xref: /linux/kernel/events/uprobes.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>		/* anon_vma_prepare */
31 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
32 #include <linux/swap.h>		/* try_to_free_swap */
33 #include <linux/ptrace.h>	/* user_enable_single_step */
34 #include <linux/kdebug.h>	/* notifier mechanism */
35 
36 #include <linux/uprobes.h>
37 
38 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
40 
41 static struct srcu_struct uprobes_srcu;
42 static struct rb_root uprobes_tree = RB_ROOT;
43 
44 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
45 
46 #define UPROBES_HASH_SZ	13
47 
48 /* serialize (un)register */
49 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
50 
51 #define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
52 
53 /* serialize uprobe->pending_list */
54 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
55 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
56 
57 /*
58  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
59  * events active at this time.  Probably a fine grained per inode count is
60  * better?
61  */
62 static atomic_t uprobe_events = ATOMIC_INIT(0);
63 
64 /*
65  * Maintain a temporary per vma info that can be used to search if a vma
66  * has already been handled. This structure is introduced since extending
67  * vm_area_struct wasnt recommended.
68  */
69 struct vma_info {
70 	struct list_head	probe_list;
71 	struct mm_struct	*mm;
72 	loff_t			vaddr;
73 };
74 
75 struct uprobe {
76 	struct rb_node		rb_node;	/* node in the rb tree */
77 	atomic_t		ref;
78 	struct rw_semaphore	consumer_rwsem;
79 	struct list_head	pending_list;
80 	struct uprobe_consumer	*consumers;
81 	struct inode		*inode;		/* Also hold a ref to inode */
82 	loff_t			offset;
83 	int			flags;
84 	struct arch_uprobe	arch;
85 };
86 
87 /*
88  * valid_vma: Verify if the specified vma is an executable vma
89  * Relax restrictions while unregistering: vm_flags might have
90  * changed after breakpoint was inserted.
91  *	- is_register: indicates if we are in register context.
92  *	- Return 1 if the specified virtual address is in an
93  *	  executable vma.
94  */
95 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
96 {
97 	if (!vma->vm_file)
98 		return false;
99 
100 	if (!is_register)
101 		return true;
102 
103 	if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
104 		return true;
105 
106 	return false;
107 }
108 
109 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
110 {
111 	loff_t vaddr;
112 
113 	vaddr = vma->vm_start + offset;
114 	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
115 
116 	return vaddr;
117 }
118 
119 /**
120  * __replace_page - replace page in vma by new page.
121  * based on replace_page in mm/ksm.c
122  *
123  * @vma:      vma that holds the pte pointing to page
124  * @page:     the cowed page we are replacing by kpage
125  * @kpage:    the modified page we replace page by
126  *
127  * Returns 0 on success, -EFAULT on failure.
128  */
129 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
130 {
131 	struct mm_struct *mm = vma->vm_mm;
132 	pgd_t *pgd;
133 	pud_t *pud;
134 	pmd_t *pmd;
135 	pte_t *ptep;
136 	spinlock_t *ptl;
137 	unsigned long addr;
138 	int err = -EFAULT;
139 
140 	addr = page_address_in_vma(page, vma);
141 	if (addr == -EFAULT)
142 		goto out;
143 
144 	pgd = pgd_offset(mm, addr);
145 	if (!pgd_present(*pgd))
146 		goto out;
147 
148 	pud = pud_offset(pgd, addr);
149 	if (!pud_present(*pud))
150 		goto out;
151 
152 	pmd = pmd_offset(pud, addr);
153 	if (!pmd_present(*pmd))
154 		goto out;
155 
156 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
157 	if (!ptep)
158 		goto out;
159 
160 	get_page(kpage);
161 	page_add_new_anon_rmap(kpage, vma, addr);
162 
163 	if (!PageAnon(page)) {
164 		dec_mm_counter(mm, MM_FILEPAGES);
165 		inc_mm_counter(mm, MM_ANONPAGES);
166 	}
167 
168 	flush_cache_page(vma, addr, pte_pfn(*ptep));
169 	ptep_clear_flush(vma, addr, ptep);
170 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171 
172 	page_remove_rmap(page);
173 	if (!page_mapped(page))
174 		try_to_free_swap(page);
175 	put_page(page);
176 	pte_unmap_unlock(ptep, ptl);
177 	err = 0;
178 
179 out:
180 	return err;
181 }
182 
183 /**
184  * is_swbp_insn - check if instruction is breakpoint instruction.
185  * @insn: instruction to be checked.
186  * Default implementation of is_swbp_insn
187  * Returns true if @insn is a breakpoint instruction.
188  */
189 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
190 {
191 	return *insn == UPROBE_SWBP_INSN;
192 }
193 
194 /*
195  * NOTE:
196  * Expect the breakpoint instruction to be the smallest size instruction for
197  * the architecture. If an arch has variable length instruction and the
198  * breakpoint instruction is not of the smallest length instruction
199  * supported by that architecture then we need to modify read_opcode /
200  * write_opcode accordingly. This would never be a problem for archs that
201  * have fixed length instructions.
202  */
203 
204 /*
205  * write_opcode - write the opcode at a given virtual address.
206  * @auprobe: arch breakpointing information.
207  * @mm: the probed process address space.
208  * @vaddr: the virtual address to store the opcode.
209  * @opcode: opcode to be written at @vaddr.
210  *
211  * Called with mm->mmap_sem held (for read and with a reference to
212  * mm).
213  *
214  * For mm @mm, write the opcode at @vaddr.
215  * Return 0 (success) or a negative errno.
216  */
217 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
218 			unsigned long vaddr, uprobe_opcode_t opcode)
219 {
220 	struct page *old_page, *new_page;
221 	struct address_space *mapping;
222 	void *vaddr_old, *vaddr_new;
223 	struct vm_area_struct *vma;
224 	struct uprobe *uprobe;
225 	loff_t addr;
226 	int ret;
227 
228 	/* Read the page with vaddr into memory */
229 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
230 	if (ret <= 0)
231 		return ret;
232 
233 	ret = -EINVAL;
234 
235 	/*
236 	 * We are interested in text pages only. Our pages of interest
237 	 * should be mapped for read and execute only. We desist from
238 	 * adding probes in write mapped pages since the breakpoints
239 	 * might end up in the file copy.
