xref: /linux/kernel/events/uprobes.c (revision 4e4d9c72c946b77f0278988d0bf1207fa1b2cd0f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>		/* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h>		/* folio_free_swap */
22 #include <linux/ptrace.h>	/* user_enable_single_step */
23 #include <linux/kdebug.h>	/* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 
29 #include <linux/uprobes.h>
30 
31 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
32 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
33 
34 static struct rb_root uprobes_tree = RB_ROOT;
35 /*
36  * allows us to skip the uprobe_mmap if there are no uprobe events active
37  * at this time.  Probably a fine grained per inode count is better?
38  */
39 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
40 
41 static DEFINE_RWLOCK(uprobes_treelock);	/* serialize rbtree access */
42 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
43 
44 DEFINE_STATIC_SRCU(uprobes_srcu);
45 
46 #define UPROBES_HASH_SZ	13
47 /* serialize uprobe->pending_list */
48 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
49 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
50 
51 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
52 
53 /* Have a copy of original instruction */
54 #define UPROBE_COPY_INSN	0
55 
56 struct uprobe {
57 	struct rb_node		rb_node;	/* node in the rb tree */
58 	refcount_t		ref;
59 	struct rw_semaphore	register_rwsem;
60 	struct rw_semaphore	consumer_rwsem;
61 	struct list_head	pending_list;
62 	struct list_head	consumers;
63 	struct inode		*inode;		/* Also hold a ref to inode */
64 	struct rcu_head		rcu;
65 	loff_t			offset;
66 	loff_t			ref_ctr_offset;
67 	unsigned long		flags;
68 
69 	/*
70 	 * The generic code assumes that it has two members of unknown type
71 	 * owned by the arch-specific code:
72 	 *
73 	 * 	insn -	copy_insn() saves the original instruction here for
74 	 *		arch_uprobe_analyze_insn().
75 	 *
76 	 *	ixol -	potentially modified instruction to execute out of
77 	 *		line, copied to xol_area by xol_get_insn_slot().
78 	 */
79 	struct arch_uprobe	arch;
80 };
81 
82 struct delayed_uprobe {
83 	struct list_head list;
84 	struct uprobe *uprobe;
85 	struct mm_struct *mm;
86 };
87 
88 static DEFINE_MUTEX(delayed_uprobe_lock);
89 static LIST_HEAD(delayed_uprobe_list);
90 
91 /*
92  * Execute out of line area: anonymous executable mapping installed
93  * by the probed task to execute the copy of the original instruction
94  * mangled by set_swbp().
95  *
96  * On a breakpoint hit, thread contests for a slot.  It frees the
97  * slot after singlestep. Currently a fixed number of slots are
98  * allocated.
99  */
100 struct xol_area {
101 	wait_queue_head_t 		wq;		/* if all slots are busy */
102 	atomic_t 			slot_count;	/* number of in-use slots */
103 	unsigned long 			*bitmap;	/* 0 = free slot */
104 
105 	struct page			*page;
106 	/*
107 	 * We keep the vma's vm_start rather than a pointer to the vma
108 	 * itself.  The probed process or a naughty kernel module could make
109 	 * the vma go away, and we must handle that reasonably gracefully.
110 	 */
111 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
112 };
113 
114 static void uprobe_warn(struct task_struct *t, const char *msg)
115 {
116 	pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
117 }
118 
119 /*
120  * valid_vma: Verify if the specified vma is an executable vma
121  * Relax restrictions while unregistering: vm_flags might have
122  * changed after breakpoint was inserted.
123  *	- is_register: indicates if we are in register context.
124  *	- Return 1 if the specified virtual address is in an
125  *	  executable vma.
126  */
127 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
128 {
129 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
130 
131 	if (is_register)
132 		flags |= VM_WRITE;
133 
134 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
135 }
136 
137 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
138 {
139 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
140 }
141 
142 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
143 {
144 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
145 }
146 
147 /**
148  * __replace_page - replace page in vma by new page.
149  * based on replace_page in mm/ksm.c
150  *
151  * @vma:      vma that holds the pte pointing to page
152  * @addr:     address the old @page is mapped at
153  * @old_page: the page we are replacing by new_page
154  * @new_page: the modified page we replace page by
155  *
156  * If @new_page is NULL, only unmap @old_page.
157  *
158  * Returns 0 on success, negative error code otherwise.
159  */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161 				struct page *old_page, struct page *new_page)
162 {
163 	struct folio *old_folio = page_folio(old_page);
164 	struct folio *new_folio;
165 	struct mm_struct *mm = vma->vm_mm;
166 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
167 	int err;
168 	struct mmu_notifier_range range;
169 
170 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
171 				addr + PAGE_SIZE);
172 
173 	if (new_page) {
174 		new_folio = page_folio(new_page);
175 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
176 		if (err)
177 			return err;
178 	}
179 
180 	/* For folio_free_swap() below */
181 	folio_lock(old_folio);
182 
183 	mmu_notifier_invalidate_range_start(&range);
184 	err = -EAGAIN;
185 	if (!page_vma_mapped_walk(&pvmw))
186 		goto unlock;
187 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188 
189 	if (new_page) {
190 		folio_get(new_folio);
191 		folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
192 		folio_add_lru_vma(new_folio, vma);
193 	} else
194 		/* no new page, just dec_mm_counter for old_page */
195 		dec_mm_counter(mm, MM_ANONPAGES);
196 
197 	if (!folio_test_anon(old_folio)) {
198 		dec_mm_counter(mm, mm_counter_file(old_folio));
199 		inc_mm_counter(mm, MM_ANONPAGES);
200 	}
201 
202 	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
203 	ptep_clear_flush(vma, addr, pvmw.pte);
204 	if (new_page)
205 		set_pte_at(mm, addr, pvmw.pte,
206 			   mk_pte(new_page, vma->vm_page_prot));
207 
208 	folio_remove_rmap_pte(old_folio, old_page, vma);
209 	if (!folio_mapped(old_folio))
210 		folio_free_swap(old_folio);
211 	page_vma_mapped_walk_done(&pvmw);
212 	folio_put(old_folio);
213 
214 	err = 0;
215  unlock:
216 	mmu_notifier_invalidate_range_end(&range);
217 	folio_unlock(old_folio);
218 	return err;
219 }
220 
221 /**
222  * is_swbp_insn - check if instruction is breakpoint instruction.
223  * @insn: instruction to be checked.
224  * Default implementation of is_swbp_insn
225  * Returns true if @insn is a breakpoint instruction.
226  */
227 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
228 {
229 	return *insn == UPROBE_SWBP_INSN;
230 }
231 
232 /**
233  * is_trap_insn - check if instruction is breakpoint instruction.
234  * @insn: instruction to be checked.
235  * Default implementation of is_trap_insn
236  * Returns true if @insn is a breakpoint instruction.
237  *
238  * This function is needed for the case where an architecture has multiple
239  * trap instructions (like powerpc).
240  */
241 bool __weak is_trap_insn(uprobe_opcode_t *insn)
242 {
243 	return is_swbp_insn(insn);
244 }
245 
246 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
247 {
248 	void *kaddr = kmap_atomic(page);
249 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
250 	kunmap_atomic(kaddr);
251 }
252 
253 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
254 {
255 	void *kaddr = kmap_atomic(page);
256 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
257 	kunmap_atomic(kaddr);
258 }
259 
260 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
261 {
262 	uprobe_opcode_t old_opcode;
263 	bool is_swbp;
264 
265 	/*
266 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
267 	 * We do not check if it is any other 'trap variant' which could
268 	 * be conditional trap instruction such as the one powerpc supports.
269 	 *
270 	 * The logic is that we do not care if the underlying instruction
271 	 * is a trap variant; uprobes always wins over any other (gdb)
272 	 * breakpoint.
