1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include "../../mm/internal.h" /* munlock_vma_page */ 26 #include <linux/percpu-rwsem.h> 27 #include <linux/task_work.h> 28 #include <linux/shmem_fs.h> 29 30 #include <linux/uprobes.h> 31 32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 34 35 static struct rb_root uprobes_tree = RB_ROOT; 36 /* 37 * allows us to skip the uprobe_mmap if there are no uprobe events active 38 * at this time. Probably a fine grained per inode count is better? 39 */ 40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 41 42 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 43 44 #define UPROBES_HASH_SZ 13 45 /* serialize uprobe->pending_list */ 46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 48 49 static struct percpu_rw_semaphore dup_mmap_sem; 50 51 /* Have a copy of original instruction */ 52 #define UPROBE_COPY_INSN 0 53 54 struct uprobe { 55 struct rb_node rb_node; /* node in the rb tree */ 56 refcount_t ref; 57 struct rw_semaphore register_rwsem; 58 struct rw_semaphore consumer_rwsem; 59 struct list_head pending_list; 60 struct uprobe_consumer *consumers; 61 struct inode *inode; /* Also hold a ref to inode */ 62 loff_t offset; 63 loff_t ref_ctr_offset; 64 unsigned long flags; 65 66 /* 67 * The generic code assumes that it has two members of unknown type 68 * owned by the arch-specific code: 69 * 70 * insn - copy_insn() saves the original instruction here for 71 * arch_uprobe_analyze_insn(). 72 * 73 * ixol - potentially modified instruction to execute out of 74 * line, copied to xol_area by xol_get_insn_slot(). 75 */ 76 struct arch_uprobe arch; 77 }; 78 79 struct delayed_uprobe { 80 struct list_head list; 81 struct uprobe *uprobe; 82 struct mm_struct *mm; 83 }; 84 85 static DEFINE_MUTEX(delayed_uprobe_lock); 86 static LIST_HEAD(delayed_uprobe_list); 87 88 /* 89 * Execute out of line area: anonymous executable mapping installed 90 * by the probed task to execute the copy of the original instruction 91 * mangled by set_swbp(). 92 * 93 * On a breakpoint hit, thread contests for a slot. It frees the 94 * slot after singlestep. Currently a fixed number of slots are 95 * allocated. 96 */ 97 struct xol_area { 98 wait_queue_head_t wq; /* if all slots are busy */ 99 atomic_t slot_count; /* number of in-use slots */ 100 unsigned long *bitmap; /* 0 = free slot */ 101 102 struct vm_special_mapping xol_mapping; 103 struct page *pages[2]; 104 /* 105 * We keep the vma's vm_start rather than a pointer to the vma 106 * itself. The probed process or a naughty kernel module could make 107 * the vma go away, and we must handle that reasonably gracefully. 108 */ 109 unsigned long vaddr; /* Page(s) of instruction slots */ 110 }; 111 112 /* 113 * valid_vma: Verify if the specified vma is an executable vma 114 * Relax restrictions while unregistering: vm_flags might have 115 * changed after breakpoint was inserted. 116 * - is_register: indicates if we are in register context. 117 * - Return 1 if the specified virtual address is in an 118 * executable vma. 119 */ 120 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 121 { 122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 123 124 if (is_register) 125 flags |= VM_WRITE; 126 127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 128 } 129 130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 131 { 132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 133 } 134 135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 136 { 137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 138 } 139 140 /** 141 * __replace_page - replace page in vma by new page. 142 * based on replace_page in mm/ksm.c 143 * 144 * @vma: vma that holds the pte pointing to page 145 * @addr: address the old @page is mapped at 146 * @page: the cowed page we are replacing by kpage 147 * @kpage: the modified page we replace page by 148 * 149 * Returns 0 on success, -EFAULT on failure. 150 */ 151 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 152 struct page *old_page, struct page *new_page) 153 { 154 struct mm_struct *mm = vma->vm_mm; 155 struct page_vma_mapped_walk pvmw = { 156 .page = old_page, 157 .vma = vma, 158 .address = addr, 159 }; 160 int err; 161 struct mmu_notifier_range range; 162 struct mem_cgroup *memcg; 163 164 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 165 addr + PAGE_SIZE); 166 167 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page); 168 169 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, 170 false); 171 if (err) 172 return err; 173 174 /* For try_to_free_swap() and munlock_vma_page() below */ 175 lock_page(old_page); 176 177 mmu_notifier_invalidate_range_start(&range); 178 err = -EAGAIN; 179 if (!page_vma_mapped_walk(&pvmw)) { 180 mem_cgroup_cancel_charge(new_page, memcg, false); 181 goto unlock; 182 } 183 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 184 185 get_page(new_page); 186 page_add_new_anon_rmap(new_page, vma, addr, false); 187 mem_cgroup_commit_charge(new_page, memcg, false, false); 188 lru_cache_add_active_or_unevictable(new_page, vma); 189 190 if (!PageAnon(old_page)) { 191 dec_mm_counter(mm, mm_counter_file(old_page)); 192 inc_mm_counter(mm, MM_ANONPAGES); 193 } 194 195 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 196 ptep_clear_flush_notify(vma, addr, pvmw.pte); 197 set_pte_at_notify(mm, addr, pvmw.pte, 198 mk_pte(new_page, vma->vm_page_prot)); 199 200 page_remove_rmap(old_page, false); 201 if (!page_mapped(old_page)) 202 try_to_free_swap(old_page); 203 page_vma_mapped_walk_done(&pvmw); 204 205 if (vma->vm_flags & VM_LOCKED) 206 munlock_vma_page(old_page); 207 put_page(old_page); 208 209 err = 0; 210 unlock: 211 mmu_notifier_invalidate_range_end(&range); 212 unlock_page(old_page); 213 return err; 214 } 215 216 /** 217 * is_swbp_insn - check if instruction is breakpoint instruction. 218 * @insn: instruction to be checked. 219 * Default implementation of is_swbp_insn 220 * Returns true if @insn is a breakpoint instruction. 221 */ 222 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 223 { 224 return *insn == UPROBE_SWBP_INSN; 225 } 226 227 /** 228 * is_trap_insn - check if instruction is breakpoint instruction. 229 * @insn: instruction to be checked. 230 * Default implementation of is_trap_insn 231 * Returns true if @insn is a breakpoint instruction. 232 * 233 * This function is needed for the case where an architecture has multiple 234 * trap instructions (like powerpc). 235 */ 236 bool __weak is_trap_insn(uprobe_opcode_t *insn) 237 { 238 return is_swbp_insn(insn); 239 } 240 241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 242 { 243 void *kaddr = kmap_atomic(page); 244 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 245 kunmap_atomic(kaddr); 246 } 247 248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 249 { 250 void *kaddr = kmap_atomic(page); 251 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 252 kunmap_atomic(kaddr); 253 } 254 255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 256 { 257 uprobe_opcode_t old_opcode; 258 bool is_swbp; 259 260 /* 261 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 262 * We do not check if it is any other 'trap variant' which could 263 * be conditional trap instruction such as the one powerpc supports. 264 * 265 * The logic is that we do not care if the underlying instruction 266 * is a trap variant; uprobes always wins over any other (gdb) 267 * breakpoint. 