1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 40 #include <linux/uprobes.h> 41 42 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 43 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 44 45 static struct rb_root uprobes_tree = RB_ROOT; 46 /* 47 * allows us to skip the uprobe_mmap if there are no uprobe events active 48 * at this time. Probably a fine grained per inode count is better? 49 */ 50 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 51 52 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 53 54 #define UPROBES_HASH_SZ 13 55 /* serialize uprobe->pending_list */ 56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 57 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 58 59 static struct percpu_rw_semaphore dup_mmap_sem; 60 61 /* Have a copy of original instruction */ 62 #define UPROBE_COPY_INSN 0 63 /* Can skip singlestep */ 64 #define UPROBE_SKIP_SSTEP 1 65 66 struct uprobe { 67 struct rb_node rb_node; /* node in the rb tree */ 68 atomic_t ref; 69 struct rw_semaphore register_rwsem; 70 struct rw_semaphore consumer_rwsem; 71 struct list_head pending_list; 72 struct uprobe_consumer *consumers; 73 struct inode *inode; /* Also hold a ref to inode */ 74 loff_t offset; 75 unsigned long flags; 76 77 /* 78 * The generic code assumes that it has two members of unknown type 79 * owned by the arch-specific code: 80 * 81 * insn - copy_insn() saves the original instruction here for 82 * arch_uprobe_analyze_insn(). 83 * 84 * ixol - potentially modified instruction to execute out of 85 * line, copied to xol_area by xol_get_insn_slot(). 86 */ 87 struct arch_uprobe arch; 88 }; 89 90 struct return_instance { 91 struct uprobe *uprobe; 92 unsigned long func; 93 unsigned long orig_ret_vaddr; /* original return address */ 94 bool chained; /* true, if instance is nested */ 95 96 struct return_instance *next; /* keep as stack */ 97 }; 98 99 /* 100 * Execute out of line area: anonymous executable mapping installed 101 * by the probed task to execute the copy of the original instruction 102 * mangled by set_swbp(). 103 * 104 * On a breakpoint hit, thread contests for a slot. It frees the 105 * slot after singlestep. Currently a fixed number of slots are 106 * allocated. 107 */ 108 struct xol_area { 109 wait_queue_head_t wq; /* if all slots are busy */ 110 atomic_t slot_count; /* number of in-use slots */ 111 unsigned long *bitmap; /* 0 = free slot */ 112 struct page *page; 113 114 /* 115 * We keep the vma's vm_start rather than a pointer to the vma 116 * itself. The probed process or a naughty kernel module could make 117 * the vma go away, and we must handle that reasonably gracefully. 118 */ 119 unsigned long vaddr; /* Page(s) of instruction slots */ 120 }; 121 122 /* 123 * valid_vma: Verify if the specified vma is an executable vma 124 * Relax restrictions while unregistering: vm_flags might have 125 * changed after breakpoint was inserted. 126 * - is_register: indicates if we are in register context. 127 * - Return 1 if the specified virtual address is in an 128 * executable vma. 129 */ 130 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 131 { 132 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED; 133 134 if (is_register) 135 flags |= VM_WRITE; 136 137 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 138 } 139 140 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 141 { 142 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 143 } 144 145 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 146 { 147 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 148 } 149 150 /** 151 * __replace_page - replace page in vma by new page. 152 * based on replace_page in mm/ksm.c 153 * 154 * @vma: vma that holds the pte pointing to page 155 * @addr: address the old @page is mapped at 156 * @page: the cowed page we are replacing by kpage 157 * @kpage: the modified page we replace page by 158 * 159 * Returns 0 on success, -EFAULT on failure. 160 */ 161 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 162 struct page *page, struct page *kpage) 163 { 164 struct mm_struct *mm = vma->vm_mm; 165 spinlock_t *ptl; 166 pte_t *ptep; 167 int err; 168 /* For mmu_notifiers */ 169 const unsigned long mmun_start = addr; 170 const unsigned long mmun_end = addr + PAGE_SIZE; 171 172 /* For try_to_free_swap() and munlock_vma_page() below */ 173 lock_page(page); 174 175 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 176 err = -EAGAIN; 177 ptep = page_check_address(page, mm, addr, &ptl, 0); 178 if (!ptep) 179 goto unlock; 180 181 get_page(kpage); 182 page_add_new_anon_rmap(kpage, vma, addr); 183 184 if (!PageAnon(page)) { 185 dec_mm_counter(mm, MM_FILEPAGES); 186 inc_mm_counter(mm, MM_ANONPAGES); 187 } 188 189 flush_cache_page(vma, addr, pte_pfn(*ptep)); 190 ptep_clear_flush(vma, addr, ptep); 191 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 192 193 page_remove_rmap(page); 194 if (!page_mapped(page)) 195 try_to_free_swap(page); 196 pte_unmap_unlock(ptep, ptl); 197 198 if (vma->vm_flags & VM_LOCKED) 199 munlock_vma_page(page); 200 put_page(page); 201 202 err = 0; 203 unlock: 204 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 205 unlock_page(page); 206 return err; 207 } 208 209 /** 210 * is_swbp_insn - check if instruction is breakpoint instruction. 211 * @insn: instruction to be checked. 212 * Default implementation of is_swbp_insn 213 * Returns true if @insn is a breakpoint instruction. 214 */ 215 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 216 { 217 return *insn == UPROBE_SWBP_INSN; 218 } 219 220 /** 221 * is_trap_insn - check if instruction is breakpoint instruction. 222 * @insn: instruction to be checked. 223 * Default implementation of is_trap_insn 224 * Returns true if @insn is a breakpoint instruction. 225 * 226 * This function is needed for the case where an architecture has multiple 227 * trap instructions (like powerpc). 228 */ 229 bool __weak is_trap_insn(uprobe_opcode_t *insn) 230 { 231 return is_swbp_insn(insn); 232 } 233 234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 235 { 236 void *kaddr = kmap_atomic(page); 237 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 238 kunmap_atomic(kaddr); 239 } 240 241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 242 { 243 void *kaddr = kmap_atomic(page); 244 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 245 kunmap_atomic(kaddr); 246 } 247 248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 249 { 250 uprobe_opcode_t old_opcode; 251 bool is_swbp; 252 253 /* 254 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 255 * We do not check if it is any other 'trap variant' which could 256 * be conditional trap instruction such as the one powerpc supports. 