273 	 */
274 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
275 	is_swbp = is_swbp_insn(&old_opcode);
276 
277 	if (is_swbp_insn(new_opcode)) {
278 		if (is_swbp)		/* register: already installed? */
279 			return 0;
280 	} else {
281 		if (!is_swbp)		/* unregister: was it changed by us? */
282 			return 0;
283 	}
284 
285 	return 1;
286 }
287 
288 static struct delayed_uprobe *
289 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
290 {
291 	struct delayed_uprobe *du;
292 
293 	list_for_each_entry(du, &delayed_uprobe_list, list)
294 		if (du->uprobe == uprobe && du->mm == mm)
295 			return du;
296 	return NULL;
297 }
298 
299 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
300 {
301 	struct delayed_uprobe *du;
302 
303 	if (delayed_uprobe_check(uprobe, mm))
304 		return 0;
305 
306 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
307 	if (!du)
308 		return -ENOMEM;
309 
310 	du->uprobe = uprobe;
311 	du->mm = mm;
312 	list_add(&du->list, &delayed_uprobe_list);
313 	return 0;
314 }
315 
316 static void delayed_uprobe_delete(struct delayed_uprobe *du)
317 {
318 	if (WARN_ON(!du))
319 		return;
320 	list_del(&du->list);
321 	kfree(du);
322 }
323 
324 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
325 {
326 	struct list_head *pos, *q;
327 	struct delayed_uprobe *du;
328 
329 	if (!uprobe && !mm)
330 		return;
331 
332 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
333 		du = list_entry(pos, struct delayed_uprobe, list);
334 
335 		if (uprobe && du->uprobe != uprobe)
336 			continue;
337 		if (mm && du->mm != mm)
338 			continue;
339 
340 		delayed_uprobe_delete(du);
341 	}
342 }
343 
344 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
345 			      struct vm_area_struct *vma)
346 {
347 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
348 
349 	return uprobe->ref_ctr_offset &&
350 		vma->vm_file &&
351 		file_inode(vma->vm_file) == uprobe->inode &&
352 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
353 		vma->vm_start <= vaddr &&
354 		vma->vm_end > vaddr;
355 }
356 
357 static struct vm_area_struct *
358 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
359 {
360 	VMA_ITERATOR(vmi, mm, 0);
361 	struct vm_area_struct *tmp;
362 
363 	for_each_vma(vmi, tmp)
364 		if (valid_ref_ctr_vma(uprobe, tmp))
365 			return tmp;
366 
367 	return NULL;
368 }
369 
370 static int
371 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
372 {
373 	void *kaddr;
374 	struct page *page;
375 	int ret;
376 	short *ptr;
377 
378 	if (!vaddr || !d)
379 		return -EINVAL;
380 
381 	ret = get_user_pages_remote(mm, vaddr, 1,
382 				    FOLL_WRITE, &page, NULL);
383 	if (unlikely(ret <= 0)) {
384 		/*
385 		 * We are asking for 1 page. If get_user_pages_remote() fails,
386 		 * it may return 0, in that case we have to return error.
387 		 */
388 		return ret == 0 ? -EBUSY : ret;
389 	}
390 
391 	kaddr = kmap_atomic(page);
392 	ptr = kaddr + (vaddr & ~PAGE_MASK);
393 
394 	if (unlikely(*ptr + d < 0)) {
395 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
396 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
397 		ret = -EINVAL;
398 		goto out;
399 	}
400 
401 	*ptr += d;
402 	ret = 0;
403 out:
404 	kunmap_atomic(kaddr);
405 	put_page(page);
406 	return ret;
407 }
408 
409 static void update_ref_ctr_warn(struct uprobe *uprobe,
410 				struct mm_struct *mm, short d)
411 {
412 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
413 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
414 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
415 		(unsigned long long) uprobe->offset,
416 		(unsigned long long) uprobe->ref_ctr_offset, mm);
417 }
418 
419 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
420 			  short d)
421 {
422 	struct vm_area_struct *rc_vma;
423 	unsigned long rc_vaddr;
424 	int ret = 0;
425 
426 	rc_vma = find_ref_ctr_vma(uprobe, mm);
427 
428 	if (rc_vma) {
429 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
430 		ret = __update_ref_ctr(mm, rc_vaddr, d);
431 		if (ret)
432 			update_ref_ctr_warn(uprobe, mm, d);
433 
434 		if (d > 0)
435 			return ret;
436 	}
437 
438 	mutex_lock(&delayed_uprobe_lock);
439 	if (d > 0)
440 		ret = delayed_uprobe_add(uprobe, mm);
441 	else
442 		delayed_uprobe_remove(uprobe, mm);
443 	mutex_unlock(&delayed_uprobe_lock);
444 
445 	return ret;
446 }
447 
448 /*
449  * NOTE:
450  * Expect the breakpoint instruction to be the smallest size instruction for
451  * the architecture. If an arch has variable length instruction and the
452  * breakpoint instruction is not of the smallest length instruction
453  * supported by that architecture then we need to modify is_trap_at_addr and
454  * uprobe_write_opcode accordingly. This would never be a problem for archs
455  * that have fixed length instructions.
456  *
457  * uprobe_write_opcode - write the opcode at a given virtual address.
458  * @auprobe: arch specific probepoint information.
459  * @mm: the probed process address space.
460  * @vaddr: the virtual address to store the opcode.
461  * @opcode: opcode to be written at @vaddr.
462  *
463  * Called with mm->mmap_lock held for read or write.
464  * Return 0 (success) or a negative errno.
465  */
466 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
467 			unsigned long vaddr, uprobe_opcode_t opcode)
468 {
469 	struct uprobe *uprobe;
470 	struct page *old_page, *new_page;
471 	struct vm_area_struct *vma;
472 	int ret, is_register, ref_ctr_updated = 0;
473 	bool orig_page_huge = false;
474 	unsigned int gup_flags = FOLL_FORCE;
475 
476 	is_register = is_swbp_insn(&opcode);
477 	uprobe = container_of(auprobe, struct uprobe, arch);
478 
479 retry:
480 	if (is_register)
481 		gup_flags |= FOLL_SPLIT_PMD;
482 	/* Read the page with vaddr into memory */
483 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
484 	if (IS_ERR(old_page))
485 		return PTR_ERR(old_page);
486 
487 	ret = verify_opcode(old_page, vaddr, &opcode);
488 	if (ret <= 0)
489 		goto put_old;
490 
491 	if (WARN(!is_register && PageCompound(old_page),
492 		 "uprobe unregister should never work on compound page\n")) {
493 		ret = -EINVAL;
494 		goto put_old;
495 	}
496 
497 	/* We are going to replace instruction, update ref_ctr. */
498 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
499 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
500 		if (ret)
501 			goto put_old;
502 
503 		ref_ctr_updated = 1;
504 	}
505 
506 	ret = 0;
507 	if (!is_register && !PageAnon(old_page))
508 		goto put_old;
509 
510 	ret = anon_vma_prepare(vma);
511 	if (ret)
512 		goto put_old;
513 
514 	ret = -ENOMEM;
515 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
516 	if (!new_page)
517 		goto put_old;
518 
519 	__SetPageUptodate(new_page);
520 	copy_highpage(new_page, old_page);
521 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
522 
523 	if (!is_register) {
524 		struct page *orig_page;
525 		pgoff_t index;
526 
527 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
528 
529 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
530 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
531 					  index);
532 
533 		if (orig_page) {
534 			if (PageUptodate(orig_page) &&
535 			    pages_identical(new_page, orig_page)) {
536 				/* let go new_page */
537 				put_page(new_page);
538 				new_page = NULL;
539 
540 				if (PageCompound(orig_page))
541 					orig_page_huge = true;
542 			}
543 			put_page(orig_page);
544 		}
545 	}
546 
547 	ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
548 	if (new_page)
549 		put_page(new_page);
550 put_old:
551 	put_page(old_page);
552 
553 	if (unlikely(ret == -EAGAIN))
554 		goto retry;
555 
556 	/* Revert back reference counter if instruction update failed. */
557 	if (ret && is_register && ref_ctr_updated)
558 		update_ref_ctr(uprobe, mm, -1);
559 
560 	/* try collapse pmd for compound page */
561 	if (!ret && orig_page_huge)
562 		collapse_pte_mapped_thp(mm, vaddr, false);
563 
564 	return ret;
565 }
566 
567 /**
568  * set_swbp - store breakpoint at a given address.
569  * @auprobe: arch specific probepoint information.
570  * @mm: the probed process address space.
571  * @vaddr: the virtual address to insert the opcode.
572  *
573  * For mm @mm, store the breakpoint instruction at @vaddr.
574  * Return 0 (success) or a negative errno.
575  */
576 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
577 {
578 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
579 }
580 
581 /**
582  * set_orig_insn - Restore the original instruction.
583  * @mm: the probed process address space.
584  * @auprobe: arch specific probepoint information.
585  * @vaddr: the virtual address to insert the opcode.
586  *
587  * For mm @mm, restore the original opcode (opcode) at @vaddr.
588  * Return 0 (success) or a negative errno.
589  */
590 int __weak
591 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
592 {
593 	return uprobe_write_opcode(auprobe, mm, vaddr,
594 			*(uprobe_opcode_t *)&auprobe->insn);
595 }
596 
597 /* uprobe should have guaranteed positive refcount */
598 static struct uprobe *get_uprobe(struct uprobe *uprobe)
599 {
600 	refcount_inc(&uprobe->ref);
601 	return uprobe;
602 }
603 
604 /*
605  * uprobe should have guaranteed lifetime, which can be either of:
606  *   - caller already has refcount taken (and wants an extra one);
607  *   - uprobe is RCU protected and won't be freed until after grace period;
608  *   - we are holding uprobes_treelock (for read or write, doesn't matter).
