1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/rmap.h> /* anon_vma_prepare */ 31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 32 #include <linux/swap.h> /* try_to_free_swap */ 33 #include <linux/ptrace.h> /* user_enable_single_step */ 34 #include <linux/kdebug.h> /* notifier mechanism */ 35 36 #include <linux/uprobes.h> 37 38 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 39 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 40 41 static struct srcu_struct uprobes_srcu; 42 static struct rb_root uprobes_tree = RB_ROOT; 43 44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 45 46 #define UPROBES_HASH_SZ 13 47 48 /* serialize (un)register */ 49 static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; 50 51 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 52 53 /* serialize uprobe->pending_list */ 54 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 55 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 56 57 /* 58 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe 59 * events active at this time. Probably a fine grained per inode count is 60 * better? 61 */ 62 static atomic_t uprobe_events = ATOMIC_INIT(0); 63 64 /* 65 * Maintain a temporary per vma info that can be used to search if a vma 66 * has already been handled. This structure is introduced since extending 67 * vm_area_struct wasnt recommended. 68 */ 69 struct vma_info { 70 struct list_head probe_list; 71 struct mm_struct *mm; 72 loff_t vaddr; 73 }; 74 75 struct uprobe { 76 struct rb_node rb_node; /* node in the rb tree */ 77 atomic_t ref; 78 struct rw_semaphore consumer_rwsem; 79 struct list_head pending_list; 80 struct uprobe_consumer *consumers; 81 struct inode *inode; /* Also hold a ref to inode */ 82 loff_t offset; 83 int flags; 84 struct arch_uprobe arch; 85 }; 86 87 /* 88 * valid_vma: Verify if the specified vma is an executable vma 89 * Relax restrictions while unregistering: vm_flags might have 90 * changed after breakpoint was inserted. 91 * - is_register: indicates if we are in register context. 92 * - Return 1 if the specified virtual address is in an 93 * executable vma. 94 */ 95 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 96 { 97 if (!vma->vm_file) 98 return false; 99 100 if (!is_register) 101 return true; 102 103 if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC)) 104 return true; 105 106 return false; 107 } 108 109 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset) 110 { 111 loff_t vaddr; 112 113 vaddr = vma->vm_start + offset; 114 vaddr -= vma->vm_pgoff << PAGE_SHIFT; 115 116 return vaddr; 117 } 118 119 /** 120 * __replace_page - replace page in vma by new page. 121 * based on replace_page in mm/ksm.c 122 * 123 * @vma: vma that holds the pte pointing to page 124 * @page: the cowed page we are replacing by kpage 125 * @kpage: the modified page we replace page by 126 * 127 * Returns 0 on success, -EFAULT on failure. 128 */ 129 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage) 130 { 131 struct mm_struct *mm = vma->vm_mm; 132 pgd_t *pgd; 133 pud_t *pud; 134 pmd_t *pmd; 135 pte_t *ptep; 136 spinlock_t *ptl; 137 unsigned long addr; 138 int err = -EFAULT; 139 140 addr = page_address_in_vma(page, vma); 141 if (addr == -EFAULT) 142 goto out; 143 144 pgd = pgd_offset(mm, addr); 145 if (!pgd_present(*pgd)) 146 goto out; 147 148 pud = pud_offset(pgd, addr); 149 if (!pud_present(*pud)) 150 goto out; 151 152 pmd = pmd_offset(pud, addr); 153 if (!pmd_present(*pmd)) 154 goto out; 155 156 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 157 if (!ptep) 158 goto out; 159 160 get_page(kpage); 161 page_add_new_anon_rmap(kpage, vma, addr); 162 163 if (!PageAnon(page)) { 164 dec_mm_counter(mm, MM_FILEPAGES); 165 inc_mm_counter(mm, MM_ANONPAGES); 166 } 167 168 flush_cache_page(vma, addr, pte_pfn(*ptep)); 169 ptep_clear_flush(vma, addr, ptep); 170 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 171 172 page_remove_rmap(page); 173 if (!page_mapped(page)) 174 try_to_free_swap(page); 175 put_page(page); 176 pte_unmap_unlock(ptep, ptl); 177 err = 0; 178 179 out: 180 return err; 181 } 182 183 /** 184 * is_swbp_insn - check if instruction is breakpoint instruction. 185 * @insn: instruction to be checked. 186 * Default implementation of is_swbp_insn 187 * Returns true if @insn is a breakpoint instruction. 188 */ 189 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 190 { 191 return *insn == UPROBE_SWBP_INSN; 192 } 193 194 /* 195 * NOTE: 196 * Expect the breakpoint instruction to be the smallest size instruction for 197 * the architecture. If an arch has variable length instruction and the 198 * breakpoint instruction is not of the smallest length instruction 199 * supported by that architecture then we need to modify read_opcode / 200 * write_opcode accordingly. This would never be a problem for archs that 201 * have fixed length instructions. 202 */ 203 204 /* 205 * write_opcode - write the opcode at a given virtual address. 206 * @auprobe: arch breakpointing information. 207 * @mm: the probed process address space. 208 * @vaddr: the virtual address to store the opcode. 209 * @opcode: opcode to be written at @vaddr. 210 * 211 * Called with mm->mmap_sem held (for read and with a reference to 212 * mm). 213 * 214 * For mm @mm, write the opcode at @vaddr. 215 * Return 0 (success) or a negative errno. 