1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/export.h> 31 #include <linux/rmap.h> /* anon_vma_prepare */ 32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 33 #include <linux/swap.h> /* try_to_free_swap */ 34 #include <linux/ptrace.h> /* user_enable_single_step */ 35 #include <linux/kdebug.h> /* notifier mechanism */ 36 #include "../../mm/internal.h" /* munlock_vma_page */ 37 #include <linux/percpu-rwsem.h> 38 #include <linux/task_work.h> 39 40 #include <linux/uprobes.h> 41 42 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 43 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 44 45 static struct rb_root uprobes_tree = RB_ROOT; 46 /* 47 * allows us to skip the uprobe_mmap if there are no uprobe events active 48 * at this time. Probably a fine grained per inode count is better? 49 */ 50 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 51 52 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 53 54 #define UPROBES_HASH_SZ 13 55 /* serialize uprobe->pending_list */ 56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 57 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 58 59 static struct percpu_rw_semaphore dup_mmap_sem; 60 61 /* Have a copy of original instruction */ 62 #define UPROBE_COPY_INSN 0 63 /* Can skip singlestep */ 64 #define UPROBE_SKIP_SSTEP 1 65 66 struct uprobe { 67 struct rb_node rb_node; /* node in the rb tree */ 68 atomic_t ref; 69 struct rw_semaphore register_rwsem; 70 struct rw_semaphore consumer_rwsem; 71 struct list_head pending_list; 72 struct uprobe_consumer *consumers; 73 struct inode *inode; /* Also hold a ref to inode */ 74 loff_t offset; 75 unsigned long flags; 76 struct arch_uprobe arch; 77 }; 78 79 struct return_instance { 80 struct uprobe *uprobe; 81 unsigned long func; 82 unsigned long orig_ret_vaddr; /* original return address */ 83 bool chained; /* true, if instance is nested */ 84 85 struct return_instance *next; /* keep as stack */ 86 }; 87 88 /* 89 * valid_vma: Verify if the specified vma is an executable vma 90 * Relax restrictions while unregistering: vm_flags might have 91 * changed after breakpoint was inserted. 92 * - is_register: indicates if we are in register context. 93 * - Return 1 if the specified virtual address is in an 94 * executable vma. 95 */ 96 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 97 { 98 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED; 99 100 if (is_register) 101 flags |= VM_WRITE; 102 103 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 104 } 105 106 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 107 { 108 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 109 } 110 111 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 112 { 113 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 114 } 115 116 /** 117 * __replace_page - replace page in vma by new page. 118 * based on replace_page in mm/ksm.c 119 * 120 * @vma: vma that holds the pte pointing to page 121 * @addr: address the old @page is mapped at 122 * @page: the cowed page we are replacing by kpage 123 * @kpage: the modified page we replace page by 124 * 125 * Returns 0 on success, -EFAULT on failure. 126 */ 127 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 128 struct page *page, struct page *kpage) 129 { 130 struct mm_struct *mm = vma->vm_mm; 131 spinlock_t *ptl; 132 pte_t *ptep; 133 int err; 134 /* For mmu_notifiers */ 135 const unsigned long mmun_start = addr; 136 const unsigned long mmun_end = addr + PAGE_SIZE; 137 138 /* For try_to_free_swap() and munlock_vma_page() below */ 139 lock_page(page); 140 141 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 142 err = -EAGAIN; 143 ptep = page_check_address(page, mm, addr, &ptl, 0); 144 if (!ptep) 145 goto unlock; 146 147 get_page(kpage); 148 page_add_new_anon_rmap(kpage, vma, addr); 149 150 if (!PageAnon(page)) { 151 dec_mm_counter(mm, MM_FILEPAGES); 152 inc_mm_counter(mm, MM_ANONPAGES); 153 } 154 155 flush_cache_page(vma, addr, pte_pfn(*ptep)); 156 ptep_clear_flush(vma, addr, ptep); 157 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 158 159 page_remove_rmap(page); 160 if (!page_mapped(page)) 161 try_to_free_swap(page); 162 pte_unmap_unlock(ptep, ptl); 163 164 if (vma->vm_flags & VM_LOCKED) 165 munlock_vma_page(page); 166 put_page(page); 167 168 err = 0; 169 unlock: 170 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 171 unlock_page(page); 172 return err; 173 } 174 175 /** 176 * is_swbp_insn - check if instruction is breakpoint instruction. 177 * @insn: instruction to be checked. 178 * Default implementation of is_swbp_insn 179 * Returns true if @insn is a breakpoint instruction. 180 */ 181 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 182 { 183 return *insn == UPROBE_SWBP_INSN; 184 } 185 186 /** 187 * is_trap_insn - check if instruction is breakpoint instruction. 188 * @insn: instruction to be checked. 189 * Default implementation of is_trap_insn 190 * Returns true if @insn is a breakpoint instruction. 191 * 192 * This function is needed for the case where an architecture has multiple 193 * trap instructions (like powerpc). 194 */ 195 bool __weak is_trap_insn(uprobe_opcode_t *insn) 196 { 197 return is_swbp_insn(insn); 198 } 199 200 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 201 { 202 void *kaddr = kmap_atomic(page); 203 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 204 kunmap_atomic(kaddr); 205 } 206 207 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 208 { 209 void *kaddr = kmap_atomic(page); 210 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 211 kunmap_atomic(kaddr); 212 } 213 214 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 215 { 216 uprobe_opcode_t old_opcode; 217 bool is_swbp; 218 219 /* 220 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 221 * We do not check if it is any other 'trap variant' which could 222 * be conditional trap instruction such as the one powerpc supports. 223 * 224 * The logic is that we do not care if the underlying instruction 225 * is a trap variant; uprobes always wins over any other (gdb) 226 * breakpoint. 