609  */
610 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
611 {
612 	if (refcount_inc_not_zero(&uprobe->ref))
613 		return uprobe;
614 	return NULL;
615 }
616 
617 static inline bool uprobe_is_active(struct uprobe *uprobe)
618 {
619 	return !RB_EMPTY_NODE(&uprobe->rb_node);
620 }
621 
622 static void uprobe_free_rcu(struct rcu_head *rcu)
623 {
624 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
625 
626 	kfree(uprobe);
627 }
628 
629 static void put_uprobe(struct uprobe *uprobe)
630 {
631 	if (!refcount_dec_and_test(&uprobe->ref))
632 		return;
633 
634 	write_lock(&uprobes_treelock);
635 
636 	if (uprobe_is_active(uprobe)) {
637 		write_seqcount_begin(&uprobes_seqcount);
638 		rb_erase(&uprobe->rb_node, &uprobes_tree);
639 		write_seqcount_end(&uprobes_seqcount);
640 	}
641 
642 	write_unlock(&uprobes_treelock);
643 
644 	/*
645 	 * If application munmap(exec_vma) before uprobe_unregister()
646 	 * gets called, we don't get a chance to remove uprobe from
647 	 * delayed_uprobe_list from remove_breakpoint(). Do it here.
648 	 */
649 	mutex_lock(&delayed_uprobe_lock);
650 	delayed_uprobe_remove(uprobe, NULL);
651 	mutex_unlock(&delayed_uprobe_lock);
652 
653 	call_srcu(&uprobes_srcu, &uprobe->rcu, uprobe_free_rcu);
654 }
655 
656 static __always_inline
657 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
658 	       const struct uprobe *r)
659 {
660 	if (l_inode < r->inode)
661 		return -1;
662 
663 	if (l_inode > r->inode)
664 		return 1;
665 
666 	if (l_offset < r->offset)
667 		return -1;
668 
669 	if (l_offset > r->offset)
670 		return 1;
671 
672 	return 0;
673 }
674 
675 #define __node_2_uprobe(node) \
676 	rb_entry((node), struct uprobe, rb_node)
677 
678 struct __uprobe_key {
679 	struct inode *inode;
680 	loff_t offset;
681 };
682 
683 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
684 {
685 	const struct __uprobe_key *a = key;
686 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
687 }
688 
689 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
690 {
691 	struct uprobe *u = __node_2_uprobe(a);
692 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
693 }
694 
695 /*
696  * Assumes being inside RCU protected region.
697  * No refcount is taken on returned uprobe.
698  */
699 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
700 {
701 	struct __uprobe_key key = {
702 		.inode = inode,
703 		.offset = offset,
704 	};
705 	struct rb_node *node;
706 	unsigned int seq;
707 
708 	lockdep_assert(srcu_read_lock_held(&uprobes_srcu));
709 
710 	do {
711 		seq = read_seqcount_begin(&uprobes_seqcount);
712 		node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
713 		/*
714 		 * Lockless RB-tree lookups can result only in false negatives.
715 		 * If the element is found, it is correct and can be returned
716 		 * under RCU protection. If we find nothing, we need to
717 		 * validate that seqcount didn't change. If it did, we have to
718 		 * try again as we might have missed the element (false
719 		 * negative). If seqcount is unchanged, search truly failed.
720 		 */
721 		if (node)
722 			return __node_2_uprobe(node);
723 	} while (read_seqcount_retry(&uprobes_seqcount, seq));
724 
725 	return NULL;
726 }
727 
728 /*
729  * Attempt to insert a new uprobe into uprobes_tree.
730  *
731  * If uprobe already exists (for given inode+offset), we just increment
732  * refcount of previously existing uprobe.
733  *
734  * If not, a provided new instance of uprobe is inserted into the tree (with
735  * assumed initial refcount == 1).
736  *
737  * In any case, we return a uprobe instance that ends up being in uprobes_tree.
738  * Caller has to clean up new uprobe instance, if it ended up not being
739  * inserted into the tree.
740  *
741  * We assume that uprobes_treelock is held for writing.
742  */
743 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
744 {
745 	struct rb_node *node;
746 again:
747 	node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
748 	if (node) {
749 		struct uprobe *u = __node_2_uprobe(node);
750 
751 		if (!try_get_uprobe(u)) {
752 			rb_erase(node, &uprobes_tree);
753 			RB_CLEAR_NODE(&u->rb_node);
754 			goto again;
755 		}
756 
757 		return u;
758 	}
759 
760 	return uprobe;
761 }
762 
763 /*
764  * Acquire uprobes_treelock and insert uprobe into uprobes_tree
765  * (or reuse existing one, see __insert_uprobe() comments above).
766  */
767 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
768 {
769 	struct uprobe *u;
770 
771 	write_lock(&uprobes_treelock);
772 	write_seqcount_begin(&uprobes_seqcount);
773 	u = __insert_uprobe(uprobe);
774 	write_seqcount_end(&uprobes_seqcount);
775 	write_unlock(&uprobes_treelock);
776 
777 	return u;
778 }
779 
780 static void
781 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
782 {
783 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
784 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
785 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
786 		(unsigned long long) cur_uprobe->ref_ctr_offset,
787 		(unsigned long long) uprobe->ref_ctr_offset);
788 }
789 
790 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
791 				   loff_t ref_ctr_offset)
792 {
793 	struct uprobe *uprobe, *cur_uprobe;
794 
795 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
796 	if (!uprobe)
797 		return ERR_PTR(-ENOMEM);
798 
799 	uprobe->inode = inode;
800 	uprobe->offset = offset;
801 	uprobe->ref_ctr_offset = ref_ctr_offset;
802 	INIT_LIST_HEAD(&uprobe->consumers);
803 	init_rwsem(&uprobe->register_rwsem);
804 	init_rwsem(&uprobe->consumer_rwsem);
805 	RB_CLEAR_NODE(&uprobe->rb_node);
806 	refcount_set(&uprobe->ref, 1);
807 
808 	/* add to uprobes_tree, sorted on inode:offset */
809 	cur_uprobe = insert_uprobe(uprobe);
810 	/* a uprobe exists for this inode:offset combination */
811 	if (cur_uprobe != uprobe) {
812 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
813 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
814 			put_uprobe(cur_uprobe);
815 			kfree(uprobe);
816 			return ERR_PTR(-EINVAL);
817 		}
818 		kfree(uprobe);
819 		uprobe = cur_uprobe;
820 	}
821 
822 	return uprobe;
823 }
824 
825 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
826 {
827 	down_write(&uprobe->consumer_rwsem);
828 	list_add_rcu(&uc->cons_node, &uprobe->consumers);
829 	up_write(&uprobe->consumer_rwsem);
830 }
831 
832 /*
833  * For uprobe @uprobe, delete the consumer @uc.
834  * Should never be called with consumer that's not part of @uprobe->consumers.
835  */
836 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
837 {
838 	down_write(&uprobe->consumer_rwsem);
839 	list_del_rcu(&uc->cons_node);
840 	up_write(&uprobe->consumer_rwsem);
841 }
842 
843 static int __copy_insn(struct address_space *mapping, struct file *filp,
844 			void *insn, int nbytes, loff_t offset)
845 {
846 	struct page *page;
847 	/*
848 	 * Ensure that the page that has the original instruction is populated
849 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
850 	 * see uprobe_register().
851 	 */
852 	if (mapping->a_ops->read_folio)
853 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
854 	else
855 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
856 	if (IS_ERR(page))
857 		return PTR_ERR(page);
858 
859 	copy_from_page(page, offset, insn, nbytes);
860 	put_page(page);
861 
862 	return 0;
863 }
864 
865 static int copy_insn(struct uprobe *uprobe, struct file *filp)
866 {
867 	struct address_space *mapping = uprobe->inode->i_mapping;
868 	loff_t offs = uprobe->offset;
869 	void *insn = &uprobe->arch.insn;
870 	int size = sizeof(uprobe->arch.insn);
871 	int len, err = -EIO;
872 
873 	/* Copy only available bytes, -EIO if nothing was read */
874 	do {
875 		if (offs >= i_size_read(uprobe->inode))
876 			break;
877 
878 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
879 		err = __copy_insn(mapping, filp, insn, len, offs);
880 		if (err)
881 			break;
882 
883 		insn += len;
884 		offs += len;
885 		size -= len;
886 	} while (size);
887 
888 	return err;
889 }
890 
891 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
892 				struct mm_struct *mm, unsigned long vaddr)
893 {
894 	int ret = 0;
895 
896 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
897 		return ret;
898 
899 	/* TODO: move this into _register, until then we abuse this sem. */
900 	down_write(&uprobe->consumer_rwsem);
901 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
902 		goto out;
903 
904 	ret = copy_insn(uprobe, file);
905 	if (ret)
906 		goto out;
907 
908 	ret = -ENOTSUPP;
909 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
910 		goto out;
911 
912 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
913 	if (ret)
914 		goto out;
915 
916 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
917 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
918 
919  out:
920 	up_write(&uprobe->consumer_rwsem);
921 
922 	return ret;
923 }
924 
925 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
926 {
927 	return !uc->filter || uc->filter(uc, mm);
928 }
929 
930 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
931 {
932 	struct uprobe_consumer *uc;
933 	bool ret = false;
934 
935 	down_read(&uprobe->consumer_rwsem);
936 	list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
937 				 srcu_read_lock_held(&uprobes_srcu)) {
938 		ret = consumer_filter(uc, mm);
939 		if (ret)
940 			break;
941 	}
942 	up_read(&uprobe->consumer_rwsem);
943 
944 	return ret;
945 }
946 
947 static int
948 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
949 			struct vm_area_struct *vma, unsigned long vaddr)
950 {
951 	bool first_uprobe;
952 	int ret;
953 
954 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
955 	if (ret)
956 		return ret;
957 
958 	/*
959 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
960 	 * the task can hit this breakpoint right after __replace_page().
