xref: /linux/kernel/exit.c (revision 8449d3252c2603a51ffc7c36cb5bd94874378b7d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/unwind_deferred.h>
72 #include <linux/uaccess.h>
73 #include <linux/pidfs.h>
74 
75 #include <uapi/linux/wait.h>
76 
77 #include <asm/unistd.h>
78 #include <asm/mmu_context.h>
79 
80 #include "exit.h"
81 
82 /*
83  * The default value should be high enough to not crash a system that randomly
84  * crashes its kernel from time to time, but low enough to at least not permit
85  * overflowing 32-bit refcounts or the ldsem writer count.
86  */
87 static unsigned int oops_limit = 10000;
88 
89 #ifdef CONFIG_SYSCTL
90 static const struct ctl_table kern_exit_table[] = {
91 	{
92 		.procname       = "oops_limit",
93 		.data           = &oops_limit,
94 		.maxlen         = sizeof(oops_limit),
95 		.mode           = 0644,
96 		.proc_handler   = proc_douintvec,
97 	},
98 };
99 
kernel_exit_sysctls_init(void)100 static __init int kernel_exit_sysctls_init(void)
101 {
102 	register_sysctl_init("kernel", kern_exit_table);
103 	return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107 
108 static atomic_t oops_count = ATOMIC_INIT(0);
109 
110 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 			       char *page)
113 {
114 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116 
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118 
kernel_exit_sysfs_init(void)119 static __init int kernel_exit_sysfs_init(void)
120 {
121 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 	return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126 
127 /*
128  * For things release_task() would like to do *after* tasklist_lock is released.
129  */
130 struct release_task_post {
131 	struct pid *pids[PIDTYPE_MAX];
132 };
133 
__unhash_process(struct release_task_post * post,struct task_struct * p,bool group_dead)134 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
135 			     bool group_dead)
136 {
137 	struct pid *pid = task_pid(p);
138 
139 	nr_threads--;
140 
141 	detach_pid(post->pids, p, PIDTYPE_PID);
142 	wake_up_all(&pid->wait_pidfd);
143 
144 	if (group_dead) {
145 		detach_pid(post->pids, p, PIDTYPE_TGID);
146 		detach_pid(post->pids, p, PIDTYPE_PGID);
147 		detach_pid(post->pids, p, PIDTYPE_SID);
148 
149 		list_del_rcu(&p->tasks);
150 		list_del_init(&p->sibling);
151 		__this_cpu_dec(process_counts);
152 	}
153 	list_del_rcu(&p->thread_node);
154 }
155 
156 /*
157  * This function expects the tasklist_lock write-locked.
158  */
__exit_signal(struct release_task_post * post,struct task_struct * tsk)159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
160 {
161 	struct signal_struct *sig = tsk->signal;
162 	bool group_dead = thread_group_leader(tsk);
163 	struct sighand_struct *sighand;
164 	struct tty_struct *tty;
165 	u64 utime, stime;
166 
167 	sighand = rcu_dereference_check(tsk->sighand,
168 					lockdep_tasklist_lock_is_held());
169 	spin_lock(&sighand->siglock);
170 
171 #ifdef CONFIG_POSIX_TIMERS
172 	posix_cpu_timers_exit(tsk);
173 	if (group_dead)
174 		posix_cpu_timers_exit_group(tsk);
175 #endif
176 
177 	if (group_dead) {
178 		tty = sig->tty;
179 		sig->tty = NULL;
180 	} else {
181 		/*
182 		 * If there is any task waiting for the group exit
183 		 * then notify it:
184 		 */
185 		if (sig->notify_count > 0 && !--sig->notify_count)
186 			wake_up_process(sig->group_exec_task);
187 
188 		if (tsk == sig->curr_target)
189 			sig->curr_target = next_thread(tsk);
190 	}
191 
192 	/*
193 	 * Accumulate here the counters for all threads as they die. We could
194 	 * skip the group leader because it is the last user of signal_struct,
195 	 * but we want to avoid the race with thread_group_cputime() which can
196 	 * see the empty ->thread_head list.
197 	 */
198 	task_cputime(tsk, &utime, &stime);
199 	write_seqlock(&sig->stats_lock);
200 	sig->utime += utime;
201 	sig->stime += stime;
202 	sig->gtime += task_gtime(tsk);
203 	sig->min_flt += tsk->min_flt;
204 	sig->maj_flt += tsk->maj_flt;
205 	sig->nvcsw += tsk->nvcsw;
206 	sig->nivcsw += tsk->nivcsw;
207 	sig->inblock += task_io_get_inblock(tsk);
208 	sig->oublock += task_io_get_oublock(tsk);
209 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
210 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
211 	sig->nr_threads--;
212 	__unhash_process(post, tsk, group_dead);
213 	write_sequnlock(&sig->stats_lock);
214 
215 	tsk->sighand = NULL;
216 	spin_unlock(&sighand->siglock);
217 
218 	__cleanup_sighand(sighand);
219 	if (group_dead)
220 		tty_kref_put(tty);
221 }
222 
delayed_put_task_struct(struct rcu_head * rhp)223 static void delayed_put_task_struct(struct rcu_head *rhp)
224 {
225 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226 
227 	kprobe_flush_task(tsk);
228 	rethook_flush_task(tsk);
229 	perf_event_delayed_put(tsk);
230 	trace_sched_process_free(tsk);
231 	put_task_struct(tsk);
232 }
233 
put_task_struct_rcu_user(struct task_struct * task)234 void put_task_struct_rcu_user(struct task_struct *task)
235 {
236 	if (refcount_dec_and_test(&task->rcu_users))
237 		call_rcu(&task->rcu, delayed_put_task_struct);
238 }
239 
release_thread(struct task_struct * dead_task)240 void __weak release_thread(struct task_struct *dead_task)
241 {
242 }
243 
release_task(struct task_struct * p)244 void release_task(struct task_struct *p)
245 {
246 	struct release_task_post post;
247 	struct task_struct *leader;
248 	struct pid *thread_pid;
249 	int zap_leader;
250 repeat:
251 	memset(&post, 0, sizeof(post));
252 
253 	/* don't need to get the RCU readlock here - the process is dead and
254 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
255 	rcu_read_lock();
256 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
257 	rcu_read_unlock();
258 
259 	pidfs_exit(p);
260 	cgroup_task_release(p);
261 
262 	/* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
263 	thread_pid = task_pid(p);
264 
265 	write_lock_irq(&tasklist_lock);
266 	ptrace_release_task(p);
267 	__exit_signal(&post, p);
268 
269 	/*
270 	 * If we are the last non-leader member of the thread
271 	 * group, and the leader is zombie, then notify the
272 	 * group leader's parent process. (if it wants notification.)
273 	 */
274 	zap_leader = 0;
275 	leader = p->group_leader;
276 	if (leader != p && thread_group_empty(leader)
277 			&& leader->exit_state == EXIT_ZOMBIE) {
278 		/* for pidfs_exit() and do_notify_parent() */
279 		if (leader->signal->flags & SIGNAL_GROUP_EXIT)
280 			leader->exit_code = leader->signal->group_exit_code;
281 		/*
282 		 * If we were the last child thread and the leader has
283 		 * exited already, and the leader's parent ignores SIGCHLD,
284 		 * then we are the one who should release the leader.
285 		 */
286 		zap_leader = do_notify_parent(leader, leader->exit_signal);
287 		if (zap_leader)
288 			leader->exit_state = EXIT_DEAD;
289 	}
290 
291 	write_unlock_irq(&tasklist_lock);
292 	/* @thread_pid can't go away until free_pids() below */
293 	proc_flush_pid(thread_pid);
294 	exit_cred_namespaces(p);
295 	add_device_randomness(&p->se.sum_exec_runtime,
296 			      sizeof(p->se.sum_exec_runtime));
297 	free_pids(post.pids);
298 	release_thread(p);
299 	/*
300 	 * This task was already removed from the process/thread/pid lists
301 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
302 	 * ->pending or, if group dead, signal->shared_pending. We can call
303 	 * flush_sigqueue() lockless.