227 */ 228 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 229 is_swbp = is_swbp_insn(&old_opcode); 230 231 if (is_swbp_insn(new_opcode)) { 232 if (is_swbp) /* register: already installed? */ 233 return 0; 234 } else { 235 if (!is_swbp) /* unregister: was it changed by us? */ 236 return 0; 237 } 238 239 return 1; 240 } 241 242 /* 243 * NOTE: 244 * Expect the breakpoint instruction to be the smallest size instruction for 245 * the architecture. If an arch has variable length instruction and the 246 * breakpoint instruction is not of the smallest length instruction 247 * supported by that architecture then we need to modify is_trap_at_addr and 248 * uprobe_write_opcode accordingly. This would never be a problem for archs 249 * that have fixed length instructions. 250 */ 251 252 /* 253 * uprobe_write_opcode - write the opcode at a given virtual address. 254 * @mm: the probed process address space. 255 * @vaddr: the virtual address to store the opcode. 256 * @opcode: opcode to be written at @vaddr. 257 * 258 * Called with mm->mmap_sem held (for read and with a reference to 259 * mm). 260 * 261 * For mm @mm, write the opcode at @vaddr. 262 * Return 0 (success) or a negative errno. 263 */ 264 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, 265 uprobe_opcode_t opcode) 266 { 267 struct page *old_page, *new_page; 268 struct vm_area_struct *vma; 269 int ret; 270 271 retry: 272 /* Read the page with vaddr into memory */ 273 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma); 274 if (ret <= 0) 275 return ret; 276 277 ret = verify_opcode(old_page, vaddr, &opcode); 278 if (ret <= 0) 279 goto put_old; 280 281 ret = -ENOMEM; 282 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 283 if (!new_page) 284 goto put_old; 285 286 __SetPageUptodate(new_page); 287 288 copy_highpage(new_page, old_page); 289 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 290 291 ret = anon_vma_prepare(vma); 292 if (ret) 293 goto put_new; 294 295 ret = __replace_page(vma, vaddr, old_page, new_page); 296 297 put_new: 298 page_cache_release(new_page); 299 put_old: 300 put_page(old_page); 301 302 if (unlikely(ret == -EAGAIN)) 303 goto retry; 304 return ret; 305 } 306 307 /** 308 * set_swbp - store breakpoint at a given address. 309 * @auprobe: arch specific probepoint information. 310 * @mm: the probed process address space. 311 * @vaddr: the virtual address to insert the opcode. 312 * 313 * For mm @mm, store the breakpoint instruction at @vaddr. 314 * Return 0 (success) or a negative errno. 315 */ 316 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 317 { 318 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN); 319 } 320 321 /** 322 * set_orig_insn - Restore the original instruction. 323 * @mm: the probed process address space. 324 * @auprobe: arch specific probepoint information. 325 * @vaddr: the virtual address to insert the opcode. 326 * 327 * For mm @mm, restore the original opcode (opcode) at @vaddr. 328 * Return 0 (success) or a negative errno. 329 */ 330 int __weak 331 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 332 { 333 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 334 } 335 336 static int match_uprobe(struct uprobe *l, struct uprobe *r) 337 { 338 if (l->inode < r->inode) 339 return -1; 340 341 if (l->inode > r->inode) 342 return 1; 343 344 if (l->offset < r->offset) 345 return -1; 346 347 if (l->offset > r->offset) 348 return 1; 349 350 return 0; 351 } 352 353 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 354 { 355 struct uprobe u = { .inode = inode, .offset = offset }; 356 struct rb_node *n = uprobes_tree.rb_node; 357 struct uprobe *uprobe; 358 int match; 359 360 while (n) { 361 uprobe = rb_entry(n, struct uprobe, rb_node); 362 match = match_uprobe(&u, uprobe); 363 if (!match) { 364 atomic_inc(&uprobe->ref); 365 return uprobe; 366 } 367 368 if (match < 0) 369 n = n->rb_left; 370 else 371 n = n->rb_right; 372 } 373 return NULL; 374 } 375 376 /* 377 * Find a uprobe corresponding to a given inode:offset 378 * Acquires uprobes_treelock 379 */ 380 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 381 { 382 struct uprobe *uprobe; 383 384 spin_lock(&uprobes_treelock); 385 uprobe = __find_uprobe(inode, offset); 386 spin_unlock(&uprobes_treelock); 387 388 return uprobe; 389 } 390 391 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 392 { 393 struct rb_node **p = &uprobes_tree.rb_node; 394 struct rb_node *parent = NULL; 395 struct uprobe *u; 396 int match; 397 398 while (*p) { 399 parent = *p; 400 u = rb_entry(parent, struct uprobe, rb_node); 401 match = match_uprobe(uprobe, u); 402 if (!match) { 403 atomic_inc(&u->ref); 404 return u; 405 } 406 407 if (match < 0) 408 p = &parent->rb_left; 409 else 410 p = &parent->rb_right; 411 412 } 413 414 u = NULL; 415 rb_link_node(&uprobe->rb_node, parent, p); 416 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 417 /* get access + creation ref */ 418 atomic_set(&uprobe->ref, 2); 419 420 return u; 421 } 422 423 /* 424 * Acquire uprobes_treelock. 425 * Matching uprobe already exists in rbtree; 426 * increment (access refcount) and return the matching uprobe. 427 * 428 * No matching uprobe; insert the uprobe in rb_tree; 429 * get a double refcount (access + creation) and return NULL. 430 */ 431 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 432 { 433 struct uprobe *u; 434 435 spin_lock(&uprobes_treelock); 436 u = __insert_uprobe(uprobe); 437 spin_unlock(&uprobes_treelock); 438 439 return u; 440 } 441 442 static void put_uprobe(struct uprobe *uprobe) 443 { 444 if (atomic_dec_and_test(&uprobe->ref)) 445 kfree(uprobe); 446 } 447 448 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 449 { 450 struct uprobe *uprobe, *cur_uprobe; 451 452 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 453 if (!uprobe) 454 return NULL; 455 456 uprobe->inode = igrab(inode); 457 uprobe->offset = offset; 458 init_rwsem(&uprobe->register_rwsem); 459 init_rwsem(&uprobe->consumer_rwsem); 460 /* For now assume that the instruction need not be single-stepped */ 461 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 462 463 /* add to uprobes_tree, sorted on inode:offset */ 464 cur_uprobe = insert_uprobe(uprobe); 465 466 /* a uprobe exists for this inode:offset combination */ 467 if (cur_uprobe) { 468 kfree(uprobe); 469 uprobe = cur_uprobe; 470 iput(inode); 471 } 472 473 return uprobe; 474 } 475 476 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 477 { 478 down_write(&uprobe->consumer_rwsem); 479 uc->next = uprobe->consumers; 480 uprobe->consumers = uc; 481 up_write(&uprobe->consumer_rwsem); 482 } 483 484 /* 485 * For uprobe @uprobe, delete the consumer @uc. 486 * Return true if the @uc is deleted successfully 487 * or return false. 