xref: /linux/kernel/events/uprobes.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 
30 #include <linux/uprobes.h>
31 
32 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34 
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41 
42 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43 
44 #define UPROBES_HASH_SZ	13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48 
49 static struct percpu_rw_semaphore dup_mmap_sem;
50 
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN	0
53 
54 struct uprobe {
55 	struct rb_node		rb_node;	/* node in the rb tree */
56 	refcount_t		ref;
57 	struct rw_semaphore	register_rwsem;
58 	struct rw_semaphore	consumer_rwsem;
59 	struct list_head	pending_list;
60 	struct uprobe_consumer	*consumers;
61 	struct inode		*inode;		/* Also hold a ref to inode */
62 	loff_t			offset;
63 	loff_t			ref_ctr_offset;
64 	unsigned long		flags;
65 
66 	/*
67 	 * The generic code assumes that it has two members of unknown type
68 	 * owned by the arch-specific code:
69 	 *
70 	 * 	insn -	copy_insn() saves the original instruction here for
71 	 *		arch_uprobe_analyze_insn().
72 	 *
73 	 *	ixol -	potentially modified instruction to execute out of
74 	 *		line, copied to xol_area by xol_get_insn_slot().
75 	 */
76 	struct arch_uprobe	arch;
77 };
78 
79 struct delayed_uprobe {
80 	struct list_head list;
81 	struct uprobe *uprobe;
82 	struct mm_struct *mm;
83 };
84 
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87 
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98 	wait_queue_head_t 		wq;		/* if all slots are busy */
99 	atomic_t 			slot_count;	/* number of in-use slots */
100 	unsigned long 			*bitmap;	/* 0 = free slot */
101 
102 	struct vm_special_mapping	xol_mapping;
103 	struct page 			*pages[2];
104 	/*
105 	 * We keep the vma's vm_start rather than a pointer to the vma
106 	 * itself.  The probed process or a naughty kernel module could make
107 	 * the vma go away, and we must handle that reasonably gracefully.
108 	 */
109 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110 };
111 
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *	- is_register: indicates if we are in register context.
117  *	- Return 1 if the specified virtual address is in an
118  *	  executable vma.
119  */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123 
124 	if (is_register)
125 		flags |= VM_WRITE;
126 
127 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129 
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134 
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139 
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @page:     the cowed page we are replacing by kpage
147  * @kpage:    the modified page we replace page by
148  *
149  * Returns 0 on success, -EFAULT on failure.
150  */
151 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
152 				struct page *old_page, struct page *new_page)
153 {
154 	struct mm_struct *mm = vma->vm_mm;
155 	struct page_vma_mapped_walk pvmw = {
156 		.page = old_page,
157 		.vma = vma,
158 		.address = addr,
159 	};
160 	int err;
161 	struct mmu_notifier_range range;
162 	struct mem_cgroup *memcg;
163 
164 	mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
165 
166 	VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
167 
168 	err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
169 			false);
170 	if (err)
171 		return err;
172 
173 	/* For try_to_free_swap() and munlock_vma_page() below */
174 	lock_page(old_page);
175 
176 	mmu_notifier_invalidate_range_start(&range);
177 	err = -EAGAIN;
178 	if (!page_vma_mapped_walk(&pvmw)) {
179 		mem_cgroup_cancel_charge(new_page, memcg, false);
180 		goto unlock;
181 	}
182 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183 
184 	get_page(new_page);
185 	page_add_new_anon_rmap(new_page, vma, addr, false);
186 	mem_cgroup_commit_charge(new_page, memcg, false, false);
187 	lru_cache_add_active_or_unevictable(new_page, vma);
188 
189 	if (!PageAnon(old_page)) {
190 		dec_mm_counter(mm, mm_counter_file(old_page));
191 		inc_mm_counter(mm, MM_ANONPAGES);
192 	}
193 
194 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
195 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
196 	set_pte_at_notify(mm, addr, pvmw.pte,
197 			mk_pte(new_page, vma->vm_page_prot));
198 
199 	page_remove_rmap(old_page, false);
200 	if (!page_mapped(old_page))
201 		try_to_free_swap(old_page);
202 	page_vma_mapped_walk_done(&pvmw);
203 
204 	if (vma->vm_flags & VM_LOCKED)
205 		munlock_vma_page(old_page);
206 	put_page(old_page);
207 
208 	err = 0;
209  unlock:
210 	mmu_notifier_invalidate_range_end(&range);
211 	unlock_page(old_page);
212 	return err;
213 }
214 
215 /**
216  * is_swbp_insn - check if instruction is breakpoint instruction.
217  * @insn: instruction to be checked.
218  * Default implementation of is_swbp_insn
219  * Returns true if @insn is a breakpoint instruction.
220  */
221 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
222 {
223 	return *insn == UPROBE_SWBP_INSN;
224 }
225 
226 /**
227  * is_trap_insn - check if instruction is breakpoint instruction.
228  * @insn: instruction to be checked.
229  * Default implementation of is_trap_insn
230  * Returns true if @insn is a breakpoint instruction.
231  *
232  * This function is needed for the case where an architecture has multiple
233  * trap instructions (like powerpc).
234  */
235 bool __weak is_trap_insn(uprobe_opcode_t *insn)
236 {
237 	return is_swbp_insn(insn);
238 }
239 
240 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
241 {
242 	void *kaddr = kmap_atomic(page);
243 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
244 	kunmap_atomic(kaddr);
245 }
246 
247 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
248 {
249 	void *kaddr = kmap_atomic(page);
250 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
251 	kunmap_atomic(kaddr);
252 }
253 
254 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
255 {
256 	uprobe_opcode_t old_opcode;
257 	bool is_swbp;
258 
259 	/*
260 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
261 	 * We do not check if it is any other 'trap variant' which could
262 	 * be conditional trap instruction such as the one powerpc supports.
263 	 *
264 	 * The logic is that we do not care if the underlying instruction
265 	 * is a trap variant; uprobes always wins over any other (gdb)
266 	 * breakpoint.
267 	 */
268 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
269 	is_swbp = is_swbp_insn(&old_opcode);
270 
271 	if (is_swbp_insn(new_opcode)) {
272 		if (is_swbp)		/* register: already installed? */
273 			return 0;
274 	} else {
275 		if (!is_swbp)		/* unregister: was it changed by us? */
276 			return 0;
277 	}
278 
279 	return 1;
280 }
281 
282 static struct delayed_uprobe *
283 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
284 {
285 	struct delayed_uprobe *du;
286 
287 	list_for_each_entry(du, &delayed_uprobe_list, list)
288 		if (du->uprobe == uprobe && du->mm == mm)
289 			return du;
290 	return NULL;
291 }
292 
293 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 	struct delayed_uprobe *du;
296 
297 	if (delayed_uprobe_check(uprobe, mm))
298 		return 0;
299 
300 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
301 	if (!du)
302 		return -ENOMEM;
303 
304 	du->uprobe = uprobe;
305 	du->mm = mm;
306 	list_add(&du->list, &delayed_uprobe_list);
307 	return 0;
308 }
309 
310 static void delayed_uprobe_delete(struct delayed_uprobe *du)
311 {
312 	if (WARN_ON(!du))
313 		return;
314 	list_del(&du->list);
315 	kfree(du);
316 }
317 
318 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
319 {
320 	struct list_head *pos, *q;
321 	struct delayed_uprobe *du;
322 
323 	if (!uprobe && !mm)
324 		return;
325 
326 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
327 		du = list_entry(pos, struct delayed_uprobe, list);
328 
329 		if (uprobe && du->uprobe != uprobe)
330 			continue;
331 		if (mm && du->mm != mm)
332 			continue;
333 
334 		delayed_uprobe_delete(du);
335 	}
336 }
337 
338 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
339 			      struct vm_area_struct *vma)
340 {
341 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
342 
343 	return uprobe->ref_ctr_offset &&
344 		vma->vm_file &&
345 		file_inode(vma->vm_file) == uprobe->inode &&
346 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
347 		vma->vm_start <= vaddr &&
348 		vma->vm_end > vaddr;
349 }
350 
351 static struct vm_area_struct *
352 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
353 {
354 	struct vm_area_struct *tmp;
355 
356 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
357 		if (valid_ref_ctr_vma(uprobe, tmp))
358 			return tmp;
359 
360 	return NULL;
361 }
362 
363 static int
364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366 	void *kaddr;
367 	struct page *page;
368 	struct vm_area_struct *vma;
369 	int ret;
370 	short *ptr;
371 
372 	if (!vaddr || !d)
373 		return -EINVAL;
374 
375 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
376 			FOLL_WRITE, &page, &vma, NULL);
377 	if (unlikely(ret <= 0)) {
378 		/*
379 		 * We are asking for 1 page. If get_user_pages_remote() fails,
380 		 * it may return 0, in that case we have to return error.
