xref: /linux/kernel/events/uprobes.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>		/* anon_vma_prepare */
31 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
32 #include <linux/swap.h>		/* try_to_free_swap */
33 #include <linux/ptrace.h>	/* user_enable_single_step */
34 #include <linux/kdebug.h>	/* notifier mechanism */
35 #include "../../mm/internal.h"	/* munlock_vma_page */
36 
37 #include <linux/uprobes.h>
38 
39 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
41 
42 static struct rb_root uprobes_tree = RB_ROOT;
43 
44 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
45 
46 #define UPROBES_HASH_SZ	13
47 
48 /*
49  * We need separate register/unregister and mmap/munmap lock hashes because
50  * of mmap_sem nesting.
51  *
52  * uprobe_register() needs to install probes on (potentially) all processes
53  * and thus needs to acquire multiple mmap_sems (consequtively, not
54  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55  * for the particular process doing the mmap.
56  *
57  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58  * because of lock order against i_mmap_mutex. This means there's a hole in
59  * the register vma iteration where a mmap() can happen.
60  *
61  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62  * install a probe where one is already installed.
63  */
64 
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 
68 #define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 
74 /*
75  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76  * events active at this time.  Probably a fine grained per inode count is
77  * better?
78  */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 
81 struct uprobe {
82 	struct rb_node		rb_node;	/* node in the rb tree */
83 	atomic_t		ref;
84 	struct rw_semaphore	consumer_rwsem;
85 	struct list_head	pending_list;
86 	struct uprobe_consumer	*consumers;
87 	struct inode		*inode;		/* Also hold a ref to inode */
88 	loff_t			offset;
89 	int			flags;
90 	struct arch_uprobe	arch;
91 };
92 
93 /*
94  * valid_vma: Verify if the specified vma is an executable vma
95  * Relax restrictions while unregistering: vm_flags might have
96  * changed after breakpoint was inserted.
97  *	- is_register: indicates if we are in register context.
98  *	- Return 1 if the specified virtual address is in an
99  *	  executable vma.
100  */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 {
103 	if (!vma->vm_file)
104 		return false;
105 
106 	if (!is_register)
107 		return true;
108 
109 	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 				== (VM_READ|VM_EXEC))
111 		return true;
112 
113 	return false;
114 }
115 
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 {
118 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 }
120 
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 {
123 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 }
125 
126 /**
127  * __replace_page - replace page in vma by new page.
128  * based on replace_page in mm/ksm.c
129  *
130  * @vma:      vma that holds the pte pointing to page
131  * @addr:     address the old @page is mapped at
132  * @page:     the cowed page we are replacing by kpage
133  * @kpage:    the modified page we replace page by
134  *
135  * Returns 0 on success, -EFAULT on failure.
136  */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 				struct page *page, struct page *kpage)
139 {
140 	struct mm_struct *mm = vma->vm_mm;
141 	spinlock_t *ptl;
142 	pte_t *ptep;
143 	int err;
144 
145 	/* For try_to_free_swap() and munlock_vma_page() below */
146 	lock_page(page);
147 
148 	err = -EAGAIN;
149 	ptep = page_check_address(page, mm, addr, &ptl, 0);
150 	if (!ptep)
151 		goto unlock;
152 
153 	get_page(kpage);
154 	page_add_new_anon_rmap(kpage, vma, addr);
155 
156 	if (!PageAnon(page)) {
157 		dec_mm_counter(mm, MM_FILEPAGES);
158 		inc_mm_counter(mm, MM_ANONPAGES);
159 	}
160 
161 	flush_cache_page(vma, addr, pte_pfn(*ptep));
162 	ptep_clear_flush(vma, addr, ptep);
163 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164 
165 	page_remove_rmap(page);
166 	if (!page_mapped(page))
167 		try_to_free_swap(page);
168 	pte_unmap_unlock(ptep, ptl);
169 
170 	if (vma->vm_flags & VM_LOCKED)
171 		munlock_vma_page(page);
172 	put_page(page);
173 
174 	err = 0;
175  unlock:
176 	unlock_page(page);
177 	return err;
178 }
179 
180 /**
181  * is_swbp_insn - check if instruction is breakpoint instruction.
182  * @insn: instruction to be checked.
183  * Default implementation of is_swbp_insn
184  * Returns true if @insn is a breakpoint instruction.
185  */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 {
188 	return *insn == UPROBE_SWBP_INSN;
189 }
190 
191 /*
192  * NOTE:
193  * Expect the breakpoint instruction to be the smallest size instruction for
194  * the architecture. If an arch has variable length instruction and the
195  * breakpoint instruction is not of the smallest length instruction
196  * supported by that architecture then we need to modify read_opcode /
197  * write_opcode accordingly. This would never be a problem for archs that
198  * have fixed length instructions.
199  */
200 
201 /*
202  * write_opcode - write the opcode at a given virtual address.
203  * @auprobe: arch breakpointing information.
204  * @mm: the probed process address space.
205  * @vaddr: the virtual address to store the opcode.
206  * @opcode: opcode to be written at @vaddr.
207  *
208  * Called with mm->mmap_sem held (for read and with a reference to
209  * mm).
210  *
211  * For mm @mm, write the opcode at @vaddr.
212  * Return 0 (success) or a negative errno.
