xref: /linux/kernel/events/uprobes.c (revision 604e2139a1026793b8c2172bd92c7e9d039a5cf0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 	struct mem_cgroup *memcg;
166 
167 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168 				addr + PAGE_SIZE);
169 
170 	if (new_page) {
171 		err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172 					    &memcg, false);
173 		if (err)
174 			return err;
175 	}
176 
177 	/* For try_to_free_swap() and munlock_vma_page() below */
178 	lock_page(old_page);
179 
180 	mmu_notifier_invalidate_range_start(&range);
181 	err = -EAGAIN;
182 	if (!page_vma_mapped_walk(&pvmw)) {
183 		if (new_page)
184 			mem_cgroup_cancel_charge(new_page, memcg, false);
185 		goto unlock;
186 	}
187 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188 
189 	if (new_page) {
190 		get_page(new_page);
191 		page_add_new_anon_rmap(new_page, vma, addr, false);
192 		mem_cgroup_commit_charge(new_page, memcg, false, false);
193 		lru_cache_add_active_or_unevictable(new_page, vma);
194 	} else
195 		/* no new page, just dec_mm_counter for old_page */
196 		dec_mm_counter(mm, MM_ANONPAGES);
197 
198 	if (!PageAnon(old_page)) {
199 		dec_mm_counter(mm, mm_counter_file(old_page));
200 		inc_mm_counter(mm, MM_ANONPAGES);
201 	}
202 
203 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
205 	if (new_page)
206 		set_pte_at_notify(mm, addr, pvmw.pte,
207 				  mk_pte(new_page, vma->vm_page_prot));
208 
209 	page_remove_rmap(old_page, false);
210 	if (!page_mapped(old_page))
211 		try_to_free_swap(old_page);
212 	page_vma_mapped_walk_done(&pvmw);
213 
214 	if (vma->vm_flags & VM_LOCKED)
215 		munlock_vma_page(old_page);
216 	put_page(old_page);
217 
218 	err = 0;
219  unlock:
220 	mmu_notifier_invalidate_range_end(&range);
221 	unlock_page(old_page);
222 	return err;
223 }
224 
225 /**
226  * is_swbp_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_swbp_insn
229  * Returns true if @insn is a breakpoint instruction.
230  */
231 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232 {
233 	return *insn == UPROBE_SWBP_INSN;
234 }
235 
236 /**
237  * is_trap_insn - check if instruction is breakpoint instruction.
238  * @insn: instruction to be checked.
239  * Default implementation of is_trap_insn
240  * Returns true if @insn is a breakpoint instruction.
241  *
242  * This function is needed for the case where an architecture has multiple
243  * trap instructions (like powerpc).
244  */
245 bool __weak is_trap_insn(uprobe_opcode_t *insn)
246 {
247 	return is_swbp_insn(insn);
248 }
249 
250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251 {
252 	void *kaddr = kmap_atomic(page);
253 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254 	kunmap_atomic(kaddr);
255 }
256 
257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258 {
259 	void *kaddr = kmap_atomic(page);
260 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261 	kunmap_atomic(kaddr);
262 }
263 
264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265 {
266 	uprobe_opcode_t old_opcode;
267 	bool is_swbp;
268 
269 	/*
270 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271 	 * We do not check if it is any other 'trap variant' which could
272 	 * be conditional trap instruction such as the one powerpc supports.
273 	 *
274 	 * The logic is that we do not care if the underlying instruction
275 	 * is a trap variant; uprobes always wins over any other (gdb)
276 	 * breakpoint.
277 	 */
278 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279 	is_swbp = is_swbp_insn(&old_opcode);
280 
281 	if (is_swbp_insn(new_opcode)) {
282 		if (is_swbp)		/* register: already installed? */
283 			return 0;
284 	} else {
285 		if (!is_swbp)		/* unregister: was it changed by us? */
286 			return 0;
287 	}
288 
289 	return 1;
290 }
291 
292 static struct delayed_uprobe *
293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 	struct delayed_uprobe *du;
296 
297 	list_for_each_entry(du, &delayed_uprobe_list, list)
298 		if (du->uprobe == uprobe && du->mm == mm)
299 			return du;
300 	return NULL;
301 }
302 
303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304 {
305 	struct delayed_uprobe *du;
306 
307 	if (delayed_uprobe_check(uprobe, mm))
308 		return 0;
309 
310 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
311 	if (!du)
312 		return -ENOMEM;
313 
314 	du->uprobe = uprobe;
315 	du->mm = mm;
316 	list_add(&du->list, &delayed_uprobe_list);
317 	return 0;
318 }
319 
320 static void delayed_uprobe_delete(struct delayed_uprobe *du)
321 {
322 	if (WARN_ON(!du))
323 		return;
324 	list_del(&du->list);
325 	kfree(du);
326 }
327 
328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329 {
330 	struct list_head *pos, *q;
331 	struct delayed_uprobe *du;
332 
333 	if (!uprobe && !mm)
334 		return;
335 
336 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
337 		du = list_entry(pos, struct delayed_uprobe, list);
338 
339 		if (uprobe && du->uprobe != uprobe)
340 			continue;
341 		if (mm && du->mm != mm)
342 			continue;
343 
344 		delayed_uprobe_delete(du);
345 	}
346 }
347 
348 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349 			      struct vm_area_struct *vma)
350 {
351 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352 
353 	return uprobe->ref_ctr_offset &&
354 		vma->vm_file &&
355 		file_inode(vma->vm_file) == uprobe->inode &&
356 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357 		vma->vm_start <= vaddr &&
358 		vma->vm_end > vaddr;
359 }
360 
361 static struct vm_area_struct *
362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363 {
364 	struct vm_area_struct *tmp;
365 
366 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367 		if (valid_ref_ctr_vma(uprobe, tmp))
368 			return tmp;
369 
370 	return NULL;
371 }
372 
373 static int
374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375 {
376 	void *kaddr;
377 	struct page *page;
378 	struct vm_area_struct *vma;
379 	int ret;
380 	short *ptr;
381 
382 	if (!vaddr || !d)
383 		return -EINVAL;
384 
385 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386 			FOLL_WRITE, &page, &vma, NULL);
387 	if (unlikely(ret <= 0)) {
388 		/*
389 		 * We are asking for 1 page. If get_user_pages_remote() fails,
390 		 * it may return 0, in that case we have to return error.
391 		 */
392 		return ret == 0 ? -EBUSY : ret;
393 	}
394 
395 	kaddr = kmap_atomic(page);
396 	ptr = kaddr + (vaddr & ~PAGE_MASK);
397 
398 	if (unlikely(*ptr + d < 0)) {
399 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
401 		ret = -EINVAL;
402 		goto out;
403 	}
404 
405 	*ptr += d;
406 	ret = 0;
407 out:
408 	kunmap_atomic(kaddr);
409 	put_page(page);
410 	return ret;
411 }
412 
413 static void update_ref_ctr_warn(struct uprobe *uprobe,
414 				struct mm_struct *mm, short d)
415 {
416 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419 		(unsigned long long) uprobe->offset,
420 		(unsigned long long) uprobe->ref_ctr_offset, mm);
421 }
422 
423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424 			  short d)
425 {
426 	struct vm_area_struct *rc_vma;
427 	unsigned long rc_vaddr;
428 	int ret = 0;
429 
430 	rc_vma = find_ref_ctr_vma(uprobe, mm);
431 
432 	if (rc_vma) {
433 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434 		ret = __update_ref_ctr(mm, rc_vaddr, d);
435 		if (ret)
436 			update_ref_ctr_warn(uprobe, mm, d);
437 
438 		if (d > 0)
439 			return ret;
440 	}
441 
442 	mutex_lock(&delayed_uprobe_lock);
443 	if (d > 0)
444 		ret = delayed_uprobe_add(uprobe, mm);
445 	else
446 		delayed_uprobe_remove(uprobe, mm);
447 	mutex_unlock(&delayed_uprobe_lock);
448 
449 	return ret;
450 }
451 
452 /*
453  * NOTE:
454  * Expect the breakpoint instruction to be the smallest size instruction for
455  * the architecture. If an arch has variable length instruction and the
456  * breakpoint instruction is not of the smallest length instruction
457  * supported by that architecture then we need to modify is_trap_at_addr and
458  * uprobe_write_opcode accordingly. This would never be a problem for archs
459  * that have fixed length instructions.
