighand); 127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 128 flush_sigqueue(&tsk->pending); 129 if (sig) { 130 flush_sigqueue(&sig->shared_pending); 131 taskstats_tgid_free(sig); 132 __cleanup_signal(sig); 133 } 134 } 135 136 static void delayed_put_task_struct(struct rcu_head *rhp) 137 { 138 put_task_struct(container_of(rhp, struct task_struct, rcu)); 139 } 140 141 void release_task(struct task_struct * p) 142 { 143 struct task_struct *leader; 144 int zap_leader; 145 repeat: 146 atomic_dec(&p->user->processes); 147 write_lock_irq(&tasklist_lock); 148 ptrace_unlink(p); 149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 150 __exit_signal(p); 151 152 /* 153 * If we are the last non-leader member of the thread 154 * group, and the leader is zombie, then notify the 155 * group leader's parent process. (if it wants notification.) 156 */ 157 zap_leader = 0; 158 leader = p->group_leader; 159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 160 BUG_ON(leader->exit_signal == -1); 161 do_notify_parent(leader, leader->exit_signal); 162 /* 163 * If we were the last child thread and the leader has 164 * exited already, and the leader's parent ignores SIGCHLD, 165 * then we are the one who should release the leader. 166 * 167 * do_notify_parent() will have marked it self-reaping in 168 * that case. 169 */ 170 zap_leader = (leader->exit_signal == -1); 171 } 172 173 sched_exit(p); 174 write_unlock_irq(&tasklist_lock); 175 proc_flush_task(p); 176 release_thread(p); 177 call_rcu(&p->rcu, delayed_put_task_struct); 178 179 p = leader; 180 if (unlikely(zap_leader)) 181 goto repeat; 182 } 183 184 /* 185 * This checks not only the pgrp, but falls back on the pid if no 186 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 187 * without this... 188 * 189 * The caller must hold rcu lock or the tasklist lock. 190 */ 191 struct pid *session_of_pgrp(struct pid *pgrp) 192 { 193 struct task_struct *p; 194 struct pid *sid = NULL; 195 196 p = pid_task(pgrp, PIDTYPE_PGID); 197 if (p == NULL) 198 p = pid_task(pgrp, PIDTYPE_PID); 199 if (p != NULL) 200 sid = task_session(p); 201 202 return sid; 203 } 204 205 /* 206 * Determine if a process group is "orphaned", according to the POSIX 207 * definition in 2.2.2.52. Orphaned process groups are not to be affected 208 * by terminal-generated stop signals. Newly orphaned process groups are 209 * to receive a SIGHUP and a SIGCONT. 210 * 211 * "I ask you, have you ever known what it is to be an orphan?" 212 */ 213 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 214 { 215 struct task_struct *p; 216 int ret = 1; 217 218 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 219 if (p == ignored_task 220 || p->exit_state 221 || is_init(p->real_parent)) 222 continue; 223 if (task_pgrp(p->real_parent) != pgrp && 224 task_session(p->real_parent) == task_session(p)) { 225 ret = 0; 226 break; 227 } 228 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 229 return ret; /* (sighing) "Often!" */ 230 } 231 232 int is_current_pgrp_orphaned(void) 233 { 234 int retval; 235 236 read_lock(&tasklist_lock); 237 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 238 read_unlock(&tasklist_lock); 239 240 return retval; 241 } 242 243 static int has_stopped_jobs(struct pid *pgrp) 244 { 245 int retval = 0; 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if (p->state != TASK_STOPPED) 250 continue; 251 retval = 1; 252 break; 253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 254 return retval; 255 } 256 257 /** 258 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 259 * 260 * If a kernel thread is launched as a result of a system call, or if 261 * it ever exits, it should generally reparent itself to kthreadd so it 262 * isn't in the way of other processes and is correctly cleaned up on exit. 263 * 264 * The various task state such as scheduling policy and priority may have 265 * been inherited from a user process, so we reset them to sane values here. 266 * 267 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 268 */ 269 static void reparent_to_kthreadd(void) 270 { 271 write_lock_irq(&tasklist_lock); 272 273 ptrace_unlink(current); 274 /* Reparent to init */ 275 remove_parent(current); 276 current->real_parent = current->parent = kthreadd_task; 277 add_parent(current); 278 279 /* Set the exit signal to SIGCHLD so we signal init on exit */ 280 current->exit_signal = SIGCHLD; 281 282 if (!has_rt_policy(current) && (task_nice(current) < 0)) 283 set_user_nice(current, 0); 284 /* cpus_allowed? */ 285 /* rt_priority? */ 286 /* signals? */ 287 security_task_reparent_to_init(current); 288 memcpy(current->signal->rlim, init_task.signal->rlim, 289 sizeof(current->signal->rlim)); 290 atomic_inc(&(INIT_USER->__count)); 291 write_unlock_irq(&tasklist_lock); 292 switch_uid(INIT_USER); 293 } 294 295 void __set_special_pids(pid_t session, pid_t pgrp) 296 { 297 struct task_struct *curr = current->group_leader; 298 299 if (process_session(curr) != session) { 300 detach_pid(curr, PIDTYPE_SID); 301 set_signal_session(curr->signal, session); 302 attach_pid(curr, PIDTYPE_SID, session); 303 } 304 if (process_group(curr) != pgrp) { 305 detach_pid(curr, PIDTYPE_PGID); 306 curr->signal->pgrp = pgrp; 307 attach_pid(curr, PIDTYPE_PGID, pgrp); 308 } 309 } 310 311 static void set_special_pids(pid_t session, pid_t pgrp) 312 { 313 write_lock_irq(&tasklist_lock); 314 __set_special_pids(session, pgrp); 315 write_unlock_irq(&tasklist_lock); 316 } 317 318 /* 319 * Let kernel threads use this to say that they 320 * allow a certain signal (since daemonize() will 321 * have disabled all of them by default). 