xref: /linux/kernel/events/uprobes.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>		/* anon_vma_prepare */
31 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
32 #include <linux/swap.h>		/* try_to_free_swap */
33 #include <linux/ptrace.h>	/* user_enable_single_step */
34 #include <linux/kdebug.h>	/* notifier mechanism */
35 #include "../../mm/internal.h"	/* munlock_vma_page */
36 
37 #include <linux/uprobes.h>
38 
39 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
41 
42 static struct rb_root uprobes_tree = RB_ROOT;
43 
44 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
45 
46 #define UPROBES_HASH_SZ	13
47 
48 /*
49  * We need separate register/unregister and mmap/munmap lock hashes because
50  * of mmap_sem nesting.
51  *
52  * uprobe_register() needs to install probes on (potentially) all processes
53  * and thus needs to acquire multiple mmap_sems (consequtively, not
54  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55  * for the particular process doing the mmap.
56  *
57  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58  * because of lock order against i_mmap_mutex. This means there's a hole in
59  * the register vma iteration where a mmap() can happen.
60  *
61  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62  * install a probe where one is already installed.
63  */
64 
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 
68 #define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 
74 /*
75  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76  * events active at this time.  Probably a fine grained per inode count is
77  * better?
78  */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 
81 /* Have a copy of original instruction */
82 #define UPROBE_COPY_INSN	0
83 /* Dont run handlers when first register/ last unregister in progress*/
84 #define UPROBE_RUN_HANDLER	1
85 /* Can skip singlestep */
86 #define UPROBE_SKIP_SSTEP	2
87 
88 struct uprobe {
89 	struct rb_node		rb_node;	/* node in the rb tree */
90 	atomic_t		ref;
91 	struct rw_semaphore	consumer_rwsem;
92 	struct mutex		copy_mutex;	/* TODO: kill me and UPROBE_COPY_INSN */
93 	struct list_head	pending_list;
94 	struct uprobe_consumer	*consumers;
95 	struct inode		*inode;		/* Also hold a ref to inode */
96 	loff_t			offset;
97 	unsigned long		flags;
98 	struct arch_uprobe	arch;
99 };
100 
101 /*
102  * valid_vma: Verify if the specified vma is an executable vma
103  * Relax restrictions while unregistering: vm_flags might have
104  * changed after breakpoint was inserted.
105  *	- is_register: indicates if we are in register context.
106  *	- Return 1 if the specified virtual address is in an
107  *	  executable vma.
108  */
109 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
110 {
111 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
112 
113 	if (is_register)
114 		flags |= VM_WRITE;
115 
116 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
117 }
118 
119 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
120 {
121 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
122 }
123 
124 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
125 {
126 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
127 }
128 
129 /**
130  * __replace_page - replace page in vma by new page.
131  * based on replace_page in mm/ksm.c
132  *
133  * @vma:      vma that holds the pte pointing to page
134  * @addr:     address the old @page is mapped at
135  * @page:     the cowed page we are replacing by kpage
136  * @kpage:    the modified page we replace page by
137  *
138  * Returns 0 on success, -EFAULT on failure.
139  */
140 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
141 				struct page *page, struct page *kpage)
142 {
143 	struct mm_struct *mm = vma->vm_mm;
144 	spinlock_t *ptl;
145 	pte_t *ptep;
146 	int err;
147 	/* For mmu_notifiers */
148 	const unsigned long mmun_start = addr;
149 	const unsigned long mmun_end   = addr + PAGE_SIZE;
150 
151 	/* For try_to_free_swap() and munlock_vma_page() below */
152 	lock_page(page);
153 
154 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
155 	err = -EAGAIN;
156 	ptep = page_check_address(page, mm, addr, &ptl, 0);
157 	if (!ptep)
158 		goto unlock;
159 
160 	get_page(kpage);
161 	page_add_new_anon_rmap(kpage, vma, addr);
162 
163 	if (!PageAnon(page)) {
164 		dec_mm_counter(mm, MM_FILEPAGES);
165 		inc_mm_counter(mm, MM_ANONPAGES);
166 	}
167 
168 	flush_cache_page(vma, addr, pte_pfn(*ptep));
169 	ptep_clear_flush(vma, addr, ptep);
170 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171 
172 	page_remove_rmap(page);
173 	if (!page_mapped(page))
174 		try_to_free_swap(page);
175 	pte_unmap_unlock(ptep, ptl);
176 
177 	if (vma->vm_flags & VM_LOCKED)
178 		munlock_vma_page(page);
179 	put_page(page);
180 
181 	err = 0;
182  unlock:
183 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
184 	unlock_page(page);
185 	return err;
186 }
187 
188 /**
189  * is_swbp_insn - check if instruction is breakpoint instruction.
190  * @insn: instruction to be checked.
191  * Default implementation of is_swbp_insn
192  * Returns true if @insn is a breakpoint instruction.
193  */
194 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
195 {
196 	return *insn == UPROBE_SWBP_INSN;
197 }
198 
199 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
200 {
201 	void *kaddr = kmap_atomic(page);
202 	memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
203 	kunmap_atomic(kaddr);
204 }
205 
206 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
207 {
208 	uprobe_opcode_t old_opcode;
209 	bool is_swbp;
210 
211 	copy_opcode(page, vaddr, &old_opcode);
212 	is_swbp = is_swbp_insn(&old_opcode);
213 
214 	if (is_swbp_insn(new_opcode)) {
215 		if (is_swbp)		/* register: already installed? */
216 			return 0;
217 	} else {
218 		if (!is_swbp)		/* unregister: was it changed by us? */
219 			return 0;
220 	}
221 
222 	return 1;
223 }
224 
225 /*
226  * NOTE:
227  * Expect the breakpoint instruction to be the smallest size instruction for
228  * the architecture. If an arch has variable length instruction and the
229  * breakpoint instruction is not of the smallest length instruction
230  * supported by that architecture then we need to modify is_swbp_at_addr and
231  * write_opcode accordingly. This would never be a problem for archs that
232  * have fixed length instructions.
