1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> 22 #include <linux/swap.h> /* folio_free_swap */ 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include <linux/percpu-rwsem.h> 26 #include <linux/task_work.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/khugepaged.h> 29 30 #include <linux/uprobes.h> 31 32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 34 35 static struct rb_root uprobes_tree = RB_ROOT; 36 /* 37 * allows us to skip the uprobe_mmap if there are no uprobe events active 38 * at this time. Probably a fine grained per inode count is better? 39 */ 40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 41 42 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ 43 44 #define UPROBES_HASH_SZ 13 45 /* serialize uprobe->pending_list */ 46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 48 49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 50 51 /* Have a copy of original instruction */ 52 #define UPROBE_COPY_INSN 0 53 54 struct uprobe { 55 struct rb_node rb_node; /* node in the rb tree */ 56 refcount_t ref; 57 struct rw_semaphore register_rwsem; 58 struct rw_semaphore consumer_rwsem; 59 struct list_head pending_list; 60 struct uprobe_consumer *consumers; 61 struct inode *inode; /* Also hold a ref to inode */ 62 loff_t offset; 63 loff_t ref_ctr_offset; 64 unsigned long flags; 65 66 /* 67 * The generic code assumes that it has two members of unknown type 68 * owned by the arch-specific code: 69 * 70 * insn - copy_insn() saves the original instruction here for 71 * arch_uprobe_analyze_insn(). 72 * 73 * ixol - potentially modified instruction to execute out of 74 * line, copied to xol_area by xol_get_insn_slot(). 75 */ 76 struct arch_uprobe arch; 77 }; 78 79 struct delayed_uprobe { 80 struct list_head list; 81 struct uprobe *uprobe; 82 struct mm_struct *mm; 83 }; 84 85 static DEFINE_MUTEX(delayed_uprobe_lock); 86 static LIST_HEAD(delayed_uprobe_list); 87 88 /* 89 * Execute out of line area: anonymous executable mapping installed 90 * by the probed task to execute the copy of the original instruction 91 * mangled by set_swbp(). 92 * 93 * On a breakpoint hit, thread contests for a slot. It frees the 94 * slot after singlestep. Currently a fixed number of slots are 95 * allocated. 96 */ 97 struct xol_area { 98 wait_queue_head_t wq; /* if all slots are busy */ 99 atomic_t slot_count; /* number of in-use slots */ 100 unsigned long *bitmap; /* 0 = free slot */ 101 102 struct vm_special_mapping xol_mapping; 103 struct page *pages[2]; 104 /* 105 * We keep the vma's vm_start rather than a pointer to the vma 106 * itself. The probed process or a naughty kernel module could make 107 * the vma go away, and we must handle that reasonably gracefully. 108 */ 109 unsigned long vaddr; /* Page(s) of instruction slots */ 110 }; 111 112 /* 113 * valid_vma: Verify if the specified vma is an executable vma 114 * Relax restrictions while unregistering: vm_flags might have 115 * changed after breakpoint was inserted. 116 * - is_register: indicates if we are in register context. 117 * - Return 1 if the specified virtual address is in an 118 * executable vma. 119 */ 120 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 121 { 122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 123 124 if (is_register) 125 flags |= VM_WRITE; 126 127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 128 } 129 130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 131 { 132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 133 } 134 135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 136 { 137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 138 } 139 140 /** 141 * __replace_page - replace page in vma by new page. 142 * based on replace_page in mm/ksm.c 143 * 144 * @vma: vma that holds the pte pointing to page 145 * @addr: address the old @page is mapped at 146 * @old_page: the page we are replacing by new_page 147 * @new_page: the modified page we replace page by 148 * 149 * If @new_page is NULL, only unmap @old_page. 150 * 151 * Returns 0 on success, negative error code otherwise. 152 */ 153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 154 struct page *old_page, struct page *new_page) 155 { 156 struct folio *old_folio = page_folio(old_page); 157 struct folio *new_folio; 158 struct mm_struct *mm = vma->vm_mm; 159 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 160 int err; 161 struct mmu_notifier_range range; 162 163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 164 addr + PAGE_SIZE); 165 166 if (new_page) { 167 new_folio = page_folio(new_page); 168 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 169 if (err) 170 return err; 171 } 172 173 /* For folio_free_swap() below */ 174 folio_lock(old_folio); 175 176 mmu_notifier_invalidate_range_start(&range); 177 err = -EAGAIN; 178 if (!page_vma_mapped_walk(&pvmw)) 179 goto unlock; 180 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 181 182 if (new_page) { 183 folio_get(new_folio); 184 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE); 185 folio_add_lru_vma(new_folio, vma); 186 } else 187 /* no new page, just dec_mm_counter for old_page */ 188 dec_mm_counter(mm, MM_ANONPAGES); 189 190 if (!folio_test_anon(old_folio)) { 191 dec_mm_counter(mm, mm_counter_file(old_folio)); 192 inc_mm_counter(mm, MM_ANONPAGES); 193 } 194 195 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte))); 196 ptep_clear_flush(vma, addr, pvmw.pte); 197 if (new_page) 198 set_pte_at(mm, addr, pvmw.pte, 199 mk_pte(new_page, vma->vm_page_prot)); 200 201 folio_remove_rmap_pte(old_folio, old_page, vma); 202 if (!folio_mapped(old_folio)) 203 folio_free_swap(old_folio); 204 page_vma_mapped_walk_done(&pvmw); 205 folio_put(old_folio); 206 207 err = 0; 208 unlock: 209 mmu_notifier_invalidate_range_end(&range); 210 folio_unlock(old_folio); 211 return err; 212 } 213 214 /** 215 * is_swbp_insn - check if instruction is breakpoint instruction. 216 * @insn: instruction to be checked. 217 * Default implementation of is_swbp_insn 218 * Returns true if @insn is a breakpoint instruction. 219 */ 220 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 221 { 222 return *insn == UPROBE_SWBP_INSN; 223 } 224 225 /** 226 * is_trap_insn - check if instruction is breakpoint instruction. 227 * @insn: instruction to be checked. 228 * Default implementation of is_trap_insn 229 * Returns true if @insn is a breakpoint instruction. 230 * 231 * This function is needed for the case where an architecture has multiple 232 * trap instructions (like powerpc). 233 */ 234 bool __weak is_trap_insn(uprobe_opcode_t *insn) 235 { 236 return is_swbp_insn(insn); 237 } 238 239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 240 { 241 void *kaddr = kmap_atomic(page); 242 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 243 kunmap_atomic(kaddr); 244 } 245 246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 247 { 248 void *kaddr = kmap_atomic(page); 249 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 250 kunmap_atomic(kaddr); 251 } 252 253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 254 { 255 uprobe_opcode_t old_opcode; 256 bool is_swbp; 257 258 /* 259 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 260 * We do not check if it is any other 'trap variant' which could 261 * be conditional trap instruction such as the one powerpc supports. 262 * 263 * The logic is that we do not care if the underlying instruction 264 * is a trap variant; uprobes always wins over any other (gdb) 265 * breakpoint. 