xref: /linux/kernel/events/uprobes.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>		/* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h>		/* folio_free_swap */
22 #include <linux/ptrace.h>	/* user_enable_single_step */
23 #include <linux/kdebug.h>	/* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
31 
32 #include <linux/uprobes.h>
33 
34 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
35 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
36 
37 static struct rb_root uprobes_tree = RB_ROOT;
38 /*
39  * allows us to skip the uprobe_mmap if there are no uprobe events active
40  * at this time.  Probably a fine grained per inode count is better?
41  */
42 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
43 
44 static DEFINE_RWLOCK(uprobes_treelock);	/* serialize rbtree access */
45 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
46 
47 #define UPROBES_HASH_SZ	13
48 /* serialize uprobe->pending_list */
49 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
50 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
51 
52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
53 
54 /* Covers return_instance's uprobe lifetime. */
55 DEFINE_STATIC_SRCU(uretprobes_srcu);
56 
57 /* Have a copy of original instruction */
58 #define UPROBE_COPY_INSN	0
59 
60 struct uprobe {
61 	struct rb_node		rb_node;	/* node in the rb tree */
62 	refcount_t		ref;
63 	struct rw_semaphore	register_rwsem;
64 	struct rw_semaphore	consumer_rwsem;
65 	struct list_head	pending_list;
66 	struct list_head	consumers;
67 	struct inode		*inode;		/* Also hold a ref to inode */
68 	union {
69 		struct rcu_head		rcu;
70 		struct work_struct	work;
71 	};
72 	loff_t			offset;
73 	loff_t			ref_ctr_offset;
74 	unsigned long		flags;		/* "unsigned long" so bitops work */
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 struct delayed_uprobe {
90 	struct list_head list;
91 	struct uprobe *uprobe;
92 	struct mm_struct *mm;
93 };
94 
95 static DEFINE_MUTEX(delayed_uprobe_lock);
96 static LIST_HEAD(delayed_uprobe_list);
97 
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108 	wait_queue_head_t 		wq;		/* if all slots are busy */
109 	unsigned long 			*bitmap;	/* 0 = free slot */
110 
111 	struct page			*page;
112 	/*
113 	 * We keep the vma's vm_start rather than a pointer to the vma
114 	 * itself.  The probed process or a naughty kernel module could make
115 	 * the vma go away, and we must handle that reasonably gracefully.
116 	 */
117 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
118 };
119 
120 static void uprobe_warn(struct task_struct *t, const char *msg)
121 {
122 	pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
123 }
124 
125 /*
126  * valid_vma: Verify if the specified vma is an executable vma
127  * Relax restrictions while unregistering: vm_flags might have
128  * changed after breakpoint was inserted.
129  *	- is_register: indicates if we are in register context.
130  *	- Return 1 if the specified virtual address is in an
131  *	  executable vma.
132  */
133 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
134 {
135 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
136 
137 	if (is_register)
138 		flags |= VM_WRITE;
139 
140 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
141 }
142 
143 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
144 {
145 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
146 }
147 
148 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
149 {
150 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
151 }
152 
153 /**
154  * __replace_page - replace page in vma by new page.
155  * based on replace_page in mm/ksm.c
156  *
157  * @vma:      vma that holds the pte pointing to page
158  * @addr:     address the old @page is mapped at
159  * @old_page: the page we are replacing by new_page
160  * @new_page: the modified page we replace page by
161  *
162  * If @new_page is NULL, only unmap @old_page.
163  *
164  * Returns 0 on success, negative error code otherwise.
165  */
166 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
167 				struct page *old_page, struct page *new_page)
168 {
169 	struct folio *old_folio = page_folio(old_page);
170 	struct folio *new_folio;
171 	struct mm_struct *mm = vma->vm_mm;
172 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
173 	int err;
174 	struct mmu_notifier_range range;
175 
176 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
177 				addr + PAGE_SIZE);
178 
179 	if (new_page) {
180 		new_folio = page_folio(new_page);
181 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
182 		if (err)
183 			return err;
184 	}
185 
186 	/* For folio_free_swap() below */
187 	folio_lock(old_folio);
188 
189 	mmu_notifier_invalidate_range_start(&range);
190 	err = -EAGAIN;
191 	if (!page_vma_mapped_walk(&pvmw))
192 		goto unlock;
193 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
194 
195 	if (new_page) {
196 		folio_get(new_folio);
197 		folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
198 		folio_add_lru_vma(new_folio, vma);
199 	} else
200 		/* no new page, just dec_mm_counter for old_page */
201 		dec_mm_counter(mm, MM_ANONPAGES);
202 
203 	if (!folio_test_anon(old_folio)) {
204 		dec_mm_counter(mm, mm_counter_file(old_folio));
205 		inc_mm_counter(mm, MM_ANONPAGES);
206 	}
207 
208 	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
209 	ptep_clear_flush(vma, addr, pvmw.pte);
210 	if (new_page)
211 		set_pte_at(mm, addr, pvmw.pte,
212 			   mk_pte(new_page, vma->vm_page_prot));
213 
214 	folio_remove_rmap_pte(old_folio, old_page, vma);
215 	if (!folio_mapped(old_folio))
216 		folio_free_swap(old_folio);
217 	page_vma_mapped_walk_done(&pvmw);
218 	folio_put(old_folio);
219 
220 	err = 0;
221  unlock:
222 	mmu_notifier_invalidate_range_end(&range);
223 	folio_unlock(old_folio);
224 	return err;
225 }
226 
227 /**
228  * is_swbp_insn - check if instruction is breakpoint instruction.
229  * @insn: instruction to be checked.
230  * Default implementation of is_swbp_insn
231  * Returns true if @insn is a breakpoint instruction.
232  */
233 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
234 {
235 	return *insn == UPROBE_SWBP_INSN;
236 }
237 
238 /**
239  * is_trap_insn - check if instruction is breakpoint instruction.
240  * @insn: instruction to be checked.
241  * Default implementation of is_trap_insn
242  * Returns true if @insn is a breakpoint instruction.
243  *
244  * This function is needed for the case where an architecture has multiple
245  * trap instructions (like powerpc).
246  */
247 bool __weak is_trap_insn(uprobe_opcode_t *insn)
248 {
249 	return is_swbp_insn(insn);
250 }
251 
252 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
253 {
254 	void *kaddr = kmap_atomic(page);
255 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
256 	kunmap_atomic(kaddr);
257 }
258 
259 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
260 {
261 	void *kaddr = kmap_atomic(page);
262 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
263 	kunmap_atomic(kaddr);
264 }
265 
266 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
267 {
268 	uprobe_opcode_t old_opcode;
269 	bool is_swbp;
270 
271 	/*
272 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
273 	 * We do not check if it is any other 'trap variant' which could
274 	 * be conditional trap instruction such as the one powerpc supports.
275 	 *
276 	 * The logic is that we do not care if the underlying instruction
277 	 * is a trap variant; uprobes always wins over any other (gdb)
278 	 * breakpoint.
279 	 */
280 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
281 	is_swbp = is_swbp_insn(&old_opcode);
282 
283 	if (is_swbp_insn(new_opcode)) {
284 		if (is_swbp)		/* register: already installed? */
285 			return 0;
286 	} else {
287 		if (!is_swbp)		/* unregister: was it changed by us? */
288 			return 0;
289 	}
290 
291 	return 1;
292 }
293 
294 static struct delayed_uprobe *
295 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
296 {
297 	struct delayed_uprobe *du;
298 
299 	list_for_each_entry(du, &delayed_uprobe_list, list)
300 		if (du->uprobe == uprobe && du->mm == mm)
301 			return du;
302 	return NULL;
303 }
304 
305 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
306 {
307 	struct delayed_uprobe *du;
308 
309 	if (delayed_uprobe_check(uprobe, mm))
310 		return 0;
311 
312 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
313 	if (!du)
314 		return -ENOMEM;
315 
316 	du->uprobe = uprobe;
317 	du->mm = mm;
318 	list_add(&du->list, &delayed_uprobe_list);
319 	return 0;
320 }
321 
322 static void delayed_uprobe_delete(struct delayed_uprobe *du)
323 {
324 	if (WARN_ON(!du))
325 		return;
326 	list_del(&du->list);
327 	kfree(du);
328 }
329 
330 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
331 {
332 	struct list_head *pos, *q;
333 	struct delayed_uprobe *du;
334 
335 	if (!uprobe && !mm)
336 		return;
337 
338 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
339 		du = list_entry(pos, struct delayed_uprobe, list);
340 
341 		if (uprobe && du->uprobe != uprobe)
342 			continue;
343 		if (mm && du->mm != mm)
344 			continue;
345 
346 		delayed_uprobe_delete(du);
347 	}
348 }
349 
350 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
351 			      struct vm_area_struct *vma)
352 {
353 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
354 
355 	return uprobe->ref_ctr_offset &&
356 		vma->vm_file &&
357 		file_inode(vma->vm_file) == uprobe->inode &&
358 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
359 		vma->vm_start <= vaddr &&
360 		vma->vm_end > vaddr;
361 }
362 
363 static struct vm_area_struct *
364 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
365 {
366 	VMA_ITERATOR(vmi, mm, 0);
367 	struct vm_area_struct *tmp;
368 
369 	for_each_vma(vmi, tmp)
370 		if (valid_ref_ctr_vma(uprobe, tmp))
371 			return tmp;
372 
373 	return NULL;
374 }
375 
376 static int
377 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
378 {
379 	void *kaddr;
380 	struct page *page;
381 	int ret;
382 	short *ptr;
383 
384 	if (!vaddr || !d)
385 		return -EINVAL;
386 
387 	ret = get_user_pages_remote(mm, vaddr, 1,
388 				    FOLL_WRITE, &page, NULL);
389 	if (unlikely(ret <= 0)) {
390 		/*
391 		 * We are asking for 1 page. If get_user_pages_remote() fails,
392 		 * it may return 0, in that case we have to return error.