216 */ 217 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 218 unsigned long vaddr, uprobe_opcode_t opcode) 219 { 220 struct page *old_page, *new_page; 221 struct address_space *mapping; 222 void *vaddr_old, *vaddr_new; 223 struct vm_area_struct *vma; 224 struct uprobe *uprobe; 225 loff_t addr; 226 int ret; 227 228 /* Read the page with vaddr into memory */ 229 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); 230 if (ret <= 0) 231 return ret; 232 233 ret = -EINVAL; 234 235 /* 236 * We are interested in text pages only. Our pages of interest 237 * should be mapped for read and execute only. We desist from 238 * adding probes in write mapped pages since the breakpoints 239 * might end up in the file copy. 240 */ 241 if (!valid_vma(vma, is_swbp_insn(&opcode))) 242 goto put_out; 243 244 uprobe = container_of(auprobe, struct uprobe, arch); 245 mapping = uprobe->inode->i_mapping; 246 if (mapping != vma->vm_file->f_mapping) 247 goto put_out; 248 249 addr = vma_address(vma, uprobe->offset); 250 if (vaddr != (unsigned long)addr) 251 goto put_out; 252 253 ret = -ENOMEM; 254 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 255 if (!new_page) 256 goto put_out; 257 258 __SetPageUptodate(new_page); 259 260 /* 261 * lock page will serialize against do_wp_page()'s 262 * PageAnon() handling 263 */ 264 lock_page(old_page); 265 /* copy the page now that we've got it stable */ 266 vaddr_old = kmap_atomic(old_page); 267 vaddr_new = kmap_atomic(new_page); 268 269 memcpy(vaddr_new, vaddr_old, PAGE_SIZE); 270 271 /* poke the new insn in, ASSUMES we don't cross page boundary */ 272 vaddr &= ~PAGE_MASK; 273 BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 274 memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 275 276 kunmap_atomic(vaddr_new); 277 kunmap_atomic(vaddr_old); 278 279 ret = anon_vma_prepare(vma); 280 if (ret) 281 goto unlock_out; 282 283 lock_page(new_page); 284 ret = __replace_page(vma, old_page, new_page); 285 unlock_page(new_page); 286 287 unlock_out: 288 unlock_page(old_page); 289 page_cache_release(new_page); 290 291 put_out: 292 put_page(old_page); 293 294 return ret; 295 } 296 297 /** 298 * read_opcode - read the opcode at a given virtual address. 299 * @mm: the probed process address space. 300 * @vaddr: the virtual address to read the opcode. 301 * @opcode: location to store the read opcode. 302 * 303 * Called with mm->mmap_sem held (for read and with a reference to 304 * mm. 305 * 306 * For mm @mm, read the opcode at @vaddr and store it in @opcode. 307 * Return 0 (success) or a negative errno. 308 */ 309 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode) 310 { 311 struct page *page; 312 void *vaddr_new; 313 int ret; 314 315 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL); 316 if (ret <= 0) 317 return ret; 318 319 lock_page(page); 320 vaddr_new = kmap_atomic(page); 321 vaddr &= ~PAGE_MASK; 322 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE); 323 kunmap_atomic(vaddr_new); 324 unlock_page(page); 325 326 put_page(page); 327 328 return 0; 329 } 330 331 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) 332 { 333 uprobe_opcode_t opcode; 334 int result; 335 336 result = read_opcode(mm, vaddr, &opcode); 337 if (result) 338 return result; 339 340 if (is_swbp_insn(&opcode)) 341 return 1; 342 343 return 0; 344 } 345 346 /** 347 * set_swbp - store breakpoint at a given address. 348 * @auprobe: arch specific probepoint information. 349 * @mm: the probed process address space. 350 * @vaddr: the virtual address to insert the opcode. 351 * 352 * For mm @mm, store the breakpoint instruction at @vaddr. 353 * Return 0 (success) or a negative errno. 354 */ 355 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 356 { 357 int result; 358 359 result = is_swbp_at_addr(mm, vaddr); 360 if (result == 1) 361 return -EEXIST; 362 363 if (result) 364 return result; 365 366 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 367 } 368 369 /** 370 * set_orig_insn - Restore the original instruction. 371 * @mm: the probed process address space. 372 * @auprobe: arch specific probepoint information. 373 * @vaddr: the virtual address to insert the opcode. 374 * @verify: if true, verify existance of breakpoint instruction. 375 * 376 * For mm @mm, restore the original opcode (opcode) at @vaddr. 377 * Return 0 (success) or a negative errno. 378 */ 379 int __weak 380 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify) 381 { 382 if (verify) { 383 int result; 384 385 result = is_swbp_at_addr(mm, vaddr); 386 if (!result) 387 return -EINVAL; 388 389 if (result != 1) 390 return result; 391 } 392 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 393 } 394 395 static int match_uprobe(struct uprobe *l, struct uprobe *r) 396 { 397 if (l->inode < r->inode) 398 return -1; 399 400 if (l->inode > r->inode) 401 return 1; 402 403 if (l->offset < r->offset) 404 return -1; 405 406 if (l->offset > r->offset) 407 return 1; 408 409 return 0; 410 } 411 412 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 413 { 414 struct uprobe u = { .inode = inode, .offset = offset }; 415 struct rb_node *n = uprobes_tree.rb_node; 416 struct uprobe *uprobe; 417 int match; 418 419 while (n) { 420 uprobe = rb_entry(n, struct uprobe, rb_node); 421 match = match_uprobe(&u, uprobe); 422 if (!match) { 423 atomic_inc(&uprobe->ref); 424 return uprobe; 425 } 426 427 if (match < 0) 428 n = n->rb_left; 429 else 430 n = n->rb_right; 431 } 432 return NULL; 433 } 434 435 /* 436 * Find a uprobe corresponding to a given