304 	 */
305 	flush_sigqueue(&p->pending);
306 	if (thread_group_leader(p))
307 		flush_sigqueue(&p->signal->shared_pending);
308 
309 	put_task_struct_rcu_user(p);
310 
311 	p = leader;
312 	if (unlikely(zap_leader))
313 		goto repeat;
314 }
315 
rcuwait_wake_up(struct rcuwait * w)316 int rcuwait_wake_up(struct rcuwait *w)
317 {
318 	int ret = 0;
319 	struct task_struct *task;
320 
321 	rcu_read_lock();
322 
323 	/*
324 	 * Order condition vs @task, such that everything prior to the load
325 	 * of @task is visible. This is the condition as to why the user called
326 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
327 	 * barrier (A) in rcuwait_wait_event().
328 	 *
329 	 *    WAIT                WAKE
330 	 *    [S] tsk = current	  [S] cond = true
331 	 *        MB (A)	      MB (B)
332 	 *    [L] cond		  [L] tsk
333 	 */
334 	smp_mb(); /* (B) */
335 
336 	task = rcu_dereference(w->task);
337 	if (task)
338 		ret = wake_up_process(task);
339 	rcu_read_unlock();
340 
341 	return ret;
342 }
343 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
344 
345 /*
346  * Determine if a process group is "orphaned", according to the POSIX
347  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
348  * by terminal-generated stop signals.  Newly orphaned process groups are
349  * to receive a SIGHUP and a SIGCONT.
350  *
351  * "I ask you, have you ever known what it is to be an orphan?"
352  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)353 static int will_become_orphaned_pgrp(struct pid *pgrp,
354 					struct task_struct *ignored_task)
355 {
356 	struct task_struct *p;
357 
358 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
359 		if ((p == ignored_task) ||
360 		    (p->exit_state && thread_group_empty(p)) ||
361 		    is_global_init(p->real_parent))
362 			continue;
363 
364 		if (task_pgrp(p->real_parent) != pgrp &&
365 		    task_session(p->real_parent) == task_session(p))
366 			return 0;
367 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
368 
369 	return 1;
370 }
371 
is_current_pgrp_orphaned(void)372 int is_current_pgrp_orphaned(void)
373 {
374 	int retval;
375 
376 	read_lock(&tasklist_lock);
377 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
378 	read_unlock(&tasklist_lock);
379 
380 	return retval;
381 }
382 
has_stopped_jobs(struct pid * pgrp)383 static bool has_stopped_jobs(struct pid *pgrp)
384 {
385 	struct task_struct *p;
386 
387 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
388 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
389 			return true;
390 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
391 
392 	return false;
393 }
394 
395 /*
396  * Check to see if any process groups have become orphaned as
397  * a result of our exiting, and if they have any stopped jobs,
398  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
399  */
400 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)401 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
402 {
403 	struct pid *pgrp = task_pgrp(tsk);
404 	struct task_struct *ignored_task = tsk;
405 
406 	if (!parent)
407 		/* exit: our father is in a different pgrp than
408 		 * we are and we were the only connection outside.
409 		 */
410 		parent = tsk->real_parent;
411 	else
412 		/* reparent: our child is in a different pgrp than
413 		 * we are, and it was the only connection outside.
414 		 */
415 		ignored_task = NULL;
416 
417 	if (task_pgrp(parent) != pgrp &&
418 	    task_session(parent) == task_session(tsk) &&
419 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
420 	    has_stopped_jobs(pgrp)) {
421 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
422 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
423 	}
424 }
425 
coredump_task_exit(struct task_struct * tsk,struct core_state * core_state)426 static void coredump_task_exit(struct task_struct *tsk,
427 			       struct core_state *core_state)
428 {
429 	struct core_thread self;
430 
431 	self.task = tsk;
432 	if (self.task->flags & PF_SIGNALED)
433 		self.next = xchg(&core_state->dumper.next, &self);
434 	else
435 		self.task = NULL;
436 	/*
437 	 * Implies mb(), the result of xchg() must be visible
438 	 * to core_state->dumper.
439 	 */
440 	if (atomic_dec_and_test(&core_state->nr_threads))
441 		complete(&core_state->startup);
442 
443 	for (;;) {
444 		set_current_state(TASK_IDLE|TASK_FREEZABLE);
445 		if (!self.task) /* see coredump_finish() */
446 			break;
447 		schedule();
448 	}
449 	__set_current_state(TASK_RUNNING);
450 }
451 
452 #ifdef CONFIG_MEMCG
453 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)454 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
455 {
456 	bool ret = false;
457 
458 	task_lock(tsk);
459 	if (likely(tsk->mm == mm)) {
460 		/* tsk can't pass exit_mm/exec_mmap and exit */
461 		read_unlock(&tasklist_lock);
462 		WRITE_ONCE(mm->owner, tsk);
463 		lru_gen_migrate_mm(mm);
464 		ret = true;
465 	}
466 	task_unlock(tsk);
467 	return ret;
468 }
469 
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)470 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
471 {
472 	struct task_struct *t;
473 
474 	for_each_thread(g, t) {
475 		struct mm_struct *t_mm = READ_ONCE(t->mm);
476 		if (t_mm == mm) {
477 			if (__try_to_set_owner(t, mm))
478 				return true;
479 		} else if (t_mm)
480 			break;
481 	}
482 
483 	return false;
484 }
485 
486 /*
487  * A task is exiting.   If it owned this mm, find a new owner for the mm.
488  */
mm_update_next_owner(struct mm_struct * mm)489 void mm_update_next_owner(struct mm_struct *mm)
490 {
491 	struct task_struct *g, *p = current;
492 
493 	/*
494 	 * If the exiting or execing task is not the owner, it's
495 	 * someone else's problem.
496 	 */
497 	if (mm->owner != p)
498 		return;
499 	/*
500 	 * The current owner is exiting/execing and there are no other
501 	 * candidates.  Do not leave the mm pointing to a possibly
502 	 * freed task structure.
503 	 */
504 	if (atomic_read(&mm->mm_users) <= 1) {
505 		WRITE_ONCE(mm->owner, NULL);
506 		return;
507 	}
508 
509 	read_lock(&tasklist_lock);
510 	/*
511 	 * Search in the children
512 	 */
513 	list_for_each_entry(g, &p->children, sibling) {
514 		if (try_to_set_owner(g, mm))
515 			goto ret;
516 	}
517 	/*
518 	 * Search in the siblings
519 	 */
520 	list_for_each_entry(g, &p->real_parent->children, sibling) {
521 		if (try_to_set_owner(g, mm))
522 			goto ret;
523 	}
524 	/*
525 	 * Search through everything else, we should not get here often.
526 	 */
527 	for_each_process(g) {
528 		if (atomic_read(&mm->mm_users) <= 1)
529 			break;
530 		if (g->flags & PF_KTHREAD)
531 			continue;
532 		if (try_to_set_owner(g, mm))
533 			goto ret;
534 	}
535 	read_unlock(&tasklist_lock);
536 	/*
537 	 * We found no owner yet mm_users > 1: this implies that we are
538 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
539 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
540 	 */
541 	WRITE_ONCE(mm->owner, NULL);
542  ret:
543 	return;
544 
545 }
546 #endif /* CONFIG_MEMCG */
547 
548 /*
549  * Turn us into a lazy TLB process if we
550  * aren't already..
551  */
exit_mm(void)552 static void exit_mm(void)
553 {
554 	struct mm_struct *mm = current->mm;
555 
556 	exit_mm_release(current, mm);
557 	if (!mm)
558 		return;
559 	mmap_read_lock(mm);
560 	mmgrab_lazy_tlb(mm);
561 	BUG_ON(mm != current->active_mm);
562 	/* more a memory barrier than a real lock */
563 	task_lock(current);
564 	/*
565 	 * When a thread stops operating on an address space, the loop
566 	 * in membarrier_private_expedited() may not observe that
567 	 * tsk->mm, and the loop in membarrier_global_expedited() may
568 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
569 	 * rq->membarrier_state, so those would not issue an IPI.