240 	 */
241 	if (!valid_vma(vma, is_swbp_insn(&opcode)))
242 		goto put_out;
243 
244 	uprobe = container_of(auprobe, struct uprobe, arch);
245 	mapping = uprobe->inode->i_mapping;
246 	if (mapping != vma->vm_file->f_mapping)
247 		goto put_out;
248 
249 	addr = vma_address(vma, uprobe->offset);
250 	if (vaddr != (unsigned long)addr)
251 		goto put_out;
252 
253 	ret = -ENOMEM;
254 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
255 	if (!new_page)
256 		goto put_out;
257 
258 	__SetPageUptodate(new_page);
259 
260 	/*
261 	 * lock page will serialize against do_wp_page()'s
262 	 * PageAnon() handling
263 	 */
264 	lock_page(old_page);
265 	/* copy the page now that we've got it stable */
266 	vaddr_old = kmap_atomic(old_page);
267 	vaddr_new = kmap_atomic(new_page);
268 
269 	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
270 
271 	/* poke the new insn in, ASSUMES we don't cross page boundary */
272 	vaddr &= ~PAGE_MASK;
273 	BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
274 	memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
275 
276 	kunmap_atomic(vaddr_new);
277 	kunmap_atomic(vaddr_old);
278 
279 	ret = anon_vma_prepare(vma);
280 	if (ret)
281 		goto unlock_out;
282 
283 	lock_page(new_page);
284 	ret = __replace_page(vma, old_page, new_page);
285 	unlock_page(new_page);
286 
287 unlock_out:
288 	unlock_page(old_page);
289 	page_cache_release(new_page);
290 
291 put_out:
292 	put_page(old_page);
293 
294 	return ret;
295 }
296 
297 /**
298  * read_opcode - read the opcode at a given virtual address.
299  * @mm: the probed process address space.
300  * @vaddr: the virtual address to read the opcode.
301  * @opcode: location to store the read opcode.
302  *
303  * Called with mm->mmap_sem held (for read and with a reference to
304  * mm.
305  *
306  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
307  * Return 0 (success) or a negative errno.
308  */
309 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
310 {
311 	struct page *page;
312 	void *vaddr_new;
313 	int ret;
314 
315 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
316 	if (ret <= 0)
317 		return ret;
318 
319 	lock_page(page);
320 	vaddr_new = kmap_atomic(page);
321 	vaddr &= ~PAGE_MASK;
322 	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
323 	kunmap_atomic(vaddr_new);
324 	unlock_page(page);
325 
326 	put_page(page);
327 
328 	return 0;
329 }
330 
331 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
332 {
333 	uprobe_opcode_t opcode;
334 	int result;
335 
336 	result = read_opcode(mm, vaddr, &opcode);
337 	if (result)
338 		return result;
339 
340 	if (is_swbp_insn(&opcode))
341 		return 1;
342 
343 	return 0;
344 }
345 
346 /**
347  * set_swbp - store breakpoint at a given address.
348  * @auprobe: arch specific probepoint information.
349  * @mm: the probed process address space.
350  * @vaddr: the virtual address to insert the opcode.
351  *
352  * For mm @mm, store the breakpoint instruction at @vaddr.
353  * Return 0 (success) or a negative errno.
354  */
355 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
356 {
357 	int result;
358 
359 	result = is_swbp_at_addr(mm, vaddr);
360 	if (result == 1)
361 		return -EEXIST;
362 
363 	if (result)
364 		return result;
365 
366 	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
367 }
368 
369 /**
370  * set_orig_insn - Restore the original instruction.
371  * @mm: the probed process address space.
372  * @auprobe: arch specific probepoint information.
373  * @vaddr: the virtual address to insert the opcode.
374  * @verify: if true, verify existance of breakpoint instruction.
375  *
376  * For mm @mm, restore the original opcode (opcode) at @vaddr.
377  * Return 0 (success) or a negative errno.
378  */
379 int __weak
380 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
381 {
382 	if (verify) {
383 		int result;
384 
385 		result = is_swbp_at_addr(mm, vaddr);
386 		if (!result)
387 			return -EINVAL;
388 
389 		if (result != 1)
390 			return result;
391 	}
392 	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
393 }
394 
395 static int match_uprobe(struct uprobe *l, struct uprobe *r)
396 {
397 	if (l->inode < r->inode)
398 		return -1;
399 
400 	if (l->inode > r->inode)
401 		return 1;
402 
403 	if (l->offset < r->offset)
404 		return -1;
405 
406 	if (l->offset > r->offset)
407 		return 1;
408 
409 	return 0;
410 }
411 
412 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
413 {
414 	struct uprobe u = { .inode = inode, .offset = offset };
415 	struct rb_node *n = uprobes_tree.rb_node;
416 	struct uprobe *uprobe;
417 	int match;
418 
419 	while (n) {
420 		uprobe = rb_entry(n, struct uprobe, rb_node);
421 		match = match_uprobe(&u, uprobe);
422 		if (!match) {
423 			atomic_inc(&uprobe->ref);
424 			return uprobe;
425 		}
426 
427 		if (match < 0)
428 			n = n->rb_left;
429 		else
430 			n = n->rb_right;
431 	}
432 	return NULL;
433 }
434 
435 /*
436  * Find a uprobe corresponding to a given inode:offset
437  * Acquires uprobes_treelock
438  */
439 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
440 {
441 	struct uprobe *uprobe;
442 	unsigned long flags;
443 
444 	spin_lock_irqsave(&uprobes_treelock, flags);
445 	uprobe = __find_uprobe(inode, offset);
446 	spin_unlock_irqrestore(&uprobes_treelock, flags);
447 
448 	return uprobe;
449 }
450 
451 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
452 {
453 	struct rb_node **p = &uprobes_tree.rb_node;
454 	struct rb_node *parent = NULL;
455 	struct uprobe *u;
456 	int match;
457 
458 	while (*p) {
459 		parent = *p;
460 		u = rb_entry(parent, struct uprobe, rb_node);
461 		match = match_uprobe(uprobe, u);
462 		if (!match) {
463 			atomic_inc(&u->ref);
464 			return u;
465 		}
466 
467 		if (match < 0)
468 			p = &parent->rb_left;
469 		else
470 			p = &parent->rb_right;
471 
472 	}
473 
474 	u = NULL;
475 	rb_link_node(&uprobe->rb_node, parent, p);
476 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
477 	/* get access + creation ref */
478 	atomic_set(&uprobe->ref, 2);
479 
480 	return u;
481 }
482 
483 /*
484  * Acquire uprobes_treelock.