257 * 258 * The logic is that we do not care if the underlying instruction 259 * is a trap variant; uprobes always wins over any other (gdb) 260 * breakpoint. 261 */ 262 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 263 is_swbp = is_swbp_insn(&old_opcode); 264 265 if (is_swbp_insn(new_opcode)) { 266 if (is_swbp) /* register: already installed? */ 267 return 0; 268 } else { 269 if (!is_swbp) /* unregister: was it changed by us? */ 270 return 0; 271 } 272 273 return 1; 274 } 275 276 /* 277 * NOTE: 278 * Expect the breakpoint instruction to be the smallest size instruction for 279 * the architecture. If an arch has variable length instruction and the 280 * breakpoint instruction is not of the smallest length instruction 281 * supported by that architecture then we need to modify is_trap_at_addr and 282 * uprobe_write_opcode accordingly. This would never be a problem for archs 283 * that have fixed length instructions. 284 */ 285 286 /* 287 * uprobe_write_opcode - write the opcode at a given virtual address. 288 * @mm: the probed process address space. 289 * @vaddr: the virtual address to store the opcode. 290 * @opcode: opcode to be written at @vaddr. 291 * 292 * Called with mm->mmap_sem held (for read and with a reference to 293 * mm). 294 * 295 * For mm @mm, write the opcode at @vaddr. 296 * Return 0 (success) or a negative errno. 297 */ 298 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 299 uprobe_opcode_t opcode) 300 { 301 struct page *old_page, *new_page; 302 struct vm_area_struct *vma; 303 int ret; 304 305 retry: 306 /* Read the page with vaddr into memory */ 307 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 308 if (ret <= 0) 309 return ret; 310 311 ret = verify_opcode(old_page, vaddr, &opcode); 312 if (ret <= 0) 313 goto put_old; 314 315 ret = -ENOMEM; 316 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 317 if (!new_page) 318 goto put_old; 319 320 __SetPageUptodate(new_page); 321 322 copy_highpage(new_page, old_page); 323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 324 325 ret = anon_vma_prepare(vma); 326 if (ret) 327 goto put_new; 328 329 ret = __replace_page(vma, vaddr, old_page, new_page); 330 331 put_new: 332 page_cache_release(new_page); 333 put_old: 334 put_page(old_page); 335 336 if (unlikely(ret == -EAGAIN)) 337 goto retry; 338 return ret; 339 } 340 341 /** 342 * set_swbp - store breakpoint at a given address. 343 * @auprobe: arch specific probepoint information. 344 * @mm: the probed process address space. 345 * @vaddr: the virtual address to insert the opcode. 346 * 347 * For mm @mm, store the breakpoint instruction at @vaddr. 348 * Return 0 (success) or a negative errno. 349 */ 350 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 351 { 352 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 353 } 354 355 /** 356 * set_orig_insn - Restore the original instruction. 357 * @mm: the probed process address space. 358 * @auprobe: arch specific probepoint information. 359 * @vaddr: the virtual address to insert the opcode. 360 * 361 * For mm @mm, restore the original opcode (opcode) at @vaddr. 362 * Return 0 (success) or a negative errno. 363 */ 364 int __weak 365 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 366 { 367 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); 368 } 369 370 static int match_uprobe(struct uprobe *l, struct uprobe *r) 371 { 372 if (l->inode < r->inode) 373 return -1; 374 375 if (l->inode > r->inode) 376 return 1; 377 378 if (l->offset < r->offset) 379 return -1; 380 381 if (l->offset > r->offset) 382 return 1; 383 384 return 0; 385 } 386 387 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 388 { 389 struct uprobe u = { .inode = inode, .offset = offset }; 390 struct rb_node *n = uprobes_tree.rb_node; 391 struct uprobe *uprobe; 392 int match; 393 394 while (n) { 395 uprobe = rb_entry(n, struct uprobe, rb_node); 396 match = match_uprobe(&u, uprobe); 397 if (!match) { 398 atomic_inc(&uprobe->ref); 399 return uprobe; 400 } 401 402 if (match < 0) 403 n = n->rb_left; 404 else 405 n = n->rb_right; 406 } 407 return NULL; 408 } 409 410 /* 411 * Find a uprobe corresponding to a given inode:offset 412 * Acquires uprobes_treelock 413 */ 414 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 415 { 416 struct uprobe *uprobe; 417 418 spin_lock(&uprobes_treelock); 419 uprobe = __find_uprobe(inode, offset); 420 spin_unlock(&uprobes_treelock); 421 422 return uprobe; 423 } 424 425 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 426 { 427 struct rb_node **p = &uprobes_tree.rb_node; 428 struct rb_node *parent = NULL; 429 struct uprobe *u; 430 int match; 431 432 while (*p) { 433 parent = *p; 434 u = rb_entry(parent, struct uprobe, rb_node); 435 match = match_uprobe(uprobe, u); 436 if (!match) { 437 atomic_inc(&u->ref); 438 return u; 439 } 440 441 if (match < 0) 442 p = &parent->rb_left; 443 else 444 p = &parent->rb_right; 445 446 } 447 448 u = NULL; 449 rb_link_node(&uprobe->rb_node, parent, p); 450 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 451 /* get access + creation ref */ 452 atomic_set(&uprobe->ref, 2); 453 454 return u; 455 } 456 457 /* 458 * Acquire uprobes_treelock. 459 * Matching uprobe already exists in rbtree; 460 * increment (access refcount) and return the matching uprobe. 461 * 462 * No matching uprobe; insert the uprobe in rb_tree; 463 * get a double refcount (access + creation) and return NULL. 464 */ 465 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 466 { 467 struct uprobe *u; 468 469 spin_lock(&uprobes_treelock); 470 u = __insert_uprobe(uprobe); 471 spin_unlock(&uprobes_treelock); 472 473 return u; 474 } 475 476 static void put_uprobe(struct uprobe *uprobe) 477 { 478 if (atomic_dec_and_test(&uprobe->ref)) 479 kfree(uprobe); 480 } 481 482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 483 { 484 struct uprobe *uprobe, *cur_uprobe; 485 486 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 487 if (!uprobe) 488 return NULL; 489 490 uprobe->inode = igrab(inode); 491 uprobe->offset = offset; 492 init_rwsem(&uprobe->register_rwsem); 493 init_rwsem(&uprobe->consumer_rwsem); 494 /* For now assume that the instruction need not be single-stepped */ 495 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 496 497 /* add to uprobes_tree, sorted on inode:offset */ 498 cur_uprobe = insert_uprobe(uprobe); 499 500 /* a uprobe exists for this inode:offset combination */ 501 if (cur_uprobe) { 502 kfree(uprobe); 503 uprobe = cur_uprobe; 504 iput(inode); 505 } 506 507 return uprobe; 508 } 509 510 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 511 { 512 down_write(&uprobe->consumer_rwsem); 513 uc->next = uprobe->consumers; 514 uprobe->consumers = uc; 515 up_write(&uprobe->consumer_rwsem); 516 } 517 518 /* 519 * For uprobe @uprobe, delete the consumer @uc. 520 * Return true if the @uc is deleted successfully 521 * or return false. 