213  */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 			unsigned long vaddr, uprobe_opcode_t opcode)
216 {
217 	struct page *old_page, *new_page;
218 	void *vaddr_old, *vaddr_new;
219 	struct vm_area_struct *vma;
220 	int ret;
221 
222 retry:
223 	/* Read the page with vaddr into memory */
224 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 	if (ret <= 0)
226 		return ret;
227 
228 	ret = -ENOMEM;
229 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 	if (!new_page)
231 		goto put_old;
232 
233 	__SetPageUptodate(new_page);
234 
235 	/* copy the page now that we've got it stable */
236 	vaddr_old = kmap_atomic(old_page);
237 	vaddr_new = kmap_atomic(new_page);
238 
239 	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240 	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241 
242 	kunmap_atomic(vaddr_new);
243 	kunmap_atomic(vaddr_old);
244 
245 	ret = anon_vma_prepare(vma);
246 	if (ret)
247 		goto put_new;
248 
249 	ret = __replace_page(vma, vaddr, old_page, new_page);
250 
251 put_new:
252 	page_cache_release(new_page);
253 put_old:
254 	put_page(old_page);
255 
256 	if (unlikely(ret == -EAGAIN))
257 		goto retry;
258 	return ret;
259 }
260 
261 /**
262  * read_opcode - read the opcode at a given virtual address.
263  * @mm: the probed process address space.
264  * @vaddr: the virtual address to read the opcode.
265  * @opcode: location to store the read opcode.
266  *
267  * Called with mm->mmap_sem held (for read and with a reference to
268  * mm.
269  *
270  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271  * Return 0 (success) or a negative errno.
272  */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 {
275 	struct page *page;
276 	void *vaddr_new;
277 	int ret;
278 
279 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 	if (ret <= 0)
281 		return ret;
282 
283 	vaddr_new = kmap_atomic(page);
284 	vaddr &= ~PAGE_MASK;
285 	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
286 	kunmap_atomic(vaddr_new);
287 
288 	put_page(page);
289 
290 	return 0;
291 }
292 
293 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
294 {
295 	uprobe_opcode_t opcode;
296 	int result;
297 
298 	if (current->mm == mm) {
299 		pagefault_disable();
300 		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 								sizeof(opcode));
302 		pagefault_enable();
303 
304 		if (likely(result == 0))
305 			goto out;
306 	}
307 
308 	result = read_opcode(mm, vaddr, &opcode);
309 	if (result)
310 		return result;
311 out:
312 	if (is_swbp_insn(&opcode))
313 		return 1;
314 
315 	return 0;
316 }
317 
318 /**
319  * set_swbp - store breakpoint at a given address.
320  * @auprobe: arch specific probepoint information.
321  * @mm: the probed process address space.
322  * @vaddr: the virtual address to insert the opcode.
323  *
324  * For mm @mm, store the breakpoint instruction at @vaddr.
325  * Return 0 (success) or a negative errno.
326  */
327 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
328 {
329 	int result;
330 	/*
331 	 * See the comment near uprobes_hash().
332 	 */
333 	result = is_swbp_at_addr(mm, vaddr);
334 	if (result == 1)
335 		return 0;
336 
337 	if (result)
338 		return result;
339 
340 	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
341 }
342 
343 /**
344  * set_orig_insn - Restore the original instruction.
345  * @mm: the probed process address space.
346  * @auprobe: arch specific probepoint information.
347  * @vaddr: the virtual address to insert the opcode.
348  *
349  * For mm @mm, restore the original opcode (opcode) at @vaddr.
350  * Return 0 (success) or a negative errno.
351  */
352 int __weak
353 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
354 {
355 	int result;
356 
357 	result = is_swbp_at_addr(mm, vaddr);
358 	if (!result)
359 		return -EINVAL;
360 
361 	if (result != 1)
362 		return result;
363 
364 	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
365 }
366 
367 static int match_uprobe(struct uprobe *l, struct uprobe *r)
368 {
369 	if (l->inode < r->inode)
370 		return -1;
371 
372 	if (l->inode > r->inode)
373 		return 1;
374 
375 	if (l->offset < r->offset)
376 		return -1;
377 
378 	if (l->offset > r->offset)
379 		return 1;
380 
381 	return 0;
382 }
383 
384 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385 {
386 	struct uprobe u = { .inode = inode, .offset = offset };
387 	struct rb_node *n = uprobes_tree.rb_node;
388 	struct uprobe *uprobe;
389 	int match;
390 
391 	while (n) {
392 		uprobe = rb_entry(n, struct uprobe, rb_node);
393 		match = match_uprobe(&u, uprobe);
394 		if (!match) {
395 			atomic_inc(&uprobe->ref);
396 			return uprobe;
397 		}
398 
399 		if (match < 0)
400 			n = n->rb_left;
401 		else
402 			n = n->rb_right;
403 	}
404 	return NULL;
405 }
406 
407 /*
408  * Find a uprobe corresponding to a given inode:offset
409  * Acquires uprobes_treelock
410  */
411 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412 {
413 	struct uprobe *uprobe;
414 
415 	spin_lock(&uprobes_treelock);
416 	uprobe = __find_uprobe(inode, offset);
417 	spin_unlock(&uprobes_treelock);
418 
419 	return uprobe;
420 }
421 
422 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
423 {
424 	struct rb_node **p = &uprobes_tree.rb_node;
425 	struct rb_node *parent = NULL;
426 	struct uprobe *u;
427 	int match;
428 
429 	while (*p) {
430 		parent = *p;
431 		u = rb_entry(parent, struct uprobe, rb_node);
432 		match = match_uprobe(uprobe, u);
433 		if (!match) {
434 			atomic_inc(&u->ref);
435 			return u;
436 		}
437 
438 		if (match < 0)
439 			p = &parent->rb_left;
440 		else
441 			p = &parent->rb_right;
442 
443 	}
444 
445 	u = NULL;
446 	rb_link_node(&uprobe->rb_node, parent, p);
447 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
448 	/* get access + creation ref */
449 	atomic_set(&uprobe->ref, 2);
450 
451 	return u;
452 }
453 
454 /*
455  * Acquire uprobes_treelock.
