1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/coredump.h> 32 #include <linux/export.h> 33 #include <linux/rmap.h> /* anon_vma_prepare */ 34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 35 #include <linux/swap.h> /* try_to_free_swap */ 36 #include <linux/ptrace.h> /* user_enable_single_step */ 37 #include <linux/kdebug.h> /* notifier mechanism */ 38 #include "../../mm/internal.h" /* munlock_vma_page */ 39 #include <linux/percpu-rwsem.h> 40 #include <linux/task_work.h> 41 #include <linux/shmem_fs.h> 42 43 #include <linux/uprobes.h> 44 45 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 46 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 47 48 static struct rb_root uprobes_tree = RB_ROOT; 49 /* 50 * allows us to skip the uprobe_mmap if there are no uprobe events active 51 * at this time. Probably a fine grained per inode count is better? 52 */ 53 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 54 55 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 56 57 #define UPROBES_HASH_SZ 13 58 /* serialize uprobe->pending_list */ 59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 60 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 61 62 static struct percpu_rw_semaphore dup_mmap_sem; 63 64 /* Have a copy of original instruction */ 65 #define UPROBE_COPY_INSN 0 66 67 struct uprobe { 68 struct rb_node rb_node; /* node in the rb tree */ 69 atomic_t ref; 70 struct rw_semaphore register_rwsem; 71 struct rw_semaphore consumer_rwsem; 72 struct list_head pending_list; 73 struct uprobe_consumer *consumers; 74 struct inode *inode; /* Also hold a ref to inode */ 75 loff_t offset; 76 unsigned long flags; 77 78 /* 79 * The generic code assumes that it has two members of unknown type 80 * owned by the arch-specific code: 81 * 82 * insn - copy_insn() saves the original instruction here for 83 * arch_uprobe_analyze_insn(). 84 * 85 * ixol - potentially modified instruction to execute out of 86 * line, copied to xol_area by xol_get_insn_slot(). 87 */ 88 struct arch_uprobe arch; 89 }; 90 91 /* 92 * Execute out of line area: anonymous executable mapping installed 93 * by the probed task to execute the copy of the original instruction 94 * mangled by set_swbp(). 95 * 96 * On a breakpoint hit, thread contests for a slot. It frees the 97 * slot after singlestep. Currently a fixed number of slots are 98 * allocated. 99 */ 100 struct xol_area { 101 wait_queue_head_t wq; /* if all slots are busy */ 102 atomic_t slot_count; /* number of in-use slots */ 103 unsigned long *bitmap; /* 0 = free slot */ 104 105 struct vm_special_mapping xol_mapping; 106 struct page *pages[2]; 107 /* 108 * We keep the vma's vm_start rather than a pointer to the vma 109 * itself. The probed process or a naughty kernel module could make 110 * the vma go away, and we must handle that reasonably gracefully. 111 */ 112 unsigned long vaddr; /* Page(s) of instruction slots */ 113 }; 114 115 /* 116 * valid_vma: Verify if the specified vma is an executable vma 117 * Relax restrictions while unregistering: vm_flags might have 118 * changed after breakpoint was inserted. 119 * - is_register: indicates if we are in register context. 120 * - Return 1 if the specified virtual address is in an 121 * executable vma. 122 */ 123 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 124 { 125 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 126 127 if (is_register) 128 flags |= VM_WRITE; 129 130 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 131 } 132 133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 134 { 135 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 136 } 137 138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 139 { 140 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 141 } 142 143 /** 144 * __replace_page - replace page in vma by new page. 145 * based on replace_page in mm/ksm.c 146 * 147 * @vma: vma that holds the pte pointing to page 148 * @addr: address the old @page is mapped at 149 * @page: the cowed page we are replacing by kpage 150 * @kpage: the modified page we replace page by 151 * 152 * Returns 0 on success, -EFAULT on failure. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = old_page, 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 /* For mmu_notifiers */ 165 const unsigned long mmun_start = addr; 166 const unsigned long mmun_end = addr + PAGE_SIZE; 167 struct mem_cgroup *memcg; 168 169 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page); 170 171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, 172 false); 173 if (err) 174 return err; 175 176 /* For try_to_free_swap() and munlock_vma_page() below */ 177 lock_page(old_page); 178 179 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 180 err = -EAGAIN; 181 if (!page_vma_mapped_walk(&pvmw)) { 182 mem_cgroup_cancel_charge(new_page, memcg, false); 183 goto unlock; 184 } 185 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 186 187 get_page(new_page); 188 page_add_new_anon_rmap(new_page, vma, addr, false); 189 mem_cgroup_commit_charge(new_page, memcg, false, false); 190 lru_cache_add_active_or_unevictable(new_page, vma); 191 192 if (!PageAnon(old_page)) { 193 dec_mm_counter(mm, mm_counter_file(old_page)); 194 inc_mm_counter(mm, MM_ANONPAGES); 195 } 196 197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 198 ptep_clear_flush_notify(vma, addr, pvmw.pte); 199 set_pte_at_notify(mm, addr, pvmw.pte, 200 mk_pte(new_page, vma->vm_page_prot)); 201 202 page_remove_rmap(old_page, false); 203 if (!page_mapped(old_page)) 204 try_to_free_swap(old_page); 205 page_vma_mapped_walk_done(&pvmw); 206 207 if (vma->vm_flags & VM_LOCKED) 208 munlock_vma_page(old_page); 209 put_page(old_page); 210 211 err = 0; 212 unlock: 213 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 214 unlock_page(old_page); 215 return err; 216 } 217 218 /** 219 * is_swbp_insn - check if instruction is breakpoint instruction. 220 * @insn: instruction to be checked. 221 * Default implementation of is_swbp_insn 222 * Returns true if @insn is a breakpoint instruction. 223 */ 224 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 225 { 226 return *insn == UPROBE_SWBP_INSN; 227 } 228 229 /** 230 * is_trap_insn - check if instruction is breakpoint instruction. 231 * @insn: instruction to be checked. 232 * Default implementation of is_trap_insn 233 * Returns true if @insn is a breakpoint instruction. 234 * 235 * This function is needed for the case where an architecture has multiple 236 * trap instructions (like powerpc). 