522 */ 523 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 524 { 525 struct uprobe_consumer **con; 526 bool ret = false; 527 528 down_write(&uprobe->consumer_rwsem); 529 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 530 if (*con == uc) { 531 *con = uc->next; 532 ret = true; 533 break; 534 } 535 } 536 up_write(&uprobe->consumer_rwsem); 537 538 return ret; 539 } 540 541 static int __copy_insn(struct address_space *mapping, struct file *filp, 542 void *insn, int nbytes, loff_t offset) 543 { 544 struct page *page; 545 546 if (!mapping->a_ops->readpage) 547 return -EIO; 548 /* 549 * Ensure that the page that has the original instruction is 550 * populated and in page-cache. 551 */ 552 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp); 553 if (IS_ERR(page)) 554 return PTR_ERR(page); 555 556 copy_from_page(page, offset, insn, nbytes); 557 page_cache_release(page); 558 559 return 0; 560 } 561 562 static int copy_insn(struct uprobe *uprobe, struct file *filp) 563 { 564 struct address_space *mapping = uprobe->inode->i_mapping; 565 loff_t offs = uprobe->offset; 566 void *insn = &uprobe->arch.insn; 567 int size = sizeof(uprobe->arch.insn); 568 int len, err = -EIO; 569 570 /* Copy only available bytes, -EIO if nothing was read */ 571 do { 572 if (offs >= i_size_read(uprobe->inode)) 573 break; 574 575 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 576 err = __copy_insn(mapping, filp, insn, len, offs); 577 if (err) 578 break; 579 580 insn += len; 581 offs += len; 582 size -= len; 583 } while (size); 584 585 return err; 586 } 587 588 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 589 struct mm_struct *mm, unsigned long vaddr) 590 { 591 int ret = 0; 592 593 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 594 return ret; 595 596 /* TODO: move this into _register, until then we abuse this sem. */ 597 down_write(&uprobe->consumer_rwsem); 598 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 599 goto out; 600 601 ret = copy_insn(uprobe, file); 602 if (ret) 603 goto out; 604 605 ret = -ENOTSUPP; 606 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 607 goto out; 608 609 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 610 if (ret) 611 goto out; 612 613 /* uprobe_write_opcode() assumes we don't cross page boundary */ 614 BUG_ON((uprobe->offset & ~PAGE_MASK) + 615 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 616 617 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 618 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 619 620 out: 621 up_write(&uprobe->consumer_rwsem); 622 623 return ret; 624 } 625 626 static inline bool consumer_filter(struct uprobe_consumer *uc, 627 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 628 { 629 return !uc->filter || uc->filter(uc, ctx, mm); 630 } 631 632 static bool filter_chain(struct uprobe *uprobe, 633 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 634 { 635 struct uprobe_consumer *uc; 636 bool ret = false; 637 638 down_read(&uprobe->consumer_rwsem); 639 for (uc = uprobe->consumers; uc; uc = uc->next) { 640 ret = consumer_filter(uc, ctx, mm); 641 if (ret) 642 break; 643 } 644 up_read(&uprobe->consumer_rwsem); 645 646 return ret; 647 } 648 649 static int 650 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 651 struct vm_area_struct *vma, unsigned long vaddr) 652 { 653 bool first_uprobe; 654 int ret; 655 656 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 657 if (ret) 658 return ret; 659 660 /* 661 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 662 * the task can hit this breakpoint right after __replace_page(). 663 */ 664 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 665 if (first_uprobe) 666 set_bit(MMF_HAS_UPROBES, &mm->flags); 667 668 ret = set_swbp(&uprobe->arch, mm, vaddr); 669 if (!ret) 670 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 671 else if (first_uprobe) 672 clear_bit(MMF_HAS_UPROBES, &mm->flags); 673 674 return ret; 675 } 676 677 static int 678 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 679 { 680 set_bit(MMF_RECALC_UPROBES, &mm->flags); 681 return set_orig_insn(&uprobe->arch, mm, vaddr); 682 } 683 684 static inline bool uprobe_is_active(struct uprobe *uprobe) 685 { 686 return !RB_EMPTY_NODE(&uprobe->rb_node); 687 } 688 /* 689 * There could be threads that have already hit the breakpoint. They 690 * will recheck the current insn and restart if find_uprobe() fails. 691 * See find_active_uprobe(). 692 */ 693 static void delete_uprobe(struct uprobe *uprobe) 694 { 695 if (WARN_ON(!uprobe_is_active(uprobe))) 696 return; 697 698 spin_lock(&uprobes_treelock); 699 rb_erase(&uprobe->rb_node, &uprobes_tree); 700 spin_unlock(&uprobes_treelock); 701 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 702 iput(uprobe->inode); 703 put_uprobe(uprobe); 704 } 705 706 struct map_info { 707 struct map_info *next; 708 struct mm_struct *mm; 709 unsigned long vaddr; 710 }; 711 712 static inline struct map_info *free_map_info(struct map_info *info) 713 { 714 struct map_info *next = info->next; 715 kfree(info); 716 return next; 717 } 718 719 static struct map_info * 720 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 721 { 722 unsigned long pgoff = offset >> PAGE_SHIFT; 723 struct vm_area_struct *vma; 724 struct map_info *curr = NULL; 725 struct map_info *prev = NULL; 726 struct map_info *info; 727 int more = 0; 728 729 again: 730 mutex_lock(&mapping->i_mmap_mutex); 731 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 732 if (!valid_vma(vma, is_register)) 733 continue; 734 735 if (!prev && !more) { 736 /* 737 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 738 * reclaim. This is optimistic, no harm done if it fails. 