456  * Matching uprobe already exists in rbtree;
457  *	increment (access refcount) and return the matching uprobe.
458  *
459  * No matching uprobe; insert the uprobe in rb_tree;
460  *	get a double refcount (access + creation) and return NULL.
461  */
462 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
463 {
464 	struct uprobe *u;
465 
466 	spin_lock(&uprobes_treelock);
467 	u = __insert_uprobe(uprobe);
468 	spin_unlock(&uprobes_treelock);
469 
470 	/* For now assume that the instruction need not be single-stepped */
471 	uprobe->flags |= UPROBE_SKIP_SSTEP;
472 
473 	return u;
474 }
475 
476 static void put_uprobe(struct uprobe *uprobe)
477 {
478 	if (atomic_dec_and_test(&uprobe->ref))
479 		kfree(uprobe);
480 }
481 
482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483 {
484 	struct uprobe *uprobe, *cur_uprobe;
485 
486 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487 	if (!uprobe)
488 		return NULL;
489 
490 	uprobe->inode = igrab(inode);
491 	uprobe->offset = offset;
492 	init_rwsem(&uprobe->consumer_rwsem);
493 
494 	/* add to uprobes_tree, sorted on inode:offset */
495 	cur_uprobe = insert_uprobe(uprobe);
496 
497 	/* a uprobe exists for this inode:offset combination */
498 	if (cur_uprobe) {
499 		kfree(uprobe);
500 		uprobe = cur_uprobe;
501 		iput(inode);
502 	} else {
503 		atomic_inc(&uprobe_events);
504 	}
505 
506 	return uprobe;
507 }
508 
509 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
510 {
511 	struct uprobe_consumer *uc;
512 
513 	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
514 		return;
515 
516 	down_read(&uprobe->consumer_rwsem);
517 	for (uc = uprobe->consumers; uc; uc = uc->next) {
518 		if (!uc->filter || uc->filter(uc, current))
519 			uc->handler(uc, regs);
520 	}
521 	up_read(&uprobe->consumer_rwsem);
522 }
523 
524 /* Returns the previous consumer */
525 static struct uprobe_consumer *
526 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
527 {
528 	down_write(&uprobe->consumer_rwsem);
529 	uc->next = uprobe->consumers;
530 	uprobe->consumers = uc;
531 	up_write(&uprobe->consumer_rwsem);
532 
533 	return uc->next;
534 }
535 
536 /*
537  * For uprobe @uprobe, delete the consumer @uc.
538  * Return true if the @uc is deleted successfully
539  * or return false.
540  */
541 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
542 {
543 	struct uprobe_consumer **con;
544 	bool ret = false;
545 
546 	down_write(&uprobe->consumer_rwsem);
547 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
548 		if (*con == uc) {
549 			*con = uc->next;
550 			ret = true;
551 			break;
552 		}
553 	}
554 	up_write(&uprobe->consumer_rwsem);
555 
556 	return ret;
557 }
558 
559 static int
560 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
561 			unsigned long nbytes, loff_t offset)
562 {
563 	struct page *page;
564 	void *vaddr;
565 	unsigned long off;
566 	pgoff_t idx;
567 
568 	if (!filp)
569 		return -EINVAL;
570 
571 	if (!mapping->a_ops->readpage)
572 		return -EIO;
573 
574 	idx = offset >> PAGE_CACHE_SHIFT;
575 	off = offset & ~PAGE_MASK;
576 
577 	/*
578 	 * Ensure that the page that has the original instruction is
579 	 * populated and in page-cache.
580 	 */
581 	page = read_mapping_page(mapping, idx, filp);
582 	if (IS_ERR(page))
583 		return PTR_ERR(page);
584 
585 	vaddr = kmap_atomic(page);
586 	memcpy(insn, vaddr + off, nbytes);
587 	kunmap_atomic(vaddr);
588 	page_cache_release(page);
589 
590 	return 0;
591 }
592 
593 static int copy_insn(struct uprobe *uprobe, struct file *filp)
594 {
595 	struct address_space *mapping;
596 	unsigned long nbytes;
597 	int bytes;
598 
599 	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
600 	mapping = uprobe->inode->i_mapping;
601 
602 	/* Instruction at end of binary; copy only available bytes */
603 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
604 		bytes = uprobe->inode->i_size - uprobe->offset;
605 	else
606 		bytes = MAX_UINSN_BYTES;
607 
608 	/* Instruction at the page-boundary; copy bytes in second page */
609 	if (nbytes < bytes) {
610 		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
611 				bytes - nbytes, uprobe->offset + nbytes);
612 		if (err)
613 			return err;
614 		bytes = nbytes;
615 	}
616 	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
617 }
618 
619 /*
620  * How mm->uprobes_state.count gets updated
621  * uprobe_mmap() increments the count if
622  * 	- it successfully adds a breakpoint.
623  * 	- it cannot add a breakpoint, but sees that there is a underlying
624  * 	  breakpoint (via a is_swbp_at_addr()).
625  *
626  * uprobe_munmap() decrements the count if
627  * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
628  * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
629  * 	  unless a uprobe_mmap kicks in, since the old vma would be
630  * 	  dropped just after uprobe_munmap.)
631  *
632  * uprobe_register increments the count if:
633  * 	- it successfully adds a breakpoint.
634  *
635  * uprobe_unregister decrements the count if:
636  * 	- it sees a underlying breakpoint and removes successfully.
637  * 	  (via is_swbp_at_addr)
638  * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
639  * 	  since there is no underlying breakpoint after the
640  * 	  breakpoint removal.)