237 */ 238 bool __weak is_trap_insn(uprobe_opcode_t *insn) 239 { 240 return is_swbp_insn(insn); 241 } 242 243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 244 { 245 void *kaddr = kmap_atomic(page); 246 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 247 kunmap_atomic(kaddr); 248 } 249 250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 251 { 252 void *kaddr = kmap_atomic(page); 253 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 254 kunmap_atomic(kaddr); 255 } 256 257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 258 { 259 uprobe_opcode_t old_opcode; 260 bool is_swbp; 261 262 /* 263 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 264 * We do not check if it is any other 'trap variant' which could 265 * be conditional trap instruction such as the one powerpc supports. 266 * 267 * The logic is that we do not care if the underlying instruction 268 * is a trap variant; uprobes always wins over any other (gdb) 269 * breakpoint. 270 */ 271 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 272 is_swbp = is_swbp_insn(&old_opcode); 273 274 if (is_swbp_insn(new_opcode)) { 275 if (is_swbp) /* register: already installed? */ 276 return 0; 277 } else { 278 if (!is_swbp) /* unregister: was it changed by us? */ 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* 286 * NOTE: 287 * Expect the breakpoint instruction to be the smallest size instruction for 288 * the architecture. If an arch has variable length instruction and the 289 * breakpoint instruction is not of the smallest length instruction 290 * supported by that architecture then we need to modify is_trap_at_addr and 291 * uprobe_write_opcode accordingly. This would never be a problem for archs 292 * that have fixed length instructions. 293 * 294 * uprobe_write_opcode - write the opcode at a given virtual address. 295 * @mm: the probed process address space. 296 * @vaddr: the virtual address to store the opcode. 297 * @opcode: opcode to be written at @vaddr. 298 * 299 * Called with mm->mmap_sem held for write. 300 * Return 0 (success) or a negative errno. 301 */ 302 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 303 unsigned long vaddr, uprobe_opcode_t opcode) 304 { 305 struct page *old_page, *new_page; 306 struct vm_area_struct *vma; 307 int ret; 308 309 retry: 310 /* Read the page with vaddr into memory */ 311 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 312 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL); 313 if (ret <= 0) 314 return ret; 315 316 ret = verify_opcode(old_page, vaddr, &opcode); 317 if (ret <= 0) 318 goto put_old; 319 320 ret = anon_vma_prepare(vma); 321 if (ret) 322 goto put_old; 323 324 ret = -ENOMEM; 325 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 326 if (!new_page) 327 goto put_old; 328 329 __SetPageUptodate(new_page); 330 copy_highpage(new_page, old_page); 331 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 332 333 ret = __replace_page(vma, vaddr, old_page, new_page); 334 put_page(new_page); 335 put_old: 336 put_page(old_page); 337 338 if (unlikely(ret == -EAGAIN)) 339 goto retry; 340 return ret; 341 } 342 343 /** 344 * set_swbp - store breakpoint at a given address. 345 * @auprobe: arch specific probepoint information. 346 * @mm: the probed process address space. 347 * @vaddr: the virtual address to insert the opcode. 348 * 349 * For mm @mm, store the breakpoint instruction at @vaddr. 350 * Return 0 (success) or a negative errno. 351 */ 352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 353 { 354 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 355 } 356 357 /** 358 * set_orig_insn - Restore the original instruction. 359 * @mm: the probed process address space. 360 * @auprobe: arch specific probepoint information. 361 * @vaddr: the virtual address to insert the opcode. 362 * 363 * For mm @mm, restore the original opcode (opcode) at @vaddr. 364 * Return 0 (success) or a negative errno. 365 */ 366 int __weak 367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 368 { 369 return uprobe_write_opcode(auprobe, mm, vaddr, 370 *(uprobe_opcode_t *)&auprobe->insn); 371 } 372 373 static struct uprobe *get_uprobe(struct uprobe *uprobe) 374 { 375 atomic_inc(&uprobe->ref); 376 return uprobe; 377 } 378 379 static void put_uprobe(struct uprobe *uprobe) 380 { 381 if (atomic_dec_and_test(&uprobe->ref)) 382 kfree(uprobe); 383 } 384 385 static int match_uprobe(struct uprobe *l, struct uprobe *r) 386 { 387 if (l->inode < r->inode) 388 return -1; 389 390 if (l->inode > r->inode) 391 return 1; 392 393 if (l->offset < r->offset) 394 return -1; 395 396 if (l->offset > r->offset) 397 return 1; 398 399 return 0; 400 } 401 402 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 403 { 404 struct uprobe u = { .inode = inode, .offset = offset }; 405 struct rb_node *n = uprobes_tree.rb_node; 406 struct uprobe *uprobe; 407 int match; 408 409 while (n) { 410 uprobe = rb_entry(n, struct uprobe, rb_node); 411 match = match_uprobe(&u, uprobe); 412 if (!match) 413 return get_uprobe(uprobe); 414 415 if (match < 0) 416 n = n->rb_left; 417 else 418 n = n->rb_right; 419 } 420 return NULL; 421 } 422 423 /* 424 * Find a uprobe corresponding to a given inode:offset 425 * Acquires uprobes_treelock 426 */ 427 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 428 { 429 struct uprobe *uprobe; 430 431 spin_lock(&uprobes_treelock); 432 uprobe = __find_uprobe(inode, offset); 433 spin_unlock(&uprobes_treelock); 434 435 return uprobe; 436 } 437 438 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 439 { 440 struct rb_node **p = &uprobes_tree.rb_node; 441 struct rb_node *parent = NULL; 442 struct uprobe *u; 443 int match; 444 445 while (*p) { 446 parent = *p; 447 u = rb_entry(parent, struct uprobe, rb_node); 448 match = match_uprobe(uprobe, u); 449 if (!match) 450 return get_uprobe(u); 451 452 if (match < 0) 453 p = &parent->rb_left; 454 else 455 p = &parent->rb_right; 456 457 } 458 459 u = NULL; 460 rb_link_node(&uprobe->rb_node, parent, p); 461 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 462 /* get access + creation ref */ 463 atomic_set(&uprobe->ref, 2); 464 465 return u; 466 } 467 468 /* 469 * Acquire uprobes_treelock. 470 * Matching uprobe already exists in rbtree; 471 * increment (access refcount) and return the matching uprobe. 472 * 473 * No matching uprobe; insert the uprobe in rb_tree; 474 * get a double refcount (access + creation) and return NULL. 475 */ 476 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 477 { 478 struct uprobe *u; 479 480 spin_lock(&uprobes_treelock); 481 u = __insert_uprobe(uprobe); 482 spin_unlock(&uprobes_treelock); 483 484 return u; 485 } 486 487 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 488 { 489 struct uprobe *uprobe, *cur_uprobe; 490 491 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 492 if (!uprobe) 493 return NULL; 494 495 uprobe->inode = inode; 496 uprobe->offset = offset; 497 init_rwsem(&uprobe->register_rwsem); 498 init_rwsem(&uprobe->consumer_rwsem); 499 500 /* add to uprobes_tree, sorted on inode:offset */ 501 cur_uprobe = insert_uprobe(uprobe); 502 /* a uprobe exists for this inode:offset combination */ 503 if (cur_uprobe) { 504 kfree(uprobe); 505 uprobe = cur_uprobe; 506 } 507 508 return uprobe; 509 } 510 511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 512 { 513 down_write(&uprobe->consumer_rwsem); 514 uc->next = uprobe->consumers; 515 uprobe->consumers = uc; 516 up_write(&uprobe->consumer_rwsem); 517 } 518 519 /* 520 * For uprobe @uprobe, delete the consumer @uc. 521 * Return true if the @uc is deleted successfully 522 * or return false. 