xref: /linux/kernel/events/uprobes.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>		/* anon_vma_prepare */
31 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
32 #include <linux/swap.h>		/* try_to_free_swap */
33 #include <linux/ptrace.h>	/* user_enable_single_step */
34 #include <linux/kdebug.h>	/* notifier mechanism */
35 
36 #include <linux/uprobes.h>
37 
38 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
40 
41 static struct rb_root uprobes_tree = RB_ROOT;
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63 
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66 
67 #define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68 
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72 
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79 
80 struct uprobe {
81 	struct rb_node		rb_node;	/* node in the rb tree */
82 	atomic_t		ref;
83 	struct rw_semaphore	consumer_rwsem;
84 	struct list_head	pending_list;
85 	struct uprobe_consumer	*consumers;
86 	struct inode		*inode;		/* Also hold a ref to inode */
87 	loff_t			offset;
88 	int			flags;
89 	struct arch_uprobe	arch;
90 };
91 
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *	- is_register: indicates if we are in register context.
97  *	- Return 1 if the specified virtual address is in an
98  *	  executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102 	if (!vma->vm_file)
103 		return false;
104 
105 	if (!is_register)
106 		return true;
107 
108 	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 				== (VM_READ|VM_EXEC))
110 		return true;
111 
112 	return false;
113 }
114 
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117 	loff_t vaddr;
118 
119 	vaddr = vma->vm_start + offset;
120 	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121 
122 	return vaddr;
123 }
124 
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @page:     the cowed page we are replacing by kpage
131  * @kpage:    the modified page we replace page by
132  *
133  * Returns 0 on success, -EFAULT on failure.
134  */
135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
136 {
137 	struct mm_struct *mm = vma->vm_mm;
138 	unsigned long addr;
139 	spinlock_t *ptl;
140 	pte_t *ptep;
141 
142 	addr = page_address_in_vma(page, vma);
143 	if (addr == -EFAULT)
144 		return -EFAULT;
145 
146 	ptep = page_check_address(page, mm, addr, &ptl, 0);
147 	if (!ptep)
148 		return -EAGAIN;
149 
150 	get_page(kpage);
151 	page_add_new_anon_rmap(kpage, vma, addr);
152 
153 	if (!PageAnon(page)) {
154 		dec_mm_counter(mm, MM_FILEPAGES);
155 		inc_mm_counter(mm, MM_ANONPAGES);
156 	}
157 
158 	flush_cache_page(vma, addr, pte_pfn(*ptep));
159 	ptep_clear_flush(vma, addr, ptep);
160 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
161 
162 	page_remove_rmap(page);
163 	if (!page_mapped(page))
164 		try_to_free_swap(page);
165 	put_page(page);
166 	pte_unmap_unlock(ptep, ptl);
167 
168 	return 0;
169 }
170 
171 /**
172  * is_swbp_insn - check if instruction is breakpoint instruction.
173  * @insn: instruction to be checked.
174  * Default implementation of is_swbp_insn
175  * Returns true if @insn is a breakpoint instruction.
176  */
177 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
178 {
179 	return *insn == UPROBE_SWBP_INSN;
180 }
181 
182 /*
183  * NOTE:
184  * Expect the breakpoint instruction to be the smallest size instruction for
185  * the architecture. If an arch has variable length instruction and the
186  * breakpoint instruction is not of the smallest length instruction
187  * supported by that architecture then we need to modify read_opcode /
188  * write_opcode accordingly. This would never be a problem for archs that
189  * have fixed length instructions.
190  */
191 
192 /*
193  * write_opcode - write the opcode at a given virtual address.
194  * @auprobe: arch breakpointing information.
195  * @mm: the probed process address space.
196  * @vaddr: the virtual address to store the opcode.
197  * @opcode: opcode to be written at @vaddr.
198  *
199  * Called with mm->mmap_sem held (for read and with a reference to
200  * mm).
201  *
202  * For mm @mm, write the opcode at @vaddr.
203  * Return 0 (success) or a negative errno.
204  */
205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206 			unsigned long vaddr, uprobe_opcode_t opcode)
207 {
208 	struct page *old_page, *new_page;
209 	struct address_space *mapping;
210 	void *vaddr_old, *vaddr_new;
211 	struct vm_area_struct *vma;
212 	struct uprobe *uprobe;
213 	int ret;
214 retry:
215 	/* Read the page with vaddr into memory */
216 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
217 	if (ret <= 0)
218 		return ret;
219 
220 	ret = -EINVAL;
221 
222 	/*
223 	 * We are interested in text pages only. Our pages of interest
224 	 * should be mapped for read and execute only. We desist from
225 	 * adding probes in write mapped pages since the breakpoints
226 	 * might end up in the file copy.
227 	 */
228 	if (!valid_vma(vma, is_swbp_insn(&opcode)))
229 		goto put_out;
230 
231 	uprobe = container_of(auprobe, struct uprobe, arch);
232 	mapping = uprobe->inode->i_mapping;
233 	if (mapping != vma->vm_file->f_mapping)
234 		goto put_out;
235 
236 	ret = -ENOMEM;
237 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
238 	if (!new_page)
239 		goto put_out;
240 
241 	__SetPageUptodate(new_page);
242 
243 	/*
244 	 * lock page will serialize against do_wp_page()'s
245 	 * PageAnon() handling
246 	 */
247 	lock_page(old_page);
248 	/* copy the page now that we've got it stable */
249 	vaddr_old = kmap_atomic(old_page);
250 	vaddr_new = kmap_atomic(new_page);
251 
252 	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
253 	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
254 
255 	kunmap_atomic(vaddr_new);
256 	kunmap_atomic(vaddr_old);
257 
258 	ret = anon_vma_prepare(vma);
259 	if (ret)
260 		goto unlock_out;
261 
262 	lock_page(new_page);
263 	ret = __replace_page(vma, old_page, new_page);
264 	unlock_page(new_page);
265 
266 unlock_out:
267 	unlock_page(old_page);
268 	page_cache_release(new_page);
269 
270 put_out:
271 	put_page(old_page);
272 
273 	if (unlikely(ret == -EAGAIN))
274 		goto retry;
275 	return ret;
276 }
277 
278 /**
279  * read_opcode - read the opcode at a given virtual address.