570 	 * Membarrier requires a memory barrier after accessing
571 	 * user-space memory, before clearing tsk->mm or the
572 	 * rq->membarrier_state.
573 	 */
574 	smp_mb__after_spinlock();
575 	local_irq_disable();
576 	current->mm = NULL;
577 	membarrier_update_current_mm(NULL);
578 	enter_lazy_tlb(mm, current);
579 	local_irq_enable();
580 	task_unlock(current);
581 	mmap_read_unlock(mm);
582 	mm_update_next_owner(mm);
583 	mmput(mm);
584 	if (test_thread_flag(TIF_MEMDIE))
585 		exit_oom_victim();
586 }
587 
find_alive_thread(struct task_struct * p)588 static struct task_struct *find_alive_thread(struct task_struct *p)
589 {
590 	struct task_struct *t;
591 
592 	for_each_thread(p, t) {
593 		if (!(t->flags & PF_EXITING))
594 			return t;
595 	}
596 	return NULL;
597 }
598 
find_child_reaper(struct task_struct * father,struct list_head * dead)599 static struct task_struct *find_child_reaper(struct task_struct *father,
600 						struct list_head *dead)
601 	__releases(&tasklist_lock)
602 	__acquires(&tasklist_lock)
603 {
604 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
605 	struct task_struct *reaper = pid_ns->child_reaper;
606 	struct task_struct *p, *n;
607 
608 	if (likely(reaper != father))
609 		return reaper;
610 
611 	reaper = find_alive_thread(father);
612 	if (reaper) {
613 		pid_ns->child_reaper = reaper;
614 		return reaper;
615 	}
616 
617 	write_unlock_irq(&tasklist_lock);
618 
619 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
620 		list_del_init(&p->ptrace_entry);
621 		release_task(p);
622 	}
623 
624 	zap_pid_ns_processes(pid_ns);
625 	write_lock_irq(&tasklist_lock);
626 
627 	return father;
628 }
629 
630 /*
631  * When we die, we re-parent all our children, and try to:
632  * 1. give them to another thread in our thread group, if such a member exists
633  * 2. give it to the first ancestor process which prctl'd itself as a
634  *    child_subreaper for its children (like a service manager)
635  * 3. give it to the init process (PID 1) in our pid namespace
636  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)637 static struct task_struct *find_new_reaper(struct task_struct *father,
638 					   struct task_struct *child_reaper)
639 {
640 	struct task_struct *thread, *reaper;
641 
642 	thread = find_alive_thread(father);
643 	if (thread)
644 		return thread;
645 
646 	if (father->signal->has_child_subreaper) {
647 		unsigned int ns_level = task_pid(father)->level;
648 		/*
649 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
650 		 * We can't check reaper != child_reaper to ensure we do not
651 		 * cross the namespaces, the exiting parent could be injected
652 		 * by setns() + fork().
653 		 * We check pid->level, this is slightly more efficient than
654 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
655 		 */
656 		for (reaper = father->real_parent;
657 		     task_pid(reaper)->level == ns_level;
658 		     reaper = reaper->real_parent) {
659 			if (reaper == &init_task)
660 				break;
661 			if (!reaper->signal->is_child_subreaper)
662 				continue;
663 			thread = find_alive_thread(reaper);
664 			if (thread)
665 				return thread;
666 		}
667 	}
668 
669 	return child_reaper;
670 }
671 
672 /*
673 * Any that need to be release_task'd are put on the @dead list.
674  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)675 static void reparent_leader(struct task_struct *father, struct task_struct *p,
676 				struct list_head *dead)
677 {
678 	if (unlikely(p->exit_state == EXIT_DEAD))
679 		return;
680 
681 	/* We don't want people slaying init. */
682 	p->exit_signal = SIGCHLD;
683 
684 	/* If it has exited notify the new parent about this child's death. */
685 	if (!p->ptrace &&
686 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
687 		if (do_notify_parent(p, p->exit_signal)) {
688 			p->exit_state = EXIT_DEAD;
689 			list_add(&p->ptrace_entry, dead);
690 		}
691 	}
692 
693 	kill_orphaned_pgrp(p, father);
694 }
695 
696 /*
697  * Make init inherit all the child processes
698  */
forget_original_parent(struct task_struct * father,struct list_head * dead)699 static void forget_original_parent(struct task_struct *father,
700 					struct list_head *dead)
701 {
702 	struct task_struct *p, *t, *reaper;
703 
704 	if (unlikely(!list_empty(&father->ptraced)))
705 		exit_ptrace(father, dead);
706 
707 	/* Can drop and reacquire tasklist_lock */
708 	reaper = find_child_reaper(father, dead);
709 	if (list_empty(&father->children))
710 		return;
711 
712 	reaper = find_new_reaper(father, reaper);
713 	list_for_each_entry(p, &father->children, sibling) {
714 		for_each_thread(p, t) {
715 			RCU_INIT_POINTER(t->real_parent, reaper);
716 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
717 			if (likely(!t->ptrace))
718 				t->parent = t->real_parent;
719 			if (t->pdeath_signal)
720 				group_send_sig_info(t->pdeath_signal,
721 						    SEND_SIG_NOINFO, t,
722 						    PIDTYPE_TGID);
723 		}
724 		/*
725 		 * If this is a threaded reparent there is no need to
726 		 * notify anyone anything has happened.
727 		 */
728 		if (!same_thread_group(reaper, father))
729 			reparent_leader(father, p, dead);
730 	}
731 	list_splice_tail_init(&father->children, &reaper->children);
732 }
733 
734 /*
735  * Send signals to all our closest relatives so that they know
736  * to properly mourn us..
737  */
exit_notify(struct task_struct * tsk,int group_dead)738 static void exit_notify(struct task_struct *tsk, int group_dead)
739 {
740 	bool autoreap;
741 	struct task_struct *p, *n;
742 	LIST_HEAD(dead);
743 
744 	write_lock_irq(&tasklist_lock);
745 	forget_original_parent(tsk, &dead);
746 
747 	if (group_dead)
748 		kill_orphaned_pgrp(tsk->group_leader, NULL);
749 
750 	tsk->exit_state = EXIT_ZOMBIE;
751 
752 	if (unlikely(tsk->ptrace)) {
753 		int sig = thread_group_leader(tsk) &&
754 				thread_group_empty(tsk) &&
755 				!ptrace_reparented(tsk) ?