268 */ 269 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 270 is_swbp = is_swbp_insn(&old_opcode); 271 272 if (is_swbp_insn(new_opcode)) { 273 if (is_swbp) /* register: already installed? */ 274 return 0; 275 } else { 276 if (!is_swbp) /* unregister: was it changed by us? */ 277 return 0; 278 } 279 280 return 1; 281 } 282 283 static struct delayed_uprobe * 284 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 285 { 286 struct delayed_uprobe *du; 287 288 list_for_each_entry(du, &delayed_uprobe_list, list) 289 if (du->uprobe == uprobe && du->mm == mm) 290 return du; 291 return NULL; 292 } 293 294 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 295 { 296 struct delayed_uprobe *du; 297 298 if (delayed_uprobe_check(uprobe, mm)) 299 return 0; 300 301 du = kzalloc(sizeof(*du), GFP_KERNEL); 302 if (!du) 303 return -ENOMEM; 304 305 du->uprobe = uprobe; 306 du->mm = mm; 307 list_add(&du->list, &delayed_uprobe_list); 308 return 0; 309 } 310 311 static void delayed_uprobe_delete(struct delayed_uprobe *du) 312 { 313 if (WARN_ON(!du)) 314 return; 315 list_del(&du->list); 316 kfree(du); 317 } 318 319 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 320 { 321 struct list_head *pos, *q; 322 struct delayed_uprobe *du; 323 324 if (!uprobe && !mm) 325 return; 326 327 list_for_each_safe(pos, q, &delayed_uprobe_list) { 328 du = list_entry(pos, struct delayed_uprobe, list); 329 330 if (uprobe && du->uprobe != uprobe) 331 continue; 332 if (mm && du->mm != mm) 333 continue; 334 335 delayed_uprobe_delete(du); 336 } 337 } 338 339 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 340 struct vm_area_struct *vma) 341 { 342 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 343 344 return uprobe->ref_ctr_offset && 345 vma->vm_file && 346 file_inode(vma->vm_file) == uprobe->inode && 347 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 348 vma->vm_start <= vaddr && 349 vma->vm_end > vaddr; 350 } 351 352 static struct vm_area_struct * 353 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 354 { 355 struct vm_area_struct *tmp; 356 357 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 358 if (valid_ref_ctr_vma(uprobe, tmp)) 359 return tmp; 360 361 return NULL; 362 } 363 364 static int 365 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 366 { 367 void *kaddr; 368 struct page *page; 369 struct vm_area_struct *vma; 370 int ret; 371 short *ptr; 372 373 if (!vaddr || !d) 374 return -EINVAL; 375 376 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 377 FOLL_WRITE, &page, &vma, NULL); 378 if (unlikely(ret <= 0)) { 379 /* 380 * We are asking for 1 page. If get_user_pages_remote() fails, 381 * it may return 0, in that case we have to return error. 382 */ 383 return ret == 0 ? -EBUSY : ret; 384 } 385 386 kaddr = kmap_atomic(page); 387 ptr = kaddr + (vaddr & ~PAGE_MASK); 388 389 if (unlikely(*ptr + d < 0)) { 390 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 391 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 392 ret = -EINVAL; 393 goto out; 394 } 395 396 *ptr += d; 397 ret = 0; 398 out: 399 kunmap_atomic(kaddr); 400 put_page(page); 401 return ret; 402 } 403 404 static void update_ref_ctr_warn(struct uprobe *uprobe, 405 struct mm_struct *mm, short d) 406 { 407 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 408 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 409 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 410 (unsigned long long) uprobe->offset, 411 (unsigned long long) uprobe->ref_ctr_offset, mm); 412 } 413 414 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 415 short d) 416 { 417 struct vm_area_struct *rc_vma; 418 unsigned long rc_vaddr; 419 int ret = 0; 420 421 rc_vma = find_ref_ctr_vma(uprobe, mm); 422 423 if (rc_vma) { 424 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 425 ret = __update_ref_ctr(mm, rc_vaddr, d); 426 if (ret) 427 update_ref_ctr_warn(uprobe, mm, d); 428 429 if (d > 0) 430 return ret; 431 } 432 433 mutex_lock(&delayed_uprobe_lock); 434 if (d > 0) 435 ret = delayed_uprobe_add(uprobe, mm); 436 else 437 delayed_uprobe_remove(uprobe, mm); 438 mutex_unlock(&delayed_uprobe_lock); 439 440 return ret; 441 } 442 443 /* 444 * NOTE: 445 * Expect the breakpoint instruction to be the smallest size instruction for 446 * the architecture. If an arch has variable length instruction and the 447 * breakpoint instruction is not of the smallest length instruction 448 * supported by that architecture then we need to modify is_trap_at_addr and 449 * uprobe_write_opcode accordingly. This would never be a problem for archs 450 * that have fixed length instructions. 451 * 452 * uprobe_write_opcode - write the opcode at a given virtual address. 453 * @mm: the probed process address space. 454 * @vaddr: the virtual address to store the opcode. 455 * @opcode: opcode to be written at @vaddr. 456 * 457 * Called with mm->mmap_sem held for write. 458 * Return 0 (success) or a negative errno. 459 */ 460 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 461 unsigned long vaddr, uprobe_opcode_t opcode) 462 { 463 struct uprobe *uprobe; 464 struct page *old_page, *new_page; 465 struct vm_area_struct *vma; 466 int ret, is_register, ref_ctr_updated = 0; 467 468 is_register = is_swbp_insn(&opcode); 469 uprobe = container_of(auprobe, struct uprobe, arch); 470 471 retry: 472 /* Read the page with vaddr into memory */ 473 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 474 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL); 475 if (ret <= 0) 476 return ret; 477 478 ret = verify_opcode(old_page, vaddr, &opcode); 479 if (ret <= 0) 480 goto put_old; 481 482 /* We are going to replace instruction, update ref_ctr. */ 483 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 484 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 485 if (ret) 486 goto put_old; 487 488 ref_ctr_updated = 1; 489 } 490 491 ret = anon_vma_prepare(vma); 492 if (ret) 493 goto put_old; 494 495 ret = -ENOMEM; 496 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 497 if (!new_page) 498 goto put_old; 499 500 __SetPageUptodate(new_page); 501 copy_highpage(new_page, old_page); 502 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 503 504 ret = __replace_page(vma, vaddr, old_page, new_page); 505 put_page(new_page); 506 put_old: 507 put_page(old_page); 508 509 if (unlikely(ret == -EAGAIN)) 510 goto retry; 511 512 /* Revert back reference counter if instruction update failed. */ 513 if (ret && is_register && ref_ctr_updated) 514 update_ref_ctr(uprobe, mm, -1); 515 516 return ret; 517 } 518 519 /** 520 * set_swbp - store breakpoint at a given address. 521 * @auprobe: arch specific probepoint information. 522 * @mm: the probed process address space. 523 * @vaddr: the virtual address to insert the opcode. 524 * 525 * For mm @mm, store the breakpoint instruction at @vaddr. 526 * Return 0 (success) or a negative errno. 527 */ 528 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 529 { 530 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 531 } 532 533 /** 534 * set_orig_insn - Restore the original instruction. 535 * @mm: the probed process address space. 536 * @auprobe: arch specific probepoint information. 537 * @vaddr: the virtual address to insert the opcode. 538 * 539 * For mm @mm, restore the original opcode (opcode) at @vaddr. 540 * Return 0 (success) or a negative errno. 