266 */ 267 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 268 is_swbp = is_swbp_insn(&old_opcode); 269 270 if (is_swbp_insn(new_opcode)) { 271 if (is_swbp) /* register: already installed? */ 272 return 0; 273 } else { 274 if (!is_swbp) /* unregister: was it changed by us? */ 275 return 0; 276 } 277 278 return 1; 279 } 280 281 static struct delayed_uprobe * 282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 283 { 284 struct delayed_uprobe *du; 285 286 list_for_each_entry(du, &delayed_uprobe_list, list) 287 if (du->uprobe == uprobe && du->mm == mm) 288 return du; 289 return NULL; 290 } 291 292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 293 { 294 struct delayed_uprobe *du; 295 296 if (delayed_uprobe_check(uprobe, mm)) 297 return 0; 298 299 du = kzalloc(sizeof(*du), GFP_KERNEL); 300 if (!du) 301 return -ENOMEM; 302 303 du->uprobe = uprobe; 304 du->mm = mm; 305 list_add(&du->list, &delayed_uprobe_list); 306 return 0; 307 } 308 309 static void delayed_uprobe_delete(struct delayed_uprobe *du) 310 { 311 if (WARN_ON(!du)) 312 return; 313 list_del(&du->list); 314 kfree(du); 315 } 316 317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 318 { 319 struct list_head *pos, *q; 320 struct delayed_uprobe *du; 321 322 if (!uprobe && !mm) 323 return; 324 325 list_for_each_safe(pos, q, &delayed_uprobe_list) { 326 du = list_entry(pos, struct delayed_uprobe, list); 327 328 if (uprobe && du->uprobe != uprobe) 329 continue; 330 if (mm && du->mm != mm) 331 continue; 332 333 delayed_uprobe_delete(du); 334 } 335 } 336 337 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 338 struct vm_area_struct *vma) 339 { 340 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 341 342 return uprobe->ref_ctr_offset && 343 vma->vm_file && 344 file_inode(vma->vm_file) == uprobe->inode && 345 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 346 vma->vm_start <= vaddr && 347 vma->vm_end > vaddr; 348 } 349 350 static struct vm_area_struct * 351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 352 { 353 VMA_ITERATOR(vmi, mm, 0); 354 struct vm_area_struct *tmp; 355 356 for_each_vma(vmi, tmp) 357 if (valid_ref_ctr_vma(uprobe, tmp)) 358 return tmp; 359 360 return NULL; 361 } 362 363 static int 364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 365 { 366 void *kaddr; 367 struct page *page; 368 int ret; 369 short *ptr; 370 371 if (!vaddr || !d) 372 return -EINVAL; 373 374 ret = get_user_pages_remote(mm, vaddr, 1, 375 FOLL_WRITE, &page, NULL); 376 if (unlikely(ret <= 0)) { 377 /* 378 * We are asking for 1 page. If get_user_pages_remote() fails, 379 * it may return 0, in that case we have to return error. 380 */ 381 return ret == 0 ? -EBUSY : ret; 382 } 383 384 kaddr = kmap_atomic(page); 385 ptr = kaddr + (vaddr & ~PAGE_MASK); 386 387 if (unlikely(*ptr + d < 0)) { 388 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 389 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 390 ret = -EINVAL; 391 goto out; 392 } 393 394 *ptr += d; 395 ret = 0; 396 out: 397 kunmap_atomic(kaddr); 398 put_page(page); 399 return ret; 400 } 401 402 static void update_ref_ctr_warn(struct uprobe *uprobe, 403 struct mm_struct *mm, short d) 404 { 405 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 406 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 407 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 408 (unsigned long long) uprobe->offset, 409 (unsigned long long) uprobe->ref_ctr_offset, mm); 410 } 411 412 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 413 short d) 414 { 415 struct vm_area_struct *rc_vma; 416 unsigned long rc_vaddr; 417 int ret = 0; 418 419 rc_vma = find_ref_ctr_vma(uprobe, mm); 420 421 if (rc_vma) { 422 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 423 ret = __update_ref_ctr(mm, rc_vaddr, d); 424 if (ret) 425 update_ref_ctr_warn(uprobe, mm, d); 426 427 if (d > 0) 428 return ret; 429 } 430 431 mutex_lock(&delayed_uprobe_lock); 432 if (d > 0) 433 ret = delayed_uprobe_add(uprobe, mm); 434 else 435 delayed_uprobe_remove(uprobe, mm); 436 mutex_unlock(&delayed_uprobe_lock); 437 438 return ret; 439 } 440 441 /* 442 * NOTE: 443 * Expect the breakpoint instruction to be the smallest size instruction for 444 * the architecture. If an arch has variable length instruction and the 445 * breakpoint instruction is not of the smallest length instruction 446 * supported by that architecture then we need to modify is_trap_at_addr and 447 * uprobe_write_opcode accordingly. This would never be a problem for archs 448 * that have fixed length instructions. 449 * 450 * uprobe_write_opcode - write the opcode at a given virtual address. 451 * @auprobe: arch specific probepoint information. 452 * @mm: the probed process address space. 453 * @vaddr: the virtual address to store the opcode. 454 * @opcode: opcode to be written at @vaddr. 455 * 456 * Called with mm->mmap_lock held for write. 457 * Return 0 (success) or a negative errno. 458 */ 459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 460 unsigned long vaddr, uprobe_opcode_t opcode) 461 { 462 struct uprobe *uprobe; 463 struct page *old_page, *new_page; 464 struct vm_area_struct *vma; 465 int ret, is_register, ref_ctr_updated = 0; 466 bool orig_page_huge = false; 467 unsigned int gup_flags = FOLL_FORCE; 468 469 is_register = is_swbp_insn(&opcode); 470 uprobe = container_of(auprobe, struct uprobe, arch); 471 472 retry: 473 if (is_register) 474 gup_flags |= FOLL_SPLIT_PMD; 475 /* Read the page with vaddr into memory */ 476 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); 477 if (IS_ERR(old_page)) 478 return PTR_ERR(old_page); 479 480 ret = verify_opcode(old_page, vaddr, &opcode); 481 if (ret <= 0) 482 goto put_old; 483 484 if (WARN(!is_register && PageCompound(old_page), 485 "uprobe unregister should never work on compound page\n")) { 486 ret = -EINVAL; 487 goto put_old; 488 } 489 490 /* We are going to replace instruction, update ref_ctr. */ 491 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 492 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 493 if (ret) 494 goto put_old; 495 496 ref_ctr_updated = 1; 497 } 498 499 ret = 0; 500 if (!is_register && !PageAnon(old_page)) 501 goto put_old; 502 503 ret = anon_vma_prepare(vma); 504 if (ret) 505 goto put_old; 506 507 ret = -ENOMEM; 508 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 509 if (!new_page) 510 goto put_old; 511 512 __SetPageUptodate(new_page); 513 copy_highpage(new_page, old_page); 514 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 515 516 if (!is_register) { 517 struct page *orig_page; 518 pgoff_t index; 519 520 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 521 522 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 523 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 524 index); 525 526 if (orig_page) { 527 if (PageUptodate(orig_page) && 528 pages_identical(new_page, orig_page)) { 529 /* let go new_page */ 530 put_page(new_page); 531 new_page = NULL; 532 533 if (PageCompound(orig_page)) 534 orig_page_huge = true; 535 } 536 put_page(orig_page); 537 } 538 } 539 540 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page); 541 if (new_page) 542 put_page(new_page); 543 put_old: 544 put_page(old_page); 545 546 if (unlikely(ret == -EAGAIN)) 547 goto retry; 548 549 /* Revert back reference counter if instruction update failed. */ 550 if (ret && is_register && ref_ctr_updated) 551 update_ref_ctr(uprobe, mm, -1); 552 553 /* try collapse pmd for compound page */ 554 if (!ret && orig_page_huge) 555 collapse_pte_mapped_thp(mm, vaddr, false); 556 557 return ret; 558 } 559 560 /** 561 * set_swbp - store breakpoint at a given address. 562 * @auprobe: arch specific probepoint information. 563 * @mm: the probed process address space. 564 * @vaddr: the virtual address to insert the opcode. 565 * 566 * For mm @mm, store the breakpoint instruction at @vaddr. 567 * Return 0 (success) or a negative errno. 568 */ 569 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 570 { 571 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 572 } 573 574 /** 575 * set_orig_insn - Restore the original instruction. 576 * @mm: the probed process address space. 577 * @auprobe: arch specific probepoint information. 578 * @vaddr: the virtual address to insert the opcode. 579 * 580 * For mm @mm, restore the original opcode (opcode) at @vaddr. 581 * Return 0 (success) or a negative errno. 