485  * Matching uprobe already exists in rbtree;
486  *	increment (access refcount) and return the matching uprobe.
487  *
488  * No matching uprobe; insert the uprobe in rb_tree;
489  *	get a double refcount (access + creation) and return NULL.
490  */
491 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
492 {
493 	unsigned long flags;
494 	struct uprobe *u;
495 
496 	spin_lock_irqsave(&uprobes_treelock, flags);
497 	u = __insert_uprobe(uprobe);
498 	spin_unlock_irqrestore(&uprobes_treelock, flags);
499 
500 	/* For now assume that the instruction need not be single-stepped */
501 	uprobe->flags |= UPROBE_SKIP_SSTEP;
502 
503 	return u;
504 }
505 
506 static void put_uprobe(struct uprobe *uprobe)
507 {
508 	if (atomic_dec_and_test(&uprobe->ref))
509 		kfree(uprobe);
510 }
511 
512 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
513 {
514 	struct uprobe *uprobe, *cur_uprobe;
515 
516 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
517 	if (!uprobe)
518 		return NULL;
519 
520 	uprobe->inode = igrab(inode);
521 	uprobe->offset = offset;
522 	init_rwsem(&uprobe->consumer_rwsem);
523 	INIT_LIST_HEAD(&uprobe->pending_list);
524 
525 	/* add to uprobes_tree, sorted on inode:offset */
526 	cur_uprobe = insert_uprobe(uprobe);
527 
528 	/* a uprobe exists for this inode:offset combination */
529 	if (cur_uprobe) {
530 		kfree(uprobe);
531 		uprobe = cur_uprobe;
532 		iput(inode);
533 	} else {
534 		atomic_inc(&uprobe_events);
535 	}
536 
537 	return uprobe;
538 }
539 
540 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
541 {
542 	struct uprobe_consumer *uc;
543 
544 	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
545 		return;
546 
547 	down_read(&uprobe->consumer_rwsem);
548 	for (uc = uprobe->consumers; uc; uc = uc->next) {
549 		if (!uc->filter || uc->filter(uc, current))
550 			uc->handler(uc, regs);
551 	}
552 	up_read(&uprobe->consumer_rwsem);
553 }
554 
555 /* Returns the previous consumer */
556 static struct uprobe_consumer *
557 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
558 {
559 	down_write(&uprobe->consumer_rwsem);
560 	uc->next = uprobe->consumers;
561 	uprobe->consumers = uc;
562 	up_write(&uprobe->consumer_rwsem);
563 
564 	return uc->next;
565 }
566 
567 /*
568  * For uprobe @uprobe, delete the consumer @uc.
569  * Return true if the @uc is deleted successfully
570  * or return false.
571  */
572 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
573 {
574 	struct uprobe_consumer **con;
575 	bool ret = false;
576 
577 	down_write(&uprobe->consumer_rwsem);
578 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
579 		if (*con == uc) {
580 			*con = uc->next;
581 			ret = true;
582 			break;
583 		}
584 	}
585 	up_write(&uprobe->consumer_rwsem);
586 
587 	return ret;
588 }
589 
590 static int
591 __copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
592 			unsigned long nbytes, unsigned long offset)
593 {
594 	struct file *filp = vma->vm_file;
595 	struct page *page;
596 	void *vaddr;
597 	unsigned long off1;
598 	unsigned long idx;
599 
600 	if (!filp)
601 		return -EINVAL;
602 
603 	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
604 	off1 = offset &= ~PAGE_MASK;
605 
606 	/*
607 	 * Ensure that the page that has the original instruction is
608 	 * populated and in page-cache.
609 	 */
610 	page = read_mapping_page(mapping, idx, filp);
611 	if (IS_ERR(page))
612 		return PTR_ERR(page);
613 
614 	vaddr = kmap_atomic(page);
615 	memcpy(insn, vaddr + off1, nbytes);
616 	kunmap_atomic(vaddr);
617 	page_cache_release(page);
618 
619 	return 0;
620 }
621 
622 static int
623 copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
624 {
625 	struct address_space *mapping;
626 	unsigned long nbytes;
627 	int bytes;
628 
629 	addr &= ~PAGE_MASK;
630 	nbytes = PAGE_SIZE - addr;
631 	mapping = uprobe->inode->i_mapping;
632 
633 	/* Instruction at end of binary; copy only available bytes */
634 	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
635 		bytes = uprobe->inode->i_size - uprobe->offset;
636 	else
637 		bytes = MAX_UINSN_BYTES;
638 
639 	/* Instruction at the page-boundary; copy bytes in second page */
640 	if (nbytes < bytes) {
641 		if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
642 				bytes - nbytes, uprobe->offset + nbytes))
643 			return -ENOMEM;
644 
645 		bytes = nbytes;
646 	}
647 	return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
648 }
649 
650 /*
651  * How mm->uprobes_state.count gets updated
652  * uprobe_mmap() increments the count if
653  * 	- it successfully adds a breakpoint.
654  * 	- it cannot add a breakpoint, but sees that there is a underlying
655  * 	  breakpoint (via a is_swbp_at_addr()).
656  *
657  * uprobe_munmap() decrements the count if
658  * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
659  * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
660  * 	  unless a uprobe_mmap kicks in, since the old vma would be
661  * 	  dropped just after uprobe_munmap.)
662  *
663  * uprobe_register increments the count if:
664  * 	- it successfully adds a breakpoint.