inode:offset 437 * Acquires uprobes_treelock 438 */ 439 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 440 { 441 struct uprobe *uprobe; 442 unsigned long flags; 443 444 spin_lock_irqsave(&uprobes_treelock, flags); 445 uprobe = __find_uprobe(inode, offset); 446 spin_unlock_irqrestore(&uprobes_treelock, flags); 447 448 return uprobe; 449 } 450 451 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 452 { 453 struct rb_node **p = &uprobes_tree.rb_node; 454 struct rb_node *parent = NULL; 455 struct uprobe *u; 456 int match; 457 458 while (*p) { 459 parent = *p; 460 u = rb_entry(parent, struct uprobe, rb_node); 461 match = match_uprobe(uprobe, u); 462 if (!match) { 463 atomic_inc(&u->ref); 464 return u; 465 } 466 467 if (match < 0) 468 p = &parent->rb_left; 469 else 470 p = &parent->rb_right; 471 472 } 473 474 u = NULL; 475 rb_link_node(&uprobe->rb_node, parent, p); 476 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 477 /* get access + creation ref */ 478 atomic_set(&uprobe->ref, 2); 479 480 return u; 481 } 482 483 /* 484 * Acquire uprobes_treelock. 485 * Matching uprobe already exists in rbtree; 486 * increment (access refcount) and return the matching uprobe. 487 * 488 * No matching uprobe; insert the uprobe in rb_tree; 489 * get a double refcount (access + creation) and return NULL. 490 */ 491 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 492 { 493 unsigned long flags; 494 struct uprobe *u; 495 496 spin_lock_irqsave(&uprobes_treelock, flags); 497 u = __insert_uprobe(uprobe); 498 spin_unlock_irqrestore(&uprobes_treelock, flags); 499 500 /* For now assume that the instruction need not be single-stepped */ 501 uprobe->flags |= UPROBE_SKIP_SSTEP; 502 503 return u; 504 } 505 506 static void put_uprobe(struct uprobe *uprobe) 507 { 508 if (atomic_dec_and_test(&uprobe->ref)) 509 kfree(uprobe); 510 } 511 512 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 513 { 514 struct uprobe *uprobe, *cur_uprobe; 515 516 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 517 if (!uprobe) 518 return NULL; 519 520 uprobe->inode = igrab(inode); 521 uprobe->offset = offset; 522 init_rwsem(&uprobe->consumer_rwsem); 523 INIT_LIST_HEAD(&uprobe->pending_list); 524 525 /* add to uprobes_tree, sorted on inode:offset */ 526 cur_uprobe = insert_uprobe(uprobe); 527 528 /* a uprobe exists for this inode:offset combination */ 529 if (cur_uprobe) { 530 kfree(uprobe); 531 uprobe = cur_uprobe; 532 iput(inode); 533 } else { 534 atomic_inc(&uprobe_events); 535 } 536 537 return uprobe; 538 } 539 540 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 541 { 542 struct uprobe_consumer *uc; 543 544 if (!(uprobe->flags & UPROBE_RUN_HANDLER)) 545 return; 546 547 down_read(&uprobe->consumer_rwsem); 548 for (uc = uprobe->consumers; uc; uc = uc->next) { 549 if (!uc->filter || uc->filter(uc, current)) 550 uc->handler(uc, regs); 551 } 552 up_read(&uprobe->consumer_rwsem); 553 } 554 555 /* Returns the previous consumer */ 556 static struct uprobe_consumer * 557 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 558 { 559 down_write(&uprobe->consumer_rwsem); 560 uc->next = uprobe->consumers; 561 uprobe->consumers = uc; 562 up_write(&uprobe->consumer_rwsem); 563 564 return uc->next; 565 } 566 567 /* 568 * For uprobe @uprobe, delete the consumer @uc. 569 * Return true if the @uc is deleted successfully 570 * or return false. 571 */ 572 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 573 { 574 struct uprobe_consumer **con; 575 bool ret = false; 576 577 down_write(&uprobe->consumer_rwsem); 578 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 579 if (*con == uc) { 580 *con = uc->next; 581 ret = true; 582 break; 583 } 584 } 585 up_write(&uprobe->consumer_rwsem); 586 587 return ret; 588 } 589 590 static int 591 __copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn, 592 unsigned long nbytes, unsigned long offset) 593 { 594 struct file *filp = vma->vm_file; 595 struct page *page; 596 void *vaddr; 597 unsigned long off1; 598 unsigned long idx; 599 600 if (!filp) 601 return -EINVAL; 602 603 idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT); 604 off1 = offset &= ~PAGE_MASK; 605 606 /* 607 * Ensure that the page that has the original instruction is 608 * populated and in page-cache. 609 */ 610 page = read_mapping_page(mapping, idx, filp); 611 if (IS_ERR(page)) 612 return PTR_ERR(page); 613 614 vaddr = kmap_atomic(page); 615 memcpy(insn, vaddr + off1, nbytes); 616 kunmap_atomic(vaddr); 617 page_cache_release(page); 618 619 return 0; 620 } 621 622 static int 623 copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr) 624 { 625 struct address_space *mapping; 626 unsigned long nbytes; 627 int bytes; 628 629 addr &= ~PAGE_MASK; 630 nbytes = PAGE_SIZE - addr; 631 mapping = uprobe->inode->i_mapping; 632 633 /* Instruction at end of binary; copy only available bytes */ 634 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 635 bytes = uprobe->inode->i_size - uprobe->offset; 636 else 637 bytes = MAX_UINSN_BYTES; 638 639 /* Instruction at the page-boundary; copy bytes in second page */ 640 if (nbytes < bytes) { 641 if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes, 642 bytes - nbytes, uprobe->offset + nbytes)) 643 return -ENOMEM; 644 645 bytes = nbytes; 646 } 647 return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset); 648 } 649 650 /* 651 * How mm->uprobes_state.count gets updated 652 * uprobe_mmap() increments the count if 653 * - it successfully adds a breakpoint. 