393 		 */
394 		return ret == 0 ? -EBUSY : ret;
395 	}
396 
397 	kaddr = kmap_atomic(page);
398 	ptr = kaddr + (vaddr & ~PAGE_MASK);
399 
400 	if (unlikely(*ptr + d < 0)) {
401 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
402 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
403 		ret = -EINVAL;
404 		goto out;
405 	}
406 
407 	*ptr += d;
408 	ret = 0;
409 out:
410 	kunmap_atomic(kaddr);
411 	put_page(page);
412 	return ret;
413 }
414 
415 static void update_ref_ctr_warn(struct uprobe *uprobe,
416 				struct mm_struct *mm, short d)
417 {
418 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
419 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
420 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
421 		(unsigned long long) uprobe->offset,
422 		(unsigned long long) uprobe->ref_ctr_offset, mm);
423 }
424 
425 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
426 			  short d)
427 {
428 	struct vm_area_struct *rc_vma;
429 	unsigned long rc_vaddr;
430 	int ret = 0;
431 
432 	rc_vma = find_ref_ctr_vma(uprobe, mm);
433 
434 	if (rc_vma) {
435 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
436 		ret = __update_ref_ctr(mm, rc_vaddr, d);
437 		if (ret)
438 			update_ref_ctr_warn(uprobe, mm, d);
439 
440 		if (d > 0)
441 			return ret;
442 	}
443 
444 	mutex_lock(&delayed_uprobe_lock);
445 	if (d > 0)
446 		ret = delayed_uprobe_add(uprobe, mm);
447 	else
448 		delayed_uprobe_remove(uprobe, mm);
449 	mutex_unlock(&delayed_uprobe_lock);
450 
451 	return ret;
452 }
453 
454 /*
455  * NOTE:
456  * Expect the breakpoint instruction to be the smallest size instruction for
457  * the architecture. If an arch has variable length instruction and the
458  * breakpoint instruction is not of the smallest length instruction
459  * supported by that architecture then we need to modify is_trap_at_addr and
460  * uprobe_write_opcode accordingly. This would never be a problem for archs
461  * that have fixed length instructions.
462  *
463  * uprobe_write_opcode - write the opcode at a given virtual address.
464  * @auprobe: arch specific probepoint information.
465  * @mm: the probed process address space.
466  * @vaddr: the virtual address to store the opcode.
467  * @opcode: opcode to be written at @vaddr.
468  *
469  * Called with mm->mmap_lock held for read or write.
470  * Return 0 (success) or a negative errno.
471  */
472 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
473 			unsigned long vaddr, uprobe_opcode_t opcode)
474 {
475 	struct uprobe *uprobe;
476 	struct page *old_page, *new_page;
477 	struct vm_area_struct *vma;
478 	int ret, is_register, ref_ctr_updated = 0;
479 	bool orig_page_huge = false;
480 	unsigned int gup_flags = FOLL_FORCE;
481 
482 	is_register = is_swbp_insn(&opcode);
483 	uprobe = container_of(auprobe, struct uprobe, arch);
484 
485 retry:
486 	if (is_register)
487 		gup_flags |= FOLL_SPLIT_PMD;
488 	/* Read the page with vaddr into memory */
489 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
490 	if (IS_ERR(old_page))
491 		return PTR_ERR(old_page);
492 
493 	ret = verify_opcode(old_page, vaddr, &opcode);
494 	if (ret <= 0)
495 		goto put_old;
496 
497 	if (WARN(!is_register && PageCompound(old_page),
498 		 "uprobe unregister should never work on compound page\n")) {
499 		ret = -EINVAL;
500 		goto put_old;
501 	}
502 
503 	/* We are going to replace instruction, update ref_ctr. */
504 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
505 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
506 		if (ret)
507 			goto put_old;
508 
509 		ref_ctr_updated = 1;
510 	}
511 
512 	ret = 0;
513 	if (!is_register && !PageAnon(old_page))
514 		goto put_old;
515 
516 	ret = anon_vma_prepare(vma);
517 	if (ret)
518 		goto put_old;
519 
520 	ret = -ENOMEM;
521 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
522 	if (!new_page)
523 		goto put_old;
524 
525 	__SetPageUptodate(new_page);
526 	copy_highpage(new_page, old_page);
527 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
528 
529 	if (!is_register) {
530 		struct page *orig_page;
531 		pgoff_t index;
532 
533 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
534 
535 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
536 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
537 					  index);
538 
539 		if (orig_page) {
540 			if (PageUptodate(orig_page) &&
541 			    pages_identical(new_page, orig_page)) {
542 				/* let go new_page */
543 				put_page(new_page);
544 				new_page = NULL;
545 
546 				if (PageCompound(orig_page))
547 					orig_page_huge = true;
548 			}
549 			put_page(orig_page);
550 		}
551 	}
552 
553 	ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
554 	if (new_page)
555 		put_page(new_page);
556 put_old:
557 	put_page(old_page);
558 
559 	if (unlikely(ret == -EAGAIN))
560 		goto retry;
561 
562 	/* Revert back reference counter if instruction update failed. */
563 	if (ret && is_register && ref_ctr_updated)
564 		update_ref_ctr(uprobe, mm, -1);
565 
566 	/* try collapse pmd for compound page */
567 	if (!ret && orig_page_huge)
568 		collapse_pte_mapped_thp(mm, vaddr, false);
569 
570 	return ret;
571 }
572 
573 /**
574  * set_swbp - store breakpoint at a given address.
575  * @auprobe: arch specific probepoint information.
576  * @mm: the probed process address space.
577  * @vaddr: the virtual address to insert the opcode.
578  *
579  * For mm @mm, store the breakpoint instruction at @vaddr.
580  * Return 0 (success) or a negative errno.
581  */
582 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
583 {
584 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
585 }
586 
587 /**
588  * set_orig_insn - Restore the original instruction.
589  * @mm: the probed process address space.
590  * @auprobe: arch specific probepoint information.
591  * @vaddr: the virtual address to insert the opcode.
592  *
593  * For mm @mm, restore the original opcode (opcode) at @vaddr.
594  * Return 0 (success) or a negative errno.
595  */
596 int __weak
597 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
598 {
599 	return uprobe_write_opcode(auprobe, mm, vaddr,
600 			*(uprobe_opcode_t *)&auprobe->insn);
601 }
602 
603 /* uprobe should have guaranteed positive refcount */
604 static struct uprobe *get_uprobe(struct uprobe *uprobe)
605 {
606 	refcount_inc(&uprobe->ref);
607 	return uprobe;
608 }
609 
610 /*
611  * uprobe should have guaranteed lifetime, which can be either of:
612  *   - caller already has refcount taken (and wants an extra one);
613  *   - uprobe is RCU protected and won't be freed until after grace period;
614  *   - we are holding uprobes_treelock (for read or write, doesn't matter).
615  */
616 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
617 {
618 	if (refcount_inc_not_zero(&uprobe->ref))
619 		return uprobe;
620 	return NULL;
621 }
622 
623 static inline bool uprobe_is_active(struct uprobe *uprobe)
624 {
625 	return !RB_EMPTY_NODE(&uprobe->rb_node);
626 }
627 
628 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
629 {
630 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
631 
632 	kfree(uprobe);
633 }
634 
635 static void uprobe_free_srcu(struct rcu_head *rcu)
636 {
637 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
638 
639 	call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
640 }
641 
642 static void uprobe_free_deferred(struct work_struct *work)
643 {
644 	struct uprobe *uprobe = container_of(work, struct uprobe, work);
645 
646 	write_lock(&uprobes_treelock);
647 
648 	if (uprobe_is_active(uprobe)) {
649 		write_seqcount_begin(&uprobes_seqcount);
650 		rb_erase(&uprobe->rb_node, &uprobes_tree);
651 		write_seqcount_end(&uprobes_seqcount);
652 	}
653 
654 	write_unlock(&uprobes_treelock);
655 
656 	/*
657 	 * If application munmap(exec_vma) before uprobe_unregister()
658 	 * gets called, we don't get a chance to remove uprobe from
659 	 * delayed_uprobe_list from remove_breakpoint(). Do it here.
660 	 */
661 	mutex_lock(&delayed_uprobe_lock);
662 	delayed_uprobe_remove(uprobe, NULL);
663 	mutex_unlock(&delayed_uprobe_lock);
664 
665 	/* start srcu -> rcu_tasks_trace -> kfree chain */
666 	call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
667 }
668 
669 static void put_uprobe(struct uprobe *uprobe)
670 {
671 	if (!refcount_dec_and_test(&uprobe->ref))
672 		return;
673 
674 	INIT_WORK(&uprobe->work, uprobe_free_deferred);
675 	schedule_work(&uprobe->work);
676 }
677 
678 /* Initialize hprobe as SRCU-protected "leased" uprobe */
679 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
680 {
681 	WARN_ON(!uprobe);
682 	hprobe->state = HPROBE_LEASED;
683 	hprobe->uprobe = uprobe;
684 	hprobe->srcu_idx = srcu_idx;
685 }
686 
687 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
688 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
689 {
690 	hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
691 	hprobe->uprobe = uprobe;
692 	hprobe->srcu_idx = -1;
693 }
694 
695 /*
696  * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
697  * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
698  * used only once for a given hprobe.
699  *
700  * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
701  * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
702  * is appropriate.
703  */
704 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
705 {
706 	*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
707 	switch (*hstate) {
708 	case HPROBE_LEASED:
709 	case HPROBE_STABLE:
710 		return hprobe->uprobe;
711 	case HPROBE_GONE:	/* uprobe is NULL, no SRCU */
712 	case HPROBE_CONSUMED:	/* uprobe was finalized already, do nothing */
713 		return NULL;
714 	default:
715 		WARN(1, "hprobe invalid state %d", *hstate);
716 		return NULL;
717 	}
718 }
719 
720 /*
721  * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
722  * hprobe_finalize() can only be used from current context after
723  * hprobe_consume() call (which determines uprobe and hstate value).