739 */ 740 prev = kmalloc(sizeof(struct map_info), 741 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 742 if (prev) 743 prev->next = NULL; 744 } 745 if (!prev) { 746 more++; 747 continue; 748 } 749 750 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 751 continue; 752 753 info = prev; 754 prev = prev->next; 755 info->next = curr; 756 curr = info; 757 758 info->mm = vma->vm_mm; 759 info->vaddr = offset_to_vaddr(vma, offset); 760 } 761 mutex_unlock(&mapping->i_mmap_mutex); 762 763 if (!more) 764 goto out; 765 766 prev = curr; 767 while (curr) { 768 mmput(curr->mm); 769 curr = curr->next; 770 } 771 772 do { 773 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 774 if (!info) { 775 curr = ERR_PTR(-ENOMEM); 776 goto out; 777 } 778 info->next = prev; 779 prev = info; 780 } while (--more); 781 782 goto again; 783 out: 784 while (prev) 785 prev = free_map_info(prev); 786 return curr; 787 } 788 789 static int 790 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 791 { 792 bool is_register = !!new; 793 struct map_info *info; 794 int err = 0; 795 796 percpu_down_write(&dup_mmap_sem); 797 info = build_map_info(uprobe->inode->i_mapping, 798 uprobe->offset, is_register); 799 if (IS_ERR(info)) { 800 err = PTR_ERR(info); 801 goto out; 802 } 803 804 while (info) { 805 struct mm_struct *mm = info->mm; 806 struct vm_area_struct *vma; 807 808 if (err && is_register) 809 goto free; 810 811 down_write(&mm->mmap_sem); 812 vma = find_vma(mm, info->vaddr); 813 if (!vma || !valid_vma(vma, is_register) || 814 file_inode(vma->vm_file) != uprobe->inode) 815 goto unlock; 816 817 if (vma->vm_start > info->vaddr || 818 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 819 goto unlock; 820 821 if (is_register) { 822 /* consult only the "caller", new consumer. */ 823 if (consumer_filter(new, 824 UPROBE_FILTER_REGISTER, mm)) 825 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 826 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 827 if (!filter_chain(uprobe, 828 UPROBE_FILTER_UNREGISTER, mm)) 829 err |= remove_breakpoint(uprobe, mm, info->vaddr); 830 } 831 832 unlock: 833 up_write(&mm->mmap_sem); 834 free: 835 mmput(mm); 836 info = free_map_info(info); 837 } 838 out: 839 percpu_up_write(&dup_mmap_sem); 840 return err; 841 } 842 843 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 844 { 845 consumer_add(uprobe, uc); 846 return register_for_each_vma(uprobe, uc); 847 } 848 849 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 850 { 851 int err; 852 853 if (!consumer_del(uprobe, uc)) /* WARN? */ 854 return; 855 856 err = register_for_each_vma(uprobe, NULL); 857 /* TODO : cant unregister? schedule a worker thread */ 858 if (!uprobe->consumers && !err) 859 delete_uprobe(uprobe); 860 } 861 862 /* 863 * uprobe_register - register a probe 864 * @inode: the file in which the probe has to be placed. 865 * @offset: offset from the start of the file. 866 * @uc: information on howto handle the probe.. 867 * 868 * Apart from the access refcount, uprobe_register() takes a creation 869 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 870 * inserted into the rbtree (i.e first consumer for a @inode:@offset 871 * tuple). Creation refcount stops uprobe_unregister from freeing the 872 * @uprobe even before the register operation is complete. Creation 873 * refcount is released when the last @uc for the @uprobe 874 * unregisters. 875 * 876 * Return errno if it cannot successully install probes 877 * else return 0 (success) 878 */ 879 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 880 { 881 struct uprobe *uprobe; 882 int ret; 883 884 /* Uprobe must have at least one set consumer */ 885 if (!uc->handler && !uc->ret_handler) 886 return -EINVAL; 887 888 /* Racy, just to catch the obvious mistakes */ 889 if (offset > i_size_read(inode)) 890 return -EINVAL; 891 892 retry: 893 uprobe = alloc_uprobe(inode, offset); 894 if (!uprobe) 895 return -ENOMEM; 896 /* 897 * We can race with uprobe_unregister()->delete_uprobe(). 898 * Check uprobe_is_active() and retry if it is false. 899 */ 900 down_write(&uprobe->register_rwsem); 901 ret = -EAGAIN; 902 if (likely(uprobe_is_active(uprobe))) { 903 ret = __uprobe_register(uprobe, uc); 904 if (ret) 905 __uprobe_unregister(uprobe, uc); 906 } 907 up_write(&uprobe->register_rwsem); 908 put_uprobe(uprobe); 909 910 if (unlikely(ret == -EAGAIN)) 911 goto retry; 912 return ret; 913 } 914 EXPORT_SYMBOL_GPL(uprobe_register); 915 916 /* 917 * uprobe_apply - unregister a already registered probe. 918 * @inode: the file in which the probe has to be removed. 919 * @offset: offset from the start of the file. 920 * @uc: consumer which wants to add more or remove some breakpoints 921 * @add: add or remove the breakpoints 922 */ 923 int uprobe_apply(struct inode *inode, loff_t offset, 924 struct uprobe_consumer *uc, bool add) 925 { 926 struct uprobe *uprobe; 927 struct uprobe_consumer *con; 928 int ret = -ENOENT; 929 930 uprobe = find_uprobe(inode, offset); 931 if (!uprobe) 932 return ret; 933 934 down_write(&uprobe->register_rwsem); 935 for (con = uprobe->consumers; con && con != uc ; con = con->next) 936 ; 937 if (con) 938 ret = register_for_each_vma(uprobe, add ? uc : NULL); 939 up_write(&uprobe->register_rwsem); 940 put_uprobe(uprobe); 941 942 return ret; 943 } 944 945 /* 946 * uprobe_unregister - unregister a already registered probe. 947 * @inode: the file in which the probe has to be removed. 948 * @offset: offset from the start of the file. 949 * @uc: identify which probe if multiple probes are colocated. 950 */ 951 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 952 { 953 struct uprobe *uprobe; 954 955 uprobe = find_uprobe(inode, offset); 956 if (!uprobe) 957 return; 958 959 down_write(&uprobe->register_rwsem); 960 __uprobe_unregister(uprobe, uc); 961 up_write(&uprobe->register_rwsem); 962 put_uprobe(uprobe); 963 } 964 EXPORT_SYMBOL_GPL(uprobe_unregister); 965 966 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 967 { 968 struct vm_area_struct *vma; 969 int err = 0; 970 971 down_read(&mm->mmap_sem); 972 for (vma = mm->mmap; vma; vma = vma->vm_next) { 973 unsigned long vaddr; 974 loff_t offset; 975 976 if (!valid_vma(vma, false) || 977 file_inode(vma->vm_file) != uprobe->inode) 978 continue; 979 980 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 981 if (uprobe->offset < offset || 982 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 983 continue; 984 985 vaddr = offset_to_vaddr(vma, uprobe->offset); 986 err |= remove_breakpoint(uprobe, mm, vaddr); 987 } 988 up_read(&mm->mmap_sem); 989 990 return err; 991 } 992 993 static struct rb_node * 994 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 995 { 996 struct rb_node *n = uprobes_tree.rb_node; 997 998 while (n) { 999 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1000 1001 if (inode < u->inode) { 1002 n = n->rb_left; 1003 } else if (inode > u->inode) { 1004 n = n->rb_right; 1005 } else { 1006 if (max < u->offset) 1007 n = n->rb_left; 1008 else if (min > u->offset) 1009 n = n->rb_right; 1010 else 1011 break; 1012 } 1013 } 1014 1015 return n; 1016 } 1017 1018 /* 1019 * For a given range in vma, build a list of probes that need to be inserted. 