381 		 */
382 		return ret == 0 ? -EBUSY : ret;
383 	}
384 
385 	kaddr = kmap_atomic(page);
386 	ptr = kaddr + (vaddr & ~PAGE_MASK);
387 
388 	if (unlikely(*ptr + d < 0)) {
389 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
390 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
391 		ret = -EINVAL;
392 		goto out;
393 	}
394 
395 	*ptr += d;
396 	ret = 0;
397 out:
398 	kunmap_atomic(kaddr);
399 	put_page(page);
400 	return ret;
401 }
402 
403 static void update_ref_ctr_warn(struct uprobe *uprobe,
404 				struct mm_struct *mm, short d)
405 {
406 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
407 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
408 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
409 		(unsigned long long) uprobe->offset,
410 		(unsigned long long) uprobe->ref_ctr_offset, mm);
411 }
412 
413 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
414 			  short d)
415 {
416 	struct vm_area_struct *rc_vma;
417 	unsigned long rc_vaddr;
418 	int ret = 0;
419 
420 	rc_vma = find_ref_ctr_vma(uprobe, mm);
421 
422 	if (rc_vma) {
423 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
424 		ret = __update_ref_ctr(mm, rc_vaddr, d);
425 		if (ret)
426 			update_ref_ctr_warn(uprobe, mm, d);
427 
428 		if (d > 0)
429 			return ret;
430 	}
431 
432 	mutex_lock(&delayed_uprobe_lock);
433 	if (d > 0)
434 		ret = delayed_uprobe_add(uprobe, mm);
435 	else
436 		delayed_uprobe_remove(uprobe, mm);
437 	mutex_unlock(&delayed_uprobe_lock);
438 
439 	return ret;
440 }
441 
442 /*
443  * NOTE:
444  * Expect the breakpoint instruction to be the smallest size instruction for
445  * the architecture. If an arch has variable length instruction and the
446  * breakpoint instruction is not of the smallest length instruction
447  * supported by that architecture then we need to modify is_trap_at_addr and
448  * uprobe_write_opcode accordingly. This would never be a problem for archs
449  * that have fixed length instructions.
450  *
451  * uprobe_write_opcode - write the opcode at a given virtual address.
452  * @mm: the probed process address space.
453  * @vaddr: the virtual address to store the opcode.
454  * @opcode: opcode to be written at @vaddr.
455  *
456  * Called with mm->mmap_sem held for write.
457  * Return 0 (success) or a negative errno.
458  */
459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460 			unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462 	struct uprobe *uprobe;
463 	struct page *old_page, *new_page;
464 	struct vm_area_struct *vma;
465 	int ret, is_register, ref_ctr_updated = 0;
466 
467 	is_register = is_swbp_insn(&opcode);
468 	uprobe = container_of(auprobe, struct uprobe, arch);
469 
470 retry:
471 	/* Read the page with vaddr into memory */
472 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
473 			FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
474 	if (ret <= 0)
475 		return ret;
476 
477 	ret = verify_opcode(old_page, vaddr, &opcode);
478 	if (ret <= 0)
479 		goto put_old;
480 
481 	/* We are going to replace instruction, update ref_ctr. */
482 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
483 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
484 		if (ret)
485 			goto put_old;
486 
487 		ref_ctr_updated = 1;
488 	}
489 
490 	ret = anon_vma_prepare(vma);
491 	if (ret)
492 		goto put_old;
493 
494 	ret = -ENOMEM;
495 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
496 	if (!new_page)
497 		goto put_old;
498 
499 	__SetPageUptodate(new_page);
500 	copy_highpage(new_page, old_page);
501 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
502 
503 	ret = __replace_page(vma, vaddr, old_page, new_page);
504 	put_page(new_page);
505 put_old:
506 	put_page(old_page);
507 
508 	if (unlikely(ret == -EAGAIN))
509 		goto retry;
510 
511 	/* Revert back reference counter if instruction update failed. */
512 	if (ret && is_register && ref_ctr_updated)
513 		update_ref_ctr(uprobe, mm, -1);
514 
515 	return ret;
516 }
517 
518 /**
519  * set_swbp - store breakpoint at a given address.
520  * @auprobe: arch specific probepoint information.
521  * @mm: the probed process address space.
522  * @vaddr: the virtual address to insert the opcode.
523  *
524  * For mm @mm, store the breakpoint instruction at @vaddr.
525  * Return 0 (success) or a negative errno.
526  */
527 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
528 {
529 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
530 }
531 
532 /**
533  * set_orig_insn - Restore the original instruction.
534  * @mm: the probed process address space.
535  * @auprobe: arch specific probepoint information.
536  * @vaddr: the virtual address to insert the opcode.
537  *
538  * For mm @mm, restore the original opcode (opcode) at @vaddr.
539  * Return 0 (success) or a negative errno.
540  */
541 int __weak
542 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
543 {
544 	return uprobe_write_opcode(auprobe, mm, vaddr,
545 			*(uprobe_opcode_t *)&auprobe->insn);
546 }
547 
548 static struct uprobe *get_uprobe(struct uprobe *uprobe)
549 {
550 	refcount_inc(&uprobe->ref);
551 	return uprobe;
552 }
553 
554 static void put_uprobe(struct uprobe *uprobe)
555 {
556 	if (refcount_dec_and_test(&uprobe->ref)) {
557 		/*
558 		 * If application munmap(exec_vma) before uprobe_unregister()
559 		 * gets called, we don't get a chance to remove uprobe from
560 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
561 		 */
562 		mutex_lock(&delayed_uprobe_lock);
563 		delayed_uprobe_remove(uprobe, NULL);
564 		mutex_unlock(&delayed_uprobe_lock);
565 		kfree(uprobe);
566 	}
567 }
568 
569 static int match_uprobe(struct uprobe *l, struct uprobe *r)
570 {
571 	if (l->inode < r->inode)
572 		return -1;
573 
574 	if (l->inode > r->inode)
575 		return 1;
576 
577 	if (l->offset < r->offset)
578 		return -1;
579 
580 	if (l->offset > r->offset)
581 		return 1;
582 
583 	return 0;
584 }
585 
586 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
587 {
588 	struct uprobe u = { .inode = inode, .offset = offset };
589 	struct rb_node *n = uprobes_tree.rb_node;
590 	struct uprobe *uprobe;
591 	int match;
592 
593 	while (n) {
594 		uprobe = rb_entry(n, struct uprobe, rb_node);
595 		match = match_uprobe(&u, uprobe);
596 		if (!match)
597 			return get_uprobe(uprobe);
598 
599 		if (match < 0)
600 			n = n->rb_left;
601 		else
602 			n = n->rb_right;
603 	}
604 	return NULL;
605 }
606 
607 /*
608  * Find a uprobe corresponding to a given inode:offset
609  * Acquires uprobes_treelock
610  */
611 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
612 {
613 	struct uprobe *uprobe;
614 
615 	spin_lock(&uprobes_treelock);
616 	uprobe = __find_uprobe(inode, offset);
617 	spin_unlock(&uprobes_treelock);
618 
619 	return uprobe;
620 }
621 
622 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
623 {
624 	struct rb_node **p = &uprobes_tree.rb_node;
625 	struct rb_node *parent = NULL;
626 	struct uprobe *u;
627 	int match;
628 
629 	while (*p) {
630 		parent = *p;
631 		u = rb_entry(parent, struct uprobe, rb_node);
632 		match = match_uprobe(uprobe, u);
633 		if (!match)
634 			return get_uprobe(u);
635 
636 		if (match < 0)
637 			p = &parent->rb_left;
638 		else
639 			p = &parent->rb_right;
640 
641 	}
642 
643 	u = NULL;
644 	rb_link_node(&uprobe->rb_node, parent, p);
645 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
646 	/* get access + creation ref */
647 	refcount_set(&uprobe->ref, 2);
648 
649 	return u;
650 }
651 
652 /*
653  * Acquire uprobes_treelock.