641  */
642 static int
643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
644 			struct vm_area_struct *vma, unsigned long vaddr)
645 {
646 	bool first_uprobe;
647 	int ret;
648 
649 	/*
650 	 * If probe is being deleted, unregister thread could be done with
651 	 * the vma-rmap-walk through. Adding a probe now can be fatal since
652 	 * nobody will be able to cleanup. Also we could be from fork or
653 	 * mremap path, where the probe might have already been inserted.
654 	 * Hence behave as if probe already existed.
655 	 */
656 	if (!uprobe->consumers)
657 		return 0;
658 
659 	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
660 		ret = copy_insn(uprobe, vma->vm_file);
661 		if (ret)
662 			return ret;
663 
664 		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
665 			return -ENOTSUPP;
666 
667 		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
668 		if (ret)
669 			return ret;
670 
671 		/* write_opcode() assumes we don't cross page boundary */
672 		BUG_ON((uprobe->offset & ~PAGE_MASK) +
673 				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
674 
675 		uprobe->flags |= UPROBE_COPY_INSN;
676 	}
677 
678 	/*
679 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
680 	 * the task can hit this breakpoint right after __replace_page().
681 	 */
682 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
683 	if (first_uprobe)
684 		set_bit(MMF_HAS_UPROBES, &mm->flags);
685 
686 	ret = set_swbp(&uprobe->arch, mm, vaddr);
687 	if (!ret)
688 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
689 	else if (first_uprobe)
690 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
691 
692 	return ret;
693 }
694 
695 static void
696 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
697 {
698 	/* can happen if uprobe_register() fails */
699 	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
700 		return;
701 
702 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
703 	set_orig_insn(&uprobe->arch, mm, vaddr);
704 }
705 
706 /*
707  * There could be threads that have already hit the breakpoint. They
708  * will recheck the current insn and restart if find_uprobe() fails.
709  * See find_active_uprobe().
710  */
711 static void delete_uprobe(struct uprobe *uprobe)
712 {
713 	spin_lock(&uprobes_treelock);
714 	rb_erase(&uprobe->rb_node, &uprobes_tree);
715 	spin_unlock(&uprobes_treelock);
716 	iput(uprobe->inode);
717 	put_uprobe(uprobe);
718 	atomic_dec(&uprobe_events);
719 }
720 
721 struct map_info {
722 	struct map_info *next;
723 	struct mm_struct *mm;
724 	unsigned long vaddr;
725 };
726 
727 static inline struct map_info *free_map_info(struct map_info *info)
728 {
729 	struct map_info *next = info->next;
730 	kfree(info);
731 	return next;
732 }
733 
734 static struct map_info *
735 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
736 {
737 	unsigned long pgoff = offset >> PAGE_SHIFT;
738 	struct prio_tree_iter iter;
739 	struct vm_area_struct *vma;
740 	struct map_info *curr = NULL;
741 	struct map_info *prev = NULL;
742 	struct map_info *info;
743 	int more = 0;
744 
745  again:
746 	mutex_lock(&mapping->i_mmap_mutex);
747 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
748 		if (!valid_vma(vma, is_register))
749 			continue;
750 
751 		if (!prev && !more) {
752 			/*
753 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
754 			 * reclaim. This is optimistic, no harm done if it fails.
755 			 */
756 			prev = kmalloc(sizeof(struct map_info),
757 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
758 			if (prev)
759 				prev->next = NULL;
760 		}
761 		if (!prev) {
762 			more++;
763 			continue;
764 		}
765 
766 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
767 			continue;
768 
769 		info = prev;
770 		prev = prev->next;
771 		info->next = curr;
772 		curr = info;
773 
774 		info->mm = vma->vm_mm;
775 		info->vaddr = offset_to_vaddr(vma, offset);
776 	}
777 	mutex_unlock(&mapping->i_mmap_mutex);
778 
779 	if (!more)
780 		goto out;
781 
782 	prev = curr;
783 	while (curr) {
784 		mmput(curr->mm);
785 		curr = curr->next;
786 	}
787 
788 	do {
789 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
790 		if (!info) {
791 			curr = ERR_PTR(-ENOMEM);
792 			goto out;
793 		}
794 		info->next = prev;
795 		prev = info;
796 	} while (--more);
797 
798 	goto again;
799  out:
800 	while (prev)
801 		prev = free_map_info(prev);
802 	return curr;
803 }
804 
805 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
806 {
807 	struct map_info *info;
808 	int err = 0;
809 
810 	info = build_map_info(uprobe->inode->i_mapping,
811 					uprobe->offset, is_register);
812 	if (IS_ERR(info))
813 		return PTR_ERR(info);
814 
815 	while (info) {
816 		struct mm_struct *mm = info->mm;
817 		struct vm_area_struct *vma;
818 
819 		if (err)
820 			goto free;
821 
822 		down_write(&mm->mmap_sem);
823 		vma = find_vma(mm, info->vaddr);
824 		if (!vma || !valid_vma(vma, is_register) ||
825 		    vma->vm_file->f_mapping->host != uprobe->inode)
826 			goto unlock;
827 
828 		if (vma->vm_start > info->vaddr ||
829 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
830 			goto unlock;
831 
832 		if (is_register)
833 			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
834 		else
835 			remove_breakpoint(uprobe, mm, info->vaddr);
836 
837  unlock:
838 		up_write(&mm->mmap_sem);
839  free:
840 		mmput(mm);
841 		info = free_map_info(info);
842 	}
843 
844 	return err;
845 }
846 
847 static int __uprobe_register(struct uprobe *uprobe)
848 {
849 	return register_for_each_vma(uprobe, true);
850 }
851 
852 static void __uprobe_unregister(struct uprobe *uprobe)
853 {
854 	if (!register_for_each_vma(uprobe, false))
855 		delete_uprobe(uprobe);
856 
857 	/* TODO : cant unregister? schedule a worker thread */
858 }
859 
860 /*
861  * uprobe_register - register a probe
862  * @inode: the file in which the probe has to be placed.