322 */ 323 int allow_signal(int sig) 324 { 325 if (!valid_signal(sig) || sig < 1) 326 return -EINVAL; 327 328 spin_lock_irq(¤t->sighand->siglock); 329 sigdelset(¤t->blocked, sig); 330 if (!current->mm) { 331 /* Kernel threads handle their own signals. 332 Let the signal code know it'll be handled, so 333 that they don't get converted to SIGKILL or 334 just silently dropped */ 335 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 336 } 337 recalc_sigpending(); 338 spin_unlock_irq(¤t->sighand->siglock); 339 return 0; 340 } 341 342 EXPORT_SYMBOL(allow_signal); 343 344 int disallow_signal(int sig) 345 { 346 if (!valid_signal(sig) || sig < 1) 347 return -EINVAL; 348 349 spin_lock_irq(¤t->sighand->siglock); 350 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 351 recalc_sigpending(); 352 spin_unlock_irq(¤t->sighand->siglock); 353 return 0; 354 } 355 356 EXPORT_SYMBOL(disallow_signal); 357 358 /* 359 * Put all the gunge required to become a kernel thread without 360 * attached user resources in one place where it belongs. 361 */ 362 363 void daemonize(const char *name, ...) 364 { 365 va_list args; 366 struct fs_struct *fs; 367 sigset_t blocked; 368 369 va_start(args, name); 370 vsnprintf(current->comm, sizeof(current->comm), name, args); 371 va_end(args); 372 373 /* 374 * If we were started as result of loading a module, close all of the 375 * user space pages. We don't need them, and if we didn't close them 376 * they would be locked into memory. 377 */ 378 exit_mm(current); 379 380 set_special_pids(1, 1); 381 proc_clear_tty(current); 382 383 /* Block and flush all signals */ 384 sigfillset(&blocked); 385 sigprocmask(SIG_BLOCK, &blocked, NULL); 386 flush_signals(current); 387 388 /* Become as one with the init task */ 389 390 exit_fs(current); /* current->fs->count--; */ 391 fs = init_task.fs; 392 current->fs = fs; 393 atomic_inc(&fs->count); 394 395 exit_task_namespaces(current); 396 current->nsproxy = init_task.nsproxy; 397 get_task_namespaces(current); 398 399 exit_files(current); 400 current->files = init_task.files; 401 atomic_inc(¤t->files->count); 402 403 reparent_to_kthreadd(); 404 } 405 406 EXPORT_SYMBOL(daemonize); 407 408 static void close_files(struct files_struct * files) 409 { 410 int i, j; 411 struct fdtable *fdt; 412 413 j = 0; 414 415 /* 416 * It is safe to dereference the fd table without RCU or 417 * ->file_lock because this is the last reference to the 418 * files structure. 419 */ 420 fdt = files_fdtable(files); 421 for (;;) { 422 unsigned long set; 423 i = j * __NFDBITS; 424 if (i >= fdt->max_fds) 425 break; 426 set = fdt->open_fds->fds_bits[j++]; 427 while (set) { 428 if (set & 1) { 429 struct file * file = xchg(&fdt->fd[i], NULL); 430 if (file) { 431 filp_close(file, files); 432 cond_resched(); 433 } 434 } 435 i++; 436 set >>= 1; 437 } 438 } 439 } 440 441 struct files_struct *get_files_struct(struct task_struct *task) 442 { 443 struct files_struct *files; 444 445 task_lock(task); 446 files = task->files; 447 if (files) 448 atomic_inc(&files->count); 449 task_unlock(task); 450 451 return files; 452 } 453 454 void fastcall put_files_struct(struct files_struct *files) 455 { 456 struct fdtable *fdt; 457 458 if (atomic_dec_and_test(&files->count)) { 459 close_files(files); 460 /* 461 * Free the fd and fdset arrays if we expanded them. 462 * If the fdtable was embedded, pass files for freeing 463 * at the end of the RCU grace period. Otherwise, 464 * you can free files immediately. 465 */ 466 fdt = files_fdtable(files); 467 if (fdt != &files->fdtab) 468 kmem_cache_free(files_cachep, files); 469 free_fdtable(fdt); 470 } 471 } 472 473 EXPORT_SYMBOL(put_files_struct); 474 475 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 476 { 477 struct files_struct *old; 478 479 old = tsk->files; 480 task_lock(tsk); 481 tsk->files = files; 482 task_unlock(tsk); 483 put_files_struct(old); 484 } 485 EXPORT_SYMBOL(reset_files_struct); 486 487 static inline void __exit_files(struct task_struct *tsk) 488 { 489 struct files_struct * files = tsk->files; 490 491 if (files) { 492 task_lock(tsk); 493 tsk->files = NULL; 494 task_unlock(tsk); 495 put_files_struct(files); 496 } 497 } 498 499 void exit_files(struct task_struct *tsk) 500 { 501 __exit_files(tsk); 502 } 503 504 static inline void __put_fs_struct(struct fs_struct *fs) 505 { 506 /* No need to hold fs->lock if we are killing it */ 507 if (atomic_dec_and_test(&fs->count)) { 508 dput(fs->root); 509 mntput(fs->rootmnt); 510 dput(fs->pwd); 511 mntput(fs->pwdmnt); 512 if (fs->altroot) { 513 dput(fs->altroot); 514 mntput(fs->altrootmnt); 515 } 516 kmem_cache_free(fs_cachep, fs); 517 } 518 } 519 520 void put_fs_struct(struct fs_struct *fs) 521 { 522 __put_fs_struct(fs); 523 } 524 525 static inline void __exit_fs(struct task_struct *tsk) 526 { 527 struct fs_struct * fs = tsk->fs; 528 529 if (fs) { 530 task_lock(tsk); 531 tsk->fs = NULL; 532 task_unlock(tsk); 533 __put_fs_struct(fs); 534 } 535 } 536 537 void exit_fs(struct task_struct *tsk) 538 { 539 __exit_fs(tsk); 540 } 541 542 EXPORT_SYMBOL_GPL(exit_fs); 543 544 /* 545 * Turn us into a lazy TLB process if we 546 * aren't already.. 