280  * @mm: the probed process address space.
281  * @vaddr: the virtual address to read the opcode.
282  * @opcode: location to store the read opcode.
283  *
284  * Called with mm->mmap_sem held (for read and with a reference to
285  * mm.
286  *
287  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
288  * Return 0 (success) or a negative errno.
289  */
290 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
291 {
292 	struct page *page;
293 	void *vaddr_new;
294 	int ret;
295 
296 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
297 	if (ret <= 0)
298 		return ret;
299 
300 	lock_page(page);
301 	vaddr_new = kmap_atomic(page);
302 	vaddr &= ~PAGE_MASK;
303 	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
304 	kunmap_atomic(vaddr_new);
305 	unlock_page(page);
306 
307 	put_page(page);
308 
309 	return 0;
310 }
311 
312 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
313 {
314 	uprobe_opcode_t opcode;
315 	int result;
316 
317 	if (current->mm == mm) {
318 		pagefault_disable();
319 		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
320 								sizeof(opcode));
321 		pagefault_enable();
322 
323 		if (likely(result == 0))
324 			goto out;
325 	}
326 
327 	result = read_opcode(mm, vaddr, &opcode);
328 	if (result)
329 		return result;
330 out:
331 	if (is_swbp_insn(&opcode))
332 		return 1;
333 
334 	return 0;
335 }
336 
337 /**
338  * set_swbp - store breakpoint at a given address.
339  * @auprobe: arch specific probepoint information.
340  * @mm: the probed process address space.
341  * @vaddr: the virtual address to insert the opcode.
342  *
343  * For mm @mm, store the breakpoint instruction at @vaddr.
344  * Return 0 (success) or a negative errno.
345  */
346 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
347 {
348 	int result;
349 	/*
350 	 * See the comment near uprobes_hash().
351 	 */
352 	result = is_swbp_at_addr(mm, vaddr);
353 	if (result == 1)
354 		return -EEXIST;
355 
356 	if (result)
357 		return result;
358 
359 	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
360 }
361 
362 /**
363  * set_orig_insn - Restore the original instruction.
364  * @mm: the probed process address space.
365  * @auprobe: arch specific probepoint information.
366  * @vaddr: the virtual address to insert the opcode.
367  * @verify: if true, verify existance of breakpoint instruction.
368  *
369  * For mm @mm, restore the original opcode (opcode) at @vaddr.
370  * Return 0 (success) or a negative errno.
371  */
372 int __weak
373 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
374 {
375 	if (verify) {
376 		int result;
377 
378 		result = is_swbp_at_addr(mm, vaddr);
379 		if (!result)
380 			return -EINVAL;
381 
382 		if (result != 1)
383 			return result;
384 	}
385 	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
386 }
387 
388 static int match_uprobe(struct uprobe *l, struct uprobe *r)
389 {
390 	if (l->inode < r->inode)
391 		return -1;
392 
393 	if (l->inode > r->inode)
394 		return 1;
395 
396 	if (l->offset < r->offset)
397 		return -1;
398 
399 	if (l->offset > r->offset)
400 		return 1;
401 
402 	return 0;
403 }
404 
405 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
406 {
407 	struct uprobe u = { .inode = inode, .offset = offset };
408 	struct rb_node *n = uprobes_tree.rb_node;
409 	struct uprobe *uprobe;
410 	int match;
411 
412 	while (n) {
413 		uprobe = rb_entry(n, struct uprobe, rb_node);
414 		match = match_uprobe(&u, uprobe);
415 		if (!match) {
416 			atomic_inc(&uprobe->ref);
417 			return uprobe;
418 		}
419 
420 		if (match < 0)
421 			n = n->rb_left;
422 		else
423 			n = n->rb_right;
424 	}
425 	return NULL;
426 }
427 
428 /*
429  * Find a uprobe corresponding to a given inode:offset
430  * Acquires uprobes_treelock
431  */
432 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
433 {
434 	struct uprobe *uprobe;
435 	unsigned long flags;
436 
437 	spin_lock_irqsave(&uprobes_treelock, flags);
438 	uprobe = __find_uprobe(inode, offset);
439 	spin_unlock_irqrestore(&uprobes_treelock, flags);
440 
441 	return uprobe;
442 }
443 
444 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
445 {
446 	struct rb_node **p = &uprobes_tree.rb_node;
447 	struct rb_node *parent = NULL;
448 	struct uprobe *u;
449 	int match;
450 
451 	while (*p) {
452 		parent = *p;
453 		u = rb_entry(parent, struct uprobe, rb_node);
454 		match = match_uprobe(uprobe, u);
455 		if (!match) {
456 			atomic_inc(&u->ref);
457 			return u;
458 		}
459 
460 		if (match < 0)
461 			p = &parent->rb_left;
462 		else
463 			p = &parent->rb_right;
464 
465 	}
466 
467 	u = NULL;
468 	rb_link_node(&uprobe->rb_node, parent, p);
469 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
470 	/* get access + creation ref */
471 	atomic_set(&uprobe->ref, 2);
472 
473 	return u;
474 }
475 
476 /*
477  * Acquire uprobes_treelock.
478  * Matching uprobe already exists in rbtree;
479  *	increment (access refcount) and return the matching uprobe.
480  *
481  * No matching uprobe; insert the uprobe in rb_tree;
482  *	get a double refcount (access + creation) and return NULL.