1020 */ 1021 static void build_probe_list(struct inode *inode, 1022 struct vm_area_struct *vma, 1023 unsigned long start, unsigned long end, 1024 struct list_head *head) 1025 { 1026 loff_t min, max; 1027 struct rb_node *n, *t; 1028 struct uprobe *u; 1029 1030 INIT_LIST_HEAD(head); 1031 min = vaddr_to_offset(vma, start); 1032 max = min + (end - start) - 1; 1033 1034 spin_lock(&uprobes_treelock); 1035 n = find_node_in_range(inode, min, max); 1036 if (n) { 1037 for (t = n; t; t = rb_prev(t)) { 1038 u = rb_entry(t, struct uprobe, rb_node); 1039 if (u->inode != inode || u->offset < min) 1040 break; 1041 list_add(&u->pending_list, head); 1042 atomic_inc(&u->ref); 1043 } 1044 for (t = n; (t = rb_next(t)); ) { 1045 u = rb_entry(t, struct uprobe, rb_node); 1046 if (u->inode != inode || u->offset > max) 1047 break; 1048 list_add(&u->pending_list, head); 1049 atomic_inc(&u->ref); 1050 } 1051 } 1052 spin_unlock(&uprobes_treelock); 1053 } 1054 1055 /* 1056 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1057 * 1058 * Currently we ignore all errors and always return 0, the callers 1059 * can't handle the failure anyway. 1060 */ 1061 int uprobe_mmap(struct vm_area_struct *vma) 1062 { 1063 struct list_head tmp_list; 1064 struct uprobe *uprobe, *u; 1065 struct inode *inode; 1066 1067 if (no_uprobe_events() || !valid_vma(vma, true)) 1068 return 0; 1069 1070 inode = file_inode(vma->vm_file); 1071 if (!inode) 1072 return 0; 1073 1074 mutex_lock(uprobes_mmap_hash(inode)); 1075 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1076 /* 1077 * We can race with uprobe_unregister(), this uprobe can be already 1078 * removed. But in this case filter_chain() must return false, all 1079 * consumers have gone away. 1080 */ 1081 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1082 if (!fatal_signal_pending(current) && 1083 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1084 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1085 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1086 } 1087 put_uprobe(uprobe); 1088 } 1089 mutex_unlock(uprobes_mmap_hash(inode)); 1090 1091 return 0; 1092 } 1093 1094 static bool 1095 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1096 { 1097 loff_t min, max; 1098 struct inode *inode; 1099 struct rb_node *n; 1100 1101 inode = file_inode(vma->vm_file); 1102 1103 min = vaddr_to_offset(vma, start); 1104 max = min + (end - start) - 1; 1105 1106 spin_lock(&uprobes_treelock); 1107 n = find_node_in_range(inode, min, max); 1108 spin_unlock(&uprobes_treelock); 1109 1110 return !!n; 1111 } 1112 1113 /* 1114 * Called in context of a munmap of a vma. 1115 */ 1116 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1117 { 1118 if (no_uprobe_events() || !valid_vma(vma, false)) 1119 return; 1120 1121 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1122 return; 1123 1124 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1125 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1126 return; 1127 1128 if (vma_has_uprobes(vma, start, end)) 1129 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1130 } 1131 1132 /* Slot allocation for XOL */ 1133 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1134 { 1135 int ret = -EALREADY; 1136 1137 down_write(&mm->mmap_sem); 1138 if (mm->uprobes_state.xol_area) 1139 goto fail; 1140 1141 if (!area->vaddr) { 1142 /* Try to map as high as possible, this is only a hint. */ 1143 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1144 PAGE_SIZE, 0, 0); 1145 if (area->vaddr & ~PAGE_MASK) { 1146 ret = area->vaddr; 1147 goto fail; 1148 } 1149 } 1150 1151 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1152 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1153 if (ret) 1154 goto fail; 1155 1156 smp_wmb(); /* pairs with get_xol_area() */ 1157 mm->uprobes_state.xol_area = area; 1158 fail: 1159 up_write(&mm->mmap_sem); 1160 1161 return ret; 1162 } 1163 1164 static struct xol_area *__create_xol_area(unsigned long vaddr) 1165 { 1166 struct mm_struct *mm = current->mm; 1167 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1168 struct xol_area *area; 1169 1170 area = kmalloc(sizeof(*area), GFP_KERNEL); 1171 if (unlikely(!area)) 1172 goto out; 1173 1174 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1175 if (!area->bitmap) 1176 goto free_area; 1177 1178 area->page = alloc_page(GFP_HIGHUSER); 1179 if (!area->page) 1180 goto free_bitmap; 1181 1182 area->vaddr = vaddr; 1183 init_waitqueue_head(&area->wq); 1184 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1185 set_bit(0, area->bitmap); 1186 atomic_set(&area->slot_count, 1); 1187 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE); 1188 1189 if (!xol_add_vma(mm, area)) 1190 return area; 1191 1192 __free_page(area->page); 1193 free_bitmap: 1194 kfree(area->bitmap); 1195 free_area: 1196 kfree(area); 1197 out: 1198 return NULL; 1199 } 1200 1201 /* 1202 * get_xol_area - Allocate process's xol_area if necessary. 1203 * This area will be used for storing instructions for execution out of line. 1204 * 1205 * Returns the allocated area or NULL. 1206 */ 1207 static struct xol_area *get_xol_area(void) 1208 { 1209 struct mm_struct *mm = current->mm; 1210 struct xol_area *area; 1211 1212 if (!mm->uprobes_state.xol_area) 1213 __create_xol_area(0); 1214 1215 area = mm->uprobes_state.xol_area; 1216 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1217 return area; 1218 } 1219 1220 /* 1221 * uprobe_clear_state - Free the area allocated for slots. 