233  */
234 
235 /*
236  * write_opcode - write the opcode at a given virtual address.
237  * @mm: the probed process address space.
238  * @vaddr: the virtual address to store the opcode.
239  * @opcode: opcode to be written at @vaddr.
240  *
241  * Called with mm->mmap_sem held (for read and with a reference to
242  * mm).
243  *
244  * For mm @mm, write the opcode at @vaddr.
245  * Return 0 (success) or a negative errno.
246  */
247 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
248 			uprobe_opcode_t opcode)
249 {
250 	struct page *old_page, *new_page;
251 	void *vaddr_old, *vaddr_new;
252 	struct vm_area_struct *vma;
253 	int ret;
254 
255 retry:
256 	/* Read the page with vaddr into memory */
257 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
258 	if (ret <= 0)
259 		return ret;
260 
261 	ret = verify_opcode(old_page, vaddr, &opcode);
262 	if (ret <= 0)
263 		goto put_old;
264 
265 	ret = -ENOMEM;
266 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
267 	if (!new_page)
268 		goto put_old;
269 
270 	__SetPageUptodate(new_page);
271 
272 	/* copy the page now that we've got it stable */
273 	vaddr_old = kmap_atomic(old_page);
274 	vaddr_new = kmap_atomic(new_page);
275 
276 	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
277 	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
278 
279 	kunmap_atomic(vaddr_new);
280 	kunmap_atomic(vaddr_old);
281 
282 	ret = anon_vma_prepare(vma);
283 	if (ret)
284 		goto put_new;
285 
286 	ret = __replace_page(vma, vaddr, old_page, new_page);
287 
288 put_new:
289 	page_cache_release(new_page);
290 put_old:
291 	put_page(old_page);
292 
293 	if (unlikely(ret == -EAGAIN))
294 		goto retry;
295 	return ret;
296 }
297 
298 /**
299  * set_swbp - store breakpoint at a given address.
300  * @auprobe: arch specific probepoint information.
301  * @mm: the probed process address space.
302  * @vaddr: the virtual address to insert the opcode.
303  *
304  * For mm @mm, store the breakpoint instruction at @vaddr.
305  * Return 0 (success) or a negative errno.
306  */
307 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
308 {
309 	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
310 }
311 
312 /**
313  * set_orig_insn - Restore the original instruction.
314  * @mm: the probed process address space.
315  * @auprobe: arch specific probepoint information.
316  * @vaddr: the virtual address to insert the opcode.
317  *
318  * For mm @mm, restore the original opcode (opcode) at @vaddr.
319  * Return 0 (success) or a negative errno.
320  */
321 int __weak
322 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
323 {
324 	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
325 }
326 
327 static int match_uprobe(struct uprobe *l, struct uprobe *r)
328 {
329 	if (l->inode < r->inode)
330 		return -1;
331 
332 	if (l->inode > r->inode)
333 		return 1;
334 
335 	if (l->offset < r->offset)
336 		return -1;
337 
338 	if (l->offset > r->offset)
339 		return 1;
340 
341 	return 0;
342 }
343 
344 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
345 {
346 	struct uprobe u = { .inode = inode, .offset = offset };
347 	struct rb_node *n = uprobes_tree.rb_node;
348 	struct uprobe *uprobe;
349 	int match;
350 
351 	while (n) {
352 		uprobe = rb_entry(n, struct uprobe, rb_node);
353 		match = match_uprobe(&u, uprobe);
354 		if (!match) {
355 			atomic_inc(&uprobe->ref);
356 			return uprobe;
357 		}
358 
359 		if (match < 0)
360 			n = n->rb_left;
361 		else
362 			n = n->rb_right;
363 	}
364 	return NULL;
365 }
366 
367 /*
368  * Find a uprobe corresponding to a given inode:offset
369  * Acquires uprobes_treelock
370  */
371 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
372 {
373 	struct uprobe *uprobe;
374 
375 	spin_lock(&uprobes_treelock);
376 	uprobe = __find_uprobe(inode, offset);
377 	spin_unlock(&uprobes_treelock);
378 
379 	return uprobe;
380 }
381 
382 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
383 {
384 	struct rb_node **p = &uprobes_tree.rb_node;
385 	struct rb_node *parent = NULL;
386 	struct uprobe *u;
387 	int match;
388 
389 	while (*p) {
390 		parent = *p;
391 		u = rb_entry(parent, struct uprobe, rb_node);
392 		match = match_uprobe(uprobe, u);
393 		if (!match) {
394 			atomic_inc(&u->ref);
395 			return u;
396 		}
397 
398 		if (match < 0)
399 			p = &parent->rb_left;
400 		else
401 			p = &parent->rb_right;
402 
403 	}
404 
405 	u = NULL;
406 	rb_link_node(&uprobe->rb_node, parent, p);
407 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
408 	/* get access + creation ref */
409 	atomic_set(&uprobe->ref, 2);
410 
411 	return u;
412 }
413 
414 /*
415  * Acquire uprobes_treelock.
416  * Matching uprobe already exists in rbtree;
417  *	increment (access refcount) and return the matching uprobe.