665  *
666  * uprobe_unregister decrements the count if:
667  * 	- it sees a underlying breakpoint and removes successfully.
668  * 	  (via is_swbp_at_addr)
669  * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
670  * 	  since there is no underlying breakpoint after the
671  * 	  breakpoint removal.)
672  */
673 static int
674 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
675 			struct vm_area_struct *vma, loff_t vaddr)
676 {
677 	unsigned long addr;
678 	int ret;
679 
680 	/*
681 	 * If probe is being deleted, unregister thread could be done with
682 	 * the vma-rmap-walk through. Adding a probe now can be fatal since
683 	 * nobody will be able to cleanup. Also we could be from fork or
684 	 * mremap path, where the probe might have already been inserted.
685 	 * Hence behave as if probe already existed.
686 	 */
687 	if (!uprobe->consumers)
688 		return -EEXIST;
689 
690 	addr = (unsigned long)vaddr;
691 
692 	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
693 		ret = copy_insn(uprobe, vma, addr);
694 		if (ret)
695 			return ret;
696 
697 		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
698 			return -EEXIST;
699 
700 		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm);
701 		if (ret)
702 			return ret;
703 
704 		uprobe->flags |= UPROBE_COPY_INSN;
705 	}
706 
707 	/*
708 	 * Ideally, should be updating the probe count after the breakpoint
709 	 * has been successfully inserted. However a thread could hit the
710 	 * breakpoint we just inserted even before the probe count is
711 	 * incremented. If this is the first breakpoint placed, breakpoint
712 	 * notifier might ignore uprobes and pass the trap to the thread.
713 	 * Hence increment before and decrement on failure.
714 	 */
715 	atomic_inc(&mm->uprobes_state.count);
716 	ret = set_swbp(&uprobe->arch, mm, addr);
717 	if (ret)
718 		atomic_dec(&mm->uprobes_state.count);
719 
720 	return ret;
721 }
722 
723 static void
724 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
725 {
726 	if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
727 		atomic_dec(&mm->uprobes_state.count);
728 }
729 
730 /*
731  * There could be threads that have hit the breakpoint and are entering the
732  * notifier code and trying to acquire the uprobes_treelock. The thread
733  * calling delete_uprobe() that is removing the uprobe from the rb_tree can
734  * race with these threads and might acquire the uprobes_treelock compared
735  * to some of the breakpoint hit threads. In such a case, the breakpoint
736  * hit threads will not find the uprobe. The current unregistering thread
737  * waits till all other threads have hit a breakpoint, to acquire the
738  * uprobes_treelock before the uprobe is removed from the rbtree.
739  */
740 static void delete_uprobe(struct uprobe *uprobe)
741 {
742 	unsigned long flags;
743 
744 	synchronize_srcu(&uprobes_srcu);
745 	spin_lock_irqsave(&uprobes_treelock, flags);
746 	rb_erase(&uprobe->rb_node, &uprobes_tree);
747 	spin_unlock_irqrestore(&uprobes_treelock, flags);
748 	iput(uprobe->inode);
749 	put_uprobe(uprobe);
750 	atomic_dec(&uprobe_events);
751 }
752 
753 static struct vma_info *
754 __find_next_vma_info(struct address_space *mapping, struct list_head *head,
755 			struct vma_info *vi, loff_t offset, bool is_register)
756 {
757 	struct prio_tree_iter iter;
758 	struct vm_area_struct *vma;
759 	struct vma_info *tmpvi;
760 	unsigned long pgoff;
761 	int existing_vma;
762 	loff_t vaddr;
763 
764 	pgoff = offset >> PAGE_SHIFT;
765 
766 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767 		if (!valid_vma(vma, is_register))
768 			continue;
769 
770 		existing_vma = 0;
771 		vaddr = vma_address(vma, offset);
772 
773 		list_for_each_entry(tmpvi, head, probe_list) {
774 			if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
775 				existing_vma = 1;
776 				break;
777 			}
778 		}
779 
780 		/*
781 		 * Another vma needs a probe to be installed. However skip
782 		 * installing the probe if the vma is about to be unlinked.
783 		 */
784 		if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
785 			vi->mm = vma->vm_mm;
786 			vi->vaddr = vaddr;
787 			list_add(&vi->probe_list, head);
788 
789 			return vi;
790 		}
791 	}
792 
793 	return NULL;
794 }
795 
796 /*
797  * Iterate in the rmap prio tree  and find a vma where a probe has not
798  * yet been inserted.
799  */
800 static struct vma_info *
801 find_next_vma_info(struct address_space *mapping, struct list_head *head,
802 		loff_t offset, bool is_register)
803 {
804 	struct vma_info *vi, *retvi;
805 
806 	vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
807 	if (!vi)
808 		return ERR_PTR(-ENOMEM);
809 
810 	mutex_lock(&mapping->i_mmap_mutex);
811 	retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
812 	mutex_unlock(&mapping->i_mmap_mutex);
813 
814 	if (!retvi)
815 		kfree(vi);
816 
817 	return retvi;
818 }
819 
820 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
821 {
822 	struct list_head try_list;
823 	struct vm_area_struct *vma;
824 	struct address_space *mapping;
825 	struct vma_info *vi, *tmpvi;
826 	struct mm_struct *mm;
827 	loff_t vaddr;
828 	int ret;
829 
830 	mapping = uprobe->inode->i_mapping;
831 	INIT_LIST_HEAD(&try_list);
832 
833 	ret = 0;
834 
835 	for (;;) {
836 		vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
837 		if (!vi)
838 			break;
839 
840 		if (IS_ERR(vi)) {
841 			ret = PTR_ERR(vi);
842 			break;
843 		}
844 
845 		mm = vi->mm;
846 		down_read(&mm->mmap_sem);
847 		vma = find_vma(mm, (unsigned long)vi->vaddr);
848 		if (!vma || !valid_vma(vma, is_register)) {
849 			list_del(&vi->probe_list);
850 			kfree(vi);
851 			up_read(&mm->mmap_sem);
852 			mmput(mm);
853 			continue;
854 		}
855 		vaddr = vma_address(vma, uprobe->offset);
856 		if (vma->vm_file->f_mapping->host != uprobe->inode ||
857 						vaddr != vi->vaddr) {
858 			list_del(&vi->probe_list);
859 			kfree(vi);
860 			up_read(&mm->mmap_sem);
861 			mmput(mm);
862 			continue;
863 		}
864 
865 		if (is_register)
866 			ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
867 		else
868 			remove_breakpoint(uprobe, mm, vi->vaddr);
869 
870 		up_read(&mm->mmap_sem);
871 		mmput(mm);
872 		if (is_register) {
873 			if (ret && ret == -EEXIST)
874 				ret = 0;
875 			if (ret)
876 				break;
877 		}
878 	}
879 
880 	list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
881 		list_del(&vi->probe_list);
882 		kfree(vi);
883 	}
884 
885 	return ret;
886 }
887 
888 static int __uprobe_register(struct uprobe *uprobe)
889 {
890 	return register_for_each_vma(uprobe, true);
891 }
892 
893 static void __uprobe_unregister(struct uprobe *uprobe)
894 {
895 	if (!register_for_each_vma(uprobe, false))
896 		delete_uprobe(uprobe);
897 
898 	/* TODO : cant unregister? schedule a worker thread */
899 }
900 
901 /*
902  * uprobe_register - register a probe
903  * @inode: the file in which the probe has to be placed.