483  */
484 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
485 {
486 	unsigned long flags;
487 	struct uprobe *u;
488 
489 	spin_lock_irqsave(&uprobes_treelock, flags);
490 	u = __insert_uprobe(uprobe);
491 	spin_unlock_irqrestore(&uprobes_treelock, flags);
492 
493 	/* For now assume that the instruction need not be single-stepped */
494 	uprobe->flags |= UPROBE_SKIP_SSTEP;
495 
496 	return u;
497 }
498 
499 static void put_uprobe(struct uprobe *uprobe)
500 {
501 	if (atomic_dec_and_test(&uprobe->ref))
502 		kfree(uprobe);
503 }
504 
505 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
506 {
507 	struct uprobe *uprobe, *cur_uprobe;
508 
509 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
510 	if (!uprobe)
511 		return NULL;
512 
513 	uprobe->inode = igrab(inode);
514 	uprobe->offset = offset;
515 	init_rwsem(&uprobe->consumer_rwsem);
516 
517 	/* add to uprobes_tree, sorted on inode:offset */
518 	cur_uprobe = insert_uprobe(uprobe);
519 
520 	/* a uprobe exists for this inode:offset combination */
521 	if (cur_uprobe) {
522 		kfree(uprobe);
523 		uprobe = cur_uprobe;
524 		iput(inode);
525 	} else {
526 		atomic_inc(&uprobe_events);
527 	}
528 
529 	return uprobe;
530 }
531 
532 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
533 {
534 	struct uprobe_consumer *uc;
535 
536 	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
537 		return;
538 
539 	down_read(&uprobe->consumer_rwsem);
540 	for (uc = uprobe->consumers; uc; uc = uc->next) {
541 		if (!uc->filter || uc->filter(uc, current))
542 			uc->handler(uc, regs);
543 	}
544 	up_read(&uprobe->consumer_rwsem);
545 }
546 
547 /* Returns the previous consumer */
548 static struct uprobe_consumer *
549 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
550 {
551 	down_write(&uprobe->consumer_rwsem);
552 	uc->next = uprobe->consumers;
553 	uprobe->consumers = uc;
554 	up_write(&uprobe->consumer_rwsem);
555 
556 	return uc->next;
557 }
558 
559 /*
560  * For uprobe @uprobe, delete the consumer @uc.
561  * Return true if the @uc is deleted successfully
562  * or return false.
563  */
564 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
565 {
566 	struct uprobe_consumer **con;
567 	bool ret = false;
568 
569 	down_write(&uprobe->consumer_rwsem);
570 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
571 		if (*con == uc) {
572 			*con = uc->next;
573 			ret = true;
574 			break;
575 		}
576 	}
577 	up_write(&uprobe->consumer_rwsem);
578 
579 	return ret;
580 }
581 
582 static int
583 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
584 			unsigned long nbytes, loff_t offset)
585 {
586 	struct page *page;
587 	void *vaddr;
588 	unsigned long off;
589 	pgoff_t idx;
590 
591 	if (!filp)
592 		return -EINVAL;
593 
594 	if (!mapping->a_ops->readpage)
595 		return -EIO;
596 
597 	idx = offset >> PAGE_CACHE_SHIFT;
598 	off = offset & ~PAGE_MASK;
599 
600 	/*
601 	 * Ensure that the page that has the original instruction is
602 	 * populated and in page-cache.
603 	 */
604 	page = read_mapping_page(mapping, idx, filp);
605 	if (IS_ERR(page))
606 		return PTR_ERR(page);
607 
608 	vaddr = kmap_atomic(page);
609 	memcpy(insn, vaddr + off, nbytes);
610 	kunmap_atomic(vaddr);
611 	page_cache_release(page);
612 
613 	return 0;
614 }
615 
616 static int copy_insn(struct uprobe *uprobe, struct file *filp)
617 {
618 	struct address_space *mapping;
619 	unsigned long nbytes;
620 	int bytes;
621 
622 	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
623 	mapping = uprobe->inode->i_mapping;
624 
625 	/* Instruction at end of binary; copy only available bytes */
626 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
627 		bytes = uprobe->inode->i_size - uprobe->offset;
628 	else
629 		bytes = MAX_UINSN_BYTES;
630 
631 	/* Instruction at the page-boundary; copy bytes in second page */
632 	if (nbytes < bytes) {
633 		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
634 				bytes - nbytes, uprobe->offset + nbytes);
635 		if (err)
636 			return err;
637 		bytes = nbytes;
638 	}
639 	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
640 }
641 
642 /*
643  * How mm->uprobes_state.count gets updated
644  * uprobe_mmap() increments the count if
645  * 	- it successfully adds a breakpoint.
646  * 	- it cannot add a breakpoint, but sees that there is a underlying
647  * 	  breakpoint (via a is_swbp_at_addr()).
648  *
649  * uprobe_munmap() decrements the count if
650  * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
651  * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
652  * 	  unless a uprobe_mmap kicks in, since the old vma would be
653  * 	  dropped just after uprobe_munmap.)
654  *
655  * uprobe_register increments the count if:
656  * 	- it successfully adds a breakpoint.
657  *
658  * uprobe_unregister decrements the count if:
659  * 	- it sees a underlying breakpoint and removes successfully.
660  * 	  (via is_swbp_at_addr)
661  * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
662  * 	  since there is no underlying breakpoint after the
663  * 	  breakpoint removal.)
664  */
665 static int
666 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
667 			struct vm_area_struct *vma, unsigned long vaddr)
668 {
669 	int ret;
670 
671 	/*
672 	 * If probe is being deleted, unregister thread could be done with
673 	 * the vma-rmap-walk through. Adding a probe now can be fatal since
674 	 * nobody will be able to cleanup. Also we could be from fork or
675 	 * mremap path, where the probe might have already been inserted.
676 	 * Hence behave as if probe already existed.