418  *
419  * No matching uprobe; insert the uprobe in rb_tree;
420  *	get a double refcount (access + creation) and return NULL.
421  */
422 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
423 {
424 	struct uprobe *u;
425 
426 	spin_lock(&uprobes_treelock);
427 	u = __insert_uprobe(uprobe);
428 	spin_unlock(&uprobes_treelock);
429 
430 	/* For now assume that the instruction need not be single-stepped */
431 	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
432 
433 	return u;
434 }
435 
436 static void put_uprobe(struct uprobe *uprobe)
437 {
438 	if (atomic_dec_and_test(&uprobe->ref))
439 		kfree(uprobe);
440 }
441 
442 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
443 {
444 	struct uprobe *uprobe, *cur_uprobe;
445 
446 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
447 	if (!uprobe)
448 		return NULL;
449 
450 	uprobe->inode = igrab(inode);
451 	uprobe->offset = offset;
452 	init_rwsem(&uprobe->consumer_rwsem);
453 	mutex_init(&uprobe->copy_mutex);
454 
455 	/* add to uprobes_tree, sorted on inode:offset */
456 	cur_uprobe = insert_uprobe(uprobe);
457 
458 	/* a uprobe exists for this inode:offset combination */
459 	if (cur_uprobe) {
460 		kfree(uprobe);
461 		uprobe = cur_uprobe;
462 		iput(inode);
463 	} else {
464 		atomic_inc(&uprobe_events);
465 	}
466 
467 	return uprobe;
468 }
469 
470 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
471 {
472 	struct uprobe_consumer *uc;
473 
474 	if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
475 		return;
476 
477 	down_read(&uprobe->consumer_rwsem);
478 	for (uc = uprobe->consumers; uc; uc = uc->next) {
479 		if (!uc->filter || uc->filter(uc, current))
480 			uc->handler(uc, regs);
481 	}
482 	up_read(&uprobe->consumer_rwsem);
483 }
484 
485 /* Returns the previous consumer */
486 static struct uprobe_consumer *
487 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
488 {
489 	down_write(&uprobe->consumer_rwsem);
490 	uc->next = uprobe->consumers;
491 	uprobe->consumers = uc;
492 	up_write(&uprobe->consumer_rwsem);
493 
494 	return uc->next;
495 }
496 
497 /*
498  * For uprobe @uprobe, delete the consumer @uc.
499  * Return true if the @uc is deleted successfully
500  * or return false.
501  */
502 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
503 {
504 	struct uprobe_consumer **con;
505 	bool ret = false;
506 
507 	down_write(&uprobe->consumer_rwsem);
508 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
509 		if (*con == uc) {
510 			*con = uc->next;
511 			ret = true;
512 			break;
513 		}
514 	}
515 	up_write(&uprobe->consumer_rwsem);
516 
517 	return ret;
518 }
519 
520 static int
521 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
522 			unsigned long nbytes, loff_t offset)
523 {
524 	struct page *page;
525 	void *vaddr;
526 	unsigned long off;
527 	pgoff_t idx;
528 
529 	if (!filp)
530 		return -EINVAL;
531 
532 	if (!mapping->a_ops->readpage)
533 		return -EIO;
534 
535 	idx = offset >> PAGE_CACHE_SHIFT;
536 	off = offset & ~PAGE_MASK;
537 
538 	/*
539 	 * Ensure that the page that has the original instruction is
540 	 * populated and in page-cache.
541 	 */
542 	page = read_mapping_page(mapping, idx, filp);
543 	if (IS_ERR(page))
544 		return PTR_ERR(page);
545 
546 	vaddr = kmap_atomic(page);
547 	memcpy(insn, vaddr + off, nbytes);
548 	kunmap_atomic(vaddr);
549 	page_cache_release(page);
550 
551 	return 0;
552 }
553 
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556 	struct address_space *mapping;
557 	unsigned long nbytes;
558 	int bytes;
559 
560 	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
561 	mapping = uprobe->inode->i_mapping;
562 
563 	/* Instruction at end of binary; copy only available bytes */
564 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
565 		bytes = uprobe->inode->i_size - uprobe->offset;
566 	else
567 		bytes = MAX_UINSN_BYTES;
568 
569 	/* Instruction at the page-boundary; copy bytes in second page */
570 	if (nbytes < bytes) {
571 		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
572 				bytes - nbytes, uprobe->offset + nbytes);
573 		if (err)
574 			return err;
575 		bytes = nbytes;
576 	}
577 	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
578 }
579 
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581 				struct mm_struct *mm, unsigned long vaddr)
582 {
583 	int ret = 0;
584 
585 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586 		return ret;
587 
588 	mutex_lock(&uprobe->copy_mutex);
589 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 		goto out;
591 
592 	ret = copy_insn(uprobe, file);
593 	if (ret)
594 		goto out;
595 
596 	ret = -ENOTSUPP;
597 	if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
598 		goto out;
599 
600 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601 	if (ret)
602 		goto out;
603 
604 	/* write_opcode() assumes we don't cross page boundary */
605 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
606 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607 
608 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610 
611  out:
612 	mutex_unlock(&uprobe->copy_mutex);
613 
614 	return ret;
615 }
616 
617 static int
618 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
619 			struct vm_area_struct *vma, unsigned long vaddr)
620 {
621 	bool first_uprobe;
622 	int ret;
623 
624 	/*
625 	 * If probe is being deleted, unregister thread could be done with
626 	 * the vma-rmap-walk through. Adding a probe now can be fatal since
627 	 * nobody will be able to cleanup. Also we could be from fork or
628 	 * mremap path, where the probe might have already been inserted.
