1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/khugepaged.h> 30 31 #include <linux/uprobes.h> 32 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 35 36 static struct rb_root uprobes_tree = RB_ROOT; 37 /* 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 39 * at this time. Probably a fine grained per inode count is better? 40 */ 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 42 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 45 #define UPROBES_HASH_SZ 13 46 /* serialize uprobe->pending_list */ 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 49 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 51 52 /* Have a copy of original instruction */ 53 #define UPROBE_COPY_INSN 0 54 55 struct uprobe { 56 struct rb_node rb_node; /* node in the rb tree */ 57 refcount_t ref; 58 struct rw_semaphore register_rwsem; 59 struct rw_semaphore consumer_rwsem; 60 struct list_head pending_list; 61 struct uprobe_consumer *consumers; 62 struct inode *inode; /* Also hold a ref to inode */ 63 loff_t offset; 64 loff_t ref_ctr_offset; 65 unsigned long flags; 66 67 /* 68 * The generic code assumes that it has two members of unknown type 69 * owned by the arch-specific code: 70 * 71 * insn - copy_insn() saves the original instruction here for 72 * arch_uprobe_analyze_insn(). 73 * 74 * ixol - potentially modified instruction to execute out of 75 * line, copied to xol_area by xol_get_insn_slot(). 76 */ 77 struct arch_uprobe arch; 78 }; 79 80 struct delayed_uprobe { 81 struct list_head list; 82 struct uprobe *uprobe; 83 struct mm_struct *mm; 84 }; 85 86 static DEFINE_MUTEX(delayed_uprobe_lock); 87 static LIST_HEAD(delayed_uprobe_list); 88 89 /* 90 * Execute out of line area: anonymous executable mapping installed 91 * by the probed task to execute the copy of the original instruction 92 * mangled by set_swbp(). 93 * 94 * On a breakpoint hit, thread contests for a slot. It frees the 95 * slot after singlestep. Currently a fixed number of slots are 96 * allocated. 97 */ 98 struct xol_area { 99 wait_queue_head_t wq; /* if all slots are busy */ 100 atomic_t slot_count; /* number of in-use slots */ 101 unsigned long *bitmap; /* 0 = free slot */ 102 103 struct vm_special_mapping xol_mapping; 104 struct page *pages[2]; 105 /* 106 * We keep the vma's vm_start rather than a pointer to the vma 107 * itself. The probed process or a naughty kernel module could make 108 * the vma go away, and we must handle that reasonably gracefully. 109 */ 110 unsigned long vaddr; /* Page(s) of instruction slots */ 111 }; 112 113 /* 114 * valid_vma: Verify if the specified vma is an executable vma 115 * Relax restrictions while unregistering: vm_flags might have 116 * changed after breakpoint was inserted. 117 * - is_register: indicates if we are in register context. 118 * - Return 1 if the specified virtual address is in an 119 * executable vma. 120 */ 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 122 { 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 124 125 if (is_register) 126 flags |= VM_WRITE; 127 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 129 } 130 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 132 { 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 134 } 135 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 137 { 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 139 } 140 141 /** 142 * __replace_page - replace page in vma by new page. 143 * based on replace_page in mm/ksm.c 144 * 145 * @vma: vma that holds the pte pointing to page 146 * @addr: address the old @page is mapped at 147 * @old_page: the page we are replacing by new_page 148 * @new_page: the modified page we replace page by 149 * 150 * If @new_page is NULL, only unmap @old_page. 151 * 152 * Returns 0 on success, negative error code otherwise. 153 */ 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 155 struct page *old_page, struct page *new_page) 156 { 157 struct mm_struct *mm = vma->vm_mm; 158 struct page_vma_mapped_walk pvmw = { 159 .page = compound_head(old_page), 160 .vma = vma, 161 .address = addr, 162 }; 163 int err; 164 struct mmu_notifier_range range; 165 166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 167 addr + PAGE_SIZE); 168 169 if (new_page) { 170 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL); 171 if (err) 172 return err; 173 } 174 175 /* For try_to_free_swap() and munlock_vma_page() below */ 176 lock_page(old_page); 177 178 mmu_notifier_invalidate_range_start(&range); 179 err = -EAGAIN; 180 if (!page_vma_mapped_walk(&pvmw)) 181 goto unlock; 182 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 183 184 if (new_page) { 185 get_page(new_page); 186 page_add_new_anon_rmap(new_page, vma, addr, false); 187 lru_cache_add_inactive_or_unevictable(new_page, vma); 188 } else 189 /* no new page, just dec_mm_counter for old_page */ 190 dec_mm_counter(mm, MM_ANONPAGES); 191 192 if (!PageAnon(old_page)) { 193 dec_mm_counter(mm, mm_counter_file(old_page)); 194 inc_mm_counter(mm, MM_ANONPAGES); 195 } 196 197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 198 ptep_clear_flush_notify(vma, addr, pvmw.pte); 199 if (new_page) 200 set_pte_at_notify(mm, addr, pvmw.pte, 201 mk_pte(new_page, vma->vm_page_prot)); 202 203 page_remove_rmap(old_page, false); 204 if (!page_mapped(old_page)) 205 try_to_free_swap(old_page); 206 page_vma_mapped_walk_done(&pvmw); 207 208 if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page)) 209 munlock_vma_page(old_page); 210 put_page(old_page); 211 212 err = 0; 213 unlock: 214 mmu_notifier_invalidate_range_end(&range); 215 unlock_page(old_page); 216 return err; 217 } 218 219 /** 220 * is_swbp_insn - check if instruction is breakpoint instruction. 221 * @insn: instruction to be checked. 222 * Default implementation of is_swbp_insn 223 * Returns true if @insn is a breakpoint instruction. 224 */ 225 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 226 { 227 return *insn == UPROBE_SWBP_INSN; 228 } 229 230 /** 231 * is_trap_insn - check if instruction is breakpoint instruction. 232 * @insn: instruction to be checked. 233 * Default implementation of is_trap_insn 234 * Returns true if @insn is a breakpoint instruction. 235 * 236 * This function is needed for the case where an architecture has multiple 237 * trap instructions (like powerpc). 238 */ 239 bool __weak is_trap_insn(uprobe_opcode_t *insn) 240 { 241 return is_swbp_insn(insn); 242 } 243 244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 245 { 246 void *kaddr = kmap_atomic(page); 247 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 248 kunmap_atomic(kaddr); 249 } 250 251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 252 { 253 void *kaddr = kmap_atomic(page); 254 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 255 kunmap_atomic(kaddr); 256 } 257 258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 259 { 260 uprobe_opcode_t old_opcode; 261 bool is_swbp; 262 263 /* 264 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 265 * We do not check if it is any other 'trap variant' which could 266 * be conditional trap instruction such as the one powerpc supports. 267 * 268 * The logic is that we do not care if the underlying instruction 269 * is a trap variant; uprobes always wins over any other (gdb) 270 * breakpoint. 