677 	 */
678 	if (!uprobe->consumers)
679 		return -EEXIST;
680 
681 	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
682 		ret = copy_insn(uprobe, vma->vm_file);
683 		if (ret)
684 			return ret;
685 
686 		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
687 			return -ENOTSUPP;
688 
689 		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
690 		if (ret)
691 			return ret;
692 
693 		/* write_opcode() assumes we don't cross page boundary */
694 		BUG_ON((uprobe->offset & ~PAGE_MASK) +
695 				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
696 
697 		uprobe->flags |= UPROBE_COPY_INSN;
698 	}
699 
700 	/*
701 	 * Ideally, should be updating the probe count after the breakpoint
702 	 * has been successfully inserted. However a thread could hit the
703 	 * breakpoint we just inserted even before the probe count is
704 	 * incremented. If this is the first breakpoint placed, breakpoint
705 	 * notifier might ignore uprobes and pass the trap to the thread.
706 	 * Hence increment before and decrement on failure.
707 	 */
708 	atomic_inc(&mm->uprobes_state.count);
709 	ret = set_swbp(&uprobe->arch, mm, vaddr);
710 	if (ret)
711 		atomic_dec(&mm->uprobes_state.count);
712 
713 	return ret;
714 }
715 
716 static void
717 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
718 {
719 	if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
720 		atomic_dec(&mm->uprobes_state.count);
721 }
722 
723 /*
724  * There could be threads that have already hit the breakpoint. They
725  * will recheck the current insn and restart if find_uprobe() fails.
726  * See find_active_uprobe().
727  */
728 static void delete_uprobe(struct uprobe *uprobe)
729 {
730 	unsigned long flags;
731 
732 	spin_lock_irqsave(&uprobes_treelock, flags);
733 	rb_erase(&uprobe->rb_node, &uprobes_tree);
734 	spin_unlock_irqrestore(&uprobes_treelock, flags);
735 	iput(uprobe->inode);
736 	put_uprobe(uprobe);
737 	atomic_dec(&uprobe_events);
738 }
739 
740 struct map_info {
741 	struct map_info *next;
742 	struct mm_struct *mm;
743 	unsigned long vaddr;
744 };
745 
746 static inline struct map_info *free_map_info(struct map_info *info)
747 {
748 	struct map_info *next = info->next;
749 	kfree(info);
750 	return next;
751 }
752 
753 static struct map_info *
754 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
755 {
756 	unsigned long pgoff = offset >> PAGE_SHIFT;
757 	struct prio_tree_iter iter;
758 	struct vm_area_struct *vma;
759 	struct map_info *curr = NULL;
760 	struct map_info *prev = NULL;
761 	struct map_info *info;
762 	int more = 0;
763 
764  again:
765 	mutex_lock(&mapping->i_mmap_mutex);
766 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767 		if (!valid_vma(vma, is_register))
768 			continue;
769 
770 		if (!prev && !more) {
771 			/*
772 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
773 			 * reclaim. This is optimistic, no harm done if it fails.
774 			 */
775 			prev = kmalloc(sizeof(struct map_info),
776 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
777 			if (prev)
778 				prev->next = NULL;
779 		}
780 		if (!prev) {
781 			more++;
782 			continue;
783 		}
784 
785 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
786 			continue;
787 
788 		info = prev;
789 		prev = prev->next;
790 		info->next = curr;
791 		curr = info;
792 
793 		info->mm = vma->vm_mm;
794 		info->vaddr = vma_address(vma, offset);
795 	}
796 	mutex_unlock(&mapping->i_mmap_mutex);
797 
798 	if (!more)
799 		goto out;
800 
801 	prev = curr;
802 	while (curr) {
803 		mmput(curr->mm);
804 		curr = curr->next;
805 	}
806 
807 	do {
808 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
809 		if (!info) {
810 			curr = ERR_PTR(-ENOMEM);
811 			goto out;
812 		}
813 		info->next = prev;
814 		prev = info;
815 	} while (--more);
816 
817 	goto again;
818  out:
819 	while (prev)
820 		prev = free_map_info(prev);
821 	return curr;
822 }
823 
824 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
825 {
826 	struct map_info *info;
827 	int err = 0;
828 
829 	info = build_map_info(uprobe->inode->i_mapping,
830 					uprobe->offset, is_register);
831 	if (IS_ERR(info))
832 		return PTR_ERR(info);
833 
834 	while (info) {
835 		struct mm_struct *mm = info->mm;
836 		struct vm_area_struct *vma;
837 
838 		if (err)
839 			goto free;
840 
841 		down_write(&mm->mmap_sem);
842 		vma = find_vma(mm, (unsigned long)info->vaddr);
843 		if (!vma || !valid_vma(vma, is_register))
844 			goto unlock;
845 
846 		if (vma->vm_file->f_mapping->host != uprobe->inode ||
847 		    vma_address(vma, uprobe->offset) != info->vaddr)
848 			goto unlock;
849 
850 		if (is_register) {
851 			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
852 			/*
853 			 * We can race against uprobe_mmap(), see the
854 			 * comment near uprobe_hash().
855 			 */
856 			if (err == -EEXIST)
857 				err = 0;
858 		} else {
859 			remove_breakpoint(uprobe, mm, info->vaddr);
860 		}
861  unlock:
862 		up_write(&mm->mmap_sem);
863  free:
864 		mmput(mm);
865 		info = free_map_info(info);
866 	}
867 
868 	return err;
869 }
870 
871 static int __uprobe_register(struct uprobe *uprobe)
872 {
873 	return register_for_each_vma(uprobe, true);
874 }
875 
876 static void __uprobe_unregister(struct uprobe *uprobe)
877 {
878 	if (!register_for_each_vma(uprobe, false))
879 		delete_uprobe(uprobe);
880 
881 	/* TODO : cant unregister? schedule a worker thread */
882 }
883 
884 /*
885  * uprobe_register - register a probe
886  * @inode: the file in which the probe has to be placed.
