1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* folio_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct folio *old_folio = page_folio(old_page); 158 struct folio *new_folio; 159 struct mm_struct *mm = vma->vm_mm; 160 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 161 int err; 162 struct mmu_notifier_range range; 163 164 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 165 addr + PAGE_SIZE); 166 167 if (new_page) { 168 new_folio = page_folio(new_page); 169 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 170 if (err) 171 return err; 172 } 173 174 /* For folio_free_swap() below */ 175 folio_lock(old_folio); 176 177 mmu_notifier_invalidate_range_start(&range); 178 err = -EAGAIN; 179 if (!page_vma_mapped_walk(&pvmw)) 180 goto unlock; 181 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 182 183 if (new_page) { 184 folio_get(new_folio); 185 page_add_new_anon_rmap(new_page, vma, addr); 186 folio_add_lru_vma(new_folio, vma); 187 } else 188 /* no new page, just dec_mm_counter for old_page */ 189 dec_mm_counter(mm, MM_ANONPAGES); 190 191 if (!folio_test_anon(old_folio)) { 192 dec_mm_counter(mm, mm_counter_file(old_page)); 193 inc_mm_counter(mm, MM_ANONPAGES); 194 } 195 196 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 197 ptep_clear_flush_notify(vma, addr, pvmw.pte); 198 if (new_page) 199 set_pte_at_notify(mm, addr, pvmw.pte, 200 mk_pte(new_page, vma->vm_page_prot)); 201 202 page_remove_rmap(old_page, vma, false); 203 if (!folio_mapped(old_folio)) 204 folio_free_swap(old_folio); 205 page_vma_mapped_walk_done(&pvmw); 206 folio_put(old_folio); 207 208 err = 0; 209 unlock: 210 mmu_notifier_invalidate_range_end(&range); 211 folio_unlock(old_folio); 212 return err; 213 } 214 215 /** 216 * is_swbp_insn - check if instruction is breakpoint instruction. 217 * @insn: instruction to be checked. 218 * Default implementation of is_swbp_insn 219 * Returns true if @insn is a breakpoint instruction. 220 */ 221 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 222 { 223 return *insn == UPROBE_SWBP_INSN; 224 } 225 226 /** 227 * is_trap_insn - check if instruction is breakpoint instruction. 228 * @insn: instruction to be checked. 229 * Default implementation of is_trap_insn 230 * Returns true if @insn is a breakpoint instruction. 231 * 232 * This function is needed for the case where an architecture has multiple 233 * trap instructions (like powerpc). 234 */ 235 bool __weak is_trap_insn(uprobe_opcode_t *insn) 236 { 237 return is_swbp_insn(insn); 238 } 239 240 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 241 { 242 void *kaddr = kmap_atomic(page); 243 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 244 kunmap_atomic(kaddr); 245 } 246 247 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 248 { 249 void *kaddr = kmap_atomic(page); 250 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 251 kunmap_atomic(kaddr); 252 } 253 254 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 255 { 256 uprobe_opcode_t old_opcode; 257 bool is_swbp; 258 259 /* 260 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 261 * We do not check if it is any other 'trap variant' which could 262 * be conditional trap instruction such as the one powerpc supports. 263 * 264 * The logic is that we do not care if the underlying instruction 265 * is a trap variant; uprobes always wins over any other (gdb) 266 * breakpoint. 267 */ 268 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 269 is_swbp = is_swbp_insn(&old_opcode); 270 271 if (is_swbp_insn(new_opcode)) { 272 if (is_swbp) /* register: already installed? */ 273 return 0; 274 } else { 275 if (!is_swbp) /* unregister: was it changed by us? */ 276 return 0; 277 } 278 279 return 1; 280 } 281 282 static struct delayed_uprobe * 283 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 284 { 285 struct delayed_uprobe *du; 286 287 list_for_each_entry(du, &delayed_uprobe_list, list) 288 if (du->uprobe == uprobe && du->mm == mm) 289 return du; 290 return NULL; 291 } 292 293 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 294 { 295 struct delayed_uprobe *du; 296 297 if (delayed_uprobe_check(uprobe, mm)) 298 return 0; 299 300 du = kzalloc(sizeof(*du), GFP_KERNEL); 301 if (!du) 302 return -ENOMEM; 303 304 du->uprobe = uprobe; 305 du->mm = mm; 306 list_add(&du->list, &delayed_uprobe_list); 307 return 0; 308 } 309 310 static void delayed_uprobe_delete(struct delayed_uprobe *du) 311 { 312 if (WARN_ON(!du)) 313 return; 314 list_del(&du->list); 315 kfree(du); 316 } 317 318 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 319 { 320 struct list_head *pos, *q; 321 struct delayed_uprobe *du; 322 323 if (!uprobe && !mm) 324 return; 325 326 list_for_each_safe(pos, q, &delayed_uprobe_list) { 327 du = list_entry(pos, struct delayed_uprobe, list); 328 329 if (uprobe && du->uprobe != uprobe) 330 continue; 331 if (mm && du->mm != mm) 332 continue; 333 334 delayed_uprobe_delete(du); 335 } 336 } 337 338 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 339 struct vm_area_struct *vma) 340 { 341 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 342 343 return uprobe->ref_ctr_offset && 344 vma->vm_file && 345 file_inode(vma->vm_file) == uprobe->inode && 346 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 347 vma->vm_start <= vaddr && 348 vma->vm_end > vaddr; 349 } 350 351 static struct vm_area_struct * 352 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 353 { 354 VMA_ITERATOR(vmi, mm, 0); 355 struct vm_area_struct *tmp; 356 357 for_each_vma(vmi, tmp) 358 if (valid_ref_ctr_vma(uprobe, tmp)) 359 return tmp; 360 361 return NULL; 362 } 363 364 static int 365 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 366 { 367 void *kaddr; 368 struct page *page; 369 struct vm_area_struct *vma; 370 int ret; 371 short *ptr; 372 373 if (!vaddr || !d) 374 return -EINVAL; 375 376 ret = get_user_pages_remote(mm, vaddr, 1, 377 FOLL_WRITE, &page, &vma, NULL); 378 if (unlikely(ret <= 0)) { 379 /* 380 * We are asking for 1 page. If get_user_pages_remote() fails, 381 * it may return 0, in that case we have to return error. 382 */ 383 return ret == 0 ? -EBUSY : ret; 384 } 385 386 kaddr = kmap_atomic(page); 387 ptr = kaddr + (vaddr & ~PAGE_MASK); 388 389 if (unlikely(*ptr + d < 0)) { 390 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 391 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 392 ret = -EINVAL; 393 goto out; 394 } 395 396 *ptr += d; 397 ret = 0; 398 out: 399 kunmap_atomic(kaddr); 400 put_page(page); 401 return ret; 402 } 403 404 static void update_ref_ctr_warn(struct uprobe *uprobe, 405 struct mm_struct *mm, short d) 406 { 407 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 408 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 409 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 410 (unsigned long long) uprobe->offset, 411 (unsigned long long) uprobe->ref_ctr_offset, mm); 412 } 413 414 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 415 short d) 416 { 417 struct vm_area_struct *rc_vma; 418 unsigned long rc_vaddr; 419 int ret = 0; 420 421 rc_vma = find_ref_ctr_vma(uprobe, mm); 422 423 if (rc_vma) { 424 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 425 ret = __update_ref_ctr(mm, rc_vaddr, d); 426 if (ret) 427 update_ref_ctr_warn(uprobe, mm, d); 428 429 if (d > 0) 430 return ret; 431 } 432 433 mutex_lock(&delayed_uprobe_lock); 434 if (d > 0) 435 ret = delayed_uprobe_add(uprobe, mm); 436 else 437 delayed_uprobe_remove(uprobe, mm); 438 mutex_unlock(&delayed_uprobe_lock); 439 440 return ret; 441 } 442 443 /* 444 * NOTE: 445 * Expect the breakpoint instruction to be the smallest size instruction for 446 * the architecture. If an arch has variable length instruction and the 447 * breakpoint instruction is not of the smallest length instruction 448 * supported by that architecture then we need to modify is_trap_at_addr and 449 * uprobe_write_opcode accordingly. This would never be a problem for archs 450 * that have fixed length instructions. 