904  * @offset: offset from the start of the file.
905  * @uc: information on howto handle the probe..
906  *
907  * Apart from the access refcount, uprobe_register() takes a creation
908  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
909  * inserted into the rbtree (i.e first consumer for a @inode:@offset
910  * tuple).  Creation refcount stops uprobe_unregister from freeing the
911  * @uprobe even before the register operation is complete. Creation
912  * refcount is released when the last @uc for the @uprobe
913  * unregisters.
914  *
915  * Return errno if it cannot successully install probes
916  * else return 0 (success)
917  */
918 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
919 {
920 	struct uprobe *uprobe;
921 	int ret;
922 
923 	if (!inode || !uc || uc->next)
924 		return -EINVAL;
925 
926 	if (offset > i_size_read(inode))
927 		return -EINVAL;
928 
929 	ret = 0;
930 	mutex_lock(uprobes_hash(inode));
931 	uprobe = alloc_uprobe(inode, offset);
932 
933 	if (uprobe && !consumer_add(uprobe, uc)) {
934 		ret = __uprobe_register(uprobe);
935 		if (ret) {
936 			uprobe->consumers = NULL;
937 			__uprobe_unregister(uprobe);
938 		} else {
939 			uprobe->flags |= UPROBE_RUN_HANDLER;
940 		}
941 	}
942 
943 	mutex_unlock(uprobes_hash(inode));
944 	put_uprobe(uprobe);
945 
946 	return ret;
947 }
948 
949 /*
950  * uprobe_unregister - unregister a already registered probe.
951  * @inode: the file in which the probe has to be removed.
952  * @offset: offset from the start of the file.
953  * @uc: identify which probe if multiple probes are colocated.
954  */
955 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
956 {
957 	struct uprobe *uprobe;
958 
959 	if (!inode || !uc)
960 		return;
961 
962 	uprobe = find_uprobe(inode, offset);
963 	if (!uprobe)
964 		return;
965 
966 	mutex_lock(uprobes_hash(inode));
967 
968 	if (consumer_del(uprobe, uc)) {
969 		if (!uprobe->consumers) {
970 			__uprobe_unregister(uprobe);
971 			uprobe->flags &= ~UPROBE_RUN_HANDLER;
972 		}
973 	}
974 
975 	mutex_unlock(uprobes_hash(inode));
976 	if (uprobe)
977 		put_uprobe(uprobe);
978 }
979 
980 /*
981  * Of all the nodes that correspond to the given inode, return the node
982  * with the least offset.
983  */
984 static struct rb_node *find_least_offset_node(struct inode *inode)
985 {
986 	struct uprobe u = { .inode = inode, .offset = 0};
987 	struct rb_node *n = uprobes_tree.rb_node;
988 	struct rb_node *close_node = NULL;
989 	struct uprobe *uprobe;
990 	int match;
991 
992 	while (n) {
993 		uprobe = rb_entry(n, struct uprobe, rb_node);
994 		match = match_uprobe(&u, uprobe);
995 
996 		if (uprobe->inode == inode)
997 			close_node = n;
998 
999 		if (!match)
1000 			return close_node;
1001 
1002 		if (match < 0)
1003 			n = n->rb_left;
1004 		else
1005 			n = n->rb_right;
1006 	}
1007 
1008 	return close_node;
1009 }
1010 
1011 /*
1012  * For a given inode, build a list of probes that need to be inserted.
1013  */
1014 static void build_probe_list(struct inode *inode, struct list_head *head)
1015 {
1016 	struct uprobe *uprobe;
1017 	unsigned long flags;
1018 	struct rb_node *n;
1019 
1020 	spin_lock_irqsave(&uprobes_treelock, flags);
1021 
1022 	n = find_least_offset_node(inode);
1023 
1024 	for (; n; n = rb_next(n)) {
1025 		uprobe = rb_entry(n, struct uprobe, rb_node);
1026 		if (uprobe->inode != inode)
1027 			break;
1028 
1029 		list_add(&uprobe->pending_list, head);
1030 		atomic_inc(&uprobe->ref);
1031 	}
1032 
1033 	spin_unlock_irqrestore(&uprobes_treelock, flags);
1034 }
1035 
1036 /*
1037  * Called from mmap_region.
1038  * called with mm->mmap_sem acquired.
1039  *
1040  * Return -ve no if we fail to insert probes and we cannot
1041  * bail-out.
1042  * Return 0 otherwise. i.e:
1043  *
1044  *	- successful insertion of probes
1045  *	- (or) no possible probes to be inserted.
1046  *	- (or) insertion of probes failed but we can bail-out.