724  */
725 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
726 {
727 	switch (hstate) {
728 	case HPROBE_LEASED:
729 		__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
730 		break;
731 	case HPROBE_STABLE:
732 		put_uprobe(hprobe->uprobe);
733 		break;
734 	case HPROBE_GONE:
735 	case HPROBE_CONSUMED:
736 		break;
737 	default:
738 		WARN(1, "hprobe invalid state %d", hstate);
739 		break;
740 	}
741 }
742 
743 /*
744  * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
745  * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
746  * them can win the race to perform SRCU unlocking. Whoever wins must perform
747  * SRCU unlock.
748  *
749  * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
750  * to begin with or we failed to bump its refcount and it's going away.
751  *
752  * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
753  * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
754  * an extra refcount for caller to assume and use. Otherwise, it's not
755  * guaranteed that returned uprobe has a positive refcount, so caller has to
756  * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
757  * SRCU lock region. See dup_utask().
758  */
759 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
760 {
761 	enum hprobe_state hstate;
762 
763 	/*
764 	 * return_instance's hprobe is protected by RCU.
765 	 * Underlying uprobe is itself protected from reuse by SRCU.
766 	 */
767 	lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu));
768 
769 	hstate = READ_ONCE(hprobe->state);
770 	switch (hstate) {
771 	case HPROBE_STABLE:
772 		/* uprobe has positive refcount, bump refcount, if necessary */
773 		return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
774 	case HPROBE_GONE:
775 		/*
776 		 * SRCU was unlocked earlier and we didn't manage to take
777 		 * uprobe refcnt, so it's effectively NULL
778 		 */
779 		return NULL;
780 	case HPROBE_CONSUMED:
781 		/*
782 		 * uprobe was consumed, so it's effectively NULL as far as
783 		 * uretprobe processing logic is concerned
784 		 */
785 		return NULL;
786 	case HPROBE_LEASED: {
787 		struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
788 		/*
789 		 * Try to switch hprobe state, guarding against
790 		 * hprobe_consume() or another hprobe_expire() racing with us.
791 		 * Note, if we failed to get uprobe refcount, we use special
792 		 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
793 		 * be used as it will be freed after SRCU is unlocked.
794 		 */
795 		if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
796 			/* We won the race, we are the ones to unlock SRCU */
797 			__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
798 			return get ? get_uprobe(uprobe) : uprobe;
799 		}
800 
801 		/*
802 		 * We lost the race, undo refcount bump (if it ever happened),
803 		 * unless caller would like an extra refcount anyways.
804 		 */
805 		if (uprobe && !get)
806 			put_uprobe(uprobe);
807 		/*
808 		 * Even if hprobe_consume() or another hprobe_expire() wins
809 		 * the state update race and unlocks SRCU from under us, we
810 		 * still have a guarantee that underyling uprobe won't be
811 		 * freed due to ongoing caller's SRCU lock region, so we can
812 		 * return it regardless. Also, if `get` was true, we also have
813 		 * an extra ref for the caller to own. This is used in dup_utask().
814 		 */
815 		return uprobe;
816 	}
817 	default:
818 		WARN(1, "unknown hprobe state %d", hstate);
819 		return NULL;
820 	}
821 }
822 
823 static __always_inline
824 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
825 	       const struct uprobe *r)
826 {
827 	if (l_inode < r->inode)
828 		return -1;
829 
830 	if (l_inode > r->inode)
831 		return 1;
832 
833 	if (l_offset < r->offset)
834 		return -1;
835 
836 	if (l_offset > r->offset)
837 		return 1;
838 
839 	return 0;
840 }
841 
842 #define __node_2_uprobe(node) \
843 	rb_entry((node), struct uprobe, rb_node)
844 
845 struct __uprobe_key {
846 	struct inode *inode;
847 	loff_t offset;
848 };
849 
850 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
851 {
852 	const struct __uprobe_key *a = key;
853 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
854 }
855 
856 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
857 {
858 	struct uprobe *u = __node_2_uprobe(a);
859 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
860 }
861 
862 /*
863  * Assumes being inside RCU protected region.
864  * No refcount is taken on returned uprobe.
865  */
866 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
867 {
868 	struct __uprobe_key key = {
869 		.inode = inode,
870 		.offset = offset,
871 	};
872 	struct rb_node *node;
873 	unsigned int seq;
874 
875 	lockdep_assert(rcu_read_lock_trace_held());
876 
877 	do {
878 		seq = read_seqcount_begin(&uprobes_seqcount);
879 		node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
880 		/*
881 		 * Lockless RB-tree lookups can result only in false negatives.
882 		 * If the element is found, it is correct and can be returned
883 		 * under RCU protection. If we find nothing, we need to
884 		 * validate that seqcount didn't change. If it did, we have to
885 		 * try again as we might have missed the element (false
886 		 * negative). If seqcount is unchanged, search truly failed.
887 		 */
888 		if (node)
889 			return __node_2_uprobe(node);
890 	} while (read_seqcount_retry(&uprobes_seqcount, seq));
891 
892 	return NULL;
893 }
894 
895 /*
896  * Attempt to insert a new uprobe into uprobes_tree.
897  *
898  * If uprobe already exists (for given inode+offset), we just increment
899  * refcount of previously existing uprobe.
900  *
901  * If not, a provided new instance of uprobe is inserted into the tree (with
902  * assumed initial refcount == 1).
903  *
904  * In any case, we return a uprobe instance that ends up being in uprobes_tree.
905  * Caller has to clean up new uprobe instance, if it ended up not being
906  * inserted into the tree.
907  *
908  * We assume that uprobes_treelock is held for writing.
909  */
910 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
911 {
912 	struct rb_node *node;
913 again:
914 	node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
915 	if (node) {
916 		struct uprobe *u = __node_2_uprobe(node);
917 
918 		if (!try_get_uprobe(u)) {
919 			rb_erase(node, &uprobes_tree);
920 			RB_CLEAR_NODE(&u->rb_node);
921 			goto again;
922 		}
923 
924 		return u;
925 	}
926 
927 	return uprobe;
928 }
929 
930 /*
931  * Acquire uprobes_treelock and insert uprobe into uprobes_tree
932  * (or reuse existing one, see __insert_uprobe() comments above).
933  */
934 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
935 {
936 	struct uprobe *u;
937 
938 	write_lock(&uprobes_treelock);
939 	write_seqcount_begin(&uprobes_seqcount);
940 	u = __insert_uprobe(uprobe);
941 	write_seqcount_end(&uprobes_seqcount);
942 	write_unlock(&uprobes_treelock);
943 
944 	return u;
945 }
946 
947 static void
948 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
949 {
950 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
951 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
952 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
953 		(unsigned long long) cur_uprobe->ref_ctr_offset,
954 		(unsigned long long) uprobe->ref_ctr_offset);
955 }
956 
957 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
958 				   loff_t ref_ctr_offset)
959 {
960 	struct uprobe *uprobe, *cur_uprobe;
961 
962 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
963 	if (!uprobe)
964 		return ERR_PTR(-ENOMEM);
965 
966 	uprobe->inode = inode;
967 	uprobe->offset = offset;
968 	uprobe->ref_ctr_offset = ref_ctr_offset;
969 	INIT_LIST_HEAD(&uprobe->consumers);
970 	init_rwsem(&uprobe->register_rwsem);
971 	init_rwsem(&uprobe->consumer_rwsem);
972 	RB_CLEAR_NODE(&uprobe->rb_node);
973 	refcount_set(&uprobe->ref, 1);
974 
975 	/* add to uprobes_tree, sorted on inode:offset */
976 	cur_uprobe = insert_uprobe(uprobe);
977 	/* a uprobe exists for this inode:offset combination */
978 	if (cur_uprobe != uprobe) {
979 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
980 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
981 			put_uprobe(cur_uprobe);
982 			kfree(uprobe);
983 			return ERR_PTR(-EINVAL);
984 		}
985 		kfree(uprobe);
986 		uprobe = cur_uprobe;
987 	}
988 
989 	return uprobe;
990 }
991 
992 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
993 {
994 	static atomic64_t id;
995 
996 	down_write(&uprobe->consumer_rwsem);
997 	list_add_rcu(&uc->cons_node, &uprobe->consumers);
998 	uc->id = (__u64) atomic64_inc_return(&id);
999 	up_write(&uprobe->consumer_rwsem);
1000 }
1001 
1002 /*
1003  * For uprobe @uprobe, delete the consumer @uc.
1004  * Should never be called with consumer that's not part of @uprobe->consumers.
1005  */
1006 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1007 {
1008 	down_write(&uprobe->consumer_rwsem);
1009 	list_del_rcu(&uc->cons_node);
1010 	up_write(&uprobe->consumer_rwsem);
1011 }
1012 
1013 static int __copy_insn(struct address_space *mapping, struct file *filp,
1014 			void *insn, int nbytes, loff_t offset)
1015 {
1016 	struct page *page;
1017 	/*
1018 	 * Ensure that the page that has the original instruction is populated
1019 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1020 	 * see uprobe_register().