654 * - it cannot add a breakpoint, but sees that there is a underlying 655 * breakpoint (via a is_swbp_at_addr()). 656 * 657 * uprobe_munmap() decrements the count if 658 * - it sees a underlying breakpoint, (via is_swbp_at_addr) 659 * (Subsequent uprobe_unregister wouldnt find the breakpoint 660 * unless a uprobe_mmap kicks in, since the old vma would be 661 * dropped just after uprobe_munmap.) 662 * 663 * uprobe_register increments the count if: 664 * - it successfully adds a breakpoint. 665 * 666 * uprobe_unregister decrements the count if: 667 * - it sees a underlying breakpoint and removes successfully. 668 * (via is_swbp_at_addr) 669 * (Subsequent uprobe_munmap wouldnt find the breakpoint 670 * since there is no underlying breakpoint after the 671 * breakpoint removal.) 672 */ 673 static int 674 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 675 struct vm_area_struct *vma, loff_t vaddr) 676 { 677 unsigned long addr; 678 int ret; 679 680 /* 681 * If probe is being deleted, unregister thread could be done with 682 * the vma-rmap-walk through. Adding a probe now can be fatal since 683 * nobody will be able to cleanup. Also we could be from fork or 684 * mremap path, where the probe might have already been inserted. 685 * Hence behave as if probe already existed. 686 */ 687 if (!uprobe->consumers) 688 return -EEXIST; 689 690 addr = (unsigned long)vaddr; 691 692 if (!(uprobe->flags & UPROBE_COPY_INSN)) { 693 ret = copy_insn(uprobe, vma, addr); 694 if (ret) 695 return ret; 696 697 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) 698 return -EEXIST; 699 700 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm); 701 if (ret) 702 return ret; 703 704 uprobe->flags |= UPROBE_COPY_INSN; 705 } 706 707 /* 708 * Ideally, should be updating the probe count after the breakpoint 709 * has been successfully inserted. However a thread could hit the 710 * breakpoint we just inserted even before the probe count is 711 * incremented. If this is the first breakpoint placed, breakpoint 712 * notifier might ignore uprobes and pass the trap to the thread. 713 * Hence increment before and decrement on failure. 714 */ 715 atomic_inc(&mm->uprobes_state.count); 716 ret = set_swbp(&uprobe->arch, mm, addr); 717 if (ret) 718 atomic_dec(&mm->uprobes_state.count); 719 720 return ret; 721 } 722 723 static void 724 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr) 725 { 726 if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true)) 727 atomic_dec(&mm->uprobes_state.count); 728 } 729 730 /* 731 * There could be threads that have hit the breakpoint and are entering the 732 * notifier code and trying to acquire the uprobes_treelock. The thread 733 * calling delete_uprobe() that is removing the uprobe from the rb_tree can 734 * race with these threads and might acquire the uprobes_treelock compared 735 * to some of the breakpoint hit threads. In such a case, the breakpoint 736 * hit threads will not find the uprobe. The current unregistering thread 737 * waits till all other threads have hit a breakpoint, to acquire the 738 * uprobes_treelock before the uprobe is removed from the rbtree. 739 */ 740 static void delete_uprobe(struct uprobe *uprobe) 741 { 742 unsigned long flags; 743 744 synchronize_srcu(&uprobes_srcu); 745 spin_lock_irqsave(&uprobes_treelock, flags); 746 rb_erase(&uprobe->rb_node, &uprobes_tree); 747 spin_unlock_irqrestore(&uprobes_treelock, flags); 748 iput(uprobe->inode); 749 put_uprobe(uprobe); 750 atomic_dec(&uprobe_events); 751 } 752 753 static struct vma_info * 754 __find_next_vma_info(struct address_space *mapping, struct list_head *head, 755 struct vma_info *vi, loff_t offset, bool is_register) 756 { 757 struct prio_tree_iter iter; 758 struct vm_area_struct *vma; 759 struct vma_info *tmpvi; 760 unsigned long pgoff; 761 int existing_vma; 762 loff_t vaddr; 763 764 pgoff = offset >> PAGE_SHIFT; 765 766 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 767 if (!valid_vma(vma, is_register)) 768 continue; 769 770 existing_vma = 0; 771 vaddr = vma_address(vma, offset); 772 773 list_for_each_entry(tmpvi, head, probe_list) { 774 if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) { 775 existing_vma = 1; 776 break; 777 } 778 } 779 780 /* 781 * Another vma needs a probe to be installed. However skip 782 * installing the probe if the vma is about to be unlinked. 783 */ 784 if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) { 785 vi->mm = vma->vm_mm; 786 vi->vaddr = vaddr; 787 list_add(&vi->probe_list, head); 788 789 return vi; 790 } 791 } 792 793 return NULL; 794 } 795 796 /* 797 * Iterate in the rmap prio tree and find a vma where a probe has not 798 * yet been inserted. 