460  *
461  * uprobe_write_opcode - write the opcode at a given virtual address.
462  * @mm: the probed process address space.
463  * @vaddr: the virtual address to store the opcode.
464  * @opcode: opcode to be written at @vaddr.
465  *
466  * Called with mm->mmap_sem held for write.
467  * Return 0 (success) or a negative errno.
468  */
469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470 			unsigned long vaddr, uprobe_opcode_t opcode)
471 {
472 	struct uprobe *uprobe;
473 	struct page *old_page, *new_page;
474 	struct vm_area_struct *vma;
475 	int ret, is_register, ref_ctr_updated = 0;
476 	bool orig_page_huge = false;
477 	unsigned int gup_flags = FOLL_FORCE;
478 
479 	is_register = is_swbp_insn(&opcode);
480 	uprobe = container_of(auprobe, struct uprobe, arch);
481 
482 retry:
483 	if (is_register)
484 		gup_flags |= FOLL_SPLIT_PMD;
485 	/* Read the page with vaddr into memory */
486 	ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
487 				    &old_page, &vma, NULL);
488 	if (ret <= 0)
489 		return ret;
490 
491 	ret = verify_opcode(old_page, vaddr, &opcode);
492 	if (ret <= 0)
493 		goto put_old;
494 
495 	if (WARN(!is_register && PageCompound(old_page),
496 		 "uprobe unregister should never work on compound page\n")) {
497 		ret = -EINVAL;
498 		goto put_old;
499 	}
500 
501 	/* We are going to replace instruction, update ref_ctr. */
502 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
503 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
504 		if (ret)
505 			goto put_old;
506 
507 		ref_ctr_updated = 1;
508 	}
509 
510 	ret = 0;
511 	if (!is_register && !PageAnon(old_page))
512 		goto put_old;
513 
514 	ret = anon_vma_prepare(vma);
515 	if (ret)
516 		goto put_old;
517 
518 	ret = -ENOMEM;
519 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
520 	if (!new_page)
521 		goto put_old;
522 
523 	__SetPageUptodate(new_page);
524 	copy_highpage(new_page, old_page);
525 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
526 
527 	if (!is_register) {
528 		struct page *orig_page;
529 		pgoff_t index;
530 
531 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
532 
533 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
534 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
535 					  index);
536 
537 		if (orig_page) {
538 			if (PageUptodate(orig_page) &&
539 			    pages_identical(new_page, orig_page)) {
540 				/* let go new_page */
541 				put_page(new_page);
542 				new_page = NULL;
543 
544 				if (PageCompound(orig_page))
545 					orig_page_huge = true;
546 			}
547 			put_page(orig_page);
548 		}
549 	}
550 
551 	ret = __replace_page(vma, vaddr, old_page, new_page);
552 	if (new_page)
553 		put_page(new_page);
554 put_old:
555 	put_page(old_page);
556 
557 	if (unlikely(ret == -EAGAIN))
558 		goto retry;
559 
560 	/* Revert back reference counter if instruction update failed. */
561 	if (ret && is_register && ref_ctr_updated)
562 		update_ref_ctr(uprobe, mm, -1);
563 
564 	/* try collapse pmd for compound page */
565 	if (!ret && orig_page_huge)
566 		collapse_pte_mapped_thp(mm, vaddr);
567 
568 	return ret;
569 }
570 
571 /**
572  * set_swbp - store breakpoint at a given address.
573  * @auprobe: arch specific probepoint information.
574  * @mm: the probed process address space.
575  * @vaddr: the virtual address to insert the opcode.
576  *
577  * For mm @mm, store the breakpoint instruction at @vaddr.
578  * Return 0 (success) or a negative errno.
579  */
580 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
581 {
582 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
583 }
584 
585 /**
586  * set_orig_insn - Restore the original instruction.
587  * @mm: the probed process address space.
588  * @auprobe: arch specific probepoint information.
589  * @vaddr: the virtual address to insert the opcode.
590  *
591  * For mm @mm, restore the original opcode (opcode) at @vaddr.
592  * Return 0 (success) or a negative errno.
593  */
594 int __weak
595 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
596 {
597 	return uprobe_write_opcode(auprobe, mm, vaddr,
598 			*(uprobe_opcode_t *)&auprobe->insn);
599 }
600 
601 static struct uprobe *get_uprobe(struct uprobe *uprobe)
602 {
603 	refcount_inc(&uprobe->ref);
604 	return uprobe;
605 }
606 
607 static void put_uprobe(struct uprobe *uprobe)
608 {
609 	if (refcount_dec_and_test(&uprobe->ref)) {
610 		/*
611 		 * If application munmap(exec_vma) before uprobe_unregister()
612 		 * gets called, we don't get a chance to remove uprobe from
613 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
614 		 */
615 		mutex_lock(&delayed_uprobe_lock);
616 		delayed_uprobe_remove(uprobe, NULL);
617 		mutex_unlock(&delayed_uprobe_lock);
618 		kfree(uprobe);
619 	}
620 }
621 
622 static int match_uprobe(struct uprobe *l, struct uprobe *r)
623 {
624 	if (l->inode < r->inode)
625 		return -1;
626 
627 	if (l->inode > r->inode)
628 		return 1;
629 
630 	if (l->offset < r->offset)
631 		return -1;
632 
633 	if (l->offset > r->offset)
634 		return 1;
635 
636 	return 0;
637 }
638 
639 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
640 {
641 	struct uprobe u = { .inode = inode, .offset = offset };
642 	struct rb_node *n = uprobes_tree.rb_node;
643 	struct uprobe *uprobe;
644 	int match;
645 
646 	while (n) {
647 		uprobe = rb_entry(n, struct uprobe, rb_node);
648 		match = match_uprobe(&u, uprobe);
649 		if (!match)
650 			return get_uprobe(uprobe);
651 
652 		if (match < 0)
653 			n = n->rb_left;
654 		else
655 			n = n->rb_right;
656 	}
657 	return NULL;
658 }
659 
660 /*
661  * Find a uprobe corresponding to a given inode:offset
662  * Acquires uprobes_treelock
663  */
664 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
665 {
666 	struct uprobe *uprobe;
667 
668 	spin_lock(&uprobes_treelock);
669 	uprobe = __find_uprobe(inode, offset);
670 	spin_unlock(&uprobes_treelock);
671 
672 	return uprobe;
673 }
674 
675 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
676 {
677 	struct rb_node **p = &uprobes_tree.rb_node;
678 	struct rb_node *parent = NULL;
679 	struct uprobe *u;
680 	int match;
681 
682 	while (*p) {
683 		parent = *p;
684 		u = rb_entry(parent, struct uprobe, rb_node);
685 		match = match_uprobe(uprobe, u);
686 		if (!match)
687 			return get_uprobe(u);
688 
689 		if (match < 0)
690 			p = &parent->rb_left;
691 		else
692 			p = &parent->rb_right;
693 
694 	}
695 
696 	u = NULL;
697 	rb_link_node(&uprobe->rb_node, parent, p);
698 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
699 	/* get access + creation ref */
700 	refcount_set(&uprobe->ref, 2);
701 
702 	return u;
703 }
704 
705 /*
706  * Acquire uprobes_treelock.
707  * Matching uprobe already exists in rbtree;
708  *	increment (access refcount) and return the matching uprobe.