1021 	 */
1022 	if (mapping->a_ops->read_folio)
1023 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1024 	else
1025 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1026 	if (IS_ERR(page))
1027 		return PTR_ERR(page);
1028 
1029 	copy_from_page(page, offset, insn, nbytes);
1030 	put_page(page);
1031 
1032 	return 0;
1033 }
1034 
1035 static int copy_insn(struct uprobe *uprobe, struct file *filp)
1036 {
1037 	struct address_space *mapping = uprobe->inode->i_mapping;
1038 	loff_t offs = uprobe->offset;
1039 	void *insn = &uprobe->arch.insn;
1040 	int size = sizeof(uprobe->arch.insn);
1041 	int len, err = -EIO;
1042 
1043 	/* Copy only available bytes, -EIO if nothing was read */
1044 	do {
1045 		if (offs >= i_size_read(uprobe->inode))
1046 			break;
1047 
1048 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1049 		err = __copy_insn(mapping, filp, insn, len, offs);
1050 		if (err)
1051 			break;
1052 
1053 		insn += len;
1054 		offs += len;
1055 		size -= len;
1056 	} while (size);
1057 
1058 	return err;
1059 }
1060 
1061 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1062 				struct mm_struct *mm, unsigned long vaddr)
1063 {
1064 	int ret = 0;
1065 
1066 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1067 		return ret;
1068 
1069 	/* TODO: move this into _register, until then we abuse this sem. */
1070 	down_write(&uprobe->consumer_rwsem);
1071 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1072 		goto out;
1073 
1074 	ret = copy_insn(uprobe, file);
1075 	if (ret)
1076 		goto out;
1077 
1078 	ret = -ENOTSUPP;
1079 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1080 		goto out;
1081 
1082 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1083 	if (ret)
1084 		goto out;
1085 
1086 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1087 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1088 
1089  out:
1090 	up_write(&uprobe->consumer_rwsem);
1091 
1092 	return ret;
1093 }
1094 
1095 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1096 {
1097 	return !uc->filter || uc->filter(uc, mm);
1098 }
1099 
1100 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1101 {
1102 	struct uprobe_consumer *uc;
1103 	bool ret = false;
1104 
1105 	down_read(&uprobe->consumer_rwsem);
1106 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1107 		ret = consumer_filter(uc, mm);
1108 		if (ret)
1109 			break;
1110 	}
1111 	up_read(&uprobe->consumer_rwsem);
1112 
1113 	return ret;
1114 }
1115 
1116 static int
1117 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
1118 			struct vm_area_struct *vma, unsigned long vaddr)
1119 {
1120 	bool first_uprobe;
1121 	int ret;
1122 
1123 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1124 	if (ret)
1125 		return ret;
1126 
1127 	/*
1128 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1129 	 * the task can hit this breakpoint right after __replace_page().
1130 	 */
1131 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
1132 	if (first_uprobe)
1133 		set_bit(MMF_HAS_UPROBES, &mm->flags);
1134 
1135 	ret = set_swbp(&uprobe->arch, mm, vaddr);
1136 	if (!ret)
1137 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
1138 	else if (first_uprobe)
1139 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
1140 
1141 	return ret;
1142 }
1143 
1144 static int
1145 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
1146 {
1147 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
1148 	return set_orig_insn(&uprobe->arch, mm, vaddr);
1149 }
1150 
1151 struct map_info {
1152 	struct map_info *next;
1153 	struct mm_struct *mm;
1154 	unsigned long vaddr;
1155 };
1156 
1157 static inline struct map_info *free_map_info(struct map_info *info)
1158 {
1159 	struct map_info *next = info->next;
1160 	kfree(info);
1161 	return next;
1162 }
1163 
1164 static struct map_info *
1165 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1166 {
1167 	unsigned long pgoff = offset >> PAGE_SHIFT;
1168 	struct vm_area_struct *vma;
1169 	struct map_info *curr = NULL;
1170 	struct map_info *prev = NULL;
1171 	struct map_info *info;
1172 	int more = 0;
1173 
1174  again:
1175 	i_mmap_lock_read(mapping);
1176 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1177 		if (!valid_vma(vma, is_register))
1178 			continue;
1179 
1180 		if (!prev && !more) {
1181 			/*
1182 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1183 			 * reclaim. This is optimistic, no harm done if it fails.
1184 			 */
1185 			prev = kmalloc(sizeof(struct map_info),
1186 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1187 			if (prev)
1188 				prev->next = NULL;
1189 		}
1190 		if (!prev) {
1191 			more++;
1192 			continue;
1193 		}
1194 
1195 		if (!mmget_not_zero(vma->vm_mm))
1196 			continue;
1197 
1198 		info = prev;
1199 		prev = prev->next;
1200 		info->next = curr;
1201 		curr = info;
1202 
1203 		info->mm = vma->vm_mm;
1204 		info->vaddr = offset_to_vaddr(vma, offset);
1205 	}
1206 	i_mmap_unlock_read(mapping);
1207 
1208 	if (!more)
1209 		goto out;
1210 
1211 	prev = curr;
1212 	while (curr) {
1213 		mmput(curr->mm);
1214 		curr = curr->next;
1215 	}
1216 
1217 	do {
1218 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1219 		if (!info) {
1220 			curr = ERR_PTR(-ENOMEM);
1221 			goto out;
1222 		}
1223 		info->next = prev;
1224 		prev = info;
1225 	} while (--more);
1226 
1227 	goto again;
1228  out:
1229 	while (prev)
1230 		prev = free_map_info(prev);
1231 	return curr;
1232 }
1233 
1234 static int
1235 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1236 {
1237 	bool is_register = !!new;
1238 	struct map_info *info;
1239 	int err = 0;
1240 
1241 	percpu_down_write(&dup_mmap_sem);
1242 	info = build_map_info(uprobe->inode->i_mapping,
1243 					uprobe->offset, is_register);
1244 	if (IS_ERR(info)) {
1245 		err = PTR_ERR(info);
1246 		goto out;
1247 	}
1248 
1249 	while (info) {
1250 		struct mm_struct *mm = info->mm;
1251 		struct vm_area_struct *vma;
1252 
1253 		if (err && is_register)
1254 			goto free;
1255 		/*
1256 		 * We take mmap_lock for writing to avoid the race with
1257 		 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1258 		 * Thus this install_breakpoint() can not make
1259 		 * is_trap_at_addr() true right after find_uprobe_rcu()
1260 		 * returns NULL in find_active_uprobe_rcu().
1261 		 */
1262 		mmap_write_lock(mm);
1263 		vma = find_vma(mm, info->vaddr);
1264 		if (!vma || !valid_vma(vma, is_register) ||
1265 		    file_inode(vma->vm_file) != uprobe->inode)
1266 			goto unlock;
1267 
1268 		if (vma->vm_start > info->vaddr ||
1269 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1270 			goto unlock;
1271 
1272 		if (is_register) {
1273 			/* consult only the "caller", new consumer. */
1274 			if (consumer_filter(new, mm))
1275 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1276 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1277 			if (!filter_chain(uprobe, mm))
1278 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1279 		}
1280 
1281  unlock:
1282 		mmap_write_unlock(mm);
1283  free:
1284 		mmput(mm);
1285 		info = free_map_info(info);
1286 	}
1287  out:
1288 	percpu_up_write(&dup_mmap_sem);
1289 	return err;
1290 }
1291 
1292 /**
1293  * uprobe_unregister_nosync - unregister an already registered probe.
1294  * @uprobe: uprobe to remove
1295  * @uc: identify which probe if multiple probes are colocated.
1296  */
1297 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1298 {
1299 	int err;
1300 
1301 	down_write(&uprobe->register_rwsem);
1302 	consumer_del(uprobe, uc);
1303 	err = register_for_each_vma(uprobe, NULL);
1304 	up_write(&uprobe->register_rwsem);
1305 
1306 	/* TODO : cant unregister? schedule a worker thread */
1307 	if (unlikely(err)) {
1308 		uprobe_warn(current, "unregister, leaking uprobe");
1309 		return;
1310 	}
1311 
1312 	put_uprobe(uprobe);
1313 }
1314 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1315 
1316 void uprobe_unregister_sync(void)
1317 {
1318 	/*
1319 	 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1320 	 * uprobe->consumers list under RCU protection without holding
1321 	 * uprobe->register_rwsem, we need to wait for RCU grace period to
1322 	 * make sure that we can't call into just unregistered
1323 	 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1324 	 * unlucky enough caller can free consumer's memory and cause
1325 	 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1326 	 */
1327 	synchronize_rcu_tasks_trace();
1328 	synchronize_srcu(&uretprobes_srcu);
1329 }
1330 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1331 
1332 /**
1333  * uprobe_register - register a probe
1334  * @inode: the file in which the probe has to be placed.
1335  * @offset: offset from the start of the file.
1336  * @ref_ctr_offset: offset of SDT marker / reference counter
1337  * @uc: information on howto handle the probe..
1338  *
1339  * Apart from the access refcount, uprobe_register() takes a creation
1340  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1341  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1342  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1343  * @uprobe even before the register operation is complete. Creation
1344  * refcount is released when the last @uc for the @uprobe
1345  * unregisters. Caller of uprobe_register() is required to keep @inode
1346  * (and the containing mount) referenced.
1347  *
1348  * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1349  */
1350 struct uprobe *uprobe_register(struct inode *inode,
1351 				loff_t offset, loff_t ref_ctr_offset,
1352 				struct uprobe_consumer *uc)
1353 {
1354 	struct uprobe *uprobe;
1355 	int ret;
1356 
1357 	/* Uprobe must have at least one set consumer */
1358 	if (!uc->handler && !uc->ret_handler)
1359 		return ERR_PTR(-EINVAL);
1360 
1361 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1362 	if (!inode->i_mapping->a_ops->read_folio &&
1363 	    !shmem_mapping(inode->i_mapping))
1364 		return ERR_PTR(-EIO);
1365 	/* Racy, just to catch the obvious mistakes */
1366 	if (offset > i_size_read(inode))
1367 		return ERR_PTR(-EINVAL);
1368 
1369 	/*
1370 	 * This ensures that copy_from_page(), copy_to_page() and
1371 	 * __update_ref_ctr() can't cross page boundary.
