1 /* 2 * User-space Probes (UProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2008-2012 19 * Authors: 20 * Srikar Dronamraju 21 * Jim Keniston 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/highmem.h> 27 #include <linux/pagemap.h> /* read_mapping_page */ 28 #include <linux/slab.h> 29 #include <linux/sched.h> 30 #include <linux/rmap.h> /* anon_vma_prepare */ 31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 32 #include <linux/swap.h> /* try_to_free_swap */ 33 #include <linux/ptrace.h> /* user_enable_single_step */ 34 #include <linux/kdebug.h> /* notifier mechanism */ 35 #include "../../mm/internal.h" /* munlock_vma_page */ 36 37 #include <linux/uprobes.h> 38 39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 41 42 static struct rb_root uprobes_tree = RB_ROOT; 43 44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 45 46 #define UPROBES_HASH_SZ 13 47 48 /* 49 * We need separate register/unregister and mmap/munmap lock hashes because 50 * of mmap_sem nesting. 51 * 52 * uprobe_register() needs to install probes on (potentially) all processes 53 * and thus needs to acquire multiple mmap_sems (consequtively, not 54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem 55 * for the particular process doing the mmap. 56 * 57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem 58 * because of lock order against i_mmap_mutex. This means there's a hole in 59 * the register vma iteration where a mmap() can happen. 60 * 61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and 62 * install a probe where one is already installed. 63 */ 64 65 /* serialize (un)register */ 66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; 67 68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 69 70 /* serialize uprobe->pending_list */ 71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 73 74 /* 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe 76 * events active at this time. Probably a fine grained per inode count is 77 * better? 78 */ 79 static atomic_t uprobe_events = ATOMIC_INIT(0); 80 81 struct uprobe { 82 struct rb_node rb_node; /* node in the rb tree */ 83 atomic_t ref; 84 struct rw_semaphore consumer_rwsem; 85 struct list_head pending_list; 86 struct uprobe_consumer *consumers; 87 struct inode *inode; /* Also hold a ref to inode */ 88 loff_t offset; 89 int flags; 90 struct arch_uprobe arch; 91 }; 92 93 /* 94 * valid_vma: Verify if the specified vma is an executable vma 95 * Relax restrictions while unregistering: vm_flags might have 96 * changed after breakpoint was inserted. 97 * - is_register: indicates if we are in register context. 98 * - Return 1 if the specified virtual address is in an 99 * executable vma. 100 */ 101 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 102 { 103 if (!vma->vm_file) 104 return false; 105 106 if (!is_register) 107 return true; 108 109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) 110 == (VM_READ|VM_EXEC)) 111 return true; 112 113 return false; 114 } 115 116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 117 { 118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 119 } 120 121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 122 { 123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 124 } 125 126 /** 127 * __replace_page - replace page in vma by new page. 128 * based on replace_page in mm/ksm.c 129 * 130 * @vma: vma that holds the pte pointing to page 131 * @addr: address the old @page is mapped at 132 * @page: the cowed page we are replacing by kpage 133 * @kpage: the modified page we replace page by 134 * 135 * Returns 0 on success, -EFAULT on failure. 136 */ 137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 138 struct page *page, struct page *kpage) 139 { 140 struct mm_struct *mm = vma->vm_mm; 141 spinlock_t *ptl; 142 pte_t *ptep; 143 int err; 144 /* For mmu_notifiers */ 145 const unsigned long mmun_start = addr; 146 const unsigned long mmun_end = addr + PAGE_SIZE; 147 148 /* For try_to_free_swap() and munlock_vma_page() below */ 149 lock_page(page); 150 151 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 152 err = -EAGAIN; 153 ptep = page_check_address(page, mm, addr, &ptl, 0); 154 if (!ptep) 155 goto unlock; 156 157 get_page(kpage); 158 page_add_new_anon_rmap(kpage, vma, addr); 159 160 if (!PageAnon(page)) { 161 dec_mm_counter(mm, MM_FILEPAGES); 162 inc_mm_counter(mm, MM_ANONPAGES); 163 } 164 165 flush_cache_page(vma, addr, pte_pfn(*ptep)); 166 ptep_clear_flush(vma, addr, ptep); 167 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 168 169 page_remove_rmap(page); 170 if (!page_mapped(page)) 171 try_to_free_swap(page); 172 pte_unmap_unlock(ptep, ptl); 173 174 if (vma->vm_flags & VM_LOCKED) 175 munlock_vma_page(page); 176 put_page(page); 177 178 err = 0; 179 unlock: 180 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 181 unlock_page(page); 182 return err; 183 } 184 185 /** 186 * is_swbp_insn - check if instruction is breakpoint instruction. 