756 			tsk->exit_signal : SIGCHLD;
757 		autoreap = do_notify_parent(tsk, sig);
758 	} else if (thread_group_leader(tsk)) {
759 		autoreap = thread_group_empty(tsk) &&
760 			do_notify_parent(tsk, tsk->exit_signal);
761 	} else {
762 		autoreap = true;
763 		/* untraced sub-thread */
764 		do_notify_pidfd(tsk);
765 	}
766 
767 	if (autoreap) {
768 		tsk->exit_state = EXIT_DEAD;
769 		list_add(&tsk->ptrace_entry, &dead);
770 	}
771 
772 	/* mt-exec, de_thread() is waiting for group leader */
773 	if (unlikely(tsk->signal->notify_count < 0))
774 		wake_up_process(tsk->signal->group_exec_task);
775 	write_unlock_irq(&tasklist_lock);
776 
777 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
778 		list_del_init(&p->ptrace_entry);
779 		release_task(p);
780 	}
781 }
782 
783 #ifdef CONFIG_DEBUG_STACK_USAGE
784 #ifdef CONFIG_STACK_GROWSUP
stack_not_used(struct task_struct * p)785 unsigned long stack_not_used(struct task_struct *p)
786 {
787 	unsigned long *n = end_of_stack(p);
788 
789 	do {	/* Skip over canary */
790 		n--;
791 	} while (!*n);
792 
793 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
794 }
795 #else /* !CONFIG_STACK_GROWSUP */
stack_not_used(struct task_struct * p)796 unsigned long stack_not_used(struct task_struct *p)
797 {
798 	unsigned long *n = end_of_stack(p);
799 
800 	do {	/* Skip over canary */
801 		n++;
802 	} while (!*n);
803 
804 	return (unsigned long)n - (unsigned long)end_of_stack(p);
805 }
806 #endif /* CONFIG_STACK_GROWSUP */
807 
808 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)809 static inline void kstack_histogram(unsigned long used_stack)
810 {
811 #ifdef CONFIG_VM_EVENT_COUNTERS
812 	if (used_stack <= 1024)
813 		count_vm_event(KSTACK_1K);
814 #if THREAD_SIZE > 1024
815 	else if (used_stack <= 2048)
816 		count_vm_event(KSTACK_2K);
817 #endif
818 #if THREAD_SIZE > 2048
819 	else if (used_stack <= 4096)
820 		count_vm_event(KSTACK_4K);
821 #endif
822 #if THREAD_SIZE > 4096
823 	else if (used_stack <= 8192)
824 		count_vm_event(KSTACK_8K);
825 #endif
826 #if THREAD_SIZE > 8192
827 	else if (used_stack <= 16384)
828 		count_vm_event(KSTACK_16K);
829 #endif
830 #if THREAD_SIZE > 16384
831 	else if (used_stack <= 32768)
832 		count_vm_event(KSTACK_32K);
833 #endif
834 #if THREAD_SIZE > 32768
835 	else if (used_stack <= 65536)
836 		count_vm_event(KSTACK_64K);
837 #endif
838 #if THREAD_SIZE > 65536
839 	else
840 		count_vm_event(KSTACK_REST);
841 #endif
842 #endif /* CONFIG_VM_EVENT_COUNTERS */
843 }
844 
check_stack_usage(void)845 static void check_stack_usage(void)
846 {
847 	static DEFINE_SPINLOCK(low_water_lock);
848 	static int lowest_to_date = THREAD_SIZE;
849 	unsigned long free;
850 
851 	free = stack_not_used(current);
852 	kstack_histogram(THREAD_SIZE - free);
853 
854 	if (free >= lowest_to_date)
855 		return;
856 
857 	spin_lock(&low_water_lock);
858 	if (free < lowest_to_date) {
859 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
860 			current->comm, task_pid_nr(current), free);
861 		lowest_to_date = free;
862 	}
863 	spin_unlock(&low_water_lock);
864 }
865 #else /* !CONFIG_DEBUG_STACK_USAGE */
check_stack_usage(void)866 static inline void check_stack_usage(void) {}
867 #endif /* CONFIG_DEBUG_STACK_USAGE */
868 
synchronize_group_exit(struct task_struct * tsk,long code)869 static void synchronize_group_exit(struct task_struct *tsk, long code)
870 {
871 	struct sighand_struct *sighand = tsk->sighand;
872 	struct signal_struct *signal = tsk->signal;
873 	struct core_state *core_state;
874 
875 	spin_lock_irq(&sighand->siglock);
876 	signal->quick_threads--;
877 	if ((signal->quick_threads == 0) &&
878 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
879 		signal->flags = SIGNAL_GROUP_EXIT;
880 		signal->group_exit_code = code;
881 		signal->group_stop_count = 0;
882 	}
883 	/*
884 	 * Serialize with any possible pending coredump.
885 	 * We must hold siglock around checking core_state
886 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
887 	 * will increment ->nr_threads for each thread in the
888 	 * group without PF_POSTCOREDUMP set.
889 	 */
890 	tsk->flags |= PF_POSTCOREDUMP;
891 	core_state = signal->core_state;
892 	spin_unlock_irq(&sighand->siglock);
893 
894 	if (unlikely(core_state))
895 		coredump_task_exit(tsk, core_state);
896 }
897 
do_exit(long code)898 void __noreturn do_exit(long code)
899 {
900 	struct task_struct *tsk = current;
901 	int group_dead;
902 
903 	WARN_ON(irqs_disabled());
904 	WARN_ON(tsk->plug);
905 
906 	kcov_task_exit(tsk);
907 	kmsan_task_exit(tsk);
908 
909 	synchronize_group_exit(tsk, code);
910 	ptrace_event(PTRACE_EVENT_EXIT, code);
911 	user_events_exit(tsk);
912 
913 	io_uring_files_cancel();
914 	sched_mm_cid_exit(tsk);
915 	exit_signals(tsk);  /* sets PF_EXITING */
916 
917 	seccomp_filter_release(tsk);
918 
919 	acct_update_integrals(tsk);
920 	group_dead = atomic_dec_and_test(&tsk->signal->live);
921 	if (group_dead) {
922 		/*
923 		 * If the last thread of global init has exited, panic
924 		 * immediately to get a useable coredump.
925 		 */
926 		if (unlikely(is_global_init(tsk)))
927 			panic("Attempted to kill init! exitcode=0x%08x\n",
928 				tsk->signal->group_exit_code ?: (int)code);
929 
930 #ifdef CONFIG_POSIX_TIMERS
931 		hrtimer_cancel(&tsk->signal->real_timer);
932 		exit_itimers(tsk);
933 #endif
934 		if (tsk->mm)
935 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
936 	}
937 	acct_collect(code, group_dead);
938 	if (group_dead)
939 		tty_audit_exit();
940 	audit_free(tsk);
941 
942 	tsk->exit_code = code;
943 	taskstats_exit(tsk, group_dead);
944 	trace_sched_process_exit(tsk, group_dead);
945 
946 	/*
947 	 * Since sampling can touch ->mm, make sure to stop everything before we
948 	 * tear it down.
949 	 *
950 	 * Also flushes inherited counters to the parent - before the parent
951 	 * gets woken up by child-exit notifications.
952 	 */
953 	perf_event_exit_task(tsk);
954 	/*
955 	 * PF_EXITING (above) ensures unwind_deferred_request() will no
956 	 * longer add new unwinds. While exit_mm() (below) will destroy the
957 	 * abaility to do unwinds. So flush any pending unwinds here.
958 	 */
959 	unwind_deferred_task_exit(tsk);
960 
961 	exit_mm();
962 
963 	if (group_dead)
964 		acct_process();
965 
966 	exit_sem(tsk);
967 	exit_shm(tsk);
968 	exit_files(tsk);
969 	exit_fs(tsk);
970 	if (group_dead)
971 		disassociate_ctty(1);
972 	exit_nsproxy_namespaces(tsk);
973 	exit_task_work(tsk);
974 	exit_thread(tsk);
975 
976 	sched_autogroup_exit_task(tsk);
977 	cgroup_task_exit(tsk);
978 
979 	/*
980 	 * FIXME: do that only when needed, using sched_exit tracepoint
981 	 */
982 	flush_ptrace_hw_breakpoint(tsk);
983 
984 	exit_tasks_rcu_start();
985 	exit_notify(tsk, group_dead);
986 	proc_exit_connector(tsk);
987 	mpol_put_task_policy(tsk);
988 #ifdef CONFIG_FUTEX
989 	if (unlikely(current->pi_state_cache))
990 		kfree(current->pi_state_cache);
991 #endif
992 	/*
993 	 * Make sure we are holding no locks:
994 	 */
995 	debug_check_no_locks_held();
996 
997 	if (tsk->io_context)
998 		exit_io_context(tsk);
999 
1000 	if (tsk->splice_pipe)
1001 		free_pipe_info(tsk->splice_pipe);
1002 
1003 	if (tsk->task_frag.page)
1004 		put_page(tsk->task_frag.page);
1005 
1006 	exit_task_stack_account(tsk);
1007 
1008 	check_stack_usage();
1009 	preempt_disable();
1010 	if (tsk->nr_dirtied)
1011 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1012 	exit_rcu();
1013 	exit_tasks_rcu_finish();
1014 
1015 	lockdep_free_task(tsk);
1016 	do_task_dead();
1017 }
1018 
make_task_dead(int signr)1019 void __noreturn make_task_dead(int signr)
1020 {
1021 	/*
1022 	 * Take the task off the cpu after something catastrophic has
1023 	 * happened.