451 * 452 * uprobe_write_opcode - write the opcode at a given virtual address. 453 * @auprobe: arch specific probepoint information. 454 * @mm: the probed process address space. 455 * @vaddr: the virtual address to store the opcode. 456 * @opcode: opcode to be written at @vaddr. 457 * 458 * Called with mm->mmap_lock held for write. 459 * Return 0 (success) or a negative errno. 460 */ 461 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 462 unsigned long vaddr, uprobe_opcode_t opcode) 463 { 464 struct uprobe *uprobe; 465 struct page *old_page, *new_page; 466 struct vm_area_struct *vma; 467 int ret, is_register, ref_ctr_updated = 0; 468 bool orig_page_huge = false; 469 unsigned int gup_flags = FOLL_FORCE; 470 471 is_register = is_swbp_insn(&opcode); 472 uprobe = container_of(auprobe, struct uprobe, arch); 473 474 retry: 475 if (is_register) 476 gup_flags |= FOLL_SPLIT_PMD; 477 /* Read the page with vaddr into memory */ 478 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, 479 &old_page, &vma, NULL); 480 if (ret <= 0) 481 return ret; 482 483 ret = verify_opcode(old_page, vaddr, &opcode); 484 if (ret <= 0) 485 goto put_old; 486 487 if (WARN(!is_register && PageCompound(old_page), 488 "uprobe unregister should never work on compound page\n")) { 489 ret = -EINVAL; 490 goto put_old; 491 } 492 493 /* We are going to replace instruction, update ref_ctr. */ 494 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 495 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 496 if (ret) 497 goto put_old; 498 499 ref_ctr_updated = 1; 500 } 501 502 ret = 0; 503 if (!is_register && !PageAnon(old_page)) 504 goto put_old; 505 506 ret = anon_vma_prepare(vma); 507 if (ret) 508 goto put_old; 509 510 ret = -ENOMEM; 511 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 512 if (!new_page) 513 goto put_old; 514 515 __SetPageUptodate(new_page); 516 copy_highpage(new_page, old_page); 517 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 518 519 if (!is_register) { 520 struct page *orig_page; 521 pgoff_t index; 522 523 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 524 525 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 526 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 527 index); 528 529 if (orig_page) { 530 if (PageUptodate(orig_page) && 531 pages_identical(new_page, orig_page)) { 532 /* let go new_page */ 533 put_page(new_page); 534 new_page = NULL; 535 536 if (PageCompound(orig_page)) 537 orig_page_huge = true; 538 } 539 put_page(orig_page); 540 } 541 } 542 543 ret = __replace_page(vma, vaddr, old_page, new_page); 544 if (new_page) 545 put_page(new_page); 546 put_old: 547 put_page(old_page); 548 549 if (unlikely(ret == -EAGAIN)) 550 goto retry; 551 552 /* Revert back reference counter if instruction update failed. */ 553 if (ret && is_register && ref_ctr_updated) 554 update_ref_ctr(uprobe, mm, -1); 555 556 /* try collapse pmd for compound page */ 557 if (!ret && orig_page_huge) 558 collapse_pte_mapped_thp(mm, vaddr, false); 559 560 return ret; 561 } 562 563 /** 564 * set_swbp - store breakpoint at a given address. 565 * @auprobe: arch specific probepoint information. 566 * @mm: the probed process address space. 567 * @vaddr: the virtual address to insert the opcode. 568 * 569 * For mm @mm, store the breakpoint instruction at @vaddr. 570 * Return 0 (success) or a negative errno. 571 */ 572 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 573 { 574 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 575 } 576 577 /** 578 * set_orig_insn - Restore the original instruction. 579 * @mm: the probed process address space. 580 * @auprobe: arch specific probepoint information. 581 * @vaddr: the virtual address to insert the opcode. 582 * 583 * For mm @mm, restore the original opcode (opcode) at @vaddr. 584 * Return 0 (success) or a negative errno. 585 */ 586 int __weak 587 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 588 { 589 return uprobe_write_opcode(auprobe, mm, vaddr, 590 *(uprobe_opcode_t *)&auprobe->insn); 591 } 592 593 static struct uprobe *get_uprobe(struct uprobe *uprobe) 594 { 595 refcount_inc(&uprobe->ref); 596 return uprobe; 597 } 598 599 static void put_uprobe(struct uprobe *uprobe) 600 { 601 if (refcount_dec_and_test(&uprobe->ref)) { 602 /* 603 * If application munmap(exec_vma) before uprobe_unregister() 604 * gets called, we don't get a chance to remove uprobe from 605 * delayed_uprobe_list from remove_breakpoint(). Do it here. 606 */ 607 mutex_lock(&delayed_uprobe_lock); 608 delayed_uprobe_remove(uprobe, NULL); 609 mutex_unlock(&delayed_uprobe_lock); 610 kfree(uprobe); 611 } 612 } 613 614 static __always_inline 615 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 616 const struct uprobe *r) 617 { 618 if (l_inode < r->inode) 619 return -1; 620 621 if (l_inode > r->inode) 622 return 1; 623 624 if (l_offset < r->offset) 625 return -1; 626 627 if (l_offset > r->offset) 628 return 1; 629 630 return 0; 631 } 632 633 #define __node_2_uprobe(node) \ 634 rb_entry((node), struct uprobe, rb_node) 635 636 struct __uprobe_key { 637 struct inode *inode; 638 loff_t offset; 639 }; 640 641 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 642 { 643 const struct __uprobe_key *a = key; 644 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 645 } 646 647 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 648 { 649 struct uprobe *u = __node_2_uprobe(a); 650 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 651 } 652 653 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 654 { 655 struct __uprobe_key key = { 656 .inode = inode, 657 .offset = offset, 658 }; 659 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 660 661 if (node) 662 return get_uprobe(__node_2_uprobe(node)); 663 664 return NULL; 665 } 666 667 /* 668 * Find a uprobe corresponding to a given inode:offset 669 * Acquires uprobes_treelock 670 */ 671 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 672 { 673 struct uprobe *uprobe; 674 675 spin_lock(&uprobes_treelock); 676 uprobe = __find_uprobe(inode, offset); 677 spin_unlock(&uprobes_treelock); 678 679 return uprobe; 680 } 681 682 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 683 { 684 struct rb_node *node; 685 686 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 687 if (node) 688 return get_uprobe(__node_2_uprobe(node)); 689 690 /* get access + creation ref */ 691 refcount_set(&uprobe->ref, 2); 692 return NULL; 693 } 694 695 /* 696 * Acquire uprobes_treelock. 697 * Matching uprobe already exists in rbtree; 698 * increment (access refcount) and return the matching uprobe. 