1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/rmap.h> /* anon_vma_prepare */ 31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 32 #include <linux/swap.h> /* try_to_free_swap */ 33 #include <linux/ptrace.h> /* user_enable_single_step */ 34 #include <linux/kdebug.h> /* notifier mechanism */ 35 36 #include <linux/uprobes.h> 37 38 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 39 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 40 41 static struct rb_root uprobes_tree = RB_ROOT; 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 47 /* 48 * We need separate register/unregister and mmap/munmap lock hashes because 49 * of mmap_sem nesting. 50 * 51 * uprobe_register() needs to install probes on (potentially) all processes 52 * and thus needs to acquire multiple mmap_sems (consequtively, not 53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem 54 * for the particular process doing the mmap. 55 * 56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem 57 * because of lock order against i_mmap_mutex. This means there's a hole in 58 * the register vma iteration where a mmap() can happen. 59 * 60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and 61 * install a probe where one is already installed. 62 */ 63 64 /* serialize (un)register */ 65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; 66 67 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 68 69 /* serialize uprobe->pending_list */ 70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 71 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 72 73 /* 74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe 75 * events active at this time. Probably a fine grained per inode count is 76 * better? 77 */ 78 static atomic_t uprobe_events = ATOMIC_INIT(0); 79 80 struct uprobe { 81 struct rb_node rb_node; /* node in the rb tree */ 82 atomic_t ref; 83 struct rw_semaphore consumer_rwsem; 84 struct list_head pending_list; 85 struct uprobe_consumer *consumers; 86 struct inode *inode; /* Also hold a ref to inode */ 87 loff_t offset; 88 int flags; 89 struct arch_uprobe arch; 90 }; 91 92 /* 93 * valid_vma: Verify if the specified vma is an executable vma 94 * Relax restrictions while unregistering: vm_flags might have 95 * changed after breakpoint was inserted. 96 * - is_register: indicates if we are in register context. 97 * - Return 1 if the specified virtual address is in an 98 * executable vma. 99 */ 100 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 101 { 102 if (!vma->vm_file) 103 return false; 104 105 if (!is_register) 106 return true; 107 108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) 109 == (VM_READ|VM_EXEC)) 110 return true; 111 112 return false; 113 } 114 115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset) 116 { 117 loff_t vaddr; 118 119 vaddr = vma->vm_start + offset; 120 vaddr -= vma->vm_pgoff << PAGE_SHIFT; 121 122 return vaddr; 123 } 124 125 /** 126 * __replace_page - replace page in vma by new page. 127 * based on replace_page in mm/ksm.c 128 * 129 * @vma: vma that holds the pte pointing to page 130 * @page: the cowed page we are replacing by kpage 131 * @kpage: the modified page we replace page by 132 * 133 * Returns 0 on success, -EFAULT on failure. 134 */ 135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage) 136 { 137 struct mm_struct *mm = vma->vm_mm; 138 unsigned long addr; 139 spinlock_t *ptl; 140 pte_t *ptep; 141 142 addr = page_address_in_vma(page, vma); 143 if (addr == -EFAULT) 144 return -EFAULT; 145 146 ptep = page_check_address(page, mm, addr, &ptl, 0); 147 if (!ptep) 148 return -EAGAIN; 149 150 get_page(kpage); 151 page_add_new_anon_rmap(kpage, vma, addr); 152 153 if (!PageAnon(page)) { 154 dec_mm_counter(mm, MM_FILEPAGES); 155 inc_mm_counter(mm, MM_ANONPAGES); 156 } 157 158 flush_cache_page(vma, addr, pte_pfn(*ptep)); 159 ptep_clear_flush(vma, addr, ptep); 160 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 161 162 page_remove_rmap(page); 163 if (!page_mapped(page)) 164 try_to_free_swap(page); 165 put_page(page); 166 pte_unmap_unlock(ptep, ptl); 167 168 return 0; 169 } 170 171 /** 172 * is_swbp_insn - check if instruction is breakpoint instruction. 173 * @insn: instruction to be checked. 174 * Default implementation of is_swbp_insn 175 * Returns true if @insn is a breakpoint instruction. 176 */ 177 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 178 { 179 return *insn == UPROBE_SWBP_INSN; 180 } 181 182 /* 183 * NOTE: 184 * Expect the breakpoint instruction to be the smallest size instruction for 185 * the architecture. If an arch has variable length instruction and the 186 * breakpoint instruction is not of the smallest length instruction 187 * supported by that architecture then we need to modify read_opcode / 188 * write_opcode accordingly. This would never be a problem for archs that 189 * have fixed length instructions. 190 */ 191 192 /* 193 * write_opcode - write the opcode at a given virtual address. 194 * @auprobe: arch breakpointing information. 195 * @mm: the probed process address space. 196 * @vaddr: the virtual address to store the opcode. 197 * @opcode: opcode to be written at @vaddr. 198 * 199 * Called with mm->mmap_sem held (for read and with a reference to 200 * mm). 201 * 202 * For mm @mm, write the opcode at @vaddr. 203 * Return 0 (success) or a negative errno. 