709  *
710  * No matching uprobe; insert the uprobe in rb_tree;
711  *	get a double refcount (access + creation) and return NULL.
712  */
713 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
714 {
715 	struct uprobe *u;
716 
717 	spin_lock(&uprobes_treelock);
718 	u = __insert_uprobe(uprobe);
719 	spin_unlock(&uprobes_treelock);
720 
721 	return u;
722 }
723 
724 static void
725 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
726 {
727 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
728 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
729 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
730 		(unsigned long long) cur_uprobe->ref_ctr_offset,
731 		(unsigned long long) uprobe->ref_ctr_offset);
732 }
733 
734 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
735 				   loff_t ref_ctr_offset)
736 {
737 	struct uprobe *uprobe, *cur_uprobe;
738 
739 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
740 	if (!uprobe)
741 		return NULL;
742 
743 	uprobe->inode = inode;
744 	uprobe->offset = offset;
745 	uprobe->ref_ctr_offset = ref_ctr_offset;
746 	init_rwsem(&uprobe->register_rwsem);
747 	init_rwsem(&uprobe->consumer_rwsem);
748 
749 	/* add to uprobes_tree, sorted on inode:offset */
750 	cur_uprobe = insert_uprobe(uprobe);
751 	/* a uprobe exists for this inode:offset combination */
752 	if (cur_uprobe) {
753 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
754 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
755 			put_uprobe(cur_uprobe);
756 			kfree(uprobe);
757 			return ERR_PTR(-EINVAL);
758 		}
759 		kfree(uprobe);
760 		uprobe = cur_uprobe;
761 	}
762 
763 	return uprobe;
764 }
765 
766 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768 	down_write(&uprobe->consumer_rwsem);
769 	uc->next = uprobe->consumers;
770 	uprobe->consumers = uc;
771 	up_write(&uprobe->consumer_rwsem);
772 }
773 
774 /*
775  * For uprobe @uprobe, delete the consumer @uc.
776  * Return true if the @uc is deleted successfully
777  * or return false.
778  */
779 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
780 {
781 	struct uprobe_consumer **con;
782 	bool ret = false;
783 
784 	down_write(&uprobe->consumer_rwsem);
785 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
786 		if (*con == uc) {
787 			*con = uc->next;
788 			ret = true;
789 			break;
790 		}
791 	}
792 	up_write(&uprobe->consumer_rwsem);
793 
794 	return ret;
795 }
796 
797 static int __copy_insn(struct address_space *mapping, struct file *filp,
798 			void *insn, int nbytes, loff_t offset)
799 {
800 	struct page *page;
801 	/*
802 	 * Ensure that the page that has the original instruction is populated
803 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
804 	 * see uprobe_register().
805 	 */
806 	if (mapping->a_ops->readpage)
807 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
808 	else
809 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
810 	if (IS_ERR(page))
811 		return PTR_ERR(page);
812 
813 	copy_from_page(page, offset, insn, nbytes);
814 	put_page(page);
815 
816 	return 0;
817 }
818 
819 static int copy_insn(struct uprobe *uprobe, struct file *filp)
820 {
821 	struct address_space *mapping = uprobe->inode->i_mapping;
822 	loff_t offs = uprobe->offset;
823 	void *insn = &uprobe->arch.insn;
824 	int size = sizeof(uprobe->arch.insn);
825 	int len, err = -EIO;
826 
827 	/* Copy only available bytes, -EIO if nothing was read */
828 	do {
829 		if (offs >= i_size_read(uprobe->inode))
830 			break;
831 
832 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
833 		err = __copy_insn(mapping, filp, insn, len, offs);
834 		if (err)
835 			break;
836 
837 		insn += len;
838 		offs += len;
839 		size -= len;
840 	} while (size);
841 
842 	return err;
843 }
844 
845 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
846 				struct mm_struct *mm, unsigned long vaddr)
847 {
848 	int ret = 0;
849 
850 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
851 		return ret;
852 
853 	/* TODO: move this into _register, until then we abuse this sem. */
854 	down_write(&uprobe->consumer_rwsem);
855 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
856 		goto out;
857 
858 	ret = copy_insn(uprobe, file);
859 	if (ret)
860 		goto out;
861 
862 	ret = -ENOTSUPP;
863 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
864 		goto out;
865 
866 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
867 	if (ret)
868 		goto out;
869 
870 	/* uprobe_write_opcode() assumes we don't cross page boundary */
871 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
872 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
873 
874 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
875 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
876 
877  out:
878 	up_write(&uprobe->consumer_rwsem);
879 
880 	return ret;
881 }
882 
883 static inline bool consumer_filter(struct uprobe_consumer *uc,
884 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
885 {
886 	return !uc->filter || uc->filter(uc, ctx, mm);
887 }
888 
889 static bool filter_chain(struct uprobe *uprobe,
890 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
891 {
892 	struct uprobe_consumer *uc;
893 	bool ret = false;
894 
895 	down_read(&uprobe->consumer_rwsem);
896 	for (uc = uprobe->consumers; uc; uc = uc->next) {
897 		ret = consumer_filter(uc, ctx, mm);
898 		if (ret)
899 			break;
900 	}
901 	up_read(&uprobe->consumer_rwsem);
902 
903 	return ret;
904 }
905 
906 static int
907 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
908 			struct vm_area_struct *vma, unsigned long vaddr)
909 {
910 	bool first_uprobe;
911 	int ret;
912 
913 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
914 	if (ret)
915 		return ret;
916 
917 	/*
918 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
919 	 * the task can hit this breakpoint right after __replace_page().
920 	 */
921 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
922 	if (first_uprobe)
923 		set_bit(MMF_HAS_UPROBES, &mm->flags);
924 
925 	ret = set_swbp(&uprobe->arch, mm, vaddr);
926 	if (!ret)
927 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
928 	else if (first_uprobe)
929 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
930 
931 	return ret;
932 }
933 
934 static int
935 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
936 {
937 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
938 	return set_orig_insn(&uprobe->arch, mm, vaddr);
939 }
940 
941 static inline bool uprobe_is_active(struct uprobe *uprobe)
942 {
943 	return !RB_EMPTY_NODE(&uprobe->rb_node);
944 }
945 /*
946  * There could be threads that have already hit the breakpoint. They
947  * will recheck the current insn and restart if find_uprobe() fails.
948  * See find_active_uprobe().
949  */
950 static void delete_uprobe(struct uprobe *uprobe)
951 {
952 	if (WARN_ON(!uprobe_is_active(uprobe)))
953 		return;
954 
955 	spin_lock(&uprobes_treelock);
956 	rb_erase(&uprobe->rb_node, &uprobes_tree);
957 	spin_unlock(&uprobes_treelock);
958 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
959 	put_uprobe(uprobe);
960 }
961 
962 struct map_info {
963 	struct map_info *next;
964 	struct mm_struct *mm;
965 	unsigned long vaddr;
966 };
967 
968 static inline struct map_info *free_map_info(struct map_info *info)
969 {
970 	struct map_info *next = info->next;
971 	kfree(info);
972 	return next;
973 }
974 
975 static struct map_info *
976 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
977 {
978 	unsigned long pgoff = offset >> PAGE_SHIFT;
979 	struct vm_area_struct *vma;
980 	struct map_info *curr = NULL;
981 	struct map_info *prev = NULL;
982 	struct map_info *info;
983 	int more = 0;
984 
985  again:
986 	i_mmap_lock_read(mapping);
987 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
988 		if (!valid_vma(vma, is_register))
989 			continue;
990 
991 		if (!prev && !more) {
992 			/*
993 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
994 			 * reclaim. This is optimistic, no harm done if it fails.