187 * @insn: instruction to be checked. 188 * Default implementation of is_swbp_insn 189 * Returns true if @insn is a breakpoint instruction. 190 */ 191 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 192 { 193 return *insn == UPROBE_SWBP_INSN; 194 } 195 196 /* 197 * NOTE: 198 * Expect the breakpoint instruction to be the smallest size instruction for 199 * the architecture. If an arch has variable length instruction and the 200 * breakpoint instruction is not of the smallest length instruction 201 * supported by that architecture then we need to modify read_opcode / 202 * write_opcode accordingly. This would never be a problem for archs that 203 * have fixed length instructions. 204 */ 205 206 /* 207 * write_opcode - write the opcode at a given virtual address. 208 * @auprobe: arch breakpointing information. 209 * @mm: the probed process address space. 210 * @vaddr: the virtual address to store the opcode. 211 * @opcode: opcode to be written at @vaddr. 212 * 213 * Called with mm->mmap_sem held (for read and with a reference to 214 * mm). 215 * 216 * For mm @mm, write the opcode at @vaddr. 217 * Return 0 (success) or a negative errno. 218 */ 219 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 220 unsigned long vaddr, uprobe_opcode_t opcode) 221 { 222 struct page *old_page, *new_page; 223 void *vaddr_old, *vaddr_new; 224 struct vm_area_struct *vma; 225 int ret; 226 227 retry: 228 /* Read the page with vaddr into memory */ 229 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); 230 if (ret <= 0) 231 return ret; 232 233 ret = -ENOMEM; 234 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 235 if (!new_page) 236 goto put_old; 237 238 __SetPageUptodate(new_page); 239 240 /* copy the page now that we've got it stable */ 241 vaddr_old = kmap_atomic(old_page); 242 vaddr_new = kmap_atomic(new_page); 243 244 memcpy(vaddr_new, vaddr_old, PAGE_SIZE); 245 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE); 246 247 kunmap_atomic(vaddr_new); 248 kunmap_atomic(vaddr_old); 249 250 ret = anon_vma_prepare(vma); 251 if (ret) 252 goto put_new; 253 254 ret = __replace_page(vma, vaddr, old_page, new_page); 255 256 put_new: 257 page_cache_release(new_page); 258 put_old: 259 put_page(old_page); 260 261 if (unlikely(ret == -EAGAIN)) 262 goto retry; 263 return ret; 264 } 265 266 /** 267 * read_opcode - read the opcode at a given virtual address. 268 * @mm: the probed process address space. 269 * @vaddr: the virtual address to read the opcode. 270 * @opcode: location to store the read opcode. 271 * 272 * Called with mm->mmap_sem held (for read and with a reference to 273 * mm. 274 * 275 * For mm @mm, read the opcode at @vaddr and store it in @opcode. 276 * Return 0 (success) or a negative errno. 277 */ 278 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode) 279 { 280 struct page *page; 281 void *vaddr_new; 282 int ret; 283 284 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 285 if (ret <= 0) 286 return ret; 287 288 vaddr_new = kmap_atomic(page); 289 vaddr &= ~PAGE_MASK; 290 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE); 291 kunmap_atomic(vaddr_new); 292 293 put_page(page); 294 295 return 0; 296 } 297 298 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) 299 { 300 uprobe_opcode_t opcode; 301 int result; 302 303 if (current->mm == mm) { 304 pagefault_disable(); 305 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 306 sizeof(opcode)); 307 pagefault_enable(); 308 309 if (likely(result == 0)) 310 goto out; 311 } 312 313 result = read_opcode(mm, vaddr, &opcode); 314 if (result) 315 return result; 316 out: 317 if (is_swbp_insn(&opcode)) 318 return 1; 319 320 return 0; 321 } 322 323 /** 324 * set_swbp - store breakpoint at a given address. 325 * @auprobe: arch specific probepoint information. 326 * @mm: the probed process address space. 327 * @vaddr: the virtual address to insert the opcode. 328 * 329 * For mm @mm, store the breakpoint instruction at @vaddr. 330 * Return 0 (success) or a negative errno. 331 */ 332 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 333 { 334 int result; 335 /* 336 * See the comment near uprobes_hash(). 337 */ 338 result = is_swbp_at_addr(mm, vaddr); 339 if (result == 1) 340 return 0; 341 342 if (result) 343 return result; 344 345 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 346 } 347 348 /** 349 * set_orig_insn - Restore the original instruction. 350 * @mm: the probed process address space. 351 * @auprobe: arch specific probepoint information. 352 * @vaddr: the virtual address to insert the opcode. 353 * 354 * For mm @mm, restore the original opcode (opcode) at @vaddr. 355 * Return 0 (success) or a negative errno. 