887  * @offset: offset from the start of the file.
888  * @uc: information on howto handle the probe..
889  *
890  * Apart from the access refcount, uprobe_register() takes a creation
891  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
892  * inserted into the rbtree (i.e first consumer for a @inode:@offset
893  * tuple).  Creation refcount stops uprobe_unregister from freeing the
894  * @uprobe even before the register operation is complete. Creation
895  * refcount is released when the last @uc for the @uprobe
896  * unregisters.
897  *
898  * Return errno if it cannot successully install probes
899  * else return 0 (success)
900  */
901 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
902 {
903 	struct uprobe *uprobe;
904 	int ret;
905 
906 	if (!inode || !uc || uc->next)
907 		return -EINVAL;
908 
909 	if (offset > i_size_read(inode))
910 		return -EINVAL;
911 
912 	ret = 0;
913 	mutex_lock(uprobes_hash(inode));
914 	uprobe = alloc_uprobe(inode, offset);
915 
916 	if (uprobe && !consumer_add(uprobe, uc)) {
917 		ret = __uprobe_register(uprobe);
918 		if (ret) {
919 			uprobe->consumers = NULL;
920 			__uprobe_unregister(uprobe);
921 		} else {
922 			uprobe->flags |= UPROBE_RUN_HANDLER;
923 		}
924 	}
925 
926 	mutex_unlock(uprobes_hash(inode));
927 	put_uprobe(uprobe);
928 
929 	return ret;
930 }
931 
932 /*
933  * uprobe_unregister - unregister a already registered probe.
934  * @inode: the file in which the probe has to be removed.
935  * @offset: offset from the start of the file.
936  * @uc: identify which probe if multiple probes are colocated.
937  */
938 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
939 {
940 	struct uprobe *uprobe;
941 
942 	if (!inode || !uc)
943 		return;
944 
945 	uprobe = find_uprobe(inode, offset);
946 	if (!uprobe)
947 		return;
948 
949 	mutex_lock(uprobes_hash(inode));
950 
951 	if (consumer_del(uprobe, uc)) {
952 		if (!uprobe->consumers) {
953 			__uprobe_unregister(uprobe);
954 			uprobe->flags &= ~UPROBE_RUN_HANDLER;
955 		}
956 	}
957 
958 	mutex_unlock(uprobes_hash(inode));
959 	if (uprobe)
960 		put_uprobe(uprobe);
961 }
962 
963 /*
964  * Of all the nodes that correspond to the given inode, return the node
965  * with the least offset.
966  */
967 static struct rb_node *find_least_offset_node(struct inode *inode)
968 {
969 	struct uprobe u = { .inode = inode, .offset = 0};
970 	struct rb_node *n = uprobes_tree.rb_node;
971 	struct rb_node *close_node = NULL;
972 	struct uprobe *uprobe;
973 	int match;
974 
975 	while (n) {
976 		uprobe = rb_entry(n, struct uprobe, rb_node);
977 		match = match_uprobe(&u, uprobe);
978 
979 		if (uprobe->inode == inode)
980 			close_node = n;
981 
982 		if (!match)
983 			return close_node;
984 
985 		if (match < 0)
986 			n = n->rb_left;
987 		else
988 			n = n->rb_right;
989 	}
990 
991 	return close_node;
992 }
993 
994 /*
995  * For a given inode, build a list of probes that need to be inserted.
996  */
997 static void build_probe_list(struct inode *inode, struct list_head *head)
998 {
999 	struct uprobe *uprobe;
1000 	unsigned long flags;
1001 	struct rb_node *n;
1002 
1003 	spin_lock_irqsave(&uprobes_treelock, flags);
1004 
1005 	n = find_least_offset_node(inode);
1006 
1007 	for (; n; n = rb_next(n)) {
1008 		uprobe = rb_entry(n, struct uprobe, rb_node);
1009 		if (uprobe->inode != inode)
1010 			break;
1011 
1012 		list_add(&uprobe->pending_list, head);
1013 		atomic_inc(&uprobe->ref);
1014 	}
1015 
1016 	spin_unlock_irqrestore(&uprobes_treelock, flags);
1017 }
1018 
1019 /*
1020  * Called from mmap_region.
1021  * called with mm->mmap_sem acquired.
1022  *
1023  * Return -ve no if we fail to insert probes and we cannot
1024  * bail-out.
1025  * Return 0 otherwise. i.e:
1026  *
1027  *	- successful insertion of probes
1028  *	- (or) no possible probes to be inserted.
1029  *	- (or) insertion of probes failed but we can bail-out.
1030  */
1031 int uprobe_mmap(struct vm_area_struct *vma)
1032 {
1033 	struct list_head tmp_list;
1034 	struct uprobe *uprobe;
1035 	struct inode *inode;
1036 	int ret, count;
1037 
1038 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1039 		return 0;
1040 
1041 	inode = vma->vm_file->f_mapping->host;
1042 	if (!inode)
1043 		return 0;
1044 
1045 	INIT_LIST_HEAD(&tmp_list);
1046 	mutex_lock(uprobes_mmap_hash(inode));
1047 	build_probe_list(inode, &tmp_list);
1048 
1049 	ret = 0;
1050 	count = 0;
1051 
1052 	list_for_each_entry(uprobe, &tmp_list, pending_list) {
1053 		if (!ret) {
1054 			loff_t vaddr = vma_address(vma, uprobe->offset);
1055 
1056 			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1057 				put_uprobe(uprobe);
1058 				continue;
1059 			}
1060 
1061 			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1062 			/*
1063 			 * We can race against uprobe_register(), see the
1064 			 * comment near uprobe_hash().