1372 	 */
1373 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1374 		return ERR_PTR(-EINVAL);
1375 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1376 		return ERR_PTR(-EINVAL);
1377 
1378 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1379 	if (IS_ERR(uprobe))
1380 		return uprobe;
1381 
1382 	down_write(&uprobe->register_rwsem);
1383 	consumer_add(uprobe, uc);
1384 	ret = register_for_each_vma(uprobe, uc);
1385 	up_write(&uprobe->register_rwsem);
1386 
1387 	if (ret) {
1388 		uprobe_unregister_nosync(uprobe, uc);
1389 		/*
1390 		 * Registration might have partially succeeded, so we can have
1391 		 * this consumer being called right at this time. We need to
1392 		 * sync here. It's ok, it's unlikely slow path.
1393 		 */
1394 		uprobe_unregister_sync();
1395 		return ERR_PTR(ret);
1396 	}
1397 
1398 	return uprobe;
1399 }
1400 EXPORT_SYMBOL_GPL(uprobe_register);
1401 
1402 /**
1403  * uprobe_apply - add or remove the breakpoints according to @uc->filter
1404  * @uprobe: uprobe which "owns" the breakpoint
1405  * @uc: consumer which wants to add more or remove some breakpoints
1406  * @add: add or remove the breakpoints
1407  * Return: 0 on success or negative error code.
1408  */
1409 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1410 {
1411 	struct uprobe_consumer *con;
1412 	int ret = -ENOENT;
1413 
1414 	down_write(&uprobe->register_rwsem);
1415 
1416 	rcu_read_lock_trace();
1417 	list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1418 		if (con == uc) {
1419 			ret = register_for_each_vma(uprobe, add ? uc : NULL);
1420 			break;
1421 		}
1422 	}
1423 	rcu_read_unlock_trace();
1424 
1425 	up_write(&uprobe->register_rwsem);
1426 
1427 	return ret;
1428 }
1429 
1430 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1431 {
1432 	VMA_ITERATOR(vmi, mm, 0);
1433 	struct vm_area_struct *vma;
1434 	int err = 0;
1435 
1436 	mmap_read_lock(mm);
1437 	for_each_vma(vmi, vma) {
1438 		unsigned long vaddr;
1439 		loff_t offset;
1440 
1441 		if (!valid_vma(vma, false) ||
1442 		    file_inode(vma->vm_file) != uprobe->inode)
1443 			continue;
1444 
1445 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1446 		if (uprobe->offset <  offset ||
1447 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1448 			continue;
1449 
1450 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1451 		err |= remove_breakpoint(uprobe, mm, vaddr);
1452 	}
1453 	mmap_read_unlock(mm);
1454 
1455 	return err;
1456 }
1457 
1458 static struct rb_node *
1459 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1460 {
1461 	struct rb_node *n = uprobes_tree.rb_node;
1462 
1463 	while (n) {
1464 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1465 
1466 		if (inode < u->inode) {
1467 			n = n->rb_left;
1468 		} else if (inode > u->inode) {
1469 			n = n->rb_right;
1470 		} else {
1471 			if (max < u->offset)
1472 				n = n->rb_left;
1473 			else if (min > u->offset)
1474 				n = n->rb_right;
1475 			else
1476 				break;
1477 		}
1478 	}
1479 
1480 	return n;
1481 }
1482 
1483 /*
1484  * For a given range in vma, build a list of probes that need to be inserted.
1485  */
1486 static void build_probe_list(struct inode *inode,
1487 				struct vm_area_struct *vma,
1488 				unsigned long start, unsigned long end,
1489 				struct list_head *head)
1490 {
1491 	loff_t min, max;
1492 	struct rb_node *n, *t;
1493 	struct uprobe *u;
1494 
1495 	INIT_LIST_HEAD(head);
1496 	min = vaddr_to_offset(vma, start);
1497 	max = min + (end - start) - 1;
1498 
1499 	read_lock(&uprobes_treelock);
1500 	n = find_node_in_range(inode, min, max);
1501 	if (n) {
1502 		for (t = n; t; t = rb_prev(t)) {
1503 			u = rb_entry(t, struct uprobe, rb_node);
1504 			if (u->inode != inode || u->offset < min)
1505 				break;
1506 			/* if uprobe went away, it's safe to ignore it */
1507 			if (try_get_uprobe(u))
1508 				list_add(&u->pending_list, head);
1509 		}
1510 		for (t = n; (t = rb_next(t)); ) {
1511 			u = rb_entry(t, struct uprobe, rb_node);
1512 			if (u->inode != inode || u->offset > max)
1513 				break;
1514 			/* if uprobe went away, it's safe to ignore it */
1515 			if (try_get_uprobe(u))
1516 				list_add(&u->pending_list, head);
1517 		}
1518 	}
1519 	read_unlock(&uprobes_treelock);
1520 }
1521 
1522 /* @vma contains reference counter, not the probed instruction. */
1523 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1524 {
1525 	struct list_head *pos, *q;
1526 	struct delayed_uprobe *du;
1527 	unsigned long vaddr;
1528 	int ret = 0, err = 0;
1529 
1530 	mutex_lock(&delayed_uprobe_lock);
1531 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1532 		du = list_entry(pos, struct delayed_uprobe, list);
1533 
1534 		if (du->mm != vma->vm_mm ||
1535 		    !valid_ref_ctr_vma(du->uprobe, vma))
1536 			continue;
1537 
1538 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1539 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1540 		if (ret) {
1541 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1542 			if (!err)
1543 				err = ret;
1544 		}
1545 		delayed_uprobe_delete(du);
1546 	}
1547 	mutex_unlock(&delayed_uprobe_lock);
1548 	return err;
1549 }
1550 
1551 /*
1552  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1553  *
1554  * Currently we ignore all errors and always return 0, the callers
1555  * can't handle the failure anyway.
1556  */
1557 int uprobe_mmap(struct vm_area_struct *vma)
1558 {
1559 	struct list_head tmp_list;
1560 	struct uprobe *uprobe, *u;
1561 	struct inode *inode;
1562 
1563 	if (no_uprobe_events())
1564 		return 0;
1565 
1566 	if (vma->vm_file &&
1567 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1568 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1569 		delayed_ref_ctr_inc(vma);
1570 
1571 	if (!valid_vma(vma, true))
1572 		return 0;
1573 
1574 	inode = file_inode(vma->vm_file);
1575 	if (!inode)
1576 		return 0;
1577 
1578 	mutex_lock(uprobes_mmap_hash(inode));
1579 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1580 	/*
1581 	 * We can race with uprobe_unregister(), this uprobe can be already
1582 	 * removed. But in this case filter_chain() must return false, all
1583 	 * consumers have gone away.
1584 	 */
1585 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1586 		if (!fatal_signal_pending(current) &&
1587 		    filter_chain(uprobe, vma->vm_mm)) {
1588 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1589 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1590 		}
1591 		put_uprobe(uprobe);
1592 	}
1593 	mutex_unlock(uprobes_mmap_hash(inode));
1594 
1595 	return 0;
1596 }
1597 
1598 static bool
1599 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1600 {
1601 	loff_t min, max;
1602 	struct inode *inode;
1603 	struct rb_node *n;
1604 
1605 	inode = file_inode(vma->vm_file);
1606 
1607 	min = vaddr_to_offset(vma, start);
1608 	max = min + (end - start) - 1;
1609 
1610 	read_lock(&uprobes_treelock);
1611 	n = find_node_in_range(inode, min, max);
1612 	read_unlock(&uprobes_treelock);
1613 
1614 	return !!n;
1615 }
1616 
1617 /*
1618  * Called in context of a munmap of a vma.
1619  */
1620 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1621 {
1622 	if (no_uprobe_events() || !valid_vma(vma, false))
1623 		return;
1624 
1625 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1626 		return;
1627 
1628 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1629 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1630 		return;
1631 
1632 	if (vma_has_uprobes(vma, start, end))
1633 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1634 }
1635 
1636 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1637 			    struct vm_area_struct *vma, struct vm_fault *vmf)
1638 {
1639 	struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1640 
1641 	vmf->page = area->page;
1642 	get_page(vmf->page);
1643 	return 0;
1644 }
1645 
1646 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1647 {
1648 	return -EPERM;
1649 }
1650 
1651 static const struct vm_special_mapping xol_mapping = {
1652 	.name = "[uprobes]",
1653 	.fault = xol_fault,
1654 	.mremap = xol_mremap,
1655 };
1656 
1657 /* Slot allocation for XOL */
1658 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1659 {
1660 	struct vm_area_struct *vma;
1661 	int ret;
1662 
1663 	if (mmap_write_lock_killable(mm))
1664 		return -EINTR;
1665 
1666 	if (mm->uprobes_state.xol_area) {
1667 		ret = -EALREADY;
1668 		goto fail;
1669 	}
1670 
1671 	if (!area->vaddr) {
1672 		/* Try to map as high as possible, this is only a hint. */
1673 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1674 						PAGE_SIZE, 0, 0);
1675 		if (IS_ERR_VALUE(area->vaddr)) {
1676 			ret = area->vaddr;
1677 			goto fail;
1678 		}
1679 	}
1680 
1681 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1682 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1683 				&xol_mapping);
1684 	if (IS_ERR(vma)) {
1685 		ret = PTR_ERR(vma);
1686 		goto fail;
1687 	}
1688 
1689 	ret = 0;
1690 	/* pairs with get_xol_area() */
1691 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1692  fail:
1693 	mmap_write_unlock(mm);
1694 
1695 	return ret;
1696 }
1697 
1698 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1699 {
1700 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1701 
1702 	*psize = UPROBE_SWBP_INSN_SIZE;
1703 	return &insn;
1704 }
1705 
1706 static struct xol_area *__create_xol_area(unsigned long vaddr)
1707 {
1708 	struct mm_struct *mm = current->mm;
1709 	unsigned long insns_size;
1710 	struct xol_area *area;
1711 	void *insns;
1712 
1713 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1714 	if (unlikely(!area))
1715 		goto out;
1716 
1717 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1718 			       GFP_KERNEL);
1719 	if (!area->bitmap)
1720 		goto free_area;
1721 
1722 	area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1723 	if (!area->page)
1724 		goto free_bitmap;
1725 
1726 	area->vaddr = vaddr;
1727 	init_waitqueue_head(&area->wq);
1728 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1729 	set_bit(0, area->bitmap);
1730 	insns = arch_uprobe_trampoline(&insns_size);
1731 	arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1732 
1733 	if (!xol_add_vma(mm, area))
1734 		return area;
1735 
1736 	__free_page(area->page);
1737  free_bitmap:
1738 	kfree(area->bitmap);
1739  free_area:
1740 	kfree(area);
1741  out:
1742 	return NULL;
1743 }
1744 
1745 /*
1746  * get_xol_area - Allocate process's xol_area if necessary.