541 */ 542 int __weak 543 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 544 { 545 return uprobe_write_opcode(auprobe, mm, vaddr, 546 *(uprobe_opcode_t *)&auprobe->insn); 547 } 548 549 static struct uprobe *get_uprobe(struct uprobe *uprobe) 550 { 551 refcount_inc(&uprobe->ref); 552 return uprobe; 553 } 554 555 static void put_uprobe(struct uprobe *uprobe) 556 { 557 if (refcount_dec_and_test(&uprobe->ref)) { 558 /* 559 * If application munmap(exec_vma) before uprobe_unregister() 560 * gets called, we don't get a chance to remove uprobe from 561 * delayed_uprobe_list from remove_breakpoint(). Do it here. 562 */ 563 mutex_lock(&delayed_uprobe_lock); 564 delayed_uprobe_remove(uprobe, NULL); 565 mutex_unlock(&delayed_uprobe_lock); 566 kfree(uprobe); 567 } 568 } 569 570 static int match_uprobe(struct uprobe *l, struct uprobe *r) 571 { 572 if (l->inode < r->inode) 573 return -1; 574 575 if (l->inode > r->inode) 576 return 1; 577 578 if (l->offset < r->offset) 579 return -1; 580 581 if (l->offset > r->offset) 582 return 1; 583 584 return 0; 585 } 586 587 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 588 { 589 struct uprobe u = { .inode = inode, .offset = offset }; 590 struct rb_node *n = uprobes_tree.rb_node; 591 struct uprobe *uprobe; 592 int match; 593 594 while (n) { 595 uprobe = rb_entry(n, struct uprobe, rb_node); 596 match = match_uprobe(&u, uprobe); 597 if (!match) 598 return get_uprobe(uprobe); 599 600 if (match < 0) 601 n = n->rb_left; 602 else 603 n = n->rb_right; 604 } 605 return NULL; 606 } 607 608 /* 609 * Find a uprobe corresponding to a given inode:offset 610 * Acquires uprobes_treelock 611 */ 612 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 613 { 614 struct uprobe *uprobe; 615 616 spin_lock(&uprobes_treelock); 617 uprobe = __find_uprobe(inode, offset); 618 spin_unlock(&uprobes_treelock); 619 620 return uprobe; 621 } 622 623 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 624 { 625 struct rb_node **p = &uprobes_tree.rb_node; 626 struct rb_node *parent = NULL; 627 struct uprobe *u; 628 int match; 629 630 while (*p) { 631 parent = *p; 632 u = rb_entry(parent, struct uprobe, rb_node); 633 match = match_uprobe(uprobe, u); 634 if (!match) 635 return get_uprobe(u); 636 637 if (match < 0) 638 p = &parent->rb_left; 639 else 640 p = &parent->rb_right; 641 642 } 643 644 u = NULL; 645 rb_link_node(&uprobe->rb_node, parent, p); 646 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 647 /* get access + creation ref */ 648 refcount_set(&uprobe->ref, 2); 649 650 return u; 651 } 652 653 /* 654 * Acquire uprobes_treelock. 655 * Matching uprobe already exists in rbtree; 656 * increment (access refcount) and return the matching uprobe. 657 * 658 * No matching uprobe; insert the uprobe in rb_tree; 659 * get a double refcount (access + creation) and return NULL. 660 */ 661 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 662 { 663 struct uprobe *u; 664 665 spin_lock(&uprobes_treelock); 666 u = __insert_uprobe(uprobe); 667 spin_unlock(&uprobes_treelock); 668 669 return u; 670 } 671 672 static void 673 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 674 { 675 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 676 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 677 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 678 (unsigned long long) cur_uprobe->ref_ctr_offset, 679 (unsigned long long) uprobe->ref_ctr_offset); 680 } 681 682 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 683 loff_t ref_ctr_offset) 684 { 685 struct uprobe *uprobe, *cur_uprobe; 686 687 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 688 if (!uprobe) 689 return NULL; 690 691 uprobe->inode = inode; 692 uprobe->offset = offset; 693 uprobe->ref_ctr_offset = ref_ctr_offset; 694 init_rwsem(&uprobe->register_rwsem); 695 init_rwsem(&uprobe->consumer_rwsem); 696 697 /* add to uprobes_tree, sorted on inode:offset */ 698 cur_uprobe = insert_uprobe(uprobe); 699 /* a uprobe exists for this inode:offset combination */ 700 if (cur_uprobe) { 701 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 702 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 703 put_uprobe(cur_uprobe); 704 kfree(uprobe); 705 return ERR_PTR(-EINVAL); 706 } 707 kfree(uprobe); 708 uprobe = cur_uprobe; 709 } 710 711 return uprobe; 712 } 713 714 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 715 { 716 down_write(&uprobe->consumer_rwsem); 717 uc->next = uprobe->consumers; 718 uprobe->consumers = uc; 719 up_write(&uprobe->consumer_rwsem); 720 } 721 722 /* 723 * For uprobe @uprobe, delete the consumer @uc. 724 * Return true if the @uc is deleted successfully 725 * or return false. 726 */ 727 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 728 { 729 struct uprobe_consumer **con; 730 bool ret = false; 731 732 down_write(&uprobe->consumer_rwsem); 733 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 734 if (*con == uc) { 735 *con = uc->next; 736 ret = true; 737 break; 738 } 739 } 740 up_write(&uprobe->consumer_rwsem); 741 742 return ret; 743 } 744 745 static int __copy_insn(struct address_space *mapping, struct file *filp, 746 void *insn, int nbytes, loff_t offset) 747 { 748 struct page *page; 749 /* 750 * Ensure that the page that has the original instruction is populated 751 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 752 * see uprobe_register(). 753 */ 754 if (mapping->a_ops->readpage) 755 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 756 else 757 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 758 if (IS_ERR(page)) 759 return PTR_ERR(page); 760 761 copy_from_page(page, offset, insn, nbytes); 762 put_page(page); 763 764 return 0; 765 } 766 767 static int copy_insn(struct uprobe *uprobe, struct file *filp) 768 { 769 struct address_space *mapping = uprobe->inode->i_mapping; 770 loff_t offs = uprobe->offset; 771 void *insn = &uprobe->arch.insn; 772 int size = sizeof(uprobe->arch.insn); 773 int len, err = -EIO; 774 775 /* Copy only available bytes, -EIO if nothing was read */ 776 do { 777 if (offs >= i_size_read(uprobe->inode)) 778 break; 779 780 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 781 err = __copy_insn(mapping, filp, insn, len, offs); 782 if (err) 783 break; 784 785 insn += len; 786 offs += len; 787 size -= len; 788 } while (size); 789 790 return err; 791 } 792 793 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 794 struct mm_struct *mm, unsigned long vaddr) 795 { 796 int ret = 0; 797 798 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 799 return ret; 800 801 /* TODO: move this into _register, until then we abuse this sem. */ 802 down_write(&uprobe->consumer_rwsem); 803 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 804 goto out; 805 806 ret = copy_insn(uprobe, file); 807 if (ret) 808 goto out; 809 810 ret = -ENOTSUPP; 811 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 812 goto out; 813 814 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 815 if (ret) 816 goto out; 817 818 /* uprobe_write_opcode() assumes we don't cross page boundary */ 819 BUG_ON((uprobe->offset & ~PAGE_MASK) + 820 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 821 822 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 823 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 824 825 out: 826 up_write(&uprobe->consumer_rwsem); 827 828 return ret; 829 } 830 831 static inline bool consumer_filter(struct uprobe_consumer *uc, 832 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 833 { 834 return !uc->filter || uc->filter(uc, ctx, mm); 835 } 836 837 static bool filter_chain(struct uprobe *uprobe, 838 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 839 { 840 struct uprobe_consumer *uc; 841 bool ret = false; 842 843 down_read(&uprobe->consumer_rwsem); 844 for (uc = uprobe->consumers; uc; uc = uc->next) { 845 ret = consumer_filter(uc, ctx, mm); 846 if (ret) 847 break; 848 } 849 up_read(&uprobe->consumer_rwsem); 850 851 return ret; 852 } 853 854 static int 855 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 856 struct vm_area_struct *vma, unsigned long vaddr) 857 { 858 bool first_uprobe; 859 int ret; 860 861 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 862 if (ret) 863 return ret; 864 865 /* 866 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 867 * the task can hit this breakpoint right after __replace_page(). 