1065 			 */
1066 			if (ret == -EEXIST) {
1067 				ret = 0;
1068 
1069 				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1070 					continue;
1071 
1072 				/*
1073 				 * Unable to insert a breakpoint, but
1074 				 * breakpoint lies underneath. Increment the
1075 				 * probe count.
1076 				 */
1077 				atomic_inc(&vma->vm_mm->uprobes_state.count);
1078 			}
1079 
1080 			if (!ret)
1081 				count++;
1082 		}
1083 		put_uprobe(uprobe);
1084 	}
1085 
1086 	mutex_unlock(uprobes_mmap_hash(inode));
1087 
1088 	if (ret)
1089 		atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Called in context of a munmap of a vma.
1096  */
1097 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1098 {
1099 	struct list_head tmp_list;
1100 	struct uprobe *uprobe;
1101 	struct inode *inode;
1102 
1103 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1104 		return;
1105 
1106 	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1107 		return;
1108 
1109 	inode = vma->vm_file->f_mapping->host;
1110 	if (!inode)
1111 		return;
1112 
1113 	INIT_LIST_HEAD(&tmp_list);
1114 	mutex_lock(uprobes_mmap_hash(inode));
1115 	build_probe_list(inode, &tmp_list);
1116 
1117 	list_for_each_entry(uprobe, &tmp_list, pending_list) {
1118 		loff_t vaddr = vma_address(vma, uprobe->offset);
1119 
1120 		if (vaddr >= start && vaddr < end) {
1121 			/*
1122 			 * An unregister could have removed the probe before
1123 			 * unmap. So check before we decrement the count.
1124 			 */
1125 			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1126 				atomic_dec(&vma->vm_mm->uprobes_state.count);
1127 		}
1128 		put_uprobe(uprobe);
1129 	}
1130 	mutex_unlock(uprobes_mmap_hash(inode));
1131 }
1132 
1133 /* Slot allocation for XOL */
1134 static int xol_add_vma(struct xol_area *area)
1135 {
1136 	struct mm_struct *mm;
1137 	int ret;
1138 
1139 	area->page = alloc_page(GFP_HIGHUSER);
1140 	if (!area->page)
1141 		return -ENOMEM;
1142 
1143 	ret = -EALREADY;
1144 	mm = current->mm;
1145 
1146 	down_write(&mm->mmap_sem);
1147 	if (mm->uprobes_state.xol_area)
1148 		goto fail;
1149 
1150 	ret = -ENOMEM;
1151 
1152 	/* Try to map as high as possible, this is only a hint. */
1153 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1154 	if (area->vaddr & ~PAGE_MASK) {
1155 		ret = area->vaddr;
1156 		goto fail;
1157 	}
1158 
1159 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1160 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1161 	if (ret)
1162 		goto fail;
1163 
1164 	smp_wmb();	/* pairs with get_xol_area() */
1165 	mm->uprobes_state.xol_area = area;
1166 	ret = 0;
1167 
1168 fail:
1169 	up_write(&mm->mmap_sem);
1170 	if (ret)
1171 		__free_page(area->page);
1172 
1173 	return ret;
1174 }
1175 
1176 static struct xol_area *get_xol_area(struct mm_struct *mm)
1177 {
1178 	struct xol_area *area;
1179 
1180 	area = mm->uprobes_state.xol_area;
1181 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1182 
1183 	return area;
1184 }
1185 
1186 /*
1187  * xol_alloc_area - Allocate process's xol_area.
1188  * This area will be used for storing instructions for execution out of
1189  * line.
1190  *
1191  * Returns the allocated area or NULL.
1192  */
1193 static struct xol_area *xol_alloc_area(void)
1194 {
1195 	struct xol_area *area;
1196 
1197 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1198 	if (unlikely(!area))
1199 		return NULL;
1200 
1201 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1202 
1203 	if (!area->bitmap)
1204 		goto fail;
1205 
1206 	init_waitqueue_head(&area->wq);
1207 	if (!xol_add_vma(area))
1208 		return area;
1209 
1210 fail:
1211 	kfree(area->bitmap);
1212 	kfree(area);
1213 
1214 	return get_xol_area(current->mm);
1215 }
1216 
1217 /*
1218  * uprobe_clear_state - Free the area allocated for slots.
1219  */
1220 void uprobe_clear_state(struct mm_struct *mm)
1221 {
1222 	struct xol_area *area = mm->uprobes_state.xol_area;
1223 
1224 	if (!area)
1225 		return;
1226 
1227 	put_page(area->page);
1228 	kfree(area->bitmap);
1229 	kfree(area);
1230 }
1231 
1232 /*
1233  * uprobe_reset_state - Free the area allocated for slots.
1234  */
1235 void uprobe_reset_state(struct mm_struct *mm)
1236 {
1237 	mm->uprobes_state.xol_area = NULL;
1238 	atomic_set(&mm->uprobes_state.count, 0);
1239 }
1240 
1241 /*
1242  *  - search for a free slot.
1243  */
1244 static unsigned long xol_take_insn_slot(struct xol_area *area)
1245 {
1246 	unsigned long slot_addr;
1247 	int slot_nr;
1248 
1249 	do {
1250 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1251 		if (slot_nr < UINSNS_PER_PAGE) {
1252 			if (!test_and_set_bit(slot_nr, area->bitmap))
1253 				break;
1254 
1255 			slot_nr = UINSNS_PER_PAGE;
1256 			continue;
1257 		}
1258 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1259 	} while (slot_nr >= UINSNS_PER_PAGE);
1260 
1261 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1262 	atomic_inc(&area->slot_count);
1263 
1264 	return slot_addr;
1265 }
1266 
1267 /*
1268  * xol_get_insn_slot - If was not allocated a slot, then
1269  * allocate a slot.
1270  * Returns the allocated slot address or 0.