523 */ 524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 525 { 526 struct uprobe_consumer **con; 527 bool ret = false; 528 529 down_write(&uprobe->consumer_rwsem); 530 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 531 if (*con == uc) { 532 *con = uc->next; 533 ret = true; 534 break; 535 } 536 } 537 up_write(&uprobe->consumer_rwsem); 538 539 return ret; 540 } 541 542 static int __copy_insn(struct address_space *mapping, struct file *filp, 543 void *insn, int nbytes, loff_t offset) 544 { 545 struct page *page; 546 /* 547 * Ensure that the page that has the original instruction is populated 548 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 549 * see uprobe_register(). 550 */ 551 if (mapping->a_ops->readpage) 552 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 553 else 554 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 555 if (IS_ERR(page)) 556 return PTR_ERR(page); 557 558 copy_from_page(page, offset, insn, nbytes); 559 put_page(page); 560 561 return 0; 562 } 563 564 static int copy_insn(struct uprobe *uprobe, struct file *filp) 565 { 566 struct address_space *mapping = uprobe->inode->i_mapping; 567 loff_t offs = uprobe->offset; 568 void *insn = &uprobe->arch.insn; 569 int size = sizeof(uprobe->arch.insn); 570 int len, err = -EIO; 571 572 /* Copy only available bytes, -EIO if nothing was read */ 573 do { 574 if (offs >= i_size_read(uprobe->inode)) 575 break; 576 577 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 578 err = __copy_insn(mapping, filp, insn, len, offs); 579 if (err) 580 break; 581 582 insn += len; 583 offs += len; 584 size -= len; 585 } while (size); 586 587 return err; 588 } 589 590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 591 struct mm_struct *mm, unsigned long vaddr) 592 { 593 int ret = 0; 594 595 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 596 return ret; 597 598 /* TODO: move this into _register, until then we abuse this sem. */ 599 down_write(&uprobe->consumer_rwsem); 600 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 601 goto out; 602 603 ret = copy_insn(uprobe, file); 604 if (ret) 605 goto out; 606 607 ret = -ENOTSUPP; 608 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 609 goto out; 610 611 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 612 if (ret) 613 goto out; 614 615 /* uprobe_write_opcode() assumes we don't cross page boundary */ 616 BUG_ON((uprobe->offset & ~PAGE_MASK) + 617 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 618 619 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 620 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 621 622 out: 623 up_write(&uprobe->consumer_rwsem); 624 625 return ret; 626 } 627 628 static inline bool consumer_filter(struct uprobe_consumer *uc, 629 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 630 { 631 return !uc->filter || uc->filter(uc, ctx, mm); 632 } 633 634 static bool filter_chain(struct uprobe *uprobe, 635 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 636 { 637 struct uprobe_consumer *uc; 638 bool ret = false; 639 640 down_read(&uprobe->consumer_rwsem); 641 for (uc = uprobe->consumers; uc; uc = uc->next) { 642 ret = consumer_filter(uc, ctx, mm); 643 if (ret) 644 break; 645 } 646 up_read(&uprobe->consumer_rwsem); 647 648 return ret; 649 } 650 651 static int 652 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 653 struct vm_area_struct *vma, unsigned long vaddr) 654 { 655 bool first_uprobe; 656 int ret; 657 658 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 659 if (ret) 660 return ret; 661 662 /* 663 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 664 * the task can hit this breakpoint right after __replace_page(). 665 */ 666 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 667 if (first_uprobe) 668 set_bit(MMF_HAS_UPROBES, &mm->flags); 669 670 ret = set_swbp(&uprobe->arch, mm, vaddr); 671 if (!ret) 672 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 673 else if (first_uprobe) 674 clear_bit(MMF_HAS_UPROBES, &mm->flags); 675 676 return ret; 677 } 678 679 static int 680 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 681 { 682 set_bit(MMF_RECALC_UPROBES, &mm->flags); 683 return set_orig_insn(&uprobe->arch, mm, vaddr); 684 } 685 686 static inline bool uprobe_is_active(struct uprobe *uprobe) 687 { 688 return !RB_EMPTY_NODE(&uprobe->rb_node); 689 } 690 /* 691 * There could be threads that have already hit the breakpoint. They 692 * will recheck the current insn and restart if find_uprobe() fails. 693 * See find_active_uprobe(). 694 */ 695 static void delete_uprobe(struct uprobe *uprobe) 696 { 697 if (WARN_ON(!uprobe_is_active(uprobe))) 698 return; 699 700 spin_lock(&uprobes_treelock); 701 rb_erase(&uprobe->rb_node, &uprobes_tree); 702 spin_unlock(&uprobes_treelock); 703 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 704 put_uprobe(uprobe); 705 } 706 707 struct map_info { 708 struct map_info *next; 709 struct mm_struct *mm; 710 unsigned long vaddr; 711 }; 712 713 static inline struct map_info *free_map_info(struct map_info *info) 714 { 715 struct map_info *next = info->next; 716 kfree(info); 717 return next; 718 } 719 720 static struct map_info * 721 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 722 { 723 unsigned long pgoff = offset >> PAGE_SHIFT; 724 struct vm_area_struct *vma; 725 struct map_info *curr = NULL; 726 struct map_info *prev = NULL; 727 struct map_info *info; 728 int more = 0; 729 730 again: 731 i_mmap_lock_read(mapping); 732 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 733 if (!valid_vma(vma, is_register)) 734 continue; 735 736 if (!prev && !more) { 737 /* 738 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 739 * reclaim. This is optimistic, no harm done if it fails. 