961 	 */
962 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
963 	if (first_uprobe)
964 		set_bit(MMF_HAS_UPROBES, &mm->flags);
965 
966 	ret = set_swbp(&uprobe->arch, mm, vaddr);
967 	if (!ret)
968 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
969 	else if (first_uprobe)
970 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
971 
972 	return ret;
973 }
974 
975 static int
976 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
977 {
978 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
979 	return set_orig_insn(&uprobe->arch, mm, vaddr);
980 }
981 
982 struct map_info {
983 	struct map_info *next;
984 	struct mm_struct *mm;
985 	unsigned long vaddr;
986 };
987 
988 static inline struct map_info *free_map_info(struct map_info *info)
989 {
990 	struct map_info *next = info->next;
991 	kfree(info);
992 	return next;
993 }
994 
995 static struct map_info *
996 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
997 {
998 	unsigned long pgoff = offset >> PAGE_SHIFT;
999 	struct vm_area_struct *vma;
1000 	struct map_info *curr = NULL;
1001 	struct map_info *prev = NULL;
1002 	struct map_info *info;
1003 	int more = 0;
1004 
1005  again:
1006 	i_mmap_lock_read(mapping);
1007 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1008 		if (!valid_vma(vma, is_register))
1009 			continue;
1010 
1011 		if (!prev && !more) {
1012 			/*
1013 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1014 			 * reclaim. This is optimistic, no harm done if it fails.
1015 			 */
1016 			prev = kmalloc(sizeof(struct map_info),
1017 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1018 			if (prev)
1019 				prev->next = NULL;
1020 		}
1021 		if (!prev) {
1022 			more++;
1023 			continue;
1024 		}
1025 
1026 		if (!mmget_not_zero(vma->vm_mm))
1027 			continue;
1028 
1029 		info = prev;
1030 		prev = prev->next;
1031 		info->next = curr;
1032 		curr = info;
1033 
1034 		info->mm = vma->vm_mm;
1035 		info->vaddr = offset_to_vaddr(vma, offset);
1036 	}
1037 	i_mmap_unlock_read(mapping);
1038 
1039 	if (!more)
1040 		goto out;
1041 
1042 	prev = curr;
1043 	while (curr) {
1044 		mmput(curr->mm);
1045 		curr = curr->next;
1046 	}
1047 
1048 	do {
1049 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1050 		if (!info) {
1051 			curr = ERR_PTR(-ENOMEM);
1052 			goto out;
1053 		}
1054 		info->next = prev;
1055 		prev = info;
1056 	} while (--more);
1057 
1058 	goto again;
1059  out:
1060 	while (prev)
1061 		prev = free_map_info(prev);
1062 	return curr;
1063 }
1064 
1065 static int
1066 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1067 {
1068 	bool is_register = !!new;
1069 	struct map_info *info;
1070 	int err = 0;
1071 
1072 	percpu_down_write(&dup_mmap_sem);
1073 	info = build_map_info(uprobe->inode->i_mapping,
1074 					uprobe->offset, is_register);
1075 	if (IS_ERR(info)) {
1076 		err = PTR_ERR(info);
1077 		goto out;
1078 	}
1079 
1080 	while (info) {
1081 		struct mm_struct *mm = info->mm;
1082 		struct vm_area_struct *vma;
1083 
1084 		if (err && is_register)
1085 			goto free;
1086 		/*
1087 		 * We take mmap_lock for writing to avoid the race with
1088 		 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1089 		 * Thus this install_breakpoint() can not make
1090 		 * is_trap_at_addr() true right after find_uprobe_rcu()
1091 		 * returns NULL in find_active_uprobe_rcu().
1092 		 */
1093 		mmap_write_lock(mm);
1094 		vma = find_vma(mm, info->vaddr);
1095 		if (!vma || !valid_vma(vma, is_register) ||
1096 		    file_inode(vma->vm_file) != uprobe->inode)
1097 			goto unlock;
1098 
1099 		if (vma->vm_start > info->vaddr ||
1100 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1101 			goto unlock;
1102 
1103 		if (is_register) {
1104 			/* consult only the "caller", new consumer. */
1105 			if (consumer_filter(new, mm))
1106 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1107 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1108 			if (!filter_chain(uprobe, mm))
1109 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1110 		}
1111 
1112  unlock:
1113 		mmap_write_unlock(mm);
1114  free:
1115 		mmput(mm);
1116 		info = free_map_info(info);
1117 	}
1118  out:
1119 	percpu_up_write(&dup_mmap_sem);
1120 	return err;
1121 }
1122 
1123 /**
1124  * uprobe_unregister_nosync - unregister an already registered probe.
1125  * @uprobe: uprobe to remove
1126  * @uc: identify which probe if multiple probes are colocated.
1127  */
1128 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1129 {
1130 	int err;
1131 
1132 	down_write(&uprobe->register_rwsem);
1133 	consumer_del(uprobe, uc);
1134 	err = register_for_each_vma(uprobe, NULL);
1135 	up_write(&uprobe->register_rwsem);
1136 
1137 	/* TODO : cant unregister? schedule a worker thread */
1138 	if (unlikely(err)) {
1139 		uprobe_warn(current, "unregister, leaking uprobe");
1140 		return;
1141 	}
1142 
1143 	put_uprobe(uprobe);
1144 }
1145 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1146 
1147 void uprobe_unregister_sync(void)
1148 {
1149 	/*
1150 	 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1151 	 * uprobe->consumers list under RCU protection without holding
1152 	 * uprobe->register_rwsem, we need to wait for RCU grace period to
1153 	 * make sure that we can't call into just unregistered
1154 	 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1155 	 * unlucky enough caller can free consumer's memory and cause
1156 	 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1157 	 */
1158 	synchronize_srcu(&uprobes_srcu);
1159 }
1160 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1161 
1162 /**
1163  * uprobe_register - register a probe
1164  * @inode: the file in which the probe has to be placed.
1165  * @offset: offset from the start of the file.
1166  * @ref_ctr_offset: offset of SDT marker / reference counter
1167  * @uc: information on howto handle the probe..
1168  *
1169  * Apart from the access refcount, uprobe_register() takes a creation
1170  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1171  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1172  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1173  * @uprobe even before the register operation is complete. Creation
1174  * refcount is released when the last @uc for the @uprobe
1175  * unregisters. Caller of uprobe_register() is required to keep @inode
1176  * (and the containing mount) referenced.
1177  *
1178  * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1179  */
1180 struct uprobe *uprobe_register(struct inode *inode,
1181 				loff_t offset, loff_t ref_ctr_offset,
1182 				struct uprobe_consumer *uc)
1183 {
1184 	struct uprobe *uprobe;
1185 	int ret;
1186 
1187 	/* Uprobe must have at least one set consumer */
1188 	if (!uc->handler && !uc->ret_handler)
1189 		return ERR_PTR(-EINVAL);
1190 
1191 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1192 	if (!inode->i_mapping->a_ops->read_folio &&
1193 	    !shmem_mapping(inode->i_mapping))
1194 		return ERR_PTR(-EIO);
1195 	/* Racy, just to catch the obvious mistakes */
1196 	if (offset > i_size_read(inode))
1197 		return ERR_PTR(-EINVAL);
1198 
1199 	/*
1200 	 * This ensures that copy_from_page(), copy_to_page() and
1201 	 * __update_ref_ctr() can't cross page boundary.
1202 	 */
1203 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1204 		return ERR_PTR(-EINVAL);
1205 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1206 		return ERR_PTR(-EINVAL);
1207 
1208 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1209 	if (IS_ERR(uprobe))
1210 		return uprobe;
1211 
1212 	down_write(&uprobe->register_rwsem);
1213 	consumer_add(uprobe, uc);
1214 	ret = register_for_each_vma(uprobe, uc);
1215 	up_write(&uprobe->register_rwsem);
1216 
1217 	if (ret) {
1218 		uprobe_unregister_nosync(uprobe, uc);
1219 		/*
1220 		 * Registration might have partially succeeded, so we can have
1221 		 * this consumer being called right at this time. We need to
1222 		 * sync here. It's ok, it's unlikely slow path.