1271  */
1272 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1273 {
1274 	struct xol_area *area;
1275 	unsigned long offset;
1276 	void *vaddr;
1277 
1278 	area = get_xol_area(current->mm);
1279 	if (!area) {
1280 		area = xol_alloc_area();
1281 		if (!area)
1282 			return 0;
1283 	}
1284 	current->utask->xol_vaddr = xol_take_insn_slot(area);
1285 
1286 	/*
1287 	 * Initialize the slot if xol_vaddr points to valid
1288 	 * instruction slot.
1289 	 */
1290 	if (unlikely(!current->utask->xol_vaddr))
1291 		return 0;
1292 
1293 	current->utask->vaddr = slot_addr;
1294 	offset = current->utask->xol_vaddr & ~PAGE_MASK;
1295 	vaddr = kmap_atomic(area->page);
1296 	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1297 	kunmap_atomic(vaddr);
1298 
1299 	return current->utask->xol_vaddr;
1300 }
1301 
1302 /*
1303  * xol_free_insn_slot - If slot was earlier allocated by
1304  * @xol_get_insn_slot(), make the slot available for
1305  * subsequent requests.
1306  */
1307 static void xol_free_insn_slot(struct task_struct *tsk)
1308 {
1309 	struct xol_area *area;
1310 	unsigned long vma_end;
1311 	unsigned long slot_addr;
1312 
1313 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1314 		return;
1315 
1316 	slot_addr = tsk->utask->xol_vaddr;
1317 
1318 	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1319 		return;
1320 
1321 	area = tsk->mm->uprobes_state.xol_area;
1322 	vma_end = area->vaddr + PAGE_SIZE;
1323 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1324 		unsigned long offset;
1325 		int slot_nr;
1326 
1327 		offset = slot_addr - area->vaddr;
1328 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1329 		if (slot_nr >= UINSNS_PER_PAGE)
1330 			return;
1331 
1332 		clear_bit(slot_nr, area->bitmap);
1333 		atomic_dec(&area->slot_count);
1334 		if (waitqueue_active(&area->wq))
1335 			wake_up(&area->wq);
1336 
1337 		tsk->utask->xol_vaddr = 0;
1338 	}
1339 }
1340 
1341 /**
1342  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1343  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1344  * instruction.
1345  * Return the address of the breakpoint instruction.
1346  */
1347 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1348 {
1349 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1350 }
1351 
1352 /*
1353  * Called with no locks held.
1354  * Called in context of a exiting or a exec-ing thread.
1355  */
1356 void uprobe_free_utask(struct task_struct *t)
1357 {
1358 	struct uprobe_task *utask = t->utask;
1359 
1360 	if (!utask)
1361 		return;
1362 
1363 	if (utask->active_uprobe)
1364 		put_uprobe(utask->active_uprobe);
1365 
1366 	xol_free_insn_slot(t);
1367 	kfree(utask);
1368 	t->utask = NULL;
1369 }
1370 
1371 /*
1372  * Called in context of a new clone/fork from copy_process.
1373  */
1374 void uprobe_copy_process(struct task_struct *t)
1375 {
1376 	t->utask = NULL;
1377 }
1378 
1379 /*
1380  * Allocate a uprobe_task object for the task.
1381  * Called when the thread hits a breakpoint for the first time.
1382  *
1383  * Returns:
1384  * - pointer to new uprobe_task on success
1385  * - NULL otherwise
1386  */
1387 static struct uprobe_task *add_utask(void)
1388 {
1389 	struct uprobe_task *utask;
1390 
1391 	utask = kzalloc(sizeof *utask, GFP_KERNEL);
1392 	if (unlikely(!utask))
1393 		return NULL;
1394 
1395 	current->utask = utask;
1396 	return utask;
1397 }
1398 
1399 /* Prepare to single-step probed instruction out of line. */
1400 static int
1401 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1402 {
1403 	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1404 		return 0;
1405 
1406 	return -EFAULT;
1407 }
1408 
1409 /*
1410  * If we are singlestepping, then ensure this thread is not connected to
1411  * non-fatal signals until completion of singlestep.  When xol insn itself
1412  * triggers the signal,  restart the original insn even if the task is
1413  * already SIGKILL'ed (since coredump should report the correct ip).  This
1414  * is even more important if the task has a handler for SIGSEGV/etc, The
1415  * _same_ instruction should be repeated again after return from the signal
1416  * handler, and SSTEP can never finish in this case.
1417  */
1418 bool uprobe_deny_signal(void)
1419 {
1420 	struct task_struct *t = current;
1421 	struct uprobe_task *utask = t->utask;
1422 
1423 	if (likely(!utask || !utask->active_uprobe))
1424 		return false;
1425 
1426 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1427 
1428 	if (signal_pending(t)) {
1429 		spin_lock_irq(&t->sighand->siglock);
1430 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1431 		spin_unlock_irq(&t->sighand->siglock);
1432 
1433 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1434 			utask->state = UTASK_SSTEP_TRAPPED;
1435 			set_tsk_thread_flag(t, TIF_UPROBE);
1436 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1437 		}
1438 	}
1439 
1440 	return true;
1441 }
1442 
1443 /*
1444  * Avoid singlestepping the original instruction if the original instruction
1445  * is a NOP or can be emulated.
1446  */
1447 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1448 {
1449 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1450 		return true;
1451 
1452 	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1453 	return false;
1454 }
1455 
1456 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1457 {
1458 	struct mm_struct *mm = current->mm;
1459 	struct uprobe *uprobe = NULL;
1460 	struct vm_area_struct *vma;
1461 
1462 	down_read(&mm->mmap_sem);
1463 	vma = find_vma(mm, bp_vaddr);
1464 	if (vma && vma->vm_start <= bp_vaddr) {
1465 		if (valid_vma(vma, false)) {
1466 			struct inode *inode;
1467 			loff_t offset;
1468 
1469 			inode = vma->vm_file->f_mapping->host;
1470 			offset = bp_vaddr - vma->vm_start;
1471 			offset += (vma->vm_pgoff << PAGE_SHIFT);
1472 			uprobe = find_uprobe(inode, offset);
1473 		}
1474 
1475 		if (!uprobe)
1476 			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1477 	} else {
1478 		*is_swbp = -EFAULT;
1479 	}
1480 	up_read(&mm->mmap_sem);
1481 
1482 	return uprobe;
1483 }
1484 
1485 /*
1486  * Run handler and ask thread to singlestep.