995 			 */
996 			prev = kmalloc(sizeof(struct map_info),
997 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
998 			if (prev)
999 				prev->next = NULL;
1000 		}
1001 		if (!prev) {
1002 			more++;
1003 			continue;
1004 		}
1005 
1006 		if (!mmget_not_zero(vma->vm_mm))
1007 			continue;
1008 
1009 		info = prev;
1010 		prev = prev->next;
1011 		info->next = curr;
1012 		curr = info;
1013 
1014 		info->mm = vma->vm_mm;
1015 		info->vaddr = offset_to_vaddr(vma, offset);
1016 	}
1017 	i_mmap_unlock_read(mapping);
1018 
1019 	if (!more)
1020 		goto out;
1021 
1022 	prev = curr;
1023 	while (curr) {
1024 		mmput(curr->mm);
1025 		curr = curr->next;
1026 	}
1027 
1028 	do {
1029 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030 		if (!info) {
1031 			curr = ERR_PTR(-ENOMEM);
1032 			goto out;
1033 		}
1034 		info->next = prev;
1035 		prev = info;
1036 	} while (--more);
1037 
1038 	goto again;
1039  out:
1040 	while (prev)
1041 		prev = free_map_info(prev);
1042 	return curr;
1043 }
1044 
1045 static int
1046 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047 {
1048 	bool is_register = !!new;
1049 	struct map_info *info;
1050 	int err = 0;
1051 
1052 	percpu_down_write(&dup_mmap_sem);
1053 	info = build_map_info(uprobe->inode->i_mapping,
1054 					uprobe->offset, is_register);
1055 	if (IS_ERR(info)) {
1056 		err = PTR_ERR(info);
1057 		goto out;
1058 	}
1059 
1060 	while (info) {
1061 		struct mm_struct *mm = info->mm;
1062 		struct vm_area_struct *vma;
1063 
1064 		if (err && is_register)
1065 			goto free;
1066 
1067 		down_write(&mm->mmap_sem);
1068 		vma = find_vma(mm, info->vaddr);
1069 		if (!vma || !valid_vma(vma, is_register) ||
1070 		    file_inode(vma->vm_file) != uprobe->inode)
1071 			goto unlock;
1072 
1073 		if (vma->vm_start > info->vaddr ||
1074 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075 			goto unlock;
1076 
1077 		if (is_register) {
1078 			/* consult only the "caller", new consumer. */
1079 			if (consumer_filter(new,
1080 					UPROBE_FILTER_REGISTER, mm))
1081 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083 			if (!filter_chain(uprobe,
1084 					UPROBE_FILTER_UNREGISTER, mm))
1085 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086 		}
1087 
1088  unlock:
1089 		up_write(&mm->mmap_sem);
1090  free:
1091 		mmput(mm);
1092 		info = free_map_info(info);
1093 	}
1094  out:
1095 	percpu_up_write(&dup_mmap_sem);
1096 	return err;
1097 }
1098 
1099 static void
1100 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1101 {
1102 	int err;
1103 
1104 	if (WARN_ON(!consumer_del(uprobe, uc)))
1105 		return;
1106 
1107 	err = register_for_each_vma(uprobe, NULL);
1108 	/* TODO : cant unregister? schedule a worker thread */
1109 	if (!uprobe->consumers && !err)
1110 		delete_uprobe(uprobe);
1111 }
1112 
1113 /*
1114  * uprobe_unregister - unregister an already registered probe.
1115  * @inode: the file in which the probe has to be removed.
1116  * @offset: offset from the start of the file.
1117  * @uc: identify which probe if multiple probes are colocated.
1118  */
1119 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120 {
1121 	struct uprobe *uprobe;
1122 
1123 	uprobe = find_uprobe(inode, offset);
1124 	if (WARN_ON(!uprobe))
1125 		return;
1126 
1127 	down_write(&uprobe->register_rwsem);
1128 	__uprobe_unregister(uprobe, uc);
1129 	up_write(&uprobe->register_rwsem);
1130 	put_uprobe(uprobe);
1131 }
1132 EXPORT_SYMBOL_GPL(uprobe_unregister);
1133 
1134 /*
1135  * __uprobe_register - register a probe
1136  * @inode: the file in which the probe has to be placed.
1137  * @offset: offset from the start of the file.
1138  * @uc: information on howto handle the probe..
1139  *
1140  * Apart from the access refcount, __uprobe_register() takes a creation
1141  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1144  * @uprobe even before the register operation is complete. Creation
1145  * refcount is released when the last @uc for the @uprobe
1146  * unregisters. Caller of __uprobe_register() is required to keep @inode
1147  * (and the containing mount) referenced.
1148  *
1149  * Return errno if it cannot successully install probes
1150  * else return 0 (success)
1151  */
1152 static int __uprobe_register(struct inode *inode, loff_t offset,
1153 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1154 {
1155 	struct uprobe *uprobe;
1156 	int ret;
1157 
1158 	/* Uprobe must have at least one set consumer */
1159 	if (!uc->handler && !uc->ret_handler)
1160 		return -EINVAL;
1161 
1162 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164 		return -EIO;
1165 	/* Racy, just to catch the obvious mistakes */
1166 	if (offset > i_size_read(inode))
1167 		return -EINVAL;
1168 
1169  retry:
1170 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171 	if (!uprobe)
1172 		return -ENOMEM;
1173 	if (IS_ERR(uprobe))
1174 		return PTR_ERR(uprobe);
1175 
1176 	/*
1177 	 * We can race with uprobe_unregister()->delete_uprobe().
1178 	 * Check uprobe_is_active() and retry if it is false.
1179 	 */
1180 	down_write(&uprobe->register_rwsem);
1181 	ret = -EAGAIN;
1182 	if (likely(uprobe_is_active(uprobe))) {
1183 		consumer_add(uprobe, uc);
1184 		ret = register_for_each_vma(uprobe, uc);
1185 		if (ret)
1186 			__uprobe_unregister(uprobe, uc);
1187 	}
1188 	up_write(&uprobe->register_rwsem);
1189 	put_uprobe(uprobe);
1190 
1191 	if (unlikely(ret == -EAGAIN))
1192 		goto retry;
1193 	return ret;
1194 }
1195 
1196 int uprobe_register(struct inode *inode, loff_t offset,
1197 		    struct uprobe_consumer *uc)
1198 {
1199 	return __uprobe_register(inode, offset, 0, uc);
1200 }
1201 EXPORT_SYMBOL_GPL(uprobe_register);
1202 
1203 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205 {
1206 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207 }
1208 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209 
1210 /*
1211  * uprobe_apply - unregister an already registered probe.
1212  * @inode: the file in which the probe has to be removed.
1213  * @offset: offset from the start of the file.
1214  * @uc: consumer which wants to add more or remove some breakpoints
1215  * @add: add or remove the breakpoints
1216  */
1217 int uprobe_apply(struct inode *inode, loff_t offset,
1218 			struct uprobe_consumer *uc, bool add)
1219 {
1220 	struct uprobe *uprobe;
1221 	struct uprobe_consumer *con;
1222 	int ret = -ENOENT;
1223 
1224 	uprobe = find_uprobe(inode, offset);
1225 	if (WARN_ON(!uprobe))
1226 		return ret;
1227 
1228 	down_write(&uprobe->register_rwsem);
1229 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230 		;
1231 	if (con)
1232 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1233 	up_write(&uprobe->register_rwsem);
1234 	put_uprobe(uprobe);
1235 
1236 	return ret;
1237 }
1238 
1239 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240 {
1241 	struct vm_area_struct *vma;
1242 	int err = 0;
1243 
1244 	down_read(&mm->mmap_sem);
1245 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246 		unsigned long vaddr;
1247 		loff_t offset;
1248 
1249 		if (!valid_vma(vma, false) ||
1250 		    file_inode(vma->vm_file) != uprobe->inode)
1251 			continue;
1252 
1253 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254 		if (uprobe->offset <  offset ||
1255 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256 			continue;
1257 
1258 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1259 		err |= remove_breakpoint(uprobe, mm, vaddr);
1260 	}
1261 	up_read(&mm->mmap_sem);
1262 
1263 	return err;
1264 }
1265 
1266 static struct rb_node *
1267 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268 {
1269 	struct rb_node *n = uprobes_tree.rb_node;
1270 
1271 	while (n) {
1272 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273 
1274 		if (inode < u->inode) {
1275 			n = n->rb_left;
1276 		} else if (inode > u->inode) {
1277 			n = n->rb_right;
1278 		} else {
1279 			if (max < u->offset)
1280 				n = n->rb_left;
1281 			else if (min > u->offset)
1282 				n = n->rb_right;
1283 			else
1284 				break;
1285 		}
1286 	}
1287 
1288 	return n;
1289 }
1290 
1291 /*
1292  * For a given range in vma, build a list of probes that need to be inserted.