654  * Matching uprobe already exists in rbtree;
655  *	increment (access refcount) and return the matching uprobe.
656  *
657  * No matching uprobe; insert the uprobe in rb_tree;
658  *	get a double refcount (access + creation) and return NULL.
659  */
660 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
661 {
662 	struct uprobe *u;
663 
664 	spin_lock(&uprobes_treelock);
665 	u = __insert_uprobe(uprobe);
666 	spin_unlock(&uprobes_treelock);
667 
668 	return u;
669 }
670 
671 static void
672 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
673 {
674 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
675 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
676 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
677 		(unsigned long long) cur_uprobe->ref_ctr_offset,
678 		(unsigned long long) uprobe->ref_ctr_offset);
679 }
680 
681 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
682 				   loff_t ref_ctr_offset)
683 {
684 	struct uprobe *uprobe, *cur_uprobe;
685 
686 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
687 	if (!uprobe)
688 		return NULL;
689 
690 	uprobe->inode = inode;
691 	uprobe->offset = offset;
692 	uprobe->ref_ctr_offset = ref_ctr_offset;
693 	init_rwsem(&uprobe->register_rwsem);
694 	init_rwsem(&uprobe->consumer_rwsem);
695 
696 	/* add to uprobes_tree, sorted on inode:offset */
697 	cur_uprobe = insert_uprobe(uprobe);
698 	/* a uprobe exists for this inode:offset combination */
699 	if (cur_uprobe) {
700 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
701 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
702 			put_uprobe(cur_uprobe);
703 			kfree(uprobe);
704 			return ERR_PTR(-EINVAL);
705 		}
706 		kfree(uprobe);
707 		uprobe = cur_uprobe;
708 	}
709 
710 	return uprobe;
711 }
712 
713 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
714 {
715 	down_write(&uprobe->consumer_rwsem);
716 	uc->next = uprobe->consumers;
717 	uprobe->consumers = uc;
718 	up_write(&uprobe->consumer_rwsem);
719 }
720 
721 /*
722  * For uprobe @uprobe, delete the consumer @uc.
723  * Return true if the @uc is deleted successfully
724  * or return false.
725  */
726 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
727 {
728 	struct uprobe_consumer **con;
729 	bool ret = false;
730 
731 	down_write(&uprobe->consumer_rwsem);
732 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
733 		if (*con == uc) {
734 			*con = uc->next;
735 			ret = true;
736 			break;
737 		}
738 	}
739 	up_write(&uprobe->consumer_rwsem);
740 
741 	return ret;
742 }
743 
744 static int __copy_insn(struct address_space *mapping, struct file *filp,
745 			void *insn, int nbytes, loff_t offset)
746 {
747 	struct page *page;
748 	/*
749 	 * Ensure that the page that has the original instruction is populated
750 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
751 	 * see uprobe_register().
752 	 */
753 	if (mapping->a_ops->readpage)
754 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
755 	else
756 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 	if (IS_ERR(page))
758 		return PTR_ERR(page);
759 
760 	copy_from_page(page, offset, insn, nbytes);
761 	put_page(page);
762 
763 	return 0;
764 }
765 
766 static int copy_insn(struct uprobe *uprobe, struct file *filp)
767 {
768 	struct address_space *mapping = uprobe->inode->i_mapping;
769 	loff_t offs = uprobe->offset;
770 	void *insn = &uprobe->arch.insn;
771 	int size = sizeof(uprobe->arch.insn);
772 	int len, err = -EIO;
773 
774 	/* Copy only available bytes, -EIO if nothing was read */
775 	do {
776 		if (offs >= i_size_read(uprobe->inode))
777 			break;
778 
779 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
780 		err = __copy_insn(mapping, filp, insn, len, offs);
781 		if (err)
782 			break;
783 
784 		insn += len;
785 		offs += len;
786 		size -= len;
787 	} while (size);
788 
789 	return err;
790 }
791 
792 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
793 				struct mm_struct *mm, unsigned long vaddr)
794 {
795 	int ret = 0;
796 
797 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
798 		return ret;
799 
800 	/* TODO: move this into _register, until then we abuse this sem. */
801 	down_write(&uprobe->consumer_rwsem);
802 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
803 		goto out;
804 
805 	ret = copy_insn(uprobe, file);
806 	if (ret)
807 		goto out;
808 
809 	ret = -ENOTSUPP;
810 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
811 		goto out;
812 
813 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
814 	if (ret)
815 		goto out;
816 
817 	/* uprobe_write_opcode() assumes we don't cross page boundary */
818 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
819 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
820 
821 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
822 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
823 
824  out:
825 	up_write(&uprobe->consumer_rwsem);
826 
827 	return ret;
828 }
829 
830 static inline bool consumer_filter(struct uprobe_consumer *uc,
831 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
832 {
833 	return !uc->filter || uc->filter(uc, ctx, mm);
834 }
835 
836 static bool filter_chain(struct uprobe *uprobe,
837 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
838 {
839 	struct uprobe_consumer *uc;
840 	bool ret = false;
841 
842 	down_read(&uprobe->consumer_rwsem);
843 	for (uc = uprobe->consumers; uc; uc = uc->next) {
844 		ret = consumer_filter(uc, ctx, mm);
845 		if (ret)
846 			break;
847 	}
848 	up_read(&uprobe->consumer_rwsem);
849 
850 	return ret;
851 }
852 
853 static int
854 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
855 			struct vm_area_struct *vma, unsigned long vaddr)
856 {
857 	bool first_uprobe;
858 	int ret;
859 
860 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
861 	if (ret)
862 		return ret;
863 
864 	/*
865 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
866 	 * the task can hit this breakpoint right after __replace_page().
867 	 */
868 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
869 	if (first_uprobe)
870 		set_bit(MMF_HAS_UPROBES, &mm->flags);
871 
872 	ret = set_swbp(&uprobe->arch, mm, vaddr);
873 	if (!ret)
874 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
875 	else if (first_uprobe)
876 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
877 
878 	return ret;
879 }
880 
881 static int
882 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
883 {
884 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
885 	return set_orig_insn(&uprobe->arch, mm, vaddr);
886 }
887 
888 static inline bool uprobe_is_active(struct uprobe *uprobe)
889 {
890 	return !RB_EMPTY_NODE(&uprobe->rb_node);
891 }
892 /*
893  * There could be threads that have already hit the breakpoint. They
894  * will recheck the current insn and restart if find_uprobe() fails.
895  * See find_active_uprobe().
896  */
897 static void delete_uprobe(struct uprobe *uprobe)
898 {
899 	if (WARN_ON(!uprobe_is_active(uprobe)))
900 		return;
901 
902 	spin_lock(&uprobes_treelock);
903 	rb_erase(&uprobe->rb_node, &uprobes_tree);
904 	spin_unlock(&uprobes_treelock);
905 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
906 	put_uprobe(uprobe);
907 }
908 
909 struct map_info {
910 	struct map_info *next;
911 	struct mm_struct *mm;
912 	unsigned long vaddr;
913 };
914 
915 static inline struct map_info *free_map_info(struct map_info *info)
916 {
917 	struct map_info *next = info->next;
918 	kfree(info);
919 	return next;
920 }
921 
922 static struct map_info *
923 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
924 {
925 	unsigned long pgoff = offset >> PAGE_SHIFT;
926 	struct vm_area_struct *vma;
927 	struct map_info *curr = NULL;
928 	struct map_info *prev = NULL;
929 	struct map_info *info;
930 	int more = 0;
931 
932  again:
933 	i_mmap_lock_read(mapping);
934 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
935 		if (!valid_vma(vma, is_register))
936 			continue;
937 
938 		if (!prev && !more) {
939 			/*
940 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
941 			 * reclaim. This is optimistic, no harm done if it fails.