868 */ 869 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 870 if (first_uprobe) 871 set_bit(MMF_HAS_UPROBES, &mm->flags); 872 873 ret = set_swbp(&uprobe->arch, mm, vaddr); 874 if (!ret) 875 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 876 else if (first_uprobe) 877 clear_bit(MMF_HAS_UPROBES, &mm->flags); 878 879 return ret; 880 } 881 882 static int 883 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 884 { 885 set_bit(MMF_RECALC_UPROBES, &mm->flags); 886 return set_orig_insn(&uprobe->arch, mm, vaddr); 887 } 888 889 static inline bool uprobe_is_active(struct uprobe *uprobe) 890 { 891 return !RB_EMPTY_NODE(&uprobe->rb_node); 892 } 893 /* 894 * There could be threads that have already hit the breakpoint. They 895 * will recheck the current insn and restart if find_uprobe() fails. 896 * See find_active_uprobe(). 897 */ 898 static void delete_uprobe(struct uprobe *uprobe) 899 { 900 if (WARN_ON(!uprobe_is_active(uprobe))) 901 return; 902 903 spin_lock(&uprobes_treelock); 904 rb_erase(&uprobe->rb_node, &uprobes_tree); 905 spin_unlock(&uprobes_treelock); 906 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 907 put_uprobe(uprobe); 908 } 909 910 struct map_info { 911 struct map_info *next; 912 struct mm_struct *mm; 913 unsigned long vaddr; 914 }; 915 916 static inline struct map_info *free_map_info(struct map_info *info) 917 { 918 struct map_info *next = info->next; 919 kfree(info); 920 return next; 921 } 922 923 static struct map_info * 924 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 925 { 926 unsigned long pgoff = offset >> PAGE_SHIFT; 927 struct vm_area_struct *vma; 928 struct map_info *curr = NULL; 929 struct map_info *prev = NULL; 930 struct map_info *info; 931 int more = 0; 932 933 again: 934 i_mmap_lock_read(mapping); 935 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 936 if (!valid_vma(vma, is_register)) 937 continue; 938 939 if (!prev && !more) { 940 /* 941 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 942 * reclaim. This is optimistic, no harm done if it fails. 943 */ 944 prev = kmalloc(sizeof(struct map_info), 945 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 946 if (prev) 947 prev->next = NULL; 948 } 949 if (!prev) { 950 more++; 951 continue; 952 } 953 954 if (!mmget_not_zero(vma->vm_mm)) 955 continue; 956 957 info = prev; 958 prev = prev->next; 959 info->next = curr; 960 curr = info; 961 962 info->mm = vma->vm_mm; 963 info->vaddr = offset_to_vaddr(vma, offset); 964 } 965 i_mmap_unlock_read(mapping); 966 967 if (!more) 968 goto out; 969 970 prev = curr; 971 while (curr) { 972 mmput(curr->mm); 973 curr = curr->next; 974 } 975 976 do { 977 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 978 if (!info) { 979 curr = ERR_PTR(-ENOMEM); 980 goto out; 981 } 982 info->next = prev; 983 prev = info; 984 } while (--more); 985 986 goto again; 987 out: 988 while (prev) 989 prev = free_map_info(prev); 990 return curr; 991 } 992 993 static int 994 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 995 { 996 bool is_register = !!new; 997 struct map_info *info; 998 int err = 0; 999 1000 percpu_down_write(&dup_mmap_sem); 1001 info = build_map_info(uprobe->inode->i_mapping, 1002 uprobe->offset, is_register); 1003 if (IS_ERR(info)) { 1004 err = PTR_ERR(info); 1005 goto out; 1006 } 1007 1008 while (info) { 1009 struct mm_struct *mm = info->mm; 1010 struct vm_area_struct *vma; 1011 1012 if (err && is_register) 1013 goto free; 1014 1015 down_write(&mm->mmap_sem); 1016 vma = find_vma(mm, info->vaddr); 1017 if (!vma || !valid_vma(vma, is_register) || 1018 file_inode(vma->vm_file) != uprobe->inode) 1019 goto unlock; 1020 1021 if (vma->vm_start > info->vaddr || 1022 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1023 goto unlock; 1024 1025 if (is_register) { 1026 /* consult only the "caller", new consumer. */ 1027 if (consumer_filter(new, 1028 UPROBE_FILTER_REGISTER, mm)) 1029 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1030 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1031 if (!filter_chain(uprobe, 1032 UPROBE_FILTER_UNREGISTER, mm)) 1033 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1034 } 1035 1036 unlock: 1037 up_write(&mm->mmap_sem); 1038 free: 1039 mmput(mm); 1040 info = free_map_info(info); 1041 } 1042 out: 1043 percpu_up_write(&dup_mmap_sem); 1044 return err; 1045 } 1046 1047 static void 1048 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1049 { 1050 int err; 1051 1052 if (WARN_ON(!consumer_del(uprobe, uc))) 1053 return; 1054 1055 err = register_for_each_vma(uprobe, NULL); 1056 /* TODO : cant unregister? schedule a worker thread */ 1057 if (!uprobe->consumers && !err) 1058 delete_uprobe(uprobe); 1059 } 1060 1061 /* 1062 * uprobe_unregister - unregister an already registered probe. 1063 * @inode: the file in which the probe has to be removed. 1064 * @offset: offset from the start of the file. 1065 * @uc: identify which probe if multiple probes are colocated. 1066 */ 1067 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1068 { 1069 struct uprobe *uprobe; 1070 1071 uprobe = find_uprobe(inode, offset); 1072 if (WARN_ON(!uprobe)) 1073 return; 1074 1075 down_write(&uprobe->register_rwsem); 1076 __uprobe_unregister(uprobe, uc); 1077 up_write(&uprobe->register_rwsem); 1078 put_uprobe(uprobe); 1079 } 1080 EXPORT_SYMBOL_GPL(uprobe_unregister); 1081 1082 /* 1083 * __uprobe_register - register a probe 1084 * @inode: the file in which the probe has to be placed. 1085 * @offset: offset from the start of the file. 1086 * @uc: information on howto handle the probe.. 1087 * 1088 * Apart from the access refcount, __uprobe_register() takes a creation 1089 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1090 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1091 * tuple). Creation refcount stops uprobe_unregister from freeing the 1092 * @uprobe even before the register operation is complete. Creation 1093 * refcount is released when the last @uc for the @uprobe 1094 * unregisters. Caller of __uprobe_register() is required to keep @inode 1095 * (and the containing mount) referenced. 1096 * 1097 * Return errno if it cannot successully install probes 1098 * else return 0 (success) 1099 */ 1100 static int __uprobe_register(struct inode *inode, loff_t offset, 1101 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1102 { 1103 struct uprobe *uprobe; 1104 int ret; 1105 1106 /* Uprobe must have at least one set consumer */ 1107 if (!uc->handler && !uc->ret_handler) 1108 return -EINVAL; 1109 1110 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1111 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1112 return -EIO; 1113 /* Racy, just to catch the obvious mistakes */ 1114 if (offset > i_size_read(inode)) 1115 return -EINVAL; 1116 1117 retry: 1118 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1119 if (!uprobe) 1120 return -ENOMEM; 1121 if (IS_ERR(uprobe)) 1122 return PTR_ERR(uprobe); 1123 1124 /* 1125 * We can race with uprobe_unregister()->delete_uprobe(). 1126 * Check uprobe_is_active() and retry if it is false. 1127 */ 1128 down_write(&uprobe->register_rwsem); 1129 ret = -EAGAIN; 1130 if (likely(uprobe_is_active(uprobe))) { 1131 consumer_add(uprobe, uc); 1132 ret = register_for_each_vma(uprobe, uc); 1133 if (ret) 1134 __uprobe_unregister(uprobe, uc); 1135 } 1136 up_write(&uprobe->register_rwsem); 1137 put_uprobe(uprobe); 1138 1139 if (unlikely(ret == -EAGAIN)) 1140 goto retry; 1141 return ret; 1142 } 1143 1144 int uprobe_register(struct inode *inode, loff_t offset, 1145 struct uprobe_consumer *uc) 1146 { 1147 return __uprobe_register(inode, offset, 0, uc); 1148 } 1149 EXPORT_SYMBOL_GPL(uprobe_register); 1150 1151 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1152 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1153 { 1154 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1155 } 1156 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1157 1158 /* 1159 * uprobe_apply - unregister an already registered probe. 1160 * @inode: the file in which the probe has to be removed. 