799 */ 800 static struct vma_info * 801 find_next_vma_info(struct address_space *mapping, struct list_head *head, 802 loff_t offset, bool is_register) 803 { 804 struct vma_info *vi, *retvi; 805 806 vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL); 807 if (!vi) 808 return ERR_PTR(-ENOMEM); 809 810 mutex_lock(&mapping->i_mmap_mutex); 811 retvi = __find_next_vma_info(mapping, head, vi, offset, is_register); 812 mutex_unlock(&mapping->i_mmap_mutex); 813 814 if (!retvi) 815 kfree(vi); 816 817 return retvi; 818 } 819 820 static int register_for_each_vma(struct uprobe *uprobe, bool is_register) 821 { 822 struct list_head try_list; 823 struct vm_area_struct *vma; 824 struct address_space *mapping; 825 struct vma_info *vi, *tmpvi; 826 struct mm_struct *mm; 827 loff_t vaddr; 828 int ret; 829 830 mapping = uprobe->inode->i_mapping; 831 INIT_LIST_HEAD(&try_list); 832 833 ret = 0; 834 835 for (;;) { 836 vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register); 837 if (!vi) 838 break; 839 840 if (IS_ERR(vi)) { 841 ret = PTR_ERR(vi); 842 break; 843 } 844 845 mm = vi->mm; 846 down_read(&mm->mmap_sem); 847 vma = find_vma(mm, (unsigned long)vi->vaddr); 848 if (!vma || !valid_vma(vma, is_register)) { 849 list_del(&vi->probe_list); 850 kfree(vi); 851 up_read(&mm->mmap_sem); 852 mmput(mm); 853 continue; 854 } 855 vaddr = vma_address(vma, uprobe->offset); 856 if (vma->vm_file->f_mapping->host != uprobe->inode || 857 vaddr != vi->vaddr) { 858 list_del(&vi->probe_list); 859 kfree(vi); 860 up_read(&mm->mmap_sem); 861 mmput(mm); 862 continue; 863 } 864 865 if (is_register) 866 ret = install_breakpoint(uprobe, mm, vma, vi->vaddr); 867 else 868 remove_breakpoint(uprobe, mm, vi->vaddr); 869 870 up_read(&mm->mmap_sem); 871 mmput(mm); 872 if (is_register) { 873 if (ret && ret == -EEXIST) 874 ret = 0; 875 if (ret) 876 break; 877 } 878 } 879 880 list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) { 881 list_del(&vi->probe_list); 882 kfree(vi); 883 } 884 885 return ret; 886 } 887 888 static int __uprobe_register(struct uprobe *uprobe) 889 { 890 return register_for_each_vma(uprobe, true); 891 } 892 893 static void __uprobe_unregister(struct uprobe *uprobe) 894 { 895 if (!register_for_each_vma(uprobe, false)) 896 delete_uprobe(uprobe); 897 898 /* TODO : cant unregister? schedule a worker thread */ 899 } 900 901 /* 902 * uprobe_register - register a probe 903 * @inode: the file in which the probe has to be placed. 904 * @offset: offset from the start of the file. 905 * @uc: information on howto handle the probe.. 906 * 907 * Apart from the access refcount, uprobe_register() takes a creation 908 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 909 * inserted into the rbtree (i.e first consumer for a @inode:@offset 910 * tuple). Creation refcount stops uprobe_unregister from freeing the 911 * @uprobe even before the register operation is complete. Creation 912 * refcount is released when the last @uc for the @uprobe 913 * unregisters. 914 * 915 * Return errno if it cannot successully install probes 916 * else return 0 (success) 917 */ 918 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 919 { 920 struct uprobe *uprobe; 921 int ret; 922 923 if (!inode || !uc || uc->next) 924 return -EINVAL; 925 926 if (offset > i_size_read(inode)) 927 return -EINVAL; 928 929 ret = 0; 930 mutex_lock(uprobes_hash(inode)); 931 uprobe = alloc_uprobe(inode, offset); 932 933 if (uprobe && !consumer_add(uprobe, uc)) { 934 ret = __uprobe_register(uprobe); 935 if (ret) { 936 uprobe->consumers = NULL; 937 __uprobe_unregister(uprobe); 938 } else { 939 uprobe->flags |= UPROBE_RUN_HANDLER; 940 } 941 } 942 943 mutex_unlock(uprobes_hash(inode)); 944 put_uprobe(uprobe); 945 946 return ret; 947 } 948 949 /* 950 * uprobe_unregister - unregister a already registered probe. 951 * @inode: the file in which the probe has to be removed. 952 * @offset: offset from the start of the file. 953 * @uc: identify which probe if multiple probes are colocated. 954 */ 955 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 956 { 957 struct uprobe *uprobe; 958 959 if (!inode || !uc) 960 return; 961 962 uprobe = find_uprobe(inode, offset); 963 if (!uprobe) 964 return; 965 966 mutex_lock(uprobes_hash(inode)); 967 968 if (consumer_del(uprobe, uc)) { 969 if (!uprobe->consumers) { 970 __uprobe_unregister(uprobe); 971 uprobe->flags &= ~UPROBE_RUN_HANDLER; 972 } 973 } 974 975 mutex_unlock(uprobes_hash(inode)); 976 if (uprobe) 977 put_uprobe(uprobe); 978 } 979 980 /* 981 * Of all the nodes that correspond to the given inode, return the node 982 * with the least offset. 983 */ 984 static struct rb_node *find_least_offset_node(struct inode *inode) 985 { 986 struct uprobe u = { .inode = inode, .offset = 0}; 987 struct rb_node *n = uprobes_tree.rb_node; 988 struct rb_node *close_node = NULL; 989 struct uprobe *uprobe; 990 int match; 991 992 while (n) { 993 uprobe = rb_entry(n, struct uprobe, rb_node); 994 match = match_uprobe(&u, uprobe); 995 996 if (uprobe->inode == inode) 997 close_node = n; 998 999 if (!match) 1000 return close_node; 1001 1002 if (match < 0) 1003 n = n->rb_left; 1004 else 1005 n = n->rb_right; 1006 } 1007 1008 return close_node; 1009 } 1010 1011 /* 1012 * For a given inode, build a list of probes that need to be inserted. 1013 */ 1014 static void build_probe_list(struct inode *inode, struct list_head *head) 1015 { 1016 struct uprobe *uprobe; 1017 unsigned long flags; 1018 struct rb_node *n; 1019 1020 spin_lock_irqsave(&uprobes_treelock, flags); 1021 1022 n = find_least_offset_node(inode); 1023 1024 for (; n; n = rb_next(n)) { 1025 uprobe = rb_entry(n, struct uprobe, rb_node); 1026 if (uprobe->inode != inode) 1027 break; 1028 1029 list_add(&uprobe->pending_list, head); 1030 atomic_inc(&uprobe->ref); 1031 } 1032 1033 spin_unlock_irqrestore(&uprobes_treelock, flags); 1034 } 1035 1036 /* 1037 * Called from mmap_region. 1038 * called with mm->mmap_sem acquired. 1039 * 1040 * Return -ve no if we fail to insert probes and we cannot 1041 * bail-out. 1042 * Return 0 otherwise. i.e: 1043 * 1044 * - successful insertion of probes 1045 * - (or) no possible probes to be inserted. 