547 */ 548 static void exit_mm(struct task_struct * tsk) 549 { 550 struct mm_struct *mm = tsk->mm; 551 552 mm_release(tsk, mm); 553 if (!mm) 554 return; 555 /* 556 * Serialize with any possible pending coredump. 557 * We must hold mmap_sem around checking core_waiters 558 * and clearing tsk->mm. The core-inducing thread 559 * will increment core_waiters for each thread in the 560 * group with ->mm != NULL. 561 */ 562 down_read(&mm->mmap_sem); 563 if (mm->core_waiters) { 564 up_read(&mm->mmap_sem); 565 down_write(&mm->mmap_sem); 566 if (!--mm->core_waiters) 567 complete(mm->core_startup_done); 568 up_write(&mm->mmap_sem); 569 570 wait_for_completion(&mm->core_done); 571 down_read(&mm->mmap_sem); 572 } 573 atomic_inc(&mm->mm_count); 574 BUG_ON(mm != tsk->active_mm); 575 /* more a memory barrier than a real lock */ 576 task_lock(tsk); 577 tsk->mm = NULL; 578 up_read(&mm->mmap_sem); 579 enter_lazy_tlb(mm, current); 580 task_unlock(tsk); 581 mmput(mm); 582 } 583 584 static inline void 585 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 586 { 587 /* 588 * Make sure we're not reparenting to ourselves and that 589 * the parent is not a zombie. 590 */ 591 BUG_ON(p == reaper || reaper->exit_state); 592 p->real_parent = reaper; 593 } 594 595 static void 596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 597 { 598 if (p->pdeath_signal) 599 /* We already hold the tasklist_lock here. */ 600 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 601 602 /* Move the child from its dying parent to the new one. */ 603 if (unlikely(traced)) { 604 /* Preserve ptrace links if someone else is tracing this child. */ 605 list_del_init(&p->ptrace_list); 606 if (p->parent != p->real_parent) 607 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 608 } else { 609 /* If this child is being traced, then we're the one tracing it 610 * anyway, so let go of it. 611 */ 612 p->ptrace = 0; 613 remove_parent(p); 614 p->parent = p->real_parent; 615 add_parent(p); 616 617 if (p->state == TASK_TRACED) { 618 /* 619 * If it was at a trace stop, turn it into 620 * a normal stop since it's no longer being 621 * traced. 622 */ 623 ptrace_untrace(p); 624 } 625 } 626 627 /* If this is a threaded reparent there is no need to 628 * notify anyone anything has happened. 629 */ 630 if (p->real_parent->group_leader == father->group_leader) 631 return; 632 633 /* We don't want people slaying init. */ 634 if (p->exit_signal != -1) 635 p->exit_signal = SIGCHLD; 636 637 /* If we'd notified the old parent about this child's death, 638 * also notify the new parent. 639 */ 640 if (!traced && p->exit_state == EXIT_ZOMBIE && 641 p->exit_signal != -1 && thread_group_empty(p)) 642 do_notify_parent(p, p->exit_signal); 643 644 /* 645 * process group orphan check 646 * Case ii: Our child is in a different pgrp 647 * than we are, and it was the only connection 648 * outside, so the child pgrp is now orphaned. 649 */ 650 if ((task_pgrp(p) != task_pgrp(father)) && 651 (task_session(p) == task_session(father))) { 652 struct pid *pgrp = task_pgrp(p); 653 654 if (will_become_orphaned_pgrp(pgrp, NULL) && 655 has_stopped_jobs(pgrp)) { 656 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 657 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 658 } 659 } 660 } 661 662 /* 663 * When we die, we re-parent all our children. 664 * Try to give them to another thread in our thread 665 * group, and if no such member exists, give it to 666 * the child reaper process (ie "init") in our pid 667 * space. 668 */ 669 static void 670 forget_original_parent(struct task_struct *father, struct list_head *to_release) 671 { 672 struct task_struct *p, *reaper = father; 673 struct list_head *_p, *_n; 674 675 do { 676 reaper = next_thread(reaper); 677 if (reaper == father) { 678 reaper = child_reaper(father); 679 break; 680 } 681 } while (reaper->exit_state); 682 683 /* 684 * There are only two places where our children can be: 685 * 686 * - in our child list 687 * - in our ptraced child list 688 * 689 * Search them and reparent children. 690 */ 691 list_for_each_safe(_p, _n, &father->children) { 692 int ptrace; 693 p = list_entry(_p, struct task_struct, sibling); 694 695 ptrace = p->ptrace; 696 697 /* if father isn't the real parent, then ptrace must be enabled */ 698 BUG_ON(father != p->real_parent && !ptrace); 699 700 if (father == p->real_parent) { 701 /* reparent with a reaper, real father it's us */ 702 choose_new_parent(p, reaper); 703 reparent_thread(p, father, 0); 704 } else { 705 /* reparent ptraced task to its real parent */ 706 __ptrace_unlink (p); 707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 708 thread_group_empty(p)) 709 do_notify_parent(p, p->exit_signal); 710 } 711 712 /* 713 * if the ptraced child is a zombie with exit_signal == -1 714 * we must collect it before we exit, or it will remain 715 * zombie forever since we prevented it from self-reap itself 716 * while it was being traced by us, to be able to see it in wait4. 