1223 		 */
1224 		uprobe_unregister_sync();
1225 		return ERR_PTR(ret);
1226 	}
1227 
1228 	return uprobe;
1229 }
1230 EXPORT_SYMBOL_GPL(uprobe_register);
1231 
1232 /**
1233  * uprobe_apply - add or remove the breakpoints according to @uc->filter
1234  * @uprobe: uprobe which "owns" the breakpoint
1235  * @uc: consumer which wants to add more or remove some breakpoints
1236  * @add: add or remove the breakpoints
1237  * Return: 0 on success or negative error code.
1238  */
1239 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1240 {
1241 	struct uprobe_consumer *con;
1242 	int ret = -ENOENT, srcu_idx;
1243 
1244 	down_write(&uprobe->register_rwsem);
1245 
1246 	srcu_idx = srcu_read_lock(&uprobes_srcu);
1247 	list_for_each_entry_srcu(con, &uprobe->consumers, cons_node,
1248 				 srcu_read_lock_held(&uprobes_srcu)) {
1249 		if (con == uc) {
1250 			ret = register_for_each_vma(uprobe, add ? uc : NULL);
1251 			break;
1252 		}
1253 	}
1254 	srcu_read_unlock(&uprobes_srcu, srcu_idx);
1255 
1256 	up_write(&uprobe->register_rwsem);
1257 
1258 	return ret;
1259 }
1260 
1261 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1262 {
1263 	VMA_ITERATOR(vmi, mm, 0);
1264 	struct vm_area_struct *vma;
1265 	int err = 0;
1266 
1267 	mmap_read_lock(mm);
1268 	for_each_vma(vmi, vma) {
1269 		unsigned long vaddr;
1270 		loff_t offset;
1271 
1272 		if (!valid_vma(vma, false) ||
1273 		    file_inode(vma->vm_file) != uprobe->inode)
1274 			continue;
1275 
1276 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1277 		if (uprobe->offset <  offset ||
1278 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1279 			continue;
1280 
1281 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1282 		err |= remove_breakpoint(uprobe, mm, vaddr);
1283 	}
1284 	mmap_read_unlock(mm);
1285 
1286 	return err;
1287 }
1288 
1289 static struct rb_node *
1290 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1291 {
1292 	struct rb_node *n = uprobes_tree.rb_node;
1293 
1294 	while (n) {
1295 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1296 
1297 		if (inode < u->inode) {
1298 			n = n->rb_left;
1299 		} else if (inode > u->inode) {
1300 			n = n->rb_right;
1301 		} else {
1302 			if (max < u->offset)
1303 				n = n->rb_left;
1304 			else if (min > u->offset)
1305 				n = n->rb_right;
1306 			else
1307 				break;
1308 		}
1309 	}
1310 
1311 	return n;
1312 }
1313 
1314 /*
1315  * For a given range in vma, build a list of probes that need to be inserted.
1316  */
1317 static void build_probe_list(struct inode *inode,
1318 				struct vm_area_struct *vma,
1319 				unsigned long start, unsigned long end,
1320 				struct list_head *head)
1321 {
1322 	loff_t min, max;
1323 	struct rb_node *n, *t;
1324 	struct uprobe *u;
1325 
1326 	INIT_LIST_HEAD(head);
1327 	min = vaddr_to_offset(vma, start);
1328 	max = min + (end - start) - 1;
1329 
1330 	read_lock(&uprobes_treelock);
1331 	n = find_node_in_range(inode, min, max);
1332 	if (n) {
1333 		for (t = n; t; t = rb_prev(t)) {
1334 			u = rb_entry(t, struct uprobe, rb_node);
1335 			if (u->inode != inode || u->offset < min)
1336 				break;
1337 			/* if uprobe went away, it's safe to ignore it */
1338 			if (try_get_uprobe(u))
1339 				list_add(&u->pending_list, head);
1340 		}
1341 		for (t = n; (t = rb_next(t)); ) {
1342 			u = rb_entry(t, struct uprobe, rb_node);
1343 			if (u->inode != inode || u->offset > max)
1344 				break;
1345 			/* if uprobe went away, it's safe to ignore it */
1346 			if (try_get_uprobe(u))
1347 				list_add(&u->pending_list, head);
1348 		}
1349 	}
1350 	read_unlock(&uprobes_treelock);
1351 }
1352 
1353 /* @vma contains reference counter, not the probed instruction. */
1354 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1355 {
1356 	struct list_head *pos, *q;
1357 	struct delayed_uprobe *du;
1358 	unsigned long vaddr;
1359 	int ret = 0, err = 0;
1360 
1361 	mutex_lock(&delayed_uprobe_lock);
1362 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1363 		du = list_entry(pos, struct delayed_uprobe, list);
1364 
1365 		if (du->mm != vma->vm_mm ||
1366 		    !valid_ref_ctr_vma(du->uprobe, vma))
1367 			continue;
1368 
1369 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1370 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1371 		if (ret) {
1372 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1373 			if (!err)
1374 				err = ret;
1375 		}
1376 		delayed_uprobe_delete(du);
1377 	}
1378 	mutex_unlock(&delayed_uprobe_lock);
1379 	return err;
1380 }
1381 
1382 /*
1383  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1384  *
1385  * Currently we ignore all errors and always return 0, the callers
1386  * can't handle the failure anyway.
1387  */
1388 int uprobe_mmap(struct vm_area_struct *vma)
1389 {
1390 	struct list_head tmp_list;
1391 	struct uprobe *uprobe, *u;
1392 	struct inode *inode;
1393 
1394 	if (no_uprobe_events())
1395 		return 0;
1396 
1397 	if (vma->vm_file &&
1398 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1399 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1400 		delayed_ref_ctr_inc(vma);
1401 
1402 	if (!valid_vma(vma, true))
1403 		return 0;
1404 
1405 	inode = file_inode(vma->vm_file);
1406 	if (!inode)
1407 		return 0;
1408 
1409 	mutex_lock(uprobes_mmap_hash(inode));
1410 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1411 	/*
1412 	 * We can race with uprobe_unregister(), this uprobe can be already
1413 	 * removed. But in this case filter_chain() must return false, all
1414 	 * consumers have gone away.
1415 	 */
1416 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1417 		if (!fatal_signal_pending(current) &&
1418 		    filter_chain(uprobe, vma->vm_mm)) {
1419 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1420 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1421 		}
1422 		put_uprobe(uprobe);
1423 	}
1424 	mutex_unlock(uprobes_mmap_hash(inode));
1425 
1426 	return 0;
1427 }
1428 
1429 static bool
1430 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1431 {
1432 	loff_t min, max;
1433 	struct inode *inode;
1434 	struct rb_node *n;
1435 
1436 	inode = file_inode(vma->vm_file);
1437 
1438 	min = vaddr_to_offset(vma, start);
1439 	max = min + (end - start) - 1;
1440 
1441 	read_lock(&uprobes_treelock);
1442 	n = find_node_in_range(inode, min, max);
1443 	read_unlock(&uprobes_treelock);
1444 
1445 	return !!n;
1446 }
1447 
1448 /*
1449  * Called in context of a munmap of a vma.
1450  */
1451 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1452 {
1453 	if (no_uprobe_events() || !valid_vma(vma, false))
1454 		return;
1455 
1456 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1457 		return;
1458 
1459 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1460 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1461 		return;
1462 
1463 	if (vma_has_uprobes(vma, start, end))
1464 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1465 }
1466 
1467 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1468 			    struct vm_area_struct *vma, struct vm_fault *vmf)
1469 {
1470 	struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1471 
1472 	vmf->page = area->page;
1473 	get_page(vmf->page);
1474 	return 0;
1475 }
1476 
1477 static const struct vm_special_mapping xol_mapping = {
1478 	.name = "[uprobes]",
1479 	.fault = xol_fault,
1480 };
1481 
1482 /* Slot allocation for XOL */
1483 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1484 {
1485 	struct vm_area_struct *vma;
1486 	int ret;
1487 
1488 	if (mmap_write_lock_killable(mm))
1489 		return -EINTR;
1490 
1491 	if (mm->uprobes_state.xol_area) {
1492 		ret = -EALREADY;
1493 		goto fail;
1494 	}
1495 
1496 	if (!area->vaddr) {
1497 		/* Try to map as high as possible, this is only a hint. */
1498 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1499 						PAGE_SIZE, 0, 0);
1500 		if (IS_ERR_VALUE(area->vaddr)) {
1501 			ret = area->vaddr;
1502 			goto fail;
1503 		}
1504 	}
1505 
1506 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1507 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1508 				&xol_mapping);
1509 	if (IS_ERR(vma)) {
1510 		ret = PTR_ERR(vma);
1511 		goto fail;
1512 	}
1513 
1514 	ret = 0;
1515 	/* pairs with get_xol_area() */
1516 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1517  fail:
1518 	mmap_write_unlock(mm);
1519 
1520 	return ret;
1521 }
1522 
1523 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1524 {
1525 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1526 
1527 	*psize = UPROBE_SWBP_INSN_SIZE;
1528 	return &insn;
1529 }
1530 
1531 static struct xol_area *__create_xol_area(unsigned long vaddr)
1532 {
1533 	struct mm_struct *mm = current->mm;
1534 	unsigned long insns_size;
1535 	struct xol_area *area;
1536 	void *insns;
1537 
1538 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1539 	if (unlikely(!area))
1540 		goto out;
1541 
1542 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1543 			       GFP_KERNEL);
1544 	if (!area->bitmap)
1545 		goto free_area;
1546 
1547 	area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1548 	if (!area->page)
1549 		goto free_bitmap;
1550 
1551 	area->vaddr = vaddr;
1552 	init_waitqueue_head(&area->wq);
1553 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1554 	set_bit(0, area->bitmap);
1555 	atomic_set(&area->slot_count, 1);
1556 	insns = arch_uprobe_trampoline(&insns_size);
1557 	arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1558 
1559 	if (!xol_add_vma(mm, area))
1560 		return area;
1561 
1562 	__free_page(area->page);
1563  free_bitmap:
1564 	kfree(area->bitmap);
1565  free_area:
1566 	kfree(area);
1567  out:
1568 	return NULL;
1569 }
1570 
1571 /*
1572  * get_xol_area - Allocate process's xol_area if necessary.