1024 	 *
1025 	 * We can get here from a kernel oops, sometimes with preemption off.
1026 	 * Start by checking for critical errors.
1027 	 * Then fix up important state like USER_DS and preemption.
1028 	 * Then do everything else.
1029 	 */
1030 	struct task_struct *tsk = current;
1031 	unsigned int limit;
1032 
1033 	if (unlikely(in_interrupt()))
1034 		panic("Aiee, killing interrupt handler!");
1035 	if (unlikely(!tsk->pid))
1036 		panic("Attempted to kill the idle task!");
1037 
1038 	if (unlikely(irqs_disabled())) {
1039 		pr_info("note: %s[%d] exited with irqs disabled\n",
1040 			current->comm, task_pid_nr(current));
1041 		local_irq_enable();
1042 	}
1043 	if (unlikely(in_atomic())) {
1044 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1045 			current->comm, task_pid_nr(current),
1046 			preempt_count());
1047 		preempt_count_set(PREEMPT_ENABLED);
1048 	}
1049 
1050 	/*
1051 	 * Every time the system oopses, if the oops happens while a reference
1052 	 * to an object was held, the reference leaks.
1053 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1054 	 * reference counters to wrap around (if they're not using refcount_t).
1055 	 * This means that repeated oopsing can make unexploitable-looking bugs
1056 	 * exploitable through repeated oopsing.
1057 	 * To make sure this can't happen, place an upper bound on how often the
1058 	 * kernel may oops without panic().
1059 	 */
1060 	limit = READ_ONCE(oops_limit);
1061 	if (atomic_inc_return(&oops_count) >= limit && limit)
1062 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1063 
1064 	/*
1065 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1066 	 * leave this task alone and wait for reboot.
1067 	 */
1068 	if (unlikely(tsk->flags & PF_EXITING)) {
1069 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1070 		futex_exit_recursive(tsk);
1071 		tsk->exit_state = EXIT_DEAD;
1072 		refcount_inc(&tsk->rcu_users);
1073 		do_task_dead();
1074 	}
1075 
1076 	do_exit(signr);
1077 }
1078 
SYSCALL_DEFINE1(exit,int,error_code)1079 SYSCALL_DEFINE1(exit, int, error_code)
1080 {
1081 	do_exit((error_code&0xff)<<8);
1082 }
1083 
1084 /*
1085  * Take down every thread in the group.  This is called by fatal signals
1086  * as well as by sys_exit_group (below).
1087  */
1088 void __noreturn
do_group_exit(int exit_code)1089 do_group_exit(int exit_code)
1090 {
1091 	struct signal_struct *sig = current->signal;
1092 
1093 	if (sig->flags & SIGNAL_GROUP_EXIT)
1094 		exit_code = sig->group_exit_code;
1095 	else if (sig->group_exec_task)
1096 		exit_code = 0;
1097 	else {
1098 		struct sighand_struct *const sighand = current->sighand;
1099 
1100 		spin_lock_irq(&sighand->siglock);
1101 		if (sig->flags & SIGNAL_GROUP_EXIT)
1102 			/* Another thread got here before we took the lock.  */
1103 			exit_code = sig->group_exit_code;
1104 		else if (sig->group_exec_task)
1105 			exit_code = 0;
1106 		else {
1107 			sig->group_exit_code = exit_code;
1108 			sig->flags = SIGNAL_GROUP_EXIT;
1109 			zap_other_threads(current);
1110 		}
1111 		spin_unlock_irq(&sighand->siglock);
1112 	}
1113 
1114 	do_exit(exit_code);
1115 	/* NOTREACHED */
1116 }
1117 
1118 /*
1119  * this kills every thread in the thread group. Note that any externally
1120  * wait4()-ing process will get the correct exit code - even if this
1121  * thread is not the thread group leader.
1122  */
SYSCALL_DEFINE1(exit_group,int,error_code)1123 SYSCALL_DEFINE1(exit_group, int, error_code)
1124 {
1125 	do_group_exit((error_code & 0xff) << 8);
1126 	/* NOTREACHED */
1127 	return 0;
1128 }
1129 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1130 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1131 {
1132 	return	wo->wo_type == PIDTYPE_MAX ||
1133 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1134 }
1135 
1136 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1137 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1138 {
1139 	if (!eligible_pid(wo, p))
1140 		return 0;
1141 
1142 	/*
1143 	 * Wait for all children (clone and not) if __WALL is set or
1144 	 * if it is traced by us.
1145 	 */
1146 	if (ptrace || (wo->wo_flags & __WALL))
1147 		return 1;
1148 
1149 	/*
1150 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1151 	 * otherwise, wait for non-clone children *only*.
1152 	 *
1153 	 * Note: a "clone" child here is one that reports to its parent
1154 	 * using a signal other than SIGCHLD, or a non-leader thread which
1155 	 * we can only see if it is traced by us.
1156 	 */
1157 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1158 		return 0;
1159 
1160 	return 1;
1161 }
1162 
1163 /*
1164  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1165  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1166  * the lock and this task is uninteresting.  If we return nonzero, we have
1167  * released the lock and the system call should return.
1168  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1169 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1170 {
1171 	int state, status;
1172 	pid_t pid = task_pid_vnr(p);
1173 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1174 	struct waitid_info *infop;
1175 
1176 	if (!likely(wo->wo_flags & WEXITED))
1177 		return 0;
1178 
1179 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1180 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1181 			? p->signal->group_exit_code : p->exit_code;
1182 		get_task_struct(p);
1183 		read_unlock(&tasklist_lock);
1184 		sched_annotate_sleep();
1185 		if (wo->wo_rusage)
1186 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1187 		put_task_struct(p);
1188 		goto out_info;
1189 	}
1190 	/*
1191 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1192 	 */
1193 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1194 		EXIT_TRACE : EXIT_DEAD;
1195 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1196 		return 0;
1197 	/*
1198 	 * We own this thread, nobody else can reap it.
1199 	 */
1200 	read_unlock(&tasklist_lock);
1201 	sched_annotate_sleep();
1202 
1203 	/*
1204 	 * Check thread_group_leader() to exclude the traced sub-threads.
1205 	 */
1206 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1207 		struct signal_struct *sig = p->signal;
1208 		struct signal_struct *psig = current->signal;
1209 		unsigned long maxrss;
1210 		u64 tgutime, tgstime;
1211 
1212 		/*
1213 		 * The resource counters for the group leader are in its
1214 		 * own task_struct.  Those for dead threads in the group
1215 		 * are in its signal_struct, as are those for the child
1216 		 * processes it has previously reaped.  All these
1217 		 * accumulate in the parent's signal_struct c* fields.
1218 		 *
1219 		 * We don't bother to take a lock here to protect these
1220 		 * p->signal fields because the whole thread group is dead
1221 		 * and nobody can change them.
1222 		 *
1223 		 * psig->stats_lock also protects us from our sub-threads
1224 		 * which can reap other children at the same time.
1225 		 *
1226 		 * We use thread_group_cputime_adjusted() to get times for
1227 		 * the thread group, which consolidates times for all threads
1228 		 * in the group including the group leader.