740 */ 741 prev = kmalloc(sizeof(struct map_info), 742 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 743 if (prev) 744 prev->next = NULL; 745 } 746 if (!prev) { 747 more++; 748 continue; 749 } 750 751 if (!mmget_not_zero(vma->vm_mm)) 752 continue; 753 754 info = prev; 755 prev = prev->next; 756 info->next = curr; 757 curr = info; 758 759 info->mm = vma->vm_mm; 760 info->vaddr = offset_to_vaddr(vma, offset); 761 } 762 i_mmap_unlock_read(mapping); 763 764 if (!more) 765 goto out; 766 767 prev = curr; 768 while (curr) { 769 mmput(curr->mm); 770 curr = curr->next; 771 } 772 773 do { 774 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 775 if (!info) { 776 curr = ERR_PTR(-ENOMEM); 777 goto out; 778 } 779 info->next = prev; 780 prev = info; 781 } while (--more); 782 783 goto again; 784 out: 785 while (prev) 786 prev = free_map_info(prev); 787 return curr; 788 } 789 790 static int 791 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 792 { 793 bool is_register = !!new; 794 struct map_info *info; 795 int err = 0; 796 797 percpu_down_write(&dup_mmap_sem); 798 info = build_map_info(uprobe->inode->i_mapping, 799 uprobe->offset, is_register); 800 if (IS_ERR(info)) { 801 err = PTR_ERR(info); 802 goto out; 803 } 804 805 while (info) { 806 struct mm_struct *mm = info->mm; 807 struct vm_area_struct *vma; 808 809 if (err && is_register) 810 goto free; 811 812 down_write(&mm->mmap_sem); 813 vma = find_vma(mm, info->vaddr); 814 if (!vma || !valid_vma(vma, is_register) || 815 file_inode(vma->vm_file) != uprobe->inode) 816 goto unlock; 817 818 if (vma->vm_start > info->vaddr || 819 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 820 goto unlock; 821 822 if (is_register) { 823 /* consult only the "caller", new consumer. */ 824 if (consumer_filter(new, 825 UPROBE_FILTER_REGISTER, mm)) 826 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 827 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 828 if (!filter_chain(uprobe, 829 UPROBE_FILTER_UNREGISTER, mm)) 830 err |= remove_breakpoint(uprobe, mm, info->vaddr); 831 } 832 833 unlock: 834 up_write(&mm->mmap_sem); 835 free: 836 mmput(mm); 837 info = free_map_info(info); 838 } 839 out: 840 percpu_up_write(&dup_mmap_sem); 841 return err; 842 } 843 844 static void 845 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 846 { 847 int err; 848 849 if (WARN_ON(!consumer_del(uprobe, uc))) 850 return; 851 852 err = register_for_each_vma(uprobe, NULL); 853 /* TODO : cant unregister? schedule a worker thread */ 854 if (!uprobe->consumers && !err) 855 delete_uprobe(uprobe); 856 } 857 858 /* 859 * uprobe_unregister - unregister an already registered probe. 860 * @inode: the file in which the probe has to be removed. 861 * @offset: offset from the start of the file. 862 * @uc: identify which probe if multiple probes are colocated. 863 */ 864 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 865 { 866 struct uprobe *uprobe; 867 868 uprobe = find_uprobe(inode, offset); 869 if (WARN_ON(!uprobe)) 870 return; 871 872 down_write(&uprobe->register_rwsem); 873 __uprobe_unregister(uprobe, uc); 874 up_write(&uprobe->register_rwsem); 875 put_uprobe(uprobe); 876 } 877 EXPORT_SYMBOL_GPL(uprobe_unregister); 878 879 /* 880 * __uprobe_register - register a probe 881 * @inode: the file in which the probe has to be placed. 882 * @offset: offset from the start of the file. 883 * @uc: information on howto handle the probe.. 884 * 885 * Apart from the access refcount, __uprobe_register() takes a creation 886 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 887 * inserted into the rbtree (i.e first consumer for a @inode:@offset 888 * tuple). Creation refcount stops uprobe_unregister from freeing the 889 * @uprobe even before the register operation is complete. Creation 890 * refcount is released when the last @uc for the @uprobe 891 * unregisters. Caller of __uprobe_register() is required to keep @inode 892 * (and the containing mount) referenced. 893 * 894 * Return errno if it cannot successully install probes 895 * else return 0 (success) 896 */ 897 static int __uprobe_register(struct inode *inode, loff_t offset, 898 struct uprobe_consumer *uc) 899 { 900 struct uprobe *uprobe; 901 int ret; 902 903 /* Uprobe must have at least one set consumer */ 904 if (!uc->handler && !uc->ret_handler) 905 return -EINVAL; 906 907 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 908 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 909 return -EIO; 910 /* Racy, just to catch the obvious mistakes */ 911 if (offset > i_size_read(inode)) 912 return -EINVAL; 913 914 retry: 915 uprobe = alloc_uprobe(inode, offset); 916 if (!uprobe) 917 return -ENOMEM; 918 /* 919 * We can race with uprobe_unregister()->delete_uprobe(). 920 * Check uprobe_is_active() and retry if it is false. 921 */ 922 down_write(&uprobe->register_rwsem); 923 ret = -EAGAIN; 924 if (likely(uprobe_is_active(uprobe))) { 925 consumer_add(uprobe, uc); 926 ret = register_for_each_vma(uprobe, uc); 927 if (ret) 928 __uprobe_unregister(uprobe, uc); 929 } 930 up_write(&uprobe->register_rwsem); 931 put_uprobe(uprobe); 932 933 if (unlikely(ret == -EAGAIN)) 934 goto retry; 935 return ret; 936 } 937 938 int uprobe_register(struct inode *inode, loff_t offset, 939 struct uprobe_consumer *uc) 940 { 941 return __uprobe_register(inode, offset, uc); 942 } 943 EXPORT_SYMBOL_GPL(uprobe_register); 944 945 /* 946 * uprobe_apply - unregister an already registered probe. 947 * @inode: the file in which the probe has to be removed. 948 * @offset: offset from the start of the file. 949 * @uc: consumer which wants to add more or remove some breakpoints 950 * @add: add or remove the breakpoints 951 */ 952 int uprobe_apply(struct inode *inode, loff_t offset, 953 struct uprobe_consumer *uc, bool add) 954 { 955 struct uprobe *uprobe; 956 struct uprobe_consumer *con; 957 int ret = -ENOENT; 958 959 uprobe = find_uprobe(inode, offset); 960 if (WARN_ON(!uprobe)) 961 return ret; 962 963 down_write(&uprobe->register_rwsem); 964 for (con = uprobe->consumers; con && con != uc ; con = con->next) 965 ; 966 if (con) 967 ret = register_for_each_vma(uprobe, add ? uc : NULL); 968 up_write(&uprobe->register_rwsem); 969 put_uprobe(uprobe); 970 971 return ret; 972 } 973 974 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 975 { 976 struct vm_area_struct *vma; 977 int err = 0; 978 979 down_read(&mm->mmap_sem); 980 for (vma = mm->mmap; vma; vma = vma->vm_next) { 981 unsigned long vaddr; 982 loff_t offset; 983 984 if (!valid_vma(vma, false) || 985 file_inode(vma->vm_file) != uprobe->inode) 986 continue; 987 988 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 989 if (uprobe->offset < offset || 990 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 991 continue; 992 993 vaddr = offset_to_vaddr(vma, uprobe->offset); 994 err |= remove_breakpoint(uprobe, mm, vaddr); 995 } 996 up_read(&mm->mmap_sem); 997 998 return err; 999 } 1000 1001 static struct rb_node * 1002 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1003 { 1004 struct rb_node *n = uprobes_tree.rb_node; 1005 1006 while (n) { 1007 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1008 1009 if (inode < u->inode) { 1010 n = n->rb_left; 1011 } else if (inode > u->inode) { 1012 n = n->rb_right; 1013 } else { 1014 if (max < u->offset) 1015 n = n->rb_left; 1016 else if (min > u->offset) 1017 n = n->rb_right; 1018 else 1019 break; 1020 } 1021 } 1022 1023 return n; 1024 } 1025 1026 /* 1027 * For a given range in vma, build a list of probes that need to be inserted. 