863  * @offset: offset from the start of the file.
864  * @uc: information on howto handle the probe..
865  *
866  * Apart from the access refcount, uprobe_register() takes a creation
867  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
868  * inserted into the rbtree (i.e first consumer for a @inode:@offset
869  * tuple).  Creation refcount stops uprobe_unregister from freeing the
870  * @uprobe even before the register operation is complete. Creation
871  * refcount is released when the last @uc for the @uprobe
872  * unregisters.
873  *
874  * Return errno if it cannot successully install probes
875  * else return 0 (success)
876  */
877 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
878 {
879 	struct uprobe *uprobe;
880 	int ret;
881 
882 	if (!inode || !uc || uc->next)
883 		return -EINVAL;
884 
885 	if (offset > i_size_read(inode))
886 		return -EINVAL;
887 
888 	ret = 0;
889 	mutex_lock(uprobes_hash(inode));
890 	uprobe = alloc_uprobe(inode, offset);
891 
892 	if (uprobe && !consumer_add(uprobe, uc)) {
893 		ret = __uprobe_register(uprobe);
894 		if (ret) {
895 			uprobe->consumers = NULL;
896 			__uprobe_unregister(uprobe);
897 		} else {
898 			uprobe->flags |= UPROBE_RUN_HANDLER;
899 		}
900 	}
901 
902 	mutex_unlock(uprobes_hash(inode));
903 	if (uprobe)
904 		put_uprobe(uprobe);
905 
906 	return ret;
907 }
908 
909 /*
910  * uprobe_unregister - unregister a already registered probe.
911  * @inode: the file in which the probe has to be removed.
912  * @offset: offset from the start of the file.
913  * @uc: identify which probe if multiple probes are colocated.
914  */
915 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
916 {
917 	struct uprobe *uprobe;
918 
919 	if (!inode || !uc)
920 		return;
921 
922 	uprobe = find_uprobe(inode, offset);
923 	if (!uprobe)
924 		return;
925 
926 	mutex_lock(uprobes_hash(inode));
927 
928 	if (consumer_del(uprobe, uc)) {
929 		if (!uprobe->consumers) {
930 			__uprobe_unregister(uprobe);
931 			uprobe->flags &= ~UPROBE_RUN_HANDLER;
932 		}
933 	}
934 
935 	mutex_unlock(uprobes_hash(inode));
936 	if (uprobe)
937 		put_uprobe(uprobe);
938 }
939 
940 static struct rb_node *
941 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
942 {
943 	struct rb_node *n = uprobes_tree.rb_node;
944 
945 	while (n) {
946 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
947 
948 		if (inode < u->inode) {
949 			n = n->rb_left;
950 		} else if (inode > u->inode) {
951 			n = n->rb_right;
952 		} else {
953 			if (max < u->offset)
954 				n = n->rb_left;
955 			else if (min > u->offset)
956 				n = n->rb_right;
957 			else
958 				break;
959 		}
960 	}
961 
962 	return n;
963 }
964 
965 /*
966  * For a given range in vma, build a list of probes that need to be inserted.
967  */
968 static void build_probe_list(struct inode *inode,
969 				struct vm_area_struct *vma,
970 				unsigned long start, unsigned long end,
971 				struct list_head *head)
972 {
973 	loff_t min, max;
974 	struct rb_node *n, *t;
975 	struct uprobe *u;
976 
977 	INIT_LIST_HEAD(head);
978 	min = vaddr_to_offset(vma, start);
979 	max = min + (end - start) - 1;
980 
981 	spin_lock(&uprobes_treelock);
982 	n = find_node_in_range(inode, min, max);
983 	if (n) {
984 		for (t = n; t; t = rb_prev(t)) {
985 			u = rb_entry(t, struct uprobe, rb_node);
986 			if (u->inode != inode || u->offset < min)
987 				break;
988 			list_add(&u->pending_list, head);
989 			atomic_inc(&u->ref);
990 		}
991 		for (t = n; (t = rb_next(t)); ) {
992 			u = rb_entry(t, struct uprobe, rb_node);
993 			if (u->inode != inode || u->offset > max)
994 				break;
995 			list_add(&u->pending_list, head);
996 			atomic_inc(&u->ref);
997 		}
998 	}
999 	spin_unlock(&uprobes_treelock);
1000 }
1001 
1002 /*
1003  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1004  *
1005  * Currently we ignore all errors and always return 0, the callers
1006  * can't handle the failure anyway.
1007  */
1008 int uprobe_mmap(struct vm_area_struct *vma)
1009 {
1010 	struct list_head tmp_list;
1011 	struct uprobe *uprobe, *u;
1012 	struct inode *inode;
1013 
1014 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1015 		return 0;
1016 
1017 	inode = vma->vm_file->f_mapping->host;
1018 	if (!inode)
1019 		return 0;
1020 
1021 	mutex_lock(uprobes_mmap_hash(inode));
1022 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1023 
1024 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1025 		if (!fatal_signal_pending(current)) {
1026 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1027 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1028 		}
1029 		put_uprobe(uprobe);
1030 	}
1031 	mutex_unlock(uprobes_mmap_hash(inode));
1032 
1033 	return 0;
1034 }
1035 
1036 static bool
1037 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1038 {
1039 	loff_t min, max;
1040 	struct inode *inode;
1041 	struct rb_node *n;
1042 
1043 	inode = vma->vm_file->f_mapping->host;
1044 
1045 	min = vaddr_to_offset(vma, start);
1046 	max = min + (end - start) - 1;
1047 
1048 	spin_lock(&uprobes_treelock);
1049 	n = find_node_in_range(inode, min, max);
1050 	spin_unlock(&uprobes_treelock);
1051 
1052 	return !!n;
1053 }
1054 
1055 /*
1056  * Called in context of a munmap of a vma.