204 */ 205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 206 unsigned long vaddr, uprobe_opcode_t opcode) 207 { 208 struct page *old_page, *new_page; 209 struct address_space *mapping; 210 void *vaddr_old, *vaddr_new; 211 struct vm_area_struct *vma; 212 struct uprobe *uprobe; 213 int ret; 214 retry: 215 /* Read the page with vaddr into memory */ 216 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); 217 if (ret <= 0) 218 return ret; 219 220 ret = -EINVAL; 221 222 /* 223 * We are interested in text pages only. Our pages of interest 224 * should be mapped for read and execute only. We desist from 225 * adding probes in write mapped pages since the breakpoints 226 * might end up in the file copy. 227 */ 228 if (!valid_vma(vma, is_swbp_insn(&opcode))) 229 goto put_out; 230 231 uprobe = container_of(auprobe, struct uprobe, arch); 232 mapping = uprobe->inode->i_mapping; 233 if (mapping != vma->vm_file->f_mapping) 234 goto put_out; 235 236 ret = -ENOMEM; 237 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 238 if (!new_page) 239 goto put_out; 240 241 __SetPageUptodate(new_page); 242 243 /* 244 * lock page will serialize against do_wp_page()'s 245 * PageAnon() handling 246 */ 247 lock_page(old_page); 248 /* copy the page now that we've got it stable */ 249 vaddr_old = kmap_atomic(old_page); 250 vaddr_new = kmap_atomic(new_page); 251 252 memcpy(vaddr_new, vaddr_old, PAGE_SIZE); 253 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE); 254 255 kunmap_atomic(vaddr_new); 256 kunmap_atomic(vaddr_old); 257 258 ret = anon_vma_prepare(vma); 259 if (ret) 260 goto unlock_out; 261 262 lock_page(new_page); 263 ret = __replace_page(vma, old_page, new_page); 264 unlock_page(new_page); 265 266 unlock_out: 267 unlock_page(old_page); 268 page_cache_release(new_page); 269 270 put_out: 271 put_page(old_page); 272 273 if (unlikely(ret == -EAGAIN)) 274 goto retry; 275 return ret; 276 } 277 278 /** 279 * read_opcode - read the opcode at a given virtual address. 280 * @mm: the probed process address space. 281 * @vaddr: the virtual address to read the opcode. 282 * @opcode: location to store the read opcode. 283 * 284 * Called with mm->mmap_sem held (for read and with a reference to 285 * mm. 286 * 287 * For mm @mm, read the opcode at @vaddr and store it in @opcode. 288 * Return 0 (success) or a negative errno. 289 */ 290 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode) 291 { 292 struct page *page; 293 void *vaddr_new; 294 int ret; 295 296 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 297 if (ret <= 0) 298 return ret; 299 300 lock_page(page); 301 vaddr_new = kmap_atomic(page); 302 vaddr &= ~PAGE_MASK; 303 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE); 304 kunmap_atomic(vaddr_new); 305 unlock_page(page); 306 307 put_page(page); 308 309 return 0; 310 } 311 312 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) 313 { 314 uprobe_opcode_t opcode; 315 int result; 316 317 if (current->mm == mm) { 318 pagefault_disable(); 319 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 320 sizeof(opcode)); 321 pagefault_enable(); 322 323 if (likely(result == 0)) 324 goto out; 325 } 326 327 result = read_opcode(mm, vaddr, &opcode); 328 if (result) 329 return result; 330 out: 331 if (is_swbp_insn(&opcode)) 332 return 1; 333 334 return 0; 335 } 336 337 /** 338 * set_swbp - store breakpoint at a given address. 339 * @auprobe: arch specific probepoint information. 340 * @mm: the probed process address space. 341 * @vaddr: the virtual address to insert the opcode. 342 * 343 * For mm @mm, store the breakpoint instruction at @vaddr. 344 * Return 0 (success) or a negative errno. 345 */ 346 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 347 { 348 int result; 349 /* 350 * See the comment near uprobes_hash(). 351 */ 352 result = is_swbp_at_addr(mm, vaddr); 353 if (result == 1) 354 return -EEXIST; 355 356 if (result) 357 return result; 358 359 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 360 } 361 362 /** 363 * set_orig_insn - Restore the original instruction. 364 * @mm: the probed process address space. 365 * @auprobe: arch specific probepoint information. 366 * @vaddr: the virtual address to insert the opcode. 367 * @verify: if true, verify existance of breakpoint instruction. 368 * 369 * For mm @mm, restore the original opcode (opcode) at @vaddr. 370 * Return 0 (success) or a negative errno. 371 */ 372 int __weak 373 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify) 374 { 375 if (verify) { 376 int result; 377 378 result = is_swbp_at_addr(mm, vaddr); 379 if (!result) 380 return -EINVAL; 381 382 if (result != 1) 383 return result; 384 } 385 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 386 } 387 388 static int match_uprobe(struct uprobe *l, struct uprobe *r) 389 { 390 if (l->inode < r->inode) 391 return -1; 392 393 if (l->inode > r->inode) 394 return 1; 395 396 if (l->offset < r->offset) 397 return -1; 398 399 if (l->offset > r->offset) 400 return 1; 401 402 return 0; 403 } 404 405 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 406 { 407 struct uprobe u = { .inode = inode, .offset = offset }; 408 struct rb_node *n = uprobes_tree.rb_node; 409 struct uprobe *uprobe; 410 int match; 411 412 while (n) { 413 uprobe = rb_entry(n, struct uprobe, rb_node); 414 match = match_uprobe(&u, uprobe); 415 if (!match) { 416 atomic_inc(&uprobe->ref); 417 return uprobe; 418 } 419 420 if (match < 0) 421 n = n->rb_left; 