717 */ 718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 719 list_add(&p->ptrace_list, to_release); 720 } 721 list_for_each_safe(_p, _n, &father->ptrace_children) { 722 p = list_entry(_p, struct task_struct, ptrace_list); 723 choose_new_parent(p, reaper); 724 reparent_thread(p, father, 1); 725 } 726 } 727 728 /* 729 * Send signals to all our closest relatives so that they know 730 * to properly mourn us.. 731 */ 732 static void exit_notify(struct task_struct *tsk) 733 { 734 int state; 735 struct task_struct *t; 736 struct list_head ptrace_dead, *_p, *_n; 737 struct pid *pgrp; 738 739 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 740 && !thread_group_empty(tsk)) { 741 /* 742 * This occurs when there was a race between our exit 743 * syscall and a group signal choosing us as the one to 744 * wake up. It could be that we are the only thread 745 * alerted to check for pending signals, but another thread 746 * should be woken now to take the signal since we will not. 747 * Now we'll wake all the threads in the group just to make 748 * sure someone gets all the pending signals. 749 */ 750 read_lock(&tasklist_lock); 751 spin_lock_irq(&tsk->sighand->siglock); 752 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 753 if (!signal_pending(t) && !(t->flags & PF_EXITING)) { 754 recalc_sigpending_tsk(t); 755 if (signal_pending(t)) 756 signal_wake_up(t, 0); 757 } 758 spin_unlock_irq(&tsk->sighand->siglock); 759 read_unlock(&tasklist_lock); 760 } 761 762 write_lock_irq(&tasklist_lock); 763 764 /* 765 * This does two things: 766 * 767 * A. Make init inherit all the child processes 768 * B. Check to see if any process groups have become orphaned 769 * as a result of our exiting, and if they have any stopped 770 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 771 */ 772 773 INIT_LIST_HEAD(&ptrace_dead); 774 forget_original_parent(tsk, &ptrace_dead); 775 BUG_ON(!list_empty(&tsk->children)); 776 BUG_ON(!list_empty(&tsk->ptrace_children)); 777 778 /* 779 * Check to see if any process groups have become orphaned 780 * as a result of our exiting, and if they have any stopped 781 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 782 * 783 * Case i: Our father is in a different pgrp than we are 784 * and we were the only connection outside, so our pgrp 785 * is about to become orphaned. 786 */ 787 788 t = tsk->real_parent; 789 790 pgrp = task_pgrp(tsk); 791 if ((task_pgrp(t) != pgrp) && 792 (task_session(t) == task_session(tsk)) && 793 will_become_orphaned_pgrp(pgrp, tsk) && 794 has_stopped_jobs(pgrp)) { 795 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 796 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 797 } 798 799 /* Let father know we died 800 * 801 * Thread signals are configurable, but you aren't going to use 802 * that to send signals to arbitary processes. 803 * That stops right now. 804 * 805 * If the parent exec id doesn't match the exec id we saved 806 * when we started then we know the parent has changed security 807 * domain. 808 * 809 * If our self_exec id doesn't match our parent_exec_id then 810 * we have changed execution domain as these two values started 811 * the same after a fork. 812 * 813 */ 814 815 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 816 ( tsk->parent_exec_id != t->self_exec_id || 817 tsk->self_exec_id != tsk->parent_exec_id) 818 && !capable(CAP_KILL)) 819 tsk->exit_signal = SIGCHLD; 820 821 822 /* If something other than our normal parent is ptracing us, then 823 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 824 * only has special meaning to our real parent. 825 */ 826 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 827 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 828 do_notify_parent(tsk, signal); 829 } else if (tsk->ptrace) { 830 do_notify_parent(tsk, SIGCHLD); 831 } 832 833 state = EXIT_ZOMBIE; 834 if (tsk->exit_signal == -1 && 835 (likely(tsk->ptrace == 0) || 836 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 837 state = EXIT_DEAD; 838 tsk->exit_state = state; 839 840 write_unlock_irq(&tasklist_lock); 841 842 list_for_each_safe(_p, _n, &ptrace_dead) { 843 list_del_init(_p); 844 t = list_entry(_p, struct task_struct, ptrace_list); 845 release_task(t); 846 } 847 848 /* If the process is dead, release it - nobody will wait for it */ 849 if (state == EXIT_DEAD) 850 release_task(tsk); 851 } 852 853 fastcall NORET_TYPE void do_exit(long code) 854 { 855 struct task_struct *tsk = current; 856 int group_dead; 857 858 profile_task_exit(tsk); 859 860 WARN_ON(atomic_read(&tsk->fs_excl)); 861 862 if (unlikely(in_interrupt())) 863 panic("Aiee, killing interrupt handler!"); 864 if (unlikely(!tsk->pid)) 865 panic("Attempted to kill the idle task!"); 866 if (unlikely(tsk == child_reaper(tsk))) { 867 if (tsk->nsproxy->pid_ns != &init_pid_ns) 868 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 869 else 870 panic("Attempted to kill init!"); 871 } 872 873 874 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 875 current->ptrace_message = code; 876 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 877 } 878 879 /* 880 * We're taking recursive faults here in do_exit. Safest is to just 881 * leave this task alone and wait for reboot. 882 */ 883 if (unlikely(tsk->flags & PF_EXITING)) { 884 printk(KERN_ALERT 885 "Fixing recursive fault but reboot is needed!