699 * 700 * No matching uprobe; insert the uprobe in rb_tree; 701 * get a double refcount (access + creation) and return NULL. 702 */ 703 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 704 { 705 struct uprobe *u; 706 707 spin_lock(&uprobes_treelock); 708 u = __insert_uprobe(uprobe); 709 spin_unlock(&uprobes_treelock); 710 711 return u; 712 } 713 714 static void 715 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 716 { 717 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 718 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 719 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 720 (unsigned long long) cur_uprobe->ref_ctr_offset, 721 (unsigned long long) uprobe->ref_ctr_offset); 722 } 723 724 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 725 loff_t ref_ctr_offset) 726 { 727 struct uprobe *uprobe, *cur_uprobe; 728 729 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 730 if (!uprobe) 731 return NULL; 732 733 uprobe->inode = inode; 734 uprobe->offset = offset; 735 uprobe->ref_ctr_offset = ref_ctr_offset; 736 init_rwsem(&uprobe->register_rwsem); 737 init_rwsem(&uprobe->consumer_rwsem); 738 739 /* add to uprobes_tree, sorted on inode:offset */ 740 cur_uprobe = insert_uprobe(uprobe); 741 /* a uprobe exists for this inode:offset combination */ 742 if (cur_uprobe) { 743 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 744 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 745 put_uprobe(cur_uprobe); 746 kfree(uprobe); 747 return ERR_PTR(-EINVAL); 748 } 749 kfree(uprobe); 750 uprobe = cur_uprobe; 751 } 752 753 return uprobe; 754 } 755 756 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 757 { 758 down_write(&uprobe->consumer_rwsem); 759 uc->next = uprobe->consumers; 760 uprobe->consumers = uc; 761 up_write(&uprobe->consumer_rwsem); 762 } 763 764 /* 765 * For uprobe @uprobe, delete the consumer @uc. 766 * Return true if the @uc is deleted successfully 767 * or return false. 768 */ 769 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 770 { 771 struct uprobe_consumer **con; 772 bool ret = false; 773 774 down_write(&uprobe->consumer_rwsem); 775 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 776 if (*con == uc) { 777 *con = uc->next; 778 ret = true; 779 break; 780 } 781 } 782 up_write(&uprobe->consumer_rwsem); 783 784 return ret; 785 } 786 787 static int __copy_insn(struct address_space *mapping, struct file *filp, 788 void *insn, int nbytes, loff_t offset) 789 { 790 struct page *page; 791 /* 792 * Ensure that the page that has the original instruction is populated 793 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 794 * see uprobe_register(). 795 */ 796 if (mapping->a_ops->read_folio) 797 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 798 else 799 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 800 if (IS_ERR(page)) 801 return PTR_ERR(page); 802 803 copy_from_page(page, offset, insn, nbytes); 804 put_page(page); 805 806 return 0; 807 } 808 809 static int copy_insn(struct uprobe *uprobe, struct file *filp) 810 { 811 struct address_space *mapping = uprobe->inode->i_mapping; 812 loff_t offs = uprobe->offset; 813 void *insn = &uprobe->arch.insn; 814 int size = sizeof(uprobe->arch.insn); 815 int len, err = -EIO; 816 817 /* Copy only available bytes, -EIO if nothing was read */ 818 do { 819 if (offs >= i_size_read(uprobe->inode)) 820 break; 821 822 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 823 err = __copy_insn(mapping, filp, insn, len, offs); 824 if (err) 825 break; 826 827 insn += len; 828 offs += len; 829 size -= len; 830 } while (size); 831 832 return err; 833 } 834 835 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 836 struct mm_struct *mm, unsigned long vaddr) 837 { 838 int ret = 0; 839 840 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 841 return ret; 842 843 /* TODO: move this into _register, until then we abuse this sem. */ 844 down_write(&uprobe->consumer_rwsem); 845 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 846 goto out; 847 848 ret = copy_insn(uprobe, file); 849 if (ret) 850 goto out; 851 852 ret = -ENOTSUPP; 853 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 854 goto out; 855 856 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 857 if (ret) 858 goto out; 859 860 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 861 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 862 863 out: 864 up_write(&uprobe->consumer_rwsem); 865 866 return ret; 867 } 868 869 static inline bool consumer_filter(struct uprobe_consumer *uc, 870 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 871 { 872 return !uc->filter || uc->filter(uc, ctx, mm); 873 } 874 875 static bool filter_chain(struct uprobe *uprobe, 876 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 877 { 878 struct uprobe_consumer *uc; 879 bool ret = false; 880 881 down_read(&uprobe->consumer_rwsem); 882 for (uc = uprobe->consumers; uc; uc = uc->next) { 883 ret = consumer_filter(uc, ctx, mm); 884 if (ret) 885 break; 886 } 887 up_read(&uprobe->consumer_rwsem); 888 889 return ret; 890 } 891 892 static int 893 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 894 struct vm_area_struct *vma, unsigned long vaddr) 895 { 896 bool first_uprobe; 897 int ret; 898 899 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 900 if (ret) 901 return ret; 902 903 /* 904 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 905 * the task can hit this breakpoint right after __replace_page(). 906 */ 907 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 908 if (first_uprobe) 909 set_bit(MMF_HAS_UPROBES, &mm->flags); 910 911 ret = set_swbp(&uprobe->arch, mm, vaddr); 912 if (!ret) 913 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 914 else if (first_uprobe) 915 clear_bit(MMF_HAS_UPROBES, &mm->flags); 916 917 return ret; 918 } 919 920 static int 921 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 922 { 923 set_bit(MMF_RECALC_UPROBES, &mm->flags); 924 return set_orig_insn(&uprobe->arch, mm, vaddr); 925 } 926 927 static inline bool uprobe_is_active(struct uprobe *uprobe) 928 { 929 return !RB_EMPTY_NODE(&uprobe->rb_node); 930 } 931 /* 932 * There could be threads that have already hit the breakpoint. They 933 * will recheck the current insn and restart if find_uprobe() fails. 934 * See find_active_uprobe(). 935 */ 936 static void delete_uprobe(struct uprobe *uprobe) 937 { 938 if (WARN_ON(!uprobe_is_active(uprobe))) 939 return; 940 941 spin_lock(&uprobes_treelock); 942 rb_erase(&uprobe->rb_node, &uprobes_tree); 943 spin_unlock(&uprobes_treelock); 944 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 945 put_uprobe(uprobe); 946 } 947 948 struct map_info { 949 struct map_info *next; 950 struct mm_struct *mm; 951 unsigned long vaddr; 952 }; 953 954 static inline struct map_info *free_map_info(struct map_info *info) 955 { 956 struct map_info *next = info->next; 957 kfree(info); 958 return next; 959 } 960 961 static struct map_info * 962 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 963 { 964 unsigned long pgoff = offset >> PAGE_SHIFT; 965 struct vm_area_struct *vma; 966 struct map_info *curr = NULL; 967 struct map_info *prev = NULL; 968 struct map_info *info; 969 int more = 0; 970 971 again: 972 i_mmap_lock_read(mapping); 973 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 974 if (!valid_vma(vma, is_register)) 975 continue; 976 977 if (!prev && !more) { 978 /* 979 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 980 * reclaim. This is optimistic, no harm done if it fails. 