629 	 * Hence behave as if probe already existed.
630 	 */
631 	if (!uprobe->consumers)
632 		return 0;
633 
634 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
635 	if (ret)
636 		return ret;
637 
638 	/*
639 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
640 	 * the task can hit this breakpoint right after __replace_page().
641 	 */
642 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
643 	if (first_uprobe)
644 		set_bit(MMF_HAS_UPROBES, &mm->flags);
645 
646 	ret = set_swbp(&uprobe->arch, mm, vaddr);
647 	if (!ret)
648 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
649 	else if (first_uprobe)
650 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
651 
652 	return ret;
653 }
654 
655 static int
656 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
657 {
658 	/* can happen if uprobe_register() fails */
659 	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
660 		return 0;
661 
662 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
663 	return set_orig_insn(&uprobe->arch, mm, vaddr);
664 }
665 
666 /*
667  * There could be threads that have already hit the breakpoint. They
668  * will recheck the current insn and restart if find_uprobe() fails.
669  * See find_active_uprobe().
670  */
671 static void delete_uprobe(struct uprobe *uprobe)
672 {
673 	spin_lock(&uprobes_treelock);
674 	rb_erase(&uprobe->rb_node, &uprobes_tree);
675 	spin_unlock(&uprobes_treelock);
676 	iput(uprobe->inode);
677 	put_uprobe(uprobe);
678 	atomic_dec(&uprobe_events);
679 }
680 
681 struct map_info {
682 	struct map_info *next;
683 	struct mm_struct *mm;
684 	unsigned long vaddr;
685 };
686 
687 static inline struct map_info *free_map_info(struct map_info *info)
688 {
689 	struct map_info *next = info->next;
690 	kfree(info);
691 	return next;
692 }
693 
694 static struct map_info *
695 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
696 {
697 	unsigned long pgoff = offset >> PAGE_SHIFT;
698 	struct vm_area_struct *vma;
699 	struct map_info *curr = NULL;
700 	struct map_info *prev = NULL;
701 	struct map_info *info;
702 	int more = 0;
703 
704  again:
705 	mutex_lock(&mapping->i_mmap_mutex);
706 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
707 		if (!valid_vma(vma, is_register))
708 			continue;
709 
710 		if (!prev && !more) {
711 			/*
712 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
713 			 * reclaim. This is optimistic, no harm done if it fails.
714 			 */
715 			prev = kmalloc(sizeof(struct map_info),
716 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
717 			if (prev)
718 				prev->next = NULL;
719 		}
720 		if (!prev) {
721 			more++;
722 			continue;
723 		}
724 
725 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
726 			continue;
727 
728 		info = prev;
729 		prev = prev->next;
730 		info->next = curr;
731 		curr = info;
732 
733 		info->mm = vma->vm_mm;
734 		info->vaddr = offset_to_vaddr(vma, offset);
735 	}
736 	mutex_unlock(&mapping->i_mmap_mutex);
737 
738 	if (!more)
739 		goto out;
740 
741 	prev = curr;
742 	while (curr) {
743 		mmput(curr->mm);
744 		curr = curr->next;
745 	}
746 
747 	do {
748 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
749 		if (!info) {
750 			curr = ERR_PTR(-ENOMEM);
751 			goto out;
752 		}
753 		info->next = prev;
754 		prev = info;
755 	} while (--more);
756 
757 	goto again;
758  out:
759 	while (prev)
760 		prev = free_map_info(prev);
761 	return curr;
762 }
763 
764 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
765 {
766 	struct map_info *info;
767 	int err = 0;
768 
769 	info = build_map_info(uprobe->inode->i_mapping,
770 					uprobe->offset, is_register);
771 	if (IS_ERR(info))
772 		return PTR_ERR(info);
773 
774 	while (info) {
775 		struct mm_struct *mm = info->mm;
776 		struct vm_area_struct *vma;
777 
778 		if (err && is_register)
779 			goto free;
780 
781 		down_write(&mm->mmap_sem);
782 		vma = find_vma(mm, info->vaddr);
783 		if (!vma || !valid_vma(vma, is_register) ||
784 		    vma->vm_file->f_mapping->host != uprobe->inode)
785 			goto unlock;
786 
787 		if (vma->vm_start > info->vaddr ||
788 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
789 			goto unlock;
790 
791 		if (is_register)
792 			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
793 		else
794 			err |= remove_breakpoint(uprobe, mm, info->vaddr);
795 
796  unlock:
797 		up_write(&mm->mmap_sem);
798  free:
799 		mmput(mm);
800 		info = free_map_info(info);
801 	}
802 
803 	return err;
804 }
805 
806 static int __uprobe_register(struct uprobe *uprobe)
807 {
808 	return register_for_each_vma(uprobe, true);
809 }
810 
811 static void __uprobe_unregister(struct uprobe *uprobe)
812 {
813 	if (!register_for_each_vma(uprobe, false))
814 		delete_uprobe(uprobe);
815 
816 	/* TODO : cant unregister? schedule a worker thread */
817 }
818 
819 /*
820  * uprobe_register - register a probe
821  * @inode: the file in which the probe has to be placed.
822  * @offset: offset from the start of the file.
823  * @uc: information on howto handle the probe..
824  *
825  * Apart from the access refcount, uprobe_register() takes a creation
826  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
827  * inserted into the rbtree (i.e first consumer for a @inode:@offset
828  * tuple).  Creation refcount stops uprobe_unregister from freeing the
829  * @uprobe even before the register operation is complete. Creation
830  * refcount is released when the last @uc for the @uprobe
831  * unregisters.