\n"); 886 if (tsk->io_context) 887 exit_io_context(); 888 set_current_state(TASK_UNINTERRUPTIBLE); 889 schedule(); 890 } 891 892 tsk->flags |= PF_EXITING; 893 894 if (unlikely(in_atomic())) 895 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 896 current->comm, current->pid, 897 preempt_count()); 898 899 acct_update_integrals(tsk); 900 if (tsk->mm) { 901 update_hiwater_rss(tsk->mm); 902 update_hiwater_vm(tsk->mm); 903 } 904 group_dead = atomic_dec_and_test(&tsk->signal->live); 905 if (group_dead) { 906 hrtimer_cancel(&tsk->signal->real_timer); 907 exit_itimers(tsk->signal); 908 } 909 acct_collect(code, group_dead); 910 if (unlikely(tsk->robust_list)) 911 exit_robust_list(tsk); 912 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 913 if (unlikely(tsk->compat_robust_list)) 914 compat_exit_robust_list(tsk); 915 #endif 916 if (unlikely(tsk->audit_context)) 917 audit_free(tsk); 918 919 taskstats_exit(tsk, group_dead); 920 921 exit_mm(tsk); 922 923 if (group_dead) 924 acct_process(); 925 exit_sem(tsk); 926 __exit_files(tsk); 927 __exit_fs(tsk); 928 exit_thread(); 929 cpuset_exit(tsk); 930 exit_keys(tsk); 931 932 if (group_dead && tsk->signal->leader) 933 disassociate_ctty(1); 934 935 module_put(task_thread_info(tsk)->exec_domain->module); 936 if (tsk->binfmt) 937 module_put(tsk->binfmt->module); 938 939 tsk->exit_code = code; 940 proc_exit_connector(tsk); 941 exit_task_namespaces(tsk); 942 exit_notify(tsk); 943 #ifdef CONFIG_NUMA 944 mpol_free(tsk->mempolicy); 945 tsk->mempolicy = NULL; 946 #endif 947 /* 948 * This must happen late, after the PID is not 949 * hashed anymore: 950 */ 951 if (unlikely(!list_empty(&tsk->pi_state_list))) 952 exit_pi_state_list(tsk); 953 if (unlikely(current->pi_state_cache)) 954 kfree(current->pi_state_cache); 955 /* 956 * Make sure we are holding no locks: 957 */ 958 debug_check_no_locks_held(tsk); 959 960 if (tsk->io_context) 961 exit_io_context(); 962 963 if (tsk->splice_pipe) 964 __free_pipe_info(tsk->splice_pipe); 965 966 preempt_disable(); 967 /* causes final put_task_struct in finish_task_switch(). */ 968 tsk->state = TASK_DEAD; 969 970 schedule(); 971 BUG(); 972 /* Avoid "noreturn function does return". */ 973 for (;;) 974 cpu_relax(); /* For when BUG is null */ 975 } 976 977 EXPORT_SYMBOL_GPL(do_exit); 978 979 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 980 { 981 if (comp) 982 complete(comp); 983 984 do_exit(code); 985 } 986 987 EXPORT_SYMBOL(complete_and_exit); 988 989 asmlinkage long sys_exit(int error_code) 990 { 991 do_exit((error_code&0xff)<<8); 992 } 993 994 /* 995 * Take down every thread in the group. This is called by fatal signals 996 * as well as by sys_exit_group (below). 997 */ 998 NORET_TYPE void 999 do_group_exit(int exit_code) 1000 { 1001 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1002 1003 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1004 exit_code = current->signal->group_exit_code; 1005 else if (!thread_group_empty(current)) { 1006 struct signal_struct *const sig = current->signal; 1007 struct sighand_struct *const sighand = current->sighand; 1008 spin_lock_irq(&sighand->siglock); 1009 if (sig->flags & SIGNAL_GROUP_EXIT) 1010 /* Another thread got here before we took the lock. */ 1011 exit_code = sig->group_exit_code; 1012 else { 1013 sig->group_exit_code = exit_code; 1014 zap_other_threads(current); 1015 } 1016 spin_unlock_irq(&sighand->siglock); 1017 } 1018 1019 do_exit(exit_code); 1020 /* NOTREACHED */ 1021 } 1022 1023 /* 1024 * this kills every thread in the thread group. Note that any externally 1025 * wait4()-ing process will get the correct exit code - even if this 1026 * thread is not the thread group leader. 1027 */ 1028 asmlinkage void sys_exit_group(int error_code) 1029 { 1030 do_group_exit((error_code & 0xff) << 8); 1031 } 1032 1033 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1034 { 1035 int err; 1036 1037 if (pid > 0) { 1038 if (p->pid != pid) 1039 return 0; 1040 } else if (!pid) { 1041 if (process_group(p) != process_group(current)) 1042 return 0; 1043 } else if (pid != -1) { 1044 if (process_group(p) != -pid) 1045 return 0; 1046 } 1047 1048 /* 1049 * Do not consider detached threads that are 1050 * not ptraced: 1051 */ 1052 if (p->exit_signal == -1 && !p->ptrace) 1053 return 0; 1054 1055 /* Wait for all children (clone and not) if __WALL is set; 1056 * otherwise, wait for clone children *only* if __WCLONE is 1057 * set; otherwise, wait for non-clone children *only*. (Note: 1058 * A "clone" child here is one that reports to its parent 1059 * using a signal other than SIGCHLD.) */ 1060 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1061 && !(options & __WALL)) 1062 return 0; 1063 /* 1064 * Do not consider thread group leaders that are 1065 * in a non-empty thread group: 1066 */ 1067 if (delay_group_leader(p)) 1068 return 2; 1069 1070 err = security_task_wait(p); 1071 if (err) 1072 return err; 1073 1074 return 1; 1075 } 1076 1077 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1078 int why, int status, 1079 struct siginfo __user *infop, 1080 struct rusage __user *rusagep) 1081 { 1082 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1083 1084 put_task_struct(p); 1085 if (!retval) 1086 retval = put_user(SIGCHLD, &infop->si_signo); 1087 if (!retval) 1088 retval = put_user(0, &infop->si_errno); 1089 if (!retval) 1090 retval = put_user((short)why, &infop->si_code); 1091 if (!retval) 1092 retval = put_user(pid, &infop->si_pid); 1093 if (!retval) 1094 retval = put_user(uid, &infop->si_uid); 1095 if (!retval) 1096 retval = put_user(status, &infop->si_status); 1097 if (!retval) 1098 retval = pid; 1099 return retval; 1100 } 1101 1102 /* 1103 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1104 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1105 * the lock and this task is uninteresting. If we return nonzero, we have 1106 * released the lock and the system call should return. 