488 */ 489 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 490 { 491 struct uprobe_consumer **con; 492 bool ret = false; 493 494 down_write(&uprobe->consumer_rwsem); 495 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 496 if (*con == uc) { 497 *con = uc->next; 498 ret = true; 499 break; 500 } 501 } 502 up_write(&uprobe->consumer_rwsem); 503 504 return ret; 505 } 506 507 static int __copy_insn(struct address_space *mapping, struct file *filp, 508 void *insn, int nbytes, loff_t offset) 509 { 510 struct page *page; 511 512 if (!mapping->a_ops->readpage) 513 return -EIO; 514 /* 515 * Ensure that the page that has the original instruction is 516 * populated and in page-cache. 517 */ 518 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp); 519 if (IS_ERR(page)) 520 return PTR_ERR(page); 521 522 copy_from_page(page, offset, insn, nbytes); 523 page_cache_release(page); 524 525 return 0; 526 } 527 528 static int copy_insn(struct uprobe *uprobe, struct file *filp) 529 { 530 struct address_space *mapping = uprobe->inode->i_mapping; 531 loff_t offs = uprobe->offset; 532 void *insn = uprobe->arch.insn; 533 int size = MAX_UINSN_BYTES; 534 int len, err = -EIO; 535 536 /* Copy only available bytes, -EIO if nothing was read */ 537 do { 538 if (offs >= i_size_read(uprobe->inode)) 539 break; 540 541 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 542 err = __copy_insn(mapping, filp, insn, len, offs); 543 if (err) 544 break; 545 546 insn += len; 547 offs += len; 548 size -= len; 549 } while (size); 550 551 return err; 552 } 553 554 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 555 struct mm_struct *mm, unsigned long vaddr) 556 { 557 int ret = 0; 558 559 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 560 return ret; 561 562 /* TODO: move this into _register, until then we abuse this sem. */ 563 down_write(&uprobe->consumer_rwsem); 564 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 565 goto out; 566 567 ret = copy_insn(uprobe, file); 568 if (ret) 569 goto out; 570 571 ret = -ENOTSUPP; 572 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn)) 573 goto out; 574 575 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 576 if (ret) 577 goto out; 578 579 /* uprobe_write_opcode() assumes we don't cross page boundary */ 580 BUG_ON((uprobe->offset & ~PAGE_MASK) + 581 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 582 583 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */ 584 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 585 586 out: 587 up_write(&uprobe->consumer_rwsem); 588 589 return ret; 590 } 591 592 static inline bool consumer_filter(struct uprobe_consumer *uc, 593 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 594 { 595 return !uc->filter || uc->filter(uc, ctx, mm); 596 } 597 598 static bool filter_chain(struct uprobe *uprobe, 599 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 600 { 601 struct uprobe_consumer *uc; 602 bool ret = false; 603 604 down_read(&uprobe->consumer_rwsem); 605 for (uc = uprobe->consumers; uc; uc = uc->next) { 606 ret = consumer_filter(uc, ctx, mm); 607 if (ret) 608 break; 609 } 610 up_read(&uprobe->consumer_rwsem); 611 612 return ret; 613 } 614 615 static int 616 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 617 struct vm_area_struct *vma, unsigned long vaddr) 618 { 619 bool first_uprobe; 620 int ret; 621 622 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 623 if (ret) 624 return ret; 625 626 /* 627 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 628 * the task can hit this breakpoint right after __replace_page(). 629 */ 630 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 631 if (first_uprobe) 632 set_bit(MMF_HAS_UPROBES, &mm->flags); 633 634 ret = set_swbp(&uprobe->arch, mm, vaddr); 635 if (!ret) 636 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 637 else if (first_uprobe) 638 clear_bit(MMF_HAS_UPROBES, &mm->flags); 639 640 return ret; 641 } 642 643 static int 644 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 645 { 646 set_bit(MMF_RECALC_UPROBES, &mm->flags); 647 return set_orig_insn(&uprobe->arch, mm, vaddr); 648 } 649 650 static inline bool uprobe_is_active(struct uprobe *uprobe) 651 { 652 return !RB_EMPTY_NODE(&uprobe->rb_node); 653 } 654 /* 655 * There could be threads that have already hit the breakpoint. They 656 * will recheck the current insn and restart if find_uprobe() fails. 657 * See find_active_uprobe(). 658 */ 659 static void delete_uprobe(struct uprobe *uprobe) 660 { 661 if (WARN_ON(!uprobe_is_active(uprobe))) 662 return; 663 664 spin_lock(&uprobes_treelock); 665 rb_erase(&uprobe->rb_node, &uprobes_tree); 666 spin_unlock(&uprobes_treelock); 667 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 668 iput(uprobe->inode); 669 put_uprobe(uprobe); 670 } 671 672 struct map_info { 673 struct map_info *next; 674 struct mm_struct *mm; 675 unsigned long vaddr; 676 }; 677 678 static inline struct map_info *free_map_info(struct map_info *info) 679 { 680 struct map_info *next = info->next; 681 kfree(info); 682 return next; 683 } 684 685 static struct map_info * 686 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 687 { 688 unsigned long pgoff = offset >> PAGE_SHIFT; 689 struct vm_area_struct *vma; 690 struct map_info *curr = NULL; 691 struct map_info *prev = NULL; 692 struct map_info *info; 693 int more = 0; 694 695 again: 696 mutex_lock(&mapping->i_mmap_mutex); 697 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 698 if (!valid_vma(vma, is_register)) 699 continue; 700 701 if (!prev && !more) { 702 /* 703 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 704 * reclaim. This is optimistic, no harm done if it fails. 