1293  */
1294 static void build_probe_list(struct inode *inode,
1295 				struct vm_area_struct *vma,
1296 				unsigned long start, unsigned long end,
1297 				struct list_head *head)
1298 {
1299 	loff_t min, max;
1300 	struct rb_node *n, *t;
1301 	struct uprobe *u;
1302 
1303 	INIT_LIST_HEAD(head);
1304 	min = vaddr_to_offset(vma, start);
1305 	max = min + (end - start) - 1;
1306 
1307 	spin_lock(&uprobes_treelock);
1308 	n = find_node_in_range(inode, min, max);
1309 	if (n) {
1310 		for (t = n; t; t = rb_prev(t)) {
1311 			u = rb_entry(t, struct uprobe, rb_node);
1312 			if (u->inode != inode || u->offset < min)
1313 				break;
1314 			list_add(&u->pending_list, head);
1315 			get_uprobe(u);
1316 		}
1317 		for (t = n; (t = rb_next(t)); ) {
1318 			u = rb_entry(t, struct uprobe, rb_node);
1319 			if (u->inode != inode || u->offset > max)
1320 				break;
1321 			list_add(&u->pending_list, head);
1322 			get_uprobe(u);
1323 		}
1324 	}
1325 	spin_unlock(&uprobes_treelock);
1326 }
1327 
1328 /* @vma contains reference counter, not the probed instruction. */
1329 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330 {
1331 	struct list_head *pos, *q;
1332 	struct delayed_uprobe *du;
1333 	unsigned long vaddr;
1334 	int ret = 0, err = 0;
1335 
1336 	mutex_lock(&delayed_uprobe_lock);
1337 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338 		du = list_entry(pos, struct delayed_uprobe, list);
1339 
1340 		if (du->mm != vma->vm_mm ||
1341 		    !valid_ref_ctr_vma(du->uprobe, vma))
1342 			continue;
1343 
1344 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346 		if (ret) {
1347 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348 			if (!err)
1349 				err = ret;
1350 		}
1351 		delayed_uprobe_delete(du);
1352 	}
1353 	mutex_unlock(&delayed_uprobe_lock);
1354 	return err;
1355 }
1356 
1357 /*
1358  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359  *
1360  * Currently we ignore all errors and always return 0, the callers
1361  * can't handle the failure anyway.
1362  */
1363 int uprobe_mmap(struct vm_area_struct *vma)
1364 {
1365 	struct list_head tmp_list;
1366 	struct uprobe *uprobe, *u;
1367 	struct inode *inode;
1368 
1369 	if (no_uprobe_events())
1370 		return 0;
1371 
1372 	if (vma->vm_file &&
1373 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375 		delayed_ref_ctr_inc(vma);
1376 
1377 	if (!valid_vma(vma, true))
1378 		return 0;
1379 
1380 	inode = file_inode(vma->vm_file);
1381 	if (!inode)
1382 		return 0;
1383 
1384 	mutex_lock(uprobes_mmap_hash(inode));
1385 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386 	/*
1387 	 * We can race with uprobe_unregister(), this uprobe can be already
1388 	 * removed. But in this case filter_chain() must return false, all
1389 	 * consumers have gone away.
1390 	 */
1391 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392 		if (!fatal_signal_pending(current) &&
1393 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396 		}
1397 		put_uprobe(uprobe);
1398 	}
1399 	mutex_unlock(uprobes_mmap_hash(inode));
1400 
1401 	return 0;
1402 }
1403 
1404 static bool
1405 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406 {
1407 	loff_t min, max;
1408 	struct inode *inode;
1409 	struct rb_node *n;
1410 
1411 	inode = file_inode(vma->vm_file);
1412 
1413 	min = vaddr_to_offset(vma, start);
1414 	max = min + (end - start) - 1;
1415 
1416 	spin_lock(&uprobes_treelock);
1417 	n = find_node_in_range(inode, min, max);
1418 	spin_unlock(&uprobes_treelock);
1419 
1420 	return !!n;
1421 }
1422 
1423 /*
1424  * Called in context of a munmap of a vma.
1425  */
1426 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427 {
1428 	if (no_uprobe_events() || !valid_vma(vma, false))
1429 		return;
1430 
1431 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432 		return;
1433 
1434 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436 		return;
1437 
1438 	if (vma_has_uprobes(vma, start, end))
1439 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440 }
1441 
1442 /* Slot allocation for XOL */
1443 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444 {
1445 	struct vm_area_struct *vma;
1446 	int ret;
1447 
1448 	if (down_write_killable(&mm->mmap_sem))
1449 		return -EINTR;
1450 
1451 	if (mm->uprobes_state.xol_area) {
1452 		ret = -EALREADY;
1453 		goto fail;
1454 	}
1455 
1456 	if (!area->vaddr) {
1457 		/* Try to map as high as possible, this is only a hint. */
1458 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459 						PAGE_SIZE, 0, 0);
1460 		if (IS_ERR_VALUE(area->vaddr)) {
1461 			ret = area->vaddr;
1462 			goto fail;
1463 		}
1464 	}
1465 
1466 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468 				&area->xol_mapping);
1469 	if (IS_ERR(vma)) {
1470 		ret = PTR_ERR(vma);
1471 		goto fail;
1472 	}
1473 
1474 	ret = 0;
1475 	/* pairs with get_xol_area() */
1476 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477  fail:
1478 	up_write(&mm->mmap_sem);
1479 
1480 	return ret;
1481 }
1482 
1483 static struct xol_area *__create_xol_area(unsigned long vaddr)
1484 {
1485 	struct mm_struct *mm = current->mm;
1486 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487 	struct xol_area *area;
1488 
1489 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1490 	if (unlikely(!area))
1491 		goto out;
1492 
1493 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494 			       GFP_KERNEL);
1495 	if (!area->bitmap)
1496 		goto free_area;
1497 
1498 	area->xol_mapping.name = "[uprobes]";
1499 	area->xol_mapping.fault = NULL;
1500 	area->xol_mapping.pages = area->pages;
1501 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1502 	if (!area->pages[0])
1503 		goto free_bitmap;
1504 	area->pages[1] = NULL;
1505 
1506 	area->vaddr = vaddr;
1507 	init_waitqueue_head(&area->wq);
1508 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1509 	set_bit(0, area->bitmap);
1510 	atomic_set(&area->slot_count, 1);
1511 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512 
1513 	if (!xol_add_vma(mm, area))
1514 		return area;
1515 
1516 	__free_page(area->pages[0]);
1517  free_bitmap:
1518 	kfree(area->bitmap);
1519  free_area:
1520 	kfree(area);
1521  out:
1522 	return NULL;
1523 }
1524 
1525 /*
1526  * get_xol_area - Allocate process's xol_area if necessary.
1527  * This area will be used for storing instructions for execution out of line.
1528  *
1529  * Returns the allocated area or NULL.