582 */ 583 int __weak 584 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 585 { 586 return uprobe_write_opcode(auprobe, mm, vaddr, 587 *(uprobe_opcode_t *)&auprobe->insn); 588 } 589 590 static struct uprobe *get_uprobe(struct uprobe *uprobe) 591 { 592 refcount_inc(&uprobe->ref); 593 return uprobe; 594 } 595 596 static void put_uprobe(struct uprobe *uprobe) 597 { 598 if (refcount_dec_and_test(&uprobe->ref)) { 599 /* 600 * If application munmap(exec_vma) before uprobe_unregister() 601 * gets called, we don't get a chance to remove uprobe from 602 * delayed_uprobe_list from remove_breakpoint(). Do it here. 603 */ 604 mutex_lock(&delayed_uprobe_lock); 605 delayed_uprobe_remove(uprobe, NULL); 606 mutex_unlock(&delayed_uprobe_lock); 607 kfree(uprobe); 608 } 609 } 610 611 static __always_inline 612 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 613 const struct uprobe *r) 614 { 615 if (l_inode < r->inode) 616 return -1; 617 618 if (l_inode > r->inode) 619 return 1; 620 621 if (l_offset < r->offset) 622 return -1; 623 624 if (l_offset > r->offset) 625 return 1; 626 627 return 0; 628 } 629 630 #define __node_2_uprobe(node) \ 631 rb_entry((node), struct uprobe, rb_node) 632 633 struct __uprobe_key { 634 struct inode *inode; 635 loff_t offset; 636 }; 637 638 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 639 { 640 const struct __uprobe_key *a = key; 641 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 642 } 643 644 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 645 { 646 struct uprobe *u = __node_2_uprobe(a); 647 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 648 } 649 650 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 651 { 652 struct __uprobe_key key = { 653 .inode = inode, 654 .offset = offset, 655 }; 656 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 657 658 if (node) 659 return get_uprobe(__node_2_uprobe(node)); 660 661 return NULL; 662 } 663 664 /* 665 * Find a uprobe corresponding to a given inode:offset 666 * Acquires uprobes_treelock 667 */ 668 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 669 { 670 struct uprobe *uprobe; 671 672 read_lock(&uprobes_treelock); 673 uprobe = __find_uprobe(inode, offset); 674 read_unlock(&uprobes_treelock); 675 676 return uprobe; 677 } 678 679 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 680 { 681 struct rb_node *node; 682 683 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 684 if (node) 685 return get_uprobe(__node_2_uprobe(node)); 686 687 /* get access + creation ref */ 688 refcount_set(&uprobe->ref, 2); 689 return NULL; 690 } 691 692 /* 693 * Acquire uprobes_treelock. 694 * Matching uprobe already exists in rbtree; 695 * increment (access refcount) and return the matching uprobe. 696 * 697 * No matching uprobe; insert the uprobe in rb_tree; 698 * get a double refcount (access + creation) and return NULL. 699 */ 700 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 701 { 702 struct uprobe *u; 703 704 write_lock(&uprobes_treelock); 705 u = __insert_uprobe(uprobe); 706 write_unlock(&uprobes_treelock); 707 708 return u; 709 } 710 711 static void 712 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 713 { 714 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 715 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 716 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 717 (unsigned long long) cur_uprobe->ref_ctr_offset, 718 (unsigned long long) uprobe->ref_ctr_offset); 719 } 720 721 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 722 loff_t ref_ctr_offset) 723 { 724 struct uprobe *uprobe, *cur_uprobe; 725 726 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 727 if (!uprobe) 728 return NULL; 729 730 uprobe->inode = inode; 731 uprobe->offset = offset; 732 uprobe->ref_ctr_offset = ref_ctr_offset; 733 init_rwsem(&uprobe->register_rwsem); 734 init_rwsem(&uprobe->consumer_rwsem); 735 736 /* add to uprobes_tree, sorted on inode:offset */ 737 cur_uprobe = insert_uprobe(uprobe); 738 /* a uprobe exists for this inode:offset combination */ 739 if (cur_uprobe) { 740 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 741 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 742 put_uprobe(cur_uprobe); 743 kfree(uprobe); 744 return ERR_PTR(-EINVAL); 745 } 746 kfree(uprobe); 747 uprobe = cur_uprobe; 748 } 749 750 return uprobe; 751 } 752 753 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 754 { 755 down_write(&uprobe->consumer_rwsem); 756 uc->next = uprobe->consumers; 757 uprobe->consumers = uc; 758 up_write(&uprobe->consumer_rwsem); 759 } 760 761 /* 762 * For uprobe @uprobe, delete the consumer @uc. 763 * Return true if the @uc is deleted successfully 764 * or return false. 765 */ 766 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 767 { 768 struct uprobe_consumer **con; 769 bool ret = false; 770 771 down_write(&uprobe->consumer_rwsem); 772 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 773 if (*con == uc) { 774 *con = uc->next; 775 ret = true; 776 break; 777 } 778 } 779 up_write(&uprobe->consumer_rwsem); 780 781 return ret; 782 } 783 784 static int __copy_insn(struct address_space *mapping, struct file *filp, 785 void *insn, int nbytes, loff_t offset) 786 { 787 struct page *page; 788 /* 789 * Ensure that the page that has the original instruction is populated 790 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 791 * see uprobe_register(). 792 */ 793 if (mapping->a_ops->read_folio) 794 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 795 else 796 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 797 if (IS_ERR(page)) 798 return PTR_ERR(page); 799 800 copy_from_page(page, offset, insn, nbytes); 801 put_page(page); 802 803 return 0; 804 } 805 806 static int copy_insn(struct uprobe *uprobe, struct file *filp) 807 { 808 struct address_space *mapping = uprobe->inode->i_mapping; 809 loff_t offs = uprobe->offset; 810 void *insn = &uprobe->arch.insn; 811 int size = sizeof(uprobe->arch.insn); 812 int len, err = -EIO; 813 814 /* Copy only available bytes, -EIO if nothing was read */ 815 do { 816 if (offs >= i_size_read(uprobe->inode)) 817 break; 818 819 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 820 err = __copy_insn(mapping, filp, insn, len, offs); 821 if (err) 822 break; 823 824 insn += len; 825 offs += len; 826 size -= len; 827 } while (size); 828 829 return err; 830 } 831 832 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 833 struct mm_struct *mm, unsigned long vaddr) 834 { 835 int ret = 0; 836 837 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 838 return ret; 839 840 /* TODO: move this into _register, until then we abuse this sem. */ 841 down_write(&uprobe->consumer_rwsem); 842 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 843 goto out; 844 845 ret = copy_insn(uprobe, file); 846 if (ret) 847 goto out; 848 849 ret = -ENOTSUPP; 850 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 851 goto out; 852 853 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 854 if (ret) 855 goto out; 856 857 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 858 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 859 860 out: 861 up_write(&uprobe->consumer_rwsem); 862 863 return ret; 864 } 865 866 static inline bool consumer_filter(struct uprobe_consumer *uc, 867 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 868 { 869 return !uc->filter || uc->filter(uc, ctx, mm); 870 } 871 872 static bool filter_chain(struct uprobe *uprobe, 873 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 874 { 875 struct uprobe_consumer *uc; 876 bool ret = false; 877 878 down_read(&uprobe->consumer_rwsem); 879 for (uc = uprobe->consumers; uc; uc = uc->next) { 880 ret = consumer_filter(uc, ctx, mm); 881 if (ret) 882 break; 883 } 884 up_read(&uprobe->consumer_rwsem); 885 886 return ret; 887 } 888 889 static int 890 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 891 struct vm_area_struct *vma, unsigned long vaddr) 892 { 893 bool first_uprobe; 894 int ret; 895 896 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 897 if (ret) 898 return ret; 899 900 /* 901 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 902 * the task can hit this breakpoint right after __replace_page(). 