832  *
833  * Return errno if it cannot successully install probes
834  * else return 0 (success)
835  */
836 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
837 {
838 	struct uprobe *uprobe;
839 	int ret;
840 
841 	if (!inode || !uc || uc->next)
842 		return -EINVAL;
843 
844 	if (offset > i_size_read(inode))
845 		return -EINVAL;
846 
847 	ret = 0;
848 	mutex_lock(uprobes_hash(inode));
849 	uprobe = alloc_uprobe(inode, offset);
850 
851 	if (!uprobe) {
852 		ret = -ENOMEM;
853 	} else if (!consumer_add(uprobe, uc)) {
854 		ret = __uprobe_register(uprobe);
855 		if (ret) {
856 			uprobe->consumers = NULL;
857 			__uprobe_unregister(uprobe);
858 		} else {
859 			set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
860 		}
861 	}
862 
863 	mutex_unlock(uprobes_hash(inode));
864 	if (uprobe)
865 		put_uprobe(uprobe);
866 
867 	return ret;
868 }
869 
870 /*
871  * uprobe_unregister - unregister a already registered probe.
872  * @inode: the file in which the probe has to be removed.
873  * @offset: offset from the start of the file.
874  * @uc: identify which probe if multiple probes are colocated.
875  */
876 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 {
878 	struct uprobe *uprobe;
879 
880 	if (!inode || !uc)
881 		return;
882 
883 	uprobe = find_uprobe(inode, offset);
884 	if (!uprobe)
885 		return;
886 
887 	mutex_lock(uprobes_hash(inode));
888 
889 	if (consumer_del(uprobe, uc)) {
890 		if (!uprobe->consumers) {
891 			__uprobe_unregister(uprobe);
892 			clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
893 		}
894 	}
895 
896 	mutex_unlock(uprobes_hash(inode));
897 	if (uprobe)
898 		put_uprobe(uprobe);
899 }
900 
901 static struct rb_node *
902 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
903 {
904 	struct rb_node *n = uprobes_tree.rb_node;
905 
906 	while (n) {
907 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
908 
909 		if (inode < u->inode) {
910 			n = n->rb_left;
911 		} else if (inode > u->inode) {
912 			n = n->rb_right;
913 		} else {
914 			if (max < u->offset)
915 				n = n->rb_left;
916 			else if (min > u->offset)
917 				n = n->rb_right;
918 			else
919 				break;
920 		}
921 	}
922 
923 	return n;
924 }
925 
926 /*
927  * For a given range in vma, build a list of probes that need to be inserted.
928  */
929 static void build_probe_list(struct inode *inode,
930 				struct vm_area_struct *vma,
931 				unsigned long start, unsigned long end,
932 				struct list_head *head)
933 {
934 	loff_t min, max;
935 	struct rb_node *n, *t;
936 	struct uprobe *u;
937 
938 	INIT_LIST_HEAD(head);
939 	min = vaddr_to_offset(vma, start);
940 	max = min + (end - start) - 1;
941 
942 	spin_lock(&uprobes_treelock);
943 	n = find_node_in_range(inode, min, max);
944 	if (n) {
945 		for (t = n; t; t = rb_prev(t)) {
946 			u = rb_entry(t, struct uprobe, rb_node);
947 			if (u->inode != inode || u->offset < min)
948 				break;
949 			list_add(&u->pending_list, head);
950 			atomic_inc(&u->ref);
951 		}
952 		for (t = n; (t = rb_next(t)); ) {
953 			u = rb_entry(t, struct uprobe, rb_node);
954 			if (u->inode != inode || u->offset > max)
955 				break;
956 			list_add(&u->pending_list, head);
957 			atomic_inc(&u->ref);
958 		}
959 	}
960 	spin_unlock(&uprobes_treelock);
961 }
962 
963 /*
964  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
965  *
966  * Currently we ignore all errors and always return 0, the callers
967  * can't handle the failure anyway.
968  */
969 int uprobe_mmap(struct vm_area_struct *vma)
970 {
971 	struct list_head tmp_list;
972 	struct uprobe *uprobe, *u;
973 	struct inode *inode;
974 
975 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
976 		return 0;
977 
978 	inode = vma->vm_file->f_mapping->host;
979 	if (!inode)
980 		return 0;
981 
982 	mutex_lock(uprobes_mmap_hash(inode));
983 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
984 
985 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
986 		if (!fatal_signal_pending(current)) {
987 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
988 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
989 		}
990 		put_uprobe(uprobe);
991 	}
992 	mutex_unlock(uprobes_mmap_hash(inode));
993 
994 	return 0;
995 }
996 
997 static bool
998 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
999 {
1000 	loff_t min, max;
1001 	struct inode *inode;
1002 	struct rb_node *n;
1003 
1004 	inode = vma->vm_file->f_mapping->host;
1005 
1006 	min = vaddr_to_offset(vma, start);
1007 	max = min + (end - start) - 1;
1008 
1009 	spin_lock(&uprobes_treelock);
1010 	n = find_node_in_range(inode, min, max);
1011 	spin_unlock(&uprobes_treelock);
1012 
1013 	return !!n;
1014 }
1015 
1016 /*
1017  * Called in context of a munmap of a vma.