1530  */
1531 static struct xol_area *get_xol_area(void)
1532 {
1533 	struct mm_struct *mm = current->mm;
1534 	struct xol_area *area;
1535 
1536 	if (!mm->uprobes_state.xol_area)
1537 		__create_xol_area(0);
1538 
1539 	/* Pairs with xol_add_vma() smp_store_release() */
1540 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541 	return area;
1542 }
1543 
1544 /*
1545  * uprobe_clear_state - Free the area allocated for slots.
1546  */
1547 void uprobe_clear_state(struct mm_struct *mm)
1548 {
1549 	struct xol_area *area = mm->uprobes_state.xol_area;
1550 
1551 	mutex_lock(&delayed_uprobe_lock);
1552 	delayed_uprobe_remove(NULL, mm);
1553 	mutex_unlock(&delayed_uprobe_lock);
1554 
1555 	if (!area)
1556 		return;
1557 
1558 	put_page(area->pages[0]);
1559 	kfree(area->bitmap);
1560 	kfree(area);
1561 }
1562 
1563 void uprobe_start_dup_mmap(void)
1564 {
1565 	percpu_down_read(&dup_mmap_sem);
1566 }
1567 
1568 void uprobe_end_dup_mmap(void)
1569 {
1570 	percpu_up_read(&dup_mmap_sem);
1571 }
1572 
1573 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574 {
1575 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579 	}
1580 }
1581 
1582 /*
1583  *  - search for a free slot.
1584  */
1585 static unsigned long xol_take_insn_slot(struct xol_area *area)
1586 {
1587 	unsigned long slot_addr;
1588 	int slot_nr;
1589 
1590 	do {
1591 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592 		if (slot_nr < UINSNS_PER_PAGE) {
1593 			if (!test_and_set_bit(slot_nr, area->bitmap))
1594 				break;
1595 
1596 			slot_nr = UINSNS_PER_PAGE;
1597 			continue;
1598 		}
1599 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600 	} while (slot_nr >= UINSNS_PER_PAGE);
1601 
1602 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603 	atomic_inc(&area->slot_count);
1604 
1605 	return slot_addr;
1606 }
1607 
1608 /*
1609  * xol_get_insn_slot - allocate a slot for xol.
1610  * Returns the allocated slot address or 0.
1611  */
1612 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613 {
1614 	struct xol_area *area;
1615 	unsigned long xol_vaddr;
1616 
1617 	area = get_xol_area();
1618 	if (!area)
1619 		return 0;
1620 
1621 	xol_vaddr = xol_take_insn_slot(area);
1622 	if (unlikely(!xol_vaddr))
1623 		return 0;
1624 
1625 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1626 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627 
1628 	return xol_vaddr;
1629 }
1630 
1631 /*
1632  * xol_free_insn_slot - If slot was earlier allocated by
1633  * @xol_get_insn_slot(), make the slot available for
1634  * subsequent requests.
1635  */
1636 static void xol_free_insn_slot(struct task_struct *tsk)
1637 {
1638 	struct xol_area *area;
1639 	unsigned long vma_end;
1640 	unsigned long slot_addr;
1641 
1642 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1643 		return;
1644 
1645 	slot_addr = tsk->utask->xol_vaddr;
1646 	if (unlikely(!slot_addr))
1647 		return;
1648 
1649 	area = tsk->mm->uprobes_state.xol_area;
1650 	vma_end = area->vaddr + PAGE_SIZE;
1651 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652 		unsigned long offset;
1653 		int slot_nr;
1654 
1655 		offset = slot_addr - area->vaddr;
1656 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657 		if (slot_nr >= UINSNS_PER_PAGE)
1658 			return;
1659 
1660 		clear_bit(slot_nr, area->bitmap);
1661 		atomic_dec(&area->slot_count);
1662 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663 		if (waitqueue_active(&area->wq))
1664 			wake_up(&area->wq);
1665 
1666 		tsk->utask->xol_vaddr = 0;
1667 	}
1668 }
1669 
1670 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671 				  void *src, unsigned long len)
1672 {
1673 	/* Initialize the slot */
1674 	copy_to_page(page, vaddr, src, len);
1675 
1676 	/*
1677 	 * We probably need flush_icache_user_range() but it needs vma.
1678 	 * This should work on most of architectures by default. If
1679 	 * architecture needs to do something different it can define
1680 	 * its own version of the function.
1681 	 */
1682 	flush_dcache_page(page);
1683 }
1684 
1685 /**
1686  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688  * instruction.
1689  * Return the address of the breakpoint instruction.
1690  */
1691 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692 {
1693 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694 }
1695 
1696 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697 {
1698 	struct uprobe_task *utask = current->utask;
1699 
1700 	if (unlikely(utask && utask->active_uprobe))
1701 		return utask->vaddr;
1702 
1703 	return instruction_pointer(regs);
1704 }
1705 
1706 static struct return_instance *free_ret_instance(struct return_instance *ri)
1707 {
1708 	struct return_instance *next = ri->next;
1709 	put_uprobe(ri->uprobe);
1710 	kfree(ri);
1711 	return next;
1712 }
1713 
1714 /*
1715  * Called with no locks held.
1716  * Called in context of an exiting or an exec-ing thread.
1717  */
1718 void uprobe_free_utask(struct task_struct *t)
1719 {
1720 	struct uprobe_task *utask = t->utask;
1721 	struct return_instance *ri;
1722 
1723 	if (!utask)
1724 		return;
1725 
1726 	if (utask->active_uprobe)
1727 		put_uprobe(utask->active_uprobe);
1728 
1729 	ri = utask->return_instances;
1730 	while (ri)
1731 		ri = free_ret_instance(ri);
1732 
1733 	xol_free_insn_slot(t);
1734 	kfree(utask);
1735 	t->utask = NULL;
1736 }
1737 
1738 /*
1739  * Allocate a uprobe_task object for the task if if necessary.
1740  * Called when the thread hits a breakpoint.
1741  *
1742  * Returns:
1743  * - pointer to new uprobe_task on success
1744  * - NULL otherwise
1745  */
1746 static struct uprobe_task *get_utask(void)
1747 {
1748 	if (!current->utask)
1749 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750 	return current->utask;
1751 }
1752 
1753 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754 {
1755 	struct uprobe_task *n_utask;
1756 	struct return_instance **p, *o, *n;
1757 
1758 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759 	if (!n_utask)
1760 		return -ENOMEM;
1761 	t->utask = n_utask;
1762 
1763 	p = &n_utask->return_instances;
1764 	for (o = o_utask->return_instances; o; o = o->next) {
1765 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766 		if (!n)
1767 			return -ENOMEM;
1768 
1769 		*n = *o;
1770 		get_uprobe(n->uprobe);
1771 		n->next = NULL;
1772 
1773 		*p = n;
1774 		p = &n->next;
1775 		n_utask->depth++;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static void uprobe_warn(struct task_struct *t, const char *msg)
1782 {
1783 	pr_warn("uprobe: %s:%d failed to %s\n",
1784 			current->comm, current->pid, msg);
1785 }
1786 
1787 static void dup_xol_work(struct callback_head *work)
1788 {
1789 	if (current->flags & PF_EXITING)
1790 		return;
1791 
1792 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793 			!fatal_signal_pending(current))
1794 		uprobe_warn(current, "dup xol area");
1795 }
1796 
1797 /*
1798  * Called in context of a new clone/fork from copy_process.