1573  * This area will be used for storing instructions for execution out of line.
1574  *
1575  * Returns the allocated area or NULL.
1576  */
1577 static struct xol_area *get_xol_area(void)
1578 {
1579 	struct mm_struct *mm = current->mm;
1580 	struct xol_area *area;
1581 
1582 	if (!mm->uprobes_state.xol_area)
1583 		__create_xol_area(0);
1584 
1585 	/* Pairs with xol_add_vma() smp_store_release() */
1586 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1587 	return area;
1588 }
1589 
1590 /*
1591  * uprobe_clear_state - Free the area allocated for slots.
1592  */
1593 void uprobe_clear_state(struct mm_struct *mm)
1594 {
1595 	struct xol_area *area = mm->uprobes_state.xol_area;
1596 
1597 	mutex_lock(&delayed_uprobe_lock);
1598 	delayed_uprobe_remove(NULL, mm);
1599 	mutex_unlock(&delayed_uprobe_lock);
1600 
1601 	if (!area)
1602 		return;
1603 
1604 	put_page(area->page);
1605 	kfree(area->bitmap);
1606 	kfree(area);
1607 }
1608 
1609 void uprobe_start_dup_mmap(void)
1610 {
1611 	percpu_down_read(&dup_mmap_sem);
1612 }
1613 
1614 void uprobe_end_dup_mmap(void)
1615 {
1616 	percpu_up_read(&dup_mmap_sem);
1617 }
1618 
1619 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1620 {
1621 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1622 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1623 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1624 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1625 	}
1626 }
1627 
1628 /*
1629  *  - search for a free slot.
1630  */
1631 static unsigned long xol_take_insn_slot(struct xol_area *area)
1632 {
1633 	unsigned long slot_addr;
1634 	int slot_nr;
1635 
1636 	do {
1637 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1638 		if (slot_nr < UINSNS_PER_PAGE) {
1639 			if (!test_and_set_bit(slot_nr, area->bitmap))
1640 				break;
1641 
1642 			slot_nr = UINSNS_PER_PAGE;
1643 			continue;
1644 		}
1645 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1646 	} while (slot_nr >= UINSNS_PER_PAGE);
1647 
1648 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1649 	atomic_inc(&area->slot_count);
1650 
1651 	return slot_addr;
1652 }
1653 
1654 /*
1655  * xol_get_insn_slot - allocate a slot for xol.
1656  * Returns the allocated slot address or 0.
1657  */
1658 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1659 {
1660 	struct xol_area *area;
1661 	unsigned long xol_vaddr;
1662 
1663 	area = get_xol_area();
1664 	if (!area)
1665 		return 0;
1666 
1667 	xol_vaddr = xol_take_insn_slot(area);
1668 	if (unlikely(!xol_vaddr))
1669 		return 0;
1670 
1671 	arch_uprobe_copy_ixol(area->page, xol_vaddr,
1672 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1673 
1674 	return xol_vaddr;
1675 }
1676 
1677 /*
1678  * xol_free_insn_slot - If slot was earlier allocated by
1679  * @xol_get_insn_slot(), make the slot available for
1680  * subsequent requests.
1681  */
1682 static void xol_free_insn_slot(struct task_struct *tsk)
1683 {
1684 	struct xol_area *area;
1685 	unsigned long vma_end;
1686 	unsigned long slot_addr;
1687 
1688 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1689 		return;
1690 
1691 	slot_addr = tsk->utask->xol_vaddr;
1692 	if (unlikely(!slot_addr))
1693 		return;
1694 
1695 	area = tsk->mm->uprobes_state.xol_area;
1696 	vma_end = area->vaddr + PAGE_SIZE;
1697 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1698 		unsigned long offset;
1699 		int slot_nr;
1700 
1701 		offset = slot_addr - area->vaddr;
1702 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1703 		if (slot_nr >= UINSNS_PER_PAGE)
1704 			return;
1705 
1706 		clear_bit(slot_nr, area->bitmap);
1707 		atomic_dec(&area->slot_count);
1708 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1709 		if (waitqueue_active(&area->wq))
1710 			wake_up(&area->wq);
1711 
1712 		tsk->utask->xol_vaddr = 0;
1713 	}
1714 }
1715 
1716 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1717 				  void *src, unsigned long len)
1718 {
1719 	/* Initialize the slot */
1720 	copy_to_page(page, vaddr, src, len);
1721 
1722 	/*
1723 	 * We probably need flush_icache_user_page() but it needs vma.
1724 	 * This should work on most of architectures by default. If
1725 	 * architecture needs to do something different it can define
1726 	 * its own version of the function.
1727 	 */
1728 	flush_dcache_page(page);
1729 }
1730 
1731 /**
1732  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1733  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1734  * instruction.
1735  * Return the address of the breakpoint instruction.
1736  */
1737 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1738 {
1739 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1740 }
1741 
1742 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1743 {
1744 	struct uprobe_task *utask = current->utask;
1745 
1746 	if (unlikely(utask && utask->active_uprobe))
1747 		return utask->vaddr;
1748 
1749 	return instruction_pointer(regs);
1750 }
1751 
1752 static struct return_instance *free_ret_instance(struct return_instance *ri)
1753 {
1754 	struct return_instance *next = ri->next;
1755 	put_uprobe(ri->uprobe);
1756 	kfree(ri);
1757 	return next;
1758 }
1759 
1760 /*
1761  * Called with no locks held.
1762  * Called in context of an exiting or an exec-ing thread.
1763  */
1764 void uprobe_free_utask(struct task_struct *t)
1765 {
1766 	struct uprobe_task *utask = t->utask;
1767 	struct return_instance *ri;
1768 
1769 	if (!utask)
1770 		return;
1771 
1772 	if (utask->active_uprobe)
1773 		put_uprobe(utask->active_uprobe);
1774 
1775 	ri = utask->return_instances;
1776 	while (ri)
1777 		ri = free_ret_instance(ri);
1778 
1779 	xol_free_insn_slot(t);
1780 	kfree(utask);
1781 	t->utask = NULL;
1782 }
1783 
1784 /*
1785  * Allocate a uprobe_task object for the task if necessary.
1786  * Called when the thread hits a breakpoint.
1787  *
1788  * Returns:
1789  * - pointer to new uprobe_task on success
1790  * - NULL otherwise
1791  */
1792 static struct uprobe_task *get_utask(void)
1793 {
1794 	if (!current->utask)
1795 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1796 	return current->utask;
1797 }
1798 
1799 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1800 {
1801 	struct uprobe_task *n_utask;
1802 	struct return_instance **p, *o, *n;
1803 
1804 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1805 	if (!n_utask)
1806 		return -ENOMEM;
1807 	t->utask = n_utask;
1808 
1809 	p = &n_utask->return_instances;
1810 	for (o = o_utask->return_instances; o; o = o->next) {
1811 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1812 		if (!n)
1813 			return -ENOMEM;
1814 
1815 		*n = *o;
1816 		/*
1817 		 * uprobe's refcnt has to be positive at this point, kept by
1818 		 * utask->return_instances items; return_instances can't be
1819 		 * removed right now, as task is blocked due to duping; so
1820 		 * get_uprobe() is safe to use here.
1821 		 */
1822 		get_uprobe(n->uprobe);
1823 		n->next = NULL;
1824 
1825 		*p = n;
1826 		p = &n->next;
1827 		n_utask->depth++;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static void dup_xol_work(struct callback_head *work)
1834 {
1835 	if (current->flags & PF_EXITING)
1836 		return;
1837 
1838 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1839 			!fatal_signal_pending(current))
1840 		uprobe_warn(current, "dup xol area");
1841 }
1842 
1843 /*
1844  * Called in context of a new clone/fork from copy_process.