271 */ 272 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 273 is_swbp = is_swbp_insn(&old_opcode); 274 275 if (is_swbp_insn(new_opcode)) { 276 if (is_swbp) /* register: already installed? */ 277 return 0; 278 } else { 279 if (!is_swbp) /* unregister: was it changed by us? */ 280 return 0; 281 } 282 283 return 1; 284 } 285 286 static struct delayed_uprobe * 287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 288 { 289 struct delayed_uprobe *du; 290 291 list_for_each_entry(du, &delayed_uprobe_list, list) 292 if (du->uprobe == uprobe && du->mm == mm) 293 return du; 294 return NULL; 295 } 296 297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 298 { 299 struct delayed_uprobe *du; 300 301 if (delayed_uprobe_check(uprobe, mm)) 302 return 0; 303 304 du = kzalloc(sizeof(*du), GFP_KERNEL); 305 if (!du) 306 return -ENOMEM; 307 308 du->uprobe = uprobe; 309 du->mm = mm; 310 list_add(&du->list, &delayed_uprobe_list); 311 return 0; 312 } 313 314 static void delayed_uprobe_delete(struct delayed_uprobe *du) 315 { 316 if (WARN_ON(!du)) 317 return; 318 list_del(&du->list); 319 kfree(du); 320 } 321 322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 323 { 324 struct list_head *pos, *q; 325 struct delayed_uprobe *du; 326 327 if (!uprobe && !mm) 328 return; 329 330 list_for_each_safe(pos, q, &delayed_uprobe_list) { 331 du = list_entry(pos, struct delayed_uprobe, list); 332 333 if (uprobe && du->uprobe != uprobe) 334 continue; 335 if (mm && du->mm != mm) 336 continue; 337 338 delayed_uprobe_delete(du); 339 } 340 } 341 342 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 343 struct vm_area_struct *vma) 344 { 345 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 346 347 return uprobe->ref_ctr_offset && 348 vma->vm_file && 349 file_inode(vma->vm_file) == uprobe->inode && 350 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 351 vma->vm_start <= vaddr && 352 vma->vm_end > vaddr; 353 } 354 355 static struct vm_area_struct * 356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 357 { 358 struct vm_area_struct *tmp; 359 360 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 361 if (valid_ref_ctr_vma(uprobe, tmp)) 362 return tmp; 363 364 return NULL; 365 } 366 367 static int 368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 369 { 370 void *kaddr; 371 struct page *page; 372 struct vm_area_struct *vma; 373 int ret; 374 short *ptr; 375 376 if (!vaddr || !d) 377 return -EINVAL; 378 379 ret = get_user_pages_remote(mm, vaddr, 1, 380 FOLL_WRITE, &page, &vma, NULL); 381 if (unlikely(ret <= 0)) { 382 /* 383 * We are asking for 1 page. If get_user_pages_remote() fails, 384 * it may return 0, in that case we have to return error. 385 */ 386 return ret == 0 ? -EBUSY : ret; 387 } 388 389 kaddr = kmap_atomic(page); 390 ptr = kaddr + (vaddr & ~PAGE_MASK); 391 392 if (unlikely(*ptr + d < 0)) { 393 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 394 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 395 ret = -EINVAL; 396 goto out; 397 } 398 399 *ptr += d; 400 ret = 0; 401 out: 402 kunmap_atomic(kaddr); 403 put_page(page); 404 return ret; 405 } 406 407 static void update_ref_ctr_warn(struct uprobe *uprobe, 408 struct mm_struct *mm, short d) 409 { 410 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 411 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 412 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 413 (unsigned long long) uprobe->offset, 414 (unsigned long long) uprobe->ref_ctr_offset, mm); 415 } 416 417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 418 short d) 419 { 420 struct vm_area_struct *rc_vma; 421 unsigned long rc_vaddr; 422 int ret = 0; 423 424 rc_vma = find_ref_ctr_vma(uprobe, mm); 425 426 if (rc_vma) { 427 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 428 ret = __update_ref_ctr(mm, rc_vaddr, d); 429 if (ret) 430 update_ref_ctr_warn(uprobe, mm, d); 431 432 if (d > 0) 433 return ret; 434 } 435 436 mutex_lock(&delayed_uprobe_lock); 437 if (d > 0) 438 ret = delayed_uprobe_add(uprobe, mm); 439 else 440 delayed_uprobe_remove(uprobe, mm); 441 mutex_unlock(&delayed_uprobe_lock); 442 443 return ret; 444 } 445 446 /* 447 * NOTE: 448 * Expect the breakpoint instruction to be the smallest size instruction for 449 * the architecture. If an arch has variable length instruction and the 450 * breakpoint instruction is not of the smallest length instruction 451 * supported by that architecture then we need to modify is_trap_at_addr and 452 * uprobe_write_opcode accordingly. This would never be a problem for archs 453 * that have fixed length instructions. 454 * 455 * uprobe_write_opcode - write the opcode at a given virtual address. 456 * @auprobe: arch specific probepoint information. 457 * @mm: the probed process address space. 458 * @vaddr: the virtual address to store the opcode. 459 * @opcode: opcode to be written at @vaddr. 460 * 461 * Called with mm->mmap_lock held for write. 462 * Return 0 (success) or a negative errno. 463 */ 464 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 465 unsigned long vaddr, uprobe_opcode_t opcode) 466 { 467 struct uprobe *uprobe; 468 struct page *old_page, *new_page; 469 struct vm_area_struct *vma; 470 int ret, is_register, ref_ctr_updated = 0; 471 bool orig_page_huge = false; 472 unsigned int gup_flags = FOLL_FORCE; 473 474 is_register = is_swbp_insn(&opcode); 475 uprobe = container_of(auprobe, struct uprobe, arch); 476 477 retry: 478 if (is_register) 479 gup_flags |= FOLL_SPLIT_PMD; 480 /* Read the page with vaddr into memory */ 481 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, 482 &old_page, &vma, NULL); 483 if (ret <= 0) 484 return ret; 485 486 ret = verify_opcode(old_page, vaddr, &opcode); 487 if (ret <= 0) 488 goto put_old; 489 490 if (WARN(!is_register && PageCompound(old_page), 491 "uprobe unregister should never work on compound page\n")) { 492 ret = -EINVAL; 493 goto put_old; 494 } 495 496 /* We are going to replace instruction, update ref_ctr. */ 497 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 498 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 499 if (ret) 500 goto put_old; 501 502 ref_ctr_updated = 1; 503 } 504 505 ret = 0; 506 if (!is_register && !PageAnon(old_page)) 507 goto put_old; 508 509 ret = anon_vma_prepare(vma); 510 if (ret) 511 goto put_old; 512 513 ret = -ENOMEM; 514 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 515 if (!new_page) 516 goto put_old; 517 518 __SetPageUptodate(new_page); 519 copy_highpage(new_page, old_page); 520 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 521 522 if (!is_register) { 523 struct page *orig_page; 524 pgoff_t index; 525 526 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 527 528 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 529 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 530 index); 531 532 if (orig_page) { 533 if (PageUptodate(orig_page) && 534 pages_identical(new_page, orig_page)) { 535 /* let go new_page */ 536 put_page(new_page); 537 new_page = NULL; 538 539 if (PageCompound(orig_page)) 540 orig_page_huge = true; 541 } 542 put_page(orig_page); 543 } 544 } 545 546 ret = __replace_page(vma, vaddr, old_page, new_page); 547 if (new_page) 548 put_page(new_page); 549 put_old: 550 put_page(old_page); 551 552 if (unlikely(ret == -EAGAIN)) 553 goto retry; 554 555 /* Revert back reference counter if instruction update failed. */ 556 if (ret && is_register && ref_ctr_updated) 557 update_ref_ctr(uprobe, mm, -1); 558 559 /* try collapse pmd for compound page */ 560 if (!ret && orig_page_huge) 561 collapse_pte_mapped_thp(mm, vaddr); 562 563 return ret; 564 } 565 566 /** 567 * set_swbp - store breakpoint at a given address. 568 * @auprobe: arch specific probepoint information. 569 * @mm: the probed process address space. 570 * @vaddr: the virtual address to insert the opcode. 571 * 572 * For mm @mm, store the breakpoint instruction at @vaddr. 573 * Return 0 (success) or a negative errno. 574 */ 575 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 576 { 577 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 578 } 579 580 /** 581 * set_orig_insn - Restore the original instruction. 582 * @mm: the probed process address space. 583 * @auprobe: arch specific probepoint information. 584 * @vaddr: the virtual address to insert the opcode. 585 * 586 * For mm @mm, restore the original opcode (opcode) at @vaddr. 587 * Return 0 (success) or a negative errno. 