1161 * @offset: offset from the start of the file. 1162 * @uc: consumer which wants to add more or remove some breakpoints 1163 * @add: add or remove the breakpoints 1164 */ 1165 int uprobe_apply(struct inode *inode, loff_t offset, 1166 struct uprobe_consumer *uc, bool add) 1167 { 1168 struct uprobe *uprobe; 1169 struct uprobe_consumer *con; 1170 int ret = -ENOENT; 1171 1172 uprobe = find_uprobe(inode, offset); 1173 if (WARN_ON(!uprobe)) 1174 return ret; 1175 1176 down_write(&uprobe->register_rwsem); 1177 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1178 ; 1179 if (con) 1180 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1181 up_write(&uprobe->register_rwsem); 1182 put_uprobe(uprobe); 1183 1184 return ret; 1185 } 1186 1187 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1188 { 1189 struct vm_area_struct *vma; 1190 int err = 0; 1191 1192 down_read(&mm->mmap_sem); 1193 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1194 unsigned long vaddr; 1195 loff_t offset; 1196 1197 if (!valid_vma(vma, false) || 1198 file_inode(vma->vm_file) != uprobe->inode) 1199 continue; 1200 1201 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1202 if (uprobe->offset < offset || 1203 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1204 continue; 1205 1206 vaddr = offset_to_vaddr(vma, uprobe->offset); 1207 err |= remove_breakpoint(uprobe, mm, vaddr); 1208 } 1209 up_read(&mm->mmap_sem); 1210 1211 return err; 1212 } 1213 1214 static struct rb_node * 1215 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1216 { 1217 struct rb_node *n = uprobes_tree.rb_node; 1218 1219 while (n) { 1220 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1221 1222 if (inode < u->inode) { 1223 n = n->rb_left; 1224 } else if (inode > u->inode) { 1225 n = n->rb_right; 1226 } else { 1227 if (max < u->offset) 1228 n = n->rb_left; 1229 else if (min > u->offset) 1230 n = n->rb_right; 1231 else 1232 break; 1233 } 1234 } 1235 1236 return n; 1237 } 1238 1239 /* 1240 * For a given range in vma, build a list of probes that need to be inserted. 1241 */ 1242 static void build_probe_list(struct inode *inode, 1243 struct vm_area_struct *vma, 1244 unsigned long start, unsigned long end, 1245 struct list_head *head) 1246 { 1247 loff_t min, max; 1248 struct rb_node *n, *t; 1249 struct uprobe *u; 1250 1251 INIT_LIST_HEAD(head); 1252 min = vaddr_to_offset(vma, start); 1253 max = min + (end - start) - 1; 1254 1255 spin_lock(&uprobes_treelock); 1256 n = find_node_in_range(inode, min, max); 1257 if (n) { 1258 for (t = n; t; t = rb_prev(t)) { 1259 u = rb_entry(t, struct uprobe, rb_node); 1260 if (u->inode != inode || u->offset < min) 1261 break; 1262 list_add(&u->pending_list, head); 1263 get_uprobe(u); 1264 } 1265 for (t = n; (t = rb_next(t)); ) { 1266 u = rb_entry(t, struct uprobe, rb_node); 1267 if (u->inode != inode || u->offset > max) 1268 break; 1269 list_add(&u->pending_list, head); 1270 get_uprobe(u); 1271 } 1272 } 1273 spin_unlock(&uprobes_treelock); 1274 } 1275 1276 /* @vma contains reference counter, not the probed instruction. */ 1277 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1278 { 1279 struct list_head *pos, *q; 1280 struct delayed_uprobe *du; 1281 unsigned long vaddr; 1282 int ret = 0, err = 0; 1283 1284 mutex_lock(&delayed_uprobe_lock); 1285 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1286 du = list_entry(pos, struct delayed_uprobe, list); 1287 1288 if (du->mm != vma->vm_mm || 1289 !valid_ref_ctr_vma(du->uprobe, vma)) 1290 continue; 1291 1292 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1293 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1294 if (ret) { 1295 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1296 if (!err) 1297 err = ret; 1298 } 1299 delayed_uprobe_delete(du); 1300 } 1301 mutex_unlock(&delayed_uprobe_lock); 1302 return err; 1303 } 1304 1305 /* 1306 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1307 * 1308 * Currently we ignore all errors and always return 0, the callers 1309 * can't handle the failure anyway. 1310 */ 1311 int uprobe_mmap(struct vm_area_struct *vma) 1312 { 1313 struct list_head tmp_list; 1314 struct uprobe *uprobe, *u; 1315 struct inode *inode; 1316 1317 if (no_uprobe_events()) 1318 return 0; 1319 1320 if (vma->vm_file && 1321 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1322 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1323 delayed_ref_ctr_inc(vma); 1324 1325 if (!valid_vma(vma, true)) 1326 return 0; 1327 1328 inode = file_inode(vma->vm_file); 1329 if (!inode) 1330 return 0; 1331 1332 mutex_lock(uprobes_mmap_hash(inode)); 1333 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1334 /* 1335 * We can race with uprobe_unregister(), this uprobe can be already 1336 * removed. But in this case filter_chain() must return false, all 1337 * consumers have gone away. 1338 */ 1339 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1340 if (!fatal_signal_pending(current) && 1341 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1342 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1343 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1344 } 1345 put_uprobe(uprobe); 1346 } 1347 mutex_unlock(uprobes_mmap_hash(inode)); 1348 1349 return 0; 1350 } 1351 1352 static bool 1353 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1354 { 1355 loff_t min, max; 1356 struct inode *inode; 1357 struct rb_node *n; 1358 1359 inode = file_inode(vma->vm_file); 1360 1361 min = vaddr_to_offset(vma, start); 1362 max = min + (end - start) - 1; 1363 1364 spin_lock(&uprobes_treelock); 1365 n = find_node_in_range(inode, min, max); 1366 spin_unlock(&uprobes_treelock); 1367 1368 return !!n; 1369 } 1370 1371 /* 1372 * Called in context of a munmap of a vma. 1373 */ 1374 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1375 { 1376 if (no_uprobe_events() || !valid_vma(vma, false)) 1377 return; 1378 1379 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1380 return; 1381 1382 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1383 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1384 return; 1385 1386 if (vma_has_uprobes(vma, start, end)) 1387 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1388 } 1389 1390 /* Slot allocation for XOL */ 1391 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1392 { 1393 struct vm_area_struct *vma; 1394 int ret; 1395 1396 if (down_write_killable(&mm->mmap_sem)) 1397 return -EINTR; 1398 1399 if (mm->uprobes_state.xol_area) { 1400 ret = -EALREADY; 1401 goto fail; 1402 } 1403 1404 if (!area->vaddr) { 1405 /* Try to map as high as possible, this is only a hint. */ 1406 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1407 PAGE_SIZE, 0, 0); 1408 if (area->vaddr & ~PAGE_MASK) { 1409 ret = area->vaddr; 1410 goto fail; 1411 } 1412 } 1413 1414 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1415 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1416 &area->xol_mapping); 1417 if (IS_ERR(vma)) { 1418 ret = PTR_ERR(vma); 1419 goto fail; 1420 } 1421 1422 ret = 0; 1423 /* pairs with get_xol_area() */ 1424 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1425 fail: 1426 up_write(&mm->mmap_sem); 1427 1428 return ret; 1429 } 1430 1431 static struct xol_area *__create_xol_area(unsigned long vaddr) 1432 { 1433 struct mm_struct *mm = current->mm; 1434 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1435 struct xol_area *area; 1436 1437 area = kmalloc(sizeof(*area), GFP_KERNEL); 1438 if (unlikely(!area)) 1439 goto out; 1440 1441 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1442 GFP_KERNEL); 1443 if (!area->bitmap) 1444 goto free_area; 1445 1446 area->xol_mapping.name = "[uprobes]"; 1447 area->xol_mapping.fault = NULL; 1448 area->xol_mapping.pages = area->pages; 1449 area->pages[0] = alloc_page(GFP_HIGHUSER); 1450 if (!area->pages[0]) 1451 goto free_bitmap; 1452 area->pages[1] = NULL; 1453 1454 area->vaddr = vaddr; 1455 init_waitqueue_head(&area->wq); 1456 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1457 set_bit(0, area->bitmap); 1458 atomic_set(&area->slot_count, 1); 1459 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1460 1461 if (!xol_add_vma(mm, area)) 1462 return area; 1463 1464 __free_page(area->pages[0]); 1465 free_bitmap: 1466 kfree(area->bitmap); 1467 free_area: 1468 kfree(area); 1469 out: 1470 return NULL; 1471 } 1472 1473 /* 1474 * get_xol_area - Allocate process's xol_area if necessary. 