1229 		 */
1230 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1231 		write_seqlock_irq(&psig->stats_lock);
1232 		psig->cutime += tgutime + sig->cutime;
1233 		psig->cstime += tgstime + sig->cstime;
1234 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1235 		psig->cmin_flt +=
1236 			p->min_flt + sig->min_flt + sig->cmin_flt;
1237 		psig->cmaj_flt +=
1238 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1239 		psig->cnvcsw +=
1240 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1241 		psig->cnivcsw +=
1242 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1243 		psig->cinblock +=
1244 			task_io_get_inblock(p) +
1245 			sig->inblock + sig->cinblock;
1246 		psig->coublock +=
1247 			task_io_get_oublock(p) +
1248 			sig->oublock + sig->coublock;
1249 		maxrss = max(sig->maxrss, sig->cmaxrss);
1250 		if (psig->cmaxrss < maxrss)
1251 			psig->cmaxrss = maxrss;
1252 		task_io_accounting_add(&psig->ioac, &p->ioac);
1253 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1254 		write_sequnlock_irq(&psig->stats_lock);
1255 	}
1256 
1257 	if (wo->wo_rusage)
1258 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1259 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1260 		? p->signal->group_exit_code : p->exit_code;
1261 	wo->wo_stat = status;
1262 
1263 	if (state == EXIT_TRACE) {
1264 		write_lock_irq(&tasklist_lock);
1265 		/* We dropped tasklist, ptracer could die and untrace */
1266 		ptrace_unlink(p);
1267 
1268 		/* If parent wants a zombie, don't release it now */
1269 		state = EXIT_ZOMBIE;
1270 		if (do_notify_parent(p, p->exit_signal))
1271 			state = EXIT_DEAD;
1272 		p->exit_state = state;
1273 		write_unlock_irq(&tasklist_lock);
1274 	}
1275 	if (state == EXIT_DEAD)
1276 		release_task(p);
1277 
1278 out_info:
1279 	infop = wo->wo_info;
1280 	if (infop) {
1281 		if ((status & 0x7f) == 0) {
1282 			infop->cause = CLD_EXITED;
1283 			infop->status = status >> 8;
1284 		} else {
1285 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1286 			infop->status = status & 0x7f;
1287 		}
1288 		infop->pid = pid;
1289 		infop->uid = uid;
1290 	}
1291 
1292 	return pid;
1293 }
1294 
task_stopped_code(struct task_struct * p,bool ptrace)1295 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1296 {
1297 	if (ptrace) {
1298 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1299 			return &p->exit_code;
1300 	} else {
1301 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1302 			return &p->signal->group_exit_code;
1303 	}
1304 	return NULL;
1305 }
1306 
1307 /**
1308  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1309  * @wo: wait options
1310  * @ptrace: is the wait for ptrace
1311  * @p: task to wait for
1312  *
1313  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1314  *
1315  * CONTEXT:
1316  * read_lock(&tasklist_lock), which is released if return value is
1317  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1318  *
1319  * RETURNS:
1320  * 0 if wait condition didn't exist and search for other wait conditions
1321  * should continue.  Non-zero return, -errno on failure and @p's pid on
1322  * success, implies that tasklist_lock is released and wait condition
1323  * search should terminate.
1324  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1325 static int wait_task_stopped(struct wait_opts *wo,
1326 				int ptrace, struct task_struct *p)
1327 {
1328 	struct waitid_info *infop;
1329 	int exit_code, *p_code, why;
1330 	uid_t uid = 0; /* unneeded, required by compiler */
1331 	pid_t pid;
1332 
1333 	/*
1334 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1335 	 */
1336 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1337 		return 0;
1338 
1339 	if (!task_stopped_code(p, ptrace))
1340 		return 0;
1341 
1342 	exit_code = 0;
1343 	spin_lock_irq(&p->sighand->siglock);
1344 
1345 	p_code = task_stopped_code(p, ptrace);
1346 	if (unlikely(!p_code))
1347 		goto unlock_sig;
1348 
1349 	exit_code = *p_code;
1350 	if (!exit_code)
1351 		goto unlock_sig;
1352 
1353 	if (!unlikely(wo->wo_flags & WNOWAIT))
1354 		*p_code = 0;
1355 
1356 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1357 unlock_sig:
1358 	spin_unlock_irq(&p->sighand->siglock);
1359 	if (!exit_code)
1360 		return 0;
1361 
1362 	/*
1363 	 * Now we are pretty sure this task is interesting.
1364 	 * Make sure it doesn't get reaped out from under us while we
1365 	 * give up the lock and then examine it below.  We don't want to
1366 	 * keep holding onto the tasklist_lock while we call getrusage and
1367 	 * possibly take page faults for user memory.
1368 	 */
1369 	get_task_struct(p);
1370 	pid = task_pid_vnr(p);
1371 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1372 	read_unlock(&tasklist_lock);
1373 	sched_annotate_sleep();
1374 	if (wo->wo_rusage)
1375 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1376 	put_task_struct(p);
1377 
1378 	if (likely(!(wo->wo_flags & WNOWAIT)))
1379 		wo->wo_stat = (exit_code << 8) | 0x7f;
1380 
1381 	infop = wo->wo_info;
1382 	if (infop) {
1383 		infop->cause = why;
1384 		infop->status = exit_code;
1385 		infop->pid = pid;
1386 		infop->uid = uid;
1387 	}
1388 	return pid;
1389 }
1390 
1391 /*
1392  * Handle do_wait work for one task in a live, non-stopped state.
1393  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1394  * the lock and this task is uninteresting.  If we return nonzero, we have
1395  * released the lock and the system call should return.
1396  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1397 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1398 {
1399 	struct waitid_info *infop;
1400 	pid_t pid;
1401 	uid_t uid;
1402 
1403 	if (!unlikely(wo->wo_flags & WCONTINUED))
1404 		return 0;
1405 
1406 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1407 		return 0;
1408 
1409 	spin_lock_irq(&p->sighand->siglock);
1410 	/* Re-check with the lock held.  */
1411 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1412 		spin_unlock_irq(&p->sighand->siglock);
1413 		return 0;
1414 	}
1415 	if (!unlikely(wo->wo_flags & WNOWAIT))
1416 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1417 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1418 	spin_unlock_irq(&p->sighand->siglock);
1419 
1420 	pid = task_pid_vnr(p);
1421 	get_task_struct(p);
1422 	read_unlock(&tasklist_lock);
1423 	sched_annotate_sleep();
1424 	if (wo->wo_rusage)
1425 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1426 	put_task_struct(p);
1427 
1428 	infop = wo->wo_info;
1429 	if (!infop) {
1430 		wo->wo_stat = 0xffff;
1431 	} else {
1432 		infop->cause = CLD_CONTINUED;
1433 		infop->pid = pid;
1434 		infop->uid = uid;
1435 		infop->status = SIGCONT;
1436 	}
1437 	return pid;
1438 }
1439 
1440 /*
1441  * Consider @p for a wait by @parent.
1442  *
1443  * -ECHILD should be in ->notask_error before the first call.
1444  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1445  * Returns zero if the search for a child should continue;
1446  * then ->notask_error is 0 if @p is an eligible child,
1447  * or still -ECHILD.
1448  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1449 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1450 				struct task_struct *p)
1451 {
1452 	/*
1453 	 * We can race with wait_task_zombie() from another thread.
1454 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1455 	 * can't confuse the checks below.
1456 	 */
1457 	int exit_state = READ_ONCE(p->exit_state);
1458 	int ret;
1459 
1460 	if (unlikely(exit_state == EXIT_DEAD))
1461 		return 0;
1462 
1463 	ret = eligible_child(wo, ptrace, p);
1464 	if (!ret)
1465 		return ret;
1466 
1467 	if (unlikely(exit_state == EXIT_TRACE)) {
1468 		/*
1469 		 * ptrace == 0 means we are the natural parent. In this case
1470 		 * we should clear notask_error, debugger will notify us.
1471 		 */
1472 		if (likely(!ptrace))
1473 			wo->notask_error = 0;
1474 		return 0;
1475 	}
1476 
1477 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1478 		/*
1479 		 * If it is traced by its real parent's group, just pretend
1480 		 * the caller is ptrace_do_wait() and reap this child if it
1481 		 * is zombie.