588 */ 589 int __weak 590 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 591 { 592 return uprobe_write_opcode(auprobe, mm, vaddr, 593 *(uprobe_opcode_t *)&auprobe->insn); 594 } 595 596 static struct uprobe *get_uprobe(struct uprobe *uprobe) 597 { 598 refcount_inc(&uprobe->ref); 599 return uprobe; 600 } 601 602 static void put_uprobe(struct uprobe *uprobe) 603 { 604 if (refcount_dec_and_test(&uprobe->ref)) { 605 /* 606 * If application munmap(exec_vma) before uprobe_unregister() 607 * gets called, we don't get a chance to remove uprobe from 608 * delayed_uprobe_list from remove_breakpoint(). Do it here. 609 */ 610 mutex_lock(&delayed_uprobe_lock); 611 delayed_uprobe_remove(uprobe, NULL); 612 mutex_unlock(&delayed_uprobe_lock); 613 kfree(uprobe); 614 } 615 } 616 617 static __always_inline 618 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 619 const struct uprobe *r) 620 { 621 if (l_inode < r->inode) 622 return -1; 623 624 if (l_inode > r->inode) 625 return 1; 626 627 if (l_offset < r->offset) 628 return -1; 629 630 if (l_offset > r->offset) 631 return 1; 632 633 return 0; 634 } 635 636 #define __node_2_uprobe(node) \ 637 rb_entry((node), struct uprobe, rb_node) 638 639 struct __uprobe_key { 640 struct inode *inode; 641 loff_t offset; 642 }; 643 644 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 645 { 646 const struct __uprobe_key *a = key; 647 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 648 } 649 650 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 651 { 652 struct uprobe *u = __node_2_uprobe(a); 653 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 654 } 655 656 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 657 { 658 struct __uprobe_key key = { 659 .inode = inode, 660 .offset = offset, 661 }; 662 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 663 664 if (node) 665 return get_uprobe(__node_2_uprobe(node)); 666 667 return NULL; 668 } 669 670 /* 671 * Find a uprobe corresponding to a given inode:offset 672 * Acquires uprobes_treelock 673 */ 674 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 675 { 676 struct uprobe *uprobe; 677 678 spin_lock(&uprobes_treelock); 679 uprobe = __find_uprobe(inode, offset); 680 spin_unlock(&uprobes_treelock); 681 682 return uprobe; 683 } 684 685 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 686 { 687 struct rb_node *node; 688 689 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 690 if (node) 691 return get_uprobe(__node_2_uprobe(node)); 692 693 /* get access + creation ref */ 694 refcount_set(&uprobe->ref, 2); 695 return NULL; 696 } 697 698 /* 699 * Acquire uprobes_treelock. 700 * Matching uprobe already exists in rbtree; 701 * increment (access refcount) and return the matching uprobe. 702 * 703 * No matching uprobe; insert the uprobe in rb_tree; 704 * get a double refcount (access + creation) and return NULL. 705 */ 706 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 707 { 708 struct uprobe *u; 709 710 spin_lock(&uprobes_treelock); 711 u = __insert_uprobe(uprobe); 712 spin_unlock(&uprobes_treelock); 713 714 return u; 715 } 716 717 static void 718 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 719 { 720 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 721 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 722 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 723 (unsigned long long) cur_uprobe->ref_ctr_offset, 724 (unsigned long long) uprobe->ref_ctr_offset); 725 } 726 727 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 728 loff_t ref_ctr_offset) 729 { 730 struct uprobe *uprobe, *cur_uprobe; 731 732 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 733 if (!uprobe) 734 return NULL; 735 736 uprobe->inode = inode; 737 uprobe->offset = offset; 738 uprobe->ref_ctr_offset = ref_ctr_offset; 739 init_rwsem(&uprobe->register_rwsem); 740 init_rwsem(&uprobe->consumer_rwsem); 741 742 /* add to uprobes_tree, sorted on inode:offset */ 743 cur_uprobe = insert_uprobe(uprobe); 744 /* a uprobe exists for this inode:offset combination */ 745 if (cur_uprobe) { 746 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 747 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 748 put_uprobe(cur_uprobe); 749 kfree(uprobe); 750 return ERR_PTR(-EINVAL); 751 } 752 kfree(uprobe); 753 uprobe = cur_uprobe; 754 } 755 756 return uprobe; 757 } 758 759 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 760 { 761 down_write(&uprobe->consumer_rwsem); 762 uc->next = uprobe->consumers; 763 uprobe->consumers = uc; 764 up_write(&uprobe->consumer_rwsem); 765 } 766 767 /* 768 * For uprobe @uprobe, delete the consumer @uc. 769 * Return true if the @uc is deleted successfully 770 * or return false. 771 */ 772 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 773 { 774 struct uprobe_consumer **con; 775 bool ret = false; 776 777 down_write(&uprobe->consumer_rwsem); 778 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 779 if (*con == uc) { 780 *con = uc->next; 781 ret = true; 782 break; 783 } 784 } 785 up_write(&uprobe->consumer_rwsem); 786 787 return ret; 788 } 789 790 static int __copy_insn(struct address_space *mapping, struct file *filp, 791 void *insn, int nbytes, loff_t offset) 792 { 793 struct page *page; 794 /* 795 * Ensure that the page that has the original instruction is populated 796 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 797 * see uprobe_register(). 798 */ 799 if (mapping->a_ops->readpage) 800 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 801 else 802 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 803 if (IS_ERR(page)) 804 return PTR_ERR(page); 805 806 copy_from_page(page, offset, insn, nbytes); 807 put_page(page); 808 809 return 0; 810 } 811 812 static int copy_insn(struct uprobe *uprobe, struct file *filp) 813 { 814 struct address_space *mapping = uprobe->inode->i_mapping; 815 loff_t offs = uprobe->offset; 816 void *insn = &uprobe->arch.insn; 817 int size = sizeof(uprobe->arch.insn); 818 int len, err = -EIO; 819 820 /* Copy only available bytes, -EIO if nothing was read */ 821 do { 822 if (offs >= i_size_read(uprobe->inode)) 823 break; 824 825 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 826 err = __copy_insn(mapping, filp, insn, len, offs); 827 if (err) 828 break; 829 830 insn += len; 831 offs += len; 832 size -= len; 833 } while (size); 834 835 return err; 836 } 837 838 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 839 struct mm_struct *mm, unsigned long vaddr) 840 { 841 int ret = 0; 842 843 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 844 return ret; 845 846 /* TODO: move this into _register, until then we abuse this sem. */ 847 down_write(&uprobe->consumer_rwsem); 848 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 849 goto out; 850 851 ret = copy_insn(uprobe, file); 852 if (ret) 853 goto out; 854 855 ret = -ENOTSUPP; 856 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 857 goto out; 858 859 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 860 if (ret) 861 goto out; 862 863 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 864 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 865 866 out: 867 up_write(&uprobe->consumer_rwsem); 868 869 return ret; 870 } 871 872 static inline bool consumer_filter(struct uprobe_consumer *uc, 873 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 874 { 875 return !uc->filter || uc->filter(uc, ctx, mm); 876 } 877 878 static bool filter_chain(struct uprobe *uprobe, 879 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 880 { 881 struct uprobe_consumer *uc; 882 bool ret = false; 883 884 down_read(&uprobe->consumer_rwsem); 885 for (uc = uprobe->consumers; uc; uc = uc->next) { 886 ret = consumer_filter(uc, ctx, mm); 887 if (ret) 888 break; 889 } 890 up_read(&uprobe->consumer_rwsem); 891 892 return ret; 893 } 894 895 static int 896 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 897 struct vm_area_struct *vma, unsigned long vaddr) 898 { 899 bool first_uprobe; 900 int ret; 901 902 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 903 if (ret) 904 return ret; 905 906 /* 907 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 908 * the task can hit this breakpoint right after __replace_page(). 