903 */ 904 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 905 if (first_uprobe) 906 set_bit(MMF_HAS_UPROBES, &mm->flags); 907 908 ret = set_swbp(&uprobe->arch, mm, vaddr); 909 if (!ret) 910 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 911 else if (first_uprobe) 912 clear_bit(MMF_HAS_UPROBES, &mm->flags); 913 914 return ret; 915 } 916 917 static int 918 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 919 { 920 set_bit(MMF_RECALC_UPROBES, &mm->flags); 921 return set_orig_insn(&uprobe->arch, mm, vaddr); 922 } 923 924 static inline bool uprobe_is_active(struct uprobe *uprobe) 925 { 926 return !RB_EMPTY_NODE(&uprobe->rb_node); 927 } 928 /* 929 * There could be threads that have already hit the breakpoint. They 930 * will recheck the current insn and restart if find_uprobe() fails. 931 * See find_active_uprobe(). 932 */ 933 static void delete_uprobe(struct uprobe *uprobe) 934 { 935 if (WARN_ON(!uprobe_is_active(uprobe))) 936 return; 937 938 write_lock(&uprobes_treelock); 939 rb_erase(&uprobe->rb_node, &uprobes_tree); 940 write_unlock(&uprobes_treelock); 941 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ 942 put_uprobe(uprobe); 943 } 944 945 struct map_info { 946 struct map_info *next; 947 struct mm_struct *mm; 948 unsigned long vaddr; 949 }; 950 951 static inline struct map_info *free_map_info(struct map_info *info) 952 { 953 struct map_info *next = info->next; 954 kfree(info); 955 return next; 956 } 957 958 static struct map_info * 959 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 960 { 961 unsigned long pgoff = offset >> PAGE_SHIFT; 962 struct vm_area_struct *vma; 963 struct map_info *curr = NULL; 964 struct map_info *prev = NULL; 965 struct map_info *info; 966 int more = 0; 967 968 again: 969 i_mmap_lock_read(mapping); 970 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 971 if (!valid_vma(vma, is_register)) 972 continue; 973 974 if (!prev && !more) { 975 /* 976 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 977 * reclaim. This is optimistic, no harm done if it fails. 978 */ 979 prev = kmalloc(sizeof(struct map_info), 980 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 981 if (prev) 982 prev->next = NULL; 983 } 984 if (!prev) { 985 more++; 986 continue; 987 } 988 989 if (!mmget_not_zero(vma->vm_mm)) 990 continue; 991 992 info = prev; 993 prev = prev->next; 994 info->next = curr; 995 curr = info; 996 997 info->mm = vma->vm_mm; 998 info->vaddr = offset_to_vaddr(vma, offset); 999 } 1000 i_mmap_unlock_read(mapping); 1001 1002 if (!more) 1003 goto out; 1004 1005 prev = curr; 1006 while (curr) { 1007 mmput(curr->mm); 1008 curr = curr->next; 1009 } 1010 1011 do { 1012 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1013 if (!info) { 1014 curr = ERR_PTR(-ENOMEM); 1015 goto out; 1016 } 1017 info->next = prev; 1018 prev = info; 1019 } while (--more); 1020 1021 goto again; 1022 out: 1023 while (prev) 1024 prev = free_map_info(prev); 1025 return curr; 1026 } 1027 1028 static int 1029 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1030 { 1031 bool is_register = !!new; 1032 struct map_info *info; 1033 int err = 0; 1034 1035 percpu_down_write(&dup_mmap_sem); 1036 info = build_map_info(uprobe->inode->i_mapping, 1037 uprobe->offset, is_register); 1038 if (IS_ERR(info)) { 1039 err = PTR_ERR(info); 1040 goto out; 1041 } 1042 1043 while (info) { 1044 struct mm_struct *mm = info->mm; 1045 struct vm_area_struct *vma; 1046 1047 if (err && is_register) 1048 goto free; 1049 1050 mmap_write_lock(mm); 1051 vma = find_vma(mm, info->vaddr); 1052 if (!vma || !valid_vma(vma, is_register) || 1053 file_inode(vma->vm_file) != uprobe->inode) 1054 goto unlock; 1055 1056 if (vma->vm_start > info->vaddr || 1057 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1058 goto unlock; 1059 1060 if (is_register) { 1061 /* consult only the "caller", new consumer. */ 1062 if (consumer_filter(new, 1063 UPROBE_FILTER_REGISTER, mm)) 1064 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1065 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1066 if (!filter_chain(uprobe, 1067 UPROBE_FILTER_UNREGISTER, mm)) 1068 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1069 } 1070 1071 unlock: 1072 mmap_write_unlock(mm); 1073 free: 1074 mmput(mm); 1075 info = free_map_info(info); 1076 } 1077 out: 1078 percpu_up_write(&dup_mmap_sem); 1079 return err; 1080 } 1081 1082 static void 1083 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1084 { 1085 int err; 1086 1087 if (WARN_ON(!consumer_del(uprobe, uc))) 1088 return; 1089 1090 err = register_for_each_vma(uprobe, NULL); 1091 /* TODO : cant unregister? schedule a worker thread */ 1092 if (!uprobe->consumers && !err) 1093 delete_uprobe(uprobe); 1094 } 1095 1096 /* 1097 * uprobe_unregister - unregister an already registered probe. 1098 * @inode: the file in which the probe has to be removed. 1099 * @offset: offset from the start of the file. 1100 * @uc: identify which probe if multiple probes are colocated. 1101 */ 1102 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1103 { 1104 struct uprobe *uprobe; 1105 1106 uprobe = find_uprobe(inode, offset); 1107 if (WARN_ON(!uprobe)) 1108 return; 1109 1110 down_write(&uprobe->register_rwsem); 1111 __uprobe_unregister(uprobe, uc); 1112 up_write(&uprobe->register_rwsem); 1113 put_uprobe(uprobe); 1114 } 1115 EXPORT_SYMBOL_GPL(uprobe_unregister); 1116 1117 /* 1118 * __uprobe_register - register a probe 1119 * @inode: the file in which the probe has to be placed. 1120 * @offset: offset from the start of the file. 1121 * @uc: information on howto handle the probe.. 1122 * 1123 * Apart from the access refcount, __uprobe_register() takes a creation 1124 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1125 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1126 * tuple). Creation refcount stops uprobe_unregister from freeing the 1127 * @uprobe even before the register operation is complete. Creation 1128 * refcount is released when the last @uc for the @uprobe 1129 * unregisters. Caller of __uprobe_register() is required to keep @inode 1130 * (and the containing mount) referenced. 1131 * 1132 * Return errno if it cannot successully install probes 1133 * else return 0 (success) 1134 */ 1135 static int __uprobe_register(struct inode *inode, loff_t offset, 1136 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1137 { 1138 struct uprobe *uprobe; 1139 int ret; 1140 1141 /* Uprobe must have at least one set consumer */ 1142 if (!uc->handler && !uc->ret_handler) 1143 return -EINVAL; 1144 1145 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1146 if (!inode->i_mapping->a_ops->read_folio && 1147 !shmem_mapping(inode->i_mapping)) 1148 return -EIO; 1149 /* Racy, just to catch the obvious mistakes */ 1150 if (offset > i_size_read(inode)) 1151 return -EINVAL; 1152 1153 /* 1154 * This ensures that copy_from_page(), copy_to_page() and 1155 * __update_ref_ctr() can't cross page boundary. 1156 */ 1157 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1158 return -EINVAL; 1159 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1160 return -EINVAL; 1161 1162 retry: 1163 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1164 if (!uprobe) 1165 return -ENOMEM; 1166 if (IS_ERR(uprobe)) 1167 return PTR_ERR(uprobe); 1168 1169 /* 1170 * We can race with uprobe_unregister()->delete_uprobe(). 1171 * Check uprobe_is_active() and retry if it is false. 1172 */ 1173 down_write(&uprobe->register_rwsem); 1174 ret = -EAGAIN; 1175 if (likely(uprobe_is_active(uprobe))) { 1176 consumer_add(uprobe, uc); 1177 ret = register_for_each_vma(uprobe, uc); 1178 if (ret) 1179 __uprobe_unregister(uprobe, uc); 1180 } 1181 up_write(&uprobe->register_rwsem); 1182 put_uprobe(uprobe); 1183 1184 if (unlikely(ret == -EAGAIN)) 1185 goto retry; 1186 return ret; 1187 } 1188 1189 int uprobe_register(struct inode *inode, loff_t offset, 1190 struct uprobe_consumer *uc) 1191 { 1192 return __uprobe_register(inode, offset, 0, uc); 1193 } 1194 EXPORT_SYMBOL_GPL(uprobe_register); 1195 1196 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1197 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1198 { 1199 return __uprobe_register(inode, offset, ref_ctr_offset, uc); 1200 } 1201 EXPORT_SYMBOL_GPL(uprobe_register_refctr); 1202 1203 /* 1204 * uprobe_apply - unregister an already registered probe. 