981 */ 982 prev = kmalloc(sizeof(struct map_info), 983 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 984 if (prev) 985 prev->next = NULL; 986 } 987 if (!prev) { 988 more++; 989 continue; 990 } 991 992 if (!mmget_not_zero(vma->vm_mm)) 993 continue; 994 995 info = prev; 996 prev = prev->next; 997 info->next = curr; 998 curr = info; 999 1000 info->mm = vma->vm_mm; 1001 info->vaddr = offset_to_vaddr(vma, offset); 1002 } 1003 i_mmap_unlock_read(mapping); 1004 1005 if (!more) 1006 goto out; 1007 1008 prev = curr; 1009 while (curr) { 1010 mmput(curr->mm); 1011 curr = curr->next; 1012 } 1013 1014 do { 1015 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1016 if (!info) { 1017 curr = ERR_PTR(-ENOMEM); 1018 goto out; 1019 } 1020 info->next = prev; 1021 prev = info; 1022 } while (--more); 1023 1024 goto again; 1025 out: 1026 while (prev) 1027 prev = free_map_info(prev); 1028 return curr; 1029 } 1030 1031 static int 1032 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1033 { 1034 bool is_register = !!new; 1035 struct map_info *info; 1036 int err = 0; 1037 1038 percpu_down_write(&dup_mmap_sem); 1039 info = build_map_info(uprobe->inode->i_mapping, 1040 uprobe->offset, is_register); 1041 if (IS_ERR(info)) { 1042 err = PTR_ERR(info); 1043 goto out; 1044 } 1045 1046 while (info) { 1047 struct mm_struct *mm = info->mm; 1048 struct vm_area_struct *vma; 1049 1050 if (err && is_register) 1051 goto free; 1052 1053 mmap_write_lock(mm); 1054 vma = find_vma(mm, info->vaddr); 1055 if (!vma || !valid_vma(vma, is_register) || 1056 file_inode(vma->vm_file) != uprobe->inode) 1057 goto unlock; 1058 1059 if (vma->vm_start > info->vaddr || 1060 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1061 goto unlock; 1062 1063 if (is_register) { 1064 /* consult only the "caller", new consumer. */ 1065 if (consumer_filter(new, 1066 UPROBE_FILTER_REGISTER, mm)) 1067 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1068 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1069 if (!filter_chain(uprobe, 1070 UPROBE_FILTER_UNREGISTER, mm)) 1071 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1072 } 1073 1074 unlock: 1075 mmap_write_unlock(mm); 1076 free: 1077 mmput(mm); 1078 info = free_map_info(info); 1079 } 1080 out: 1081 percpu_up_write(&dup_mmap_sem); 1082 return err; 1083 } 1084 1085 static void 1086 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1087 { 1088 int err; 1089 1090 if (WARN_ON(!consumer_del(uprobe, uc))) 1091 return; 1092 1093 err = register_for_each_vma(uprobe, NULL); 1094 /* TODO : cant unregister? schedule a worker thread */ 1095 if (!uprobe->consumers && !err) 1096 delete_uprobe(uprobe); 1097 } 1098 1099 /* 1100 * uprobe_unregister - unregister an already registered probe. 1101 * @inode: the file in which the probe has to be removed. 1102 * @offset: offset from the start of the file. 1103 * @uc: identify which probe if multiple probes are colocated. 1104 */ 1105 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1106 { 1107 struct uprobe *uprobe; 1108 1109 uprobe = find_uprobe(inode, offset); 1110 if (WARN_ON(!uprobe)) 1111 return; 1112 1113 down_write(&uprobe->register_rwsem); 1114 __uprobe_unregister(uprobe, uc); 1115 up_write(&uprobe->register_rwsem); 1116 put_uprobe(uprobe); 1117 } 1118 EXPORT_SYMBOL_GPL(uprobe_unregister); 1119 1120 /* 1121 * __uprobe_register - register a probe 1122 * @inode: the file in which the probe has to be placed. 1123 * @offset: offset from the start of the file. 1124 * @uc: information on howto handle the probe.. 1125 * 1126 * Apart from the access refcount, __uprobe_register() takes a creation 1127 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1128 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1129 * tuple). Creation refcount stops uprobe_unregister from freeing the 1130 * @uprobe even before the register operation is complete. Creation 1131 * refcount is released when the last @uc for the @uprobe 1132 * unregisters. Caller of __uprobe_register() is required to keep @inode 1133 * (and the containing mount) referenced. 1134 * 1135 * Return errno if it cannot successully install probes 1136 * else return 0 (success) 1137 */ 1138 static int __uprobe_register(struct inode *inode, loff_t offset, 1139 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1140 { 1141 struct uprobe *uprobe; 1142 int ret; 1143 1144 /* Uprobe must have at least one set consumer */ 1145 if (!uc->handler && !uc->ret_handler) 1146 return -EINVAL; 1147 1148 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1149 if (!inode->i_mapping->a_ops->read_folio && 1150 !shmem_mapping(inode->i_mapping)) 1151 return -EIO; 1152 /* Racy, just to catch the obvious mistakes */ 1153 if (offset > i_size_read(inode)) 1154 return -EINVAL; 1155 1156 /* 1157 * This ensures that copy_from_page(), copy_to_page() and 1158 * __update_ref_ctr() can't cross page boundary. 1159 */ 1160 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1161 return -EINVAL; 1162 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1163 return -EINVAL; 1164 1165 retry: 1166 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1167 if (!uprobe) 1168 return -ENOMEM; 1169 if (IS_ERR(uprobe)) 1170 return PTR_ERR(uprobe); 1171 1172 /* 1173 * We can race with uprobe_unregister()->delete_uprobe(). 1174 * Check uprobe_is_active() and retry if it is false. 1175 */ 1176 down_write(&uprobe->register_rwsem); 1177 ret = -EAGAIN; 1178 if (likely(uprobe_is_active(uprobe))) { 1179 consumer_add(uprobe, uc); 1180 ret = register_for_each_vma(uprobe, uc); 1181 if (ret) 1182 __uprobe_unregister(uprobe, uc); 1183 } 1184 up_write(&uprobe->register_rwsem); 1185 put_uprobe(uprobe); 1186 1187 if (unlikely(ret == -EAGAIN)) 1188 goto retry; 1189 return ret; 1190 } 1191 1192 int uprobe_register(struct inode *inode, loff_t offset, 1193 struct uprobe_consumer *uc) 1194 { 1195 return __uprobe_register(inode, offset, 0, uc); 1196 } 1197 EXPORT_SYMBOL_GPL(uprobe_register); 1198 1199 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1200 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1201 { 1202 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1203 } 1204 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1205 1206 /* 1207 * uprobe_apply - unregister an already registered probe. 1208 * @inode: the file in which the probe has to be removed. 1209 * @offset: offset from the start of the file. 1210 * @uc: consumer which wants to add more or remove some breakpoints 1211 * @add: add or remove the breakpoints 1212 */ 1213 int uprobe_apply(struct inode *inode, loff_t offset, 1214 struct uprobe_consumer *uc, bool add) 1215 { 1216 struct uprobe *uprobe; 1217 struct uprobe_consumer *con; 1218 int ret = -ENOENT; 1219 1220 uprobe = find_uprobe(inode, offset); 1221 if (WARN_ON(!uprobe)) 1222 return ret; 1223 1224 down_write(&uprobe->register_rwsem); 1225 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1226 ; 1227 if (con) 1228 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1229 up_write(&uprobe->register_rwsem); 1230 put_uprobe(uprobe); 1231 1232 return ret; 1233 } 1234 1235 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1236 { 1237 VMA_ITERATOR(vmi, mm, 0); 1238 struct vm_area_struct *vma; 1239 int err = 0; 1240 1241 mmap_read_lock(mm); 1242 for_each_vma(vmi, vma) { 1243 unsigned long vaddr; 1244 loff_t offset; 1245 1246 if (!valid_vma(vma, false) || 1247 file_inode(vma->vm_file) != uprobe->inode) 1248 continue; 1249 1250 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1251 if (uprobe->offset < offset || 1252 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1253 continue; 1254 1255 vaddr = offset_to_vaddr(vma, uprobe->offset); 1256 err |= remove_breakpoint(uprobe, mm, vaddr); 1257 } 1258 mmap_read_unlock(mm); 1259 1260 return err; 1261 } 1262 1263 static struct rb_node * 1264 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1265 { 1266 struct rb_node *n = uprobes_tree.rb_node; 1267 1268 while (n) { 1269 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1270 1271 if (inode < u->inode) { 1272 n = n->rb_left; 1273 } else if (inode > u->inode) { 1274 n = n->rb_right; 1275 } else { 1276 if (max < u->offset) 1277 n = n->rb_left; 1278 else if (min > u->offset) 1279 n = n->rb_right; 1280 else 1281 break; 1282 } 1283 } 1284 1285 return n; 1286 } 1287 1288 /* 1289 * For a given range in vma, build a list of probes that need to be inserted. 