909 */ 910 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 911 if (first_uprobe) 912 set_bit(MMF_HAS_UPROBES, &mm->flags); 913 914 ret = set_swbp(&uprobe->arch, mm, vaddr); 915 if (!ret) 916 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 917 else if (first_uprobe) 918 clear_bit(MMF_HAS_UPROBES, &mm->flags); 919 920 return ret; 921 } 922 923 static int 924 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 925 { 926 set_bit(MMF_RECALC_UPROBES, &mm->flags); 927 return set_orig_insn(&uprobe->arch, mm, vaddr); 928 } 929 930 static inline bool uprobe_is_active(struct uprobe *uprobe) 931 { 932 return !RB_EMPTY_NODE(&uprobe->rb_node); 933 } 934 /* 935 * There could be threads that have already hit the breakpoint. They 936 * will recheck the current insn and restart if find_uprobe() fails. 937 * See find_active_uprobe(). 938 */ 939 static void delete_uprobe(struct uprobe *uprobe) 940 { 941 if (WARN_ON(!uprobe_is_active(uprobe))) 942 return; 943 944 spin_lock(&uprobes_treelock); 945 rb_erase(&uprobe->rb_node, &uprobes_tree); 946 spin_unlock(&uprobes_treelock); 947 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 948 put_uprobe(uprobe); 949 } 950 951 struct map_info { 952 struct map_info *next; 953 struct mm_struct *mm; 954 unsigned long vaddr; 955 }; 956 957 static inline struct map_info *free_map_info(struct map_info *info) 958 { 959 struct map_info *next = info->next; 960 kfree(info); 961 return next; 962 } 963 964 static struct map_info * 965 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 966 { 967 unsigned long pgoff = offset >> PAGE_SHIFT; 968 struct vm_area_struct *vma; 969 struct map_info *curr = NULL; 970 struct map_info *prev = NULL; 971 struct map_info *info; 972 int more = 0; 973 974 again: 975 i_mmap_lock_read(mapping); 976 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 977 if (!valid_vma(vma, is_register)) 978 continue; 979 980 if (!prev && !more) { 981 /* 982 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 983 * reclaim. This is optimistic, no harm done if it fails. 984 */ 985 prev = kmalloc(sizeof(struct map_info), 986 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 987 if (prev) 988 prev->next = NULL; 989 } 990 if (!prev) { 991 more++; 992 continue; 993 } 994 995 if (!mmget_not_zero(vma->vm_mm)) 996 continue; 997 998 info = prev; 999 prev = prev->next; 1000 info->next = curr; 1001 curr = info; 1002 1003 info->mm = vma->vm_mm; 1004 info->vaddr = offset_to_vaddr(vma, offset); 1005 } 1006 i_mmap_unlock_read(mapping); 1007 1008 if (!more) 1009 goto out; 1010 1011 prev = curr; 1012 while (curr) { 1013 mmput(curr->mm); 1014 curr = curr->next; 1015 } 1016 1017 do { 1018 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1019 if (!info) { 1020 curr = ERR_PTR(-ENOMEM); 1021 goto out; 1022 } 1023 info->next = prev; 1024 prev = info; 1025 } while (--more); 1026 1027 goto again; 1028 out: 1029 while (prev) 1030 prev = free_map_info(prev); 1031 return curr; 1032 } 1033 1034 static int 1035 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1036 { 1037 bool is_register = !!new; 1038 struct map_info *info; 1039 int err = 0; 1040 1041 percpu_down_write(&dup_mmap_sem); 1042 info = build_map_info(uprobe->inode->i_mapping, 1043 uprobe->offset, is_register); 1044 if (IS_ERR(info)) { 1045 err = PTR_ERR(info); 1046 goto out; 1047 } 1048 1049 while (info) { 1050 struct mm_struct *mm = info->mm; 1051 struct vm_area_struct *vma; 1052 1053 if (err && is_register) 1054 goto free; 1055 1056 mmap_write_lock(mm); 1057 vma = find_vma(mm, info->vaddr); 1058 if (!vma || !valid_vma(vma, is_register) || 1059 file_inode(vma->vm_file) != uprobe->inode) 1060 goto unlock; 1061 1062 if (vma->vm_start > info->vaddr || 1063 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1064 goto unlock; 1065 1066 if (is_register) { 1067 /* consult only the "caller", new consumer. */ 1068 if (consumer_filter(new, 1069 UPROBE_FILTER_REGISTER, mm)) 1070 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1071 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1072 if (!filter_chain(uprobe, 1073 UPROBE_FILTER_UNREGISTER, mm)) 1074 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1075 } 1076 1077 unlock: 1078 mmap_write_unlock(mm); 1079 free: 1080 mmput(mm); 1081 info = free_map_info(info); 1082 } 1083 out: 1084 percpu_up_write(&dup_mmap_sem); 1085 return err; 1086 } 1087 1088 static void 1089 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1090 { 1091 int err; 1092 1093 if (WARN_ON(!consumer_del(uprobe, uc))) 1094 return; 1095 1096 err = register_for_each_vma(uprobe, NULL); 1097 /* TODO : cant unregister? schedule a worker thread */ 1098 if (!uprobe->consumers && !err) 1099 delete_uprobe(uprobe); 1100 } 1101 1102 /* 1103 * uprobe_unregister - unregister an already registered probe. 1104 * @inode: the file in which the probe has to be removed. 1105 * @offset: offset from the start of the file. 1106 * @uc: identify which probe if multiple probes are colocated. 1107 */ 1108 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1109 { 1110 struct uprobe *uprobe; 1111 1112 uprobe = find_uprobe(inode, offset); 1113 if (WARN_ON(!uprobe)) 1114 return; 1115 1116 down_write(&uprobe->register_rwsem); 1117 __uprobe_unregister(uprobe, uc); 1118 up_write(&uprobe->register_rwsem); 1119 put_uprobe(uprobe); 1120 } 1121 EXPORT_SYMBOL_GPL(uprobe_unregister); 1122 1123 /* 1124 * __uprobe_register - register a probe 1125 * @inode: the file in which the probe has to be placed. 1126 * @offset: offset from the start of the file. 1127 * @uc: information on howto handle the probe.. 1128 * 1129 * Apart from the access refcount, __uprobe_register() takes a creation 1130 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1131 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1132 * tuple). Creation refcount stops uprobe_unregister from freeing the 1133 * @uprobe even before the register operation is complete. Creation 1134 * refcount is released when the last @uc for the @uprobe 1135 * unregisters. Caller of __uprobe_register() is required to keep @inode 1136 * (and the containing mount) referenced. 1137 * 1138 * Return errno if it cannot successully install probes 1139 * else return 0 (success) 1140 */ 1141 static int __uprobe_register(struct inode *inode, loff_t offset, 1142 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1143 { 1144 struct uprobe *uprobe; 1145 int ret; 1146 1147 /* Uprobe must have at least one set consumer */ 1148 if (!uc->handler && !uc->ret_handler) 1149 return -EINVAL; 1150 1151 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1152 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1153 return -EIO; 1154 /* Racy, just to catch the obvious mistakes */ 1155 if (offset > i_size_read(inode)) 1156 return -EINVAL; 1157 1158 /* 1159 * This ensures that copy_from_page(), copy_to_page() and 1160 * __update_ref_ctr() can't cross page boundary. 1161 */ 1162 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1163 return -EINVAL; 1164 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1165 return -EINVAL; 1166 1167 retry: 1168 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1169 if (!uprobe) 1170 return -ENOMEM; 1171 if (IS_ERR(uprobe)) 1172 return PTR_ERR(uprobe); 1173 1174 /* 1175 * We can race with uprobe_unregister()->delete_uprobe(). 1176 * Check uprobe_is_active() and retry if it is false. 