1028 */ 1029 static void build_probe_list(struct inode *inode, 1030 struct vm_area_struct *vma, 1031 unsigned long start, unsigned long end, 1032 struct list_head *head) 1033 { 1034 loff_t min, max; 1035 struct rb_node *n, *t; 1036 struct uprobe *u; 1037 1038 INIT_LIST_HEAD(head); 1039 min = vaddr_to_offset(vma, start); 1040 max = min + (end - start) - 1; 1041 1042 spin_lock(&uprobes_treelock); 1043 n = find_node_in_range(inode, min, max); 1044 if (n) { 1045 for (t = n; t; t = rb_prev(t)) { 1046 u = rb_entry(t, struct uprobe, rb_node); 1047 if (u->inode != inode || u->offset < min) 1048 break; 1049 list_add(&u->pending_list, head); 1050 get_uprobe(u); 1051 } 1052 for (t = n; (t = rb_next(t)); ) { 1053 u = rb_entry(t, struct uprobe, rb_node); 1054 if (u->inode != inode || u->offset > max) 1055 break; 1056 list_add(&u->pending_list, head); 1057 get_uprobe(u); 1058 } 1059 } 1060 spin_unlock(&uprobes_treelock); 1061 } 1062 1063 /* 1064 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1065 * 1066 * Currently we ignore all errors and always return 0, the callers 1067 * can't handle the failure anyway. 1068 */ 1069 int uprobe_mmap(struct vm_area_struct *vma) 1070 { 1071 struct list_head tmp_list; 1072 struct uprobe *uprobe, *u; 1073 struct inode *inode; 1074 1075 if (no_uprobe_events() || !valid_vma(vma, true)) 1076 return 0; 1077 1078 inode = file_inode(vma->vm_file); 1079 if (!inode) 1080 return 0; 1081 1082 mutex_lock(uprobes_mmap_hash(inode)); 1083 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1084 /* 1085 * We can race with uprobe_unregister(), this uprobe can be already 1086 * removed. But in this case filter_chain() must return false, all 1087 * consumers have gone away. 1088 */ 1089 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1090 if (!fatal_signal_pending(current) && 1091 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1092 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1093 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1094 } 1095 put_uprobe(uprobe); 1096 } 1097 mutex_unlock(uprobes_mmap_hash(inode)); 1098 1099 return 0; 1100 } 1101 1102 static bool 1103 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1104 { 1105 loff_t min, max; 1106 struct inode *inode; 1107 struct rb_node *n; 1108 1109 inode = file_inode(vma->vm_file); 1110 1111 min = vaddr_to_offset(vma, start); 1112 max = min + (end - start) - 1; 1113 1114 spin_lock(&uprobes_treelock); 1115 n = find_node_in_range(inode, min, max); 1116 spin_unlock(&uprobes_treelock); 1117 1118 return !!n; 1119 } 1120 1121 /* 1122 * Called in context of a munmap of a vma. 1123 */ 1124 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1125 { 1126 if (no_uprobe_events() || !valid_vma(vma, false)) 1127 return; 1128 1129 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1130 return; 1131 1132 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1133 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1134 return; 1135 1136 if (vma_has_uprobes(vma, start, end)) 1137 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1138 } 1139 1140 /* Slot allocation for XOL */ 1141 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1142 { 1143 struct vm_area_struct *vma; 1144 int ret; 1145 1146 if (down_write_killable(&mm->mmap_sem)) 1147 return -EINTR; 1148 1149 if (mm->uprobes_state.xol_area) { 1150 ret = -EALREADY; 1151 goto fail; 1152 } 1153 1154 if (!area->vaddr) { 1155 /* Try to map as high as possible, this is only a hint. */ 1156 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1157 PAGE_SIZE, 0, 0); 1158 if (area->vaddr & ~PAGE_MASK) { 1159 ret = area->vaddr; 1160 goto fail; 1161 } 1162 } 1163 1164 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1165 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1166 &area->xol_mapping); 1167 if (IS_ERR(vma)) { 1168 ret = PTR_ERR(vma); 1169 goto fail; 1170 } 1171 1172 ret = 0; 1173 /* pairs with get_xol_area() */ 1174 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1175 fail: 1176 up_write(&mm->mmap_sem); 1177 1178 return ret; 1179 } 1180 1181 static struct xol_area *__create_xol_area(unsigned long vaddr) 1182 { 1183 struct mm_struct *mm = current->mm; 1184 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1185 struct xol_area *area; 1186 1187 area = kmalloc(sizeof(*area), GFP_KERNEL); 1188 if (unlikely(!area)) 1189 goto out; 1190 1191 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1192 GFP_KERNEL); 1193 if (!area->bitmap) 1194 goto free_area; 1195 1196 area->xol_mapping.name = "[uprobes]"; 1197 area->xol_mapping.fault = NULL; 1198 area->xol_mapping.pages = area->pages; 1199 area->pages[0] = alloc_page(GFP_HIGHUSER); 1200 if (!area->pages[0]) 1201 goto free_bitmap; 1202 area->pages[1] = NULL; 1203 1204 area->vaddr = vaddr; 1205 init_waitqueue_head(&area->wq); 1206 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1207 set_bit(0, area->bitmap); 1208 atomic_set(&area->slot_count, 1); 1209 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1210 1211 if (!xol_add_vma(mm, area)) 1212 return area; 1213 1214 __free_page(area->pages[0]); 1215 free_bitmap: 1216 kfree(area->bitmap); 1217 free_area: 1218 kfree(area); 1219 out: 1220 return NULL; 1221 } 1222 1223 /* 1224 * get_xol_area - Allocate process's xol_area if necessary. 1225 * This area will be used for storing instructions for execution out of line. 1226 * 1227 * Returns the allocated area or NULL. 1228 */ 1229 static struct xol_area *get_xol_area(void) 1230 { 1231 struct mm_struct *mm = current->mm; 1232 struct xol_area *area; 1233 1234 if (!mm->uprobes_state.xol_area) 1235 __create_xol_area(0); 1236 1237 /* Pairs with xol_add_vma() smp_store_release() */ 1238 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1239 return area; 1240 } 1241 1242 /* 1243 * uprobe_clear_state - Free the area allocated for slots. 1244 */ 1245 void uprobe_clear_state(struct mm_struct *mm) 1246 { 1247 struct xol_area *area = mm->uprobes_state.xol_area; 1248 1249 if (!area) 1250 return; 1251 1252 put_page(area->pages[0]); 1253 kfree(area->bitmap); 1254 kfree(area); 1255 } 1256 1257 void uprobe_start_dup_mmap(void) 1258 { 1259 percpu_down_read(&dup_mmap_sem); 1260 } 1261 1262 void uprobe_end_dup_mmap(void) 1263 { 1264 percpu_up_read(&dup_mmap_sem); 1265 } 1266 1267 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1268 { 1269 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1270 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1271 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1272 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1273 } 1274 } 1275 1276 /* 1277 * - search for a free slot. 1278 */ 1279 static unsigned long xol_take_insn_slot(struct xol_area *area) 1280 { 1281 unsigned long slot_addr; 1282 int slot_nr; 1283 1284 do { 1285 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1286 if (slot_nr < UINSNS_PER_PAGE) { 1287 if (!test_and_set_bit(slot_nr, area->bitmap)) 1288 break; 1289 1290 slot_nr = UINSNS_PER_PAGE; 1291 continue; 1292 } 1293 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1294 } while (slot_nr >= UINSNS_PER_PAGE); 1295 1296 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1297 atomic_inc(&area->slot_count); 1298 1299 return slot_addr; 1300 } 1301 1302 /* 1303 * xol_get_insn_slot - allocate a slot for xol. 1304 * Returns the allocated slot address or 0. 