356 */ 357 int __weak 358 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 359 { 360 int result; 361 362 result = is_swbp_at_addr(mm, vaddr); 363 if (!result) 364 return -EINVAL; 365 366 if (result != 1) 367 return result; 368 369 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 370 } 371 372 static int match_uprobe(struct uprobe *l, struct uprobe *r) 373 { 374 if (l->inode < r->inode) 375 return -1; 376 377 if (l->inode > r->inode) 378 return 1; 379 380 if (l->offset < r->offset) 381 return -1; 382 383 if (l->offset > r->offset) 384 return 1; 385 386 return 0; 387 } 388 389 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 390 { 391 struct uprobe u = { .inode = inode, .offset = offset }; 392 struct rb_node *n = uprobes_tree.rb_node; 393 struct uprobe *uprobe; 394 int match; 395 396 while (n) { 397 uprobe = rb_entry(n, struct uprobe, rb_node); 398 match = match_uprobe(&u, uprobe); 399 if (!match) { 400 atomic_inc(&uprobe->ref); 401 return uprobe; 402 } 403 404 if (match < 0) 405 n = n->rb_left; 406 else 407 n = n->rb_right; 408 } 409 return NULL; 410 } 411 412 /* 413 * Find a uprobe corresponding to a given inode:offset 414 * Acquires uprobes_treelock 415 */ 416 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 417 { 418 struct uprobe *uprobe; 419 420 spin_lock(&uprobes_treelock); 421 uprobe = __find_uprobe(inode, offset); 422 spin_unlock(&uprobes_treelock); 423 424 return uprobe; 425 } 426 427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 428 { 429 struct rb_node **p = &uprobes_tree.rb_node; 430 struct rb_node *parent = NULL; 431 struct uprobe *u; 432 int match; 433 434 while (*p) { 435 parent = *p; 436 u = rb_entry(parent, struct uprobe, rb_node); 437 match = match_uprobe(uprobe, u); 438 if (!match) { 439 atomic_inc(&u->ref); 440 return u; 441 } 442 443 if (match < 0) 444 p = &parent->rb_left; 445 else 446 p = &parent->rb_right; 447 448 } 449 450 u = NULL; 451 rb_link_node(&uprobe->rb_node, parent, p); 452 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 453 /* get access + creation ref */ 454 atomic_set(&uprobe->ref, 2); 455 456 return u; 457 } 458 459 /* 460 * Acquire uprobes_treelock. 461 * Matching uprobe already exists in rbtree; 462 * increment (access refcount) and return the matching uprobe. 463 * 464 * No matching uprobe; insert the uprobe in rb_tree; 465 * get a double refcount (access + creation) and return NULL. 466 */ 467 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 468 { 469 struct uprobe *u; 470 471 spin_lock(&uprobes_treelock); 472 u = __insert_uprobe(uprobe); 473 spin_unlock(&uprobes_treelock); 474 475 /* For now assume that the instruction need not be single-stepped */ 476 uprobe->flags |= UPROBE_SKIP_SSTEP; 477 478 return u; 479 } 480 481 static void put_uprobe(struct uprobe *uprobe) 482 { 483 if (atomic_dec_and_test(&uprobe->ref)) 484 kfree(uprobe); 485 } 486 487 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 488 { 489 struct uprobe *uprobe, *cur_uprobe; 490 491 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 492 if (!uprobe) 493 return NULL; 494 495 uprobe->inode = igrab(inode); 496 uprobe->offset = offset; 497 init_rwsem(&uprobe->consumer_rwsem); 498 499 /* add to uprobes_tree, sorted on inode:offset */ 500 cur_uprobe = insert_uprobe(uprobe); 501 502 /* a uprobe exists for this inode:offset combination */ 503 if (cur_uprobe) { 504 kfree(uprobe); 505 uprobe = cur_uprobe; 506 iput(inode); 507 } else { 508 atomic_inc(&uprobe_events); 509 } 510 511 return uprobe; 512 } 513 514 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 515 { 516 struct uprobe_consumer *uc; 517 518 if (!(uprobe->flags & UPROBE_RUN_HANDLER)) 519 return; 520 521 down_read(&uprobe->consumer_rwsem); 522 for (uc = uprobe->consumers; uc; uc = uc->next) { 523 if (!uc->filter || uc->filter(uc, current)) 524 uc->handler(uc, regs); 525 } 526 up_read(&uprobe->consumer_rwsem); 527 } 528 529 /* Returns the previous consumer */ 530 static struct uprobe_consumer * 531 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 532 { 533 down_write(&uprobe->consumer_rwsem); 534 uc->next = uprobe->consumers; 535 uprobe->consumers = uc; 536 up_write(&uprobe->consumer_rwsem); 537 538 return uc->next; 539 } 540 541 /* 542 * For uprobe @uprobe, delete the consumer @uc. 543 * Return true if the @uc is deleted successfully 544 * or return false. 545 */ 546 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 547 { 548 struct uprobe_consumer **con; 549 bool ret = false; 550 551 down_write(&uprobe->consumer_rwsem); 552 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 553 if (*con == uc) { 554 *con = uc->next; 555 ret = true; 556 break; 557 } 558 } 559 up_write(&uprobe->consumer_rwsem); 560 561 return ret; 562 } 563 564 static int 565 __copy_insn(struct address_space *mapping, struct file *filp, char *insn, 566 unsigned long nbytes, loff_t offset) 567 { 568 struct page *page; 569 void *vaddr; 570 unsigned long off; 571 pgoff_t idx; 572 573 if (!filp) 574 return -EINVAL; 575 576 if (!mapping->a_ops->readpage) 577 return -EIO; 578 579 idx = offset >> PAGE_CACHE_SHIFT; 580 off = offset & ~PAGE_MASK; 581 582 /* 583 * Ensure that the page that has the original instruction is 584 * populated and in page-cache. 