422 else 423 n = n->rb_right; 424 } 425 return NULL; 426 } 427 428 /* 429 * Find a uprobe corresponding to a given inode:offset 430 * Acquires uprobes_treelock 431 */ 432 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 433 { 434 struct uprobe *uprobe; 435 unsigned long flags; 436 437 spin_lock_irqsave(&uprobes_treelock, flags); 438 uprobe = __find_uprobe(inode, offset); 439 spin_unlock_irqrestore(&uprobes_treelock, flags); 440 441 return uprobe; 442 } 443 444 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 445 { 446 struct rb_node **p = &uprobes_tree.rb_node; 447 struct rb_node *parent = NULL; 448 struct uprobe *u; 449 int match; 450 451 while (*p) { 452 parent = *p; 453 u = rb_entry(parent, struct uprobe, rb_node); 454 match = match_uprobe(uprobe, u); 455 if (!match) { 456 atomic_inc(&u->ref); 457 return u; 458 } 459 460 if (match < 0) 461 p = &parent->rb_left; 462 else 463 p = &parent->rb_right; 464 465 } 466 467 u = NULL; 468 rb_link_node(&uprobe->rb_node, parent, p); 469 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 470 /* get access + creation ref */ 471 atomic_set(&uprobe->ref, 2); 472 473 return u; 474 } 475 476 /* 477 * Acquire uprobes_treelock. 478 * Matching uprobe already exists in rbtree; 479 * increment (access refcount) and return the matching uprobe. 480 * 481 * No matching uprobe; insert the uprobe in rb_tree; 482 * get a double refcount (access + creation) and return NULL. 483 */ 484 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 485 { 486 unsigned long flags; 487 struct uprobe *u; 488 489 spin_lock_irqsave(&uprobes_treelock, flags); 490 u = __insert_uprobe(uprobe); 491 spin_unlock_irqrestore(&uprobes_treelock, flags); 492 493 /* For now assume that the instruction need not be single-stepped */ 494 uprobe->flags |= UPROBE_SKIP_SSTEP; 495 496 return u; 497 } 498 499 static void put_uprobe(struct uprobe *uprobe) 500 { 501 if (atomic_dec_and_test(&uprobe->ref)) 502 kfree(uprobe); 503 } 504 505 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 506 { 507 struct uprobe *uprobe, *cur_uprobe; 508 509 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 510 if (!uprobe) 511 return NULL; 512 513 uprobe->inode = igrab(inode); 514 uprobe->offset = offset; 515 init_rwsem(&uprobe->consumer_rwsem); 516 517 /* add to uprobes_tree, sorted on inode:offset */ 518 cur_uprobe = insert_uprobe(uprobe); 519 520 /* a uprobe exists for this inode:offset combination */ 521 if (cur_uprobe) { 522 kfree(uprobe); 523 uprobe = cur_uprobe; 524 iput(inode); 525 } else { 526 atomic_inc(&uprobe_events); 527 } 528 529 return uprobe; 530 } 531 532 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 533 { 534 struct uprobe_consumer *uc; 535 536 if (!(uprobe->flags & UPROBE_RUN_HANDLER)) 537 return; 538 539 down_read(&uprobe->consumer_rwsem); 540 for (uc = uprobe->consumers; uc; uc = uc->next) { 541 if (!uc->filter || uc->filter(uc, current)) 542 uc->handler(uc, regs); 543 } 544 up_read(&uprobe->consumer_rwsem); 545 } 546 547 /* Returns the previous consumer */ 548 static struct uprobe_consumer * 549 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 550 { 551 down_write(&uprobe->consumer_rwsem); 552 uc->next = uprobe->consumers; 553 uprobe->consumers = uc; 554 up_write(&uprobe->consumer_rwsem); 555 556 return uc->next; 557 } 558 559 /* 560 * For uprobe @uprobe, delete the consumer @uc. 561 * Return true if the @uc is deleted successfully 562 * or return false. 563 */ 564 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 565 { 566 struct uprobe_consumer **con; 567 bool ret = false; 568 569 down_write(&uprobe->consumer_rwsem); 570 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 571 if (*con == uc) { 572 *con = uc->next; 573 ret = true; 574 break; 575 } 576 } 577 up_write(&uprobe->consumer_rwsem); 578 579 return ret; 580 } 581 582 static int 583 __copy_insn(struct address_space *mapping, struct file *filp, char *insn, 584 unsigned long nbytes, loff_t offset) 585 { 586 struct page *page; 587 void *vaddr; 588 unsigned long off; 589 pgoff_t idx; 590 591 if (!filp) 592 return -EINVAL; 593 594 if (!mapping->a_ops->readpage) 595 return -EIO; 596 597 idx = offset >> PAGE_CACHE_SHIFT; 598 off = offset & ~PAGE_MASK; 599 600 /* 601 * Ensure that the page that has the original instruction is 602 * populated and in page-cache. 603 */ 604 page = read_mapping_page(mapping, idx, filp); 605 if (IS_ERR(page)) 606 return PTR_ERR(page); 607 608 vaddr = kmap_atomic(page); 609 memcpy(insn, vaddr + off, nbytes); 610 kunmap_atomic(vaddr); 611 page_cache_release(page); 612 613 return 0; 614 } 615 616 static int copy_insn(struct uprobe *uprobe, struct file *filp) 617 { 618 struct address_space *mapping; 619 unsigned long nbytes; 620 int bytes; 621 622 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); 623 mapping = uprobe->inode->i_mapping; 624 625 /* Instruction at end of binary; copy only available bytes */ 626 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 627 bytes = uprobe->inode->i_size - uprobe->offset; 628 else 629 bytes = MAX_UINSN_BYTES; 630 631 /* Instruction at the page-boundary; copy bytes in second page */ 632 if (nbytes < bytes) { 633 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, 634 bytes - nbytes, uprobe->offset + nbytes); 635 if (err) 636 return err; 637 bytes = nbytes; 638 } 639 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); 640 } 641 642 /* 643 * How mm->uprobes_state.count gets updated 644 * uprobe_mmap() increments the count if 645 * - it successfully adds a breakpoint. 