1747  * This area will be used for storing instructions for execution out of line.
1748  *
1749  * Returns the allocated area or NULL.
1750  */
1751 static struct xol_area *get_xol_area(void)
1752 {
1753 	struct mm_struct *mm = current->mm;
1754 	struct xol_area *area;
1755 
1756 	if (!mm->uprobes_state.xol_area)
1757 		__create_xol_area(0);
1758 
1759 	/* Pairs with xol_add_vma() smp_store_release() */
1760 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1761 	return area;
1762 }
1763 
1764 /*
1765  * uprobe_clear_state - Free the area allocated for slots.
1766  */
1767 void uprobe_clear_state(struct mm_struct *mm)
1768 {
1769 	struct xol_area *area = mm->uprobes_state.xol_area;
1770 
1771 	mutex_lock(&delayed_uprobe_lock);
1772 	delayed_uprobe_remove(NULL, mm);
1773 	mutex_unlock(&delayed_uprobe_lock);
1774 
1775 	if (!area)
1776 		return;
1777 
1778 	put_page(area->page);
1779 	kfree(area->bitmap);
1780 	kfree(area);
1781 }
1782 
1783 void uprobe_start_dup_mmap(void)
1784 {
1785 	percpu_down_read(&dup_mmap_sem);
1786 }
1787 
1788 void uprobe_end_dup_mmap(void)
1789 {
1790 	percpu_up_read(&dup_mmap_sem);
1791 }
1792 
1793 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1794 {
1795 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1796 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1797 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1798 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1799 	}
1800 }
1801 
1802 static unsigned long xol_get_slot_nr(struct xol_area *area)
1803 {
1804 	unsigned long slot_nr;
1805 
1806 	slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1807 	if (slot_nr < UINSNS_PER_PAGE) {
1808 		if (!test_and_set_bit(slot_nr, area->bitmap))
1809 			return slot_nr;
1810 	}
1811 
1812 	return UINSNS_PER_PAGE;
1813 }
1814 
1815 /*
1816  * xol_get_insn_slot - allocate a slot for xol.
1817  */
1818 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1819 {
1820 	struct xol_area *area = get_xol_area();
1821 	unsigned long slot_nr;
1822 
1823 	if (!area)
1824 		return false;
1825 
1826 	wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1827 
1828 	utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1829 	arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1830 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1831 	return true;
1832 }
1833 
1834 /*
1835  * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1836  */
1837 static void xol_free_insn_slot(struct uprobe_task *utask)
1838 {
1839 	struct xol_area *area = current->mm->uprobes_state.xol_area;
1840 	unsigned long offset = utask->xol_vaddr - area->vaddr;
1841 	unsigned int slot_nr;
1842 
1843 	utask->xol_vaddr = 0;
1844 	/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1845 	if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1846 		return;
1847 
1848 	slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1849 	clear_bit(slot_nr, area->bitmap);
1850 	smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1851 	if (waitqueue_active(&area->wq))
1852 		wake_up(&area->wq);
1853 }
1854 
1855 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1856 				  void *src, unsigned long len)
1857 {
1858 	/* Initialize the slot */
1859 	copy_to_page(page, vaddr, src, len);
1860 
1861 	/*
1862 	 * We probably need flush_icache_user_page() but it needs vma.
1863 	 * This should work on most of architectures by default. If
1864 	 * architecture needs to do something different it can define
1865 	 * its own version of the function.
1866 	 */
1867 	flush_dcache_page(page);
1868 }
1869 
1870 /**
1871  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1872  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1873  * instruction.
1874  * Return the address of the breakpoint instruction.
1875  */
1876 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1877 {
1878 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1879 }
1880 
1881 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1882 {
1883 	struct uprobe_task *utask = current->utask;
1884 
1885 	if (unlikely(utask && utask->active_uprobe))
1886 		return utask->vaddr;
1887 
1888 	return instruction_pointer(regs);
1889 }
1890 
1891 static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
1892 {
1893 	struct return_instance *next = ri->next;
1894 
1895 	if (cleanup_hprobe) {
1896 		enum hprobe_state hstate;
1897 
1898 		(void)hprobe_consume(&ri->hprobe, &hstate);
1899 		hprobe_finalize(&ri->hprobe, hstate);
1900 	}
1901 
1902 	kfree_rcu(ri, rcu);
1903 	return next;
1904 }
1905 
1906 /*
1907  * Called with no locks held.
1908  * Called in context of an exiting or an exec-ing thread.
1909  */
1910 void uprobe_free_utask(struct task_struct *t)
1911 {
1912 	struct uprobe_task *utask = t->utask;
1913 	struct return_instance *ri;
1914 
1915 	if (!utask)
1916 		return;
1917 
1918 	WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
1919 
1920 	timer_delete_sync(&utask->ri_timer);
1921 
1922 	ri = utask->return_instances;
1923 	while (ri)
1924 		ri = free_ret_instance(ri, true /* cleanup_hprobe */);
1925 
1926 	kfree(utask);
1927 	t->utask = NULL;
1928 }
1929 
1930 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
1931 
1932 #define for_each_ret_instance_rcu(pos, head) \
1933 	for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
1934 
1935 static void ri_timer(struct timer_list *timer)
1936 {
1937 	struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
1938 	struct return_instance *ri;
1939 
1940 	/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
1941 	guard(srcu)(&uretprobes_srcu);
1942 	/* RCU protects return_instance from freeing. */
1943 	guard(rcu)();
1944 
1945 	for_each_ret_instance_rcu(ri, utask->return_instances)
1946 		hprobe_expire(&ri->hprobe, false);
1947 }
1948 
1949 static struct uprobe_task *alloc_utask(void)
1950 {
1951 	struct uprobe_task *utask;
1952 
1953 	utask = kzalloc(sizeof(*utask), GFP_KERNEL);
1954 	if (!utask)
1955 		return NULL;
1956 
1957 	timer_setup(&utask->ri_timer, ri_timer, 0);
1958 
1959 	return utask;
1960 }
1961 
1962 /*
1963  * Allocate a uprobe_task object for the task if necessary.
1964  * Called when the thread hits a breakpoint.
1965  *
1966  * Returns:
1967  * - pointer to new uprobe_task on success
1968  * - NULL otherwise
1969  */
1970 static struct uprobe_task *get_utask(void)
1971 {
1972 	if (!current->utask)
1973 		current->utask = alloc_utask();
1974 	return current->utask;
1975 }
1976 
1977 static size_t ri_size(int consumers_cnt)
1978 {
1979 	struct return_instance *ri;
1980 
1981 	return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt;
1982 }
1983 
1984 #define DEF_CNT 4
1985 
1986 static struct return_instance *alloc_return_instance(void)
1987 {
1988 	struct return_instance *ri;
1989 
1990 	ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL);
1991 	if (!ri)
1992 		return ZERO_SIZE_PTR;
1993 
1994 	ri->consumers_cnt = DEF_CNT;
1995 	return ri;
1996 }
1997 
1998 static struct return_instance *dup_return_instance(struct return_instance *old)
1999 {
2000 	size_t size = ri_size(old->consumers_cnt);
2001 
2002 	return kmemdup(old, size, GFP_KERNEL);
2003 }
2004 
2005 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2006 {
2007 	struct uprobe_task *n_utask;
2008 	struct return_instance **p, *o, *n;
2009 	struct uprobe *uprobe;
2010 
2011 	n_utask = alloc_utask();
2012 	if (!n_utask)
2013 		return -ENOMEM;
2014 	t->utask = n_utask;
2015 
2016 	/* protect uprobes from freeing, we'll need try_get_uprobe() them */
2017 	guard(srcu)(&uretprobes_srcu);
2018 
2019 	p = &n_utask->return_instances;
2020 	for (o = o_utask->return_instances; o; o = o->next) {
2021 		n = dup_return_instance(o);
2022 		if (!n)
2023 			return -ENOMEM;
2024 
2025 		/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2026 		uprobe = hprobe_expire(&o->hprobe, true);
2027 
2028 		/*
2029 		 * New utask will have stable properly refcounted uprobe or
2030 		 * NULL. Even if we failed to get refcounted uprobe, we still
2031 		 * need to preserve full set of return_instances for proper
2032 		 * uretprobe handling and nesting in forked task.
2033 		 */
2034 		hprobe_init_stable(&n->hprobe, uprobe);
2035 
2036 		n->next = NULL;
2037 		rcu_assign_pointer(*p, n);
2038 		p = &n->next;
2039 
2040 		n_utask->depth++;
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 static void dup_xol_work(struct callback_head *work)
2047 {
2048 	if (current->flags & PF_EXITING)
2049 		return;
2050 
2051 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
2052 			!fatal_signal_pending(current))
2053 		uprobe_warn(current, "dup xol area");
2054 }
2055 
2056 /*
2057  * Called in context of a new clone/fork from copy_process.