1475 * This area will be used for storing instructions for execution out of line. 1476 * 1477 * Returns the allocated area or NULL. 1478 */ 1479 static struct xol_area *get_xol_area(void) 1480 { 1481 struct mm_struct *mm = current->mm; 1482 struct xol_area *area; 1483 1484 if (!mm->uprobes_state.xol_area) 1485 __create_xol_area(0); 1486 1487 /* Pairs with xol_add_vma() smp_store_release() */ 1488 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1489 return area; 1490 } 1491 1492 /* 1493 * uprobe_clear_state - Free the area allocated for slots. 1494 */ 1495 void uprobe_clear_state(struct mm_struct *mm) 1496 { 1497 struct xol_area *area = mm->uprobes_state.xol_area; 1498 1499 mutex_lock(&delayed_uprobe_lock); 1500 delayed_uprobe_remove(NULL, mm); 1501 mutex_unlock(&delayed_uprobe_lock); 1502 1503 if (!area) 1504 return; 1505 1506 put_page(area->pages[0]); 1507 kfree(area->bitmap); 1508 kfree(area); 1509 } 1510 1511 void uprobe_start_dup_mmap(void) 1512 { 1513 percpu_down_read(&dup_mmap_sem); 1514 } 1515 1516 void uprobe_end_dup_mmap(void) 1517 { 1518 percpu_up_read(&dup_mmap_sem); 1519 } 1520 1521 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1522 { 1523 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1524 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1525 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1526 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1527 } 1528 } 1529 1530 /* 1531 * - search for a free slot. 1532 */ 1533 static unsigned long xol_take_insn_slot(struct xol_area *area) 1534 { 1535 unsigned long slot_addr; 1536 int slot_nr; 1537 1538 do { 1539 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1540 if (slot_nr < UINSNS_PER_PAGE) { 1541 if (!test_and_set_bit(slot_nr, area->bitmap)) 1542 break; 1543 1544 slot_nr = UINSNS_PER_PAGE; 1545 continue; 1546 } 1547 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1548 } while (slot_nr >= UINSNS_PER_PAGE); 1549 1550 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1551 atomic_inc(&area->slot_count); 1552 1553 return slot_addr; 1554 } 1555 1556 /* 1557 * xol_get_insn_slot - allocate a slot for xol. 1558 * Returns the allocated slot address or 0. 1559 */ 1560 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1561 { 1562 struct xol_area *area; 1563 unsigned long xol_vaddr; 1564 1565 area = get_xol_area(); 1566 if (!area) 1567 return 0; 1568 1569 xol_vaddr = xol_take_insn_slot(area); 1570 if (unlikely(!xol_vaddr)) 1571 return 0; 1572 1573 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1574 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1575 1576 return xol_vaddr; 1577 } 1578 1579 /* 1580 * xol_free_insn_slot - If slot was earlier allocated by 1581 * @xol_get_insn_slot(), make the slot available for 1582 * subsequent requests. 1583 */ 1584 static void xol_free_insn_slot(struct task_struct *tsk) 1585 { 1586 struct xol_area *area; 1587 unsigned long vma_end; 1588 unsigned long slot_addr; 1589 1590 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1591 return; 1592 1593 slot_addr = tsk->utask->xol_vaddr; 1594 if (unlikely(!slot_addr)) 1595 return; 1596 1597 area = tsk->mm->uprobes_state.xol_area; 1598 vma_end = area->vaddr + PAGE_SIZE; 1599 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1600 unsigned long offset; 1601 int slot_nr; 1602 1603 offset = slot_addr - area->vaddr; 1604 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1605 if (slot_nr >= UINSNS_PER_PAGE) 1606 return; 1607 1608 clear_bit(slot_nr, area->bitmap); 1609 atomic_dec(&area->slot_count); 1610 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1611 if (waitqueue_active(&area->wq)) 1612 wake_up(&area->wq); 1613 1614 tsk->utask->xol_vaddr = 0; 1615 } 1616 } 1617 1618 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1619 void *src, unsigned long len) 1620 { 1621 /* Initialize the slot */ 1622 copy_to_page(page, vaddr, src, len); 1623 1624 /* 1625 * We probably need flush_icache_user_range() but it needs vma. 1626 * This should work on most of architectures by default. If 1627 * architecture needs to do something different it can define 1628 * its own version of the function. 1629 */ 1630 flush_dcache_page(page); 1631 } 1632 1633 /** 1634 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1635 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1636 * instruction. 1637 * Return the address of the breakpoint instruction. 1638 */ 1639 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1640 { 1641 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1642 } 1643 1644 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1645 { 1646 struct uprobe_task *utask = current->utask; 1647 1648 if (unlikely(utask && utask->active_uprobe)) 1649 return utask->vaddr; 1650 1651 return instruction_pointer(regs); 1652 } 1653 1654 static struct return_instance *free_ret_instance(struct return_instance *ri) 1655 { 1656 struct return_instance *next = ri->next; 1657 put_uprobe(ri->uprobe); 1658 kfree(ri); 1659 return next; 1660 } 1661 1662 /* 1663 * Called with no locks held. 1664 * Called in context of an exiting or an exec-ing thread. 1665 */ 1666 void uprobe_free_utask(struct task_struct *t) 1667 { 1668 struct uprobe_task *utask = t->utask; 1669 struct return_instance *ri; 1670 1671 if (!utask) 1672 return; 1673 1674 if (utask->active_uprobe) 1675 put_uprobe(utask->active_uprobe); 1676 1677 ri = utask->return_instances; 1678 while (ri) 1679 ri = free_ret_instance(ri); 1680 1681 xol_free_insn_slot(t); 1682 kfree(utask); 1683 t->utask = NULL; 1684 } 1685 1686 /* 1687 * Allocate a uprobe_task object for the task if if necessary. 1688 * Called when the thread hits a breakpoint. 1689 * 1690 * Returns: 1691 * - pointer to new uprobe_task on success 1692 * - NULL otherwise 1693 */ 1694 static struct uprobe_task *get_utask(void) 1695 { 1696 if (!current->utask) 1697 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1698 return current->utask; 1699 } 1700 1701 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1702 { 1703 struct uprobe_task *n_utask; 1704 struct return_instance **p, *o, *n; 1705 1706 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1707 if (!n_utask) 1708 return -ENOMEM; 1709 t->utask = n_utask; 1710 1711 p = &n_utask->return_instances; 1712 for (o = o_utask->return_instances; o; o = o->next) { 1713 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1714 if (!n) 1715 return -ENOMEM; 1716 1717 *n = *o; 1718 get_uprobe(n->uprobe); 1719 n->next = NULL; 1720 1721 *p = n; 1722 p = &n->next; 1723 n_utask->depth++; 1724 } 1725 1726 return 0; 1727 } 1728 1729 static void uprobe_warn(struct task_struct *t, const char *msg) 1730 { 1731 pr_warn("uprobe: %s:%d failed to %s\n", 1732 current->comm, current->pid, msg); 1733 } 1734 1735 static void dup_xol_work(struct callback_head *work) 1736 { 1737 if (current->flags & PF_EXITING) 1738 return; 1739 1740 if (!__create_xol_area(current->utask->dup_xol_addr) && 1741 !fatal_signal_pending(current)) 1742 uprobe_warn(current, "dup xol area"); 1743 } 1744 1745 /* 1746 * Called in context of a new clone/fork from copy_process. 