646 * - it cannot add a breakpoint, but sees that there is a underlying 647 * breakpoint (via a is_swbp_at_addr()). 648 * 649 * uprobe_munmap() decrements the count if 650 * - it sees a underlying breakpoint, (via is_swbp_at_addr) 651 * (Subsequent uprobe_unregister wouldnt find the breakpoint 652 * unless a uprobe_mmap kicks in, since the old vma would be 653 * dropped just after uprobe_munmap.) 654 * 655 * uprobe_register increments the count if: 656 * - it successfully adds a breakpoint. 657 * 658 * uprobe_unregister decrements the count if: 659 * - it sees a underlying breakpoint and removes successfully. 660 * (via is_swbp_at_addr) 661 * (Subsequent uprobe_munmap wouldnt find the breakpoint 662 * since there is no underlying breakpoint after the 663 * breakpoint removal.) 664 */ 665 static int 666 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 667 struct vm_area_struct *vma, unsigned long vaddr) 668 { 669 int ret; 670 671 /* 672 * If probe is being deleted, unregister thread could be done with 673 * the vma-rmap-walk through. Adding a probe now can be fatal since 674 * nobody will be able to cleanup. Also we could be from fork or 675 * mremap path, where the probe might have already been inserted. 676 * Hence behave as if probe already existed. 677 */ 678 if (!uprobe->consumers) 679 return -EEXIST; 680 681 if (!(uprobe->flags & UPROBE_COPY_INSN)) { 682 ret = copy_insn(uprobe, vma->vm_file); 683 if (ret) 684 return ret; 685 686 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) 687 return -ENOTSUPP; 688 689 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 690 if (ret) 691 return ret; 692 693 /* write_opcode() assumes we don't cross page boundary */ 694 BUG_ON((uprobe->offset & ~PAGE_MASK) + 695 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 696 697 uprobe->flags |= UPROBE_COPY_INSN; 698 } 699 700 /* 701 * Ideally, should be updating the probe count after the breakpoint 702 * has been successfully inserted. However a thread could hit the 703 * breakpoint we just inserted even before the probe count is 704 * incremented. If this is the first breakpoint placed, breakpoint 705 * notifier might ignore uprobes and pass the trap to the thread. 706 * Hence increment before and decrement on failure. 707 */ 708 atomic_inc(&mm->uprobes_state.count); 709 ret = set_swbp(&uprobe->arch, mm, vaddr); 710 if (ret) 711 atomic_dec(&mm->uprobes_state.count); 712 713 return ret; 714 } 715 716 static void 717 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 718 { 719 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true)) 720 atomic_dec(&mm->uprobes_state.count); 721 } 722 723 /* 724 * There could be threads that have already hit the breakpoint. They 725 * will recheck the current insn and restart if find_uprobe() fails. 726 * See find_active_uprobe(). 727 */ 728 static void delete_uprobe(struct uprobe *uprobe) 729 { 730 unsigned long flags; 731 732 spin_lock_irqsave(&uprobes_treelock, flags); 733 rb_erase(&uprobe->rb_node, &uprobes_tree); 734 spin_unlock_irqrestore(&uprobes_treelock, flags); 735 iput(uprobe->inode); 736 put_uprobe(uprobe); 737 atomic_dec(&uprobe_events); 738 } 739 740 struct map_info { 741 struct map_info *next; 742 struct mm_struct *mm; 743 unsigned long vaddr; 744 }; 745 746 static inline struct map_info *free_map_info(struct map_info *info) 747 { 748 struct map_info *next = info->next; 749 kfree(info); 750 return next; 751 } 752 753 static struct map_info * 754 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 755 { 756 unsigned long pgoff = offset >> PAGE_SHIFT; 757 struct prio_tree_iter iter; 758 struct vm_area_struct *vma; 759 struct map_info *curr = NULL; 760 struct map_info *prev = NULL; 761 struct map_info *info; 762 int more = 0; 763 764 again: 765 mutex_lock(&mapping->i_mmap_mutex); 766 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 767 if (!valid_vma(vma, is_register)) 768 continue; 769 770 if (!prev && !more) { 771 /* 772 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 773 * reclaim. This is optimistic, no harm done if it fails. 774 */ 775 prev = kmalloc(sizeof(struct map_info), 776 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 777 if (prev) 778 prev->next = NULL; 779 } 780 if (!prev) { 781 more++; 782 continue; 783 } 784 785 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 786 continue; 787 788 info = prev; 789 prev = prev->next; 790 info->next = curr; 791 curr = info; 792 793 info->mm = vma->vm_mm; 794 info->vaddr = vma_address(vma, offset); 795 } 796 mutex_unlock(&mapping->i_mmap_mutex); 797 798 if (!more) 799 goto out; 800 801 prev = curr; 802 while (curr) { 803 mmput(curr->mm); 804 curr = curr->next; 805 } 806 807 do { 808 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 809 if (!info) { 810 curr = ERR_PTR(-ENOMEM); 811 goto out; 812 } 813 info->next = prev; 814 prev = info; 815 } while (--more); 816 817 goto again; 818 out: 819 while (prev) 820 prev = free_map_info(prev); 821 return curr; 822 } 823 824 static int register_for_each_vma(struct uprobe *uprobe, bool is_register) 825 { 826 struct map_info *info; 827 int err = 0; 828 829 info = build_map_info(uprobe->inode->i_mapping, 830 uprobe->offset, is_register); 831 if (IS_ERR(info)) 832 return PTR_ERR(info); 833 834 while (info) { 835 struct mm_struct *mm = info->mm; 836 struct vm_area_struct *vma; 837 838 if (err) 839 goto free; 840 841 down_write(&mm->mmap_sem); 842 vma = find_vma(mm, (unsigned long)info->vaddr); 843 if (!vma || !valid_vma(vma, is_register)) 844 goto unlock; 845 846 if (vma->vm_file->f_mapping->host != uprobe->inode || 847 vma_address(vma, uprobe->offset) != info->vaddr) 848 goto unlock; 849 850 if (is_register) { 851 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 852 /* 853 * We can race against uprobe_mmap(), see the 854 * comment near uprobe_hash(). 