705 */ 706 prev = kmalloc(sizeof(struct map_info), 707 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 708 if (prev) 709 prev->next = NULL; 710 } 711 if (!prev) { 712 more++; 713 continue; 714 } 715 716 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 717 continue; 718 719 info = prev; 720 prev = prev->next; 721 info->next = curr; 722 curr = info; 723 724 info->mm = vma->vm_mm; 725 info->vaddr = offset_to_vaddr(vma, offset); 726 } 727 mutex_unlock(&mapping->i_mmap_mutex); 728 729 if (!more) 730 goto out; 731 732 prev = curr; 733 while (curr) { 734 mmput(curr->mm); 735 curr = curr->next; 736 } 737 738 do { 739 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 740 if (!info) { 741 curr = ERR_PTR(-ENOMEM); 742 goto out; 743 } 744 info->next = prev; 745 prev = info; 746 } while (--more); 747 748 goto again; 749 out: 750 while (prev) 751 prev = free_map_info(prev); 752 return curr; 753 } 754 755 static int 756 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 757 { 758 bool is_register = !!new; 759 struct map_info *info; 760 int err = 0; 761 762 percpu_down_write(&dup_mmap_sem); 763 info = build_map_info(uprobe->inode->i_mapping, 764 uprobe->offset, is_register); 765 if (IS_ERR(info)) { 766 err = PTR_ERR(info); 767 goto out; 768 } 769 770 while (info) { 771 struct mm_struct *mm = info->mm; 772 struct vm_area_struct *vma; 773 774 if (err && is_register) 775 goto free; 776 777 down_write(&mm->mmap_sem); 778 vma = find_vma(mm, info->vaddr); 779 if (!vma || !valid_vma(vma, is_register) || 780 file_inode(vma->vm_file) != uprobe->inode) 781 goto unlock; 782 783 if (vma->vm_start > info->vaddr || 784 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 785 goto unlock; 786 787 if (is_register) { 788 /* consult only the "caller", new consumer. */ 789 if (consumer_filter(new, 790 UPROBE_FILTER_REGISTER, mm)) 791 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 792 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 793 if (!filter_chain(uprobe, 794 UPROBE_FILTER_UNREGISTER, mm)) 795 err |= remove_breakpoint(uprobe, mm, info->vaddr); 796 } 797 798 unlock: 799 up_write(&mm->mmap_sem); 800 free: 801 mmput(mm); 802 info = free_map_info(info); 803 } 804 out: 805 percpu_up_write(&dup_mmap_sem); 806 return err; 807 } 808 809 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc) 810 { 811 consumer_add(uprobe, uc); 812 return register_for_each_vma(uprobe, uc); 813 } 814 815 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 816 { 817 int err; 818 819 if (!consumer_del(uprobe, uc)) /* WARN? */ 820 return; 821 822 err = register_for_each_vma(uprobe, NULL); 823 /* TODO : cant unregister? schedule a worker thread */ 824 if (!uprobe->consumers && !err) 825 delete_uprobe(uprobe); 826 } 827 828 /* 829 * uprobe_register - register a probe 830 * @inode: the file in which the probe has to be placed. 831 * @offset: offset from the start of the file. 832 * @uc: information on howto handle the probe.. 833 * 834 * Apart from the access refcount, uprobe_register() takes a creation 835 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 836 * inserted into the rbtree (i.e first consumer for a @inode:@offset 837 * tuple). Creation refcount stops uprobe_unregister from freeing the 838 * @uprobe even before the register operation is complete. Creation 839 * refcount is released when the last @uc for the @uprobe 840 * unregisters. 841 * 842 * Return errno if it cannot successully install probes 843 * else return 0 (success) 844 */ 845 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 846 { 847 struct uprobe *uprobe; 848 int ret; 849 850 /* Uprobe must have at least one set consumer */ 851 if (!uc->handler && !uc->ret_handler) 852 return -EINVAL; 853 854 /* Racy, just to catch the obvious mistakes */ 855 if (offset > i_size_read(inode)) 856 return -EINVAL; 857 858 retry: 859 uprobe = alloc_uprobe(inode, offset); 860 if (!uprobe) 861 return -ENOMEM; 862 /* 863 * We can race with uprobe_unregister()->delete_uprobe(). 864 * Check uprobe_is_active() and retry if it is false. 865 */ 866 down_write(&uprobe->register_rwsem); 867 ret = -EAGAIN; 868 if (likely(uprobe_is_active(uprobe))) { 869 ret = __uprobe_register(uprobe, uc); 870 if (ret) 871 __uprobe_unregister(uprobe, uc); 872 } 873 up_write(&uprobe->register_rwsem); 874 put_uprobe(uprobe); 875 876 if (unlikely(ret == -EAGAIN)) 877 goto retry; 878 return ret; 879 } 880 EXPORT_SYMBOL_GPL(uprobe_register); 881 882 /* 883 * uprobe_apply - unregister a already registered probe. 884 * @inode: the file in which the probe has to be removed. 885 * @offset: offset from the start of the file. 886 * @uc: consumer which wants to add more or remove some breakpoints 887 * @add: add or remove the breakpoints 888 */ 889 int uprobe_apply(struct inode *inode, loff_t offset, 890 struct uprobe_consumer *uc, bool add) 891 { 892 struct uprobe *uprobe; 893 struct uprobe_consumer *con; 894 int ret = -ENOENT; 895 896 uprobe = find_uprobe(inode, offset); 897 if (!uprobe) 898 return ret; 899 900 down_write(&uprobe->register_rwsem); 901 for (con = uprobe->consumers; con && con != uc ; con = con->next) 902 ; 903 if (con) 904 ret = register_for_each_vma(uprobe, add ? uc : NULL); 905 up_write(&uprobe->register_rwsem); 906 put_uprobe(uprobe); 907 908 return ret; 909 } 910 911 /* 912 * uprobe_unregister - unregister a already registered probe. 913 * @inode: the file in which the probe has to be removed. 914 * @offset: offset from the start of the file. 915 * @uc: identify which probe if multiple probes are colocated. 916 */ 917 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 918 { 919 struct uprobe *uprobe; 920 921 uprobe = find_uprobe(inode, offset); 922 if (!uprobe) 923 return; 924 925 down_write(&uprobe->register_rwsem); 926 __uprobe_unregister(uprobe, uc); 927 up_write(&uprobe->register_rwsem); 928 put_uprobe(uprobe); 929 } 930 EXPORT_SYMBOL_GPL(uprobe_unregister); 931 932 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 933 { 934 struct vm_area_struct *vma; 935 int err = 0; 936 937 down_read(&mm->mmap_sem); 938 for (vma = mm->mmap; vma; vma = vma->vm_next) { 939 unsigned long vaddr; 940 loff_t offset; 941 942 if (!valid_vma(vma, false) || 943 file_inode(vma->vm_file) != uprobe->inode) 944 continue; 945 946 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 947 if (uprobe->offset < offset || 948 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 949 continue; 950 951 vaddr = offset_to_vaddr(vma, uprobe->offset); 952 err |= remove_breakpoint(uprobe, mm, vaddr); 953 } 954 up_read(&mm->mmap_sem); 955 956 return err; 957 } 958 959 static struct rb_node * 960 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 961 { 962 struct rb_node *n = uprobes_tree.rb_node; 963 964 while (n) { 965 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 966 967 if (inode < u->inode) { 968 n = n->rb_left; 969 } else if (inode > u->inode) { 970 n = n->rb_right; 971 } else { 972 if (max < u->offset) 973 n = n->rb_left; 974 else if (min > u->offset) 975 n = n->rb_right; 976 else 977 break; 978 } 979 } 980 981 return n; 982 } 983 984 /* 985 * For a given range in vma, build a list of probes that need to be inserted. 