1177 */ 1178 down_write(&uprobe->register_rwsem); 1179 ret = -EAGAIN; 1180 if (likely(uprobe_is_active(uprobe))) { 1181 consumer_add(uprobe, uc); 1182 ret = register_for_each_vma(uprobe, uc); 1183 if (ret) 1184 __uprobe_unregister(uprobe, uc); 1185 } 1186 up_write(&uprobe->register_rwsem); 1187 put_uprobe(uprobe); 1188 1189 if (unlikely(ret == -EAGAIN)) 1190 goto retry; 1191 return ret; 1192 } 1193 1194 int uprobe_register(struct inode *inode, loff_t offset, 1195 struct uprobe_consumer *uc) 1196 { 1197 return __uprobe_register(inode, offset, 0, uc); 1198 } 1199 EXPORT_SYMBOL_GPL(uprobe_register); 1200 1201 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1202 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1203 { 1204 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1205 } 1206 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1207 1208 /* 1209 * uprobe_apply - unregister an already registered probe. 1210 * @inode: the file in which the probe has to be removed. 1211 * @offset: offset from the start of the file. 1212 * @uc: consumer which wants to add more or remove some breakpoints 1213 * @add: add or remove the breakpoints 1214 */ 1215 int uprobe_apply(struct inode *inode, loff_t offset, 1216 struct uprobe_consumer *uc, bool add) 1217 { 1218 struct uprobe *uprobe; 1219 struct uprobe_consumer *con; 1220 int ret = -ENOENT; 1221 1222 uprobe = find_uprobe(inode, offset); 1223 if (WARN_ON(!uprobe)) 1224 return ret; 1225 1226 down_write(&uprobe->register_rwsem); 1227 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1228 ; 1229 if (con) 1230 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1231 up_write(&uprobe->register_rwsem); 1232 put_uprobe(uprobe); 1233 1234 return ret; 1235 } 1236 1237 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1238 { 1239 struct vm_area_struct *vma; 1240 int err = 0; 1241 1242 mmap_read_lock(mm); 1243 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1244 unsigned long vaddr; 1245 loff_t offset; 1246 1247 if (!valid_vma(vma, false) || 1248 file_inode(vma->vm_file) != uprobe->inode) 1249 continue; 1250 1251 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1252 if (uprobe->offset < offset || 1253 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1254 continue; 1255 1256 vaddr = offset_to_vaddr(vma, uprobe->offset); 1257 err |= remove_breakpoint(uprobe, mm, vaddr); 1258 } 1259 mmap_read_unlock(mm); 1260 1261 return err; 1262 } 1263 1264 static struct rb_node * 1265 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1266 { 1267 struct rb_node *n = uprobes_tree.rb_node; 1268 1269 while (n) { 1270 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1271 1272 if (inode < u->inode) { 1273 n = n->rb_left; 1274 } else if (inode > u->inode) { 1275 n = n->rb_right; 1276 } else { 1277 if (max < u->offset) 1278 n = n->rb_left; 1279 else if (min > u->offset) 1280 n = n->rb_right; 1281 else 1282 break; 1283 } 1284 } 1285 1286 return n; 1287 } 1288 1289 /* 1290 * For a given range in vma, build a list of probes that need to be inserted. 1291 */ 1292 static void build_probe_list(struct inode *inode, 1293 struct vm_area_struct *vma, 1294 unsigned long start, unsigned long end, 1295 struct list_head *head) 1296 { 1297 loff_t min, max; 1298 struct rb_node *n, *t; 1299 struct uprobe *u; 1300 1301 INIT_LIST_HEAD(head); 1302 min = vaddr_to_offset(vma, start); 1303 max = min + (end - start) - 1; 1304 1305 spin_lock(&uprobes_treelock); 1306 n = find_node_in_range(inode, min, max); 1307 if (n) { 1308 for (t = n; t; t = rb_prev(t)) { 1309 u = rb_entry(t, struct uprobe, rb_node); 1310 if (u->inode != inode || u->offset < min) 1311 break; 1312 list_add(&u->pending_list, head); 1313 get_uprobe(u); 1314 } 1315 for (t = n; (t = rb_next(t)); ) { 1316 u = rb_entry(t, struct uprobe, rb_node); 1317 if (u->inode != inode || u->offset > max) 1318 break; 1319 list_add(&u->pending_list, head); 1320 get_uprobe(u); 1321 } 1322 } 1323 spin_unlock(&uprobes_treelock); 1324 } 1325 1326 /* @vma contains reference counter, not the probed instruction. */ 1327 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1328 { 1329 struct list_head *pos, *q; 1330 struct delayed_uprobe *du; 1331 unsigned long vaddr; 1332 int ret = 0, err = 0; 1333 1334 mutex_lock(&delayed_uprobe_lock); 1335 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1336 du = list_entry(pos, struct delayed_uprobe, list); 1337 1338 if (du->mm != vma->vm_mm || 1339 !valid_ref_ctr_vma(du->uprobe, vma)) 1340 continue; 1341 1342 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1343 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1344 if (ret) { 1345 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1346 if (!err) 1347 err = ret; 1348 } 1349 delayed_uprobe_delete(du); 1350 } 1351 mutex_unlock(&delayed_uprobe_lock); 1352 return err; 1353 } 1354 1355 /* 1356 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired. 1357 * 1358 * Currently we ignore all errors and always return 0, the callers 1359 * can't handle the failure anyway. 1360 */ 1361 int uprobe_mmap(struct vm_area_struct *vma) 1362 { 1363 struct list_head tmp_list; 1364 struct uprobe *uprobe, *u; 1365 struct inode *inode; 1366 1367 if (no_uprobe_events()) 1368 return 0; 1369 1370 if (vma->vm_file && 1371 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1372 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1373 delayed_ref_ctr_inc(vma); 1374 1375 if (!valid_vma(vma, true)) 1376 return 0; 1377 1378 inode = file_inode(vma->vm_file); 1379 if (!inode) 1380 return 0; 1381 1382 mutex_lock(uprobes_mmap_hash(inode)); 1383 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1384 /* 1385 * We can race with uprobe_unregister(), this uprobe can be already 1386 * removed. But in this case filter_chain() must return false, all 1387 * consumers have gone away. 1388 */ 1389 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1390 if (!fatal_signal_pending(current) && 1391 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1392 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1393 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1394 } 1395 put_uprobe(uprobe); 1396 } 1397 mutex_unlock(uprobes_mmap_hash(inode)); 1398 1399 return 0; 1400 } 1401 1402 static bool 1403 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1404 { 1405 loff_t min, max; 1406 struct inode *inode; 1407 struct rb_node *n; 1408 1409 inode = file_inode(vma->vm_file); 1410 1411 min = vaddr_to_offset(vma, start); 1412 max = min + (end - start) - 1; 1413 1414 spin_lock(&uprobes_treelock); 1415 n = find_node_in_range(inode, min, max); 1416 spin_unlock(&uprobes_treelock); 1417 1418 return !!n; 1419 } 1420 1421 /* 1422 * Called in context of a munmap of a vma. 1423 */ 1424 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1425 { 1426 if (no_uprobe_events() || !valid_vma(vma, false)) 1427 return; 1428 1429 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1430 return; 1431 1432 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1433 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1434 return; 1435 1436 if (vma_has_uprobes(vma, start, end)) 1437 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1438 } 1439 1440 /* Slot allocation for XOL */ 1441 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1442 { 1443 struct vm_area_struct *vma; 1444 int ret; 1445 1446 if (mmap_write_lock_killable(mm)) 1447 return -EINTR; 1448 1449 if (mm->uprobes_state.xol_area) { 1450 ret = -EALREADY; 1451 goto fail; 1452 } 1453 1454 if (!area->vaddr) { 1455 /* Try to map as high as possible, this is only a hint. */ 1456 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1457 PAGE_SIZE, 0, 0); 1458 if (IS_ERR_VALUE(area->vaddr)) { 1459 ret = area->vaddr; 1460 goto fail; 1461 } 1462 } 1463 1464 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1465 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1466 &area->xol_mapping); 1467 if (IS_ERR(vma)) { 1468 ret = PTR_ERR(vma); 1469 goto fail; 1470 } 1471 1472 ret = 0; 1473 /* pairs with get_xol_area() */ 1474 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1475 fail: 1476 mmap_write_unlock(mm); 1477 1478 return ret; 1479 } 1480 1481 static struct xol_area *__create_xol_area(unsigned long vaddr) 1482 { 1483 struct mm_struct *mm = current->mm; 1484 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1485 struct xol_area *area; 1486 1487 area = kmalloc(sizeof(*area), GFP_KERNEL); 1488 if (unlikely(!area)) 1489 goto out; 1490 1491 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1492 GFP_KERNEL); 1493 if (!area->bitmap) 1494 goto free_area; 1495 1496 area->xol_mapping.name = "[uprobes]"; 1497 area->xol_mapping.fault = NULL; 1498 area->xol_mapping.pages = area->pages; 1499 area->pages[0] = alloc_page(GFP_HIGHUSER); 1500 if (!area->pages[0]) 1501 goto free_bitmap; 1502 area->pages[1] = NULL; 1503 1504 area->vaddr = vaddr; 1505 init_waitqueue_head(&area->wq); 1506 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1507 set_bit(0, area->bitmap); 1508 atomic_set(&area->slot_count, 1); 1509 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1510 1511 if (!xol_add_vma(mm, area)) 1512 return area; 1513 1514 __free_page(area->pages[0]); 1515 free_bitmap: 1516 kfree(area->bitmap); 1517 free_area: 1518 kfree(area); 1519 out: 1520 return NULL; 1521 } 1522 1523 /* 1524 * get_xol_area - Allocate process's xol_area if necessary. 