1047  */
1048 int uprobe_mmap(struct vm_area_struct *vma)
1049 {
1050 	struct list_head tmp_list;
1051 	struct uprobe *uprobe, *u;
1052 	struct inode *inode;
1053 	int ret, count;
1054 
1055 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1056 		return 0;
1057 
1058 	inode = vma->vm_file->f_mapping->host;
1059 	if (!inode)
1060 		return 0;
1061 
1062 	INIT_LIST_HEAD(&tmp_list);
1063 	mutex_lock(uprobes_mmap_hash(inode));
1064 	build_probe_list(inode, &tmp_list);
1065 
1066 	ret = 0;
1067 	count = 0;
1068 
1069 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1070 		loff_t vaddr;
1071 
1072 		list_del(&uprobe->pending_list);
1073 		if (!ret) {
1074 			vaddr = vma_address(vma, uprobe->offset);
1075 
1076 			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1077 				put_uprobe(uprobe);
1078 				continue;
1079 			}
1080 
1081 			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1082 
1083 			/* Ignore double add: */
1084 			if (ret == -EEXIST) {
1085 				ret = 0;
1086 
1087 				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1088 					continue;
1089 
1090 				/*
1091 				 * Unable to insert a breakpoint, but
1092 				 * breakpoint lies underneath. Increment the
1093 				 * probe count.
1094 				 */
1095 				atomic_inc(&vma->vm_mm->uprobes_state.count);
1096 			}
1097 
1098 			if (!ret)
1099 				count++;
1100 		}
1101 		put_uprobe(uprobe);
1102 	}
1103 
1104 	mutex_unlock(uprobes_mmap_hash(inode));
1105 
1106 	if (ret)
1107 		atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1108 
1109 	return ret;
1110 }
1111 
1112 /*
1113  * Called in context of a munmap of a vma.
1114  */
1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1116 {
1117 	struct list_head tmp_list;
1118 	struct uprobe *uprobe, *u;
1119 	struct inode *inode;
1120 
1121 	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1122 		return;
1123 
1124 	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1125 		return;
1126 
1127 	inode = vma->vm_file->f_mapping->host;
1128 	if (!inode)
1129 		return;
1130 
1131 	INIT_LIST_HEAD(&tmp_list);
1132 	mutex_lock(uprobes_mmap_hash(inode));
1133 	build_probe_list(inode, &tmp_list);
1134 
1135 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1136 		loff_t vaddr;
1137 
1138 		list_del(&uprobe->pending_list);
1139 		vaddr = vma_address(vma, uprobe->offset);
1140 
1141 		if (vaddr >= start && vaddr < end) {
1142 			/*
1143 			 * An unregister could have removed the probe before
1144 			 * unmap. So check before we decrement the count.
1145 			 */
1146 			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1147 				atomic_dec(&vma->vm_mm->uprobes_state.count);
1148 		}
1149 		put_uprobe(uprobe);
1150 	}
1151 	mutex_unlock(uprobes_mmap_hash(inode));
1152 }
1153 
1154 /* Slot allocation for XOL */
1155 static int xol_add_vma(struct xol_area *area)
1156 {
1157 	struct mm_struct *mm;
1158 	int ret;
1159 
1160 	area->page = alloc_page(GFP_HIGHUSER);
1161 	if (!area->page)
1162 		return -ENOMEM;
1163 
1164 	ret = -EALREADY;
1165 	mm = current->mm;
1166 
1167 	down_write(&mm->mmap_sem);
1168 	if (mm->uprobes_state.xol_area)
1169 		goto fail;
1170 
1171 	ret = -ENOMEM;
1172 
1173 	/* Try to map as high as possible, this is only a hint. */
1174 	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1175 	if (area->vaddr & ~PAGE_MASK) {
1176 		ret = area->vaddr;
1177 		goto fail;
1178 	}
1179 
1180 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1181 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1182 	if (ret)
1183 		goto fail;
1184 
1185 	smp_wmb();	/* pairs with get_xol_area() */
1186 	mm->uprobes_state.xol_area = area;
1187 	ret = 0;
1188 
1189 fail:
1190 	up_write(&mm->mmap_sem);
1191 	if (ret)
1192 		__free_page(area->page);
1193 
1194 	return ret;
1195 }
1196 
1197 static struct xol_area *get_xol_area(struct mm_struct *mm)
1198 {
1199 	struct xol_area *area;
1200 
1201 	area = mm->uprobes_state.xol_area;
1202 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1203 
1204 	return area;
1205 }
1206 
1207 /*
1208  * xol_alloc_area - Allocate process's xol_area.
1209  * This area will be used for storing instructions for execution out of
1210  * line.
1211  *
1212  * Returns the allocated area or NULL.
1213  */
1214 static struct xol_area *xol_alloc_area(void)
1215 {
1216 	struct xol_area *area;
1217 
1218 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1219 	if (unlikely(!area))
1220 		return NULL;
1221 
1222 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1223 
1224 	if (!area->bitmap)
1225 		goto fail;
1226 
1227 	init_waitqueue_head(&area->wq);
1228 	if (!xol_add_vma(area))
1229 		return area;
1230 
1231 fail:
1232 	kfree(area->bitmap);
1233 	kfree(area);
1234 
1235 	return get_xol_area(current->mm);
1236 }
1237 
1238 /*
1239  * uprobe_clear_state - Free the area allocated for slots.
1240  */
1241 void uprobe_clear_state(struct mm_struct *mm)
1242 {
1243 	struct xol_area *area = mm->uprobes_state.xol_area;
1244 
1245 	if (!area)
1246 		return;
1247 
1248 	put_page(area->page);
1249 	kfree(area->bitmap);
1250 	kfree(area);
1251 }
1252 
1253 /*
1254  * uprobe_reset_state - Free the area allocated for slots.
1255  */
1256 void uprobe_reset_state(struct mm_struct *mm)
1257 {
1258 	mm->uprobes_state.xol_area = NULL;
1259 	atomic_set(&mm->uprobes_state.count, 0);
1260 }
1261 
1262 /*
1263  *  - search for a free slot.