585 */ 586 page = read_mapping_page(mapping, idx, filp); 587 if (IS_ERR(page)) 588 return PTR_ERR(page); 589 590 vaddr = kmap_atomic(page); 591 memcpy(insn, vaddr + off, nbytes); 592 kunmap_atomic(vaddr); 593 page_cache_release(page); 594 595 return 0; 596 } 597 598 static int copy_insn(struct uprobe *uprobe, struct file *filp) 599 { 600 struct address_space *mapping; 601 unsigned long nbytes; 602 int bytes; 603 604 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); 605 mapping = uprobe->inode->i_mapping; 606 607 /* Instruction at end of binary; copy only available bytes */ 608 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 609 bytes = uprobe->inode->i_size - uprobe->offset; 610 else 611 bytes = MAX_UINSN_BYTES; 612 613 /* Instruction at the page-boundary; copy bytes in second page */ 614 if (nbytes < bytes) { 615 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, 616 bytes - nbytes, uprobe->offset + nbytes); 617 if (err) 618 return err; 619 bytes = nbytes; 620 } 621 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); 622 } 623 624 /* 625 * How mm->uprobes_state.count gets updated 626 * uprobe_mmap() increments the count if 627 * - it successfully adds a breakpoint. 628 * - it cannot add a breakpoint, but sees that there is a underlying 629 * breakpoint (via a is_swbp_at_addr()). 630 * 631 * uprobe_munmap() decrements the count if 632 * - it sees a underlying breakpoint, (via is_swbp_at_addr) 633 * (Subsequent uprobe_unregister wouldnt find the breakpoint 634 * unless a uprobe_mmap kicks in, since the old vma would be 635 * dropped just after uprobe_munmap.) 636 * 637 * uprobe_register increments the count if: 638 * - it successfully adds a breakpoint. 639 * 640 * uprobe_unregister decrements the count if: 641 * - it sees a underlying breakpoint and removes successfully. 642 * (via is_swbp_at_addr) 643 * (Subsequent uprobe_munmap wouldnt find the breakpoint 644 * since there is no underlying breakpoint after the 645 * breakpoint removal.) 646 */ 647 static int 648 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 649 struct vm_area_struct *vma, unsigned long vaddr) 650 { 651 bool first_uprobe; 652 int ret; 653 654 /* 655 * If probe is being deleted, unregister thread could be done with 656 * the vma-rmap-walk through. Adding a probe now can be fatal since 657 * nobody will be able to cleanup. Also we could be from fork or 658 * mremap path, where the probe might have already been inserted. 659 * Hence behave as if probe already existed. 660 */ 661 if (!uprobe->consumers) 662 return 0; 663 664 if (!(uprobe->flags & UPROBE_COPY_INSN)) { 665 ret = copy_insn(uprobe, vma->vm_file); 666 if (ret) 667 return ret; 668 669 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) 670 return -ENOTSUPP; 671 672 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 673 if (ret) 674 return ret; 675 676 /* write_opcode() assumes we don't cross page boundary */ 677 BUG_ON((uprobe->offset & ~PAGE_MASK) + 678 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 679 680 uprobe->flags |= UPROBE_COPY_INSN; 681 } 682 683 /* 684 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 685 * the task can hit this breakpoint right after __replace_page(). 686 */ 687 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 688 if (first_uprobe) 689 set_bit(MMF_HAS_UPROBES, &mm->flags); 690 691 ret = set_swbp(&uprobe->arch, mm, vaddr); 692 if (!ret) 693 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 694 else if (first_uprobe) 695 clear_bit(MMF_HAS_UPROBES, &mm->flags); 696 697 return ret; 698 } 699 700 static void 701 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 702 { 703 /* can happen if uprobe_register() fails */ 704 if (!test_bit(MMF_HAS_UPROBES, &mm->flags)) 705 return; 706 707 set_bit(MMF_RECALC_UPROBES, &mm->flags); 708 set_orig_insn(&uprobe->arch, mm, vaddr); 709 } 710 711 /* 712 * There could be threads that have already hit the breakpoint. They 713 * will recheck the current insn and restart if find_uprobe() fails. 714 * See find_active_uprobe(). 