1018  */
1019 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1020 {
1021 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1022 		return;
1023 
1024 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1025 		return;
1026 
1027 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1028 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1029 		return;
1030 
1031 	if (vma_has_uprobes(vma, start, end))
1032 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1033 }
1034 
1035 /* Slot allocation for XOL */
1036 static int xol_add_vma(struct xol_area *area)
1037 {
1038 	struct mm_struct *mm;
1039 	int ret;
1040 
1041 	area->page = alloc_page(GFP_HIGHUSER);
1042 	if (!area->page)
1043 		return -ENOMEM;
1044 
1045 	ret = -EALREADY;
1046 	mm = current->mm;
1047 
1048 	down_write(&mm->mmap_sem);
1049 	if (mm->uprobes_state.xol_area)
1050 		goto fail;
1051 
1052 	ret = -ENOMEM;
1053 
1054 	/* Try to map as high as possible, this is only a hint. */
1055 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1056 	if (area->vaddr & ~PAGE_MASK) {
1057 		ret = area->vaddr;
1058 		goto fail;
1059 	}
1060 
1061 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1062 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1063 	if (ret)
1064 		goto fail;
1065 
1066 	smp_wmb();	/* pairs with get_xol_area() */
1067 	mm->uprobes_state.xol_area = area;
1068 	ret = 0;
1069 
1070 fail:
1071 	up_write(&mm->mmap_sem);
1072 	if (ret)
1073 		__free_page(area->page);
1074 
1075 	return ret;
1076 }
1077 
1078 static struct xol_area *get_xol_area(struct mm_struct *mm)
1079 {
1080 	struct xol_area *area;
1081 
1082 	area = mm->uprobes_state.xol_area;
1083 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1084 
1085 	return area;
1086 }
1087 
1088 /*
1089  * xol_alloc_area - Allocate process's xol_area.
1090  * This area will be used for storing instructions for execution out of
1091  * line.
1092  *
1093  * Returns the allocated area or NULL.
1094  */
1095 static struct xol_area *xol_alloc_area(void)
1096 {
1097 	struct xol_area *area;
1098 
1099 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1100 	if (unlikely(!area))
1101 		return NULL;
1102 
1103 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1104 
1105 	if (!area->bitmap)
1106 		goto fail;
1107 
1108 	init_waitqueue_head(&area->wq);
1109 	if (!xol_add_vma(area))
1110 		return area;
1111 
1112 fail:
1113 	kfree(area->bitmap);
1114 	kfree(area);
1115 
1116 	return get_xol_area(current->mm);
1117 }
1118 
1119 /*
1120  * uprobe_clear_state - Free the area allocated for slots.
1121  */
1122 void uprobe_clear_state(struct mm_struct *mm)
1123 {
1124 	struct xol_area *area = mm->uprobes_state.xol_area;
1125 
1126 	if (!area)
1127 		return;
1128 
1129 	put_page(area->page);
1130 	kfree(area->bitmap);
1131 	kfree(area);
1132 }
1133 
1134 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1135 {
1136 	newmm->uprobes_state.xol_area = NULL;
1137 
1138 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1139 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1140 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1141 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1142 	}
1143 }
1144 
1145 /*
1146  *  - search for a free slot.
1147  */
1148 static unsigned long xol_take_insn_slot(struct xol_area *area)
1149 {
1150 	unsigned long slot_addr;
1151 	int slot_nr;
1152 
1153 	do {
1154 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1155 		if (slot_nr < UINSNS_PER_PAGE) {
1156 			if (!test_and_set_bit(slot_nr, area->bitmap))
1157 				break;
1158 
1159 			slot_nr = UINSNS_PER_PAGE;
1160 			continue;
1161 		}
1162 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1163 	} while (slot_nr >= UINSNS_PER_PAGE);
1164 
1165 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1166 	atomic_inc(&area->slot_count);
1167 
1168 	return slot_addr;
1169 }
1170 
1171 /*
1172  * xol_get_insn_slot - If was not allocated a slot, then
1173  * allocate a slot.
1174  * Returns the allocated slot address or 0.
1175  */
1176 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1177 {
1178 	struct xol_area *area;
1179 	unsigned long offset;
1180 	void *vaddr;
1181 
1182 	area = get_xol_area(current->mm);
1183 	if (!area) {
1184 		area = xol_alloc_area();
1185 		if (!area)
1186 			return 0;
1187 	}
1188 	current->utask->xol_vaddr = xol_take_insn_slot(area);
1189 
1190 	/*
1191 	 * Initialize the slot if xol_vaddr points to valid
1192 	 * instruction slot.
1193 	 */
1194 	if (unlikely(!current->utask->xol_vaddr))
1195 		return 0;
1196 
1197 	current->utask->vaddr = slot_addr;
1198 	offset = current->utask->xol_vaddr & ~PAGE_MASK;
1199 	vaddr = kmap_atomic(area->page);
1200 	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1201 	kunmap_atomic(vaddr);
1202 
1203 	return current->utask->xol_vaddr;
1204 }
1205 
1206 /*
1207  * xol_free_insn_slot - If slot was earlier allocated by
1208  * @xol_get_insn_slot(), make the slot available for
1209  * subsequent requests.
1210  */
1211 static void xol_free_insn_slot(struct task_struct *tsk)
1212 {
1213 	struct xol_area *area;
1214 	unsigned long vma_end;
1215 	unsigned long slot_addr;
1216 
1217 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1218 		return;
1219 
1220 	slot_addr = tsk->utask->xol_vaddr;
1221 
1222 	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1223 		return;
1224 
1225 	area = tsk->mm->uprobes_state.xol_area;
1226 	vma_end = area->vaddr + PAGE_SIZE;
1227 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1228 		unsigned long offset;
1229 		int slot_nr;
1230 
1231 		offset = slot_addr - area->vaddr;
1232 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1233 		if (slot_nr >= UINSNS_PER_PAGE)
1234 			return;
1235 
1236 		clear_bit(slot_nr, area->bitmap);
1237 		atomic_dec(&area->slot_count);
1238 		if (waitqueue_active(&area->wq))
1239 			wake_up(&area->wq);
1240 
1241 		tsk->utask->xol_vaddr = 0;
1242 	}
1243 }
1244 
1245 /**
1246  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1247  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1248  * instruction.