1482 		 *
1483 		 * This also hides group stop state from real parent; otherwise
1484 		 * a single stop can be reported twice as group and ptrace stop.
1485 		 * If a ptracer wants to distinguish these two events for its
1486 		 * own children it should create a separate process which takes
1487 		 * the role of real parent.
1488 		 */
1489 		if (!ptrace_reparented(p))
1490 			ptrace = 1;
1491 	}
1492 
1493 	/* slay zombie? */
1494 	if (exit_state == EXIT_ZOMBIE) {
1495 		/* we don't reap group leaders with subthreads */
1496 		if (!delay_group_leader(p)) {
1497 			/*
1498 			 * A zombie ptracee is only visible to its ptracer.
1499 			 * Notification and reaping will be cascaded to the
1500 			 * real parent when the ptracer detaches.
1501 			 */
1502 			if (unlikely(ptrace) || likely(!p->ptrace))
1503 				return wait_task_zombie(wo, p);
1504 		}
1505 
1506 		/*
1507 		 * Allow access to stopped/continued state via zombie by
1508 		 * falling through.  Clearing of notask_error is complex.
1509 		 *
1510 		 * When !@ptrace:
1511 		 *
1512 		 * If WEXITED is set, notask_error should naturally be
1513 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1514 		 * so, if there are live subthreads, there are events to
1515 		 * wait for.  If all subthreads are dead, it's still safe
1516 		 * to clear - this function will be called again in finite
1517 		 * amount time once all the subthreads are released and
1518 		 * will then return without clearing.
1519 		 *
1520 		 * When @ptrace:
1521 		 *
1522 		 * Stopped state is per-task and thus can't change once the
1523 		 * target task dies.  Only continued and exited can happen.
1524 		 * Clear notask_error if WCONTINUED | WEXITED.
1525 		 */
1526 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1527 			wo->notask_error = 0;
1528 	} else {
1529 		/*
1530 		 * @p is alive and it's gonna stop, continue or exit, so
1531 		 * there always is something to wait for.
1532 		 */
1533 		wo->notask_error = 0;
1534 	}
1535 
1536 	/*
1537 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1538 	 * is used and the two don't interact with each other.
1539 	 */
1540 	ret = wait_task_stopped(wo, ptrace, p);
1541 	if (ret)
1542 		return ret;
1543 
1544 	/*
1545 	 * Wait for continued.  There's only one continued state and the
1546 	 * ptracer can consume it which can confuse the real parent.  Don't
1547 	 * use WCONTINUED from ptracer.  You don't need or want it.
1548 	 */
1549 	return wait_task_continued(wo, p);
1550 }
1551 
1552 /*
1553  * Do the work of do_wait() for one thread in the group, @tsk.
1554  *
1555  * -ECHILD should be in ->notask_error before the first call.
1556  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1557  * Returns zero if the search for a child should continue; then
1558  * ->notask_error is 0 if there were any eligible children,
1559  * or still -ECHILD.
1560  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1561 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1562 {
1563 	struct task_struct *p;
1564 
1565 	list_for_each_entry(p, &tsk->children, sibling) {
1566 		int ret = wait_consider_task(wo, 0, p);
1567 
1568 		if (ret)
1569 			return ret;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1575 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1576 {
1577 	struct task_struct *p;
1578 
1579 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1580 		int ret = wait_consider_task(wo, 1, p);
1581 
1582 		if (ret)
1583 			return ret;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1589 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1590 {
1591 	if (!eligible_pid(wo, p))
1592 		return false;
1593 
1594 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1595 		return false;
1596 
1597 	return true;
1598 }
1599 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1600 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1601 				int sync, void *key)
1602 {
1603 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1604 						child_wait);
1605 	struct task_struct *p = key;
1606 
1607 	if (pid_child_should_wake(wo, p))
1608 		return default_wake_function(wait, mode, sync, key);
1609 
1610 	return 0;
1611 }
1612 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1613 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1614 {
1615 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1616 			   TASK_INTERRUPTIBLE, p);
1617 }
1618 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1619 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1620 				 struct task_struct *target)
1621 {
1622 	struct task_struct *parent =
1623 		!ptrace ? target->real_parent : target->parent;
1624 
1625 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1626 				     same_thread_group(current, parent));
1627 }
1628 
1629 /*
1630  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1631  * and tracee lists to find the target task.
1632  */
do_wait_pid(struct wait_opts * wo)1633 static int do_wait_pid(struct wait_opts *wo)
1634 {
1635 	bool ptrace;
1636 	struct task_struct *target;
1637 	int retval;
1638 
1639 	ptrace = false;
1640 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1641 	if (target && is_effectively_child(wo, ptrace, target)) {
1642 		retval = wait_consider_task(wo, ptrace, target);
1643 		if (retval)
1644 			return retval;
1645 	}
1646 
1647 	ptrace = true;
1648 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1649 	if (target && target->ptrace &&
1650 	    is_effectively_child(wo, ptrace, target)) {
1651 		retval = wait_consider_task(wo, ptrace, target);
1652 		if (retval)
1653 			return retval;
1654 	}
1655 
1656 	return 0;
1657 }
1658 
__do_wait(struct wait_opts * wo)1659 long __do_wait(struct wait_opts *wo)
1660 {
1661 	long retval;
1662 
1663 	/*
1664 	 * If there is nothing that can match our criteria, just get out.
1665 	 * We will clear ->notask_error to zero if we see any child that
1666 	 * might later match our criteria, even if we are not able to reap
1667 	 * it yet.