1107 */ 1108 static int wait_task_zombie(struct task_struct *p, int noreap, 1109 struct siginfo __user *infop, 1110 int __user *stat_addr, struct rusage __user *ru) 1111 { 1112 unsigned long state; 1113 int retval; 1114 int status; 1115 1116 if (unlikely(noreap)) { 1117 pid_t pid = p->pid; 1118 uid_t uid = p->uid; 1119 int exit_code = p->exit_code; 1120 int why, status; 1121 1122 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1123 return 0; 1124 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1125 return 0; 1126 get_task_struct(p); 1127 read_unlock(&tasklist_lock); 1128 if ((exit_code & 0x7f) == 0) { 1129 why = CLD_EXITED; 1130 status = exit_code >> 8; 1131 } else { 1132 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1133 status = exit_code & 0x7f; 1134 } 1135 return wait_noreap_copyout(p, pid, uid, why, 1136 status, infop, ru); 1137 } 1138 1139 /* 1140 * Try to move the task's state to DEAD 1141 * only one thread is allowed to do this: 1142 */ 1143 state = xchg(&p->exit_state, EXIT_DEAD); 1144 if (state != EXIT_ZOMBIE) { 1145 BUG_ON(state != EXIT_DEAD); 1146 return 0; 1147 } 1148 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1149 /* 1150 * This can only happen in a race with a ptraced thread 1151 * dying on another processor. 1152 */ 1153 return 0; 1154 } 1155 1156 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1157 struct signal_struct *psig; 1158 struct signal_struct *sig; 1159 1160 /* 1161 * The resource counters for the group leader are in its 1162 * own task_struct. Those for dead threads in the group 1163 * are in its signal_struct, as are those for the child 1164 * processes it has previously reaped. All these 1165 * accumulate in the parent's signal_struct c* fields. 1166 * 1167 * We don't bother to take a lock here to protect these 1168 * p->signal fields, because they are only touched by 1169 * __exit_signal, which runs with tasklist_lock 1170 * write-locked anyway, and so is excluded here. We do 1171 * need to protect the access to p->parent->signal fields, 1172 * as other threads in the parent group can be right 1173 * here reaping other children at the same time. 1174 */ 1175 spin_lock_irq(&p->parent->sighand->siglock); 1176 psig = p->parent->signal; 1177 sig = p->signal; 1178 psig->cutime = 1179 cputime_add(psig->cutime, 1180 cputime_add(p->utime, 1181 cputime_add(sig->utime, 1182 sig->cutime))); 1183 psig->cstime = 1184 cputime_add(psig->cstime, 1185 cputime_add(p->stime, 1186 cputime_add(sig->stime, 1187 sig->cstime))); 1188 psig->cmin_flt += 1189 p->min_flt + sig->min_flt + sig->cmin_flt; 1190 psig->cmaj_flt += 1191 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1192 psig->cnvcsw += 1193 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1194 psig->cnivcsw += 1195 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1196 spin_unlock_irq(&p->parent->sighand->siglock); 1197 } 1198 1199 /* 1200 * Now we are sure this task is interesting, and no other 1201 * thread can reap it because we set its state to EXIT_DEAD. 1202 */ 1203 read_unlock(&tasklist_lock); 1204 1205 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1206 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1207 ? p->signal->group_exit_code : p->exit_code; 1208 if (!retval && stat_addr) 1209 retval = put_user(status, stat_addr); 1210 if (!retval && infop) 1211 retval = put_user(SIGCHLD, &infop->si_signo); 1212 if (!retval && infop) 1213 retval = put_user(0, &infop->si_errno); 1214 if (!retval && infop) { 1215 int why; 1216 1217 if ((status & 0x7f) == 0) { 1218 why = CLD_EXITED; 1219 status >>= 8; 1220 } else { 1221 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1222 status &= 0x7f; 1223 } 1224 retval = put_user((short)why, &infop->si_code); 1225 if (!retval) 1226 retval = put_user(status, &infop->si_status); 1227 } 1228 if (!retval && infop) 1229 retval = put_user(p->pid, &infop->si_pid); 1230 if (!retval && infop) 1231 retval = put_user(p->uid, &infop->si_uid); 1232 if (retval) { 1233 // TODO: is this safe? 1234 p->exit_state = EXIT_ZOMBIE; 1235 return retval; 1236 } 1237 retval = p->pid; 1238 if (p->real_parent != p->parent) { 1239 write_lock_irq(&tasklist_lock); 1240 /* Double-check with lock held. */ 1241 if (p->real_parent != p->parent) { 1242 __ptrace_unlink(p); 1243 // TODO: is this safe? 1244 p->exit_state = EXIT_ZOMBIE; 1245 /* 1246 * If this is not a detached task, notify the parent. 1247 * If it's still not detached after that, don't release 1248 * it now. 1249 */ 1250 if (p->exit_signal != -1) { 1251 do_notify_parent(p, p->exit_signal); 1252 if (p->exit_signal != -1) 1253 p = NULL; 1254 } 1255 } 1256 write_unlock_irq(&tasklist_lock); 1257 } 1258 if (p != NULL) 1259 release_task(p); 1260 BUG_ON(!retval); 1261 return retval; 1262 } 1263 1264 /* 1265 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1266 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1267 * the lock and this task is uninteresting. If we return nonzero, we have 1268 * released the lock and the system call should return. 1269 */ 1270 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1271 int noreap, struct siginfo __user *infop, 1272 int __user *stat_addr, struct rusage __user *ru) 1273 { 1274 int retval, exit_code; 1275 1276 if (!p->exit_code) 1277 return 0; 1278 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1279 p->signal && p->signal->group_stop_count > 0) 1280 /* 1281 * A group stop is in progress and this is the group leader. 