1290 */ 1291 static void build_probe_list(struct inode *inode, 1292 struct vm_area_struct *vma, 1293 unsigned long start, unsigned long end, 1294 struct list_head *head) 1295 { 1296 loff_t min, max; 1297 struct rb_node *n, *t; 1298 struct uprobe *u; 1299 1300 INIT_LIST_HEAD(head); 1301 min = vaddr_to_offset(vma, start); 1302 max = min + (end - start) - 1; 1303 1304 spin_lock(&uprobes_treelock); 1305 n = find_node_in_range(inode, min, max); 1306 if (n) { 1307 for (t = n; t; t = rb_prev(t)) { 1308 u = rb_entry(t, struct uprobe, rb_node); 1309 if (u->inode != inode || u->offset < min) 1310 break; 1311 list_add(&u->pending_list, head); 1312 get_uprobe(u); 1313 } 1314 for (t = n; (t = rb_next(t)); ) { 1315 u = rb_entry(t, struct uprobe, rb_node); 1316 if (u->inode != inode || u->offset > max) 1317 break; 1318 list_add(&u->pending_list, head); 1319 get_uprobe(u); 1320 } 1321 } 1322 spin_unlock(&uprobes_treelock); 1323 } 1324 1325 /* @vma contains reference counter, not the probed instruction. */ 1326 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1327 { 1328 struct list_head *pos, *q; 1329 struct delayed_uprobe *du; 1330 unsigned long vaddr; 1331 int ret = 0, err = 0; 1332 1333 mutex_lock(&delayed_uprobe_lock); 1334 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1335 du = list_entry(pos, struct delayed_uprobe, list); 1336 1337 if (du->mm != vma->vm_mm || 1338 !valid_ref_ctr_vma(du->uprobe, vma)) 1339 continue; 1340 1341 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1342 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1343 if (ret) { 1344 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1345 if (!err) 1346 err = ret; 1347 } 1348 delayed_uprobe_delete(du); 1349 } 1350 mutex_unlock(&delayed_uprobe_lock); 1351 return err; 1352 } 1353 1354 /* 1355 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired. 1356 * 1357 * Currently we ignore all errors and always return 0, the callers 1358 * can't handle the failure anyway. 1359 */ 1360 int uprobe_mmap(struct vm_area_struct *vma) 1361 { 1362 struct list_head tmp_list; 1363 struct uprobe *uprobe, *u; 1364 struct inode *inode; 1365 1366 if (no_uprobe_events()) 1367 return 0; 1368 1369 if (vma->vm_file && 1370 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1371 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1372 delayed_ref_ctr_inc(vma); 1373 1374 if (!valid_vma(vma, true)) 1375 return 0; 1376 1377 inode = file_inode(vma->vm_file); 1378 if (!inode) 1379 return 0; 1380 1381 mutex_lock(uprobes_mmap_hash(inode)); 1382 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1383 /* 1384 * We can race with uprobe_unregister(), this uprobe can be already 1385 * removed. But in this case filter_chain() must return false, all 1386 * consumers have gone away. 1387 */ 1388 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1389 if (!fatal_signal_pending(current) && 1390 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1391 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1392 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1393 } 1394 put_uprobe(uprobe); 1395 } 1396 mutex_unlock(uprobes_mmap_hash(inode)); 1397 1398 return 0; 1399 } 1400 1401 static bool 1402 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1403 { 1404 loff_t min, max; 1405 struct inode *inode; 1406 struct rb_node *n; 1407 1408 inode = file_inode(vma->vm_file); 1409 1410 min = vaddr_to_offset(vma, start); 1411 max = min + (end - start) - 1; 1412 1413 spin_lock(&uprobes_treelock); 1414 n = find_node_in_range(inode, min, max); 1415 spin_unlock(&uprobes_treelock); 1416 1417 return !!n; 1418 } 1419 1420 /* 1421 * Called in context of a munmap of a vma. 1422 */ 1423 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1424 { 1425 if (no_uprobe_events() || !valid_vma(vma, false)) 1426 return; 1427 1428 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1429 return; 1430 1431 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1432 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1433 return; 1434 1435 if (vma_has_uprobes(vma, start, end)) 1436 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1437 } 1438 1439 /* Slot allocation for XOL */ 1440 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1441 { 1442 struct vm_area_struct *vma; 1443 int ret; 1444 1445 if (mmap_write_lock_killable(mm)) 1446 return -EINTR; 1447 1448 if (mm->uprobes_state.xol_area) { 1449 ret = -EALREADY; 1450 goto fail; 1451 } 1452 1453 if (!area->vaddr) { 1454 /* Try to map as high as possible, this is only a hint. */ 1455 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1456 PAGE_SIZE, 0, 0); 1457 if (IS_ERR_VALUE(area->vaddr)) { 1458 ret = area->vaddr; 1459 goto fail; 1460 } 1461 } 1462 1463 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1464 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1465 &area->xol_mapping); 1466 if (IS_ERR(vma)) { 1467 ret = PTR_ERR(vma); 1468 goto fail; 1469 } 1470 1471 ret = 0; 1472 /* pairs with get_xol_area() */ 1473 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1474 fail: 1475 mmap_write_unlock(mm); 1476 1477 return ret; 1478 } 1479 1480 static struct xol_area *__create_xol_area(unsigned long vaddr) 1481 { 1482 struct mm_struct *mm = current->mm; 1483 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1484 struct xol_area *area; 1485 1486 area = kmalloc(sizeof(*area), GFP_KERNEL); 1487 if (unlikely(!area)) 1488 goto out; 1489 1490 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1491 GFP_KERNEL); 1492 if (!area->bitmap) 1493 goto free_area; 1494 1495 area->xol_mapping.name = "[uprobes]"; 1496 area->xol_mapping.fault = NULL; 1497 area->xol_mapping.pages = area->pages; 1498 area->pages[0] = alloc_page(GFP_HIGHUSER); 1499 if (!area->pages[0]) 1500 goto free_bitmap; 1501 area->pages[1] = NULL; 1502 1503 area->vaddr = vaddr; 1504 init_waitqueue_head(&area->wq); 1505 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1506 set_bit(0, area->bitmap); 1507 atomic_set(&area->slot_count, 1); 1508 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1509 1510 if (!xol_add_vma(mm, area)) 1511 return area; 1512 1513 __free_page(area->pages[0]); 1514 free_bitmap: 1515 kfree(area->bitmap); 1516 free_area: 1517 kfree(area); 1518 out: 1519 return NULL; 1520 } 1521 1522 /* 1523 * get_xol_area - Allocate process's xol_area if necessary. 1524 * This area will be used for storing instructions for execution out of line. 1525 * 1526 * Returns the allocated area or NULL. 1527 */ 1528 static struct xol_area *get_xol_area(void) 1529 { 1530 struct mm_struct *mm = current->mm; 1531 struct xol_area *area; 1532 1533 if (!mm->uprobes_state.xol_area) 1534 __create_xol_area(0); 1535 1536 /* Pairs with xol_add_vma() smp_store_release() */ 1537 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1538 return area; 1539 } 1540 1541 /* 1542 * uprobe_clear_state - Free the area allocated for slots. 