986 */ 987 static void build_probe_list(struct inode *inode, 988 struct vm_area_struct *vma, 989 unsigned long start, unsigned long end, 990 struct list_head *head) 991 { 992 loff_t min, max; 993 struct rb_node *n, *t; 994 struct uprobe *u; 995 996 INIT_LIST_HEAD(head); 997 min = vaddr_to_offset(vma, start); 998 max = min + (end - start) - 1; 999 1000 spin_lock(&uprobes_treelock); 1001 n = find_node_in_range(inode, min, max); 1002 if (n) { 1003 for (t = n; t; t = rb_prev(t)) { 1004 u = rb_entry(t, struct uprobe, rb_node); 1005 if (u->inode != inode || u->offset < min) 1006 break; 1007 list_add(&u->pending_list, head); 1008 atomic_inc(&u->ref); 1009 } 1010 for (t = n; (t = rb_next(t)); ) { 1011 u = rb_entry(t, struct uprobe, rb_node); 1012 if (u->inode != inode || u->offset > max) 1013 break; 1014 list_add(&u->pending_list, head); 1015 atomic_inc(&u->ref); 1016 } 1017 } 1018 spin_unlock(&uprobes_treelock); 1019 } 1020 1021 /* 1022 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1023 * 1024 * Currently we ignore all errors and always return 0, the callers 1025 * can't handle the failure anyway. 1026 */ 1027 int uprobe_mmap(struct vm_area_struct *vma) 1028 { 1029 struct list_head tmp_list; 1030 struct uprobe *uprobe, *u; 1031 struct inode *inode; 1032 1033 if (no_uprobe_events() || !valid_vma(vma, true)) 1034 return 0; 1035 1036 inode = file_inode(vma->vm_file); 1037 if (!inode) 1038 return 0; 1039 1040 mutex_lock(uprobes_mmap_hash(inode)); 1041 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1042 /* 1043 * We can race with uprobe_unregister(), this uprobe can be already 1044 * removed. But in this case filter_chain() must return false, all 1045 * consumers have gone away. 1046 */ 1047 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1048 if (!fatal_signal_pending(current) && 1049 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1050 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1051 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1052 } 1053 put_uprobe(uprobe); 1054 } 1055 mutex_unlock(uprobes_mmap_hash(inode)); 1056 1057 return 0; 1058 } 1059 1060 static bool 1061 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1062 { 1063 loff_t min, max; 1064 struct inode *inode; 1065 struct rb_node *n; 1066 1067 inode = file_inode(vma->vm_file); 1068 1069 min = vaddr_to_offset(vma, start); 1070 max = min + (end - start) - 1; 1071 1072 spin_lock(&uprobes_treelock); 1073 n = find_node_in_range(inode, min, max); 1074 spin_unlock(&uprobes_treelock); 1075 1076 return !!n; 1077 } 1078 1079 /* 1080 * Called in context of a munmap of a vma. 1081 */ 1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1083 { 1084 if (no_uprobe_events() || !valid_vma(vma, false)) 1085 return; 1086 1087 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1088 return; 1089 1090 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1091 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1092 return; 1093 1094 if (vma_has_uprobes(vma, start, end)) 1095 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1096 } 1097 1098 /* Slot allocation for XOL */ 1099 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1100 { 1101 int ret = -EALREADY; 1102 1103 down_write(&mm->mmap_sem); 1104 if (mm->uprobes_state.xol_area) 1105 goto fail; 1106 1107 if (!area->vaddr) { 1108 /* Try to map as high as possible, this is only a hint. */ 1109 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1110 PAGE_SIZE, 0, 0); 1111 if (area->vaddr & ~PAGE_MASK) { 1112 ret = area->vaddr; 1113 goto fail; 1114 } 1115 } 1116 1117 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1118 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1119 if (ret) 1120 goto fail; 1121 1122 smp_wmb(); /* pairs with get_xol_area() */ 1123 mm->uprobes_state.xol_area = area; 1124 fail: 1125 up_write(&mm->mmap_sem); 1126 1127 return ret; 1128 } 1129 1130 static struct xol_area *__create_xol_area(unsigned long vaddr) 1131 { 1132 struct mm_struct *mm = current->mm; 1133 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1134 struct xol_area *area; 1135 1136 area = kmalloc(sizeof(*area), GFP_KERNEL); 1137 if (unlikely(!area)) 1138 goto out; 1139 1140 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1141 if (!area->bitmap) 1142 goto free_area; 1143 1144 area->page = alloc_page(GFP_HIGHUSER); 1145 if (!area->page) 1146 goto free_bitmap; 1147 1148 area->vaddr = vaddr; 1149 init_waitqueue_head(&area->wq); 1150 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1151 set_bit(0, area->bitmap); 1152 atomic_set(&area->slot_count, 1); 1153 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE); 1154 1155 if (!xol_add_vma(mm, area)) 1156 return area; 1157 1158 __free_page(area->page); 1159 free_bitmap: 1160 kfree(area->bitmap); 1161 free_area: 1162 kfree(area); 1163 out: 1164 return NULL; 1165 } 1166 1167 /* 1168 * get_xol_area - Allocate process's xol_area if necessary. 1169 * This area will be used for storing instructions for execution out of line. 1170 * 1171 * Returns the allocated area or NULL. 1172 */ 1173 static struct xol_area *get_xol_area(void) 1174 { 1175 struct mm_struct *mm = current->mm; 1176 struct xol_area *area; 1177 1178 if (!mm->uprobes_state.xol_area) 1179 __create_xol_area(0); 1180 1181 area = mm->uprobes_state.xol_area; 1182 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1183 return area; 1184 } 1185 1186 /* 1187 * uprobe_clear_state - Free the area allocated for slots. 1188 */ 1189 void uprobe_clear_state(struct mm_struct *mm) 1190 { 1191 struct xol_area *area = mm->uprobes_state.xol_area; 1192 1193 if (!area) 1194 return; 1195 1196 put_page(area->page); 1197 kfree(area->bitmap); 1198 kfree(area); 1199 } 1200 1201 void uprobe_start_dup_mmap(void) 1202 { 1203 percpu_down_read(&dup_mmap_sem); 1204 } 1205 1206 void uprobe_end_dup_mmap(void) 1207 { 1208 percpu_up_read(&dup_mmap_sem); 1209 } 1210 1211 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1212 { 1213 newmm->uprobes_state.xol_area = NULL; 1214 1215 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1216 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1217 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1218 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1219 } 1220 } 1221 1222 /* 1223 * - search for a free slot. 1224 */ 1225 static unsigned long xol_take_insn_slot(struct xol_area *area) 1226 { 1227 unsigned long slot_addr; 1228 int slot_nr; 1229 1230 do { 1231 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1232 if (slot_nr < UINSNS_PER_PAGE) { 1233 if (!test_and_set_bit(slot_nr, area->bitmap)) 1234 break; 1235 1236 slot_nr = UINSNS_PER_PAGE; 1237 continue; 1238 } 1239 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1240 } while (slot_nr >= UINSNS_PER_PAGE); 1241 1242 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1243 atomic_inc(&area->slot_count); 1244 1245 return slot_addr; 1246 } 1247 1248 /* 1249 * xol_get_insn_slot - allocate a slot for xol. 1250 * Returns the allocated slot address or 0. 