1249  * Return the address of the breakpoint instruction.
1250  */
1251 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1252 {
1253 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1254 }
1255 
1256 /*
1257  * Called with no locks held.
1258  * Called in context of a exiting or a exec-ing thread.
1259  */
1260 void uprobe_free_utask(struct task_struct *t)
1261 {
1262 	struct uprobe_task *utask = t->utask;
1263 
1264 	if (!utask)
1265 		return;
1266 
1267 	if (utask->active_uprobe)
1268 		put_uprobe(utask->active_uprobe);
1269 
1270 	xol_free_insn_slot(t);
1271 	kfree(utask);
1272 	t->utask = NULL;
1273 }
1274 
1275 /*
1276  * Called in context of a new clone/fork from copy_process.
1277  */
1278 void uprobe_copy_process(struct task_struct *t)
1279 {
1280 	t->utask = NULL;
1281 }
1282 
1283 /*
1284  * Allocate a uprobe_task object for the task.
1285  * Called when the thread hits a breakpoint for the first time.
1286  *
1287  * Returns:
1288  * - pointer to new uprobe_task on success
1289  * - NULL otherwise
1290  */
1291 static struct uprobe_task *add_utask(void)
1292 {
1293 	struct uprobe_task *utask;
1294 
1295 	utask = kzalloc(sizeof *utask, GFP_KERNEL);
1296 	if (unlikely(!utask))
1297 		return NULL;
1298 
1299 	current->utask = utask;
1300 	return utask;
1301 }
1302 
1303 /* Prepare to single-step probed instruction out of line. */
1304 static int
1305 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1306 {
1307 	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1308 		return 0;
1309 
1310 	return -EFAULT;
1311 }
1312 
1313 /*
1314  * If we are singlestepping, then ensure this thread is not connected to
1315  * non-fatal signals until completion of singlestep.  When xol insn itself
1316  * triggers the signal,  restart the original insn even if the task is
1317  * already SIGKILL'ed (since coredump should report the correct ip).  This
1318  * is even more important if the task has a handler for SIGSEGV/etc, The
1319  * _same_ instruction should be repeated again after return from the signal
1320  * handler, and SSTEP can never finish in this case.
1321  */
1322 bool uprobe_deny_signal(void)
1323 {
1324 	struct task_struct *t = current;
1325 	struct uprobe_task *utask = t->utask;
1326 
1327 	if (likely(!utask || !utask->active_uprobe))
1328 		return false;
1329 
1330 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1331 
1332 	if (signal_pending(t)) {
1333 		spin_lock_irq(&t->sighand->siglock);
1334 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1335 		spin_unlock_irq(&t->sighand->siglock);
1336 
1337 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1338 			utask->state = UTASK_SSTEP_TRAPPED;
1339 			set_tsk_thread_flag(t, TIF_UPROBE);
1340 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1341 		}
1342 	}
1343 
1344 	return true;
1345 }
1346 
1347 /*
1348  * Avoid singlestepping the original instruction if the original instruction
1349  * is a NOP or can be emulated.
1350  */
1351 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1352 {
1353 	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1354 		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1355 			return true;
1356 		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1357 	}
1358 	return false;
1359 }
1360 
1361 static void mmf_recalc_uprobes(struct mm_struct *mm)
1362 {
1363 	struct vm_area_struct *vma;
1364 
1365 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1366 		if (!valid_vma(vma, false))
1367 			continue;
1368 		/*
1369 		 * This is not strictly accurate, we can race with
1370 		 * uprobe_unregister() and see the already removed
1371 		 * uprobe if delete_uprobe() was not yet called.
1372 		 */
1373 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1374 			return;
1375 	}
1376 
1377 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1378 }
1379 
1380 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1381 {
1382 	struct page *page;
1383 	uprobe_opcode_t opcode;
1384 	int result;
1385 
1386 	pagefault_disable();
1387 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1388 							sizeof(opcode));
1389 	pagefault_enable();
1390 
1391 	if (likely(result == 0))
1392 		goto out;
1393 
1394 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1395 	if (result < 0)
1396 		return result;
1397 
1398 	copy_opcode(page, vaddr, &opcode);
1399 	put_page(page);
1400  out:
1401 	return is_swbp_insn(&opcode);
1402 }
1403 
1404 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1405 {
1406 	struct mm_struct *mm = current->mm;
1407 	struct uprobe *uprobe = NULL;
1408 	struct vm_area_struct *vma;
1409 
1410 	down_read(&mm->mmap_sem);
1411 	vma = find_vma(mm, bp_vaddr);
1412 	if (vma && vma->vm_start <= bp_vaddr) {
1413 		if (valid_vma(vma, false)) {
1414 			struct inode *inode = vma->vm_file->f_mapping->host;
1415 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1416 
1417 			uprobe = find_uprobe(inode, offset);
1418 		}
1419 
1420 		if (!uprobe)
1421 			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1422 	} else {
1423 		*is_swbp = -EFAULT;
1424 	}
1425 
1426 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1427 		mmf_recalc_uprobes(mm);
1428 	up_read(&mm->mmap_sem);
1429 
1430 	return uprobe;
1431 }
1432 
1433 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1434 {
1435 	user_enable_single_step(current);
1436 }
1437 
1438 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1439 {
1440 	user_disable_single_step(current);
1441 }
1442 
1443 /*
1444  * Run handler and ask thread to singlestep.