855 */ 856 if (err == -EEXIST) 857 err = 0; 858 } else { 859 remove_breakpoint(uprobe, mm, info->vaddr); 860 } 861 unlock: 862 up_write(&mm->mmap_sem); 863 free: 864 mmput(mm); 865 info = free_map_info(info); 866 } 867 868 return err; 869 } 870 871 static int __uprobe_register(struct uprobe *uprobe) 872 { 873 return register_for_each_vma(uprobe, true); 874 } 875 876 static void __uprobe_unregister(struct uprobe *uprobe) 877 { 878 if (!register_for_each_vma(uprobe, false)) 879 delete_uprobe(uprobe); 880 881 /* TODO : cant unregister? schedule a worker thread */ 882 } 883 884 /* 885 * uprobe_register - register a probe 886 * @inode: the file in which the probe has to be placed. 887 * @offset: offset from the start of the file. 888 * @uc: information on howto handle the probe.. 889 * 890 * Apart from the access refcount, uprobe_register() takes a creation 891 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 892 * inserted into the rbtree (i.e first consumer for a @inode:@offset 893 * tuple). Creation refcount stops uprobe_unregister from freeing the 894 * @uprobe even before the register operation is complete. Creation 895 * refcount is released when the last @uc for the @uprobe 896 * unregisters. 897 * 898 * Return errno if it cannot successully install probes 899 * else return 0 (success) 900 */ 901 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 902 { 903 struct uprobe *uprobe; 904 int ret; 905 906 if (!inode || !uc || uc->next) 907 return -EINVAL; 908 909 if (offset > i_size_read(inode)) 910 return -EINVAL; 911 912 ret = 0; 913 mutex_lock(uprobes_hash(inode)); 914 uprobe = alloc_uprobe(inode, offset); 915 916 if (uprobe && !consumer_add(uprobe, uc)) { 917 ret = __uprobe_register(uprobe); 918 if (ret) { 919 uprobe->consumers = NULL; 920 __uprobe_unregister(uprobe); 921 } else { 922 uprobe->flags |= UPROBE_RUN_HANDLER; 923 } 924 } 925 926 mutex_unlock(uprobes_hash(inode)); 927 put_uprobe(uprobe); 928 929 return ret; 930 } 931 932 /* 933 * uprobe_unregister - unregister a already registered probe. 934 * @inode: the file in which the probe has to be removed. 935 * @offset: offset from the start of the file. 936 * @uc: identify which probe if multiple probes are colocated. 937 */ 938 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 939 { 940 struct uprobe *uprobe; 941 942 if (!inode || !uc) 943 return; 944 945 uprobe = find_uprobe(inode, offset); 946 if (!uprobe) 947 return; 948 949 mutex_lock(uprobes_hash(inode)); 950 951 if (consumer_del(uprobe, uc)) { 952 if (!uprobe->consumers) { 953 __uprobe_unregister(uprobe); 954 uprobe->flags &= ~UPROBE_RUN_HANDLER; 955 } 956 } 957 958 mutex_unlock(uprobes_hash(inode)); 959 if (uprobe) 960 put_uprobe(uprobe); 961 } 962 963 /* 964 * Of all the nodes that correspond to the given inode, return the node 965 * with the least offset. 966 */ 967 static struct rb_node *find_least_offset_node(struct inode *inode) 968 { 969 struct uprobe u = { .inode = inode, .offset = 0}; 970 struct rb_node *n = uprobes_tree.rb_node; 971 struct rb_node *close_node = NULL; 972 struct uprobe *uprobe; 973 int match; 974 975 while (n) { 976 uprobe = rb_entry(n, struct uprobe, rb_node); 977 match = match_uprobe(&u, uprobe); 978 979 if (uprobe->inode == inode) 980 close_node = n; 981 982 if (!match) 983 return close_node; 984 985 if (match < 0) 986 n = n->rb_left; 987 else 988 n = n->rb_right; 989 } 990 991 return close_node; 992 } 993 994 /* 995 * For a given inode, build a list of probes that need to be inserted. 996 */ 997 static void build_probe_list(struct inode *inode, struct list_head *head) 998 { 999 struct uprobe *uprobe; 1000 unsigned long flags; 1001 struct rb_node *n; 1002 1003 spin_lock_irqsave(&uprobes_treelock, flags); 1004 1005 n = find_least_offset_node(inode); 1006 1007 for (; n; n = rb_next(n)) { 1008 uprobe = rb_entry(n, struct uprobe, rb_node); 1009 if (uprobe->inode != inode) 1010 break; 1011 1012 list_add(&uprobe->pending_list, head); 1013 atomic_inc(&uprobe->ref); 1014 } 1015 1016 spin_unlock_irqrestore(&uprobes_treelock, flags); 1017 } 1018 1019 /* 1020 * Called from mmap_region. 1021 * called with mm->mmap_sem acquired. 1022 * 1023 * Return -ve no if we fail to insert probes and we cannot 1024 * bail-out. 1025 * Return 0 otherwise. i.e: 1026 * 1027 * - successful insertion of probes 1028 * - (or) no possible probes to be inserted. 