1057  */
1058 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1059 {
1060 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1061 		return;
1062 
1063 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1064 		return;
1065 
1066 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1067 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1068 		return;
1069 
1070 	if (vma_has_uprobes(vma, start, end))
1071 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1072 }
1073 
1074 /* Slot allocation for XOL */
1075 static int xol_add_vma(struct xol_area *area)
1076 {
1077 	struct mm_struct *mm;
1078 	int ret;
1079 
1080 	area->page = alloc_page(GFP_HIGHUSER);
1081 	if (!area->page)
1082 		return -ENOMEM;
1083 
1084 	ret = -EALREADY;
1085 	mm = current->mm;
1086 
1087 	down_write(&mm->mmap_sem);
1088 	if (mm->uprobes_state.xol_area)
1089 		goto fail;
1090 
1091 	ret = -ENOMEM;
1092 
1093 	/* Try to map as high as possible, this is only a hint. */
1094 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1095 	if (area->vaddr & ~PAGE_MASK) {
1096 		ret = area->vaddr;
1097 		goto fail;
1098 	}
1099 
1100 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1101 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1102 	if (ret)
1103 		goto fail;
1104 
1105 	smp_wmb();	/* pairs with get_xol_area() */
1106 	mm->uprobes_state.xol_area = area;
1107 	ret = 0;
1108 
1109 fail:
1110 	up_write(&mm->mmap_sem);
1111 	if (ret)
1112 		__free_page(area->page);
1113 
1114 	return ret;
1115 }
1116 
1117 static struct xol_area *get_xol_area(struct mm_struct *mm)
1118 {
1119 	struct xol_area *area;
1120 
1121 	area = mm->uprobes_state.xol_area;
1122 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1123 
1124 	return area;
1125 }
1126 
1127 /*
1128  * xol_alloc_area - Allocate process's xol_area.
1129  * This area will be used for storing instructions for execution out of
1130  * line.
1131  *
1132  * Returns the allocated area or NULL.
1133  */
1134 static struct xol_area *xol_alloc_area(void)
1135 {
1136 	struct xol_area *area;
1137 
1138 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1139 	if (unlikely(!area))
1140 		return NULL;
1141 
1142 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1143 
1144 	if (!area->bitmap)
1145 		goto fail;
1146 
1147 	init_waitqueue_head(&area->wq);
1148 	if (!xol_add_vma(area))
1149 		return area;
1150 
1151 fail:
1152 	kfree(area->bitmap);
1153 	kfree(area);
1154 
1155 	return get_xol_area(current->mm);
1156 }
1157 
1158 /*
1159  * uprobe_clear_state - Free the area allocated for slots.
1160  */
1161 void uprobe_clear_state(struct mm_struct *mm)
1162 {
1163 	struct xol_area *area = mm->uprobes_state.xol_area;
1164 
1165 	if (!area)
1166 		return;
1167 
1168 	put_page(area->page);
1169 	kfree(area->bitmap);
1170 	kfree(area);
1171 }
1172 
1173 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1174 {
1175 	newmm->uprobes_state.xol_area = NULL;
1176 
1177 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1178 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1179 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1180 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1181 	}
1182 }
1183 
1184 /*
1185  *  - search for a free slot.
1186  */
1187 static unsigned long xol_take_insn_slot(struct xol_area *area)
1188 {
1189 	unsigned long slot_addr;
1190 	int slot_nr;
1191 
1192 	do {
1193 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1194 		if (slot_nr < UINSNS_PER_PAGE) {
1195 			if (!test_and_set_bit(slot_nr, area->bitmap))
1196 				break;
1197 
1198 			slot_nr = UINSNS_PER_PAGE;
1199 			continue;
1200 		}
1201 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1202 	} while (slot_nr >= UINSNS_PER_PAGE);
1203 
1204 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1205 	atomic_inc(&area->slot_count);
1206 
1207 	return slot_addr;
1208 }
1209 
1210 /*
1211  * xol_get_insn_slot - If was not allocated a slot, then
1212  * allocate a slot.
1213  * Returns the allocated slot address or 0.
1214  */
1215 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1216 {
1217 	struct xol_area *area;
1218 	unsigned long offset;
1219 	void *vaddr;
1220 
1221 	area = get_xol_area(current->mm);
1222 	if (!area) {
1223 		area = xol_alloc_area();
1224 		if (!area)
1225 			return 0;
1226 	}
1227 	current->utask->xol_vaddr = xol_take_insn_slot(area);
1228 
1229 	/*
1230 	 * Initialize the slot if xol_vaddr points to valid
1231 	 * instruction slot.
1232 	 */
1233 	if (unlikely(!current->utask->xol_vaddr))
1234 		return 0;
1235 
1236 	current->utask->vaddr = slot_addr;
1237 	offset = current->utask->xol_vaddr & ~PAGE_MASK;
1238 	vaddr = kmap_atomic(area->page);
1239 	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1240 	kunmap_atomic(vaddr);
1241 
1242 	return current->utask->xol_vaddr;
1243 }
1244 
1245 /*
1246  * xol_free_insn_slot - If slot was earlier allocated by
1247  * @xol_get_insn_slot(), make the slot available for
1248  * subsequent requests.