715 */ 716 static void delete_uprobe(struct uprobe *uprobe) 717 { 718 spin_lock(&uprobes_treelock); 719 rb_erase(&uprobe->rb_node, &uprobes_tree); 720 spin_unlock(&uprobes_treelock); 721 iput(uprobe->inode); 722 put_uprobe(uprobe); 723 atomic_dec(&uprobe_events); 724 } 725 726 struct map_info { 727 struct map_info *next; 728 struct mm_struct *mm; 729 unsigned long vaddr; 730 }; 731 732 static inline struct map_info *free_map_info(struct map_info *info) 733 { 734 struct map_info *next = info->next; 735 kfree(info); 736 return next; 737 } 738 739 static struct map_info * 740 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 741 { 742 unsigned long pgoff = offset >> PAGE_SHIFT; 743 struct vm_area_struct *vma; 744 struct map_info *curr = NULL; 745 struct map_info *prev = NULL; 746 struct map_info *info; 747 int more = 0; 748 749 again: 750 mutex_lock(&mapping->i_mmap_mutex); 751 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 752 if (!valid_vma(vma, is_register)) 753 continue; 754 755 if (!prev && !more) { 756 /* 757 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 758 * reclaim. This is optimistic, no harm done if it fails. 759 */ 760 prev = kmalloc(sizeof(struct map_info), 761 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 762 if (prev) 763 prev->next = NULL; 764 } 765 if (!prev) { 766 more++; 767 continue; 768 } 769 770 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 771 continue; 772 773 info = prev; 774 prev = prev->next; 775 info->next = curr; 776 curr = info; 777 778 info->mm = vma->vm_mm; 779 info->vaddr = offset_to_vaddr(vma, offset); 780 } 781 mutex_unlock(&mapping->i_mmap_mutex); 782 783 if (!more) 784 goto out; 785 786 prev = curr; 787 while (curr) { 788 mmput(curr->mm); 789 curr = curr->next; 790 } 791 792 do { 793 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 794 if (!info) { 795 curr = ERR_PTR(-ENOMEM); 796 goto out; 797 } 798 info->next = prev; 799 prev = info; 800 } while (--more); 801 802 goto again; 803 out: 804 while (prev) 805 prev = free_map_info(prev); 806 return curr; 807 } 808 809 static int register_for_each_vma(struct uprobe *uprobe, bool is_register) 810 { 811 struct map_info *info; 812 int err = 0; 813 814 info = build_map_info(uprobe->inode->i_mapping, 815 uprobe->offset, is_register); 816 if (IS_ERR(info)) 817 return PTR_ERR(info); 818 819 while (info) { 820 struct mm_struct *mm = info->mm; 821 struct vm_area_struct *vma; 822 823 if (err) 824 goto free; 825 826 down_write(&mm->mmap_sem); 827 vma = find_vma(mm, info->vaddr); 828 if (!vma || !valid_vma(vma, is_register) || 829 vma->vm_file->f_mapping->host != uprobe->inode) 830 goto unlock; 831 832 if (vma->vm_start > info->vaddr || 833 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 834 goto unlock; 835 836 if (is_register) 837 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 838 else 839 remove_breakpoint(uprobe, mm, info->vaddr); 840 841 unlock: 842 up_write(&mm->mmap_sem); 843 free: 844 mmput(mm); 845 info = free_map_info(info); 846 } 847 848 return err; 849 } 850 851 static int __uprobe_register(struct uprobe *uprobe) 852 { 853 return register_for_each_vma(uprobe, true); 854 } 855 856 static void __uprobe_unregister(struct uprobe *uprobe) 857 { 858 if (!register_for_each_vma(uprobe, false)) 859 delete_uprobe(uprobe); 860 861 /* TODO : cant unregister? schedule a worker thread */ 862 } 863 864 /* 865 * uprobe_register - register a probe 866 * @inode: the file in which the probe has to be placed. 867 * @offset: offset from the start of the file. 868 * @uc: information on howto handle the probe.. 869 * 870 * Apart from the access refcount, uprobe_register() takes a creation 871 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 872 * inserted into the rbtree (i.e first consumer for a @inode:@offset 873 * tuple). Creation refcount stops uprobe_unregister from freeing the 874 * @uprobe even before the register operation is complete. Creation 875 * refcount is released when the last @uc for the @uprobe 876 * unregisters. 877 * 878 * Return errno if it cannot successully install probes 879 * else return 0 (success) 880 */ 881 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 882 { 883 struct uprobe *uprobe; 884 int ret; 885 886 if (!inode || !uc || uc->next) 887 return -EINVAL; 888 889 if (offset > i_size_read(inode)) 890 return -EINVAL; 891 892 ret = 0; 893 mutex_lock(uprobes_hash(inode)); 894 uprobe = alloc_uprobe(inode, offset); 895 896 if (uprobe && !consumer_add(uprobe, uc)) { 897 ret = __uprobe_register(uprobe); 898 if (ret) { 899 uprobe->consumers = NULL; 900 __uprobe_unregister(uprobe); 901 } else { 902 uprobe->flags |= UPROBE_RUN_HANDLER; 903 } 904 } 905 906 mutex_unlock(uprobes_hash(inode)); 907 if (uprobe) 908 put_uprobe(uprobe); 909 910 return ret; 911 } 912 913 /* 914 * uprobe_unregister - unregister a already registered probe. 915 * @inode: the file in which the probe has to be removed. 916 * @offset: offset from the start of the file. 917 * @uc: identify which probe if multiple probes are colocated. 