1282 * We won't report until all threads have stopped. 1283 */ 1284 return 0; 1285 1286 /* 1287 * Now we are pretty sure this task is interesting. 1288 * Make sure it doesn't get reaped out from under us while we 1289 * give up the lock and then examine it below. We don't want to 1290 * keep holding onto the tasklist_lock while we call getrusage and 1291 * possibly take page faults for user memory. 1292 */ 1293 get_task_struct(p); 1294 read_unlock(&tasklist_lock); 1295 1296 if (unlikely(noreap)) { 1297 pid_t pid = p->pid; 1298 uid_t uid = p->uid; 1299 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1300 1301 exit_code = p->exit_code; 1302 if (unlikely(!exit_code) || 1303 unlikely(p->state & TASK_TRACED)) 1304 goto bail_ref; 1305 return wait_noreap_copyout(p, pid, uid, 1306 why, (exit_code << 8) | 0x7f, 1307 infop, ru); 1308 } 1309 1310 write_lock_irq(&tasklist_lock); 1311 1312 /* 1313 * This uses xchg to be atomic with the thread resuming and setting 1314 * it. It must also be done with the write lock held to prevent a 1315 * race with the EXIT_ZOMBIE case. 1316 */ 1317 exit_code = xchg(&p->exit_code, 0); 1318 if (unlikely(p->exit_state)) { 1319 /* 1320 * The task resumed and then died. Let the next iteration 1321 * catch it in EXIT_ZOMBIE. Note that exit_code might 1322 * already be zero here if it resumed and did _exit(0). 1323 * The task itself is dead and won't touch exit_code again; 1324 * other processors in this function are locked out. 1325 */ 1326 p->exit_code = exit_code; 1327 exit_code = 0; 1328 } 1329 if (unlikely(exit_code == 0)) { 1330 /* 1331 * Another thread in this function got to it first, or it 1332 * resumed, or it resumed and then died. 1333 */ 1334 write_unlock_irq(&tasklist_lock); 1335 bail_ref: 1336 put_task_struct(p); 1337 /* 1338 * We are returning to the wait loop without having successfully 1339 * removed the process and having released the lock. We cannot 1340 * continue, since the "p" task pointer is potentially stale. 1341 * 1342 * Return -EAGAIN, and do_wait() will restart the loop from the 1343 * beginning. Do _not_ re-acquire the lock. 1344 */ 1345 return -EAGAIN; 1346 } 1347 1348 /* move to end of parent's list to avoid starvation */ 1349 remove_parent(p); 1350 add_parent(p); 1351 1352 write_unlock_irq(&tasklist_lock); 1353 1354 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1355 if (!retval && stat_addr) 1356 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1357 if (!retval && infop) 1358 retval = put_user(SIGCHLD, &infop->si_signo); 1359 if (!retval && infop) 1360 retval = put_user(0, &infop->si_errno); 1361 if (!retval && infop) 1362 retval = put_user((short)((p->ptrace & PT_PTRACED) 1363 ? CLD_TRAPPED : CLD_STOPPED), 1364 &infop->si_code); 1365 if (!retval && infop) 1366 retval = put_user(exit_code, &infop->si_status); 1367 if (!retval && infop) 1368 retval = put_user(p->pid, &infop->si_pid); 1369 if (!retval && infop) 1370 retval = put_user(p->uid, &infop->si_uid); 1371 if (!retval) 1372 retval = p->pid; 1373 put_task_struct(p); 1374 1375 BUG_ON(!retval); 1376 return retval; 1377 } 1378 1379 /* 1380 * Handle do_wait work for one task in a live, non-stopped state. 1381 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1382 * the lock and this task is uninteresting. If we return nonzero, we have 1383 * released the lock and the system call should return. 1384 */ 1385 static int wait_task_continued(struct task_struct *p, int noreap, 1386 struct siginfo __user *infop, 1387 int __user *stat_addr, struct rusage __user *ru) 1388 { 1389 int retval; 1390 pid_t pid; 1391 uid_t uid; 1392 1393 if (unlikely(!p->signal)) 1394 return 0; 1395 1396 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1397 return 0; 1398 1399 spin_lock_irq(&p->sighand->siglock); 1400 /* Re-check with the lock held. */ 1401 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1402 spin_unlock_irq(&p->sighand->siglock); 1403 return 0; 1404 } 1405 if (!noreap) 1406 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1407 spin_unlock_irq(&p->sighand->siglock); 1408 1409 pid = p->pid; 1410 uid = p->uid; 1411 get_task_struct(p); 1412 read_unlock(&tasklist_lock); 1413 1414 if (!infop) { 1415 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1416 put_task_struct(p); 1417 if (!retval && stat_addr) 1418 retval = put_user(0xffff, stat_addr); 1419 if (!retval) 1420 retval = p->pid; 1421 } else { 1422 retval = wait_noreap_copyout(p, pid, uid, 1423 CLD_CONTINUED, SIGCONT, 1424 infop, ru); 1425 BUG_ON(retval == 0); 1426 } 1427 1428 return retval; 1429 } 1430 1431 1432 static inline int my_ptrace_child(struct task_struct *p) 1433 { 1434 if (!(p->ptrace & PT_PTRACED)) 1435 return 0; 1436 if (!(p->ptrace & PT_ATTACHED)) 1437 return 1; 1438 /* 1439 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1440 * we are the attacher. If we are the real parent, this is a race 1441 * inside ptrace_attach. It is waiting for the tasklist_lock, 1442 * which we have to switch the parent links, but has already set 1443 * the flags in p->ptrace. 