1525 * This area will be used for storing instructions for execution out of line. 1526 * 1527 * Returns the allocated area or NULL. 1528 */ 1529 static struct xol_area *get_xol_area(void) 1530 { 1531 struct mm_struct *mm = current->mm; 1532 struct xol_area *area; 1533 1534 if (!mm->uprobes_state.xol_area) 1535 __create_xol_area(0); 1536 1537 /* Pairs with xol_add_vma() smp_store_release() */ 1538 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1539 return area; 1540 } 1541 1542 /* 1543 * uprobe_clear_state - Free the area allocated for slots. 1544 */ 1545 void uprobe_clear_state(struct mm_struct *mm) 1546 { 1547 struct xol_area *area = mm->uprobes_state.xol_area; 1548 1549 mutex_lock(&delayed_uprobe_lock); 1550 delayed_uprobe_remove(NULL, mm); 1551 mutex_unlock(&delayed_uprobe_lock); 1552 1553 if (!area) 1554 return; 1555 1556 put_page(area->pages[0]); 1557 kfree(area->bitmap); 1558 kfree(area); 1559 } 1560 1561 void uprobe_start_dup_mmap(void) 1562 { 1563 percpu_down_read(&dup_mmap_sem); 1564 } 1565 1566 void uprobe_end_dup_mmap(void) 1567 { 1568 percpu_up_read(&dup_mmap_sem); 1569 } 1570 1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1572 { 1573 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1574 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1575 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1576 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1577 } 1578 } 1579 1580 /* 1581 * - search for a free slot. 1582 */ 1583 static unsigned long xol_take_insn_slot(struct xol_area *area) 1584 { 1585 unsigned long slot_addr; 1586 int slot_nr; 1587 1588 do { 1589 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1590 if (slot_nr < UINSNS_PER_PAGE) { 1591 if (!test_and_set_bit(slot_nr, area->bitmap)) 1592 break; 1593 1594 slot_nr = UINSNS_PER_PAGE; 1595 continue; 1596 } 1597 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1598 } while (slot_nr >= UINSNS_PER_PAGE); 1599 1600 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1601 atomic_inc(&area->slot_count); 1602 1603 return slot_addr; 1604 } 1605 1606 /* 1607 * xol_get_insn_slot - allocate a slot for xol. 1608 * Returns the allocated slot address or 0. 1609 */ 1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1611 { 1612 struct xol_area *area; 1613 unsigned long xol_vaddr; 1614 1615 area = get_xol_area(); 1616 if (!area) 1617 return 0; 1618 1619 xol_vaddr = xol_take_insn_slot(area); 1620 if (unlikely(!xol_vaddr)) 1621 return 0; 1622 1623 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1624 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1625 1626 return xol_vaddr; 1627 } 1628 1629 /* 1630 * xol_free_insn_slot - If slot was earlier allocated by 1631 * @xol_get_insn_slot(), make the slot available for 1632 * subsequent requests. 1633 */ 1634 static void xol_free_insn_slot(struct task_struct *tsk) 1635 { 1636 struct xol_area *area; 1637 unsigned long vma_end; 1638 unsigned long slot_addr; 1639 1640 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1641 return; 1642 1643 slot_addr = tsk->utask->xol_vaddr; 1644 if (unlikely(!slot_addr)) 1645 return; 1646 1647 area = tsk->mm->uprobes_state.xol_area; 1648 vma_end = area->vaddr + PAGE_SIZE; 1649 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1650 unsigned long offset; 1651 int slot_nr; 1652 1653 offset = slot_addr - area->vaddr; 1654 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1655 if (slot_nr >= UINSNS_PER_PAGE) 1656 return; 1657 1658 clear_bit(slot_nr, area->bitmap); 1659 atomic_dec(&area->slot_count); 1660 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1661 if (waitqueue_active(&area->wq)) 1662 wake_up(&area->wq); 1663 1664 tsk->utask->xol_vaddr = 0; 1665 } 1666 } 1667 1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1669 void *src, unsigned long len) 1670 { 1671 /* Initialize the slot */ 1672 copy_to_page(page, vaddr, src, len); 1673 1674 /* 1675 * We probably need flush_icache_user_page() but it needs vma. 1676 * This should work on most of architectures by default. If 1677 * architecture needs to do something different it can define 1678 * its own version of the function. 1679 */ 1680 flush_dcache_page(page); 1681 } 1682 1683 /** 1684 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1685 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1686 * instruction. 1687 * Return the address of the breakpoint instruction. 1688 */ 1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1690 { 1691 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1692 } 1693 1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1695 { 1696 struct uprobe_task *utask = current->utask; 1697 1698 if (unlikely(utask && utask->active_uprobe)) 1699 return utask->vaddr; 1700 1701 return instruction_pointer(regs); 1702 } 1703 1704 static struct return_instance *free_ret_instance(struct return_instance *ri) 1705 { 1706 struct return_instance *next = ri->next; 1707 put_uprobe(ri->uprobe); 1708 kfree(ri); 1709 return next; 1710 } 1711 1712 /* 1713 * Called with no locks held. 1714 * Called in context of an exiting or an exec-ing thread. 1715 */ 1716 void uprobe_free_utask(struct task_struct *t) 1717 { 1718 struct uprobe_task *utask = t->utask; 1719 struct return_instance *ri; 1720 1721 if (!utask) 1722 return; 1723 1724 if (utask->active_uprobe) 1725 put_uprobe(utask->active_uprobe); 1726 1727 ri = utask->return_instances; 1728 while (ri) 1729 ri = free_ret_instance(ri); 1730 1731 xol_free_insn_slot(t); 1732 kfree(utask); 1733 t->utask = NULL; 1734 } 1735 1736 /* 1737 * Allocate a uprobe_task object for the task if necessary. 1738 * Called when the thread hits a breakpoint. 1739 * 1740 * Returns: 1741 * - pointer to new uprobe_task on success 1742 * - NULL otherwise 1743 */ 1744 static struct uprobe_task *get_utask(void) 1745 { 1746 if (!current->utask) 1747 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1748 return current->utask; 1749 } 1750 1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1752 { 1753 struct uprobe_task *n_utask; 1754 struct return_instance **p, *o, *n; 1755 1756 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1757 if (!n_utask) 1758 return -ENOMEM; 1759 t->utask = n_utask; 1760 1761 p = &n_utask->return_instances; 1762 for (o = o_utask->return_instances; o; o = o->next) { 1763 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1764 if (!n) 1765 return -ENOMEM; 1766 1767 *n = *o; 1768 get_uprobe(n->uprobe); 1769 n->next = NULL; 1770 1771 *p = n; 1772 p = &n->next; 1773 n_utask->depth++; 1774 } 1775 1776 return 0; 1777 } 1778 1779 static void uprobe_warn(struct task_struct *t, const char *msg) 1780 { 1781 pr_warn("uprobe: %s:%d failed to %s\n", 1782 current->comm, current->pid, msg); 1783 } 1784 1785 static void dup_xol_work(struct callback_head *work) 1786 { 1787 if (current->flags & PF_EXITING) 1788 return; 1789 1790 if (!