1205 * @inode: the file in which the probe has to be removed. 1206 * @offset: offset from the start of the file. 1207 * @uc: consumer which wants to add more or remove some breakpoints 1208 * @add: add or remove the breakpoints 1209 */ 1210 int uprobe_apply(struct inode *inode, loff_t offset, 1211 struct uprobe_consumer *uc, bool add) 1212 { 1213 struct uprobe *uprobe; 1214 struct uprobe_consumer *con; 1215 int ret = -ENOENT; 1216 1217 uprobe = find_uprobe(inode, offset); 1218 if (WARN_ON(!uprobe)) 1219 return ret; 1220 1221 down_write(&uprobe->register_rwsem); 1222 for (con = uprobe->consumers; con && con != uc ; con = con->next) 1223 ; 1224 if (con) 1225 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1226 up_write(&uprobe->register_rwsem); 1227 put_uprobe(uprobe); 1228 1229 return ret; 1230 } 1231 1232 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1233 { 1234 VMA_ITERATOR(vmi, mm, 0); 1235 struct vm_area_struct *vma; 1236 int err = 0; 1237 1238 mmap_read_lock(mm); 1239 for_each_vma(vmi, vma) { 1240 unsigned long vaddr; 1241 loff_t offset; 1242 1243 if (!valid_vma(vma, false) || 1244 file_inode(vma->vm_file) != uprobe->inode) 1245 continue; 1246 1247 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1248 if (uprobe->offset < offset || 1249 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1250 continue; 1251 1252 vaddr = offset_to_vaddr(vma, uprobe->offset); 1253 err |= remove_breakpoint(uprobe, mm, vaddr); 1254 } 1255 mmap_read_unlock(mm); 1256 1257 return err; 1258 } 1259 1260 static struct rb_node * 1261 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1262 { 1263 struct rb_node *n = uprobes_tree.rb_node; 1264 1265 while (n) { 1266 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1267 1268 if (inode < u->inode) { 1269 n = n->rb_left; 1270 } else if (inode > u->inode) { 1271 n = n->rb_right; 1272 } else { 1273 if (max < u->offset) 1274 n = n->rb_left; 1275 else if (min > u->offset) 1276 n = n->rb_right; 1277 else 1278 break; 1279 } 1280 } 1281 1282 return n; 1283 } 1284 1285 /* 1286 * For a given range in vma, build a list of probes that need to be inserted. 1287 */ 1288 static void build_probe_list(struct inode *inode, 1289 struct vm_area_struct *vma, 1290 unsigned long start, unsigned long end, 1291 struct list_head *head) 1292 { 1293 loff_t min, max; 1294 struct rb_node *n, *t; 1295 struct uprobe *u; 1296 1297 INIT_LIST_HEAD(head); 1298 min = vaddr_to_offset(vma, start); 1299 max = min + (end - start) - 1; 1300 1301 read_lock(&uprobes_treelock); 1302 n = find_node_in_range(inode, min, max); 1303 if (n) { 1304 for (t = n; t; t = rb_prev(t)) { 1305 u = rb_entry(t, struct uprobe, rb_node); 1306 if (u->inode != inode || u->offset < min) 1307 break; 1308 list_add(&u->pending_list, head); 1309 get_uprobe(u); 1310 } 1311 for (t = n; (t = rb_next(t)); ) { 1312 u = rb_entry(t, struct uprobe, rb_node); 1313 if (u->inode != inode || u->offset > max) 1314 break; 1315 list_add(&u->pending_list, head); 1316 get_uprobe(u); 1317 } 1318 } 1319 read_unlock(&uprobes_treelock); 1320 } 1321 1322 /* @vma contains reference counter, not the probed instruction. */ 1323 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1324 { 1325 struct list_head *pos, *q; 1326 struct delayed_uprobe *du; 1327 unsigned long vaddr; 1328 int ret = 0, err = 0; 1329 1330 mutex_lock(&delayed_uprobe_lock); 1331 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1332 du = list_entry(pos, struct delayed_uprobe, list); 1333 1334 if (du->mm != vma->vm_mm || 1335 !valid_ref_ctr_vma(du->uprobe, vma)) 1336 continue; 1337 1338 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1339 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1340 if (ret) { 1341 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1342 if (!err) 1343 err = ret; 1344 } 1345 delayed_uprobe_delete(du); 1346 } 1347 mutex_unlock(&delayed_uprobe_lock); 1348 return err; 1349 } 1350 1351 /* 1352 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1353 * 1354 * Currently we ignore all errors and always return 0, the callers 1355 * can't handle the failure anyway. 1356 */ 1357 int uprobe_mmap(struct vm_area_struct *vma) 1358 { 1359 struct list_head tmp_list; 1360 struct uprobe *uprobe, *u; 1361 struct inode *inode; 1362 1363 if (no_uprobe_events()) 1364 return 0; 1365 1366 if (vma->vm_file && 1367 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1368 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1369 delayed_ref_ctr_inc(vma); 1370 1371 if (!valid_vma(vma, true)) 1372 return 0; 1373 1374 inode = file_inode(vma->vm_file); 1375 if (!inode) 1376 return 0; 1377 1378 mutex_lock(uprobes_mmap_hash(inode)); 1379 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1380 /* 1381 * We can race with uprobe_unregister(), this uprobe can be already 1382 * removed. But in this case filter_chain() must return false, all 1383 * consumers have gone away. 1384 */ 1385 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1386 if (!fatal_signal_pending(current) && 1387 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1388 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1389 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1390 } 1391 put_uprobe(uprobe); 1392 } 1393 mutex_unlock(uprobes_mmap_hash(inode)); 1394 1395 return 0; 1396 } 1397 1398 static bool 1399 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1400 { 1401 loff_t min, max; 1402 struct inode *inode; 1403 struct rb_node *n; 1404 1405 inode = file_inode(vma->vm_file); 1406 1407 min = vaddr_to_offset(vma, start); 1408 max = min + (end - start) - 1; 1409 1410 read_lock(&uprobes_treelock); 1411 n = find_node_in_range(inode, min, max); 1412 read_unlock(&uprobes_treelock); 1413 1414 return !!n; 1415 } 1416 1417 /* 1418 * Called in context of a munmap of a vma. 1419 */ 1420 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1421 { 1422 if (no_uprobe_events() || !valid_vma(vma, false)) 1423 return; 1424 1425 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1426 return; 1427 1428 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1429 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1430 return; 1431 1432 if (vma_has_uprobes(vma, start, end)) 1433 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1434 } 1435 1436 /* Slot allocation for XOL */ 1437 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1438 { 1439 struct vm_area_struct *vma; 1440 int ret; 1441 1442 if (mmap_write_lock_killable(mm)) 1443 return -EINTR; 1444 1445 if (mm->uprobes_state.xol_area) { 1446 ret = -EALREADY; 1447 goto fail; 1448 } 1449 1450 if (!area->vaddr) { 1451 /* Try to map as high as possible, this is only a hint. */ 1452 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1453 PAGE_SIZE, 0, 0); 1454 if (IS_ERR_VALUE(area->vaddr)) { 1455 ret = area->vaddr; 1456 goto fail; 1457 } 1458 } 1459 1460 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1461 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1462 &area->xol_mapping); 1463 if (IS_ERR(vma)) { 1464 ret = PTR_ERR(vma); 1465 goto fail; 1466 } 1467 1468 ret = 0; 1469 /* pairs with get_xol_area() */ 1470 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1471 fail: 1472 mmap_write_unlock(mm); 1473 1474 return ret; 1475 } 1476 1477 void * __weak arch_uprobe_trampoline(unsigned long *psize) 1478 { 1479 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1480 1481 *psize = UPROBE_SWBP_INSN_SIZE; 1482 return &insn; 1483 } 1484 1485 static struct xol_area *__create_xol_area(unsigned long vaddr) 1486 { 1487 struct mm_struct *mm = current->mm; 1488 unsigned long insns_size; 1489 struct xol_area *area; 1490 void *insns; 1491 1492 area = kzalloc(sizeof(*area), GFP_KERNEL); 1493 if (unlikely(!area)) 1494 goto out; 1495 1496 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1497 GFP_KERNEL); 1498 if (!area->bitmap) 1499 goto free_area; 1500 1501 area->xol_mapping.name = "[uprobes]"; 1502 area->xol_mapping.pages = area->pages; 1503 area->pages[0] = alloc_page(GFP_HIGHUSER); 1504 if (!area->pages[0]) 1505 goto free_bitmap; 1506 area->pages[1] = NULL; 1507 1508 area->vaddr = vaddr; 1509 init_waitqueue_head(&area->wq); 1510 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1511 set_bit(0, area->bitmap); 1512 atomic_set(&area->slot_count, 1); 1513 insns = arch_uprobe_trampoline(&insns_size); 1514 arch_uprobe_copy_ixol(area->pages[0], 0, insns, insns_size); 1515 1516 if (!xol_add_vma(mm, area)) 1517 return area; 1518 1519 __free_page(area->pages[0]); 1520 free_bitmap: 1521 kfree(area->bitmap); 1522 free_area: 1523 kfree(area); 1524 out: 1525 return NULL; 1526 } 1527 1528 /* 1529 * get_xol_area - Allocate process's xol_area if necessary. 