918 */ 919 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 920 { 921 struct uprobe *uprobe; 922 923 if (!inode || !uc) 924 return; 925 926 uprobe = find_uprobe(inode, offset); 927 if (!uprobe) 928 return; 929 930 mutex_lock(uprobes_hash(inode)); 931 932 if (consumer_del(uprobe, uc)) { 933 if (!uprobe->consumers) { 934 __uprobe_unregister(uprobe); 935 uprobe->flags &= ~UPROBE_RUN_HANDLER; 936 } 937 } 938 939 mutex_unlock(uprobes_hash(inode)); 940 if (uprobe) 941 put_uprobe(uprobe); 942 } 943 944 static struct rb_node * 945 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 946 { 947 struct rb_node *n = uprobes_tree.rb_node; 948 949 while (n) { 950 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 951 952 if (inode < u->inode) { 953 n = n->rb_left; 954 } else if (inode > u->inode) { 955 n = n->rb_right; 956 } else { 957 if (max < u->offset) 958 n = n->rb_left; 959 else if (min > u->offset) 960 n = n->rb_right; 961 else 962 break; 963 } 964 } 965 966 return n; 967 } 968 969 /* 970 * For a given range in vma, build a list of probes that need to be inserted. 971 */ 972 static void build_probe_list(struct inode *inode, 973 struct vm_area_struct *vma, 974 unsigned long start, unsigned long end, 975 struct list_head *head) 976 { 977 loff_t min, max; 978 struct rb_node *n, *t; 979 struct uprobe *u; 980 981 INIT_LIST_HEAD(head); 982 min = vaddr_to_offset(vma, start); 983 max = min + (end - start) - 1; 984 985 spin_lock(&uprobes_treelock); 986 n = find_node_in_range(inode, min, max); 987 if (n) { 988 for (t = n; t; t = rb_prev(t)) { 989 u = rb_entry(t, struct uprobe, rb_node); 990 if (u->inode != inode || u->offset < min) 991 break; 992 list_add(&u->pending_list, head); 993 atomic_inc(&u->ref); 994 } 995 for (t = n; (t = rb_next(t)); ) { 996 u = rb_entry(t, struct uprobe, rb_node); 997 if (u->inode != inode || u->offset > max) 998 break; 999 list_add(&u->pending_list, head); 1000 atomic_inc(&u->ref); 1001 } 1002 } 1003 spin_unlock(&uprobes_treelock); 1004 } 1005 1006 /* 1007 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1008 * 1009 * Currently we ignore all errors and always return 0, the callers 1010 * can't handle the failure anyway. 1011 */ 1012 int uprobe_mmap(struct vm_area_struct *vma) 1013 { 1014 struct list_head tmp_list; 1015 struct uprobe *uprobe, *u; 1016 struct inode *inode; 1017 1018 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) 1019 return 0; 1020 1021 inode = vma->vm_file->f_mapping->host; 1022 if (!inode) 1023 return 0; 1024 1025 mutex_lock(uprobes_mmap_hash(inode)); 1026 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1027 1028 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1029 if (!fatal_signal_pending(current)) { 1030 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1031 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1032 } 1033 put_uprobe(uprobe); 1034 } 1035 mutex_unlock(uprobes_mmap_hash(inode)); 1036 1037 return 0; 1038 } 1039 1040 static bool 1041 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1042 { 1043 loff_t min, max; 1044 struct inode *inode; 1045 struct rb_node *n; 1046 1047 inode = vma->vm_file->f_mapping->host; 1048 1049 min = vaddr_to_offset(vma, start); 1050 max = min + (end - start) - 1; 1051 1052 spin_lock(&uprobes_treelock); 1053 n = find_node_in_range(inode, min, max); 1054 spin_unlock(&uprobes_treelock); 1055 1056 return !!n; 1057 } 1058 1059 /* 1060 * Called in context of a munmap of a vma. 1061 */ 1062 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1063 { 1064 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false)) 1065 return; 1066 1067 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1068 return; 1069 1070 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1071 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1072 return; 1073 1074 if (vma_has_uprobes(vma, start, end)) 1075 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1076 } 1077 1078 /* Slot allocation for XOL */ 1079 static int xol_add_vma(struct xol_area *area) 1080 { 1081 struct mm_struct *mm; 1082 int ret; 1083 1084 area->page = alloc_page(GFP_HIGHUSER); 1085 if (!area->page) 1086 return -ENOMEM; 1087 1088 ret = -EALREADY; 1089 mm = current->mm; 1090 1091 down_write(&mm->mmap_sem); 1092 if (mm->uprobes_state.xol_area) 1093 goto fail; 1094 1095 ret = -ENOMEM; 1096 1097 /* Try to map as high as possible, this is only a hint. */ 1098 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1099 if (area->vaddr & ~PAGE_MASK) { 1100 ret = area->vaddr; 1101 goto fail; 1102 } 1103 1104 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1105 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1106 if (ret) 1107 goto fail; 1108 1109 smp_wmb(); /* pairs with get_xol_area() */ 1110 mm->uprobes_state.xol_area = area; 1111 ret = 0; 1112 1113 fail: 1114 up_write(&mm->mmap_sem); 1115 if (ret) 1116 __free_page(area->page); 1117 1118 return ret; 1119 } 1120 1121 static struct xol_area *get_xol_area(struct mm_struct *mm) 1122 { 1123 struct xol_area *area; 1124 1125 area = mm->uprobes_state.xol_area; 1126 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1127 