1251 */ 1252 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1253 { 1254 struct xol_area *area; 1255 unsigned long xol_vaddr; 1256 1257 area = get_xol_area(); 1258 if (!area) 1259 return 0; 1260 1261 xol_vaddr = xol_take_insn_slot(area); 1262 if (unlikely(!xol_vaddr)) 1263 return 0; 1264 1265 /* Initialize the slot */ 1266 copy_to_page(area->page, xol_vaddr, 1267 uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1268 /* 1269 * We probably need flush_icache_user_range() but it needs vma. 1270 * This should work on supported architectures too. 1271 */ 1272 flush_dcache_page(area->page); 1273 1274 return xol_vaddr; 1275 } 1276 1277 /* 1278 * xol_free_insn_slot - If slot was earlier allocated by 1279 * @xol_get_insn_slot(), make the slot available for 1280 * subsequent requests. 1281 */ 1282 static void xol_free_insn_slot(struct task_struct *tsk) 1283 { 1284 struct xol_area *area; 1285 unsigned long vma_end; 1286 unsigned long slot_addr; 1287 1288 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1289 return; 1290 1291 slot_addr = tsk->utask->xol_vaddr; 1292 if (unlikely(!slot_addr)) 1293 return; 1294 1295 area = tsk->mm->uprobes_state.xol_area; 1296 vma_end = area->vaddr + PAGE_SIZE; 1297 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1298 unsigned long offset; 1299 int slot_nr; 1300 1301 offset = slot_addr - area->vaddr; 1302 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1303 if (slot_nr >= UINSNS_PER_PAGE) 1304 return; 1305 1306 clear_bit(slot_nr, area->bitmap); 1307 atomic_dec(&area->slot_count); 1308 if (waitqueue_active(&area->wq)) 1309 wake_up(&area->wq); 1310 1311 tsk->utask->xol_vaddr = 0; 1312 } 1313 } 1314 1315 /** 1316 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1317 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1318 * instruction. 1319 * Return the address of the breakpoint instruction. 1320 */ 1321 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1322 { 1323 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1324 } 1325 1326 /* 1327 * Called with no locks held. 1328 * Called in context of a exiting or a exec-ing thread. 1329 */ 1330 void uprobe_free_utask(struct task_struct *t) 1331 { 1332 struct uprobe_task *utask = t->utask; 1333 struct return_instance *ri, *tmp; 1334 1335 if (!utask) 1336 return; 1337 1338 if (utask->active_uprobe) 1339 put_uprobe(utask->active_uprobe); 1340 1341 ri = utask->return_instances; 1342 while (ri) { 1343 tmp = ri; 1344 ri = ri->next; 1345 1346 put_uprobe(tmp->uprobe); 1347 kfree(tmp); 1348 } 1349 1350 xol_free_insn_slot(t); 1351 kfree(utask); 1352 t->utask = NULL; 1353 } 1354 1355 /* 1356 * Allocate a uprobe_task object for the task if if necessary. 1357 * Called when the thread hits a breakpoint. 1358 * 1359 * Returns: 1360 * - pointer to new uprobe_task on success 1361 * - NULL otherwise 1362 */ 1363 static struct uprobe_task *get_utask(void) 1364 { 1365 if (!current->utask) 1366 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1367 return current->utask; 1368 } 1369 1370 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1371 { 1372 struct uprobe_task *n_utask; 1373 struct return_instance **p, *o, *n; 1374 1375 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1376 if (!n_utask) 1377 return -ENOMEM; 1378 t->utask = n_utask; 1379 1380 p = &n_utask->return_instances; 1381 for (o = o_utask->return_instances; o; o = o->next) { 1382 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1383 if (!n) 1384 return -ENOMEM; 1385 1386 *n = *o; 1387 atomic_inc(&n->uprobe->ref); 1388 n->next = NULL; 1389 1390 *p = n; 1391 p = &n->next; 1392 n_utask->depth++; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static void uprobe_warn(struct task_struct *t, const char *msg) 1399 { 1400 pr_warn("uprobe: %s:%d failed to %s\n", 1401 current->comm, current->pid, msg); 1402 } 1403 1404 static void dup_xol_work(struct callback_head *work) 1405 { 1406 kfree(work); 1407 1408 if (current->flags & PF_EXITING) 1409 return; 1410 1411 if (!__create_xol_area(current->utask->vaddr)) 1412 uprobe_warn(current, "dup xol area"); 1413 } 1414 1415 /* 1416 * Called in context of a new clone/fork from copy_process. 1417 */ 1418 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1419 { 1420 struct uprobe_task *utask = current->utask; 1421 struct mm_struct *mm = current->mm; 1422 struct callback_head *work; 1423 struct xol_area *area; 1424 1425 t->utask = NULL; 1426 1427 if (!utask || !utask->return_instances) 1428 return; 1429 1430 if (mm == t->mm && !(flags & CLONE_VFORK)) 1431 return; 1432 1433 if (dup_utask(t, utask)) 1434 return uprobe_warn(t, "dup ret instances"); 1435 1436 /* The task can fork() after dup_xol_work() fails */ 1437 area = mm->uprobes_state.xol_area; 1438 if (!area) 1439 return uprobe_warn(t, "dup xol area"); 1440 1441 if (mm == t->mm) 1442 return; 1443 1444 /* TODO: move it into the union in uprobe_task */ 1445 work = kmalloc(sizeof(*work), GFP_KERNEL); 1446 if (!work) 1447 return uprobe_warn(t, "dup xol area"); 1448 1449 t->utask->vaddr = area->vaddr; 1450 init_task_work(work, dup_xol_work); 1451 task_work_add(t, work, true); 1452 } 1453 1454 /* 1455 * Current area->vaddr notion assume the trampoline address is always 1456 * equal area->vaddr. 1457 * 1458 * Returns -1 in case the xol_area is not allocated. 