1444 */ 1445 return (p->parent != p->real_parent); 1446 } 1447 1448 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1449 int __user *stat_addr, struct rusage __user *ru) 1450 { 1451 DECLARE_WAITQUEUE(wait, current); 1452 struct task_struct *tsk; 1453 int flag, retval; 1454 int allowed, denied; 1455 1456 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1457 repeat: 1458 /* 1459 * We will set this flag if we see any child that might later 1460 * match our criteria, even if we are not able to reap it yet. 1461 */ 1462 flag = 0; 1463 allowed = denied = 0; 1464 current->state = TASK_INTERRUPTIBLE; 1465 read_lock(&tasklist_lock); 1466 tsk = current; 1467 do { 1468 struct task_struct *p; 1469 struct list_head *_p; 1470 int ret; 1471 1472 list_for_each(_p,&tsk->children) { 1473 p = list_entry(_p, struct task_struct, sibling); 1474 1475 ret = eligible_child(pid, options, p); 1476 if (!ret) 1477 continue; 1478 1479 if (unlikely(ret < 0)) { 1480 denied = ret; 1481 continue; 1482 } 1483 allowed = 1; 1484 1485 switch (p->state) { 1486 case TASK_TRACED: 1487 /* 1488 * When we hit the race with PTRACE_ATTACH, 1489 * we will not report this child. But the 1490 * race means it has not yet been moved to 1491 * our ptrace_children list, so we need to 1492 * set the flag here to avoid a spurious ECHILD 1493 * when the race happens with the only child. 1494 */ 1495 flag = 1; 1496 if (!my_ptrace_child(p)) 1497 continue; 1498 /*FALLTHROUGH*/ 1499 case TASK_STOPPED: 1500 /* 1501 * It's stopped now, so it might later 1502 * continue, exit, or stop again. 1503 */ 1504 flag = 1; 1505 if (!(options & WUNTRACED) && 1506 !my_ptrace_child(p)) 1507 continue; 1508 retval = wait_task_stopped(p, ret == 2, 1509 (options & WNOWAIT), 1510 infop, 1511 stat_addr, ru); 1512 if (retval == -EAGAIN) 1513 goto repeat; 1514 if (retval != 0) /* He released the lock. */ 1515 goto end; 1516 break; 1517 default: 1518 // case EXIT_DEAD: 1519 if (p->exit_state == EXIT_DEAD) 1520 continue; 1521 // case EXIT_ZOMBIE: 1522 if (p->exit_state == EXIT_ZOMBIE) { 1523 /* 1524 * Eligible but we cannot release 1525 * it yet: 1526 */ 1527 if (ret == 2) 1528 goto check_continued; 1529 if (!likely(options & WEXITED)) 1530 continue; 1531 retval = wait_task_zombie( 1532 p, (options & WNOWAIT), 1533 infop, stat_addr, ru); 1534 /* He released the lock. */ 1535 if (retval != 0) 1536 goto end; 1537 break; 1538 } 1539 check_continued: 1540 /* 1541 * It's running now, so it might later 1542 * exit, stop, or stop and then continue. 1543 */ 1544 flag = 1; 1545 if (!unlikely(options & WCONTINUED)) 1546 continue; 1547 retval = wait_task_continued( 1548 p, (options & WNOWAIT), 1549 infop, stat_addr, ru); 1550 if (retval != 0) /* He released the lock. */ 1551 goto end; 1552 break; 1553 } 1554 } 1555 if (!flag) { 1556 list_for_each(_p, &tsk->ptrace_children) { 1557 p = list_entry(_p, struct task_struct, 1558 ptrace_list); 1559 if (!eligible_child(pid, options, p)) 1560 continue; 1561 flag = 1; 1562 break; 1563 } 1564 } 1565 if (options & __WNOTHREAD) 1566 break; 1567 tsk = next_thread(tsk); 1568 BUG_ON(tsk->signal != current->signal); 1569 } while (tsk != current); 1570 1571 read_unlock(&tasklist_lock); 1572 if (flag) { 1573 retval = 0; 1574 if (options & WNOHANG) 1575 goto end; 1576 retval = -ERESTARTSYS; 1577 if (signal_pending(current)) 1578 goto end; 1579 schedule(); 1580 goto repeat; 1581 } 1582 retval = -ECHILD; 1583 if (unlikely(denied) && !allowed) 1584 retval = denied; 1585 end: 1586 current->state = TASK_RUNNING; 1587 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1588 if (infop) { 1589 if (retval > 0) 1590 retval = 0; 1591 else { 1592 /* 1593 * For a WNOHANG return, clear out all the fields 1594 * we would set so the user can easily tell the 1595 * difference. 1596 */ 1597 if (!retval) 1598 retval = put_user(0, &infop->si_signo); 1599 if (!retval) 1600 retval = put_user(0, &infop->si_errno); 1601 if (!retval) 1602 retval = put_user(0, &infop->si_code); 1603 if (!retval) 1604 retval = put_user(0, &infop->si_pid); 1605 if (!retval) 1606 retval = put_user(0, &infop->si_uid); 1607 if (!retval) 1608 retval = put_user(0, &infop->si_status); 1609 } 1610 } 1611 return retval; 1612 } 1613 1614 asmlinkage long sys_waitid(int which, pid_t pid, 1615 struct siginfo __user *infop, int options, 1616 struct rusage __user *ru) 1617 { 1618 long ret; 1619 1620 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1621 return -EINVAL; 1622 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1623 return -EINVAL; 1624 1625 switch (which) { 1626 case P_ALL: 1627 pid = -1; 1628 break; 1629 case P_PID: 1630 if (pid <= 0) 1631 return -EINVAL; 1632 break; 1633 case P_PGID: 1634 if (pid <= 0) 1635 return -EINVAL; 1636 pid = -pid; 1637 break; 1638 default: 1639 return -EINVAL; 1640 } 1641 1642 ret = do_wait(pid, options, infop, NULL, ru); 1643 1644 /* avoid REGPARM breakage on x86: */ 1645 prevent_tail_call(ret); 1646 return ret; 1647 } 1648 1649 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1650 int options, struct rusage __user *ru) 1651 { 1652 long ret; 1653 1654 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1655 __WNOTHREAD|__WCLONE|__WALL)) 1656 return -EINVAL; 1657 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1658 1659 /* avoid REGPARM breakage on x86: */ 1660 prevent_tail_call(ret); 1661 return ret; 1662 } 1663 1664 #ifdef __ARCH_WANT_SYS_WAITPID 1665 1666 /* 1667 * sys_waitpid() remains for compatibility. waitpid() should be 1668 * implemented by calling sys_wait4() from libc.a. 1669 */ 1670 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1671 { 1672 return sys_wait4(pid, stat_addr, options, NULL); 1673 } 1674 1675 #endif 1676