1845  */
1846 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1847 {
1848 	struct uprobe_task *utask = current->utask;
1849 	struct mm_struct *mm = current->mm;
1850 	struct xol_area *area;
1851 
1852 	t->utask = NULL;
1853 
1854 	if (!utask || !utask->return_instances)
1855 		return;
1856 
1857 	if (mm == t->mm && !(flags & CLONE_VFORK))
1858 		return;
1859 
1860 	if (dup_utask(t, utask))
1861 		return uprobe_warn(t, "dup ret instances");
1862 
1863 	/* The task can fork() after dup_xol_work() fails */
1864 	area = mm->uprobes_state.xol_area;
1865 	if (!area)
1866 		return uprobe_warn(t, "dup xol area");
1867 
1868 	if (mm == t->mm)
1869 		return;
1870 
1871 	t->utask->dup_xol_addr = area->vaddr;
1872 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1873 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1874 }
1875 
1876 /*
1877  * Current area->vaddr notion assume the trampoline address is always
1878  * equal area->vaddr.
1879  *
1880  * Returns -1 in case the xol_area is not allocated.
1881  */
1882 unsigned long uprobe_get_trampoline_vaddr(void)
1883 {
1884 	struct xol_area *area;
1885 	unsigned long trampoline_vaddr = -1;
1886 
1887 	/* Pairs with xol_add_vma() smp_store_release() */
1888 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1889 	if (area)
1890 		trampoline_vaddr = area->vaddr;
1891 
1892 	return trampoline_vaddr;
1893 }
1894 
1895 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1896 					struct pt_regs *regs)
1897 {
1898 	struct return_instance *ri = utask->return_instances;
1899 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1900 
1901 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1902 		ri = free_ret_instance(ri);
1903 		utask->depth--;
1904 	}
1905 	utask->return_instances = ri;
1906 }
1907 
1908 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1909 {
1910 	struct return_instance *ri;
1911 	struct uprobe_task *utask;
1912 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1913 	bool chained;
1914 
1915 	if (!get_xol_area())
1916 		return;
1917 
1918 	utask = get_utask();
1919 	if (!utask)
1920 		return;
1921 
1922 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1923 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1924 				" nestedness limit pid/tgid=%d/%d\n",
1925 				current->pid, current->tgid);
1926 		return;
1927 	}
1928 
1929 	/* we need to bump refcount to store uprobe in utask */
1930 	if (!try_get_uprobe(uprobe))
1931 		return;
1932 
1933 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1934 	if (!ri)
1935 		goto fail;
1936 
1937 	trampoline_vaddr = uprobe_get_trampoline_vaddr();
1938 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1939 	if (orig_ret_vaddr == -1)
1940 		goto fail;
1941 
1942 	/* drop the entries invalidated by longjmp() */
1943 	chained = (orig_ret_vaddr == trampoline_vaddr);
1944 	cleanup_return_instances(utask, chained, regs);
1945 
1946 	/*
1947 	 * We don't want to keep trampoline address in stack, rather keep the
1948 	 * original return address of first caller thru all the consequent
1949 	 * instances. This also makes breakpoint unwrapping easier.
1950 	 */
1951 	if (chained) {
1952 		if (!utask->return_instances) {
1953 			/*
1954 			 * This situation is not possible. Likely we have an
1955 			 * attack from user-space.
1956 			 */
1957 			uprobe_warn(current, "handle tail call");
1958 			goto fail;
1959 		}
1960 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1961 	}
1962 	ri->uprobe = uprobe;
1963 	ri->func = instruction_pointer(regs);
1964 	ri->stack = user_stack_pointer(regs);
1965 	ri->orig_ret_vaddr = orig_ret_vaddr;
1966 	ri->chained = chained;
1967 
1968 	utask->depth++;
1969 	ri->next = utask->return_instances;
1970 	utask->return_instances = ri;
1971 
1972 	return;
1973 fail:
1974 	kfree(ri);
1975 	put_uprobe(uprobe);
1976 }
1977 
1978 /* Prepare to single-step probed instruction out of line. */
1979 static int
1980 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1981 {
1982 	struct uprobe_task *utask;
1983 	unsigned long xol_vaddr;
1984 	int err;
1985 
1986 	utask = get_utask();
1987 	if (!utask)
1988 		return -ENOMEM;
1989 
1990 	if (!try_get_uprobe(uprobe))
1991 		return -EINVAL;
1992 
1993 	xol_vaddr = xol_get_insn_slot(uprobe);
1994 	if (!xol_vaddr) {
1995 		err = -ENOMEM;
1996 		goto err_out;
1997 	}
1998 
1999 	utask->xol_vaddr = xol_vaddr;
2000 	utask->vaddr = bp_vaddr;
2001 
2002 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2003 	if (unlikely(err)) {
2004 		xol_free_insn_slot(current);
2005 		goto err_out;
2006 	}
2007 
2008 	utask->active_uprobe = uprobe;
2009 	utask->state = UTASK_SSTEP;
2010 	return 0;
2011 err_out:
2012 	put_uprobe(uprobe);
2013 	return err;
2014 }
2015 
2016 /*
2017  * If we are singlestepping, then ensure this thread is not connected to
2018  * non-fatal signals until completion of singlestep.  When xol insn itself
2019  * triggers the signal,  restart the original insn even if the task is
2020  * already SIGKILL'ed (since coredump should report the correct ip).  This
2021  * is even more important if the task has a handler for SIGSEGV/etc, The
2022  * _same_ instruction should be repeated again after return from the signal
2023  * handler, and SSTEP can never finish in this case.
2024  */
2025 bool uprobe_deny_signal(void)
2026 {
2027 	struct task_struct *t = current;
2028 	struct uprobe_task *utask = t->utask;
2029 
2030 	if (likely(!utask || !utask->active_uprobe))
2031 		return false;
2032 
2033 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2034 
2035 	if (task_sigpending(t)) {
2036 		spin_lock_irq(&t->sighand->siglock);
2037 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
2038 		spin_unlock_irq(&t->sighand->siglock);
2039 
2040 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2041 			utask->state = UTASK_SSTEP_TRAPPED;
2042 			set_tsk_thread_flag(t, TIF_UPROBE);
2043 		}
2044 	}
2045 
2046 	return true;
2047 }
2048 
2049 static void mmf_recalc_uprobes(struct mm_struct *mm)
2050 {
2051 	VMA_ITERATOR(vmi, mm, 0);
2052 	struct vm_area_struct *vma;
2053 
2054 	for_each_vma(vmi, vma) {
2055 		if (!valid_vma(vma, false))
2056 			continue;
2057 		/*
2058 		 * This is not strictly accurate, we can race with
2059 		 * uprobe_unregister() and see the already removed
2060 		 * uprobe if delete_uprobe() was not yet called.
2061 		 * Or this uprobe can be filtered out.