1029 * - (or) insertion of probes failed but we can bail-out. 1030 */ 1031 int uprobe_mmap(struct vm_area_struct *vma) 1032 { 1033 struct list_head tmp_list; 1034 struct uprobe *uprobe; 1035 struct inode *inode; 1036 int ret, count; 1037 1038 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) 1039 return 0; 1040 1041 inode = vma->vm_file->f_mapping->host; 1042 if (!inode) 1043 return 0; 1044 1045 INIT_LIST_HEAD(&tmp_list); 1046 mutex_lock(uprobes_mmap_hash(inode)); 1047 build_probe_list(inode, &tmp_list); 1048 1049 ret = 0; 1050 count = 0; 1051 1052 list_for_each_entry(uprobe, &tmp_list, pending_list) { 1053 if (!ret) { 1054 loff_t vaddr = vma_address(vma, uprobe->offset); 1055 1056 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) { 1057 put_uprobe(uprobe); 1058 continue; 1059 } 1060 1061 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1062 /* 1063 * We can race against uprobe_register(), see the 1064 * comment near uprobe_hash(). 1065 */ 1066 if (ret == -EEXIST) { 1067 ret = 0; 1068 1069 if (!is_swbp_at_addr(vma->vm_mm, vaddr)) 1070 continue; 1071 1072 /* 1073 * Unable to insert a breakpoint, but 1074 * breakpoint lies underneath. Increment the 1075 * probe count. 1076 */ 1077 atomic_inc(&vma->vm_mm->uprobes_state.count); 1078 } 1079 1080 if (!ret) 1081 count++; 1082 } 1083 put_uprobe(uprobe); 1084 } 1085 1086 mutex_unlock(uprobes_mmap_hash(inode)); 1087 1088 if (ret) 1089 atomic_sub(count, &vma->vm_mm->uprobes_state.count); 1090 1091 return ret; 1092 } 1093 1094 /* 1095 * Called in context of a munmap of a vma. 1096 */ 1097 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1098 { 1099 struct list_head tmp_list; 1100 struct uprobe *uprobe; 1101 struct inode *inode; 1102 1103 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false)) 1104 return; 1105 1106 if (!atomic_read(&vma->vm_mm->uprobes_state.count)) 1107 return; 1108 1109 inode = vma->vm_file->f_mapping->host; 1110 if (!inode) 1111 return; 1112 1113 INIT_LIST_HEAD(&tmp_list); 1114 mutex_lock(uprobes_mmap_hash(inode)); 1115 build_probe_list(inode, &tmp_list); 1116 1117 list_for_each_entry(uprobe, &tmp_list, pending_list) { 1118 loff_t vaddr = vma_address(vma, uprobe->offset); 1119 1120 if (vaddr >= start && vaddr < end) { 1121 /* 1122 * An unregister could have removed the probe before 1123 * unmap. So check before we decrement the count. 1124 */ 1125 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1) 1126 atomic_dec(&vma->vm_mm->uprobes_state.count); 1127 } 1128 put_uprobe(uprobe); 1129 } 1130 mutex_unlock(uprobes_mmap_hash(inode)); 1131 } 1132 1133 /* Slot allocation for XOL */ 1134 static int xol_add_vma(struct xol_area *area) 1135 { 1136 struct mm_struct *mm; 1137 int ret; 1138 1139 area->page = alloc_page(GFP_HIGHUSER); 1140 if (!area->page) 1141 return -ENOMEM; 1142 1143 ret = -EALREADY; 1144 mm = current->mm; 1145 1146 down_write(&mm->mmap_sem); 1147 if (mm->uprobes_state.xol_area) 1148 goto fail; 1149 1150 ret = -ENOMEM; 1151 1152 /* Try to map as high as possible, this is only a hint. */ 1153 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1154 if (area->vaddr & ~PAGE_MASK) { 1155 ret = area->vaddr; 1156 goto fail; 1157 } 1158 1159 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1160 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1161 if (ret) 1162 goto fail; 1163 1164 smp_wmb(); /* pairs with get_xol_area() */ 1165 mm->uprobes_state.xol_area = area; 1166 ret = 0; 1167 1168 fail: 1169 up_write(&mm->mmap_sem); 1170 if (ret) 1171 __free_page(area->page); 1172 1173 return ret; 1174 } 1175 1176 static struct xol_area *get_xol_area(struct mm_struct *mm) 1177 { 1178 struct xol_area *area; 1179 1180 area = mm->uprobes_state.xol_area; 1181 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1182 1183 return area; 1184 } 1185 1186 /* 1187 * xol_alloc_area - Allocate process's xol_area. 1188 * This area will be used for storing instructions for execution out of 1189 * line. 1190 * 1191 * Returns the allocated area or NULL. 1192 */ 1193 static struct xol_area *xol_alloc_area(void) 1194 { 1195 struct xol_area *area; 1196 1197 area = kzalloc(sizeof(*area), GFP_KERNEL); 1198 if (unlikely(!area)) 1199 return NULL; 1200 1201 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1202 1203 if (!area->bitmap) 1204 goto fail; 1205 1206 init_waitqueue_head(&area->wq); 1207 if (!xol_add_vma(area)) 1208 return area; 1209 1210 fail: 1211 kfree(area->bitmap); 1212 kfree(area); 1213 1214 return get_xol_area(current->mm); 1215 } 1216 1217 /* 1218 * uprobe_clear_state - Free the area allocated for slots. 1219 */ 1220 void uprobe_clear_state(struct mm_struct *mm) 1221 { 1222 struct xol_area *area = mm->uprobes_state.xol_area; 1223 1224 if (!area) 1225 return; 1226 1227 put_page(area->page); 1228 kfree(area->bitmap); 1229 kfree(area); 1230 } 1231 1232 /* 1233 * uprobe_reset_state - Free the area allocated for slots. 1234 */ 1235 void uprobe_reset_state(struct mm_struct *mm) 1236 { 1237 mm->uprobes_state.xol_area = NULL; 1238 atomic_set(&mm->uprobes_state.count, 0); 1239 } 1240 1241 /* 1242 * - search for a free slot. 1243 */ 1244 static unsigned long xol_take_insn_slot(struct xol_area *area) 1245 { 1246 unsigned long slot_addr; 1247 int slot_nr; 1248 1249 do { 1250 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1251 if (slot_nr < UINSNS_PER_PAGE) { 1252 if (!test_and_set_bit(slot_nr, area->bitmap)) 1253 break; 1254 1255 slot_nr = UINSNS_PER_PAGE; 1256 continue; 1257 } 1258 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1259 } while (slot_nr >= UINSNS_PER_PAGE); 1260 1261 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1262 atomic_inc(&area->slot_count); 1263 1264 return slot_addr; 1265 } 1266 1267 /* 1268 * xol_get_insn_slot - If was not allocated a slot, then 1269 * allocate a slot. 1270 * Returns the allocated slot address or 0. 