1747 */ 1748 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1749 { 1750 struct uprobe_task *utask = current->utask; 1751 struct mm_struct *mm = current->mm; 1752 struct xol_area *area; 1753 1754 t->utask = NULL; 1755 1756 if (!utask || !utask->return_instances) 1757 return; 1758 1759 if (mm == t->mm && !(flags & CLONE_VFORK)) 1760 return; 1761 1762 if (dup_utask(t, utask)) 1763 return uprobe_warn(t, "dup ret instances"); 1764 1765 /* The task can fork() after dup_xol_work() fails */ 1766 area = mm->uprobes_state.xol_area; 1767 if (!area) 1768 return uprobe_warn(t, "dup xol area"); 1769 1770 if (mm == t->mm) 1771 return; 1772 1773 t->utask->dup_xol_addr = area->vaddr; 1774 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1775 task_work_add(t, &t->utask->dup_xol_work, true); 1776 } 1777 1778 /* 1779 * Current area->vaddr notion assume the trampoline address is always 1780 * equal area->vaddr. 1781 * 1782 * Returns -1 in case the xol_area is not allocated. 1783 */ 1784 static unsigned long get_trampoline_vaddr(void) 1785 { 1786 struct xol_area *area; 1787 unsigned long trampoline_vaddr = -1; 1788 1789 /* Pairs with xol_add_vma() smp_store_release() */ 1790 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1791 if (area) 1792 trampoline_vaddr = area->vaddr; 1793 1794 return trampoline_vaddr; 1795 } 1796 1797 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1798 struct pt_regs *regs) 1799 { 1800 struct return_instance *ri = utask->return_instances; 1801 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1802 1803 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1804 ri = free_ret_instance(ri); 1805 utask->depth--; 1806 } 1807 utask->return_instances = ri; 1808 } 1809 1810 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1811 { 1812 struct return_instance *ri; 1813 struct uprobe_task *utask; 1814 unsigned long orig_ret_vaddr, trampoline_vaddr; 1815 bool chained; 1816 1817 if (!get_xol_area()) 1818 return; 1819 1820 utask = get_utask(); 1821 if (!utask) 1822 return; 1823 1824 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1825 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1826 " nestedness limit pid/tgid=%d/%d\n", 1827 current->pid, current->tgid); 1828 return; 1829 } 1830 1831 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1832 if (!ri) 1833 return; 1834 1835 trampoline_vaddr = get_trampoline_vaddr(); 1836 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1837 if (orig_ret_vaddr == -1) 1838 goto fail; 1839 1840 /* drop the entries invalidated by longjmp() */ 1841 chained = (orig_ret_vaddr == trampoline_vaddr); 1842 cleanup_return_instances(utask, chained, regs); 1843 1844 /* 1845 * We don't want to keep trampoline address in stack, rather keep the 1846 * original return address of first caller thru all the consequent 1847 * instances. This also makes breakpoint unwrapping easier. 1848 */ 1849 if (chained) { 1850 if (!utask->return_instances) { 1851 /* 1852 * This situation is not possible. Likely we have an 1853 * attack from user-space. 1854 */ 1855 uprobe_warn(current, "handle tail call"); 1856 goto fail; 1857 } 1858 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1859 } 1860 1861 ri->uprobe = get_uprobe(uprobe); 1862 ri->func = instruction_pointer(regs); 1863 ri->stack = user_stack_pointer(regs); 1864 ri->orig_ret_vaddr = orig_ret_vaddr; 1865 ri->chained = chained; 1866 1867 utask->depth++; 1868 ri->next = utask->return_instances; 1869 utask->return_instances = ri; 1870 1871 return; 1872 fail: 1873 kfree(ri); 1874 } 1875 1876 /* Prepare to single-step probed instruction out of line. */ 1877 static int 1878 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1879 { 1880 struct uprobe_task *utask; 1881 unsigned long xol_vaddr; 1882 int err; 1883 1884 utask = get_utask(); 1885 if (!utask) 1886 return -ENOMEM; 1887 1888 xol_vaddr = xol_get_insn_slot(uprobe); 1889 if (!xol_vaddr) 1890 return -ENOMEM; 1891 1892 utask->xol_vaddr = xol_vaddr; 1893 utask->vaddr = bp_vaddr; 1894 1895 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1896 if (unlikely(err)) { 1897 xol_free_insn_slot(current); 1898 return err; 1899 } 1900 1901 utask->active_uprobe = uprobe; 1902 utask->state = UTASK_SSTEP; 1903 return 0; 1904 } 1905 1906 /* 1907 * If we are singlestepping, then ensure this thread is not connected to 1908 * non-fatal signals until completion of singlestep. When xol insn itself 1909 * triggers the signal, restart the original insn even if the task is 1910 * already SIGKILL'ed (since coredump should report the correct ip). This 1911 * is even more important if the task has a handler for SIGSEGV/etc, The 1912 * _same_ instruction should be repeated again after return from the signal 1913 * handler, and SSTEP can never finish in this case. 1914 */ 1915 bool uprobe_deny_signal(void) 1916 { 1917 struct task_struct *t = current; 1918 struct uprobe_task *utask = t->utask; 1919 1920 if (likely(!utask || !utask->active_uprobe)) 1921 return false; 1922 1923 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1924 1925 if (signal_pending(t)) { 1926 spin_lock_irq(&t->sighand->siglock); 1927 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1928 spin_unlock_irq(&t->sighand->siglock); 1929 1930 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1931 utask->state = UTASK_SSTEP_TRAPPED; 1932 set_tsk_thread_flag(t, TIF_UPROBE); 1933 } 1934 } 1935 1936 return true; 1937 } 1938 1939 static void mmf_recalc_uprobes(struct mm_struct *mm) 1940 { 1941 struct vm_area_struct *vma; 1942 1943 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1944 if (!valid_vma(vma, false)) 1945 continue; 1946 /* 1947 * This is not strictly accurate, we can race with 1948 * uprobe_unregister() and see the already removed 1949 * uprobe if delete_uprobe() was not yet called. 1950 * Or this uprobe can be filtered out. 1951 */ 1952 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1953 return; 1954 } 1955 1956 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1957 } 1958 1959 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 1960 { 1961 struct page *page; 1962 uprobe_opcode_t opcode; 1963 int result; 1964 1965 pagefault_disable(); 1966 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 1967 pagefault_enable(); 1968 1969 if (likely(result == 0)) 1970 goto out; 1971 1972 /* 1973 * The NULL 'tsk' here ensures that any faults that occur here 1974 * will not be accounted to the task. 'mm' *is* current->mm, 1975 * but we treat this as a 'remote' access since it is 1976 * essentially a kernel access to the memory. 1977 */ 1978 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page, 1979 NULL, NULL); 1980 if (result < 0) 1981 return result; 1982 1983 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 1984 put_page(page); 1985 out: 1986 /* This needs to return true for any variant of the trap insn */ 1987 return is_trap_insn(&opcode); 1988 } 1989 1990 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1991 { 1992 struct mm_struct *mm = current->mm; 1993 struct uprobe *uprobe = NULL; 1994 struct vm_area_struct *vma; 1995 1996 down_read(&mm->mmap_sem); 1997 vma = find_vma(mm, bp_vaddr); 1998 if (vma && vma->vm_start <= bp_vaddr) { 1999 if (valid_vma(vma, false)) { 2000 struct inode *inode = file_inode(vma->vm_file); 2001 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2002 2003 uprobe = find_uprobe(inode, offset); 2004 } 2005 2006 if (!uprobe) 2007 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2008 } else { 2009 *is_swbp = -EFAULT; 2010 } 2011 2012 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2013 mmf_recalc_uprobes(mm); 2014 up_read(&mm->mmap_sem); 2015 2016 return uprobe; 2017 } 2018 2019 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2020 { 2021 struct uprobe_consumer *uc; 2022 int remove = UPROBE_HANDLER_REMOVE; 2023 bool need_prep = false; /* prepare