1543 */ 1544 void uprobe_clear_state(struct mm_struct *mm) 1545 { 1546 struct xol_area *area = mm->uprobes_state.xol_area; 1547 1548 mutex_lock(&delayed_uprobe_lock); 1549 delayed_uprobe_remove(NULL, mm); 1550 mutex_unlock(&delayed_uprobe_lock); 1551 1552 if (!area) 1553 return; 1554 1555 put_page(area->pages[0]); 1556 kfree(area->bitmap); 1557 kfree(area); 1558 } 1559 1560 void uprobe_start_dup_mmap(void) 1561 { 1562 percpu_down_read(&dup_mmap_sem); 1563 } 1564 1565 void uprobe_end_dup_mmap(void) 1566 { 1567 percpu_up_read(&dup_mmap_sem); 1568 } 1569 1570 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1571 { 1572 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1573 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1574 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1575 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1576 } 1577 } 1578 1579 /* 1580 * - search for a free slot. 1581 */ 1582 static unsigned long xol_take_insn_slot(struct xol_area *area) 1583 { 1584 unsigned long slot_addr; 1585 int slot_nr; 1586 1587 do { 1588 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1589 if (slot_nr < UINSNS_PER_PAGE) { 1590 if (!test_and_set_bit(slot_nr, area->bitmap)) 1591 break; 1592 1593 slot_nr = UINSNS_PER_PAGE; 1594 continue; 1595 } 1596 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1597 } while (slot_nr >= UINSNS_PER_PAGE); 1598 1599 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1600 atomic_inc(&area->slot_count); 1601 1602 return slot_addr; 1603 } 1604 1605 /* 1606 * xol_get_insn_slot - allocate a slot for xol. 1607 * Returns the allocated slot address or 0. 1608 */ 1609 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1610 { 1611 struct xol_area *area; 1612 unsigned long xol_vaddr; 1613 1614 area = get_xol_area(); 1615 if (!area) 1616 return 0; 1617 1618 xol_vaddr = xol_take_insn_slot(area); 1619 if (unlikely(!xol_vaddr)) 1620 return 0; 1621 1622 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1623 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1624 1625 return xol_vaddr; 1626 } 1627 1628 /* 1629 * xol_free_insn_slot - If slot was earlier allocated by 1630 * @xol_get_insn_slot(), make the slot available for 1631 * subsequent requests. 1632 */ 1633 static void xol_free_insn_slot(struct task_struct *tsk) 1634 { 1635 struct xol_area *area; 1636 unsigned long vma_end; 1637 unsigned long slot_addr; 1638 1639 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1640 return; 1641 1642 slot_addr = tsk->utask->xol_vaddr; 1643 if (unlikely(!slot_addr)) 1644 return; 1645 1646 area = tsk->mm->uprobes_state.xol_area; 1647 vma_end = area->vaddr + PAGE_SIZE; 1648 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1649 unsigned long offset; 1650 int slot_nr; 1651 1652 offset = slot_addr - area->vaddr; 1653 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1654 if (slot_nr >= UINSNS_PER_PAGE) 1655 return; 1656 1657 clear_bit(slot_nr, area->bitmap); 1658 atomic_dec(&area->slot_count); 1659 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1660 if (waitqueue_active(&area->wq)) 1661 wake_up(&area->wq); 1662 1663 tsk->utask->xol_vaddr = 0; 1664 } 1665 } 1666 1667 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1668 void *src, unsigned long len) 1669 { 1670 /* Initialize the slot */ 1671 copy_to_page(page, vaddr, src, len); 1672 1673 /* 1674 * We probably need flush_icache_user_page() but it needs vma. 1675 * This should work on most of architectures by default. If 1676 * architecture needs to do something different it can define 1677 * its own version of the function. 1678 */ 1679 flush_dcache_page(page); 1680 } 1681 1682 /** 1683 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1684 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1685 * instruction. 1686 * Return the address of the breakpoint instruction. 1687 */ 1688 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1689 { 1690 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1691 } 1692 1693 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1694 { 1695 struct uprobe_task *utask = current->utask; 1696 1697 if (unlikely(utask && utask->active_uprobe)) 1698 return utask->vaddr; 1699 1700 return instruction_pointer(regs); 1701 } 1702 1703 static struct return_instance *free_ret_instance(struct return_instance *ri) 1704 { 1705 struct return_instance *next = ri->next; 1706 put_uprobe(ri->uprobe); 1707 kfree(ri); 1708 return next; 1709 } 1710 1711 /* 1712 * Called with no locks held. 1713 * Called in context of an exiting or an exec-ing thread. 1714 */ 1715 void uprobe_free_utask(struct task_struct *t) 1716 { 1717 struct uprobe_task *utask = t->utask; 1718 struct return_instance *ri; 1719 1720 if (!utask) 1721 return; 1722 1723 if (utask->active_uprobe) 1724 put_uprobe(utask->active_uprobe); 1725 1726 ri = utask->return_instances; 1727 while (ri) 1728 ri = free_ret_instance(ri); 1729 1730 xol_free_insn_slot(t); 1731 kfree(utask); 1732 t->utask = NULL; 1733 } 1734 1735 /* 1736 * Allocate a uprobe_task object for the task if necessary. 1737 * Called when the thread hits a breakpoint. 1738 * 1739 * Returns: 1740 * - pointer to new uprobe_task on success 1741 * - NULL otherwise 1742 */ 1743 static struct uprobe_task *get_utask(void) 1744 { 1745 if (!current->utask) 1746 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1747 return current->utask; 1748 } 1749 1750 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1751 { 1752 struct uprobe_task *n_utask; 1753 struct return_instance **p, *o, *n; 1754 1755 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1756 if (!n_utask) 1757 return -ENOMEM; 1758 t->utask = n_utask; 1759 1760 p = &n_utask->return_instances; 1761 for (o = o_utask->return_instances; o; o = o->next) { 1762 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1763 if (!n) 1764 return -ENOMEM; 1765 1766 *n = *o; 1767 get_uprobe(n->uprobe); 1768 n->next = NULL; 1769 1770 *p = n; 1771 p = &n->next; 1772 n_utask->depth++; 1773 } 1774 1775 return 0; 1776 } 1777 1778 static void uprobe_warn(struct task_struct *t, const char *msg) 1779 { 1780 pr_warn("uprobe: %s:%d failed to %s\n", 1781 current->comm, current->pid, msg); 1782 } 1783 1784 static void dup_xol_work(struct callback_head *work) 1785 { 1786 if (current->flags & PF_EXITING) 1787 return; 1788 1789 if (!__create_xol_area(current->utask->dup_xol_addr) && 1790 !fatal_signal_pending(current)) 1791 uprobe_warn(current, "dup xol area"); 1792 } 1793 1794 /* 1795 * Called in context of a new clone/fork from copy_process. 1796 */ 1797 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1798 { 1799 struct uprobe_task *utask = current->utask; 1800 struct mm_struct *mm = current->mm; 1801 struct xol_area *area; 1802 1803 t->utask = NULL; 1804 1805 if (!utask || !utask->return_instances) 1806 return; 1807 1808 if (mm == t->mm && !(flags & CLONE_VFORK)) 1809 return; 1810 1811 if (dup_utask(t, utask)) 1812 return uprobe_warn(t, "dup ret instances"); 1813 1814 /* The task can fork() after dup_xol_work() fails */ 1815 area = mm->uprobes_state.xol_area; 1816 if (!area) 1817 return uprobe_warn(t, "dup xol area"); 1818 1819 if (mm == t->mm) 1820 return; 1821 1822 t->utask->dup_xol_addr = area->vaddr; 1823 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1824 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1825 } 1826 1827 /* 1828 * Current area->vaddr notion assume the trampoline address is always 1829 * equal area->vaddr. 