1222 */ 1223 void uprobe_clear_state(struct mm_struct *mm) 1224 { 1225 struct xol_area *area = mm->uprobes_state.xol_area; 1226 1227 if (!area) 1228 return; 1229 1230 put_page(area->page); 1231 kfree(area->bitmap); 1232 kfree(area); 1233 } 1234 1235 void uprobe_start_dup_mmap(void) 1236 { 1237 percpu_down_read(&dup_mmap_sem); 1238 } 1239 1240 void uprobe_end_dup_mmap(void) 1241 { 1242 percpu_up_read(&dup_mmap_sem); 1243 } 1244 1245 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1246 { 1247 newmm->uprobes_state.xol_area = NULL; 1248 1249 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1250 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1251 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1252 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1253 } 1254 } 1255 1256 /* 1257 * - search for a free slot. 1258 */ 1259 static unsigned long xol_take_insn_slot(struct xol_area *area) 1260 { 1261 unsigned long slot_addr; 1262 int slot_nr; 1263 1264 do { 1265 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1266 if (slot_nr < UINSNS_PER_PAGE) { 1267 if (!test_and_set_bit(slot_nr, area->bitmap)) 1268 break; 1269 1270 slot_nr = UINSNS_PER_PAGE; 1271 continue; 1272 } 1273 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1274 } while (slot_nr >= UINSNS_PER_PAGE); 1275 1276 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1277 atomic_inc(&area->slot_count); 1278 1279 return slot_addr; 1280 } 1281 1282 /* 1283 * xol_get_insn_slot - allocate a slot for xol. 1284 * Returns the allocated slot address or 0. 1285 */ 1286 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1287 { 1288 struct xol_area *area; 1289 unsigned long xol_vaddr; 1290 1291 area = get_xol_area(); 1292 if (!area) 1293 return 0; 1294 1295 xol_vaddr = xol_take_insn_slot(area); 1296 if (unlikely(!xol_vaddr)) 1297 return 0; 1298 1299 /* Initialize the slot */ 1300 copy_to_page(area->page, xol_vaddr, 1301 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1302 /* 1303 * We probably need flush_icache_user_range() but it needs vma. 1304 * This should work on supported architectures too. 1305 */ 1306 flush_dcache_page(area->page); 1307 1308 return xol_vaddr; 1309 } 1310 1311 /* 1312 * xol_free_insn_slot - If slot was earlier allocated by 1313 * @xol_get_insn_slot(), make the slot available for 1314 * subsequent requests. 1315 */ 1316 static void xol_free_insn_slot(struct task_struct *tsk) 1317 { 1318 struct xol_area *area; 1319 unsigned long vma_end; 1320 unsigned long slot_addr; 1321 1322 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1323 return; 1324 1325 slot_addr = tsk->utask->xol_vaddr; 1326 if (unlikely(!slot_addr)) 1327 return; 1328 1329 area = tsk->mm->uprobes_state.xol_area; 1330 vma_end = area->vaddr + PAGE_SIZE; 1331 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1332 unsigned long offset; 1333 int slot_nr; 1334 1335 offset = slot_addr - area->vaddr; 1336 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1337 if (slot_nr >= UINSNS_PER_PAGE) 1338 return; 1339 1340 clear_bit(slot_nr, area->bitmap); 1341 atomic_dec(&area->slot_count); 1342 if (waitqueue_active(&area->wq)) 1343 wake_up(&area->wq); 1344 1345 tsk->utask->xol_vaddr = 0; 1346 } 1347 } 1348 1349 /** 1350 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1351 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1352 * instruction. 1353 * Return the address of the breakpoint instruction. 1354 */ 1355 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1356 { 1357 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1358 } 1359 1360 /* 1361 * Called with no locks held. 1362 * Called in context of a exiting or a exec-ing thread. 1363 */ 1364 void uprobe_free_utask(struct task_struct *t) 1365 { 1366 struct uprobe_task *utask = t->utask; 1367 struct return_instance *ri, *tmp; 1368 1369 if (!utask) 1370 return; 1371 1372 if (utask->active_uprobe) 1373 put_uprobe(utask->active_uprobe); 1374 1375 ri = utask->return_instances; 1376 while (ri) { 1377 tmp = ri; 1378 ri = ri->next; 1379 1380 put_uprobe(tmp->uprobe); 1381 kfree(tmp); 1382 } 1383 1384 xol_free_insn_slot(t); 1385 kfree(utask); 1386 t->utask = NULL; 1387 } 1388 1389 /* 1390 * Allocate a uprobe_task object for the task if if necessary. 1391 * Called when the thread hits a breakpoint. 1392 * 1393 * Returns: 1394 * - pointer to new uprobe_task on success 1395 * - NULL otherwise 1396 */ 1397 static struct uprobe_task *get_utask(void) 1398 { 1399 if (!current->utask) 1400 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1401 return current->utask; 1402 } 1403 1404 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1405 { 1406 struct uprobe_task *n_utask; 1407 struct return_instance **p, *o, *n; 1408 1409 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1410 if (!n_utask) 1411 return -ENOMEM; 1412 t->utask = n_utask; 1413 1414 p = &n_utask->return_instances; 1415 for (o = o_utask->return_instances; o; o = o->next) { 1416 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1417 if (!n) 1418 return -ENOMEM; 1419 1420 *n = *o; 1421 atomic_inc(&n->uprobe->ref); 1422 n->next = NULL; 1423 1424 *p = n; 1425 p = &n->next; 1426 n_utask->depth++; 1427 } 1428 1429 return 0; 1430 } 1431 1432 static void uprobe_warn(struct task_struct *t, const char *msg) 1433 { 1434 pr_warn("uprobe: %s:%d failed to %s\n", 1435 current->comm, current->pid, msg); 1436 } 1437 1438 static void dup_xol_work(struct callback_head *work) 1439 { 1440 if (current->flags & PF_EXITING) 1441 return; 1442 1443 if (!__create_xol_area(current->utask->dup_xol_addr)) 1444 uprobe_warn(current, "dup xol area"); 1445 } 1446 1447 /* 1448 * Called in context of a new clone/fork from copy_process. 1449 */ 1450 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1451 { 1452 struct uprobe_task *utask = current->utask; 1453 struct mm_struct *mm = current->mm; 1454 struct xol_area *area; 1455 1456 t->utask = NULL; 1457 1458 if (!utask || !utask->return_instances) 1459 return; 1460 1461 if (mm == t->mm && !(flags & CLONE_VFORK)) 1462 return; 1463 1464 if (dup_utask(t, utask)) 1465 return uprobe_warn(t, "dup ret instances"); 1466 1467 /* The task can fork() after dup_xol_work() fails */ 1468 area = mm->uprobes_state.xol_area; 1469 if (!area) 1470 return uprobe_warn(t, "dup xol area"); 1471 1472 if (mm == t->mm) 1473 return; 1474 1475 t->utask->dup_xol_addr = area->vaddr; 1476 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1477 task_work_add(t, &t->utask->dup_xol_work, true); 1478 } 1479 1480 /* 1481 * Current area->vaddr notion assume the trampoline address is always 1482 * equal area->vaddr. 1483 * 1484 * Returns -1 in case the xol_area is not allocated. 