2058  */
2059 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
2060 {
2061 	struct uprobe_task *utask = current->utask;
2062 	struct mm_struct *mm = current->mm;
2063 	struct xol_area *area;
2064 
2065 	t->utask = NULL;
2066 
2067 	if (!utask || !utask->return_instances)
2068 		return;
2069 
2070 	if (mm == t->mm && !(flags & CLONE_VFORK))
2071 		return;
2072 
2073 	if (dup_utask(t, utask))
2074 		return uprobe_warn(t, "dup ret instances");
2075 
2076 	/* The task can fork() after dup_xol_work() fails */
2077 	area = mm->uprobes_state.xol_area;
2078 	if (!area)
2079 		return uprobe_warn(t, "dup xol area");
2080 
2081 	if (mm == t->mm)
2082 		return;
2083 
2084 	t->utask->dup_xol_addr = area->vaddr;
2085 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2086 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2087 }
2088 
2089 /*
2090  * Current area->vaddr notion assume the trampoline address is always
2091  * equal area->vaddr.
2092  *
2093  * Returns -1 in case the xol_area is not allocated.
2094  */
2095 unsigned long uprobe_get_trampoline_vaddr(void)
2096 {
2097 	struct xol_area *area;
2098 	unsigned long trampoline_vaddr = -1;
2099 
2100 	/* Pairs with xol_add_vma() smp_store_release() */
2101 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2102 	if (area)
2103 		trampoline_vaddr = area->vaddr;
2104 
2105 	return trampoline_vaddr;
2106 }
2107 
2108 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2109 					struct pt_regs *regs)
2110 {
2111 	struct return_instance *ri = utask->return_instances;
2112 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2113 
2114 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2115 		ri = free_ret_instance(ri, true /* cleanup_hprobe */);
2116 		utask->depth--;
2117 	}
2118 	rcu_assign_pointer(utask->return_instances, ri);
2119 }
2120 
2121 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2122 			      struct return_instance *ri)
2123 {
2124 	struct uprobe_task *utask = current->utask;
2125 	unsigned long orig_ret_vaddr, trampoline_vaddr;
2126 	bool chained;
2127 	int srcu_idx;
2128 
2129 	if (!get_xol_area())
2130 		goto free;
2131 
2132 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
2133 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2134 				" nestedness limit pid/tgid=%d/%d\n",
2135 				current->pid, current->tgid);
2136 		goto free;
2137 	}
2138 
2139 	trampoline_vaddr = uprobe_get_trampoline_vaddr();
2140 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2141 	if (orig_ret_vaddr == -1)
2142 		goto free;
2143 
2144 	/* drop the entries invalidated by longjmp() */
2145 	chained = (orig_ret_vaddr == trampoline_vaddr);
2146 	cleanup_return_instances(utask, chained, regs);
2147 
2148 	/*
2149 	 * We don't want to keep trampoline address in stack, rather keep the
2150 	 * original return address of first caller thru all the consequent
2151 	 * instances. This also makes breakpoint unwrapping easier.
2152 	 */
2153 	if (chained) {
2154 		if (!utask->return_instances) {
2155 			/*
2156 			 * This situation is not possible. Likely we have an
2157 			 * attack from user-space.
2158 			 */
2159 			uprobe_warn(current, "handle tail call");
2160 			goto free;
2161 		}
2162 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2163 	}
2164 
2165 	/* __srcu_read_lock() because SRCU lock survives switch to user space */
2166 	srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2167 
2168 	ri->func = instruction_pointer(regs);
2169 	ri->stack = user_stack_pointer(regs);
2170 	ri->orig_ret_vaddr = orig_ret_vaddr;
2171 	ri->chained = chained;
2172 
2173 	utask->depth++;
2174 
2175 	hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2176 	ri->next = utask->return_instances;
2177 	rcu_assign_pointer(utask->return_instances, ri);
2178 
2179 	mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2180 
2181 	return;
2182 free:
2183 	kfree(ri);
2184 }
2185 
2186 /* Prepare to single-step probed instruction out of line. */
2187 static int
2188 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2189 {
2190 	struct uprobe_task *utask = current->utask;
2191 	int err;
2192 
2193 	if (!try_get_uprobe(uprobe))
2194 		return -EINVAL;
2195 
2196 	if (!xol_get_insn_slot(uprobe, utask)) {
2197 		err = -ENOMEM;
2198 		goto err_out;
2199 	}
2200 
2201 	utask->vaddr = bp_vaddr;
2202 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2203 	if (unlikely(err)) {
2204 		xol_free_insn_slot(utask);
2205 		goto err_out;
2206 	}
2207 
2208 	utask->active_uprobe = uprobe;
2209 	utask->state = UTASK_SSTEP;
2210 	return 0;
2211 err_out:
2212 	put_uprobe(uprobe);
2213 	return err;
2214 }
2215 
2216 /*
2217  * If we are singlestepping, then ensure this thread is not connected to
2218  * non-fatal signals until completion of singlestep.  When xol insn itself
2219  * triggers the signal,  restart the original insn even if the task is
2220  * already SIGKILL'ed (since coredump should report the correct ip).  This
2221  * is even more important if the task has a handler for SIGSEGV/etc, The
2222  * _same_ instruction should be repeated again after return from the signal
2223  * handler, and SSTEP can never finish in this case.
2224  */
2225 bool uprobe_deny_signal(void)
2226 {
2227 	struct task_struct *t = current;
2228 	struct uprobe_task *utask = t->utask;
2229 
2230 	if (likely(!utask || !utask->active_uprobe))
2231 		return false;
2232 
2233 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2234 
2235 	if (task_sigpending(t)) {
2236 		spin_lock_irq(&t->sighand->siglock);
2237 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
2238 		spin_unlock_irq(&t->sighand->siglock);
2239 
2240 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2241 			utask->state = UTASK_SSTEP_TRAPPED;
2242 			set_tsk_thread_flag(t, TIF_UPROBE);
2243 		}
2244 	}
2245 
2246 	return true;
2247 }
2248 
2249 static void mmf_recalc_uprobes(struct mm_struct *mm)
2250 {
2251 	VMA_ITERATOR(vmi, mm, 0);
2252 	struct vm_area_struct *vma;
2253 
2254 	for_each_vma(vmi, vma) {
2255 		if (!valid_vma(vma, false))
2256 			continue;
2257 		/*
2258 		 * This is not strictly accurate, we can race with
2259 		 * uprobe_unregister() and see the already removed
2260 		 * uprobe if delete_uprobe() was not yet called.
2261 		 * Or this uprobe can be filtered out.
2262 		 */
2263 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2264 			return;
2265 	}
2266 
2267 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2268 }
2269 
2270 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2271 {
2272 	struct page *page;
2273 	uprobe_opcode_t opcode;
2274 	int result;
2275 
2276 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2277 		return -EINVAL;
2278 
2279 	pagefault_disable();
2280 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2281 	pagefault_enable();
2282 
2283 	if (likely(result == 0))
2284 		goto out;
2285 
2286 	result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2287 	if (result < 0)
2288 		return result;
2289 
2290 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2291 	put_page(page);
2292  out:
2293 	/* This needs to return true for any variant of the trap insn */
2294 	return is_trap_insn(&opcode);
2295 }
2296 
2297 /* assumes being inside RCU protected region */
2298 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2299 {
2300 	struct mm_struct *mm = current->mm;
2301 	struct uprobe *uprobe = NULL;
2302 	struct vm_area_struct *vma;
2303 
2304 	mmap_read_lock(mm);
2305 	vma = vma_lookup(mm, bp_vaddr);
2306 	if (vma) {
2307 		if (valid_vma(vma, false)) {
2308 			struct inode *inode = file_inode(vma->vm_file);
2309 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2310 
2311 			uprobe = find_uprobe_rcu(inode, offset);
2312 		}
2313 
2314 		if (!uprobe)
2315 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2316 	} else {
2317 		*is_swbp = -EFAULT;
2318 	}
2319 
2320 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2321 		mmf_recalc_uprobes(mm);
2322 	mmap_read_unlock(mm);
2323 
2324 	return uprobe;
2325 }
2326 
2327 static struct return_instance*
2328 push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie)
2329 {
2330 	if (unlikely(ri == ZERO_SIZE_PTR))
2331 		return ri;
2332 
2333 	if (unlikely(idx >= ri->consumers_cnt)) {
2334 		struct return_instance *old_ri = ri;
2335 
2336 		ri->consumers_cnt += DEF_CNT;
2337 		ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL);
2338 		if (!ri) {
2339 			kfree(old_ri);
2340 			return ZERO_SIZE_PTR;
2341 		}
2342 	}
2343 
2344 	ri->consumers[idx].id = id;
2345 	ri->consumers[idx].cookie = cookie;
2346 	return ri;
2347 }
2348 
2349 static struct return_consumer *
2350 return_consumer_find(struct return_instance *ri, int *iter, int id)
2351 {
2352 	struct return_consumer *ric;
2353 	int idx = *iter;
2354 
2355 	for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) {
2356 		if (ric->id == id) {
2357 			*iter = idx + 1;
2358 			return ric;
2359 		}
2360 	}
2361 	return NULL;
2362 }
2363 
2364 static bool ignore_ret_handler(int rc)
2365 {
2366 	return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2367 }
2368 
2369 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2370 {
2371 	struct uprobe_consumer *uc;
2372 	bool has_consumers = false, remove = true;
2373 	struct return_instance *ri = NULL;
2374 	int push_idx = 0;
2375 
2376 	current->utask->auprobe = &uprobe->arch;
2377 
2378 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2379 		bool session = uc->handler && uc->ret_handler;
2380 		__u64 cookie = 0;
2381 		int rc = 0;
2382 
2383 		if (uc->handler) {
2384 			rc = uc->handler(uc, regs, &cookie);
2385 			WARN(rc < 0 || rc > 2,
2386 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2387 		}
2388 
2389 		remove &= rc == UPROBE_HANDLER_REMOVE;
2390 		has_consumers = true;
2391 
2392 		if (!uc->ret_handler || ignore_ret_handler(rc))
2393 			continue;
2394 
2395 		if (!ri)
2396 			ri = alloc_return_instance();
2397 
2398 		if (session)
2399 			ri = push_consumer(ri, push_idx++, uc->id, cookie);
2400 	}
2401 	current->utask->auprobe = NULL;
2402 
2403 	if (!ZERO_OR_NULL_PTR(ri)) {
2404 		/*
2405 		 * The push_idx value has the final number of return consumers,
2406 		 * and ri->consumers_cnt has number of allocated consumers.