1264  */
1265 static unsigned long xol_take_insn_slot(struct xol_area *area)
1266 {
1267 	unsigned long slot_addr;
1268 	int slot_nr;
1269 
1270 	do {
1271 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1272 		if (slot_nr < UINSNS_PER_PAGE) {
1273 			if (!test_and_set_bit(slot_nr, area->bitmap))
1274 				break;
1275 
1276 			slot_nr = UINSNS_PER_PAGE;
1277 			continue;
1278 		}
1279 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1280 	} while (slot_nr >= UINSNS_PER_PAGE);
1281 
1282 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1283 	atomic_inc(&area->slot_count);
1284 
1285 	return slot_addr;
1286 }
1287 
1288 /*
1289  * xol_get_insn_slot - If was not allocated a slot, then
1290  * allocate a slot.
1291  * Returns the allocated slot address or 0.
1292  */
1293 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1294 {
1295 	struct xol_area *area;
1296 	unsigned long offset;
1297 	void *vaddr;
1298 
1299 	area = get_xol_area(current->mm);
1300 	if (!area) {
1301 		area = xol_alloc_area();
1302 		if (!area)
1303 			return 0;
1304 	}
1305 	current->utask->xol_vaddr = xol_take_insn_slot(area);
1306 
1307 	/*
1308 	 * Initialize the slot if xol_vaddr points to valid
1309 	 * instruction slot.
1310 	 */
1311 	if (unlikely(!current->utask->xol_vaddr))
1312 		return 0;
1313 
1314 	current->utask->vaddr = slot_addr;
1315 	offset = current->utask->xol_vaddr & ~PAGE_MASK;
1316 	vaddr = kmap_atomic(area->page);
1317 	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1318 	kunmap_atomic(vaddr);
1319 
1320 	return current->utask->xol_vaddr;
1321 }
1322 
1323 /*
1324  * xol_free_insn_slot - If slot was earlier allocated by
1325  * @xol_get_insn_slot(), make the slot available for
1326  * subsequent requests.
1327  */
1328 static void xol_free_insn_slot(struct task_struct *tsk)
1329 {
1330 	struct xol_area *area;
1331 	unsigned long vma_end;
1332 	unsigned long slot_addr;
1333 
1334 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1335 		return;
1336 
1337 	slot_addr = tsk->utask->xol_vaddr;
1338 
1339 	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1340 		return;
1341 
1342 	area = tsk->mm->uprobes_state.xol_area;
1343 	vma_end = area->vaddr + PAGE_SIZE;
1344 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1345 		unsigned long offset;
1346 		int slot_nr;
1347 
1348 		offset = slot_addr - area->vaddr;
1349 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1350 		if (slot_nr >= UINSNS_PER_PAGE)
1351 			return;
1352 
1353 		clear_bit(slot_nr, area->bitmap);
1354 		atomic_dec(&area->slot_count);
1355 		if (waitqueue_active(&area->wq))
1356 			wake_up(&area->wq);
1357 
1358 		tsk->utask->xol_vaddr = 0;
1359 	}
1360 }
1361 
1362 /**
1363  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1364  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1365  * instruction.
1366  * Return the address of the breakpoint instruction.
1367  */
1368 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1369 {
1370 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1371 }
1372 
1373 /*
1374  * Called with no locks held.
1375  * Called in context of a exiting or a exec-ing thread.
1376  */
1377 void uprobe_free_utask(struct task_struct *t)
1378 {
1379 	struct uprobe_task *utask = t->utask;
1380 
1381 	if (t->uprobe_srcu_id != -1)
1382 		srcu_read_unlock_raw(&uprobes_srcu, t->uprobe_srcu_id);
1383 
1384 	if (!utask)
1385 		return;
1386 
1387 	if (utask->active_uprobe)
1388 		put_uprobe(utask->active_uprobe);
1389 
1390 	xol_free_insn_slot(t);
1391 	kfree(utask);
1392 	t->utask = NULL;
1393 }
1394 
1395 /*
1396  * Called in context of a new clone/fork from copy_process.
1397  */
1398 void uprobe_copy_process(struct task_struct *t)
1399 {
1400 	t->utask = NULL;
1401 	t->uprobe_srcu_id = -1;
1402 }
1403 
1404 /*
1405  * Allocate a uprobe_task object for the task.
1406  * Called when the thread hits a breakpoint for the first time.
1407  *
1408  * Returns:
1409  * - pointer to new uprobe_task on success
1410  * - NULL otherwise
1411  */
1412 static struct uprobe_task *add_utask(void)
1413 {
1414 	struct uprobe_task *utask;
1415 
1416 	utask = kzalloc(sizeof *utask, GFP_KERNEL);
1417 	if (unlikely(!utask))
1418 		return NULL;
1419 
1420 	utask->active_uprobe = NULL;
1421 	current->utask = utask;
1422 	return utask;
1423 }
1424 
1425 /* Prepare to single-step probed instruction out of line. */
1426 static int
1427 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1428 {
1429 	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1430 		return 0;
1431 
1432 	return -EFAULT;
1433 }
1434 
1435 /*
1436  * If we are singlestepping, then ensure this thread is not connected to
1437  * non-fatal signals until completion of singlestep.  When xol insn itself
1438  * triggers the signal,  restart the original insn even if the task is
1439  * already SIGKILL'ed (since coredump should report the correct ip).  This
1440  * is even more important if the task has a handler for SIGSEGV/etc, The
1441  * _same_ instruction should be repeated again after return from the signal
1442  * handler, and SSTEP can never finish in this case.
1443  */
1444 bool uprobe_deny_signal(void)
1445 {
1446 	struct task_struct *t = current;
1447 	struct uprobe_task *utask = t->utask;
1448 
1449 	if (likely(!utask || !utask->active_uprobe))
1450 		return false;
1451 
1452 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1453 
1454 	if (signal_pending(t)) {
1455 		spin_lock_irq(&t->sighand->siglock);
1456 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1457 		spin_unlock_irq(&t->sighand->siglock);
1458 
1459 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1460 			utask->state = UTASK_SSTEP_TRAPPED;
1461 			set_tsk_thread_flag(t, TIF_UPROBE);
1462 			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1463 		}
1464 	}
1465 
1466 	return true;
1467 }
1468 
1469 /*
1470  * Avoid singlestepping the original instruction if the original instruction
1471  * is a NOP or can be emulated.