1530 * This area will be used for storing instructions for execution out of line. 1531 * 1532 * Returns the allocated area or NULL. 1533 */ 1534 static struct xol_area *get_xol_area(void) 1535 { 1536 struct mm_struct *mm = current->mm; 1537 struct xol_area *area; 1538 1539 if (!mm->uprobes_state.xol_area) 1540 __create_xol_area(0); 1541 1542 /* Pairs with xol_add_vma() smp_store_release() */ 1543 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1544 return area; 1545 } 1546 1547 /* 1548 * uprobe_clear_state - Free the area allocated for slots. 1549 */ 1550 void uprobe_clear_state(struct mm_struct *mm) 1551 { 1552 struct xol_area *area = mm->uprobes_state.xol_area; 1553 1554 mutex_lock(&delayed_uprobe_lock); 1555 delayed_uprobe_remove(NULL, mm); 1556 mutex_unlock(&delayed_uprobe_lock); 1557 1558 if (!area) 1559 return; 1560 1561 put_page(area->pages[0]); 1562 kfree(area->bitmap); 1563 kfree(area); 1564 } 1565 1566 void uprobe_start_dup_mmap(void) 1567 { 1568 percpu_down_read(&dup_mmap_sem); 1569 } 1570 1571 void uprobe_end_dup_mmap(void) 1572 { 1573 percpu_up_read(&dup_mmap_sem); 1574 } 1575 1576 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1577 { 1578 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1579 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1580 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1581 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1582 } 1583 } 1584 1585 /* 1586 * - search for a free slot. 1587 */ 1588 static unsigned long xol_take_insn_slot(struct xol_area *area) 1589 { 1590 unsigned long slot_addr; 1591 int slot_nr; 1592 1593 do { 1594 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1595 if (slot_nr < UINSNS_PER_PAGE) { 1596 if (!test_and_set_bit(slot_nr, area->bitmap)) 1597 break; 1598 1599 slot_nr = UINSNS_PER_PAGE; 1600 continue; 1601 } 1602 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1603 } while (slot_nr >= UINSNS_PER_PAGE); 1604 1605 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1606 atomic_inc(&area->slot_count); 1607 1608 return slot_addr; 1609 } 1610 1611 /* 1612 * xol_get_insn_slot - allocate a slot for xol. 1613 * Returns the allocated slot address or 0. 1614 */ 1615 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1616 { 1617 struct xol_area *area; 1618 unsigned long xol_vaddr; 1619 1620 area = get_xol_area(); 1621 if (!area) 1622 return 0; 1623 1624 xol_vaddr = xol_take_insn_slot(area); 1625 if (unlikely(!xol_vaddr)) 1626 return 0; 1627 1628 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1629 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1630 1631 return xol_vaddr; 1632 } 1633 1634 /* 1635 * xol_free_insn_slot - If slot was earlier allocated by 1636 * @xol_get_insn_slot(), make the slot available for 1637 * subsequent requests. 1638 */ 1639 static void xol_free_insn_slot(struct task_struct *tsk) 1640 { 1641 struct xol_area *area; 1642 unsigned long vma_end; 1643 unsigned long slot_addr; 1644 1645 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1646 return; 1647 1648 slot_addr = tsk->utask->xol_vaddr; 1649 if (unlikely(!slot_addr)) 1650 return; 1651 1652 area = tsk->mm->uprobes_state.xol_area; 1653 vma_end = area->vaddr + PAGE_SIZE; 1654 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1655 unsigned long offset; 1656 int slot_nr; 1657 1658 offset = slot_addr - area->vaddr; 1659 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1660 if (slot_nr >= UINSNS_PER_PAGE) 1661 return; 1662 1663 clear_bit(slot_nr, area->bitmap); 1664 atomic_dec(&area->slot_count); 1665 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1666 if (waitqueue_active(&area->wq)) 1667 wake_up(&area->wq); 1668 1669 tsk->utask->xol_vaddr = 0; 1670 } 1671 } 1672 1673 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1674 void *src, unsigned long len) 1675 { 1676 /* Initialize the slot */ 1677 copy_to_page(page, vaddr, src, len); 1678 1679 /* 1680 * We probably need flush_icache_user_page() but it needs vma. 1681 * This should work on most of architectures by default. If 1682 * architecture needs to do something different it can define 1683 * its own version of the function. 1684 */ 1685 flush_dcache_page(page); 1686 } 1687 1688 /** 1689 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1690 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1691 * instruction. 1692 * Return the address of the breakpoint instruction. 1693 */ 1694 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1695 { 1696 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1697 } 1698 1699 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1700 { 1701 struct uprobe_task *utask = current->utask; 1702 1703 if (unlikely(utask && utask->active_uprobe)) 1704 return utask->vaddr; 1705 1706 return instruction_pointer(regs); 1707 } 1708 1709 static struct return_instance *free_ret_instance(struct return_instance *ri) 1710 { 1711 struct return_instance *next = ri->next; 1712 put_uprobe(ri->uprobe); 1713 kfree(ri); 1714 return next; 1715 } 1716 1717 /* 1718 * Called with no locks held. 1719 * Called in context of an exiting or an exec-ing thread. 1720 */ 1721 void uprobe_free_utask(struct task_struct *t) 1722 { 1723 struct uprobe_task *utask = t->utask; 1724 struct return_instance *ri; 1725 1726 if (!utask) 1727 return; 1728 1729 if (utask->active_uprobe) 1730 put_uprobe(utask->active_uprobe); 1731 1732 ri = utask->return_instances; 1733 while (ri) 1734 ri = free_ret_instance(ri); 1735 1736 xol_free_insn_slot(t); 1737 kfree(utask); 1738 t->utask = NULL; 1739 } 1740 1741 /* 1742 * Allocate a uprobe_task object for the task if necessary. 1743 * Called when the thread hits a breakpoint. 1744 * 1745 * Returns: 1746 * - pointer to new uprobe_task on success 1747 * - NULL otherwise 1748 */ 1749 static struct uprobe_task *get_utask(void) 1750 { 1751 if (!current->utask) 1752 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1753 return current->utask; 1754 } 1755 1756 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1757 { 1758 struct uprobe_task *n_utask; 1759 struct return_instance **p, *o, *n; 1760 1761 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1762 if (!n_utask) 1763 return -ENOMEM; 1764 t->utask = n_utask; 1765 1766 p = &n_utask->return_instances; 1767 for (o = o_utask->return_instances; o; o = o->next) { 1768 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1769 if (!n) 1770 return -ENOMEM; 1771 1772 *n = *o; 1773 get_uprobe(n->uprobe); 1774 n->next = NULL; 1775 1776 *p = n; 1777 p = &n->next; 1778 n_utask->depth++; 1779 } 1780 1781 return 0; 1782 } 1783 1784 static void uprobe_warn(struct task_struct *t, const char *msg) 1785 { 1786 pr_warn("uprobe: %s:%d failed to %s\n", 1787 current->comm, current->pid, msg); 1788 } 1789 1790 static void dup_xol_work(struct callback_head *work) 1791 { 1792 if (current->flags & PF_EXITING) 1793 return; 1794 1795 if (!__create_xol_area(current->utask->dup_xol_addr) && 1796 !fatal_signal_pending(current)) 1797 uprobe_warn(current, "dup xol area"); 1798 } 1799 1800 /* 1801 * Called in context of a new clone/fork from copy_process. 