2407 		 */
2408 		ri->consumers_cnt = push_idx;
2409 		prepare_uretprobe(uprobe, regs, ri);
2410 	}
2411 
2412 	if (remove && has_consumers) {
2413 		down_read(&uprobe->register_rwsem);
2414 
2415 		/* re-check that removal is still required, this time under lock */
2416 		if (!filter_chain(uprobe, current->mm)) {
2417 			WARN_ON(!uprobe_is_active(uprobe));
2418 			unapply_uprobe(uprobe, current->mm);
2419 		}
2420 
2421 		up_read(&uprobe->register_rwsem);
2422 	}
2423 }
2424 
2425 static void
2426 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2427 {
2428 	struct return_consumer *ric;
2429 	struct uprobe_consumer *uc;
2430 	int ric_idx = 0;
2431 
2432 	/* all consumers unsubscribed meanwhile */
2433 	if (unlikely(!uprobe))
2434 		return;
2435 
2436 	rcu_read_lock_trace();
2437 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2438 		bool session = uc->handler && uc->ret_handler;
2439 
2440 		if (uc->ret_handler) {
2441 			ric = return_consumer_find(ri, &ric_idx, uc->id);
2442 			if (!session || ric)
2443 				uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2444 		}
2445 	}
2446 	rcu_read_unlock_trace();
2447 }
2448 
2449 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2450 {
2451 	bool chained;
2452 
2453 	do {
2454 		chained = ri->chained;
2455 		ri = ri->next;	/* can't be NULL if chained */
2456 	} while (chained);
2457 
2458 	return ri;
2459 }
2460 
2461 void uprobe_handle_trampoline(struct pt_regs *regs)
2462 {
2463 	struct uprobe_task *utask;
2464 	struct return_instance *ri, *next;
2465 	struct uprobe *uprobe;
2466 	enum hprobe_state hstate;
2467 	bool valid;
2468 
2469 	utask = current->utask;
2470 	if (!utask)
2471 		goto sigill;
2472 
2473 	ri = utask->return_instances;
2474 	if (!ri)
2475 		goto sigill;
2476 
2477 	do {
2478 		/*
2479 		 * We should throw out the frames invalidated by longjmp().
2480 		 * If this chain is valid, then the next one should be alive
2481 		 * or NULL; the latter case means that nobody but ri->func
2482 		 * could hit this trampoline on return. TODO: sigaltstack().
2483 		 */
2484 		next = find_next_ret_chain(ri);
2485 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2486 
2487 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2488 		do {
2489 			/* pop current instance from the stack of pending return instances,
2490 			 * as it's not pending anymore: we just fixed up original
2491 			 * instruction pointer in regs and are about to call handlers;
2492 			 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2493 			 * captured stack traces from uretprobe handlers, in which pending
2494 			 * trampoline addresses on the stack are replaced with correct
2495 			 * original return addresses
2496 			 */
2497 			rcu_assign_pointer(utask->return_instances, ri->next);
2498 
2499 			uprobe = hprobe_consume(&ri->hprobe, &hstate);
2500 			if (valid)
2501 				handle_uretprobe_chain(ri, uprobe, regs);
2502 			hprobe_finalize(&ri->hprobe, hstate);
2503 
2504 			/* We already took care of hprobe, no need to waste more time on that. */
2505 			ri = free_ret_instance(ri, false /* !cleanup_hprobe */);
2506 			utask->depth--;
2507 		} while (ri != next);
2508 	} while (!valid);
2509 
2510 	return;
2511 
2512 sigill:
2513 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2514 	force_sig(SIGILL);
2515 }
2516 
2517 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2518 {
2519 	return false;
2520 }
2521 
2522 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2523 					struct pt_regs *regs)
2524 {
2525 	return true;
2526 }
2527 
2528 /*
2529  * Run handler and ask thread to singlestep.
2530  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2531  */
2532 static void handle_swbp(struct pt_regs *regs)
2533 {
2534 	struct uprobe *uprobe;
2535 	unsigned long bp_vaddr;
2536 	int is_swbp;
2537 
2538 	bp_vaddr = uprobe_get_swbp_addr(regs);
2539 	if (bp_vaddr == uprobe_get_trampoline_vaddr())
2540 		return uprobe_handle_trampoline(regs);
2541 
2542 	rcu_read_lock_trace();
2543 
2544 	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2545 	if (!uprobe) {
2546 		if (is_swbp > 0) {
2547 			/* No matching uprobe; signal SIGTRAP. */
2548 			force_sig(SIGTRAP);
2549 		} else {
2550 			/*
2551 			 * Either we raced with uprobe_unregister() or we can't
2552 			 * access this memory. The latter is only possible if
2553 			 * another thread plays with our ->mm. In both cases
2554 			 * we can simply restart. If this vma was unmapped we
2555 			 * can pretend this insn was not executed yet and get
2556 			 * the (correct) SIGSEGV after restart.
2557 			 */
2558 			instruction_pointer_set(regs, bp_vaddr);
2559 		}
2560 		goto out;
2561 	}
2562 
2563 	/* change it in advance for ->handler() and restart */
2564 	instruction_pointer_set(regs, bp_vaddr);
2565 
2566 	/*
2567 	 * TODO: move copy_insn/etc into _register and remove this hack.
2568 	 * After we hit the bp, _unregister + _register can install the
2569 	 * new and not-yet-analyzed uprobe at the same address, restart.
2570 	 */
2571 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2572 		goto out;
2573 
2574 	/*
2575 	 * Pairs with the smp_wmb() in prepare_uprobe().
2576 	 *
2577 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2578 	 * we must also see the stores to &uprobe->arch performed by the
2579 	 * prepare_uprobe() call.
2580 	 */
2581 	smp_rmb();
2582 
2583 	/* Tracing handlers use ->utask to communicate with fetch methods */
2584 	if (!get_utask())
2585 		goto out;
2586 
2587 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2588 		goto out;
2589 
2590 	handler_chain(uprobe, regs);
2591 
2592 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2593 		goto out;
2594 
2595 	if (pre_ssout(uprobe, regs, bp_vaddr))
2596 		goto out;
2597 
2598 out:
2599 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2600 	rcu_read_unlock_trace();
2601 }
2602 
2603 /*
2604  * Perform required fix-ups and disable singlestep.
2605  * Allow pending signals to take effect.
2606  */
2607 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2608 {
2609 	struct uprobe *uprobe;
2610 	int err = 0;
2611 
2612 	uprobe = utask->active_uprobe;
2613 	if (utask->state == UTASK_SSTEP_ACK)
2614 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2615 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2616 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2617 	else
2618 		WARN_ON_ONCE(1);
2619 
2620 	put_uprobe(uprobe);
2621 	utask->active_uprobe = NULL;
2622 	utask->state = UTASK_RUNNING;
2623 	xol_free_insn_slot(utask);
2624 
2625 	spin_lock_irq(&current->sighand->siglock);
2626 	recalc_sigpending(); /* see uprobe_deny_signal() */
2627 	spin_unlock_irq(&current->sighand->siglock);
2628 
2629 	if (unlikely(err)) {
2630 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2631 		force_sig(SIGILL);
2632 	}
2633 }
2634 
2635 /*
2636  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2637  * allows the thread to return from interrupt. After that handle_swbp()
2638  * sets utask->active_uprobe.
2639  *
2640  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2641  * and allows the thread to return from interrupt.
2642  *
2643  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2644  * uprobe_notify_resume().
2645  */
2646 void uprobe_notify_resume(struct pt_regs *regs)
2647 {
2648 	struct uprobe_task *utask;
2649 
2650 	clear_thread_flag(TIF_UPROBE);
2651 
2652 	utask = current->utask;
2653 	if (utask && utask->active_uprobe)
2654 		handle_singlestep(utask, regs);
2655 	else
2656 		handle_swbp(regs);
2657 }
2658 
2659 /*
2660  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2661  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2662  */
2663 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2664 {
2665 	if (!current->mm)
2666 		return 0;
2667 
2668 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2669 	    (!current->utask || !current->utask->return_instances))
2670 		return 0;
2671 
2672 	set_thread_flag(TIF_UPROBE);
2673 	return 1;
2674 }
2675 
2676 /*
2677  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2678  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2679  */
2680 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2681 {
2682 	struct uprobe_task *utask = current->utask;
2683 
2684 	if (!current->mm || !utask || !utask->active_uprobe)
2685 		/* task is currently not uprobed */
2686 		return 0;
2687 
2688 	utask->state = UTASK_SSTEP_ACK;
2689 	set_thread_flag(TIF_UPROBE);
2690 	return 1;
2691 }
2692 
2693 static struct notifier_block uprobe_exception_nb = {
2694 	.notifier_call		= arch_uprobe_exception_notify,
2695 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2696 };
2697 
2698 void __init uprobes_init(void)
2699 {
2700 	int i;
2701 
2702 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2703 		mutex_init(&uprobes_mmap_mutex[i]);
2704 
2705 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2706 }
2707