942 			 */
943 			prev = kmalloc(sizeof(struct map_info),
944 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
945 			if (prev)
946 				prev->next = NULL;
947 		}
948 		if (!prev) {
949 			more++;
950 			continue;
951 		}
952 
953 		if (!mmget_not_zero(vma->vm_mm))
954 			continue;
955 
956 		info = prev;
957 		prev = prev->next;
958 		info->next = curr;
959 		curr = info;
960 
961 		info->mm = vma->vm_mm;
962 		info->vaddr = offset_to_vaddr(vma, offset);
963 	}
964 	i_mmap_unlock_read(mapping);
965 
966 	if (!more)
967 		goto out;
968 
969 	prev = curr;
970 	while (curr) {
971 		mmput(curr->mm);
972 		curr = curr->next;
973 	}
974 
975 	do {
976 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
977 		if (!info) {
978 			curr = ERR_PTR(-ENOMEM);
979 			goto out;
980 		}
981 		info->next = prev;
982 		prev = info;
983 	} while (--more);
984 
985 	goto again;
986  out:
987 	while (prev)
988 		prev = free_map_info(prev);
989 	return curr;
990 }
991 
992 static int
993 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
994 {
995 	bool is_register = !!new;
996 	struct map_info *info;
997 	int err = 0;
998 
999 	percpu_down_write(&dup_mmap_sem);
1000 	info = build_map_info(uprobe->inode->i_mapping,
1001 					uprobe->offset, is_register);
1002 	if (IS_ERR(info)) {
1003 		err = PTR_ERR(info);
1004 		goto out;
1005 	}
1006 
1007 	while (info) {
1008 		struct mm_struct *mm = info->mm;
1009 		struct vm_area_struct *vma;
1010 
1011 		if (err && is_register)
1012 			goto free;
1013 
1014 		down_write(&mm->mmap_sem);
1015 		vma = find_vma(mm, info->vaddr);
1016 		if (!vma || !valid_vma(vma, is_register) ||
1017 		    file_inode(vma->vm_file) != uprobe->inode)
1018 			goto unlock;
1019 
1020 		if (vma->vm_start > info->vaddr ||
1021 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1022 			goto unlock;
1023 
1024 		if (is_register) {
1025 			/* consult only the "caller", new consumer. */
1026 			if (consumer_filter(new,
1027 					UPROBE_FILTER_REGISTER, mm))
1028 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1029 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1030 			if (!filter_chain(uprobe,
1031 					UPROBE_FILTER_UNREGISTER, mm))
1032 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1033 		}
1034 
1035  unlock:
1036 		up_write(&mm->mmap_sem);
1037  free:
1038 		mmput(mm);
1039 		info = free_map_info(info);
1040 	}
1041  out:
1042 	percpu_up_write(&dup_mmap_sem);
1043 	return err;
1044 }
1045 
1046 static void
1047 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1048 {
1049 	int err;
1050 
1051 	if (WARN_ON(!consumer_del(uprobe, uc)))
1052 		return;
1053 
1054 	err = register_for_each_vma(uprobe, NULL);
1055 	/* TODO : cant unregister? schedule a worker thread */
1056 	if (!uprobe->consumers && !err)
1057 		delete_uprobe(uprobe);
1058 }
1059 
1060 /*
1061  * uprobe_unregister - unregister an already registered probe.
1062  * @inode: the file in which the probe has to be removed.
1063  * @offset: offset from the start of the file.
1064  * @uc: identify which probe if multiple probes are colocated.
1065  */
1066 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1067 {
1068 	struct uprobe *uprobe;
1069 
1070 	uprobe = find_uprobe(inode, offset);
1071 	if (WARN_ON(!uprobe))
1072 		return;
1073 
1074 	down_write(&uprobe->register_rwsem);
1075 	__uprobe_unregister(uprobe, uc);
1076 	up_write(&uprobe->register_rwsem);
1077 	put_uprobe(uprobe);
1078 }
1079 EXPORT_SYMBOL_GPL(uprobe_unregister);
1080 
1081 /*
1082  * __uprobe_register - register a probe
1083  * @inode: the file in which the probe has to be placed.
1084  * @offset: offset from the start of the file.
1085  * @uc: information on howto handle the probe..
1086  *
1087  * Apart from the access refcount, __uprobe_register() takes a creation
1088  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1089  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1090  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1091  * @uprobe even before the register operation is complete. Creation
1092  * refcount is released when the last @uc for the @uprobe
1093  * unregisters. Caller of __uprobe_register() is required to keep @inode
1094  * (and the containing mount) referenced.
1095  *
1096  * Return errno if it cannot successully install probes
1097  * else return 0 (success)
1098  */
1099 static int __uprobe_register(struct inode *inode, loff_t offset,
1100 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1101 {
1102 	struct uprobe *uprobe;
1103 	int ret;
1104 
1105 	/* Uprobe must have at least one set consumer */
1106 	if (!uc->handler && !uc->ret_handler)
1107 		return -EINVAL;
1108 
1109 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1110 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1111 		return -EIO;
1112 	/* Racy, just to catch the obvious mistakes */
1113 	if (offset > i_size_read(inode))
1114 		return -EINVAL;
1115 
1116  retry:
1117 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1118 	if (!uprobe)
1119 		return -ENOMEM;
1120 	if (IS_ERR(uprobe))
1121 		return PTR_ERR(uprobe);
1122 
1123 	/*
1124 	 * We can race with uprobe_unregister()->delete_uprobe().
1125 	 * Check uprobe_is_active() and retry if it is false.
1126 	 */
1127 	down_write(&uprobe->register_rwsem);
1128 	ret = -EAGAIN;
1129 	if (likely(uprobe_is_active(uprobe))) {
1130 		consumer_add(uprobe, uc);
1131 		ret = register_for_each_vma(uprobe, uc);
1132 		if (ret)
1133 			__uprobe_unregister(uprobe, uc);
1134 	}
1135 	up_write(&uprobe->register_rwsem);
1136 	put_uprobe(uprobe);
1137 
1138 	if (unlikely(ret == -EAGAIN))
1139 		goto retry;
1140 	return ret;
1141 }
1142 
1143 int uprobe_register(struct inode *inode, loff_t offset,
1144 		    struct uprobe_consumer *uc)
1145 {
1146 	return __uprobe_register(inode, offset, 0, uc);
1147 }
1148 EXPORT_SYMBOL_GPL(uprobe_register);
1149 
1150 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1151 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1152 {
1153 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1154 }
1155 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1156 
1157 /*
1158  * uprobe_apply - unregister an already registered probe.
1159  * @inode: the file in which the probe has to be removed.
1160  * @offset: offset from the start of the file.