1459 */ 1460 static unsigned long get_trampoline_vaddr(void) 1461 { 1462 struct xol_area *area; 1463 unsigned long trampoline_vaddr = -1; 1464 1465 area = current->mm->uprobes_state.xol_area; 1466 smp_read_barrier_depends(); 1467 if (area) 1468 trampoline_vaddr = area->vaddr; 1469 1470 return trampoline_vaddr; 1471 } 1472 1473 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1474 { 1475 struct return_instance *ri; 1476 struct uprobe_task *utask; 1477 unsigned long orig_ret_vaddr, trampoline_vaddr; 1478 bool chained = false; 1479 1480 if (!get_xol_area()) 1481 return; 1482 1483 utask = get_utask(); 1484 if (!utask) 1485 return; 1486 1487 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1488 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1489 " nestedness limit pid/tgid=%d/%d\n", 1490 current->pid, current->tgid); 1491 return; 1492 } 1493 1494 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL); 1495 if (!ri) 1496 goto fail; 1497 1498 trampoline_vaddr = get_trampoline_vaddr(); 1499 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1500 if (orig_ret_vaddr == -1) 1501 goto fail; 1502 1503 /* 1504 * We don't want to keep trampoline address in stack, rather keep the 1505 * original return address of first caller thru all the consequent 1506 * instances. This also makes breakpoint unwrapping easier. 1507 */ 1508 if (orig_ret_vaddr == trampoline_vaddr) { 1509 if (!utask->return_instances) { 1510 /* 1511 * This situation is not possible. Likely we have an 1512 * attack from user-space. 1513 */ 1514 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n", 1515 current->pid, current->tgid); 1516 goto fail; 1517 } 1518 1519 chained = true; 1520 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1521 } 1522 1523 atomic_inc(&uprobe->ref); 1524 ri->uprobe = uprobe; 1525 ri->func = instruction_pointer(regs); 1526 ri->orig_ret_vaddr = orig_ret_vaddr; 1527 ri->chained = chained; 1528 1529 utask->depth++; 1530 1531 /* add instance to the stack */ 1532 ri->next = utask->return_instances; 1533 utask->return_instances = ri; 1534 1535 return; 1536 1537 fail: 1538 kfree(ri); 1539 } 1540 1541 /* Prepare to single-step probed instruction out of line. */ 1542 static int 1543 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1544 { 1545 struct uprobe_task *utask; 1546 unsigned long xol_vaddr; 1547 int err; 1548 1549 utask = get_utask(); 1550 if (!utask) 1551 return -ENOMEM; 1552 1553 xol_vaddr = xol_get_insn_slot(uprobe); 1554 if (!xol_vaddr) 1555 return -ENOMEM; 1556 1557 utask->xol_vaddr = xol_vaddr; 1558 utask->vaddr = bp_vaddr; 1559 1560 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1561 if (unlikely(err)) { 1562 xol_free_insn_slot(current); 1563 return err; 1564 } 1565 1566 utask->active_uprobe = uprobe; 1567 utask->state = UTASK_SSTEP; 1568 return 0; 1569 } 1570 1571 /* 1572 * If we are singlestepping, then ensure this thread is not connected to 1573 * non-fatal signals until completion of singlestep. When xol insn itself 1574 * triggers the signal, restart the original insn even if the task is 1575 * already SIGKILL'ed (since coredump should report the correct ip). This 1576 * is even more important if the task has a handler for SIGSEGV/etc, The 1577 * _same_ instruction should be repeated again after return from the signal 1578 * handler, and SSTEP can never finish in this case. 1579 */ 1580 bool uprobe_deny_signal(void) 1581 { 1582 struct task_struct *t = current; 1583 struct uprobe_task *utask = t->utask; 1584 1585 if (likely(!utask || !utask->active_uprobe)) 1586 return false; 1587 1588 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1589 1590 if (signal_pending(t)) { 1591 spin_lock_irq(&t->sighand->siglock); 1592 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1593 spin_unlock_irq(&t->sighand->siglock); 1594 1595 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1596 utask->state = UTASK_SSTEP_TRAPPED; 1597 set_tsk_thread_flag(t, TIF_UPROBE); 1598 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1599 } 1600 } 1601 1602 return true; 1603 } 1604 1605 /* 1606 * Avoid singlestepping the original instruction if the original instruction 1607 * is a NOP or can be emulated. 1608 */ 1609 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1610 { 1611 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) { 1612 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1613 return true; 1614 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags); 1615 } 1616 return false; 1617 } 1618 1619 static void mmf_recalc_uprobes(struct mm_struct *mm) 1620 { 1621 struct vm_area_struct *vma; 1622 1623 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1624 if (!valid_vma(vma, false)) 1625 continue; 1626 /* 1627 * This is not strictly accurate, we can race with 1628 * uprobe_unregister() and see the already removed 1629 * uprobe if delete_uprobe() was not yet called. 1630 * Or this uprobe can be filtered out. 1631 */ 1632 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1633 return; 1634 } 1635 1636 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1637 } 1638 1639 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1640 { 1641 struct page *page; 1642 uprobe_opcode_t opcode; 1643 int result; 1644 1645 pagefault_disable(); 1646 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 1647 sizeof(opcode)); 1648 pagefault_enable(); 1649 1650 if (likely(result == 0)) 1651 goto out; 1652 1653 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 1654 if (result < 0) 1655 return result; 1656 1657 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1658 put_page(page); 1659 out: 1660 /* This needs to return true for any variant of the trap insn */ 1661 return is_trap_insn(&opcode); 1662 } 1663 1664 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1665 { 1666 struct mm_struct *mm = current->mm; 1667 struct uprobe *uprobe = NULL; 1668 struct vm_area_struct *vma; 1669 1670 down_read(&mm->mmap_sem); 1671 vma = find_vma(mm, bp_vaddr); 1672 if (vma && vma->vm_start <= bp_vaddr) { 1673 if (valid_vma(vma, false)) { 1674 struct inode *inode = file_inode(vma->vm_file); 1675 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1676 1677 uprobe = find_uprobe(inode, offset); 1678 } 1679 1680 if (!uprobe) 1681 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 1682 } else { 1683 *is_swbp = -EFAULT; 1684 } 1685 1686 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1687 mmf_recalc_uprobes(mm); 1688 up_read(&mm->mmap_sem); 1689 1690 return uprobe; 1691 } 1692 1693 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 1694 { 1695 struct uprobe_consumer *uc; 1696 int remove = UPROBE_HANDLER_REMOVE; 1697 bool need_prep = false; /* prepare return uprobe, when needed */ 1698 1699 down_read(&uprobe->register_rwsem); 1700 for (uc = uprobe->consumers; uc; uc = uc->next) { 1701 int rc = 0; 1702 1703 if (uc->handler) { 1704 rc = uc->handler(uc, regs); 1705 WARN(rc & ~UPROBE_HANDLER_MASK, 1706 "bad rc=0x%x from %pf()\n", rc, uc->handler); 