1305 */ 1306 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1307 { 1308 struct xol_area *area; 1309 unsigned long xol_vaddr; 1310 1311 area = get_xol_area(); 1312 if (!area) 1313 return 0; 1314 1315 xol_vaddr = xol_take_insn_slot(area); 1316 if (unlikely(!xol_vaddr)) 1317 return 0; 1318 1319 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1320 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1321 1322 return xol_vaddr; 1323 } 1324 1325 /* 1326 * xol_free_insn_slot - If slot was earlier allocated by 1327 * @xol_get_insn_slot(), make the slot available for 1328 * subsequent requests. 1329 */ 1330 static void xol_free_insn_slot(struct task_struct *tsk) 1331 { 1332 struct xol_area *area; 1333 unsigned long vma_end; 1334 unsigned long slot_addr; 1335 1336 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1337 return; 1338 1339 slot_addr = tsk->utask->xol_vaddr; 1340 if (unlikely(!slot_addr)) 1341 return; 1342 1343 area = tsk->mm->uprobes_state.xol_area; 1344 vma_end = area->vaddr + PAGE_SIZE; 1345 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1346 unsigned long offset; 1347 int slot_nr; 1348 1349 offset = slot_addr - area->vaddr; 1350 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1351 if (slot_nr >= UINSNS_PER_PAGE) 1352 return; 1353 1354 clear_bit(slot_nr, area->bitmap); 1355 atomic_dec(&area->slot_count); 1356 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1357 if (waitqueue_active(&area->wq)) 1358 wake_up(&area->wq); 1359 1360 tsk->utask->xol_vaddr = 0; 1361 } 1362 } 1363 1364 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1365 void *src, unsigned long len) 1366 { 1367 /* Initialize the slot */ 1368 copy_to_page(page, vaddr, src, len); 1369 1370 /* 1371 * We probably need flush_icache_user_range() but it needs vma. 1372 * This should work on most of architectures by default. If 1373 * architecture needs to do something different it can define 1374 * its own version of the function. 1375 */ 1376 flush_dcache_page(page); 1377 } 1378 1379 /** 1380 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1381 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1382 * instruction. 1383 * Return the address of the breakpoint instruction. 1384 */ 1385 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1386 { 1387 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1388 } 1389 1390 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1391 { 1392 struct uprobe_task *utask = current->utask; 1393 1394 if (unlikely(utask && utask->active_uprobe)) 1395 return utask->vaddr; 1396 1397 return instruction_pointer(regs); 1398 } 1399 1400 static struct return_instance *free_ret_instance(struct return_instance *ri) 1401 { 1402 struct return_instance *next = ri->next; 1403 put_uprobe(ri->uprobe); 1404 kfree(ri); 1405 return next; 1406 } 1407 1408 /* 1409 * Called with no locks held. 1410 * Called in context of an exiting or an exec-ing thread. 1411 */ 1412 void uprobe_free_utask(struct task_struct *t) 1413 { 1414 struct uprobe_task *utask = t->utask; 1415 struct return_instance *ri; 1416 1417 if (!utask) 1418 return; 1419 1420 if (utask->active_uprobe) 1421 put_uprobe(utask->active_uprobe); 1422 1423 ri = utask->return_instances; 1424 while (ri) 1425 ri = free_ret_instance(ri); 1426 1427 xol_free_insn_slot(t); 1428 kfree(utask); 1429 t->utask = NULL; 1430 } 1431 1432 /* 1433 * Allocate a uprobe_task object for the task if if necessary. 1434 * Called when the thread hits a breakpoint. 1435 * 1436 * Returns: 1437 * - pointer to new uprobe_task on success 1438 * - NULL otherwise 1439 */ 1440 static struct uprobe_task *get_utask(void) 1441 { 1442 if (!current->utask) 1443 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1444 return current->utask; 1445 } 1446 1447 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1448 { 1449 struct uprobe_task *n_utask; 1450 struct return_instance **p, *o, *n; 1451 1452 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1453 if (!n_utask) 1454 return -ENOMEM; 1455 t->utask = n_utask; 1456 1457 p = &n_utask->return_instances; 1458 for (o = o_utask->return_instances; o; o = o->next) { 1459 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1460 if (!n) 1461 return -ENOMEM; 1462 1463 *n = *o; 1464 get_uprobe(n->uprobe); 1465 n->next = NULL; 1466 1467 *p = n; 1468 p = &n->next; 1469 n_utask->depth++; 1470 } 1471 1472 return 0; 1473 } 1474 1475 static void uprobe_warn(struct task_struct *t, const char *msg) 1476 { 1477 pr_warn("uprobe: %s:%d failed to %s\n", 1478 current->comm, current->pid, msg); 1479 } 1480 1481 static void dup_xol_work(struct callback_head *work) 1482 { 1483 if (current->flags & PF_EXITING) 1484 return; 1485 1486 if (!__create_xol_area(current->utask->dup_xol_addr) && 1487 !fatal_signal_pending(current)) 1488 uprobe_warn(current, "dup xol area"); 1489 } 1490 1491 /* 1492 * Called in context of a new clone/fork from copy_process. 1493 */ 1494 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1495 { 1496 struct uprobe_task *utask = current->utask; 1497 struct mm_struct *mm = current->mm; 1498 struct xol_area *area; 1499 1500 t->utask = NULL; 1501 1502 if (!utask || !utask->return_instances) 1503 return; 1504 1505 if (mm == t->mm && !(flags & CLONE_VFORK)) 1506 return; 1507 1508 if (dup_utask(t, utask)) 1509 return uprobe_warn(t, "dup ret instances"); 1510 1511 /* The task can fork() after dup_xol_work() fails */ 1512 area = mm->uprobes_state.xol_area; 1513 if (!area) 1514 return uprobe_warn(t, "dup xol area"); 1515 1516 if (mm == t->mm) 1517 return; 1518 1519 t->utask->dup_xol_addr = area->vaddr; 1520 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1521 task_work_add(t, &t->utask->dup_xol_work, true); 1522 } 1523 1524 /* 1525 * Current area->vaddr notion assume the trampoline address is always 1526 * equal area->vaddr. 1527 * 1528 * Returns -1 in case the xol_area is not allocated. 