1046 * - (or) insertion of probes failed but we can bail-out. 1047 */ 1048 int uprobe_mmap(struct vm_area_struct *vma) 1049 { 1050 struct list_head tmp_list; 1051 struct uprobe *uprobe, *u; 1052 struct inode *inode; 1053 int ret, count; 1054 1055 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) 1056 return 0; 1057 1058 inode = vma->vm_file->f_mapping->host; 1059 if (!inode) 1060 return 0; 1061 1062 INIT_LIST_HEAD(&tmp_list); 1063 mutex_lock(uprobes_mmap_hash(inode)); 1064 build_probe_list(inode, &tmp_list); 1065 1066 ret = 0; 1067 count = 0; 1068 1069 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1070 loff_t vaddr; 1071 1072 list_del(&uprobe->pending_list); 1073 if (!ret) { 1074 vaddr = vma_address(vma, uprobe->offset); 1075 1076 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) { 1077 put_uprobe(uprobe); 1078 continue; 1079 } 1080 1081 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1082 1083 /* Ignore double add: */ 1084 if (ret == -EEXIST) { 1085 ret = 0; 1086 1087 if (!is_swbp_at_addr(vma->vm_mm, vaddr)) 1088 continue; 1089 1090 /* 1091 * Unable to insert a breakpoint, but 1092 * breakpoint lies underneath. Increment the 1093 * probe count. 1094 */ 1095 atomic_inc(&vma->vm_mm->uprobes_state.count); 1096 } 1097 1098 if (!ret) 1099 count++; 1100 } 1101 put_uprobe(uprobe); 1102 } 1103 1104 mutex_unlock(uprobes_mmap_hash(inode)); 1105 1106 if (ret) 1107 atomic_sub(count, &vma->vm_mm->uprobes_state.count); 1108 1109 return ret; 1110 } 1111 1112 /* 1113 * Called in context of a munmap of a vma. 1114 */ 1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1116 { 1117 struct list_head tmp_list; 1118 struct uprobe *uprobe, *u; 1119 struct inode *inode; 1120 1121 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false)) 1122 return; 1123 1124 if (!atomic_read(&vma->vm_mm->uprobes_state.count)) 1125 return; 1126 1127 inode = vma->vm_file->f_mapping->host; 1128 if (!inode) 1129 return; 1130 1131 INIT_LIST_HEAD(&tmp_list); 1132 mutex_lock(uprobes_mmap_hash(inode)); 1133 build_probe_list(inode, &tmp_list); 1134 1135 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1136 loff_t vaddr; 1137 1138 list_del(&uprobe->pending_list); 1139 vaddr = vma_address(vma, uprobe->offset); 1140 1141 if (vaddr >= start && vaddr < end) { 1142 /* 1143 * An unregister could have removed the probe before 1144 * unmap. So check before we decrement the count. 1145 */ 1146 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1) 1147 atomic_dec(&vma->vm_mm->uprobes_state.count); 1148 } 1149 put_uprobe(uprobe); 1150 } 1151 mutex_unlock(uprobes_mmap_hash(inode)); 1152 } 1153 1154 /* Slot allocation for XOL */ 1155 static int xol_add_vma(struct xol_area *area) 1156 { 1157 struct mm_struct *mm; 1158 int ret; 1159 1160 area->page = alloc_page(GFP_HIGHUSER); 1161 if (!area->page) 1162 return -ENOMEM; 1163 1164 ret = -EALREADY; 1165 mm = current->mm; 1166 1167 down_write(&mm->mmap_sem); 1168 if (mm->uprobes_state.xol_area) 1169 goto fail; 1170 1171 ret = -ENOMEM; 1172 1173 /* Try to map as high as possible, this is only a hint. */ 1174 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1175 if (area->vaddr & ~PAGE_MASK) { 1176 ret = area->vaddr; 1177 goto fail; 1178 } 1179 1180 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1181 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1182 if (ret) 1183 goto fail; 1184 1185 smp_wmb(); /* pairs with get_xol_area() */ 1186 mm->uprobes_state.xol_area = area; 1187 ret = 0; 1188 1189 fail: 1190 up_write(&mm->mmap_sem); 1191 if (ret) 1192 __free_page(area->page); 1193 1194 return ret; 1195 } 1196 1197 static struct xol_area *get_xol_area(struct mm_struct *mm) 1198 { 1199 struct xol_area *area; 1200 1201 area = mm->uprobes_state.xol_area; 1202 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1203 1204 return area; 1205 } 1206 1207 /* 1208 * xol_alloc_area - Allocate process's xol_area. 1209 * This area will be used for storing instructions for execution out of 1210 * line. 1211 * 1212 * Returns the allocated area or NULL. 1213 */ 1214 static struct xol_area *xol_alloc_area(void) 1215 { 1216 struct xol_area *area; 1217 1218 area = kzalloc(sizeof(*area), GFP_KERNEL); 1219 if (unlikely(!area)) 1220 return NULL; 1221 1222 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1223 1224 if (!area->bitmap) 1225 goto fail; 1226 1227 init_waitqueue_head(&area->wq); 1228 if (!xol_add_vma(area)) 1229 return area; 1230 1231 fail: 1232 kfree(area->bitmap); 1233 kfree(area); 1234 1235 return get_xol_area(current->mm); 1236 } 1237 1238 /* 1239 * uprobe_clear_state - Free the area allocated for slots. 1240 */ 1241 void uprobe_clear_state(struct mm_struct *mm) 1242 { 1243 struct xol_area *area = mm->uprobes_state.xol_area; 1244 1245 if (!area) 1246 return; 1247 1248 put_page(area->page); 1249 kfree(area->bitmap); 1250 kfree(area); 1251 } 1252 1253 /* 1254 * uprobe_reset_state - Free the area allocated for slots. 