1161  * @uc: consumer which wants to add more or remove some breakpoints
1162  * @add: add or remove the breakpoints
1163  */
1164 int uprobe_apply(struct inode *inode, loff_t offset,
1165 			struct uprobe_consumer *uc, bool add)
1166 {
1167 	struct uprobe *uprobe;
1168 	struct uprobe_consumer *con;
1169 	int ret = -ENOENT;
1170 
1171 	uprobe = find_uprobe(inode, offset);
1172 	if (WARN_ON(!uprobe))
1173 		return ret;
1174 
1175 	down_write(&uprobe->register_rwsem);
1176 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1177 		;
1178 	if (con)
1179 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1180 	up_write(&uprobe->register_rwsem);
1181 	put_uprobe(uprobe);
1182 
1183 	return ret;
1184 }
1185 
1186 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1187 {
1188 	struct vm_area_struct *vma;
1189 	int err = 0;
1190 
1191 	down_read(&mm->mmap_sem);
1192 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1193 		unsigned long vaddr;
1194 		loff_t offset;
1195 
1196 		if (!valid_vma(vma, false) ||
1197 		    file_inode(vma->vm_file) != uprobe->inode)
1198 			continue;
1199 
1200 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1201 		if (uprobe->offset <  offset ||
1202 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1203 			continue;
1204 
1205 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1206 		err |= remove_breakpoint(uprobe, mm, vaddr);
1207 	}
1208 	up_read(&mm->mmap_sem);
1209 
1210 	return err;
1211 }
1212 
1213 static struct rb_node *
1214 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1215 {
1216 	struct rb_node *n = uprobes_tree.rb_node;
1217 
1218 	while (n) {
1219 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1220 
1221 		if (inode < u->inode) {
1222 			n = n->rb_left;
1223 		} else if (inode > u->inode) {
1224 			n = n->rb_right;
1225 		} else {
1226 			if (max < u->offset)
1227 				n = n->rb_left;
1228 			else if (min > u->offset)
1229 				n = n->rb_right;
1230 			else
1231 				break;
1232 		}
1233 	}
1234 
1235 	return n;
1236 }
1237 
1238 /*
1239  * For a given range in vma, build a list of probes that need to be inserted.
1240  */
1241 static void build_probe_list(struct inode *inode,
1242 				struct vm_area_struct *vma,
1243 				unsigned long start, unsigned long end,
1244 				struct list_head *head)
1245 {
1246 	loff_t min, max;
1247 	struct rb_node *n, *t;
1248 	struct uprobe *u;
1249 
1250 	INIT_LIST_HEAD(head);
1251 	min = vaddr_to_offset(vma, start);
1252 	max = min + (end - start) - 1;
1253 
1254 	spin_lock(&uprobes_treelock);
1255 	n = find_node_in_range(inode, min, max);
1256 	if (n) {
1257 		for (t = n; t; t = rb_prev(t)) {
1258 			u = rb_entry(t, struct uprobe, rb_node);
1259 			if (u->inode != inode || u->offset < min)
1260 				break;
1261 			list_add(&u->pending_list, head);
1262 			get_uprobe(u);
1263 		}
1264 		for (t = n; (t = rb_next(t)); ) {
1265 			u = rb_entry(t, struct uprobe, rb_node);
1266 			if (u->inode != inode || u->offset > max)
1267 				break;
1268 			list_add(&u->pending_list, head);
1269 			get_uprobe(u);
1270 		}
1271 	}
1272 	spin_unlock(&uprobes_treelock);
1273 }
1274 
1275 /* @vma contains reference counter, not the probed instruction. */
1276 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1277 {
1278 	struct list_head *pos, *q;
1279 	struct delayed_uprobe *du;
1280 	unsigned long vaddr;
1281 	int ret = 0, err = 0;
1282 
1283 	mutex_lock(&delayed_uprobe_lock);
1284 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1285 		du = list_entry(pos, struct delayed_uprobe, list);
1286 
1287 		if (du->mm != vma->vm_mm ||
1288 		    !valid_ref_ctr_vma(du->uprobe, vma))
1289 			continue;
1290 
1291 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1292 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1293 		if (ret) {
1294 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1295 			if (!err)
1296 				err = ret;
1297 		}
1298 		delayed_uprobe_delete(du);
1299 	}
1300 	mutex_unlock(&delayed_uprobe_lock);
1301 	return err;
1302 }
1303 
1304 /*
1305  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1306  *
1307  * Currently we ignore all errors and always return 0, the callers
1308  * can't handle the failure anyway.
1309  */
1310 int uprobe_mmap(struct vm_area_struct *vma)
1311 {
1312 	struct list_head tmp_list;
1313 	struct uprobe *uprobe, *u;
1314 	struct inode *inode;
1315 
1316 	if (no_uprobe_events())
1317 		return 0;
1318 
1319 	if (vma->vm_file &&
1320 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1321 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1322 		delayed_ref_ctr_inc(vma);
1323 
1324 	if (!valid_vma(vma, true))
1325 		return 0;
1326 
1327 	inode = file_inode(vma->vm_file);
1328 	if (!inode)
1329 		return 0;
1330 
1331 	mutex_lock(uprobes_mmap_hash(inode));
1332 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1333 	/*
1334 	 * We can race with uprobe_unregister(), this uprobe can be already
1335 	 * removed. But in this case filter_chain() must return false, all
1336 	 * consumers have gone away.
1337 	 */
1338 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1339 		if (!fatal_signal_pending(current) &&
1340 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1341 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1342 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1343 		}
1344 		put_uprobe(uprobe);
1345 	}
1346 	mutex_unlock(uprobes_mmap_hash(inode));
1347 
1348 	return 0;
1349 }
1350 
1351 static bool
1352 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1353 {
1354 	loff_t min, max;
1355 	struct inode *inode;
1356 	struct rb_node *n;
1357 
1358 	inode = file_inode(vma->vm_file);
1359 
1360 	min = vaddr_to_offset(vma, start);
1361 	max = min + (end - start) - 1;
1362 
1363 	spin_lock(&uprobes_treelock);
1364 	n = find_node_in_range(inode, min, max);
1365 	spin_unlock(&uprobes_treelock);
1366 
1367 	return !!n;
1368 }
1369 
1370 /*
1371  * Called in context of a munmap of a vma.
1372  */
1373 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1374 {
1375 	if (no_uprobe_events() || !valid_vma(vma, false))
1376 		return;
1377 
1378 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1379 		return;
1380 
1381 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1382 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1383 		return;
1384 
1385 	if (vma_has_uprobes(vma, start, end))
1386 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1387 }
1388 
1389 /* Slot allocation for XOL */
1390 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1391 {
1392 	struct vm_area_struct *vma;
1393 	int ret;
1394 
1395 	if (down_write_killable(&mm->mmap_sem))
1396 		return -EINTR;
1397 
1398 	if (mm->uprobes_state.xol_area) {
1399 		ret = -EALREADY;
1400 		goto fail;
1401 	}
1402 
1403 	if (!area->vaddr) {
1404 		/* Try to map as high as possible, this is only a hint. */
1405 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1406 						PAGE_SIZE, 0, 0);
1407 		if (area->vaddr & ~PAGE_MASK) {
1408 			ret = area->vaddr;
1409 			goto fail;
1410 		}
1411 	}
1412 
1413 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1414 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1415 				&area->xol_mapping);
1416 	if (IS_ERR(vma)) {
1417 		ret = PTR_ERR(vma);
1418 		goto fail;
1419 	}
1420 
1421 	ret = 0;
1422 	/* pairs with get_xol_area() */
1423 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1424  fail:
1425 	up_write(&mm->mmap_sem);
1426 
1427 	return ret;
1428 }
1429 
1430 static struct xol_area *__create_xol_area(unsigned long vaddr)
1431 {
1432 	struct mm_struct *mm = current->mm;
1433 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1434 	struct xol_area *area;
1435 
1436 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1437 	if (unlikely(!area))
1438 		goto out;
1439 
1440 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1441 			       GFP_KERNEL);
1442 	if (!area->bitmap)
1443 		goto free_area;
1444 
1445 	area->xol_mapping.name = "[uprobes]";
1446 	area->xol_mapping.fault = NULL;
1447 	area->xol_mapping.pages = area->pages;
1448 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1449 	if (!area->pages[0])
1450 		goto free_bitmap;
1451 	area->pages[1] = NULL;
1452 
1453 	area->vaddr = vaddr;
1454 	init_waitqueue_head(&area->wq);
1455 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1456 	set_bit(0, area->bitmap);
1457 	atomic_set(&area->slot_count, 1);
1458 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1459 
1460 	if (!xol_add_vma(mm, area))
1461 		return area;
1462 
1463 	__free_page(area->pages[0]);
1464  free_bitmap:
1465 	kfree(area->bitmap);
1466  free_area:
1467 	kfree(area);
1468  out:
1469 	return NULL;
1470 }
1471 
1472 /*
1473  * get_xol_area - Allocate process's xol_area if necessary.
1474  * This area will be used for storing instructions for execution out of line.