1529 */ 1530 static unsigned long get_trampoline_vaddr(void) 1531 { 1532 struct xol_area *area; 1533 unsigned long trampoline_vaddr = -1; 1534 1535 /* Pairs with xol_add_vma() smp_store_release() */ 1536 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1537 if (area) 1538 trampoline_vaddr = area->vaddr; 1539 1540 return trampoline_vaddr; 1541 } 1542 1543 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1544 struct pt_regs *regs) 1545 { 1546 struct return_instance *ri = utask->return_instances; 1547 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1548 1549 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1550 ri = free_ret_instance(ri); 1551 utask->depth--; 1552 } 1553 utask->return_instances = ri; 1554 } 1555 1556 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1557 { 1558 struct return_instance *ri; 1559 struct uprobe_task *utask; 1560 unsigned long orig_ret_vaddr, trampoline_vaddr; 1561 bool chained; 1562 1563 if (!get_xol_area()) 1564 return; 1565 1566 utask = get_utask(); 1567 if (!utask) 1568 return; 1569 1570 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1571 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1572 " nestedness limit pid/tgid=%d/%d\n", 1573 current->pid, current->tgid); 1574 return; 1575 } 1576 1577 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1578 if (!ri) 1579 return; 1580 1581 trampoline_vaddr = get_trampoline_vaddr(); 1582 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1583 if (orig_ret_vaddr == -1) 1584 goto fail; 1585 1586 /* drop the entries invalidated by longjmp() */ 1587 chained = (orig_ret_vaddr == trampoline_vaddr); 1588 cleanup_return_instances(utask, chained, regs); 1589 1590 /* 1591 * We don't want to keep trampoline address in stack, rather keep the 1592 * original return address of first caller thru all the consequent 1593 * instances. This also makes breakpoint unwrapping easier. 1594 */ 1595 if (chained) { 1596 if (!utask->return_instances) { 1597 /* 1598 * This situation is not possible. Likely we have an 1599 * attack from user-space. 1600 */ 1601 uprobe_warn(current, "handle tail call"); 1602 goto fail; 1603 } 1604 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1605 } 1606 1607 ri->uprobe = get_uprobe(uprobe); 1608 ri->func = instruction_pointer(regs); 1609 ri->stack = user_stack_pointer(regs); 1610 ri->orig_ret_vaddr = orig_ret_vaddr; 1611 ri->chained = chained; 1612 1613 utask->depth++; 1614 ri->next = utask->return_instances; 1615 utask->return_instances = ri; 1616 1617 return; 1618 fail: 1619 kfree(ri); 1620 } 1621 1622 /* Prepare to single-step probed instruction out of line. */ 1623 static int 1624 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1625 { 1626 struct uprobe_task *utask; 1627 unsigned long xol_vaddr; 1628 int err; 1629 1630 utask = get_utask(); 1631 if (!utask) 1632 return -ENOMEM; 1633 1634 xol_vaddr = xol_get_insn_slot(uprobe); 1635 if (!xol_vaddr) 1636 return -ENOMEM; 1637 1638 utask->xol_vaddr = xol_vaddr; 1639 utask->vaddr = bp_vaddr; 1640 1641 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1642 if (unlikely(err)) { 1643 xol_free_insn_slot(current); 1644 return err; 1645 } 1646 1647 utask->active_uprobe = uprobe; 1648 utask->state = UTASK_SSTEP; 1649 return 0; 1650 } 1651 1652 /* 1653 * If we are singlestepping, then ensure this thread is not connected to 1654 * non-fatal signals until completion of singlestep. When xol insn itself 1655 * triggers the signal, restart the original insn even if the task is 1656 * already SIGKILL'ed (since coredump should report the correct ip). This 1657 * is even more important if the task has a handler for SIGSEGV/etc, The 1658 * _same_ instruction should be repeated again after return from the signal 1659 * handler, and SSTEP can never finish in this case. 1660 */ 1661 bool uprobe_deny_signal(void) 1662 { 1663 struct task_struct *t = current; 1664 struct uprobe_task *utask = t->utask; 1665 1666 if (likely(!utask || !utask->active_uprobe)) 1667 return false; 1668 1669 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1670 1671 if (signal_pending(t)) { 1672 spin_lock_irq(&t->sighand->siglock); 1673 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1674 spin_unlock_irq(&t->sighand->siglock); 1675 1676 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1677 utask->state = UTASK_SSTEP_TRAPPED; 1678 set_tsk_thread_flag(t, TIF_UPROBE); 1679 } 1680 } 1681 1682 return true; 1683 } 1684 1685 static void mmf_recalc_uprobes(struct mm_struct *mm) 1686 { 1687 struct vm_area_struct *vma; 1688 1689 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1690 if (!valid_vma(vma, false)) 1691 continue; 1692 /* 1693 * This is not strictly accurate, we can race with 1694 * uprobe_unregister() and see the already removed 1695 * uprobe if delete_uprobe() was not yet called. 1696 * Or this uprobe can be filtered out. 1697 */ 1698 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1699 return; 1700 } 1701 1702 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1703 } 1704 1705 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1706 { 1707 struct page *page; 1708 uprobe_opcode_t opcode; 1709 int result; 1710 1711 pagefault_disable(); 1712 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1713 pagefault_enable(); 1714 1715 if (likely(result == 0)) 1716 goto out; 1717 1718 /* 1719 * The NULL 'tsk' here ensures that any faults that occur here 1720 * will not be accounted to the task. 'mm' *is* current->mm, 1721 * but we treat this as a 'remote' access since it is 1722 * essentially a kernel access to the memory. 1723 */ 1724 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 1725 NULL, NULL); 1726 if (result < 0) 1727 return result; 1728 1729 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1730 put_page(page); 1731 out: 1732 /* This needs to return true for any variant of the trap insn */ 1733 return is_trap_insn(&opcode); 1734 } 1735 1736 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1737 { 1738 struct mm_struct *mm = current->mm; 1739 struct uprobe *uprobe = NULL; 1740 struct vm_area_struct *vma; 1741 1742 down_read(&mm->mmap_sem); 1743 vma = find_vma(mm, bp_vaddr); 1744 if (vma && vma->vm_start <= bp_vaddr) { 1745 if (valid_vma(vma, false)) { 1746 struct inode *inode = file_inode(vma->vm_file); 1747 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1748 1749 uprobe = find_uprobe(inode, offset); 1750 } 1751 1752 if (!uprobe) 1753 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1754 } else { 1755 *is_swbp = -EFAULT; 1756 } 1757 1758 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1759 mmf_recalc_uprobes(mm); 1760 up_read(&mm->mmap_sem); 1761 1762 return uprobe; 1763 } 1764 1765 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1766 { 1767 struct uprobe_consumer *uc; 1768 int remove = UPROBE_HANDLER_REMOVE; 1769 bool need_prep = false; /* prepare return uprobe, when needed */ 1770 1771 down_read(&uprobe->register_rwsem); 1772 for (uc = uprobe->consumers; uc; uc = uc->next) { 1773 int rc = 0; 1774 1775 if (uc->handler) { 1776 rc = uc->handler(uc, regs); 1777 WARN(rc & ~UPROBE_HANDLER_MASK, 1778 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1779 } 1780 1781 if (uc->ret_handler) 1782 need_prep = true; 1783 1784 remove &= rc; 1785 } 1786 1787 if (need_prep && !remove) 1788 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1789 1790 if (remove && uprobe->consumers) { 1791 WARN_ON(!uprobe_is_active(uprobe)); 1792 unapply_uprobe(uprobe, current->mm); 1793 } 1794 up_read(&uprobe->register_rwsem); 1795 } 1796 1797 static void 1798 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1799 { 1800 struct uprobe *uprobe = ri->uprobe; 1801 struct uprobe_consumer *uc; 1802 1803 down_read(&uprobe->register_rwsem); 1804 for (uc = uprobe->consumers; uc; uc = uc->next) { 1805 if (uc->ret_handler) 1806 uc->ret_handler(uc, ri->func, regs); 1807 } 1808 up_read(&uprobe->register_rwsem); 1809 } 1810 1811 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 1812 { 1813 bool chained; 1814 1815 do { 1816 chained = ri->chained; 1817 ri = ri->next; /* can't be NULL if chained */ 1818 } while (chained); 1819 1820 return ri; 1821 } 1822 1823 static void handle_trampoline(struct pt_regs *regs) 1824 { 1825 struct uprobe_task *utask; 1826 struct return_instance *ri, *next; 1827 bool valid; 1828 1829 utask = current->utask; 1830 if (!utask) 1831 goto sigill; 1832 1833 ri = utask->return_instances; 1834 if (!ri) 1835 goto sigill; 1836 1837 do { 1838 /* 1839 * We should throw out the frames invalidated by longjmp(). 