1485 */ 1486 static unsigned long get_trampoline_vaddr(void) 1487 { 1488 struct xol_area *area; 1489 unsigned long trampoline_vaddr = -1; 1490 1491 area = current->mm->uprobes_state.xol_area; 1492 smp_read_barrier_depends(); 1493 if (area) 1494 trampoline_vaddr = area->vaddr; 1495 1496 return trampoline_vaddr; 1497 } 1498 1499 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1500 { 1501 struct return_instance *ri; 1502 struct uprobe_task *utask; 1503 unsigned long orig_ret_vaddr, trampoline_vaddr; 1504 bool chained = false; 1505 1506 if (!get_xol_area()) 1507 return; 1508 1509 utask = get_utask(); 1510 if (!utask) 1511 return; 1512 1513 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1514 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1515 " nestedness limit pid/tgid=%d/%d\n", 1516 current->pid, current->tgid); 1517 return; 1518 } 1519 1520 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL); 1521 if (!ri) 1522 goto fail; 1523 1524 trampoline_vaddr = get_trampoline_vaddr(); 1525 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1526 if (orig_ret_vaddr == -1) 1527 goto fail; 1528 1529 /* 1530 * We don't want to keep trampoline address in stack, rather keep the 1531 * original return address of first caller thru all the consequent 1532 * instances. This also makes breakpoint unwrapping easier. 1533 */ 1534 if (orig_ret_vaddr == trampoline_vaddr) { 1535 if (!utask->return_instances) { 1536 /* 1537 * This situation is not possible. Likely we have an 1538 * attack from user-space. 1539 */ 1540 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n", 1541 current->pid, current->tgid); 1542 goto fail; 1543 } 1544 1545 chained = true; 1546 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1547 } 1548 1549 atomic_inc(&uprobe->ref); 1550 ri->uprobe = uprobe; 1551 ri->func = instruction_pointer(regs); 1552 ri->orig_ret_vaddr = orig_ret_vaddr; 1553 ri->chained = chained; 1554 1555 utask->depth++; 1556 1557 /* add instance to the stack */ 1558 ri->next = utask->return_instances; 1559 utask->return_instances = ri; 1560 1561 return; 1562 1563 fail: 1564 kfree(ri); 1565 } 1566 1567 /* Prepare to single-step probed instruction out of line. */ 1568 static int 1569 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1570 { 1571 struct uprobe_task *utask; 1572 unsigned long xol_vaddr; 1573 int err; 1574 1575 utask = get_utask(); 1576 if (!utask) 1577 return -ENOMEM; 1578 1579 xol_vaddr = xol_get_insn_slot(uprobe); 1580 if (!xol_vaddr) 1581 return -ENOMEM; 1582 1583 utask->xol_vaddr = xol_vaddr; 1584 utask->vaddr = bp_vaddr; 1585 1586 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1587 if (unlikely(err)) { 1588 xol_free_insn_slot(current); 1589 return err; 1590 } 1591 1592 utask->active_uprobe = uprobe; 1593 utask->state = UTASK_SSTEP; 1594 return 0; 1595 } 1596 1597 /* 1598 * If we are singlestepping, then ensure this thread is not connected to 1599 * non-fatal signals until completion of singlestep. When xol insn itself 1600 * triggers the signal, restart the original insn even if the task is 1601 * already SIGKILL'ed (since coredump should report the correct ip). This 1602 * is even more important if the task has a handler for SIGSEGV/etc, The 1603 * _same_ instruction should be repeated again after return from the signal 1604 * handler, and SSTEP can never finish in this case. 1605 */ 1606 bool uprobe_deny_signal(void) 1607 { 1608 struct task_struct *t = current; 1609 struct uprobe_task *utask = t->utask; 1610 1611 if (likely(!utask || !utask->active_uprobe)) 1612 return false; 1613 1614 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1615 1616 if (signal_pending(t)) { 1617 spin_lock_irq(&t->sighand->siglock); 1618 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1619 spin_unlock_irq(&t->sighand->siglock); 1620 1621 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1622 utask->state = UTASK_SSTEP_TRAPPED; 1623 set_tsk_thread_flag(t, TIF_UPROBE); 1624 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1625 } 1626 } 1627 1628 return true; 1629 } 1630 1631 /* 1632 * Avoid singlestepping the original instruction if the original instruction 1633 * is a NOP or can be emulated. 1634 */ 1635 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1636 { 1637 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) { 1638 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1639 return true; 1640 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 1641 } 1642 return false; 1643 } 1644 1645 static void mmf_recalc_uprobes(struct mm_struct *mm) 1646 { 1647 struct vm_area_struct *vma; 1648 1649 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1650 if (!valid_vma(vma, false)) 1651 continue; 1652 /* 1653 * This is not strictly accurate, we can race with 1654 * uprobe_unregister() and see the already removed 1655 * uprobe if delete_uprobe() was not yet called. 1656 * Or this uprobe can be filtered out. 1657 */ 1658 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1659 return; 1660 } 1661 1662 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1663 } 1664 1665 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1666 { 1667 struct page *page; 1668 uprobe_opcode_t opcode; 1669 int result; 1670 1671 pagefault_disable(); 1672 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 1673 sizeof(opcode)); 1674 pagefault_enable(); 1675 1676 if (likely(result == 0)) 1677 goto out; 1678 1679 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1680 if (result < 0) 1681 return result; 1682 1683 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1684 put_page(page); 1685 out: 1686 /* This needs to return true for any variant of the trap insn */ 1687 return is_trap_insn(&opcode); 1688 } 1689 1690 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1691 { 1692 struct mm_struct *mm = current->mm; 1693 struct uprobe *uprobe = NULL; 1694 struct vm_area_struct *vma; 1695 1696 down_read(&mm->mmap_sem); 1697 vma = find_vma(mm, bp_vaddr); 1698 if (vma && vma->vm_start <= bp_vaddr) { 1699 if (valid_vma(vma, false)) { 1700 struct inode *inode = file_inode(vma->vm_file); 1701 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1702 1703 uprobe = find_uprobe(inode, offset); 1704 } 1705 1706 if (!uprobe) 1707 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1708 } else { 1709 *is_swbp = -EFAULT; 1710 } 1711 1712 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1713 mmf_recalc_uprobes(mm); 1714 up_read(&mm->mmap_sem); 1715 1716 return uprobe; 1717 } 1718 1719 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1720 { 1721 struct uprobe_consumer *uc; 1722 int remove = UPROBE_HANDLER_REMOVE; 1723 bool need_prep = false; /* prepare return uprobe, when needed */ 1724 1725 down_read(&uprobe->register_rwsem); 1726 for (uc = uprobe->consumers; uc; uc = uc->next) { 1727 int rc = 0; 1728 1729 if (uc->handler) { 1730 rc = uc->handler(uc, regs); 1731 WARN(rc & ~UPROBE_HANDLER_MASK, 1732 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1733 } 1734 1735 if (uc->ret_handler) 1736 need_prep = true; 1737 1738 remove &= rc; 1739 } 1740 1741 if (need_prep && !remove) 1742 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1743 1744 if (remove && uprobe->consumers) { 1745 WARN_ON(!uprobe_is_active(uprobe)); 1746 unapply_uprobe(uprobe, current->mm); 1747 } 1748 up_read(&uprobe->register_rwsem); 1749 } 1750 1751 static void 1752 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1753 { 1754 struct uprobe *uprobe = ri->uprobe; 1755 struct uprobe_consumer *uc; 1756 1757 down_read(&uprobe->register_rwsem); 1758 for (uc = uprobe->consumers; uc; uc = uc->next) { 1759 if (uc->ret_handler) 1760 uc->ret_handler(uc, ri->func, regs); 1761 } 1762 up_read(&uprobe->register_rwsem); 1763 } 1764 1765 static bool handle_trampoline(struct pt_regs *regs) 1766 { 1767 struct uprobe_task *utask; 1768 struct return_instance *ri, *tmp; 1769 bool chained; 1770 1771 utask = current->utask; 1772 if (!utask) 1773 return false; 1774 1775 ri = utask->return_instances; 1776 if (!ri) 1777 return false; 1778 1779 /* 1780 * TODO: we should throw out return_instance's invalidated by 1781 * longjmp(), currently we assume that the probed function always 1782 * returns. 1783 */ 1784 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1785 1786 for (;;) { 1787 handle_uretprobe_chain(ri, regs); 1788 1789 chained = ri->chained; 1790 put_uprobe(ri->uprobe); 1791 1792 tmp = ri; 1793 ri = ri->next; 1794 kfree(tmp); 1795 utask->depth--; 1796 1797 if (!chained) 1798 break; 1799 BUG_ON(!ri); 1800 } 1801 1802 utask->return_instances = ri; 1803 1804 return true; 1805 } 1806 1807 /* 1808 * Run handler and ask thread to singlestep. 1809 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1810 */ 1811 static void handle_swbp(struct pt_regs *regs) 1812 { 1813 struct uprobe *uprobe; 1814 unsigned long bp_vaddr; 1815 int uninitialized_var(is_swbp); 1816 1817 bp_vaddr = uprobe_get_swbp_addr(regs); 1818 if (bp_vaddr == get_trampoline_vaddr()) { 1819 if (handle_trampoline(regs)) 1820 return; 1821 1822 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n", 1823 current->pid, current->tgid); 1824 } 1825 1826 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1827 if (!uprobe) { 1828 if (is_swbp > 0) { 1829 /* No matching uprobe; signal SIGTRAP. */ 1830 send_sig(SIGTRAP, current, 0); 1831 } else { 1832 /* 1833 * Either we raced with uprobe_unregister() or we can't 1834 * access this memory. The latter is only possible if 1835 * another thread plays with our ->mm. In both cases 1836 * we can simply restart. If this vma was unmapped we 1837 * can pretend this insn was not executed yet and get 1838 * the (correct) SIGSEGV after restart. 1839 */ 1840 instruction_pointer_set(regs, bp_vaddr); 1841 } 1842 return; 1843 } 1844 1845 /* change it in advance for ->handler() and restart */ 1846 instruction_pointer_set(regs, bp_vaddr); 1847 1848 /* 1849 * TODO: move copy_insn/etc into _register and remove this hack. 1850 * After we hit the bp, _unregister + _register can install the 1851 * new and not-yet-analyzed uprobe at the same address, restart. 1852 */ 1853 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1854 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1855 goto out; 1856 1857 /* Tracing handlers use ->utask to communicate with fetch methods */ 1858 if (!get_utask()) 1859 goto out; 1860 1861 handler_chain(uprobe, regs); 1862 if (can_skip_sstep(uprobe, regs)) 1863 goto out; 1864 1865 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1866 return; 1867 1868 /* can_skip_sstep() succeeded, or restart if can't singlestep */ 1869 out: 1870 put_uprobe(uprobe); 1871 } 1872 1873 /* 1874 * Perform required fix-ups and disable singlestep. 1875 * Allow pending signals to take effect. 1876 */ 1877 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1878 { 1879 struct uprobe *uprobe; 1880 1881 uprobe = utask->active_uprobe; 1882 if (utask->state == UTASK_SSTEP_ACK) 1883 arch_uprobe_post_xol(&uprobe->arch, regs); 1884 else if (utask->state == UTASK_SSTEP_TRAPPED) 1885 arch_uprobe_abort_xol(&uprobe->arch, regs); 1886 else 1887 WARN_ON_ONCE(1); 1888 1889 put_uprobe(uprobe); 1890 utask->active_uprobe = NULL; 1891 utask->state = UTASK_RUNNING; 1892 xol_free_insn_slot(current); 1893 1894 spin_lock_irq(¤t->sighand->siglock); 1895 recalc_sigpending(); /* see uprobe_deny_signal() */ 1896 spin_unlock_irq(¤t->sighand->siglock); 1897 } 1898 1899 /* 1900 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1901 * allows the thread to return from interrupt. After that handle_swbp() 1902 * sets utask->active_uprobe. 1903 * 1904 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1905 * and allows the thread to return from interrupt. 1906 * 1907 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1908 * uprobe_notify_resume(). 1909 */ 1910 void uprobe_notify_resume(struct pt_regs *regs) 1911 { 1912 struct uprobe_task *utask; 1913 1914 clear_thread_flag(TIF_UPROBE); 1915 1916 utask = current->utask; 1917 if (utask && utask->active_uprobe) 1918 handle_singlestep(utask, regs); 1919 else 1920 handle_swbp(regs); 1921 } 1922 1923 /* 1924 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1925 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1926 */ 1927 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1928 { 1929 if (!current->mm) 1930 return 0; 1931 1932 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1933 (!current->utask || !current->utask->return_instances)) 1934 return 0; 1935 1936 set_thread_flag(TIF_UPROBE); 1937 return 1; 1938 } 1939 1940 /* 1941 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1942 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1943 */ 1944 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1945 { 1946 struct uprobe_task *utask = current->utask; 1947 1948 if (!current->mm || !utask || !utask->active_uprobe) 1949 /* task is currently not uprobed */ 1950 return 0; 1951 1952 utask->state = UTASK_SSTEP_ACK; 1953 set_thread_flag(TIF_UPROBE); 1954 return 1; 1955 } 1956 1957 static struct notifier_block uprobe_exception_nb = { 1958 .notifier_call = arch_uprobe_exception_notify, 1959 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1960 }; 1961 1962 static int __init init_uprobes(void) 1963 { 1964 int i; 1965 1966 for (i = 0; i < UPROBES_HASH_SZ; i++) 1967 mutex_init(&uprobes_mmap_mutex[i]); 1968 1969 if (percpu_init_rwsem(&dup_mmap_sem)) 1970 return -ENOMEM; 1971 1972 return register_die_notifier(&uprobe_exception_nb); 1973 } 1974 __initcall(init_uprobes); 1975