1271 */ 1272 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr) 1273 { 1274 struct xol_area *area; 1275 unsigned long offset; 1276 void *vaddr; 1277 1278 area = get_xol_area(current->mm); 1279 if (!area) { 1280 area = xol_alloc_area(); 1281 if (!area) 1282 return 0; 1283 } 1284 current->utask->xol_vaddr = xol_take_insn_slot(area); 1285 1286 /* 1287 * Initialize the slot if xol_vaddr points to valid 1288 * instruction slot. 1289 */ 1290 if (unlikely(!current->utask->xol_vaddr)) 1291 return 0; 1292 1293 current->utask->vaddr = slot_addr; 1294 offset = current->utask->xol_vaddr & ~PAGE_MASK; 1295 vaddr = kmap_atomic(area->page); 1296 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); 1297 kunmap_atomic(vaddr); 1298 1299 return current->utask->xol_vaddr; 1300 } 1301 1302 /* 1303 * xol_free_insn_slot - If slot was earlier allocated by 1304 * @xol_get_insn_slot(), make the slot available for 1305 * subsequent requests. 1306 */ 1307 static void xol_free_insn_slot(struct task_struct *tsk) 1308 { 1309 struct xol_area *area; 1310 unsigned long vma_end; 1311 unsigned long slot_addr; 1312 1313 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1314 return; 1315 1316 slot_addr = tsk->utask->xol_vaddr; 1317 1318 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr))) 1319 return; 1320 1321 area = tsk->mm->uprobes_state.xol_area; 1322 vma_end = area->vaddr + PAGE_SIZE; 1323 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1324 unsigned long offset; 1325 int slot_nr; 1326 1327 offset = slot_addr - area->vaddr; 1328 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1329 if (slot_nr >= UINSNS_PER_PAGE) 1330 return; 1331 1332 clear_bit(slot_nr, area->bitmap); 1333 atomic_dec(&area->slot_count); 1334 if (waitqueue_active(&area->wq)) 1335 wake_up(&area->wq); 1336 1337 tsk->utask->xol_vaddr = 0; 1338 } 1339 } 1340 1341 /** 1342 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1343 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1344 * instruction. 1345 * Return the address of the breakpoint instruction. 1346 */ 1347 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1348 { 1349 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1350 } 1351 1352 /* 1353 * Called with no locks held. 1354 * Called in context of a exiting or a exec-ing thread. 1355 */ 1356 void uprobe_free_utask(struct task_struct *t) 1357 { 1358 struct uprobe_task *utask = t->utask; 1359 1360 if (!utask) 1361 return; 1362 1363 if (utask->active_uprobe) 1364 put_uprobe(utask->active_uprobe); 1365 1366 xol_free_insn_slot(t); 1367 kfree(utask); 1368 t->utask = NULL; 1369 } 1370 1371 /* 1372 * Called in context of a new clone/fork from copy_process. 1373 */ 1374 void uprobe_copy_process(struct task_struct *t) 1375 { 1376 t->utask = NULL; 1377 } 1378 1379 /* 1380 * Allocate a uprobe_task object for the task. 1381 * Called when the thread hits a breakpoint for the first time. 1382 * 1383 * Returns: 1384 * - pointer to new uprobe_task on success 1385 * - NULL otherwise 1386 */ 1387 static struct uprobe_task *add_utask(void) 1388 { 1389 struct uprobe_task *utask; 1390 1391 utask = kzalloc(sizeof *utask, GFP_KERNEL); 1392 if (unlikely(!utask)) 1393 return NULL; 1394 1395 current->utask = utask; 1396 return utask; 1397 } 1398 1399 /* Prepare to single-step probed instruction out of line. */ 1400 static int 1401 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr) 1402 { 1403 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs)) 1404 return 0; 1405 1406 return -EFAULT; 1407 } 1408 1409 /* 1410 * If we are singlestepping, then ensure this thread is not connected to 1411 * non-fatal signals until completion of singlestep. When xol insn itself 1412 * triggers the signal, restart the original insn even if the task is 1413 * already SIGKILL'ed (since coredump should report the correct ip). This 1414 * is even more important if the task has a handler for SIGSEGV/etc, The 1415 * _same_ instruction should be repeated again after return from the signal 1416 * handler, and SSTEP can never finish in this case. 1417 */ 1418 bool uprobe_deny_signal(void) 1419 { 1420 struct task_struct *t = current; 1421 struct uprobe_task *utask = t->utask; 1422 1423 if (likely(!utask || !utask->active_uprobe)) 1424 return false; 1425 1426 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1427 1428 if (signal_pending(t)) { 1429 spin_lock_irq(&t->sighand->siglock); 1430 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1431 spin_unlock_irq(&t->sighand->siglock); 1432 1433 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1434 utask->state = UTASK_SSTEP_TRAPPED; 1435 set_tsk_thread_flag(t, TIF_UPROBE); 1436 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1437 } 1438 } 1439 1440 return true; 1441 } 1442 1443 /* 1444 * Avoid singlestepping the original instruction if the original instruction 1445 * is a NOP or can be emulated. 