1128 return area; 1129 } 1130 1131 /* 1132 * xol_alloc_area - Allocate process's xol_area. 1133 * This area will be used for storing instructions for execution out of 1134 * line. 1135 * 1136 * Returns the allocated area or NULL. 1137 */ 1138 static struct xol_area *xol_alloc_area(void) 1139 { 1140 struct xol_area *area; 1141 1142 area = kzalloc(sizeof(*area), GFP_KERNEL); 1143 if (unlikely(!area)) 1144 return NULL; 1145 1146 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1147 1148 if (!area->bitmap) 1149 goto fail; 1150 1151 init_waitqueue_head(&area->wq); 1152 if (!xol_add_vma(area)) 1153 return area; 1154 1155 fail: 1156 kfree(area->bitmap); 1157 kfree(area); 1158 1159 return get_xol_area(current->mm); 1160 } 1161 1162 /* 1163 * uprobe_clear_state - Free the area allocated for slots. 1164 */ 1165 void uprobe_clear_state(struct mm_struct *mm) 1166 { 1167 struct xol_area *area = mm->uprobes_state.xol_area; 1168 1169 if (!area) 1170 return; 1171 1172 put_page(area->page); 1173 kfree(area->bitmap); 1174 kfree(area); 1175 } 1176 1177 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1178 { 1179 newmm->uprobes_state.xol_area = NULL; 1180 1181 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1182 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1183 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1184 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1185 } 1186 } 1187 1188 /* 1189 * - search for a free slot. 1190 */ 1191 static unsigned long xol_take_insn_slot(struct xol_area *area) 1192 { 1193 unsigned long slot_addr; 1194 int slot_nr; 1195 1196 do { 1197 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1198 if (slot_nr < UINSNS_PER_PAGE) { 1199 if (!test_and_set_bit(slot_nr, area->bitmap)) 1200 break; 1201 1202 slot_nr = UINSNS_PER_PAGE; 1203 continue; 1204 } 1205 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1206 } while (slot_nr >= UINSNS_PER_PAGE); 1207 1208 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1209 atomic_inc(&area->slot_count); 1210 1211 return slot_addr; 1212 } 1213 1214 /* 1215 * xol_get_insn_slot - If was not allocated a slot, then 1216 * allocate a slot. 1217 * Returns the allocated slot address or 0. 1218 */ 1219 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr) 1220 { 1221 struct xol_area *area; 1222 unsigned long offset; 1223 void *vaddr; 1224 1225 area = get_xol_area(current->mm); 1226 if (!area) { 1227 area = xol_alloc_area(); 1228 if (!area) 1229 return 0; 1230 } 1231 current->utask->xol_vaddr = xol_take_insn_slot(area); 1232 1233 /* 1234 * Initialize the slot if xol_vaddr points to valid 1235 * instruction slot. 1236 */ 1237 if (unlikely(!current->utask->xol_vaddr)) 1238 return 0; 1239 1240 current->utask->vaddr = slot_addr; 1241 offset = current->utask->xol_vaddr & ~PAGE_MASK; 1242 vaddr = kmap_atomic(area->page); 1243 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); 1244 kunmap_atomic(vaddr); 1245 1246 return current->utask->xol_vaddr; 1247 } 1248 1249 /* 1250 * xol_free_insn_slot - If slot was earlier allocated by 1251 * @xol_get_insn_slot(), make the slot available for 1252 * subsequent requests. 1253 */ 1254 static void xol_free_insn_slot(struct task_struct *tsk) 1255 { 1256 struct xol_area *area; 1257 unsigned long vma_end; 1258 unsigned long slot_addr; 1259 1260 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1261 return; 1262 1263 slot_addr = tsk->utask->xol_vaddr; 1264 1265 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr))) 1266 return; 1267 1268 area = tsk->mm->uprobes_state.xol_area; 1269 vma_end = area->vaddr + PAGE_SIZE; 1270 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1271 unsigned long offset; 1272 int slot_nr; 1273 1274 offset = slot_addr - area->vaddr; 1275 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1276 if (slot_nr >= UINSNS_PER_PAGE) 1277 return; 1278 1279 clear_bit(slot_nr, area->bitmap); 1280 atomic_dec(&area->slot_count); 1281 if (waitqueue_active(&area->wq)) 1282 wake_up(&area->wq); 1283 1284 tsk->utask->xol_vaddr = 0; 1285 } 1286 } 1287 1288 /** 1289 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1290 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1291 * instruction. 1292 * Return the address of the breakpoint instruction. 1293 */ 1294 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1295 { 1296 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1297 } 1298 1299 /* 1300 * Called with no locks held. 1301 * Called in context of a exiting or a exec-ing thread. 1302 */ 1303 void uprobe_free_utask(struct task_struct *t) 1304 { 1305 struct uprobe_task *utask = t->utask; 1306 1307 if (!utask) 1308 return; 1309 1310 if (utask->active_uprobe) 1311 put_uprobe(utask->active_uprobe); 1312 1313 xol_free_insn_slot(t); 1314 kfree(utask); 1315 t->utask = NULL; 1316 } 1317 1318 /* 1319 * Called in context of a new clone/fork from copy_process. 