1799  */
1800 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801 {
1802 	struct uprobe_task *utask = current->utask;
1803 	struct mm_struct *mm = current->mm;
1804 	struct xol_area *area;
1805 
1806 	t->utask = NULL;
1807 
1808 	if (!utask || !utask->return_instances)
1809 		return;
1810 
1811 	if (mm == t->mm && !(flags & CLONE_VFORK))
1812 		return;
1813 
1814 	if (dup_utask(t, utask))
1815 		return uprobe_warn(t, "dup ret instances");
1816 
1817 	/* The task can fork() after dup_xol_work() fails */
1818 	area = mm->uprobes_state.xol_area;
1819 	if (!area)
1820 		return uprobe_warn(t, "dup xol area");
1821 
1822 	if (mm == t->mm)
1823 		return;
1824 
1825 	t->utask->dup_xol_addr = area->vaddr;
1826 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827 	task_work_add(t, &t->utask->dup_xol_work, true);
1828 }
1829 
1830 /*
1831  * Current area->vaddr notion assume the trampoline address is always
1832  * equal area->vaddr.
1833  *
1834  * Returns -1 in case the xol_area is not allocated.
1835  */
1836 static unsigned long get_trampoline_vaddr(void)
1837 {
1838 	struct xol_area *area;
1839 	unsigned long trampoline_vaddr = -1;
1840 
1841 	/* Pairs with xol_add_vma() smp_store_release() */
1842 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843 	if (area)
1844 		trampoline_vaddr = area->vaddr;
1845 
1846 	return trampoline_vaddr;
1847 }
1848 
1849 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850 					struct pt_regs *regs)
1851 {
1852 	struct return_instance *ri = utask->return_instances;
1853 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854 
1855 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856 		ri = free_ret_instance(ri);
1857 		utask->depth--;
1858 	}
1859 	utask->return_instances = ri;
1860 }
1861 
1862 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1863 {
1864 	struct return_instance *ri;
1865 	struct uprobe_task *utask;
1866 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1867 	bool chained;
1868 
1869 	if (!get_xol_area())
1870 		return;
1871 
1872 	utask = get_utask();
1873 	if (!utask)
1874 		return;
1875 
1876 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878 				" nestedness limit pid/tgid=%d/%d\n",
1879 				current->pid, current->tgid);
1880 		return;
1881 	}
1882 
1883 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884 	if (!ri)
1885 		return;
1886 
1887 	trampoline_vaddr = get_trampoline_vaddr();
1888 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889 	if (orig_ret_vaddr == -1)
1890 		goto fail;
1891 
1892 	/* drop the entries invalidated by longjmp() */
1893 	chained = (orig_ret_vaddr == trampoline_vaddr);
1894 	cleanup_return_instances(utask, chained, regs);
1895 
1896 	/*
1897 	 * We don't want to keep trampoline address in stack, rather keep the
1898 	 * original return address of first caller thru all the consequent
1899 	 * instances. This also makes breakpoint unwrapping easier.
1900 	 */
1901 	if (chained) {
1902 		if (!utask->return_instances) {
1903 			/*
1904 			 * This situation is not possible. Likely we have an
1905 			 * attack from user-space.
1906 			 */
1907 			uprobe_warn(current, "handle tail call");
1908 			goto fail;
1909 		}
1910 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911 	}
1912 
1913 	ri->uprobe = get_uprobe(uprobe);
1914 	ri->func = instruction_pointer(regs);
1915 	ri->stack = user_stack_pointer(regs);
1916 	ri->orig_ret_vaddr = orig_ret_vaddr;
1917 	ri->chained = chained;
1918 
1919 	utask->depth++;
1920 	ri->next = utask->return_instances;
1921 	utask->return_instances = ri;
1922 
1923 	return;
1924  fail:
1925 	kfree(ri);
1926 }
1927 
1928 /* Prepare to single-step probed instruction out of line. */
1929 static int
1930 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931 {
1932 	struct uprobe_task *utask;
1933 	unsigned long xol_vaddr;
1934 	int err;
1935 
1936 	utask = get_utask();
1937 	if (!utask)
1938 		return -ENOMEM;
1939 
1940 	xol_vaddr = xol_get_insn_slot(uprobe);
1941 	if (!xol_vaddr)
1942 		return -ENOMEM;
1943 
1944 	utask->xol_vaddr = xol_vaddr;
1945 	utask->vaddr = bp_vaddr;
1946 
1947 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948 	if (unlikely(err)) {
1949 		xol_free_insn_slot(current);
1950 		return err;
1951 	}
1952 
1953 	utask->active_uprobe = uprobe;
1954 	utask->state = UTASK_SSTEP;
1955 	return 0;
1956 }
1957 
1958 /*
1959  * If we are singlestepping, then ensure this thread is not connected to
1960  * non-fatal signals until completion of singlestep.  When xol insn itself
1961  * triggers the signal,  restart the original insn even if the task is
1962  * already SIGKILL'ed (since coredump should report the correct ip).  This
1963  * is even more important if the task has a handler for SIGSEGV/etc, The
1964  * _same_ instruction should be repeated again after return from the signal
1965  * handler, and SSTEP can never finish in this case.
1966  */
1967 bool uprobe_deny_signal(void)
1968 {
1969 	struct task_struct *t = current;
1970 	struct uprobe_task *utask = t->utask;
1971 
1972 	if (likely(!utask || !utask->active_uprobe))
1973 		return false;
1974 
1975 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976 
1977 	if (signal_pending(t)) {
1978 		spin_lock_irq(&t->sighand->siglock);
1979 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980 		spin_unlock_irq(&t->sighand->siglock);
1981 
1982 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983 			utask->state = UTASK_SSTEP_TRAPPED;
1984 			set_tsk_thread_flag(t, TIF_UPROBE);
1985 		}
1986 	}
1987 
1988 	return true;
1989 }
1990 
1991 static void mmf_recalc_uprobes(struct mm_struct *mm)
1992 {
1993 	struct vm_area_struct *vma;
1994 
1995 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996 		if (!valid_vma(vma, false))
1997 			continue;
1998 		/*
1999 		 * This is not strictly accurate, we can race with
2000 		 * uprobe_unregister() and see the already removed
2001 		 * uprobe if delete_uprobe() was not yet called.
2002 		 * Or this uprobe can be filtered out.
2003 		 */
2004 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005 			return;
2006 	}
2007 
2008 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009 }
2010 
2011 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012 {
2013 	struct page *page;
2014 	uprobe_opcode_t opcode;
2015 	int result;
2016 
2017 	pagefault_disable();
2018 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019 	pagefault_enable();
2020 
2021 	if (likely(result == 0))
2022 		goto out;
2023 
2024 	/*
2025 	 * The NULL 'tsk' here ensures that any faults that occur here
2026 	 * will not be accounted to the task.  'mm' *is* current->mm,
2027 	 * but we treat this as a 'remote' access since it is
2028 	 * essentially a kernel access to the memory.