1255 */ 1256 void uprobe_reset_state(struct mm_struct *mm) 1257 { 1258 mm->uprobes_state.xol_area = NULL; 1259 atomic_set(&mm->uprobes_state.count, 0); 1260 } 1261 1262 /* 1263 * - search for a free slot. 1264 */ 1265 static unsigned long xol_take_insn_slot(struct xol_area *area) 1266 { 1267 unsigned long slot_addr; 1268 int slot_nr; 1269 1270 do { 1271 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1272 if (slot_nr < UINSNS_PER_PAGE) { 1273 if (!test_and_set_bit(slot_nr, area->bitmap)) 1274 break; 1275 1276 slot_nr = UINSNS_PER_PAGE; 1277 continue; 1278 } 1279 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1280 } while (slot_nr >= UINSNS_PER_PAGE); 1281 1282 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1283 atomic_inc(&area->slot_count); 1284 1285 return slot_addr; 1286 } 1287 1288 /* 1289 * xol_get_insn_slot - If was not allocated a slot, then 1290 * allocate a slot. 1291 * Returns the allocated slot address or 0. 1292 */ 1293 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr) 1294 { 1295 struct xol_area *area; 1296 unsigned long offset; 1297 void *vaddr; 1298 1299 area = get_xol_area(current->mm); 1300 if (!area) { 1301 area = xol_alloc_area(); 1302 if (!area) 1303 return 0; 1304 } 1305 current->utask->xol_vaddr = xol_take_insn_slot(area); 1306 1307 /* 1308 * Initialize the slot if xol_vaddr points to valid 1309 * instruction slot. 1310 */ 1311 if (unlikely(!current->utask->xol_vaddr)) 1312 return 0; 1313 1314 current->utask->vaddr = slot_addr; 1315 offset = current->utask->xol_vaddr & ~PAGE_MASK; 1316 vaddr = kmap_atomic(area->page); 1317 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); 1318 kunmap_atomic(vaddr); 1319 1320 return current->utask->xol_vaddr; 1321 } 1322 1323 /* 1324 * xol_free_insn_slot - If slot was earlier allocated by 1325 * @xol_get_insn_slot(), make the slot available for 1326 * subsequent requests. 1327 */ 1328 static void xol_free_insn_slot(struct task_struct *tsk) 1329 { 1330 struct xol_area *area; 1331 unsigned long vma_end; 1332 unsigned long slot_addr; 1333 1334 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1335 return; 1336 1337 slot_addr = tsk->utask->xol_vaddr; 1338 1339 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr))) 1340 return; 1341 1342 area = tsk->mm->uprobes_state.xol_area; 1343 vma_end = area->vaddr + PAGE_SIZE; 1344 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1345 unsigned long offset; 1346 int slot_nr; 1347 1348 offset = slot_addr - area->vaddr; 1349 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1350 if (slot_nr >= UINSNS_PER_PAGE) 1351 return; 1352 1353 clear_bit(slot_nr, area->bitmap); 1354 atomic_dec(&area->slot_count); 1355 if (waitqueue_active(&area->wq)) 1356 wake_up(&area->wq); 1357 1358 tsk->utask->xol_vaddr = 0; 1359 } 1360 } 1361 1362 /** 1363 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1364 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1365 * instruction. 1366 * Return the address of the breakpoint instruction. 1367 */ 1368 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1369 { 1370 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1371 } 1372 1373 /* 1374 * Called with no locks held. 1375 * Called in context of a exiting or a exec-ing thread. 1376 */ 1377 void uprobe_free_utask(struct task_struct *t) 1378 { 1379 struct uprobe_task *utask = t->utask; 1380 1381 if (t->uprobe_srcu_id != -1) 1382 srcu_read_unlock_raw(&uprobes_srcu, t->uprobe_srcu_id); 1383 1384 if (!utask) 1385 return; 1386 1387 if (utask->active_uprobe) 1388 put_uprobe(utask->active_uprobe); 1389 1390 xol_free_insn_slot(t); 1391 kfree(utask); 1392 t->utask = NULL; 1393 } 1394 1395 /* 1396 * Called in context of a new clone/fork from copy_process. 1397 */ 1398 void uprobe_copy_process(struct task_struct *t) 1399 { 1400 t->utask = NULL; 1401 t->uprobe_srcu_id = -1; 1402 } 1403 1404 /* 1405 * Allocate a uprobe_task object for the task. 1406 * Called when the thread hits a breakpoint for the first time. 1407 * 1408 * Returns: 1409 * - pointer to new uprobe_task on success 1410 * - NULL otherwise 1411 */ 1412 static struct uprobe_task *add_utask(void) 1413 { 1414 struct uprobe_task *utask; 1415 1416 utask = kzalloc(sizeof *utask, GFP_KERNEL); 1417 if (unlikely(!utask)) 1418 return NULL; 1419 1420 utask->active_uprobe = NULL; 1421 current->utask = utask; 1422 return utask; 1423 } 1424 1425 /* Prepare to single-step probed instruction out of line. */ 1426 static int 1427 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr) 1428 { 1429 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs)) 1430 return 0; 1431 1432 return -EFAULT; 1433 } 1434 1435 /* 1436 * If we are singlestepping, then ensure this thread is not connected to 1437 * non-fatal signals until completion of singlestep. When xol insn itself 1438 * triggers the signal, restart the original insn even if the task is 1439 * already SIGKILL'ed (since coredump should report the correct ip). This 1440 * is even more important if the task has a handler for SIGSEGV/etc, The 1441 * _same_ instruction should be repeated again after return from the signal 1442 * handler, and SSTEP can never finish in this case. 1443 */ 1444 bool uprobe_deny_signal(void) 1445 { 1446 struct task_struct *t = current; 1447 struct uprobe_task *utask = t->utask; 1448 1449 if (likely(!utask || !utask->active_uprobe)) 1450 return false; 1451 1452 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1453 1454 if (signal_pending(t)) { 1455 spin_lock_irq(&t->sighand->siglock); 1456 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1457 spin_unlock_irq(&t->sighand->siglock); 1458 1459 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1460 utask->state = UTASK_SSTEP_TRAPPED; 1461 set_tsk_thread_flag(t, TIF_UPROBE); 1462 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1463 } 1464 } 1465 1466 return true; 1467 } 1468 1469 /* 1470 * Avoid singlestepping the original instruction if the original instruction 1471 * is a NOP or can be emulated. 