1472  */
1473 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1474 {
1475 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1476 		return true;
1477 
1478 	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1479 	return false;
1480 }
1481 
1482 /*
1483  * Run handler and ask thread to singlestep.
1484  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1485  */
1486 static void handle_swbp(struct pt_regs *regs)
1487 {
1488 	struct vm_area_struct *vma;
1489 	struct uprobe_task *utask;
1490 	struct uprobe *uprobe;
1491 	struct mm_struct *mm;
1492 	unsigned long bp_vaddr;
1493 
1494 	uprobe = NULL;
1495 	bp_vaddr = uprobe_get_swbp_addr(regs);
1496 	mm = current->mm;
1497 	down_read(&mm->mmap_sem);
1498 	vma = find_vma(mm, bp_vaddr);
1499 
1500 	if (vma && vma->vm_start <= bp_vaddr && valid_vma(vma, false)) {
1501 		struct inode *inode;
1502 		loff_t offset;
1503 
1504 		inode = vma->vm_file->f_mapping->host;
1505 		offset = bp_vaddr - vma->vm_start;
1506 		offset += (vma->vm_pgoff << PAGE_SHIFT);
1507 		uprobe = find_uprobe(inode, offset);
1508 	}
1509 
1510 	srcu_read_unlock_raw(&uprobes_srcu, current->uprobe_srcu_id);
1511 	current->uprobe_srcu_id = -1;
1512 	up_read(&mm->mmap_sem);
1513 
1514 	if (!uprobe) {
1515 		/* No matching uprobe; signal SIGTRAP. */
1516 		send_sig(SIGTRAP, current, 0);
1517 		return;
1518 	}
1519 
1520 	utask = current->utask;
1521 	if (!utask) {
1522 		utask = add_utask();
1523 		/* Cannot allocate; re-execute the instruction. */
1524 		if (!utask)
1525 			goto cleanup_ret;
1526 	}
1527 	utask->active_uprobe = uprobe;
1528 	handler_chain(uprobe, regs);
1529 	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1530 		goto cleanup_ret;
1531 
1532 	utask->state = UTASK_SSTEP;
1533 	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1534 		user_enable_single_step(current);
1535 		return;
1536 	}
1537 
1538 cleanup_ret:
1539 	if (utask) {
1540 		utask->active_uprobe = NULL;
1541 		utask->state = UTASK_RUNNING;
1542 	}
1543 	if (uprobe) {
1544 		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1545 
1546 			/*
1547 			 * cannot singlestep; cannot skip instruction;
1548 			 * re-execute the instruction.
1549 			 */
1550 			instruction_pointer_set(regs, bp_vaddr);
1551 
1552 		put_uprobe(uprobe);
1553 	}
1554 }
1555 
1556 /*
1557  * Perform required fix-ups and disable singlestep.
1558  * Allow pending signals to take effect.
1559  */
1560 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1561 {
1562 	struct uprobe *uprobe;
1563 
1564 	uprobe = utask->active_uprobe;
1565 	if (utask->state == UTASK_SSTEP_ACK)
1566 		arch_uprobe_post_xol(&uprobe->arch, regs);
1567 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1568 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1569 	else
1570 		WARN_ON_ONCE(1);
1571 
1572 	put_uprobe(uprobe);
1573 	utask->active_uprobe = NULL;
1574 	utask->state = UTASK_RUNNING;
1575 	user_disable_single_step(current);
1576 	xol_free_insn_slot(current);
1577 
1578 	spin_lock_irq(&current->sighand->siglock);
1579 	recalc_sigpending(); /* see uprobe_deny_signal() */
1580 	spin_unlock_irq(&current->sighand->siglock);
1581 }
1582 
1583 /*
1584  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1585  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1586  * allows the thread to return from interrupt.
1587  *
1588  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1589  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1590  * interrupt.
1591  *
1592  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1593  * uprobe_notify_resume().
1594  */
1595 void uprobe_notify_resume(struct pt_regs *regs)
1596 {
1597 	struct uprobe_task *utask;
1598 
1599 	utask = current->utask;
1600 	if (!utask || utask->state == UTASK_BP_HIT)
1601 		handle_swbp(regs);
1602 	else
1603 		handle_singlestep(utask, regs);
1604 }
1605 
1606 /*
1607  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1608  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1609  */
1610 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1611 {
1612 	struct uprobe_task *utask;
1613 
1614 	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1615 		/* task is currently not uprobed */
1616 		return 0;
1617 
1618 	utask = current->utask;
1619 	if (utask)
1620 		utask->state = UTASK_BP_HIT;
1621 
1622 	set_thread_flag(TIF_UPROBE);
1623 	current->uprobe_srcu_id = srcu_read_lock_raw(&uprobes_srcu);
1624 
1625 	return 1;
1626 }
1627 
1628 /*
1629  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1630  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1631  */
1632 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1633 {
1634 	struct uprobe_task *utask = current->utask;
1635 
1636 	if (!current->mm || !utask || !utask->active_uprobe)
1637 		/* task is currently not uprobed */
1638 		return 0;
1639 
1640 	utask->state = UTASK_SSTEP_ACK;
1641 	set_thread_flag(TIF_UPROBE);
1642 	return 1;
1643 }
1644 
1645 static struct notifier_block uprobe_exception_nb = {
1646 	.notifier_call		= arch_uprobe_exception_notify,
1647 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1648 };
1649 
1650 static int __init init_uprobes(void)
1651 {
1652 	int i;
1653 
1654 	for (i = 0; i < UPROBES_HASH_SZ; i++) {
1655 		mutex_init(&uprobes_mutex[i]);
1656 		mutex_init(&uprobes_mmap_mutex[i]);
1657 	}
1658 	init_srcu_struct(&uprobes_srcu);
1659 
1660 	return register_die_notifier(&uprobe_exception_nb);
1661 }
1662 module_init(init_uprobes);
1663 
1664 static void __exit exit_uprobes(void)
1665 {
1666 }
1667 module_exit(exit_uprobes);
1668