1840 * If this chain is valid, then the next one should be alive 1841 * or NULL; the latter case means that nobody but ri->func 1842 * could hit this trampoline on return. TODO: sigaltstack(). 1843 */ 1844 next = find_next_ret_chain(ri); 1845 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 1846 1847 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1848 do { 1849 if (valid) 1850 handle_uretprobe_chain(ri, regs); 1851 ri = free_ret_instance(ri); 1852 utask->depth--; 1853 } while (ri != next); 1854 } while (!valid); 1855 1856 utask->return_instances = ri; 1857 return; 1858 1859 sigill: 1860 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 1861 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1862 1863 } 1864 1865 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 1866 { 1867 return false; 1868 } 1869 1870 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 1871 struct pt_regs *regs) 1872 { 1873 return true; 1874 } 1875 1876 /* 1877 * Run handler and ask thread to singlestep. 1878 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1879 */ 1880 static void handle_swbp(struct pt_regs *regs) 1881 { 1882 struct uprobe *uprobe; 1883 unsigned long bp_vaddr; 1884 int uninitialized_var(is_swbp); 1885 1886 bp_vaddr = uprobe_get_swbp_addr(regs); 1887 if (bp_vaddr == get_trampoline_vaddr()) 1888 return handle_trampoline(regs); 1889 1890 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1891 if (!uprobe) { 1892 if (is_swbp > 0) { 1893 /* No matching uprobe; signal SIGTRAP. */ 1894 send_sig(SIGTRAP, current, 0); 1895 } else { 1896 /* 1897 * Either we raced with uprobe_unregister() or we can't 1898 * access this memory. The latter is only possible if 1899 * another thread plays with our ->mm. In both cases 1900 * we can simply restart. If this vma was unmapped we 1901 * can pretend this insn was not executed yet and get 1902 * the (correct) SIGSEGV after restart. 1903 */ 1904 instruction_pointer_set(regs, bp_vaddr); 1905 } 1906 return; 1907 } 1908 1909 /* change it in advance for ->handler() and restart */ 1910 instruction_pointer_set(regs, bp_vaddr); 1911 1912 /* 1913 * TODO: move copy_insn/etc into _register and remove this hack. 1914 * After we hit the bp, _unregister + _register can install the 1915 * new and not-yet-analyzed uprobe at the same address, restart. 1916 */ 1917 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1918 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1919 goto out; 1920 1921 /* Tracing handlers use ->utask to communicate with fetch methods */ 1922 if (!get_utask()) 1923 goto out; 1924 1925 if (arch_uprobe_ignore(&uprobe->arch, regs)) 1926 goto out; 1927 1928 handler_chain(uprobe, regs); 1929 1930 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1931 goto out; 1932 1933 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1934 return; 1935 1936 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 1937 out: 1938 put_uprobe(uprobe); 1939 } 1940 1941 /* 1942 * Perform required fix-ups and disable singlestep. 1943 * Allow pending signals to take effect. 1944 */ 1945 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1946 { 1947 struct uprobe *uprobe; 1948 int err = 0; 1949 1950 uprobe = utask->active_uprobe; 1951 if (utask->state == UTASK_SSTEP_ACK) 1952 err = arch_uprobe_post_xol(&uprobe->arch, regs); 1953 else if (utask->state == UTASK_SSTEP_TRAPPED) 1954 arch_uprobe_abort_xol(&uprobe->arch, regs); 1955 else 1956 WARN_ON_ONCE(1); 1957 1958 put_uprobe(uprobe); 1959 utask->active_uprobe = NULL; 1960 utask->state = UTASK_RUNNING; 1961 xol_free_insn_slot(current); 1962 1963 spin_lock_irq(¤t->sighand->siglock); 1964 recalc_sigpending(); /* see uprobe_deny_signal() */ 1965 spin_unlock_irq(¤t->sighand->siglock); 1966 1967 if (unlikely(err)) { 1968 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 1969 force_sig_info(SIGILL, SEND_SIG_FORCED, current); 1970 } 1971 } 1972 1973 /* 1974 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1975 * allows the thread to return from interrupt. After that handle_swbp() 1976 * sets utask->active_uprobe. 1977 * 1978 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1979 * and allows the thread to return from interrupt. 1980 * 1981 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1982 * uprobe_notify_resume(). 1983 */ 1984 void uprobe_notify_resume(struct pt_regs *regs) 1985 { 1986 struct uprobe_task *utask; 1987 1988 clear_thread_flag(TIF_UPROBE); 1989 1990 utask = current->utask; 1991 if (utask && utask->active_uprobe) 1992 handle_singlestep(utask, regs); 1993 else 1994 handle_swbp(regs); 1995 } 1996 1997 /* 1998 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1999 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2000 */ 2001 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2002 { 2003 if (!current->mm) 2004 return 0; 2005 2006 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2007 (!current->utask || !current->utask->return_instances)) 2008 return 0; 2009 2010 set_thread_flag(TIF_UPROBE); 2011 return 1; 2012 } 2013 2014 /* 2015 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2016 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2017 */ 2018 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2019 { 2020 struct uprobe_task *utask = current->utask; 2021 2022 if (!current->mm || !utask || !utask->active_uprobe) 2023 /* task is currently not uprobed */ 2024 return 0; 2025 2026 utask->state = UTASK_SSTEP_ACK; 2027 set_thread_flag(TIF_UPROBE); 2028 return 1; 2029 } 2030 2031 static struct notifier_block uprobe_exception_nb = { 2032 .notifier_call = arch_uprobe_exception_notify, 2033 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2034 }; 2035 2036 static int __init init_uprobes(void) 2037 { 2038 int i; 2039 2040 for (i = 0; i < UPROBES_HASH_SZ; i++) 2041 mutex_init(&uprobes_mmap_mutex[i]); 2042 2043 if (percpu_init_rwsem(&dup_mmap_sem)) 2044 return -ENOMEM; 2045 2046 return register_die_notifier(&uprobe_exception_nb); 2047 } 2048 __initcall(init_uprobes); 2049