1487  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1488  */
1489 static void handle_swbp(struct pt_regs *regs)
1490 {
1491 	struct uprobe_task *utask;
1492 	struct uprobe *uprobe;
1493 	unsigned long bp_vaddr;
1494 	int uninitialized_var(is_swbp);
1495 
1496 	bp_vaddr = uprobe_get_swbp_addr(regs);
1497 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1498 
1499 	if (!uprobe) {
1500 		if (is_swbp > 0) {
1501 			/* No matching uprobe; signal SIGTRAP. */
1502 			send_sig(SIGTRAP, current, 0);
1503 		} else {
1504 			/*
1505 			 * Either we raced with uprobe_unregister() or we can't
1506 			 * access this memory. The latter is only possible if
1507 			 * another thread plays with our ->mm. In both cases
1508 			 * we can simply restart. If this vma was unmapped we
1509 			 * can pretend this insn was not executed yet and get
1510 			 * the (correct) SIGSEGV after restart.
1511 			 */
1512 			instruction_pointer_set(regs, bp_vaddr);
1513 		}
1514 		return;
1515 	}
1516 
1517 	utask = current->utask;
1518 	if (!utask) {
1519 		utask = add_utask();
1520 		/* Cannot allocate; re-execute the instruction. */
1521 		if (!utask)
1522 			goto cleanup_ret;
1523 	}
1524 	utask->active_uprobe = uprobe;
1525 	handler_chain(uprobe, regs);
1526 	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1527 		goto cleanup_ret;
1528 
1529 	utask->state = UTASK_SSTEP;
1530 	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1531 		user_enable_single_step(current);
1532 		return;
1533 	}
1534 
1535 cleanup_ret:
1536 	if (utask) {
1537 		utask->active_uprobe = NULL;
1538 		utask->state = UTASK_RUNNING;
1539 	}
1540 	if (uprobe) {
1541 		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1542 
1543 			/*
1544 			 * cannot singlestep; cannot skip instruction;
1545 			 * re-execute the instruction.
1546 			 */
1547 			instruction_pointer_set(regs, bp_vaddr);
1548 
1549 		put_uprobe(uprobe);
1550 	}
1551 }
1552 
1553 /*
1554  * Perform required fix-ups and disable singlestep.
1555  * Allow pending signals to take effect.
1556  */
1557 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1558 {
1559 	struct uprobe *uprobe;
1560 
1561 	uprobe = utask->active_uprobe;
1562 	if (utask->state == UTASK_SSTEP_ACK)
1563 		arch_uprobe_post_xol(&uprobe->arch, regs);
1564 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1565 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1566 	else
1567 		WARN_ON_ONCE(1);
1568 
1569 	put_uprobe(uprobe);
1570 	utask->active_uprobe = NULL;
1571 	utask->state = UTASK_RUNNING;
1572 	user_disable_single_step(current);
1573 	xol_free_insn_slot(current);
1574 
1575 	spin_lock_irq(&current->sighand->siglock);
1576 	recalc_sigpending(); /* see uprobe_deny_signal() */
1577 	spin_unlock_irq(&current->sighand->siglock);
1578 }
1579 
1580 /*
1581  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1582  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1583  * allows the thread to return from interrupt.
1584  *
1585  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1586  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1587  * interrupt.
1588  *
1589  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1590  * uprobe_notify_resume().
1591  */
1592 void uprobe_notify_resume(struct pt_regs *regs)
1593 {
1594 	struct uprobe_task *utask;
1595 
1596 	utask = current->utask;
1597 	if (!utask || utask->state == UTASK_BP_HIT)
1598 		handle_swbp(regs);
1599 	else
1600 		handle_singlestep(utask, regs);
1601 }
1602 
1603 /*
1604  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1605  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1606  */
1607 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1608 {
1609 	struct uprobe_task *utask;
1610 
1611 	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1612 		/* task is currently not uprobed */
1613 		return 0;
1614 
1615 	utask = current->utask;
1616 	if (utask)
1617 		utask->state = UTASK_BP_HIT;
1618 
1619 	set_thread_flag(TIF_UPROBE);
1620 
1621 	return 1;
1622 }
1623 
1624 /*
1625  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1626  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1627  */
1628 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1629 {
1630 	struct uprobe_task *utask = current->utask;
1631 
1632 	if (!current->mm || !utask || !utask->active_uprobe)
1633 		/* task is currently not uprobed */
1634 		return 0;
1635 
1636 	utask->state = UTASK_SSTEP_ACK;
1637 	set_thread_flag(TIF_UPROBE);
1638 	return 1;
1639 }
1640 
1641 static struct notifier_block uprobe_exception_nb = {
1642 	.notifier_call		= arch_uprobe_exception_notify,
1643 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1644 };
1645 
1646 static int __init init_uprobes(void)
1647 {
1648 	int i;
1649 
1650 	for (i = 0; i < UPROBES_HASH_SZ; i++) {
1651 		mutex_init(&uprobes_mutex[i]);
1652 		mutex_init(&uprobes_mmap_mutex[i]);
1653 	}
1654 
1655 	return register_die_notifier(&uprobe_exception_nb);
1656 }
1657 module_init(init_uprobes);
1658 
1659 static void __exit exit_uprobes(void)
1660 {
1661 }
1662 module_exit(exit_uprobes);
1663