1802 */ 1803 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1804 { 1805 struct uprobe_task *utask = current->utask; 1806 struct mm_struct *mm = current->mm; 1807 struct xol_area *area; 1808 1809 t->utask = NULL; 1810 1811 if (!utask || !utask->return_instances) 1812 return; 1813 1814 if (mm == t->mm && !(flags & CLONE_VFORK)) 1815 return; 1816 1817 if (dup_utask(t, utask)) 1818 return uprobe_warn(t, "dup ret instances"); 1819 1820 /* The task can fork() after dup_xol_work() fails */ 1821 area = mm->uprobes_state.xol_area; 1822 if (!area) 1823 return uprobe_warn(t, "dup xol area"); 1824 1825 if (mm == t->mm) 1826 return; 1827 1828 t->utask->dup_xol_addr = area->vaddr; 1829 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1830 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1831 } 1832 1833 /* 1834 * Current area->vaddr notion assume the trampoline address is always 1835 * equal area->vaddr. 1836 * 1837 * Returns -1 in case the xol_area is not allocated. 1838 */ 1839 unsigned long uprobe_get_trampoline_vaddr(void) 1840 { 1841 struct xol_area *area; 1842 unsigned long trampoline_vaddr = -1; 1843 1844 /* Pairs with xol_add_vma() smp_store_release() */ 1845 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1846 if (area) 1847 trampoline_vaddr = area->vaddr; 1848 1849 return trampoline_vaddr; 1850 } 1851 1852 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1853 struct pt_regs *regs) 1854 { 1855 struct return_instance *ri = utask->return_instances; 1856 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1857 1858 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1859 ri = free_ret_instance(ri); 1860 utask->depth--; 1861 } 1862 utask->return_instances = ri; 1863 } 1864 1865 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1866 { 1867 struct return_instance *ri; 1868 struct uprobe_task *utask; 1869 unsigned long orig_ret_vaddr, trampoline_vaddr; 1870 bool chained; 1871 1872 if (!get_xol_area()) 1873 return; 1874 1875 utask = get_utask(); 1876 if (!utask) 1877 return; 1878 1879 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1880 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1881 " nestedness limit pid/tgid=%d/%d\n", 1882 current->pid, current->tgid); 1883 return; 1884 } 1885 1886 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1887 if (!ri) 1888 return; 1889 1890 trampoline_vaddr = uprobe_get_trampoline_vaddr(); 1891 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1892 if (orig_ret_vaddr == -1) 1893 goto fail; 1894 1895 /* drop the entries invalidated by longjmp() */ 1896 chained = (orig_ret_vaddr == trampoline_vaddr); 1897 cleanup_return_instances(utask, chained, regs); 1898 1899 /* 1900 * We don't want to keep trampoline address in stack, rather keep the 1901 * original return address of first caller thru all the consequent 1902 * instances. This also makes breakpoint unwrapping easier. 1903 */ 1904 if (chained) { 1905 if (!utask->return_instances) { 1906 /* 1907 * This situation is not possible. Likely we have an 1908 * attack from user-space. 1909 */ 1910 uprobe_warn(current, "handle tail call"); 1911 goto fail; 1912 } 1913 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1914 } 1915 1916 ri->uprobe = get_uprobe(uprobe); 1917 ri->func = instruction_pointer(regs); 1918 ri->stack = user_stack_pointer(regs); 1919 ri->orig_ret_vaddr = orig_ret_vaddr; 1920 ri->chained = chained; 1921 1922 utask->depth++; 1923 ri->next = utask->return_instances; 1924 utask->return_instances = ri; 1925 1926 return; 1927 fail: 1928 kfree(ri); 1929 } 1930 1931 /* Prepare to single-step probed instruction out of line. */ 1932 static int 1933 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1934 { 1935 struct uprobe_task *utask; 1936 unsigned long xol_vaddr; 1937 int err; 1938 1939 utask = get_utask(); 1940 if (!utask) 1941 return -ENOMEM; 1942 1943 xol_vaddr = xol_get_insn_slot(uprobe); 1944 if (!xol_vaddr) 1945 return -ENOMEM; 1946 1947 utask->xol_vaddr = xol_vaddr; 1948 utask->vaddr = bp_vaddr; 1949 1950 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 1951 if (unlikely(err)) { 1952 xol_free_insn_slot(current); 1953 return err; 1954 } 1955 1956 utask->active_uprobe = uprobe; 1957 utask->state = UTASK_SSTEP; 1958 return 0; 1959 } 1960 1961 /* 1962 * If we are singlestepping, then ensure this thread is not connected to 1963 * non-fatal signals until completion of singlestep. When xol insn itself 1964 * triggers the signal, restart the original insn even if the task is 1965 * already SIGKILL'ed (since coredump should report the correct ip). This 1966 * is even more important if the task has a handler for SIGSEGV/etc, The 1967 * _same_ instruction should be repeated again after return from the signal 1968 * handler, and SSTEP can never finish in this case. 1969 */ 1970 bool uprobe_deny_signal(void) 1971 { 1972 struct task_struct *t = current; 1973 struct uprobe_task *utask = t->utask; 1974 1975 if (likely(!utask || !utask->active_uprobe)) 1976 return false; 1977 1978 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1979 1980 if (task_sigpending(t)) { 1981 spin_lock_irq(&t->sighand->siglock); 1982 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1983 spin_unlock_irq(&t->sighand->siglock); 1984 1985 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1986 utask->state = UTASK_SSTEP_TRAPPED; 1987 set_tsk_thread_flag(t, TIF_UPROBE); 1988 } 1989 } 1990 1991 return true; 1992 } 1993 1994 static void mmf_recalc_uprobes(struct mm_struct *mm) 1995 { 1996 VMA_ITERATOR(vmi, mm, 0); 1997 struct vm_area_struct *vma; 1998 1999 for_each_vma(vmi, vma) { 2000 if (!valid_vma(vma, false)) 2001 continue; 2002 /* 2003 * This is not strictly accurate, we can race with 2004 * uprobe_unregister() and see the already removed 2005 * uprobe if delete_uprobe() was not yet called. 2006 * Or this uprobe can be filtered out. 2007 */ 2008 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2009 return; 2010 } 2011 2012 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2013 } 2014 2015 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2016 { 2017 struct page *page; 2018 uprobe_opcode_t opcode; 2019 int result; 2020 2021 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2022 return -EINVAL; 2023 2024 pagefault_disable(); 2025 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2026 pagefault_enable(); 2027 2028 if (likely(result == 0)) 2029 goto out; 2030 2031 /* 2032 * The NULL 'tsk' here ensures that any faults that occur here 2033 * will not be accounted to the task. 'mm' *is* current->mm, 2034 * but we treat this as a 'remote' access since it is 2035 * essentially a kernel access to the memory. 2036 */ 2037 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL); 2038 if (result < 0) 2039 return result; 2040 2041 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2042 put_page(page); 2043 out: 2044 /* This needs to return true for any variant of the trap insn */ 2045 return is_trap_insn(&opcode); 2046 } 2047 2048 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2049 { 2050 struct mm_struct *mm = current->mm; 2051 struct uprobe *uprobe = NULL; 2052 struct vm_area_struct *vma; 2053 2054 mmap_read_lock(mm); 2055 vma = vma_lookup(mm, bp_vaddr); 2056 if (vma) { 2057 if (valid_vma(vma, false)) { 2058 struct inode *inode = file_inode(vma->vm_file); 2059 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2060 2061 uprobe = find_uprobe(inode, offset); 2062 } 2063 2064 if (!uprobe) 2065 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2066 } else { 2067 *is_swbp = -EFAULT; 2068 } 2069 2070 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2071 mmf_recalc_uprobes(mm); 2072 mmap_read_unlock(mm); 2073 2074 return uprobe; 2075 } 2076 2077 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2078 { 2079 struct uprobe_consumer *uc; 2080 int remove = UPROBE_HANDLER_REMOVE; 2081 bool need_prep = false; /* prepare return uprobe, when needed */ 2082 2083 down_read(&uprobe->register_rwsem); 2084 for (uc = uprobe->consumers; uc; uc = uc->next) { 2085 int rc = 0; 2086 2087 if (uc->handler) { 2088 rc = uc->handler(uc, regs); 2089 WARN(rc & ~UPROBE_HANDLER_MASK, 2090 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2091 } 2092 2093 if (uc->ret_handler) 2094 need_prep = true; 2095 2096 remove &= rc; 2097 } 2098 2099 if (need_prep && !remove) 2100 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2101 2102 if (remove && uprobe->consumers) { 2103 WARN_ON(!uprobe_is_active(uprobe)); 2104 unapply_uprobe(uprobe, current->mm); 2105 } 2106 up_read(&uprobe->register_rwsem); 2107 } 2108 2109 static void 2110 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2111 { 2112 struct uprobe *uprobe = ri->uprobe; 2113 struct uprobe_consumer *uc; 2114 2115 down_read(&uprobe->register_rwsem); 2116 for (uc = uprobe->consumers; uc; uc = uc->next) { 2117 if (uc->ret_handler) 2118 uc->ret_handler(uc, ri->func, regs); 2119 } 2120 up_read(&uprobe->register_rwsem); 2121 } 2122 2123 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2124 { 2125 bool chained; 2126 2127 do { 2128 chained = ri->chained; 2129 ri = ri->next; /* can't be NULL if chained */ 2130 } while (chained); 2131 2132 return ri; 2133 } 2134 2135 void uprobe_handle_trampoline(struct pt_regs *regs) 2136 { 2137 struct uprobe_task *utask; 2138 struct return_instance *ri, *next; 2139 bool valid; 2140 2141 utask = current->utask; 2142 if (!utask) 2143 goto sigill; 2144 2145 ri = utask->return_instances; 2146 if (!ri) 2147 goto sigill; 2148 2149 do { 2150 /* 2151 * We should throw out the frames invalidated by longjmp(). 2152 * If this chain is valid, then the next one should be alive 2153 * or NULL; the latter case means that nobody but ri->func 2154 * could hit this trampoline on return. TODO: sigaltstack(). 2155 */ 2156 next = find_next_ret_chain(ri); 2157 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2158 2159 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2160 do { 2161 /* pop current instance from the stack of pending return instances, 2162 * as it's not pending anymore: we just fixed up original 2163 * instruction pointer in regs and are about to call handlers; 2164 * this allows fixup_uretprobe_trampoline_entries() to properly fix up 2165 * captured stack traces from uretprobe handlers, in which pending 2166 * trampoline addresses on the stack are replaced with correct 2167 * original return addresses 2168 */ 2169 utask->return_instances = ri->next; 2170 if (valid) 2171 handle_uretprobe_chain(ri, regs); 2172 ri = free_ret_instance(ri); 2173 utask->depth--; 2174 } while (ri != next); 2175 } while (!valid); 2176 2177 utask->return_instances = ri; 2178 return; 2179 2180 sigill: 2181 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2182 force_sig(SIGILL); 2183 2184 } 2185 2186 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2187 { 2188 return false; 2189 } 2190 2191 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2192 struct pt_regs *regs) 2193 { 2194 return true; 2195 } 2196 2197 /* 2198 * Run handler and ask thread to singlestep. 2199 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2200 */ 2201 static void handle_swbp(struct pt_regs *regs) 2202 { 2203 struct uprobe *uprobe; 2204 unsigned long bp_vaddr; 2205 int is_swbp; 2206 2207 bp_vaddr = uprobe_get_swbp_addr(regs); 2208 if (bp_vaddr == uprobe_get_trampoline_vaddr()) 2209 return uprobe_handle_trampoline(regs); 2210 2211 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2212 if (!uprobe) { 2213 if (is_swbp > 0) { 2214 /* No matching uprobe; signal SIGTRAP. */ 2215 force_sig(SIGTRAP); 2216 } else { 2217 /* 2218 * Either we raced with uprobe_unregister() or we can't 2219 * access this memory. The latter is only possible if 2220 * another thread plays with our ->mm. In both cases 2221 * we can simply restart. If this vma was unmapped we 2222 * can pretend this insn was not executed yet and get 2223 * the (correct) SIGSEGV after restart. 2224 */ 2225 instruction_pointer_set(regs, bp_vaddr); 2226 } 2227 return; 2228 } 2229 2230 /* change it in advance for ->handler() and restart */ 2231 instruction_pointer_set(regs, bp_vaddr); 2232 2233 /* 2234 * TODO: move copy_insn/etc into _register and remove this hack. 2235 * After we hit the bp, _unregister + _register can install the 2236 * new and not-yet-analyzed uprobe at the same address, restart. 2237 */ 2238 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2239 goto out; 2240 2241 /* 2242 * Pairs with the smp_wmb() in prepare_uprobe(). 2243 * 2244 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2245 * we must also see the stores to &uprobe->arch performed by the 2246 * prepare_uprobe() call. 2247 */ 2248 smp_rmb(); 2249 2250 /* Tracing handlers use ->utask to communicate with fetch methods */ 2251 if (!get_utask()) 2252 goto out; 2253 2254 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2255 goto out; 2256 2257 handler_chain(uprobe, regs); 2258 2259 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2260 goto out; 2261 2262 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2263 return; 2264 2265 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2266 out: 2267 put_uprobe(uprobe); 2268 } 2269 2270 /* 2271 * Perform required fix-ups and disable singlestep. 2272 * Allow pending signals to take effect. 2273 */ 2274 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2275 { 2276 struct uprobe *uprobe; 2277 int err = 0; 2278 2279 uprobe = utask->active_uprobe; 2280 if (utask->state == UTASK_SSTEP_ACK) 2281 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2282 else if (utask->state == UTASK_SSTEP_TRAPPED) 2283 arch_uprobe_abort_xol(&uprobe->arch, regs); 2284 else 2285 WARN_ON_ONCE(1); 2286 2287 put_uprobe(uprobe); 2288 utask->active_uprobe = NULL; 2289 utask->state = UTASK_RUNNING; 2290 xol_free_insn_slot(current); 2291 2292 spin_lock_irq(¤t->sighand->siglock); 2293 recalc_sigpending(); /* see uprobe_deny_signal() */ 2294 spin_unlock_irq(¤t->sighand->siglock); 2295 2296 if (unlikely(err)) { 2297 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2298 force_sig(SIGILL); 2299 } 2300 } 2301 2302 /* 2303 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2304 * allows the thread to return from interrupt. After that handle_swbp() 2305 * sets utask->active_uprobe. 2306 * 2307 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2308 * and allows the thread to return from interrupt. 2309 * 2310 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2311 * uprobe_notify_resume(). 2312 */ 2313 void uprobe_notify_resume(struct pt_regs *regs) 2314 { 2315 struct uprobe_task *utask; 2316 2317 clear_thread_flag(TIF_UPROBE); 2318 2319 utask = current->utask; 2320 if (utask && utask->active_uprobe) 2321 handle_singlestep(utask, regs); 2322 else 2323 handle_swbp(regs); 2324 } 2325 2326 /* 2327 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2328 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2329 */ 2330 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2331 { 2332 if (!current->mm) 2333 return 0; 2334 2335 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2336 (!current->utask || !current->utask->return_instances)) 2337 return 0; 2338 2339 set_thread_flag(TIF_UPROBE); 2340 return 1; 2341 } 2342 2343 /* 2344 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2345 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2346 */ 2347 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2348 { 2349 struct uprobe_task *utask = current->utask; 2350 2351 if (!current->mm || !utask || !utask->active_uprobe) 2352 /* task is currently not uprobed */ 2353 return 0; 2354 2355 utask->state = UTASK_SSTEP_ACK; 2356 set_thread_flag(TIF_UPROBE); 2357 return 1; 2358 } 2359 2360 static struct notifier_block uprobe_exception_nb = { 2361 .notifier_call = arch_uprobe_exception_notify, 2362 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2363 }; 2364 2365 void __init uprobes_init(void) 2366 { 2367 int i; 2368 2369 for (i = 0; i < UPROBES_HASH_SZ; i++) 2370 mutex_init(&uprobes_mmap_mutex[i]); 2371 2372 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2373 } 2374