1475  *
1476  * Returns the allocated area or NULL.
1477  */
1478 static struct xol_area *get_xol_area(void)
1479 {
1480 	struct mm_struct *mm = current->mm;
1481 	struct xol_area *area;
1482 
1483 	if (!mm->uprobes_state.xol_area)
1484 		__create_xol_area(0);
1485 
1486 	/* Pairs with xol_add_vma() smp_store_release() */
1487 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1488 	return area;
1489 }
1490 
1491 /*
1492  * uprobe_clear_state - Free the area allocated for slots.
1493  */
1494 void uprobe_clear_state(struct mm_struct *mm)
1495 {
1496 	struct xol_area *area = mm->uprobes_state.xol_area;
1497 
1498 	mutex_lock(&delayed_uprobe_lock);
1499 	delayed_uprobe_remove(NULL, mm);
1500 	mutex_unlock(&delayed_uprobe_lock);
1501 
1502 	if (!area)
1503 		return;
1504 
1505 	put_page(area->pages[0]);
1506 	kfree(area->bitmap);
1507 	kfree(area);
1508 }
1509 
1510 void uprobe_start_dup_mmap(void)
1511 {
1512 	percpu_down_read(&dup_mmap_sem);
1513 }
1514 
1515 void uprobe_end_dup_mmap(void)
1516 {
1517 	percpu_up_read(&dup_mmap_sem);
1518 }
1519 
1520 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1521 {
1522 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1523 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1524 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1525 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1526 	}
1527 }
1528 
1529 /*
1530  *  - search for a free slot.
1531  */
1532 static unsigned long xol_take_insn_slot(struct xol_area *area)
1533 {
1534 	unsigned long slot_addr;
1535 	int slot_nr;
1536 
1537 	do {
1538 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1539 		if (slot_nr < UINSNS_PER_PAGE) {
1540 			if (!test_and_set_bit(slot_nr, area->bitmap))
1541 				break;
1542 
1543 			slot_nr = UINSNS_PER_PAGE;
1544 			continue;
1545 		}
1546 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1547 	} while (slot_nr >= UINSNS_PER_PAGE);
1548 
1549 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1550 	atomic_inc(&area->slot_count);
1551 
1552 	return slot_addr;
1553 }
1554 
1555 /*
1556  * xol_get_insn_slot - allocate a slot for xol.
1557  * Returns the allocated slot address or 0.
1558  */
1559 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1560 {
1561 	struct xol_area *area;
1562 	unsigned long xol_vaddr;
1563 
1564 	area = get_xol_area();
1565 	if (!area)
1566 		return 0;
1567 
1568 	xol_vaddr = xol_take_insn_slot(area);
1569 	if (unlikely(!xol_vaddr))
1570 		return 0;
1571 
1572 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1573 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1574 
1575 	return xol_vaddr;
1576 }
1577 
1578 /*
1579  * xol_free_insn_slot - If slot was earlier allocated by
1580  * @xol_get_insn_slot(), make the slot available for
1581  * subsequent requests.
1582  */
1583 static void xol_free_insn_slot(struct task_struct *tsk)
1584 {
1585 	struct xol_area *area;
1586 	unsigned long vma_end;
1587 	unsigned long slot_addr;
1588 
1589 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1590 		return;
1591 
1592 	slot_addr = tsk->utask->xol_vaddr;
1593 	if (unlikely(!slot_addr))
1594 		return;
1595 
1596 	area = tsk->mm->uprobes_state.xol_area;
1597 	vma_end = area->vaddr + PAGE_SIZE;
1598 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1599 		unsigned long offset;
1600 		int slot_nr;
1601 
1602 		offset = slot_addr - area->vaddr;
1603 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1604 		if (slot_nr >= UINSNS_PER_PAGE)
1605 			return;
1606 
1607 		clear_bit(slot_nr, area->bitmap);
1608 		atomic_dec(&area->slot_count);
1609 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1610 		if (waitqueue_active(&area->wq))
1611 			wake_up(&area->wq);
1612 
1613 		tsk->utask->xol_vaddr = 0;
1614 	}
1615 }
1616 
1617 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1618 				  void *src, unsigned long len)
1619 {
1620 	/* Initialize the slot */
1621 	copy_to_page(page, vaddr, src, len);
1622 
1623 	/*
1624 	 * We probably need flush_icache_user_range() but it needs vma.
1625 	 * This should work on most of architectures by default. If
1626 	 * architecture needs to do something different it can define
1627 	 * its own version of the function.
1628 	 */
1629 	flush_dcache_page(page);
1630 }
1631 
1632 /**
1633  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1634  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1635  * instruction.
1636  * Return the address of the breakpoint instruction.
1637  */
1638 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1639 {
1640 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1641 }
1642 
1643 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1644 {
1645 	struct uprobe_task *utask = current->utask;
1646 
1647 	if (unlikely(utask && utask->active_uprobe))
1648 		return utask->vaddr;
1649 
1650 	return instruction_pointer(regs);
1651 }
1652 
1653 static struct return_instance *free_ret_instance(struct return_instance *ri)
1654 {
1655 	struct return_instance *next = ri->next;
1656 	put_uprobe(ri->uprobe);
1657 	kfree(ri);
1658 	return next;
1659 }
1660 
1661 /*
1662  * Called with no locks held.
1663  * Called in context of an exiting or an exec-ing thread.
1664  */
1665 void uprobe_free_utask(struct task_struct *t)
1666 {
1667 	struct uprobe_task *utask = t->utask;
1668 	struct return_instance *ri;
1669 
1670 	if (!utask)
1671 		return;
1672 
1673 	if (utask->active_uprobe)
1674 		put_uprobe(utask->active_uprobe);
1675 
1676 	ri = utask->return_instances;
1677 	while (ri)
1678 		ri = free_ret_instance(ri);
1679 
1680 	xol_free_insn_slot(t);
1681 	kfree(utask);
1682 	t->utask = NULL;
1683 }
1684 
1685 /*
1686  * Allocate a uprobe_task object for the task if if necessary.
1687  * Called when the thread hits a breakpoint.
1688  *
1689  * Returns:
1690  * - pointer to new uprobe_task on success
1691  * - NULL otherwise
1692  */
1693 static struct uprobe_task *get_utask(void)
1694 {
1695 	if (!current->utask)
1696 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1697 	return current->utask;
1698 }
1699 
1700 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1701 {
1702 	struct uprobe_task *n_utask;
1703 	struct return_instance **p, *o, *n;
1704 
1705 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1706 	if (!n_utask)
1707 		return -ENOMEM;
1708 	t->utask = n_utask;
1709 
1710 	p = &n_utask->return_instances;
1711 	for (o = o_utask->return_instances; o; o = o->next) {
1712 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1713 		if (!n)
1714 			return -ENOMEM;
1715 
1716 		*n = *o;
1717 		get_uprobe(n->uprobe);
1718 		n->next = NULL;
1719 
1720 		*p = n;
1721 		p = &n->next;
1722 		n_utask->depth++;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static void uprobe_warn(struct task_struct *t, const char *msg)
1729 {
1730 	pr_warn("uprobe: %s:%d failed to %s\n",
1731 			current->comm, current->pid, msg);
1732 }
1733 
1734 static void dup_xol_work(struct callback_head *work)
1735 {
1736 	if (current->flags & PF_EXITING)
1737 		return;
1738 
1739 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1740 			!fatal_signal_pending(current))
1741 		uprobe_warn(current, "dup xol area");
1742 }
1743 
1744 /*
1745  * Called in context of a new clone/fork from copy_process.