1830 * 1831 * Returns -1 in case the xol_area is not allocated. 1832 */ 1833 static unsigned long get_trampoline_vaddr(void) 1834 { 1835 struct xol_area *area; 1836 unsigned long trampoline_vaddr = -1; 1837 1838 /* Pairs with xol_add_vma() smp_store_release() */ 1839 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1840 if (area) 1841 trampoline_vaddr = area->vaddr; 1842 1843 return trampoline_vaddr; 1844 } 1845 1846 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1847 struct pt_regs *regs) 1848 { 1849 struct return_instance *ri = utask->return_instances; 1850 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1851 1852 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1853 ri = free_ret_instance(ri); 1854 utask->depth--; 1855 } 1856 utask->return_instances = ri; 1857 } 1858 1859 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1860 { 1861 struct return_instance *ri; 1862 struct uprobe_task *utask; 1863 unsigned long orig_ret_vaddr, trampoline_vaddr; 1864 bool chained; 1865 1866 if (!get_xol_area()) 1867 return; 1868 1869 utask = get_utask(); 1870 if (!utask) 1871 return; 1872 1873 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1874 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1875 " nestedness limit pid/tgid=%d/%d\n", 1876 current->pid, current->tgid); 1877 return; 1878 } 1879 1880 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1881 if (!ri) 1882 return; 1883 1884 trampoline_vaddr = get_trampoline_vaddr(); 1885 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1886 if (orig_ret_vaddr == -1) 1887 goto fail; 1888 1889 /* drop the entries invalidated by longjmp() */ 1890 chained = (orig_ret_vaddr == trampoline_vaddr); 1891 cleanup_return_instances(utask, chained, regs); 1892 1893 /* 1894 * We don't want to keep trampoline address in stack, rather keep the 1895 * original return address of first caller thru all the consequent 1896 * instances. This also makes breakpoint unwrapping easier. 1897 */ 1898 if (chained) { 1899 if (!utask->return_instances) { 1900 /* 1901 * This situation is not possible. Likely we have an 1902 * attack from user-space. 1903 */ 1904 uprobe_warn(current, "handle tail call"); 1905 goto fail; 1906 } 1907 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1908 } 1909 1910 ri->uprobe = get_uprobe(uprobe); 1911 ri->func = instruction_pointer(regs); 1912 ri->stack = user_stack_pointer(regs); 1913 ri->orig_ret_vaddr = orig_ret_vaddr; 1914 ri->chained = chained; 1915 1916 utask->depth++; 1917 ri->next = utask->return_instances; 1918 utask->return_instances = ri; 1919 1920 return; 1921 fail: 1922 kfree(ri); 1923 } 1924 1925 /* Prepare to single-step probed instruction out of line. */ 1926 static int 1927 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1928 { 1929 struct uprobe_task *utask; 1930 unsigned long xol_vaddr; 1931 int err; 1932 1933 utask = get_utask(); 1934 if (!utask) 1935 return -ENOMEM; 1936 1937 xol_vaddr = xol_get_insn_slot(uprobe); 1938 if (!xol_vaddr) 1939 return -ENOMEM; 1940 1941 utask->xol_vaddr = xol_vaddr; 1942 utask->vaddr = bp_vaddr; 1943 1944 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1945 if (unlikely(err)) { 1946 xol_free_insn_slot(current); 1947 return err; 1948 } 1949 1950 utask->active_uprobe = uprobe; 1951 utask->state = UTASK_SSTEP; 1952 return 0; 1953 } 1954 1955 /* 1956 * If we are singlestepping, then ensure this thread is not connected to 1957 * non-fatal signals until completion of singlestep. When xol insn itself 1958 * triggers the signal, restart the original insn even if the task is 1959 * already SIGKILL'ed (since coredump should report the correct ip). This 1960 * is even more important if the task has a handler for SIGSEGV/etc, The 1961 * _same_ instruction should be repeated again after return from the signal 1962 * handler, and SSTEP can never finish in this case. 1963 */ 1964 bool uprobe_deny_signal(void) 1965 { 1966 struct task_struct *t = current; 1967 struct uprobe_task *utask = t->utask; 1968 1969 if (likely(!utask || !utask->active_uprobe)) 1970 return false; 1971 1972 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1973 1974 if (task_sigpending(t)) { 1975 spin_lock_irq(&t->sighand->siglock); 1976 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1977 spin_unlock_irq(&t->sighand->siglock); 1978 1979 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1980 utask->state = UTASK_SSTEP_TRAPPED; 1981 set_tsk_thread_flag(t, TIF_UPROBE); 1982 } 1983 } 1984 1985 return true; 1986 } 1987 1988 static void mmf_recalc_uprobes(struct mm_struct *mm) 1989 { 1990 VMA_ITERATOR(vmi, mm, 0); 1991 struct vm_area_struct *vma; 1992 1993 for_each_vma(vmi, vma) { 1994 if (!valid_vma(vma, false)) 1995 continue; 1996 /* 1997 * This is not strictly accurate, we can race with 1998 * uprobe_unregister() and see the already removed 1999 * uprobe if delete_uprobe() was not yet called. 2000 * Or this uprobe can be filtered out. 2001 */ 2002 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2003 return; 2004 } 2005 2006 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2007 } 2008 2009 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2010 { 2011 struct page *page; 2012 uprobe_opcode_t opcode; 2013 int result; 2014 2015 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2016 return -EINVAL; 2017 2018 pagefault_disable(); 2019 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2020 pagefault_enable(); 2021 2022 if (likely(result == 0)) 2023 goto out; 2024 2025 /* 2026 * The NULL 'tsk' here ensures that any faults that occur here 2027 * will not be accounted to the task. 'mm' *is* current->mm, 2028 * but we treat this as a 'remote' access since it is 2029 * essentially a kernel access to the memory. 2030 */ 2031 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, 2032 NULL, NULL); 2033 if (result < 0) 2034 return result; 2035 2036 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2037 put_page(page); 2038 out: 2039 /* This needs to return true for any variant of the trap insn */ 2040 return is_trap_insn(&opcode); 2041 } 2042 2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2044 { 2045 struct mm_struct *mm = current->mm; 2046 struct uprobe *uprobe = NULL; 2047 struct vm_area_struct *vma; 2048 2049 mmap_read_lock(mm); 2050 vma = vma_lookup(mm, bp_vaddr); 2051 if (vma) { 2052 if (valid_vma(vma, false)) { 2053 struct inode *inode = file_inode(vma->vm_file); 2054 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2055 2056 uprobe = find_uprobe(inode, offset); 2057 } 2058 2059 if (!uprobe) 2060 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2061 } else { 2062 *is_swbp = -EFAULT; 2063 } 2064 2065 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2066 mmf_recalc_uprobes(mm); 2067 mmap_read_unlock(mm); 2068 2069 return uprobe; 2070 } 2071 2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2073 { 2074 struct uprobe_consumer *uc; 2075 int remove = UPROBE_HANDLER_REMOVE; 2076 bool need_prep = false; /* prepare return uprobe, when needed */ 2077 2078 down_read(&uprobe->register_rwsem); 2079 for (uc = uprobe->consumers; uc; uc = uc->next) { 2080 int rc = 0; 2081 2082 if (uc->handler) { 2083 rc = uc->handler(uc, regs); 2084 WARN(rc & ~UPROBE_HANDLER_MASK, 2085 