__create_xol_area(current->utask->dup_xol_addr) && 1791 !fatal_signal_pending(current)) 1792 uprobe_warn(current, "dup xol area"); 1793 } 1794 1795 /* 1796 * Called in context of a new clone/fork from copy_process. 1797 */ 1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1799 { 1800 struct uprobe_task *utask = current->utask; 1801 struct mm_struct *mm = current->mm; 1802 struct xol_area *area; 1803 1804 t->utask = NULL; 1805 1806 if (!utask || !utask->return_instances) 1807 return; 1808 1809 if (mm == t->mm && !(flags & CLONE_VFORK)) 1810 return; 1811 1812 if (dup_utask(t, utask)) 1813 return uprobe_warn(t, "dup ret instances"); 1814 1815 /* The task can fork() after dup_xol_work() fails */ 1816 area = mm->uprobes_state.xol_area; 1817 if (!area) 1818 return uprobe_warn(t, "dup xol area"); 1819 1820 if (mm == t->mm) 1821 return; 1822 1823 t->utask->dup_xol_addr = area->vaddr; 1824 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1825 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1826 } 1827 1828 /* 1829 * Current area->vaddr notion assume the trampoline address is always 1830 * equal area->vaddr. 1831 * 1832 * Returns -1 in case the xol_area is not allocated. 1833 */ 1834 static unsigned long get_trampoline_vaddr(void) 1835 { 1836 struct xol_area *area; 1837 unsigned long trampoline_vaddr = -1; 1838 1839 /* Pairs with xol_add_vma() smp_store_release() */ 1840 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1841 if (area) 1842 trampoline_vaddr = area->vaddr; 1843 1844 return trampoline_vaddr; 1845 } 1846 1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1848 struct pt_regs *regs) 1849 { 1850 struct return_instance *ri = utask->return_instances; 1851 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1852 1853 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1854 ri = free_ret_instance(ri); 1855 utask->depth--; 1856 } 1857 utask->return_instances = ri; 1858 } 1859 1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1861 { 1862 struct return_instance *ri; 1863 struct uprobe_task *utask; 1864 unsigned long orig_ret_vaddr, trampoline_vaddr; 1865 bool chained; 1866 1867 if (!get_xol_area()) 1868 return; 1869 1870 utask = get_utask(); 1871 if (!utask) 1872 return; 1873 1874 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1875 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1876 " nestedness limit pid/tgid=%d/%d\n", 1877 current->pid, current->tgid); 1878 return; 1879 } 1880 1881 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1882 if (!ri) 1883 return; 1884 1885 trampoline_vaddr = get_trampoline_vaddr(); 1886 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1887 if (orig_ret_vaddr == -1) 1888 goto fail; 1889 1890 /* drop the entries invalidated by longjmp() */ 1891 chained = (orig_ret_vaddr == trampoline_vaddr); 1892 cleanup_return_instances(utask, chained, regs); 1893 1894 /* 1895 * We don't want to keep trampoline address in stack, rather keep the 1896 * original return address of first caller thru all the consequent 1897 * instances. This also makes breakpoint unwrapping easier. 1898 */ 1899 if (chained) { 1900 if (!utask->return_instances) { 1901 /* 1902 * This situation is not possible. Likely we have an 1903 * attack from user-space. 1904 */ 1905 uprobe_warn(current, "handle tail call"); 1906 goto fail; 1907 } 1908 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1909 } 1910 1911 ri->uprobe = get_uprobe(uprobe); 1912 ri->func = instruction_pointer(regs); 1913 ri->stack = user_stack_pointer(regs); 1914 ri->orig_ret_vaddr = orig_ret_vaddr; 1915 ri->chained = chained; 1916 1917 utask->depth++; 1918 ri->next = utask->return_instances; 1919 utask->return_instances = ri; 1920 1921 return; 1922 fail: 1923 kfree(ri); 1924 } 1925 1926 /* Prepare to single-step probed instruction out of line. */ 1927 static int 1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1929 { 1930 struct uprobe_task *utask; 1931 unsigned long xol_vaddr; 1932 int err; 1933 1934 utask = get_utask(); 1935 if (!utask) 1936 return -ENOMEM; 1937 1938 xol_vaddr = xol_get_insn_slot(uprobe); 1939 if (!xol_vaddr) 1940 return -ENOMEM; 1941 1942 utask->xol_vaddr = xol_vaddr; 1943 utask->vaddr = bp_vaddr; 1944 1945 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1946 if (unlikely(err)) { 1947 xol_free_insn_slot(current); 1948 return err; 1949 } 1950 1951 utask->active_uprobe = uprobe; 1952 utask->state = UTASK_SSTEP; 1953 return 0; 1954 } 1955 1956 /* 1957 * If we are singlestepping, then ensure this thread is not connected to 1958 * non-fatal signals until completion of singlestep. When xol insn itself 1959 * triggers the signal, restart the original insn even if the task is 1960 * already SIGKILL'ed (since coredump should report the correct ip). This 1961 * is even more important if the task has a handler for SIGSEGV/etc, The 1962 * _same_ instruction should be repeated again after return from the signal 1963 * handler, and SSTEP can never finish in this case. 1964 */ 1965 bool uprobe_deny_signal(void) 1966 { 1967 struct task_struct *t = current; 1968 struct uprobe_task *utask = t->utask; 1969 1970 if (likely(!utask || !utask->active_uprobe)) 1971 return false; 1972 1973 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1974 1975 if (task_sigpending(t)) { 1976 spin_lock_irq(&t->sighand->siglock); 1977 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1978 spin_unlock_irq(&t->sighand->siglock); 1979 1980 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1981 utask->state = UTASK_SSTEP_TRAPPED; 1982 set_tsk_thread_flag(t, TIF_UPROBE); 1983 } 1984 } 1985 1986 return true; 1987 } 1988 1989 static void mmf_recalc_uprobes(struct mm_struct *mm) 1990 { 1991 struct vm_area_struct *vma; 1992 1993 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1994 if (!valid_vma(vma, false)) 1995 continue; 1996 /* 1997 * This is not strictly accurate, we can race with 1998 * uprobe_unregister() and see the already removed 1999 * uprobe if delete_uprobe() was not yet called. 2000 * Or this uprobe can be filtered out. 2001 */ 2002 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2003 return; 2004 } 2005 2006 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2007 } 2008 2009 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2010 { 2011 struct page *page; 2012 uprobe_opcode_t opcode; 2013 int result; 2014 2015 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2016 return -EINVAL; 2017 2018 pagefault_disable(); 2019 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2020 pagefault_enable(); 2021 2022 if (likely(result == 0)) 2023 goto out; 2024 2025 /* 2026 * The NULL 'tsk' here ensures that any faults that occur here 2027 * will not be accounted to the task. 'mm' *is* current->mm, 2028 * but we treat this as a 'remote' access since it is 2029 * essentially a kernel access to the memory. 