1249  */
1250 static void xol_free_insn_slot(struct task_struct *tsk)
1251 {
1252 	struct xol_area *area;
1253 	unsigned long vma_end;
1254 	unsigned long slot_addr;
1255 
1256 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1257 		return;
1258 
1259 	slot_addr = tsk->utask->xol_vaddr;
1260 
1261 	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1262 		return;
1263 
1264 	area = tsk->mm->uprobes_state.xol_area;
1265 	vma_end = area->vaddr + PAGE_SIZE;
1266 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1267 		unsigned long offset;
1268 		int slot_nr;
1269 
1270 		offset = slot_addr - area->vaddr;
1271 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1272 		if (slot_nr >= UINSNS_PER_PAGE)
1273 			return;
1274 
1275 		clear_bit(slot_nr, area->bitmap);
1276 		atomic_dec(&area->slot_count);
1277 		if (waitqueue_active(&area->wq))
1278 			wake_up(&area->wq);
1279 
1280 		tsk->utask->xol_vaddr = 0;
1281 	}
1282 }
1283 
1284 /**
1285  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1286  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1287  * instruction.
1288  * Return the address of the breakpoint instruction.
1289  */
1290 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1291 {
1292 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1293 }
1294 
1295 /*
1296  * Called with no locks held.
1297  * Called in context of a exiting or a exec-ing thread.
1298  */
1299 void uprobe_free_utask(struct task_struct *t)
1300 {
1301 	struct uprobe_task *utask = t->utask;
1302 
1303 	if (!utask)
1304 		return;
1305 
1306 	if (utask->active_uprobe)
1307 		put_uprobe(utask->active_uprobe);
1308 
1309 	xol_free_insn_slot(t);
1310 	kfree(utask);
1311 	t->utask = NULL;
1312 }
1313 
1314 /*
1315  * Called in context of a new clone/fork from copy_process.
1316  */
1317 void uprobe_copy_process(struct task_struct *t)
1318 {
1319 	t->utask = NULL;
1320 }
1321 
1322 /*
1323  * Allocate a uprobe_task object for the task.
1324  * Called when the thread hits a breakpoint for the first time.
1325  *
1326  * Returns:
1327  * - pointer to new uprobe_task on success
1328  * - NULL otherwise
1329  */
1330 static struct uprobe_task *add_utask(void)
1331 {
1332 	struct uprobe_task *utask;
1333 
1334 	utask = kzalloc(sizeof *utask, GFP_KERNEL);
1335 	if (unlikely(!utask))
1336 		return NULL;
1337 
1338 	current->utask = utask;
1339 	return utask;
1340 }
1341 
1342 /* Prepare to single-step probed instruction out of line. */
1343 static int
1344 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1345 {
1346 	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1347 		return 0;
1348 
1349 	return -EFAULT;
1350 }
1351 
1352 /*
1353  * If we are singlestepping, then ensure this thread is not connected to
1354  * non-fatal signals until completion of singlestep.  When xol insn itself
1355  * triggers the signal,  restart the original insn even if the task is
1356  * already SIGKILL'ed (since coredump should report the correct ip).  This
1357  * is even more important if the task has a handler for SIGSEGV/etc, The
1358  * _same_ instruction should be repeated again after return from the signal
1359  * handler, and SSTEP can never finish in this case.
1360  */
1361 bool uprobe_deny_signal(void)
1362 {
1363 	struct task_struct *t = current;
1364 	struct uprobe_task *utask = t->utask;
1365 
1366 	if (likely(!utask || !utask->active_uprobe))
1367 		return false;
1368 
1369 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1370 
1371 	if (signal_pending(t)) {
1372 		spin_lock_irq(&t->sighand->siglock);
1373 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1374 		spin_unlock_irq(&t->sighand->siglock);
1375 
1376 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1377 			utask->state = UTASK_SSTEP_TRAPPED;
1378 			set_tsk_thread_flag(t, TIF_UPROBE);
1379 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1380 		}
1381 	}
1382 
1383 	return true;
1384 }
1385 
1386 /*
1387  * Avoid singlestepping the original instruction if the original instruction
1388  * is a NOP or can be emulated.
1389  */
1390 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1391 {
1392 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1393 		return true;
1394 
1395 	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1396 	return false;
1397 }
1398 
1399 static void mmf_recalc_uprobes(struct mm_struct *mm)
1400 {
1401 	struct vm_area_struct *vma;
1402 
1403 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1404 		if (!valid_vma(vma, false))
1405 			continue;
1406 		/*
1407 		 * This is not strictly accurate, we can race with
1408 		 * uprobe_unregister() and see the already removed
1409 		 * uprobe if delete_uprobe() was not yet called.
1410 		 */
1411 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1412 			return;
1413 	}
1414 
1415 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1416 }
1417 
1418 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1419 {
1420 	struct mm_struct *mm = current->mm;
1421 	struct uprobe *uprobe = NULL;
1422 	struct vm_area_struct *vma;
1423 
1424 	down_read(&mm->mmap_sem);
1425 	vma = find_vma(mm, bp_vaddr);
1426 	if (vma && vma->vm_start <= bp_vaddr) {
1427 		if (valid_vma(vma, false)) {
1428 			struct inode *inode = vma->vm_file->f_mapping->host;
1429 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1430 
1431 			uprobe = find_uprobe(inode, offset);
1432 		}
1433 
1434 		if (!uprobe)
1435 			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1436 	} else {
1437 		*is_swbp = -EFAULT;
1438 	}
1439 
1440 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1441 		mmf_recalc_uprobes(mm);
1442 	up_read(&mm->mmap_sem);
1443 
1444 	return uprobe;
1445 }
1446 
1447 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1448 {
1449 	user_enable_single_step(current);
1450 }
1451 
1452 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1453 {
1454 	user_disable_single_step(current);
1455 }
1456 
1457 /*
1458  * Run handler and ask thread to singlestep.