1472 */ 1473 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1474 { 1475 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1476 return true; 1477 1478 uprobe->flags &= ~UPROBE_SKIP_SSTEP; 1479 return false; 1480 } 1481 1482 /* 1483 * Run handler and ask thread to singlestep. 1484 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1485 */ 1486 static void handle_swbp(struct pt_regs *regs) 1487 { 1488 struct vm_area_struct *vma; 1489 struct uprobe_task *utask; 1490 struct uprobe *uprobe; 1491 struct mm_struct *mm; 1492 unsigned long bp_vaddr; 1493 1494 uprobe = NULL; 1495 bp_vaddr = uprobe_get_swbp_addr(regs); 1496 mm = current->mm; 1497 down_read(&mm->mmap_sem); 1498 vma = find_vma(mm, bp_vaddr); 1499 1500 if (vma && vma->vm_start <= bp_vaddr && valid_vma(vma, false)) { 1501 struct inode *inode; 1502 loff_t offset; 1503 1504 inode = vma->vm_file->f_mapping->host; 1505 offset = bp_vaddr - vma->vm_start; 1506 offset += (vma->vm_pgoff << PAGE_SHIFT); 1507 uprobe = find_uprobe(inode, offset); 1508 } 1509 1510 srcu_read_unlock_raw(&uprobes_srcu, current->uprobe_srcu_id); 1511 current->uprobe_srcu_id = -1; 1512 up_read(&mm->mmap_sem); 1513 1514 if (!uprobe) { 1515 /* No matching uprobe; signal SIGTRAP. */ 1516 send_sig(SIGTRAP, current, 0); 1517 return; 1518 } 1519 1520 utask = current->utask; 1521 if (!utask) { 1522 utask = add_utask(); 1523 /* Cannot allocate; re-execute the instruction. */ 1524 if (!utask) 1525 goto cleanup_ret; 1526 } 1527 utask->active_uprobe = uprobe; 1528 handler_chain(uprobe, regs); 1529 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs)) 1530 goto cleanup_ret; 1531 1532 utask->state = UTASK_SSTEP; 1533 if (!pre_ssout(uprobe, regs, bp_vaddr)) { 1534 user_enable_single_step(current); 1535 return; 1536 } 1537 1538 cleanup_ret: 1539 if (utask) { 1540 utask->active_uprobe = NULL; 1541 utask->state = UTASK_RUNNING; 1542 } 1543 if (uprobe) { 1544 if (!(uprobe->flags & UPROBE_SKIP_SSTEP)) 1545 1546 /* 1547 * cannot singlestep; cannot skip instruction; 1548 * re-execute the instruction. 1549 */ 1550 instruction_pointer_set(regs, bp_vaddr); 1551 1552 put_uprobe(uprobe); 1553 } 1554 } 1555 1556 /* 1557 * Perform required fix-ups and disable singlestep. 1558 * Allow pending signals to take effect. 1559 */ 1560 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1561 { 1562 struct uprobe *uprobe; 1563 1564 uprobe = utask->active_uprobe; 1565 if (utask->state == UTASK_SSTEP_ACK) 1566 arch_uprobe_post_xol(&uprobe->arch, regs); 1567 else if (utask->state == UTASK_SSTEP_TRAPPED) 1568 arch_uprobe_abort_xol(&uprobe->arch, regs); 1569 else 1570 WARN_ON_ONCE(1); 1571 1572 put_uprobe(uprobe); 1573 utask->active_uprobe = NULL; 1574 utask->state = UTASK_RUNNING; 1575 user_disable_single_step(current); 1576 xol_free_insn_slot(current); 1577 1578 spin_lock_irq(¤t->sighand->siglock); 1579 recalc_sigpending(); /* see uprobe_deny_signal() */ 1580 spin_unlock_irq(¤t->sighand->siglock); 1581 } 1582 1583 /* 1584 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on 1585 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and 1586 * allows the thread to return from interrupt. 1587 * 1588 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and 1589 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from 1590 * interrupt. 1591 * 1592 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1593 * uprobe_notify_resume(). 1594 */ 1595 void uprobe_notify_resume(struct pt_regs *regs) 1596 { 1597 struct uprobe_task *utask; 1598 1599 utask = current->utask; 1600 if (!utask || utask->state == UTASK_BP_HIT) 1601 handle_swbp(regs); 1602 else 1603 handle_singlestep(utask, regs); 1604 } 1605 1606 /* 1607 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1608 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1609 */ 1610 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1611 { 1612 struct uprobe_task *utask; 1613 1614 if (!current->mm || !atomic_read(¤t->mm->uprobes_state.count)) 1615 /* task is currently not uprobed */ 1616 return 0; 1617 1618 utask = current->utask; 1619 if (utask) 1620 utask->state = UTASK_BP_HIT; 1621 1622 set_thread_flag(TIF_UPROBE); 1623 current->uprobe_srcu_id = srcu_read_lock_raw(&uprobes_srcu); 1624 1625 return 1; 1626 } 1627 1628 /* 1629 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1630 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1631 */ 1632 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1633 { 1634 struct uprobe_task *utask = current->utask; 1635 1636 if (!current->mm || !utask || !utask->active_uprobe) 1637 /* task is currently not uprobed */ 1638 return 0; 1639 1640 utask->state = UTASK_SSTEP_ACK; 1641 set_thread_flag(TIF_UPROBE); 1642 return 1; 1643 } 1644 1645 static struct notifier_block uprobe_exception_nb = { 1646 .notifier_call = arch_uprobe_exception_notify, 1647 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1648 }; 1649 1650 static int __init init_uprobes(void) 1651 { 1652 int i; 1653 1654 for (i = 0; i < UPROBES_HASH_SZ; i++) { 1655 mutex_init(&uprobes_mutex[i]); 1656 mutex_init(&uprobes_mmap_mutex[i]); 1657 } 1658 init_srcu_struct(&uprobes_srcu); 1659 1660 return register_die_notifier(&uprobe_exception_nb); 1661 } 1662 module_init(init_uprobes); 1663 1664 static void __exit exit_uprobes(void) 1665 { 1666 } 1667 module_exit(exit_uprobes); 1668