2062 		 */
2063 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2064 			return;
2065 	}
2066 
2067 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2068 }
2069 
2070 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2071 {
2072 	struct page *page;
2073 	uprobe_opcode_t opcode;
2074 	int result;
2075 
2076 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2077 		return -EINVAL;
2078 
2079 	pagefault_disable();
2080 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2081 	pagefault_enable();
2082 
2083 	if (likely(result == 0))
2084 		goto out;
2085 
2086 	result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2087 	if (result < 0)
2088 		return result;
2089 
2090 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2091 	put_page(page);
2092  out:
2093 	/* This needs to return true for any variant of the trap insn */
2094 	return is_trap_insn(&opcode);
2095 }
2096 
2097 /* assumes being inside RCU protected region */
2098 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2099 {
2100 	struct mm_struct *mm = current->mm;
2101 	struct uprobe *uprobe = NULL;
2102 	struct vm_area_struct *vma;
2103 
2104 	mmap_read_lock(mm);
2105 	vma = vma_lookup(mm, bp_vaddr);
2106 	if (vma) {
2107 		if (valid_vma(vma, false)) {
2108 			struct inode *inode = file_inode(vma->vm_file);
2109 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2110 
2111 			uprobe = find_uprobe_rcu(inode, offset);
2112 		}
2113 
2114 		if (!uprobe)
2115 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2116 	} else {
2117 		*is_swbp = -EFAULT;
2118 	}
2119 
2120 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2121 		mmf_recalc_uprobes(mm);
2122 	mmap_read_unlock(mm);
2123 
2124 	return uprobe;
2125 }
2126 
2127 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2128 {
2129 	struct uprobe_consumer *uc;
2130 	int remove = UPROBE_HANDLER_REMOVE;
2131 	bool need_prep = false; /* prepare return uprobe, when needed */
2132 	bool has_consumers = false;
2133 
2134 	current->utask->auprobe = &uprobe->arch;
2135 
2136 	list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
2137 				 srcu_read_lock_held(&uprobes_srcu)) {
2138 		int rc = 0;
2139 
2140 		if (uc->handler) {
2141 			rc = uc->handler(uc, regs);
2142 			WARN(rc & ~UPROBE_HANDLER_MASK,
2143 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2144 		}
2145 
2146 		if (uc->ret_handler)
2147 			need_prep = true;
2148 
2149 		remove &= rc;
2150 		has_consumers = true;
2151 	}
2152 	current->utask->auprobe = NULL;
2153 
2154 	if (need_prep && !remove)
2155 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2156 
2157 	if (remove && has_consumers) {
2158 		down_read(&uprobe->register_rwsem);
2159 
2160 		/* re-check that removal is still required, this time under lock */
2161 		if (!filter_chain(uprobe, current->mm)) {
2162 			WARN_ON(!uprobe_is_active(uprobe));
2163 			unapply_uprobe(uprobe, current->mm);
2164 		}
2165 
2166 		up_read(&uprobe->register_rwsem);
2167 	}
2168 }
2169 
2170 static void
2171 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2172 {
2173 	struct uprobe *uprobe = ri->uprobe;
2174 	struct uprobe_consumer *uc;
2175 	int srcu_idx;
2176 
2177 	srcu_idx = srcu_read_lock(&uprobes_srcu);
2178 	list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
2179 				 srcu_read_lock_held(&uprobes_srcu)) {
2180 		if (uc->ret_handler)
2181 			uc->ret_handler(uc, ri->func, regs);
2182 	}
2183 	srcu_read_unlock(&uprobes_srcu, srcu_idx);
2184 }
2185 
2186 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2187 {
2188 	bool chained;
2189 
2190 	do {
2191 		chained = ri->chained;
2192 		ri = ri->next;	/* can't be NULL if chained */
2193 	} while (chained);
2194 
2195 	return ri;
2196 }
2197 
2198 void uprobe_handle_trampoline(struct pt_regs *regs)
2199 {
2200 	struct uprobe_task *utask;
2201 	struct return_instance *ri, *next;
2202 	bool valid;
2203 
2204 	utask = current->utask;
2205 	if (!utask)
2206 		goto sigill;
2207 
2208 	ri = utask->return_instances;
2209 	if (!ri)
2210 		goto sigill;
2211 
2212 	do {
2213 		/*
2214 		 * We should throw out the frames invalidated by longjmp().
2215 		 * If this chain is valid, then the next one should be alive
2216 		 * or NULL; the latter case means that nobody but ri->func
2217 		 * could hit this trampoline on return. TODO: sigaltstack().
2218 		 */
2219 		next = find_next_ret_chain(ri);
2220 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2221 
2222 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2223 		do {
2224 			/* pop current instance from the stack of pending return instances,
2225 			 * as it's not pending anymore: we just fixed up original
2226 			 * instruction pointer in regs and are about to call handlers;
2227 			 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2228 			 * captured stack traces from uretprobe handlers, in which pending
2229 			 * trampoline addresses on the stack are replaced with correct
2230 			 * original return addresses
2231 			 */
2232 			utask->return_instances = ri->next;
2233 			if (valid)
2234 				handle_uretprobe_chain(ri, regs);
2235 			ri = free_ret_instance(ri);
2236 			utask->depth--;
2237 		} while (ri != next);
2238 	} while (!valid);
2239 
2240 	utask->return_instances = ri;
2241 	return;
2242 
2243  sigill:
2244 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2245 	force_sig(SIGILL);
2246 
2247 }
2248 
2249 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2250 {
2251 	return false;
2252 }
2253 
2254 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2255 					struct pt_regs *regs)
2256 {
2257 	return true;
2258 }
2259 
2260 /*
2261  * Run handler and ask thread to singlestep.
2262  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2263  */
2264 static void handle_swbp(struct pt_regs *regs)
2265 {
2266 	struct uprobe *uprobe;
2267 	unsigned long bp_vaddr;
2268 	int is_swbp, srcu_idx;
2269 
2270 	bp_vaddr = uprobe_get_swbp_addr(regs);
2271 	if (bp_vaddr == uprobe_get_trampoline_vaddr())
2272 		return uprobe_handle_trampoline(regs);
2273 
2274 	srcu_idx = srcu_read_lock(&uprobes_srcu);
2275 
2276 	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2277 	if (!uprobe) {
2278 		if (is_swbp > 0) {
2279 			/* No matching uprobe; signal SIGTRAP. */
2280 			force_sig(SIGTRAP);
2281 		} else {
2282 			/*
2283 			 * Either we raced with uprobe_unregister() or we can't
2284 			 * access this memory. The latter is only possible if
2285 			 * another thread plays with our ->mm. In both cases
2286 			 * we can simply restart. If this vma was unmapped we
2287 			 * can pretend this insn was not executed yet and get
2288 			 * the (correct) SIGSEGV after restart.
2289 			 */
2290 			instruction_pointer_set(regs, bp_vaddr);
2291 		}
2292 		goto out;
2293 	}
2294 
2295 	/* change it in advance for ->handler() and restart */
2296 	instruction_pointer_set(regs, bp_vaddr);
2297 
2298 	/*
2299 	 * TODO: move copy_insn/etc into _register and remove this hack.
2300 	 * After we hit the bp, _unregister + _register can install the
2301 	 * new and not-yet-analyzed uprobe at the same address, restart.
2302 	 */
2303 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2304 		goto out;
2305 
2306 	/*
2307 	 * Pairs with the smp_wmb() in prepare_uprobe().
2308 	 *
2309 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2310 	 * we must also see the stores to &uprobe->arch performed by the
2311 	 * prepare_uprobe() call.
2312 	 */
2313 	smp_rmb();
2314 
2315 	/* Tracing handlers use ->utask to communicate with fetch methods */
2316 	if (!get_utask())
2317 		goto out;
2318 
2319 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2320 		goto out;
2321 
2322 	handler_chain(uprobe, regs);
2323 
2324 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2325 		goto out;
2326 
2327 	if (pre_ssout(uprobe, regs, bp_vaddr))
2328 		goto out;
2329 
2330 out:
2331 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2332 	srcu_read_unlock(&uprobes_srcu, srcu_idx);
2333 }
2334 
2335 /*
2336  * Perform required fix-ups and disable singlestep.
2337  * Allow pending signals to take effect.
2338  */
2339 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2340 {
2341 	struct uprobe *uprobe;
2342 	int err = 0;
2343 
2344 	uprobe = utask->active_uprobe;
2345 	if (utask->state == UTASK_SSTEP_ACK)
2346 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2347 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2348 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2349 	else
2350 		WARN_ON_ONCE(1);
2351 
2352 	put_uprobe(uprobe);
2353 	utask->active_uprobe = NULL;
2354 	utask->state = UTASK_RUNNING;
2355 	xol_free_insn_slot(current);
2356 
2357 	spin_lock_irq(&current->sighand->siglock);
2358 	recalc_sigpending(); /* see uprobe_deny_signal() */
2359 	spin_unlock_irq(&current->sighand->siglock);
2360 
2361 	if (unlikely(err)) {
2362 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2363 		force_sig(SIGILL);
2364 	}
2365 }
2366 
2367 /*
2368  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2369  * allows the thread to return from interrupt. After that handle_swbp()
2370  * sets utask->active_uprobe.
2371  *
2372  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2373  * and allows the thread to return from interrupt.
2374  *
2375  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2376  * uprobe_notify_resume().
2377  */
2378 void uprobe_notify_resume(struct pt_regs *regs)
2379 {
2380 	struct uprobe_task *utask;
2381 
2382 	clear_thread_flag(TIF_UPROBE);
2383 
2384 	utask = current->utask;
2385 	if (utask && utask->active_uprobe)
2386 		handle_singlestep(utask, regs);
2387 	else
2388 		handle_swbp(regs);
2389 }
2390 
2391 /*
2392  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2393  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2394  */
2395 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2396 {
2397 	if (!current->mm)
2398 		return 0;
2399 
2400 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2401 	    (!current->utask || !current->utask->return_instances))
2402 		return 0;
2403 
2404 	set_thread_flag(TIF_UPROBE);
2405 	return 1;
2406 }
2407 
2408 /*
2409  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2410  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2411  */
2412 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2413 {
2414 	struct uprobe_task *utask = current->utask;
2415 
2416 	if (!current->mm || !utask || !utask->active_uprobe)
2417 		/* task is currently not uprobed */
2418 		return 0;
2419 
2420 	utask->state = UTASK_SSTEP_ACK;
2421 	set_thread_flag(TIF_UPROBE);
2422 	return 1;
2423 }
2424 
2425 static struct notifier_block uprobe_exception_nb = {
2426 	.notifier_call		= arch_uprobe_exception_notify,
2427 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2428 };
2429 
2430 void __init uprobes_init(void)
2431 {
2432 	int i;
2433 
2434 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2435 		mutex_init(&uprobes_mmap_mutex[i]);
2436 
2437 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2438 }
2439