1445  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1446  */
1447 static void handle_swbp(struct pt_regs *regs)
1448 {
1449 	struct uprobe_task *utask;
1450 	struct uprobe *uprobe;
1451 	unsigned long bp_vaddr;
1452 	int uninitialized_var(is_swbp);
1453 
1454 	bp_vaddr = uprobe_get_swbp_addr(regs);
1455 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1456 
1457 	if (!uprobe) {
1458 		if (is_swbp > 0) {
1459 			/* No matching uprobe; signal SIGTRAP. */
1460 			send_sig(SIGTRAP, current, 0);
1461 		} else {
1462 			/*
1463 			 * Either we raced with uprobe_unregister() or we can't
1464 			 * access this memory. The latter is only possible if
1465 			 * another thread plays with our ->mm. In both cases
1466 			 * we can simply restart. If this vma was unmapped we
1467 			 * can pretend this insn was not executed yet and get
1468 			 * the (correct) SIGSEGV after restart.
1469 			 */
1470 			instruction_pointer_set(regs, bp_vaddr);
1471 		}
1472 		return;
1473 	}
1474 	/*
1475 	 * TODO: move copy_insn/etc into _register and remove this hack.
1476 	 * After we hit the bp, _unregister + _register can install the
1477 	 * new and not-yet-analyzed uprobe at the same address, restart.
1478 	 */
1479 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1480 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1481 		goto restart;
1482 
1483 	utask = current->utask;
1484 	if (!utask) {
1485 		utask = add_utask();
1486 		/* Cannot allocate; re-execute the instruction. */
1487 		if (!utask)
1488 			goto restart;
1489 	}
1490 
1491 	handler_chain(uprobe, regs);
1492 	if (can_skip_sstep(uprobe, regs))
1493 		goto out;
1494 
1495 	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1496 		arch_uprobe_enable_step(&uprobe->arch);
1497 		utask->active_uprobe = uprobe;
1498 		utask->state = UTASK_SSTEP;
1499 		return;
1500 	}
1501 
1502 restart:
1503 	/*
1504 	 * cannot singlestep; cannot skip instruction;
1505 	 * re-execute the instruction.
1506 	 */
1507 	instruction_pointer_set(regs, bp_vaddr);
1508 out:
1509 	put_uprobe(uprobe);
1510 }
1511 
1512 /*
1513  * Perform required fix-ups and disable singlestep.
1514  * Allow pending signals to take effect.
1515  */
1516 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1517 {
1518 	struct uprobe *uprobe;
1519 
1520 	uprobe = utask->active_uprobe;
1521 	if (utask->state == UTASK_SSTEP_ACK)
1522 		arch_uprobe_post_xol(&uprobe->arch, regs);
1523 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1524 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1525 	else
1526 		WARN_ON_ONCE(1);
1527 
1528 	arch_uprobe_disable_step(&uprobe->arch);
1529 	put_uprobe(uprobe);
1530 	utask->active_uprobe = NULL;
1531 	utask->state = UTASK_RUNNING;
1532 	xol_free_insn_slot(current);
1533 
1534 	spin_lock_irq(&current->sighand->siglock);
1535 	recalc_sigpending(); /* see uprobe_deny_signal() */
1536 	spin_unlock_irq(&current->sighand->siglock);
1537 }
1538 
1539 /*
1540  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1541  * allows the thread to return from interrupt. After that handle_swbp()
1542  * sets utask->active_uprobe.
1543  *
1544  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1545  * and allows the thread to return from interrupt.
1546  *
1547  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1548  * uprobe_notify_resume().
1549  */
1550 void uprobe_notify_resume(struct pt_regs *regs)
1551 {
1552 	struct uprobe_task *utask;
1553 
1554 	clear_thread_flag(TIF_UPROBE);
1555 
1556 	utask = current->utask;
1557 	if (utask && utask->active_uprobe)
1558 		handle_singlestep(utask, regs);
1559 	else
1560 		handle_swbp(regs);
1561 }
1562 
1563 /*
1564  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1565  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1566  */
1567 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1568 {
1569 	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1570 		return 0;
1571 
1572 	set_thread_flag(TIF_UPROBE);
1573 	return 1;
1574 }
1575 
1576 /*
1577  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1578  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1579  */
1580 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1581 {
1582 	struct uprobe_task *utask = current->utask;
1583 
1584 	if (!current->mm || !utask || !utask->active_uprobe)
1585 		/* task is currently not uprobed */
1586 		return 0;
1587 
1588 	utask->state = UTASK_SSTEP_ACK;
1589 	set_thread_flag(TIF_UPROBE);
1590 	return 1;
1591 }
1592 
1593 static struct notifier_block uprobe_exception_nb = {
1594 	.notifier_call		= arch_uprobe_exception_notify,
1595 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1596 };
1597 
1598 static int __init init_uprobes(void)
1599 {
1600 	int i;
1601 
1602 	for (i = 0; i < UPROBES_HASH_SZ; i++) {
1603 		mutex_init(&uprobes_mutex[i]);
1604 		mutex_init(&uprobes_mmap_mutex[i]);
1605 	}
1606 
1607 	return register_die_notifier(&uprobe_exception_nb);
1608 }
1609 module_init(init_uprobes);
1610 
1611 static void __exit exit_uprobes(void)
1612 {
1613 }
1614 module_exit(exit_uprobes);
1615