1746  */
1747 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1748 {
1749 	struct uprobe_task *utask = current->utask;
1750 	struct mm_struct *mm = current->mm;
1751 	struct xol_area *area;
1752 
1753 	t->utask = NULL;
1754 
1755 	if (!utask || !utask->return_instances)
1756 		return;
1757 
1758 	if (mm == t->mm && !(flags & CLONE_VFORK))
1759 		return;
1760 
1761 	if (dup_utask(t, utask))
1762 		return uprobe_warn(t, "dup ret instances");
1763 
1764 	/* The task can fork() after dup_xol_work() fails */
1765 	area = mm->uprobes_state.xol_area;
1766 	if (!area)
1767 		return uprobe_warn(t, "dup xol area");
1768 
1769 	if (mm == t->mm)
1770 		return;
1771 
1772 	t->utask->dup_xol_addr = area->vaddr;
1773 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1774 	task_work_add(t, &t->utask->dup_xol_work, true);
1775 }
1776 
1777 /*
1778  * Current area->vaddr notion assume the trampoline address is always
1779  * equal area->vaddr.
1780  *
1781  * Returns -1 in case the xol_area is not allocated.
1782  */
1783 static unsigned long get_trampoline_vaddr(void)
1784 {
1785 	struct xol_area *area;
1786 	unsigned long trampoline_vaddr = -1;
1787 
1788 	/* Pairs with xol_add_vma() smp_store_release() */
1789 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1790 	if (area)
1791 		trampoline_vaddr = area->vaddr;
1792 
1793 	return trampoline_vaddr;
1794 }
1795 
1796 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1797 					struct pt_regs *regs)
1798 {
1799 	struct return_instance *ri = utask->return_instances;
1800 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1801 
1802 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1803 		ri = free_ret_instance(ri);
1804 		utask->depth--;
1805 	}
1806 	utask->return_instances = ri;
1807 }
1808 
1809 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1810 {
1811 	struct return_instance *ri;
1812 	struct uprobe_task *utask;
1813 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1814 	bool chained;
1815 
1816 	if (!get_xol_area())
1817 		return;
1818 
1819 	utask = get_utask();
1820 	if (!utask)
1821 		return;
1822 
1823 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1824 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1825 				" nestedness limit pid/tgid=%d/%d\n",
1826 				current->pid, current->tgid);
1827 		return;
1828 	}
1829 
1830 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1831 	if (!ri)
1832 		return;
1833 
1834 	trampoline_vaddr = get_trampoline_vaddr();
1835 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1836 	if (orig_ret_vaddr == -1)
1837 		goto fail;
1838 
1839 	/* drop the entries invalidated by longjmp() */
1840 	chained = (orig_ret_vaddr == trampoline_vaddr);
1841 	cleanup_return_instances(utask, chained, regs);
1842 
1843 	/*
1844 	 * We don't want to keep trampoline address in stack, rather keep the
1845 	 * original return address of first caller thru all the consequent
1846 	 * instances. This also makes breakpoint unwrapping easier.
1847 	 */
1848 	if (chained) {
1849 		if (!utask->return_instances) {
1850 			/*
1851 			 * This situation is not possible. Likely we have an
1852 			 * attack from user-space.
1853 			 */
1854 			uprobe_warn(current, "handle tail call");
1855 			goto fail;
1856 		}
1857 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1858 	}
1859 
1860 	ri->uprobe = get_uprobe(uprobe);
1861 	ri->func = instruction_pointer(regs);
1862 	ri->stack = user_stack_pointer(regs);
1863 	ri->orig_ret_vaddr = orig_ret_vaddr;
1864 	ri->chained = chained;
1865 
1866 	utask->depth++;
1867 	ri->next = utask->return_instances;
1868 	utask->return_instances = ri;
1869 
1870 	return;
1871  fail:
1872 	kfree(ri);
1873 }
1874 
1875 /* Prepare to single-step probed instruction out of line. */
1876 static int
1877 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1878 {
1879 	struct uprobe_task *utask;
1880 	unsigned long xol_vaddr;
1881 	int err;
1882 
1883 	utask = get_utask();
1884 	if (!utask)
1885 		return -ENOMEM;
1886 
1887 	xol_vaddr = xol_get_insn_slot(uprobe);
1888 	if (!xol_vaddr)
1889 		return -ENOMEM;
1890 
1891 	utask->xol_vaddr = xol_vaddr;
1892 	utask->vaddr = bp_vaddr;
1893 
1894 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1895 	if (unlikely(err)) {
1896 		xol_free_insn_slot(current);
1897 		return err;
1898 	}
1899 
1900 	utask->active_uprobe = uprobe;
1901 	utask->state = UTASK_SSTEP;
1902 	return 0;
1903 }
1904 
1905 /*
1906  * If we are singlestepping, then ensure this thread is not connected to
1907  * non-fatal signals until completion of singlestep.  When xol insn itself
1908  * triggers the signal,  restart the original insn even if the task is
1909  * already SIGKILL'ed (since coredump should report the correct ip).  This
1910  * is even more important if the task has a handler for SIGSEGV/etc, The
1911  * _same_ instruction should be repeated again after return from the signal
1912  * handler, and SSTEP can never finish in this case.
1913  */
1914 bool uprobe_deny_signal(void)
1915 {
1916 	struct task_struct *t = current;
1917 	struct uprobe_task *utask = t->utask;
1918 
1919 	if (likely(!utask || !utask->active_uprobe))
1920 		return false;
1921 
1922 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1923 
1924 	if (signal_pending(t)) {
1925 		spin_lock_irq(&t->sighand->siglock);
1926 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1927 		spin_unlock_irq(&t->sighand->siglock);
1928 
1929 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1930 			utask->state = UTASK_SSTEP_TRAPPED;
1931 			set_tsk_thread_flag(t, TIF_UPROBE);
1932 		}
1933 	}
1934 
1935 	return true;
1936 }
1937 
1938 static void mmf_recalc_uprobes(struct mm_struct *mm)
1939 {
1940 	struct vm_area_struct *vma;
1941 
1942 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1943 		if (!valid_vma(vma, false))
1944 			continue;
1945 		/*
1946 		 * This is not strictly accurate, we can race with
1947 		 * uprobe_unregister() and see the already removed
1948 		 * uprobe if delete_uprobe() was not yet called.
1949 		 * Or this uprobe can be filtered out.
1950 		 */
1951 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1952 			return;
1953 	}
1954 
1955 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1956 }
1957 
1958 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1959 {
1960 	struct page *page;
1961 	uprobe_opcode_t opcode;
1962 	int result;
1963 
1964 	pagefault_disable();
1965 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1966 	pagefault_enable();
1967 
1968 	if (likely(result == 0))
1969 		goto out;
1970 
1971 	/*
1972 	 * The NULL 'tsk' here ensures that any faults that occur here
1973 	 * will not be accounted to the task.  'mm' *is* current->mm,
1974 	 * but we treat this as a 'remote' access since it is
1975 	 * essentially a kernel access to the memory.