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2086 } 2087 2088 if (uc->ret_handler) 2089 need_prep = true; 2090 2091 remove &= rc; 2092 } 2093 2094 if (need_prep && !remove) 2095 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2096 2097 if (remove && uprobe->consumers) { 2098 WARN_ON(!uprobe_is_active(uprobe)); 2099 unapply_uprobe(uprobe, current->mm); 2100 } 2101 up_read(&uprobe->register_rwsem); 2102 } 2103 2104 static void 2105 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2106 { 2107 struct uprobe *uprobe = ri->uprobe; 2108 struct uprobe_consumer *uc; 2109 2110 down_read(&uprobe->register_rwsem); 2111 for (uc = uprobe->consumers; uc; uc = uc->next) { 2112 if (uc->ret_handler) 2113 uc->ret_handler(uc, ri->func, regs); 2114 } 2115 up_read(&uprobe->register_rwsem); 2116 } 2117 2118 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2119 { 2120 bool chained; 2121 2122 do { 2123 chained = ri->chained; 2124 ri = ri->next; /* can't be NULL if chained */ 2125 } while (chained); 2126 2127 return ri; 2128 } 2129 2130 static void handle_trampoline(struct pt_regs *regs) 2131 { 2132 struct uprobe_task *utask; 2133 struct return_instance *ri, *next; 2134 bool valid; 2135 2136 utask = current->utask; 2137 if (!utask) 2138 goto sigill; 2139 2140 ri = utask->return_instances; 2141 if (!ri) 2142 goto sigill; 2143 2144 do { 2145 /* 2146 * We should throw out the frames invalidated by longjmp(). 2147 * If this chain is valid, then the next one should be alive 2148 * or NULL; the latter case means that nobody but ri->func 2149 * could hit this trampoline on return. TODO: sigaltstack(). 2150 */ 2151 next = find_next_ret_chain(ri); 2152 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2153 2154 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2155 do { 2156 if (valid) 2157 handle_uretprobe_chain(ri, regs); 2158 ri = free_ret_instance(ri); 2159 utask->depth--; 2160 } while (ri != next); 2161 } while (!valid); 2162 2163 utask->return_instances = ri; 2164 return; 2165 2166 sigill: 2167 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2168 force_sig(SIGILL); 2169 2170 } 2171 2172 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2173 { 2174 return false; 2175 } 2176 2177 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2178 struct pt_regs *regs) 2179 { 2180 return true; 2181 } 2182 2183 /* 2184 * Run handler and ask thread to singlestep. 2185 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2186 */ 2187 static void handle_swbp(struct pt_regs *regs) 2188 { 2189 struct uprobe *uprobe; 2190 unsigned long bp_vaddr; 2191 int is_swbp; 2192 2193 bp_vaddr = uprobe_get_swbp_addr(regs); 2194 if (bp_vaddr == get_trampoline_vaddr()) 2195 return handle_trampoline(regs); 2196 2197 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2198 if (!uprobe) { 2199 if (is_swbp > 0) { 2200 /* No matching uprobe; signal SIGTRAP. */ 2201 force_sig(SIGTRAP); 2202 } else { 2203 /* 2204 * Either we raced with uprobe_unregister() or we can't 2205 * access this memory. The latter is only possible if 2206 * another thread plays with our ->mm. In both cases 2207 * we can simply restart. If this vma was unmapped we 2208 * can pretend this insn was not executed yet and get 2209 * the (correct) SIGSEGV after restart. 2210 */ 2211 instruction_pointer_set(regs, bp_vaddr); 2212 } 2213 return; 2214 } 2215 2216 /* change it in advance for ->handler() and restart */ 2217 instruction_pointer_set(regs, bp_vaddr); 2218 2219 /* 2220 * TODO: move copy_insn/etc into _register and remove this hack. 2221 * After we hit the bp, _unregister + _register can install the 2222 * new and not-yet-analyzed uprobe at the same address, restart. 2223 */ 2224 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2225 goto out; 2226 2227 /* 2228 * Pairs with the smp_wmb() in prepare_uprobe(). 2229 * 2230 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2231 * we must also see the stores to &uprobe->arch performed by the 2232 * prepare_uprobe() call. 2233 */ 2234 smp_rmb(); 2235 2236 /* Tracing handlers use ->utask to communicate with fetch methods */ 2237 if (!get_utask()) 2238 goto out; 2239 2240 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2241 goto out; 2242 2243 handler_chain(uprobe, regs); 2244 2245 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2246 goto out; 2247 2248 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2249 return; 2250 2251 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2252 out: 2253 put_uprobe(uprobe); 2254 } 2255 2256 /* 2257 * Perform required fix-ups and disable singlestep. 2258 * Allow pending signals to take effect. 2259 */ 2260 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2261 { 2262 struct uprobe *uprobe; 2263 int err = 0; 2264 2265 uprobe = utask->active_uprobe; 2266 if (utask->state == UTASK_SSTEP_ACK) 2267 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2268 else if (utask->state == UTASK_SSTEP_TRAPPED) 2269 arch_uprobe_abort_xol(&uprobe->arch, regs); 2270 else 2271 WARN_ON_ONCE(1); 2272 2273 put_uprobe(uprobe); 2274 utask->active_uprobe = NULL; 2275 utask->state = UTASK_RUNNING; 2276 xol_free_insn_slot(current); 2277 2278 spin_lock_irq(¤t->sighand->siglock); 2279 recalc_sigpending(); /* see uprobe_deny_signal() */ 2280 spin_unlock_irq(¤t->sighand->siglock); 2281 2282 if (unlikely(err)) { 2283 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2284 force_sig(SIGILL); 2285 } 2286 } 2287 2288 /* 2289 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2290 * allows the thread to return from interrupt. After that handle_swbp() 2291 * sets utask->active_uprobe. 2292 * 2293 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2294 * and allows the thread to return from interrupt. 2295 * 2296 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2297 * uprobe_notify_resume(). 2298 */ 2299 void uprobe_notify_resume(struct pt_regs *regs) 2300 { 2301 struct uprobe_task *utask; 2302 2303 clear_thread_flag(TIF_UPROBE); 2304 2305 utask = current->utask; 2306 if (utask && utask->active_uprobe) 2307 handle_singlestep(utask, regs); 2308 else 2309 handle_swbp(regs); 2310 } 2311 2312 /* 2313 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2314 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2315 */ 2316 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2317 { 2318 if (!current->mm) 2319 return 0; 2320 2321 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2322 (!current->utask || !current->utask->return_instances)) 2323 return 0; 2324 2325 set_thread_flag(TIF_UPROBE); 2326 return 1; 2327 } 2328 2329 /* 2330 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2331 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2332 */ 2333 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2334 { 2335 struct uprobe_task *utask = current->utask; 2336 2337 if (!current->mm || !utask || !utask->active_uprobe) 2338 /* task is currently not uprobed */ 2339 return 0; 2340 2341 utask->state = UTASK_SSTEP_ACK; 2342 set_thread_flag(TIF_UPROBE); 2343 return 1; 2344 } 2345 2346 static struct notifier_block uprobe_exception_nb = { 2347 .notifier_call = arch_uprobe_exception_notify, 2348 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2349 }; 2350 2351 void __init uprobes_init(void) 2352 { 2353 int i; 2354 2355 for (i = 0; i < UPROBES_HASH_SZ; i++) 2356 mutex_init(&uprobes_mmap_mutex[i]); 2357 2358 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2359 } 2360