1668 	 */
1669 	wo->notask_error = -ECHILD;
1670 	if ((wo->wo_type < PIDTYPE_MAX) &&
1671 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1672 		goto notask;
1673 
1674 	read_lock(&tasklist_lock);
1675 
1676 	if (wo->wo_type == PIDTYPE_PID) {
1677 		retval = do_wait_pid(wo);
1678 		if (retval)
1679 			return retval;
1680 	} else {
1681 		struct task_struct *tsk = current;
1682 
1683 		do {
1684 			retval = do_wait_thread(wo, tsk);
1685 			if (retval)
1686 				return retval;
1687 
1688 			retval = ptrace_do_wait(wo, tsk);
1689 			if (retval)
1690 				return retval;
1691 
1692 			if (wo->wo_flags & __WNOTHREAD)
1693 				break;
1694 		} while_each_thread(current, tsk);
1695 	}
1696 	read_unlock(&tasklist_lock);
1697 
1698 notask:
1699 	retval = wo->notask_error;
1700 	if (!retval && !(wo->wo_flags & WNOHANG))
1701 		return -ERESTARTSYS;
1702 
1703 	return retval;
1704 }
1705 
do_wait(struct wait_opts * wo)1706 static long do_wait(struct wait_opts *wo)
1707 {
1708 	int retval;
1709 
1710 	trace_sched_process_wait(wo->wo_pid);
1711 
1712 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1713 	wo->child_wait.private = current;
1714 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1715 
1716 	do {
1717 		set_current_state(TASK_INTERRUPTIBLE);
1718 		retval = __do_wait(wo);
1719 		if (retval != -ERESTARTSYS)
1720 			break;
1721 		if (signal_pending(current))
1722 			break;
1723 		schedule();
1724 	} while (1);
1725 
1726 	__set_current_state(TASK_RUNNING);
1727 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1728 	return retval;
1729 }
1730 
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1731 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1732 			  struct waitid_info *infop, int options,
1733 			  struct rusage *ru)
1734 {
1735 	unsigned int f_flags = 0;
1736 	struct pid *pid = NULL;
1737 	enum pid_type type;
1738 
1739 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1740 			__WNOTHREAD|__WCLONE|__WALL))
1741 		return -EINVAL;
1742 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1743 		return -EINVAL;
1744 
1745 	switch (which) {
1746 	case P_ALL:
1747 		type = PIDTYPE_MAX;
1748 		break;
1749 	case P_PID:
1750 		type = PIDTYPE_PID;
1751 		if (upid <= 0)
1752 			return -EINVAL;
1753 
1754 		pid = find_get_pid(upid);
1755 		break;
1756 	case P_PGID:
1757 		type = PIDTYPE_PGID;
1758 		if (upid < 0)
1759 			return -EINVAL;
1760 
1761 		if (upid)
1762 			pid = find_get_pid(upid);
1763 		else
1764 			pid = get_task_pid(current, PIDTYPE_PGID);
1765 		break;
1766 	case P_PIDFD:
1767 		type = PIDTYPE_PID;
1768 		if (upid < 0)
1769 			return -EINVAL;
1770 
1771 		pid = pidfd_get_pid(upid, &f_flags);
1772 		if (IS_ERR(pid))
1773 			return PTR_ERR(pid);
1774 
1775 		break;
1776 	default:
1777 		return -EINVAL;
1778 	}
1779 
1780 	wo->wo_type	= type;
1781 	wo->wo_pid	= pid;
1782 	wo->wo_flags	= options;
1783 	wo->wo_info	= infop;
1784 	wo->wo_rusage	= ru;
1785 	if (f_flags & O_NONBLOCK)
1786 		wo->wo_flags |= WNOHANG;
1787 
1788 	return 0;
1789 }
1790 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1791 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1792 			  int options, struct rusage *ru)
1793 {
1794 	struct wait_opts wo;
1795 	long ret;
1796 
1797 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1798 	if (ret)
1799 		return ret;
1800 
1801 	ret = do_wait(&wo);
1802 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1803 		ret = -EAGAIN;
1804 
1805 	put_pid(wo.wo_pid);
1806 	return ret;
1807 }
1808 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1809 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1810 		infop, int, options, struct rusage __user *, ru)
1811 {
1812 	struct rusage r;
1813 	struct waitid_info info = {.status = 0};
1814 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1815 	int signo = 0;
1816 
1817 	if (err > 0) {
1818 		signo = SIGCHLD;
1819 		err = 0;
1820 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1821 			return -EFAULT;
1822 	}
1823 	if (!infop)
1824 		return err;
1825 
1826 	if (!user_write_access_begin(infop, sizeof(*infop)))
1827 		return -EFAULT;
1828 
1829 	unsafe_put_user(signo, &infop->si_signo, Efault);
1830 	unsafe_put_user(0, &infop->si_errno, Efault);
1831 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1832 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1833 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1834 	unsafe_put_user(info.status, &infop->si_status, Efault);
1835 	user_write_access_end();
1836 	return err;
1837 Efault:
1838 	user_write_access_end();
1839 	return -EFAULT;
1840 }
1841 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1842 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1843 		  struct rusage *ru)
1844 {
1845 	struct wait_opts wo;
1846 	struct pid *pid = NULL;
1847 	enum pid_type type;
1848 	long ret;
1849 
1850 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1851 			__WNOTHREAD|__WCLONE|__WALL))
1852 		return -EINVAL;
1853 
1854 	/* -INT_MIN is not defined */
1855 	if (upid == INT_MIN)
1856 		return -ESRCH;
1857 
1858 	if (upid == -1)
1859 		type = PIDTYPE_MAX;
1860 	else if (upid < 0) {
1861 		type = PIDTYPE_PGID;
1862 		pid = find_get_pid(-upid);
1863 	} else if (upid == 0) {
1864 		type = PIDTYPE_PGID;
1865 		pid = get_task_pid(current, PIDTYPE_PGID);
1866 	} else /* upid > 0 */ {
1867 		type = PIDTYPE_PID;
1868 		pid = find_get_pid(upid);
1869 	}
1870 
1871 	wo.wo_type	= type;
1872 	wo.wo_pid	= pid;
1873 	wo.wo_flags	= options | WEXITED;
1874 	wo.wo_info	= NULL;
1875 	wo.wo_stat	= 0;
1876 	wo.wo_rusage	= ru;
1877 	ret = do_wait(&wo);
1878 	put_pid(pid);
1879 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1880 		ret = -EFAULT;
1881 
1882 	return ret;
1883 }
1884 
kernel_wait(pid_t pid,int * stat)1885 int kernel_wait(pid_t pid, int *stat)
1886 {
1887 	struct wait_opts wo = {
1888 		.wo_type	= PIDTYPE_PID,
1889 		.wo_pid		= find_get_pid(pid),
1890 		.wo_flags	= WEXITED,
1891 	};
1892 	int ret;
1893 
1894 	ret = do_wait(&wo);
1895 	if (ret > 0 && wo.wo_stat)
1896 		*stat = wo.wo_stat;
1897 	put_pid(wo.wo_pid);
1898 	return ret;
1899 }
1900 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1901 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1902 		int, options, struct rusage __user *, ru)
1903 {
1904 	struct rusage r;
1905 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1906 
1907 	if (err > 0) {
1908 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1909 			return -EFAULT;
1910 	}
1911 	return err;
1912 }
1913 
1914 #ifdef __ARCH_WANT_SYS_WAITPID
1915 
1916 /*
1917  * sys_waitpid() remains for compatibility. waitpid() should be
1918  * implemented by calling sys_wait4() from libc.a.
1919  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1920 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1921 {
1922 	return kernel_wait4(pid, stat_addr, options, NULL);
1923 }
1924 
1925 #endif
1926 
1927 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1928 COMPAT_SYSCALL_DEFINE4(wait4,
1929 	compat_pid_t, pid,
1930 	compat_uint_t __user *, stat_addr,
1931 	int, options,
1932 	struct compat_rusage __user *, ru)
1933 {
1934 	struct rusage r;
1935 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1936 	if (err > 0) {
1937 		if (ru && put_compat_rusage(&r, ru))
1938 			return -EFAULT;
1939 	}
1940 	return err;
1941 }
1942 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1943 COMPAT_SYSCALL_DEFINE5(waitid,
1944 		int, which, compat_pid_t, pid,
1945 		struct compat_siginfo __user *, infop, int, options,
1946 		struct compat_rusage __user *, uru)
1947 {
1948 	struct rusage ru;
1949 	struct waitid_info info = {.status = 0};
1950 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1951 	int signo = 0;
1952 	if (err > 0) {
1953 		signo = SIGCHLD;
1954 		err = 0;
1955 		if (uru) {
1956 			/* kernel_waitid() overwrites everything in ru */
1957 			if (COMPAT_USE_64BIT_TIME)
1958 				err = copy_to_user(uru, &ru, sizeof(ru));
1959 			else
1960 				err = put_compat_rusage(&ru, uru);
1961 			if (err)
1962 				return -EFAULT;
1963 		}
1964 	}
1965 
1966 	if (!infop)
1967 		return err;
1968 
1969 	if (!user_write_access_begin(infop, sizeof(*infop)))
1970 		return -EFAULT;
1971 
1972 	unsafe_put_user(signo, &infop->si_signo, Efault);
1973 	unsafe_put_user(0, &infop->si_errno, Efault);
1974 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1975 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1976 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1977 	unsafe_put_user(info.status, &infop->si_status, Efault);
1978 	user_write_access_end();
1979 	return err;
1980 Efault:
1981 	user_write_access_end();
1982 	return -EFAULT;
1983 }
1984 #endif
1985 
1986 /*
1987  * This needs to be __function_aligned as GCC implicitly makes any
1988  * implementation of abort() cold and drops alignment specified by
1989  * -falign-functions=N.
1990  *
1991  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1992  */
abort(void)1993 __weak __function_aligned void abort(void)
1994 {
1995 	BUG();
1996 
1997 	/* if that doesn't kill us, halt */
1998 	panic("Oops failed to kill thread");
1999 }
2000 EXPORT_SYMBOL(abort);
2001