1446 */ 1447 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1448 { 1449 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1450 return true; 1451 1452 uprobe->flags &= ~UPROBE_SKIP_SSTEP; 1453 return false; 1454 } 1455 1456 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1457 { 1458 struct mm_struct *mm = current->mm; 1459 struct uprobe *uprobe = NULL; 1460 struct vm_area_struct *vma; 1461 1462 down_read(&mm->mmap_sem); 1463 vma = find_vma(mm, bp_vaddr); 1464 if (vma && vma->vm_start <= bp_vaddr) { 1465 if (valid_vma(vma, false)) { 1466 struct inode *inode; 1467 loff_t offset; 1468 1469 inode = vma->vm_file->f_mapping->host; 1470 offset = bp_vaddr - vma->vm_start; 1471 offset += (vma->vm_pgoff << PAGE_SHIFT); 1472 uprobe = find_uprobe(inode, offset); 1473 } 1474 1475 if (!uprobe) 1476 *is_swbp = is_swbp_at_addr(mm, bp_vaddr); 1477 } else { 1478 *is_swbp = -EFAULT; 1479 } 1480 up_read(&mm->mmap_sem); 1481 1482 return uprobe; 1483 } 1484 1485 /* 1486 * Run handler and ask thread to singlestep. 1487 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1488 */ 1489 static void handle_swbp(struct pt_regs *regs) 1490 { 1491 struct uprobe_task *utask; 1492 struct uprobe *uprobe; 1493 unsigned long bp_vaddr; 1494 int uninitialized_var(is_swbp); 1495 1496 bp_vaddr = uprobe_get_swbp_addr(regs); 1497 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1498 1499 if (!uprobe) { 1500 if (is_swbp > 0) { 1501 /* No matching uprobe; signal SIGTRAP. */ 1502 send_sig(SIGTRAP, current, 0); 1503 } else { 1504 /* 1505 * Either we raced with uprobe_unregister() or we can't 1506 * access this memory. The latter is only possible if 1507 * another thread plays with our ->mm. In both cases 1508 * we can simply restart. If this vma was unmapped we 1509 * can pretend this insn was not executed yet and get 1510 * the (correct) SIGSEGV after restart. 1511 */ 1512 instruction_pointer_set(regs, bp_vaddr); 1513 } 1514 return; 1515 } 1516 1517 utask = current->utask; 1518 if (!utask) { 1519 utask = add_utask(); 1520 /* Cannot allocate; re-execute the instruction. */ 1521 if (!utask) 1522 goto cleanup_ret; 1523 } 1524 utask->active_uprobe = uprobe; 1525 handler_chain(uprobe, regs); 1526 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs)) 1527 goto cleanup_ret; 1528 1529 utask->state = UTASK_SSTEP; 1530 if (!pre_ssout(uprobe, regs, bp_vaddr)) { 1531 user_enable_single_step(current); 1532 return; 1533 } 1534 1535 cleanup_ret: 1536 if (utask) { 1537 utask->active_uprobe = NULL; 1538 utask->state = UTASK_RUNNING; 1539 } 1540 if (uprobe) { 1541 if (!(uprobe->flags & UPROBE_SKIP_SSTEP)) 1542 1543 /* 1544 * cannot singlestep; cannot skip instruction; 1545 * re-execute the instruction. 1546 */ 1547 instruction_pointer_set(regs, bp_vaddr); 1548 1549 put_uprobe(uprobe); 1550 } 1551 } 1552 1553 /* 1554 * Perform required fix-ups and disable singlestep. 1555 * Allow pending signals to take effect. 1556 */ 1557 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1558 { 1559 struct uprobe *uprobe; 1560 1561 uprobe = utask->active_uprobe; 1562 if (utask->state == UTASK_SSTEP_ACK) 1563 arch_uprobe_post_xol(&uprobe->arch, regs); 1564 else if (utask->state == UTASK_SSTEP_TRAPPED) 1565 arch_uprobe_abort_xol(&uprobe->arch, regs); 1566 else 1567 WARN_ON_ONCE(1); 1568 1569 put_uprobe(uprobe); 1570 utask->active_uprobe = NULL; 1571 utask->state = UTASK_RUNNING; 1572 user_disable_single_step(current); 1573 xol_free_insn_slot(current); 1574 1575 spin_lock_irq(¤t->sighand->siglock); 1576 recalc_sigpending(); /* see uprobe_deny_signal() */ 1577 spin_unlock_irq(¤t->sighand->siglock); 1578 } 1579 1580 /* 1581 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on 1582 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and 1583 * allows the thread to return from interrupt. 1584 * 1585 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and 1586 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from 1587 * interrupt. 1588 * 1589 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1590 * uprobe_notify_resume(). 1591 */ 1592 void uprobe_notify_resume(struct pt_regs *regs) 1593 { 1594 struct uprobe_task *utask; 1595 1596 utask = current->utask; 1597 if (!utask || utask->state == UTASK_BP_HIT) 1598 handle_swbp(regs); 1599 else 1600 handle_singlestep(utask, regs); 1601 } 1602 1603 /* 1604 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1605 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1606 */ 1607 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1608 { 1609 struct uprobe_task *utask; 1610 1611 if (!current->mm || !atomic_read(¤t->mm->uprobes_state.count)) 1612 /* task is currently not uprobed */ 1613 return 0; 1614 1615 utask = current->utask; 1616 if (utask) 1617 utask->state = UTASK_BP_HIT; 1618 1619 set_thread_flag(TIF_UPROBE); 1620 1621 return 1; 1622 } 1623 1624 /* 1625 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1626 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1627 */ 1628 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1629 { 1630 struct uprobe_task *utask = current->utask; 1631 1632 if (!current->mm || !utask || !utask->active_uprobe) 1633 /* task is currently not uprobed */ 1634 return 0; 1635 1636 utask->state = UTASK_SSTEP_ACK; 1637 set_thread_flag(TIF_UPROBE); 1638 return 1; 1639 } 1640 1641 static struct notifier_block uprobe_exception_nb = { 1642 .notifier_call = arch_uprobe_exception_notify, 1643 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1644 }; 1645 1646 static int __init init_uprobes(void) 1647 { 1648 int i; 1649 1650 for (i = 0; i < UPROBES_HASH_SZ; i++) { 1651 mutex_init(&uprobes_mutex[i]); 1652 mutex_init(&uprobes_mmap_mutex[i]); 1653 } 1654 1655 return register_die_notifier(&uprobe_exception_nb); 1656 } 1657 module_init(init_uprobes); 1658 1659 static void __exit exit_uprobes(void) 1660 { 1661 } 1662 module_exit(exit_uprobes); 1663