1459  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1460  */
1461 static void handle_swbp(struct pt_regs *regs)
1462 {
1463 	struct uprobe_task *utask;
1464 	struct uprobe *uprobe;
1465 	unsigned long bp_vaddr;
1466 	int uninitialized_var(is_swbp);
1467 
1468 	bp_vaddr = uprobe_get_swbp_addr(regs);
1469 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1470 
1471 	if (!uprobe) {
1472 		if (is_swbp > 0) {
1473 			/* No matching uprobe; signal SIGTRAP. */
1474 			send_sig(SIGTRAP, current, 0);
1475 		} else {
1476 			/*
1477 			 * Either we raced with uprobe_unregister() or we can't
1478 			 * access this memory. The latter is only possible if
1479 			 * another thread plays with our ->mm. In both cases
1480 			 * we can simply restart. If this vma was unmapped we
1481 			 * can pretend this insn was not executed yet and get
1482 			 * the (correct) SIGSEGV after restart.
1483 			 */
1484 			instruction_pointer_set(regs, bp_vaddr);
1485 		}
1486 		return;
1487 	}
1488 
1489 	utask = current->utask;
1490 	if (!utask) {
1491 		utask = add_utask();
1492 		/* Cannot allocate; re-execute the instruction. */
1493 		if (!utask)
1494 			goto cleanup_ret;
1495 	}
1496 	utask->active_uprobe = uprobe;
1497 	handler_chain(uprobe, regs);
1498 	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1499 		goto cleanup_ret;
1500 
1501 	utask->state = UTASK_SSTEP;
1502 	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1503 		arch_uprobe_enable_step(&uprobe->arch);
1504 		return;
1505 	}
1506 
1507 cleanup_ret:
1508 	if (utask) {
1509 		utask->active_uprobe = NULL;
1510 		utask->state = UTASK_RUNNING;
1511 	}
1512 	if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1513 
1514 		/*
1515 		 * cannot singlestep; cannot skip instruction;
1516 		 * re-execute the instruction.
1517 		 */
1518 		instruction_pointer_set(regs, bp_vaddr);
1519 
1520 	put_uprobe(uprobe);
1521 }
1522 
1523 /*
1524  * Perform required fix-ups and disable singlestep.
1525  * Allow pending signals to take effect.
1526  */
1527 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1528 {
1529 	struct uprobe *uprobe;
1530 
1531 	uprobe = utask->active_uprobe;
1532 	if (utask->state == UTASK_SSTEP_ACK)
1533 		arch_uprobe_post_xol(&uprobe->arch, regs);
1534 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1535 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1536 	else
1537 		WARN_ON_ONCE(1);
1538 
1539 	arch_uprobe_disable_step(&uprobe->arch);
1540 	put_uprobe(uprobe);
1541 	utask->active_uprobe = NULL;
1542 	utask->state = UTASK_RUNNING;
1543 	xol_free_insn_slot(current);
1544 
1545 	spin_lock_irq(&current->sighand->siglock);
1546 	recalc_sigpending(); /* see uprobe_deny_signal() */
1547 	spin_unlock_irq(&current->sighand->siglock);
1548 }
1549 
1550 /*
1551  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1552  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1553  * allows the thread to return from interrupt.
1554  *
1555  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1556  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1557  * interrupt.
1558  *
1559  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1560  * uprobe_notify_resume().
1561  */
1562 void uprobe_notify_resume(struct pt_regs *regs)
1563 {
1564 	struct uprobe_task *utask;
1565 
1566 	utask = current->utask;
1567 	if (!utask || utask->state == UTASK_BP_HIT)
1568 		handle_swbp(regs);
1569 	else
1570 		handle_singlestep(utask, regs);
1571 }
1572 
1573 /*
1574  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1575  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1576  */
1577 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1578 {
1579 	struct uprobe_task *utask;
1580 
1581 	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1582 		return 0;
1583 
1584 	utask = current->utask;
1585 	if (utask)
1586 		utask->state = UTASK_BP_HIT;
1587 
1588 	set_thread_flag(TIF_UPROBE);
1589 
1590 	return 1;
1591 }
1592 
1593 /*
1594  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1595  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1596  */
1597 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1598 {
1599 	struct uprobe_task *utask = current->utask;
1600 
1601 	if (!current->mm || !utask || !utask->active_uprobe)
1602 		/* task is currently not uprobed */
1603 		return 0;
1604 
1605 	utask->state = UTASK_SSTEP_ACK;
1606 	set_thread_flag(TIF_UPROBE);
1607 	return 1;
1608 }
1609 
1610 static struct notifier_block uprobe_exception_nb = {
1611 	.notifier_call		= arch_uprobe_exception_notify,
1612 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1613 };
1614 
1615 static int __init init_uprobes(void)
1616 {
1617 	int i;
1618 
1619 	for (i = 0; i < UPROBES_HASH_SZ; i++) {
1620 		mutex_init(&uprobes_mutex[i]);
1621 		mutex_init(&uprobes_mmap_mutex[i]);
1622 	}
1623 
1624 	return register_die_notifier(&uprobe_exception_nb);
1625 }
1626 module_init(init_uprobes);
1627 
1628 static void __exit exit_uprobes(void)
1629 {
1630 }
1631 module_exit(exit_uprobes);
1632