1707 } 1708 1709 if (uc->ret_handler) 1710 need_prep = true; 1711 1712 remove &= rc; 1713 } 1714 1715 if (need_prep && !remove) 1716 prepare_uretprobe(uprobe, regs); /* put bp at return */ 1717 1718 if (remove && uprobe->consumers) { 1719 WARN_ON(!uprobe_is_active(uprobe)); 1720 unapply_uprobe(uprobe, current->mm); 1721 } 1722 up_read(&uprobe->register_rwsem); 1723 } 1724 1725 static void 1726 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 1727 { 1728 struct uprobe *uprobe = ri->uprobe; 1729 struct uprobe_consumer *uc; 1730 1731 down_read(&uprobe->register_rwsem); 1732 for (uc = uprobe->consumers; uc; uc = uc->next) { 1733 if (uc->ret_handler) 1734 uc->ret_handler(uc, ri->func, regs); 1735 } 1736 up_read(&uprobe->register_rwsem); 1737 } 1738 1739 static bool handle_trampoline(struct pt_regs *regs) 1740 { 1741 struct uprobe_task *utask; 1742 struct return_instance *ri, *tmp; 1743 bool chained; 1744 1745 utask = current->utask; 1746 if (!utask) 1747 return false; 1748 1749 ri = utask->return_instances; 1750 if (!ri) 1751 return false; 1752 1753 /* 1754 * TODO: we should throw out return_instance's invalidated by 1755 * longjmp(), currently we assume that the probed function always 1756 * returns. 1757 */ 1758 instruction_pointer_set(regs, ri->orig_ret_vaddr); 1759 1760 for (;;) { 1761 handle_uretprobe_chain(ri, regs); 1762 1763 chained = ri->chained; 1764 put_uprobe(ri->uprobe); 1765 1766 tmp = ri; 1767 ri = ri->next; 1768 kfree(tmp); 1769 utask->depth--; 1770 1771 if (!chained) 1772 break; 1773 BUG_ON(!ri); 1774 } 1775 1776 utask->return_instances = ri; 1777 1778 return true; 1779 } 1780 1781 /* 1782 * Run handler and ask thread to singlestep. 1783 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1784 */ 1785 static void handle_swbp(struct pt_regs *regs) 1786 { 1787 struct uprobe *uprobe; 1788 unsigned long bp_vaddr; 1789 int uninitialized_var(is_swbp); 1790 1791 bp_vaddr = uprobe_get_swbp_addr(regs); 1792 if (bp_vaddr == get_trampoline_vaddr()) { 1793 if (handle_trampoline(regs)) 1794 return; 1795 1796 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n", 1797 current->pid, current->tgid); 1798 } 1799 1800 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1801 if (!uprobe) { 1802 if (is_swbp > 0) { 1803 /* No matching uprobe; signal SIGTRAP. */ 1804 send_sig(SIGTRAP, current, 0); 1805 } else { 1806 /* 1807 * Either we raced with uprobe_unregister() or we can't 1808 * access this memory. The latter is only possible if 1809 * another thread plays with our ->mm. In both cases 1810 * we can simply restart. If this vma was unmapped we 1811 * can pretend this insn was not executed yet and get 1812 * the (correct) SIGSEGV after restart. 1813 */ 1814 instruction_pointer_set(regs, bp_vaddr); 1815 } 1816 return; 1817 } 1818 1819 /* change it in advance for ->handler() and restart */ 1820 instruction_pointer_set(regs, bp_vaddr); 1821 1822 /* 1823 * TODO: move copy_insn/etc into _register and remove this hack. 1824 * After we hit the bp, _unregister + _register can install the 1825 * new and not-yet-analyzed uprobe at the same address, restart. 1826 */ 1827 smp_rmb(); /* pairs with wmb() in install_breakpoint() */ 1828 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 1829 goto out; 1830 1831 handler_chain(uprobe, regs); 1832 if (can_skip_sstep(uprobe, regs)) 1833 goto out; 1834 1835 if (!pre_ssout(uprobe, regs, bp_vaddr)) 1836 return; 1837 1838 /* can_skip_sstep() succeeded, or restart if can't singlestep */ 1839 out: 1840 put_uprobe(uprobe); 1841 } 1842 1843 /* 1844 * Perform required fix-ups and disable singlestep. 1845 * Allow pending signals to take effect. 1846 */ 1847 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1848 { 1849 struct uprobe *uprobe; 1850 1851 uprobe = utask->active_uprobe; 1852 if (utask->state == UTASK_SSTEP_ACK) 1853 arch_uprobe_post_xol(&uprobe->arch, regs); 1854 else if (utask->state == UTASK_SSTEP_TRAPPED) 1855 arch_uprobe_abort_xol(&uprobe->arch, regs); 1856 else 1857 WARN_ON_ONCE(1); 1858 1859 put_uprobe(uprobe); 1860 utask->active_uprobe = NULL; 1861 utask->state = UTASK_RUNNING; 1862 xol_free_insn_slot(current); 1863 1864 spin_lock_irq(¤t->sighand->siglock); 1865 recalc_sigpending(); /* see uprobe_deny_signal() */ 1866 spin_unlock_irq(¤t->sighand->siglock); 1867 } 1868 1869 /* 1870 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1871 * allows the thread to return from interrupt. After that handle_swbp() 1872 * sets utask->active_uprobe. 1873 * 1874 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1875 * and allows the thread to return from interrupt. 1876 * 1877 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1878 * uprobe_notify_resume(). 1879 */ 1880 void uprobe_notify_resume(struct pt_regs *regs) 1881 { 1882 struct uprobe_task *utask; 1883 1884 clear_thread_flag(TIF_UPROBE); 1885 1886 utask = current->utask; 1887 if (utask && utask->active_uprobe) 1888 handle_singlestep(utask, regs); 1889 else 1890 handle_swbp(regs); 1891 } 1892 1893 /* 1894 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1895 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1896 */ 1897 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1898 { 1899 if (!current->mm) 1900 return 0; 1901 1902 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 1903 (!current->utask || !current->utask->return_instances)) 1904 return 0; 1905 1906 set_thread_flag(TIF_UPROBE); 1907 return 1; 1908 } 1909 1910 /* 1911 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1912 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1913 */ 1914 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1915 { 1916 struct uprobe_task *utask = current->utask; 1917 1918 if (!current->mm || !utask || !utask->active_uprobe) 1919 /* task is currently not uprobed */ 1920 return 0; 1921 1922 utask->state = UTASK_SSTEP_ACK; 1923 set_thread_flag(TIF_UPROBE); 1924 return 1; 1925 } 1926 1927 static struct notifier_block uprobe_exception_nb = { 1928 .notifier_call = arch_uprobe_exception_notify, 1929 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1930 }; 1931 1932 static int __init init_uprobes(void) 1933 { 1934 int i; 1935 1936 for (i = 0; i < UPROBES_HASH_SZ; i++) 1937 mutex_init(&uprobes_mmap_mutex[i]); 1938 1939 if (percpu_init_rwsem(&dup_mmap_sem)) 1940 return -ENOMEM; 1941 1942 return register_die_notifier(&uprobe_exception_nb); 1943 } 1944 __initcall(init_uprobes); 1945