1976 	 */
1977 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1978 			NULL, NULL);
1979 	if (result < 0)
1980 		return result;
1981 
1982 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1983 	put_page(page);
1984  out:
1985 	/* This needs to return true for any variant of the trap insn */
1986 	return is_trap_insn(&opcode);
1987 }
1988 
1989 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1990 {
1991 	struct mm_struct *mm = current->mm;
1992 	struct uprobe *uprobe = NULL;
1993 	struct vm_area_struct *vma;
1994 
1995 	down_read(&mm->mmap_sem);
1996 	vma = find_vma(mm, bp_vaddr);
1997 	if (vma && vma->vm_start <= bp_vaddr) {
1998 		if (valid_vma(vma, false)) {
1999 			struct inode *inode = file_inode(vma->vm_file);
2000 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2001 
2002 			uprobe = find_uprobe(inode, offset);
2003 		}
2004 
2005 		if (!uprobe)
2006 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2007 	} else {
2008 		*is_swbp = -EFAULT;
2009 	}
2010 
2011 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2012 		mmf_recalc_uprobes(mm);
2013 	up_read(&mm->mmap_sem);
2014 
2015 	return uprobe;
2016 }
2017 
2018 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2019 {
2020 	struct uprobe_consumer *uc;
2021 	int remove = UPROBE_HANDLER_REMOVE;
2022 	bool need_prep = false; /* prepare return uprobe, when needed */
2023 
2024 	down_read(&uprobe->register_rwsem);
2025 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2026 		int rc = 0;
2027 
2028 		if (uc->handler) {
2029 			rc = uc->handler(uc, regs);
2030 			WARN(rc & ~UPROBE_HANDLER_MASK,
2031 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
2032 		}
2033 
2034 		if (uc->ret_handler)
2035 			need_prep = true;
2036 
2037 		remove &= rc;
2038 	}
2039 
2040 	if (need_prep && !remove)
2041 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2042 
2043 	if (remove && uprobe->consumers) {
2044 		WARN_ON(!uprobe_is_active(uprobe));
2045 		unapply_uprobe(uprobe, current->mm);
2046 	}
2047 	up_read(&uprobe->register_rwsem);
2048 }
2049 
2050 static void
2051 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2052 {
2053 	struct uprobe *uprobe = ri->uprobe;
2054 	struct uprobe_consumer *uc;
2055 
2056 	down_read(&uprobe->register_rwsem);
2057 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2058 		if (uc->ret_handler)
2059 			uc->ret_handler(uc, ri->func, regs);
2060 	}
2061 	up_read(&uprobe->register_rwsem);
2062 }
2063 
2064 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2065 {
2066 	bool chained;
2067 
2068 	do {
2069 		chained = ri->chained;
2070 		ri = ri->next;	/* can't be NULL if chained */
2071 	} while (chained);
2072 
2073 	return ri;
2074 }
2075 
2076 static void handle_trampoline(struct pt_regs *regs)
2077 {
2078 	struct uprobe_task *utask;
2079 	struct return_instance *ri, *next;
2080 	bool valid;
2081 
2082 	utask = current->utask;
2083 	if (!utask)
2084 		goto sigill;
2085 
2086 	ri = utask->return_instances;
2087 	if (!ri)
2088 		goto sigill;
2089 
2090 	do {
2091 		/*
2092 		 * We should throw out the frames invalidated by longjmp().
2093 		 * If this chain is valid, then the next one should be alive
2094 		 * or NULL; the latter case means that nobody but ri->func
2095 		 * could hit this trampoline on return. TODO: sigaltstack().
2096 		 */
2097 		next = find_next_ret_chain(ri);
2098 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2099 
2100 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2101 		do {
2102 			if (valid)
2103 				handle_uretprobe_chain(ri, regs);
2104 			ri = free_ret_instance(ri);
2105 			utask->depth--;
2106 		} while (ri != next);
2107 	} while (!valid);
2108 
2109 	utask->return_instances = ri;
2110 	return;
2111 
2112  sigill:
2113 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2114 	force_sig(SIGILL, current);
2115 
2116 }
2117 
2118 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2119 {
2120 	return false;
2121 }
2122 
2123 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2124 					struct pt_regs *regs)
2125 {
2126 	return true;
2127 }
2128 
2129 /*
2130  * Run handler and ask thread to singlestep.
2131  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2132  */
2133 static void handle_swbp(struct pt_regs *regs)
2134 {
2135 	struct uprobe *uprobe;
2136 	unsigned long bp_vaddr;
2137 	int uninitialized_var(is_swbp);
2138 
2139 	bp_vaddr = uprobe_get_swbp_addr(regs);
2140 	if (bp_vaddr == get_trampoline_vaddr())
2141 		return handle_trampoline(regs);
2142 
2143 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2144 	if (!uprobe) {
2145 		if (is_swbp > 0) {
2146 			/* No matching uprobe; signal SIGTRAP. */
2147 			send_sig(SIGTRAP, current, 0);
2148 		} else {
2149 			/*
2150 			 * Either we raced with uprobe_unregister() or we can't
2151 			 * access this memory. The latter is only possible if
2152 			 * another thread plays with our ->mm. In both cases
2153 			 * we can simply restart. If this vma was unmapped we
2154 			 * can pretend this insn was not executed yet and get
2155 			 * the (correct) SIGSEGV after restart.
2156 			 */
2157 			instruction_pointer_set(regs, bp_vaddr);
2158 		}
2159 		return;
2160 	}
2161 
2162 	/* change it in advance for ->handler() and restart */
2163 	instruction_pointer_set(regs, bp_vaddr);
2164 
2165 	/*
2166 	 * TODO: move copy_insn/etc into _register and remove this hack.
2167 	 * After we hit the bp, _unregister + _register can install the
2168 	 * new and not-yet-analyzed uprobe at the same address, restart.
2169 	 */
2170 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2171 		goto out;
2172 
2173 	/*
2174 	 * Pairs with the smp_wmb() in prepare_uprobe().
2175 	 *
2176 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2177 	 * we must also see the stores to &uprobe->arch performed by the
2178 	 * prepare_uprobe() call.
2179 	 */
2180 	smp_rmb();
2181 
2182 	/* Tracing handlers use ->utask to communicate with fetch methods */
2183 	if (!get_utask())
2184 		goto out;
2185 
2186 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2187 		goto out;
2188 
2189 	handler_chain(uprobe, regs);
2190 
2191 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2192 		goto out;
2193 
2194 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2195 		return;
2196 
2197 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2198 out:
2199 	put_uprobe(uprobe);
2200 }
2201 
2202 /*
2203  * Perform required fix-ups and disable singlestep.
2204  * Allow pending signals to take effect.
2205  */
2206 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2207 {
2208 	struct uprobe *uprobe;
2209 	int err = 0;
2210 
2211 	uprobe = utask->active_uprobe;
2212 	if (utask->state == UTASK_SSTEP_ACK)
2213 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2214 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2215 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2216 	else
2217 		WARN_ON_ONCE(1);
2218 
2219 	put_uprobe(uprobe);
2220 	utask->active_uprobe = NULL;
2221 	utask->state = UTASK_RUNNING;
2222 	xol_free_insn_slot(current);
2223 
2224 	spin_lock_irq(&current->sighand->siglock);
2225 	recalc_sigpending(); /* see uprobe_deny_signal() */
2226 	spin_unlock_irq(&current->sighand->siglock);
2227 
2228 	if (unlikely(err)) {
2229 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2230 		force_sig(SIGILL, current);
2231 	}
2232 }
2233 
2234 /*
2235  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2236  * allows the thread to return from interrupt. After that handle_swbp()
2237  * sets utask->active_uprobe.
2238  *
2239  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2240  * and allows the thread to return from interrupt.
2241  *
2242  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2243  * uprobe_notify_resume().
2244  */
2245 void uprobe_notify_resume(struct pt_regs *regs)
2246 {
2247 	struct uprobe_task *utask;
2248 
2249 	clear_thread_flag(TIF_UPROBE);
2250 
2251 	utask = current->utask;
2252 	if (utask && utask->active_uprobe)
2253 		handle_singlestep(utask, regs);
2254 	else
2255 		handle_swbp(regs);
2256 }
2257 
2258 /*
2259  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2260  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2261  */
2262 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2263 {
2264 	if (!current->mm)
2265 		return 0;
2266 
2267 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2268 	    (!current->utask || !current->utask->return_instances))
2269 		return 0;
2270 
2271 	set_thread_flag(TIF_UPROBE);
2272 	return 1;
2273 }
2274 
2275 /*
2276  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2277  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2278  */
2279 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2280 {
2281 	struct uprobe_task *utask = current->utask;
2282 
2283 	if (!current->mm || !utask || !utask->active_uprobe)
2284 		/* task is currently not uprobed */
2285 		return 0;
2286 
2287 	utask->state = UTASK_SSTEP_ACK;
2288 	set_thread_flag(TIF_UPROBE);
2289 	return 1;
2290 }
2291 
2292 static struct notifier_block uprobe_exception_nb = {
2293 	.notifier_call		= arch_uprobe_exception_notify,
2294 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2295 };
2296 
2297 static int __init init_uprobes(void)
2298 {
2299 	int i;
2300 
2301 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2302 		mutex_init(&uprobes_mmap_mutex[i]);
2303 
2304 	if (percpu_init_rwsem(&dup_mmap_sem))
2305 		return -ENOMEM;
2306 
2307 	return register_die_notifier(&uprobe_exception_nb);
2308 }
2309 __initcall(init_uprobes);
2310