2029 	 */
2030 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031 			NULL, NULL);
2032 	if (result < 0)
2033 		return result;
2034 
2035 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036 	put_page(page);
2037  out:
2038 	/* This needs to return true for any variant of the trap insn */
2039 	return is_trap_insn(&opcode);
2040 }
2041 
2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043 {
2044 	struct mm_struct *mm = current->mm;
2045 	struct uprobe *uprobe = NULL;
2046 	struct vm_area_struct *vma;
2047 
2048 	down_read(&mm->mmap_sem);
2049 	vma = find_vma(mm, bp_vaddr);
2050 	if (vma && vma->vm_start <= bp_vaddr) {
2051 		if (valid_vma(vma, false)) {
2052 			struct inode *inode = file_inode(vma->vm_file);
2053 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054 
2055 			uprobe = find_uprobe(inode, offset);
2056 		}
2057 
2058 		if (!uprobe)
2059 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060 	} else {
2061 		*is_swbp = -EFAULT;
2062 	}
2063 
2064 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065 		mmf_recalc_uprobes(mm);
2066 	up_read(&mm->mmap_sem);
2067 
2068 	return uprobe;
2069 }
2070 
2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072 {
2073 	struct uprobe_consumer *uc;
2074 	int remove = UPROBE_HANDLER_REMOVE;
2075 	bool need_prep = false; /* prepare return uprobe, when needed */
2076 
2077 	down_read(&uprobe->register_rwsem);
2078 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2079 		int rc = 0;
2080 
2081 		if (uc->handler) {
2082 			rc = uc->handler(uc, regs);
2083 			WARN(rc & ~UPROBE_HANDLER_MASK,
2084 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2085 		}
2086 
2087 		if (uc->ret_handler)
2088 			need_prep = true;
2089 
2090 		remove &= rc;
2091 	}
2092 
2093 	if (need_prep && !remove)
2094 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2095 
2096 	if (remove && uprobe->consumers) {
2097 		WARN_ON(!uprobe_is_active(uprobe));
2098 		unapply_uprobe(uprobe, current->mm);
2099 	}
2100 	up_read(&uprobe->register_rwsem);
2101 }
2102 
2103 static void
2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105 {
2106 	struct uprobe *uprobe = ri->uprobe;
2107 	struct uprobe_consumer *uc;
2108 
2109 	down_read(&uprobe->register_rwsem);
2110 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2111 		if (uc->ret_handler)
2112 			uc->ret_handler(uc, ri->func, regs);
2113 	}
2114 	up_read(&uprobe->register_rwsem);
2115 }
2116 
2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118 {
2119 	bool chained;
2120 
2121 	do {
2122 		chained = ri->chained;
2123 		ri = ri->next;	/* can't be NULL if chained */
2124 	} while (chained);
2125 
2126 	return ri;
2127 }
2128 
2129 static void handle_trampoline(struct pt_regs *regs)
2130 {
2131 	struct uprobe_task *utask;
2132 	struct return_instance *ri, *next;
2133 	bool valid;
2134 
2135 	utask = current->utask;
2136 	if (!utask)
2137 		goto sigill;
2138 
2139 	ri = utask->return_instances;
2140 	if (!ri)
2141 		goto sigill;
2142 
2143 	do {
2144 		/*
2145 		 * We should throw out the frames invalidated by longjmp().
2146 		 * If this chain is valid, then the next one should be alive
2147 		 * or NULL; the latter case means that nobody but ri->func
2148 		 * could hit this trampoline on return. TODO: sigaltstack().
2149 		 */
2150 		next = find_next_ret_chain(ri);
2151 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152 
2153 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154 		do {
2155 			if (valid)
2156 				handle_uretprobe_chain(ri, regs);
2157 			ri = free_ret_instance(ri);
2158 			utask->depth--;
2159 		} while (ri != next);
2160 	} while (!valid);
2161 
2162 	utask->return_instances = ri;
2163 	return;
2164 
2165  sigill:
2166 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167 	force_sig(SIGILL);
2168 
2169 }
2170 
2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172 {
2173 	return false;
2174 }
2175 
2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177 					struct pt_regs *regs)
2178 {
2179 	return true;
2180 }
2181 
2182 /*
2183  * Run handler and ask thread to singlestep.
2184  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185  */
2186 static void handle_swbp(struct pt_regs *regs)
2187 {
2188 	struct uprobe *uprobe;
2189 	unsigned long bp_vaddr;
2190 	int uninitialized_var(is_swbp);
2191 
2192 	bp_vaddr = uprobe_get_swbp_addr(regs);
2193 	if (bp_vaddr == get_trampoline_vaddr())
2194 		return handle_trampoline(regs);
2195 
2196 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197 	if (!uprobe) {
2198 		if (is_swbp > 0) {
2199 			/* No matching uprobe; signal SIGTRAP. */
2200 			send_sig(SIGTRAP, current, 0);
2201 		} else {
2202 			/*
2203 			 * Either we raced with uprobe_unregister() or we can't
2204 			 * access this memory. The latter is only possible if
2205 			 * another thread plays with our ->mm. In both cases
2206 			 * we can simply restart. If this vma was unmapped we
2207 			 * can pretend this insn was not executed yet and get
2208 			 * the (correct) SIGSEGV after restart.
2209 			 */
2210 			instruction_pointer_set(regs, bp_vaddr);
2211 		}
2212 		return;
2213 	}
2214 
2215 	/* change it in advance for ->handler() and restart */
2216 	instruction_pointer_set(regs, bp_vaddr);
2217 
2218 	/*
2219 	 * TODO: move copy_insn/etc into _register and remove this hack.
2220 	 * After we hit the bp, _unregister + _register can install the
2221 	 * new and not-yet-analyzed uprobe at the same address, restart.
2222 	 */
2223 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224 		goto out;
2225 
2226 	/*
2227 	 * Pairs with the smp_wmb() in prepare_uprobe().
2228 	 *
2229 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230 	 * we must also see the stores to &uprobe->arch performed by the
2231 	 * prepare_uprobe() call.
2232 	 */
2233 	smp_rmb();
2234 
2235 	/* Tracing handlers use ->utask to communicate with fetch methods */
2236 	if (!get_utask())
2237 		goto out;
2238 
2239 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2240 		goto out;
2241 
2242 	handler_chain(uprobe, regs);
2243 
2244 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245 		goto out;
2246 
2247 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2248 		return;
2249 
2250 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251 out:
2252 	put_uprobe(uprobe);
2253 }
2254 
2255 /*
2256  * Perform required fix-ups and disable singlestep.
2257  * Allow pending signals to take effect.
2258  */
2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260 {
2261 	struct uprobe *uprobe;
2262 	int err = 0;
2263 
2264 	uprobe = utask->active_uprobe;
2265 	if (utask->state == UTASK_SSTEP_ACK)
2266 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2268 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2269 	else
2270 		WARN_ON_ONCE(1);
2271 
2272 	put_uprobe(uprobe);
2273 	utask->active_uprobe = NULL;
2274 	utask->state = UTASK_RUNNING;
2275 	xol_free_insn_slot(current);
2276 
2277 	spin_lock_irq(&current->sighand->siglock);
2278 	recalc_sigpending(); /* see uprobe_deny_signal() */
2279 	spin_unlock_irq(&current->sighand->siglock);
2280 
2281 	if (unlikely(err)) {
2282 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283 		force_sig(SIGILL);
2284 	}
2285 }
2286 
2287 /*
2288  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289  * allows the thread to return from interrupt. After that handle_swbp()
2290  * sets utask->active_uprobe.
2291  *
2292  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293  * and allows the thread to return from interrupt.
2294  *
2295  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296  * uprobe_notify_resume().
2297  */
2298 void uprobe_notify_resume(struct pt_regs *regs)
2299 {
2300 	struct uprobe_task *utask;
2301 
2302 	clear_thread_flag(TIF_UPROBE);
2303 
2304 	utask = current->utask;
2305 	if (utask && utask->active_uprobe)
2306 		handle_singlestep(utask, regs);
2307 	else
2308 		handle_swbp(regs);
2309 }
2310 
2311 /*
2312  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314  */
2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316 {
2317 	if (!current->mm)
2318 		return 0;
2319 
2320 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321 	    (!current->utask || !current->utask->return_instances))
2322 		return 0;
2323 
2324 	set_thread_flag(TIF_UPROBE);
2325 	return 1;
2326 }
2327 
2328 /*
2329  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331  */
2332 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333 {
2334 	struct uprobe_task *utask = current->utask;
2335 
2336 	if (!current->mm || !utask || !utask->active_uprobe)
2337 		/* task is currently not uprobed */
2338 		return 0;
2339 
2340 	utask->state = UTASK_SSTEP_ACK;
2341 	set_thread_flag(TIF_UPROBE);
2342 	return 1;
2343 }
2344 
2345 static struct notifier_block uprobe_exception_nb = {
2346 	.notifier_call		= arch_uprobe_exception_notify,
2347 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2348 };
2349 
2350 void __init uprobes_init(void)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2355 		mutex_init(&uprobes_mmap_mutex[i]);
2356 
2357 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358 }
2359