2030 */ 2031 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, 2032 NULL, NULL); 2033 if (result < 0) 2034 return result; 2035 2036 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2037 put_page(page); 2038 out: 2039 /* This needs to return true for any variant of the trap insn */ 2040 return is_trap_insn(&opcode); 2041 } 2042 2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2044 { 2045 struct mm_struct *mm = current->mm; 2046 struct uprobe *uprobe = NULL; 2047 struct vm_area_struct *vma; 2048 2049 mmap_read_lock(mm); 2050 vma = vma_lookup(mm, bp_vaddr); 2051 if (vma) { 2052 if (valid_vma(vma, false)) { 2053 struct inode *inode = file_inode(vma->vm_file); 2054 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2055 2056 uprobe = find_uprobe(inode, offset); 2057 } 2058 2059 if (!uprobe) 2060 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2061 } else { 2062 *is_swbp = -EFAULT; 2063 } 2064 2065 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2066 mmf_recalc_uprobes(mm); 2067 mmap_read_unlock(mm); 2068 2069 return uprobe; 2070 } 2071 2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2073 { 2074 struct uprobe_consumer *uc; 2075 int remove = UPROBE_HANDLER_REMOVE; 2076 bool need_prep = false; /* prepare return uprobe, when needed */ 2077 2078 down_read(&uprobe->register_rwsem); 2079 for (uc = uprobe->consumers; uc; uc = uc->next) { 2080 int rc = 0; 2081 2082 if (uc->handler) { 2083 rc = uc->handler(uc, regs); 2084 WARN(rc & ~UPROBE_HANDLER_MASK, 2085 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2086 } 2087 2088 if (uc->ret_handler) 2089 need_prep = true; 2090 2091 remove &= rc; 2092 } 2093 2094 if (need_prep && !remove) 2095 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2096 2097 if (remove && uprobe->consumers) { 2098 WARN_ON(!uprobe_is_active(uprobe)); 2099 unapply_uprobe(uprobe, current->mm); 2100 } 2101 up_read(&uprobe->register_rwsem); 2102 } 2103 2104 static void 2105 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2106 { 2107 struct uprobe *uprobe = ri->uprobe; 2108 struct uprobe_consumer *uc; 2109 2110 down_read(&uprobe->register_rwsem); 2111 for (uc = uprobe->consumers; uc; uc = uc->next) { 2112 if (uc->ret_handler) 2113 uc->ret_handler(uc, ri->func, regs); 2114 } 2115 up_read(&uprobe->register_rwsem); 2116 } 2117 2118 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2119 { 2120 bool chained; 2121 2122 do { 2123 chained = ri->chained; 2124 ri = ri->next; /* can't be NULL if chained */ 2125 } while (chained); 2126 2127 return ri; 2128 } 2129 2130 static void handle_trampoline(struct pt_regs *regs) 2131 { 2132 struct uprobe_task *utask; 2133 struct return_instance *ri, *next; 2134 bool valid; 2135 2136 utask = current->utask; 2137 if (!utask) 2138 goto sigill; 2139 2140 ri = utask->return_instances; 2141 if (!ri) 2142 goto sigill; 2143 2144 do { 2145 /* 2146 * We should throw out the frames invalidated by longjmp(). 2147 * If this chain is valid, then the next one should be alive 2148 * or NULL; the latter case means that nobody but ri->func 2149 * could hit this trampoline on return. TODO: sigaltstack(). 2150 */ 2151 next = find_next_ret_chain(ri); 2152 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2153 2154 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2155 do { 2156 if (valid) 2157 handle_uretprobe_chain(ri, regs); 2158 ri = free_ret_instance(ri); 2159 utask->depth--; 2160 } while (ri != next); 2161 } while (!valid); 2162 2163 utask->return_instances = ri; 2164 return; 2165 2166 sigill: 2167 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2168 force_sig(SIGILL); 2169 2170 } 2171 2172 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2173 { 2174 return false; 2175 } 2176 2177 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2178 struct pt_regs *regs) 2179 { 2180 return true; 2181 } 2182 2183 /* 2184 * Run handler and ask thread to singlestep. 2185 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2186 */ 2187 static void handle_swbp(struct pt_regs *regs) 2188 { 2189 struct uprobe *uprobe; 2190 unsigned long bp_vaddr; 2191 int is_swbp; 2192 2193 bp_vaddr = uprobe_get_swbp_addr(regs); 2194 if (bp_vaddr == get_trampoline_vaddr()) 2195 return handle_trampoline(regs); 2196 2197 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2198 if (!uprobe) { 2199 if (is_swbp > 0) { 2200 /* No matching uprobe; signal SIGTRAP. */ 2201 force_sig(SIGTRAP); 2202 } else { 2203 /* 2204 * Either we raced with uprobe_unregister() or we can't 2205 * access this memory. The latter is only possible if 2206 * another thread plays with our ->mm. In both cases 2207 * we can simply restart. If this vma was unmapped we 2208 * can pretend this insn was not executed yet and get 2209 * the (correct) SIGSEGV after restart. 2210 */ 2211 instruction_pointer_set(regs, bp_vaddr); 2212 } 2213 return; 2214 } 2215 2216 /* change it in advance for ->handler() and restart */ 2217 instruction_pointer_set(regs, bp_vaddr); 2218 2219 /* 2220 * TODO: move copy_insn/etc into _register and remove this hack. 2221 * After we hit the bp, _unregister + _register can install the 2222 * new and not-yet-analyzed uprobe at the same address, restart. 2223 */ 2224 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2225 goto out; 2226 2227 /* 2228 * Pairs with the smp_wmb() in prepare_uprobe(). 2229 * 2230 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2231 * we must also see the stores to &uprobe->arch performed by the 2232 * prepare_uprobe() call. 2233 */ 2234 smp_rmb(); 2235 2236 /* Tracing handlers use ->utask to communicate with fetch methods */ 2237 if (!get_utask()) 2238 goto out; 2239 2240 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2241 goto out; 2242 2243 handler_chain(uprobe, regs); 2244 2245 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2246 goto out; 2247 2248 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2249 return; 2250 2251 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2252 out: 2253 put_uprobe(uprobe); 2254 } 2255 2256 /* 2257 * Perform required fix-ups and disable singlestep. 2258 * Allow pending signals to take effect. 2259 */ 2260 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2261 { 2262 struct uprobe *uprobe; 2263 int err = 0; 2264 2265 uprobe = utask->active_uprobe; 2266 if (utask->state == UTASK_SSTEP_ACK) 2267 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2268 else if (utask->state == UTASK_SSTEP_TRAPPED) 2269 arch_uprobe_abort_xol(&uprobe->arch, regs); 2270 else 2271 WARN_ON_ONCE(1); 2272 2273 put_uprobe(uprobe); 2274 utask->active_uprobe = NULL; 2275 utask->state = UTASK_RUNNING; 2276 xol_free_insn_slot(current); 2277 2278 spin_lock_irq(¤t->sighand->siglock); 2279 recalc_sigpending(); /* see uprobe_deny_signal() */ 2280 spin_unlock_irq(¤t->sighand->siglock); 2281 2282 if (unlikely(err)) { 2283 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2284 force_sig(SIGILL); 2285 } 2286 } 2287 2288 /* 2289 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2290 * allows the thread to return from interrupt. After that handle_swbp() 2291 * sets utask->active_uprobe. 2292 * 2293 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2294 * and allows the thread to return from interrupt. 2295 * 2296 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2297 * uprobe_notify_resume(). 2298 */ 2299 void uprobe_notify_resume(struct pt_regs *regs) 2300 { 2301 struct uprobe_task *utask; 2302 2303 clear_thread_flag(TIF_UPROBE); 2304 2305 utask = current->utask; 2306 if (utask && utask->active_uprobe) 2307 handle_singlestep(utask, regs); 2308 else 2309 handle_swbp(regs); 2310 } 2311 2312 /* 2313 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2314 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2315 */ 2316 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2317 { 2318 if (!current->mm) 2319 return 0; 2320 2321 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2322 (!current->utask || !current->utask->return_instances)) 2323 return 0; 2324 2325 set_thread_flag(TIF_UPROBE); 2326 return 1; 2327 } 2328 2329 /* 2330 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2331 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2332 */ 2333 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2334 { 2335 struct uprobe_task *utask = current->utask; 2336 2337 if (!current->mm || !utask || !utask->active_uprobe) 2338 /* task is currently not uprobed */ 2339 return 0; 2340 2341 utask->state = UTASK_SSTEP_ACK; 2342 set_thread_flag(TIF_UPROBE); 2343 return 1; 2344 } 2345 2346 static struct notifier_block uprobe_exception_nb = { 2347 .notifier_call = arch_uprobe_exception_notify, 2348 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2349 }; 2350 2351 void __init uprobes_init(void) 2352 { 2353 int i; 2354 2355 for (i = 0; i < UPROBES_HASH_SZ; i++) 2356 mutex_init(&uprobes_mmap_mutex[i]); 2357 2358 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2359 } 2360