return uprobe, when needed */ 2024 2025 down_read(&uprobe->register_rwsem); 2026 for (uc = uprobe->consumers; uc; uc = uc->next) { 2027 int rc = 0; 2028 2029 if (uc->handler) { 2030 rc = uc->handler(uc, regs); 2031 WARN(rc & ~UPROBE_HANDLER_MASK, 2032 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2033 } 2034 2035 if (uc->ret_handler) 2036 need_prep = true; 2037 2038 remove &= rc; 2039 } 2040 2041 if (need_prep && !remove) 2042 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2043 2044 if (remove && uprobe->consumers) { 2045 WARN_ON(!uprobe_is_active(uprobe)); 2046 unapply_uprobe(uprobe, current->mm); 2047 } 2048 up_read(&uprobe->register_rwsem); 2049 } 2050 2051 static void 2052 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2053 { 2054 struct uprobe *uprobe = ri->uprobe; 2055 struct uprobe_consumer *uc; 2056 2057 down_read(&uprobe->register_rwsem); 2058 for (uc = uprobe->consumers; uc; uc = uc->next) { 2059 if (uc->ret_handler) 2060 uc->ret_handler(uc, ri->func, regs); 2061 } 2062 up_read(&uprobe->register_rwsem); 2063 } 2064 2065 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2066 { 2067 bool chained; 2068 2069 do { 2070 chained = ri->chained; 2071 ri = ri->next; /* can't be NULL if chained */ 2072 } while (chained); 2073 2074 return ri; 2075 } 2076 2077 static void handle_trampoline(struct pt_regs *regs) 2078 { 2079 struct uprobe_task *utask; 2080 struct return_instance *ri, *next; 2081 bool valid; 2082 2083 utask = current->utask; 2084 if (!utask) 2085 goto sigill; 2086 2087 ri = utask->return_instances; 2088 if (!ri) 2089 goto sigill; 2090 2091 do { 2092 /* 2093 * We should throw out the frames invalidated by longjmp(). 2094 * If this chain is valid, then the next one should be alive 2095 * or NULL; the latter case means that nobody but ri->func 2096 * could hit this trampoline on return. TODO: sigaltstack(). 2097 */ 2098 next = find_next_ret_chain(ri); 2099 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2100 2101 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2102 do { 2103 if (valid) 2104 handle_uretprobe_chain(ri, regs); 2105 ri = free_ret_instance(ri); 2106 utask->depth--; 2107 } while (ri != next); 2108 } while (!valid); 2109 2110 utask->return_instances = ri; 2111 return; 2112 2113 sigill: 2114 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2115 force_sig(SIGILL, current); 2116 2117 } 2118 2119 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2120 { 2121 return false; 2122 } 2123 2124 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2125 struct pt_regs *regs) 2126 { 2127 return true; 2128 } 2129 2130 /* 2131 * Run handler and ask thread to singlestep. 2132 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2133 */ 2134 static void handle_swbp(struct pt_regs *regs) 2135 { 2136 struct uprobe *uprobe; 2137 unsigned long bp_vaddr; 2138 int uninitialized_var(is_swbp); 2139 2140 bp_vaddr = uprobe_get_swbp_addr(regs); 2141 if (bp_vaddr == get_trampoline_vaddr()) 2142 return handle_trampoline(regs); 2143 2144 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2145 if (!uprobe) { 2146 if (is_swbp > 0) { 2147 /* No matching uprobe; signal SIGTRAP. */ 2148 send_sig(SIGTRAP, current, 0); 2149 } else { 2150 /* 2151 * Either we raced with uprobe_unregister() or we can't 2152 * access this memory. The latter is only possible if 2153 * another thread plays with our ->mm. In both cases 2154 * we can simply restart. If this vma was unmapped we 2155 * can pretend this insn was not executed yet and get 2156 * the (correct) SIGSEGV after restart. 2157 */ 2158 instruction_pointer_set(regs, bp_vaddr); 2159 } 2160 return; 2161 } 2162 2163 /* change it in advance for ->handler() and restart */ 2164 instruction_pointer_set(regs, bp_vaddr); 2165 2166 /* 2167 * TODO: move copy_insn/etc into _register and remove this hack. 2168 * After we hit the bp, _unregister + _register can install the 2169 * new and not-yet-analyzed uprobe at the same address, restart. 2170 */ 2171 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2172 goto out; 2173 2174 /* 2175 * Pairs with the smp_wmb() in prepare_uprobe(). 2176 * 2177 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2178 * we must also see the stores to &uprobe->arch performed by the 2179 * prepare_uprobe() call. 2180 */ 2181 smp_rmb(); 2182 2183 /* Tracing handlers use ->utask to communicate with fetch methods */ 2184 if (!get_utask()) 2185 goto out; 2186 2187 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2188 goto out; 2189 2190 handler_chain(uprobe, regs); 2191 2192 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2193 goto out; 2194 2195 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2196 return; 2197 2198 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2199 out: 2200 put_uprobe(uprobe); 2201 } 2202 2203 /* 2204 * Perform required fix-ups and disable singlestep. 2205 * Allow pending signals to take effect. 2206 */ 2207 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2208 { 2209 struct uprobe *uprobe; 2210 int err = 0; 2211 2212 uprobe = utask->active_uprobe; 2213 if (utask->state == UTASK_SSTEP_ACK) 2214 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2215 else if (utask->state == UTASK_SSTEP_TRAPPED) 2216 arch_uprobe_abort_xol(&uprobe->arch, regs); 2217 else 2218 WARN_ON_ONCE(1); 2219 2220 put_uprobe(uprobe); 2221 utask->active_uprobe = NULL; 2222 utask->state = UTASK_RUNNING; 2223 xol_free_insn_slot(current); 2224 2225 spin_lock_irq(¤t->sighand->siglock); 2226 recalc_sigpending(); /* see uprobe_deny_signal() */ 2227 spin_unlock_irq(¤t->sighand->siglock); 2228 2229 if (unlikely(err)) { 2230 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2231 force_sig(SIGILL, current); 2232 } 2233 } 2234 2235 /* 2236 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2237 * allows the thread to return from interrupt. After that handle_swbp() 2238 * sets utask->active_uprobe. 2239 * 2240 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2241 * and allows the thread to return from interrupt. 2242 * 2243 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2244 * uprobe_notify_resume(). 2245 */ 2246 void uprobe_notify_resume(struct pt_regs *regs) 2247 { 2248 struct uprobe_task *utask; 2249 2250 clear_thread_flag(TIF_UPROBE); 2251 2252 utask = current->utask; 2253 if (utask && utask->active_uprobe) 2254 handle_singlestep(utask, regs); 2255 else 2256 handle_swbp(regs); 2257 } 2258 2259 /* 2260 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2261 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2262 */ 2263 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2264 { 2265 if (!current->mm) 2266 return 0; 2267 2268 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2269 (!current->utask || !current->utask->return_instances)) 2270 return 0; 2271 2272 set_thread_flag(TIF_UPROBE); 2273 return 1; 2274 } 2275 2276 /* 2277 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2278 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2279 */ 2280 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2281 { 2282 struct uprobe_task *utask = current->utask; 2283 2284 if (!current->mm || !utask || !utask->active_uprobe) 2285 /* task is currently not uprobed */ 2286 return 0; 2287 2288 utask->state = UTASK_SSTEP_ACK; 2289 set_thread_flag(TIF_UPROBE); 2290 return 1; 2291 } 2292 2293 static struct notifier_block uprobe_exception_nb = { 2294 .notifier_call = arch_uprobe_exception_notify, 2295 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2296 }; 2297 2298 void __init uprobes_init(void) 2299 { 2300 int i; 2301 2302 for (i = 0; i < UPROBES_HASH_SZ; i++) 2303 mutex_init(&uprobes_mmap_mutex[i]); 2304 2305 BUG_ON(percpu_init_rwsem(&dup_mmap_sem)); 2306 2307 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2308 } 2309