1320 */ 1321 void uprobe_copy_process(struct task_struct *t) 1322 { 1323 t->utask = NULL; 1324 } 1325 1326 /* 1327 * Allocate a uprobe_task object for the task. 1328 * Called when the thread hits a breakpoint for the first time. 1329 * 1330 * Returns: 1331 * - pointer to new uprobe_task on success 1332 * - NULL otherwise 1333 */ 1334 static struct uprobe_task *add_utask(void) 1335 { 1336 struct uprobe_task *utask; 1337 1338 utask = kzalloc(sizeof *utask, GFP_KERNEL); 1339 if (unlikely(!utask)) 1340 return NULL; 1341 1342 current->utask = utask; 1343 return utask; 1344 } 1345 1346 /* Prepare to single-step probed instruction out of line. */ 1347 static int 1348 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr) 1349 { 1350 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs)) 1351 return 0; 1352 1353 return -EFAULT; 1354 } 1355 1356 /* 1357 * If we are singlestepping, then ensure this thread is not connected to 1358 * non-fatal signals until completion of singlestep. When xol insn itself 1359 * triggers the signal, restart the original insn even if the task is 1360 * already SIGKILL'ed (since coredump should report the correct ip). This 1361 * is even more important if the task has a handler for SIGSEGV/etc, The 1362 * _same_ instruction should be repeated again after return from the signal 1363 * handler, and SSTEP can never finish in this case. 1364 */ 1365 bool uprobe_deny_signal(void) 1366 { 1367 struct task_struct *t = current; 1368 struct uprobe_task *utask = t->utask; 1369 1370 if (likely(!utask || !utask->active_uprobe)) 1371 return false; 1372 1373 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1374 1375 if (signal_pending(t)) { 1376 spin_lock_irq(&t->sighand->siglock); 1377 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1378 spin_unlock_irq(&t->sighand->siglock); 1379 1380 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1381 utask->state = UTASK_SSTEP_TRAPPED; 1382 set_tsk_thread_flag(t, TIF_UPROBE); 1383 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1384 } 1385 } 1386 1387 return true; 1388 } 1389 1390 /* 1391 * Avoid singlestepping the original instruction if the original instruction 1392 * is a NOP or can be emulated. 1393 */ 1394 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1395 { 1396 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1397 return true; 1398 1399 uprobe->flags &= ~UPROBE_SKIP_SSTEP; 1400 return false; 1401 } 1402 1403 static void mmf_recalc_uprobes(struct mm_struct *mm) 1404 { 1405 struct vm_area_struct *vma; 1406 1407 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1408 if (!valid_vma(vma, false)) 1409 continue; 1410 /* 1411 * This is not strictly accurate, we can race with 1412 * uprobe_unregister() and see the already removed 1413 * uprobe if delete_uprobe() was not yet called. 1414 */ 1415 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1416 return; 1417 } 1418 1419 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1420 } 1421 1422 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1423 { 1424 struct mm_struct *mm = current->mm; 1425 struct uprobe *uprobe = NULL; 1426 struct vm_area_struct *vma; 1427 1428 down_read(&mm->mmap_sem); 1429 vma = find_vma(mm, bp_vaddr); 1430 if (vma && vma->vm_start <= bp_vaddr) { 1431 if (valid_vma(vma, false)) { 1432 struct inode *inode = vma->vm_file->f_mapping->host; 1433 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1434 1435 uprobe = find_uprobe(inode, offset); 1436 } 1437 1438 if (!uprobe) 1439 *is_swbp = is_swbp_at_addr(mm, bp_vaddr); 1440 } else { 1441 *is_swbp = -EFAULT; 1442 } 1443 1444 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1445 mmf_recalc_uprobes(mm); 1446 up_read(&mm->mmap_sem); 1447 1448 return uprobe; 1449 } 1450 1451 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch) 1452 { 1453 user_enable_single_step(current); 1454 } 1455 1456 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch) 1457 { 1458 user_disable_single_step(current); 1459 } 1460 1461 /* 1462 * Run handler and ask thread to singlestep. 1463 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1464 */ 1465 static void handle_swbp(struct pt_regs *regs) 1466 { 1467 struct uprobe_task *utask; 1468 struct uprobe *uprobe; 1469 unsigned long bp_vaddr; 1470 int uninitialized_var(is_swbp); 1471 1472 bp_vaddr = uprobe_get_swbp_addr(regs); 1473 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1474 1475 if (!uprobe) { 1476 if (is_swbp > 0) { 1477 /* No matching uprobe; signal SIGTRAP. */ 1478 send_sig(SIGTRAP, current, 0); 1479 } else { 1480 /* 1481 * Either we raced with uprobe_unregister() or we can't 1482 * access this memory. The latter is only possible if 1483 * another thread plays with our ->mm. In both cases 1484 * we can simply restart. If this vma was unmapped we 1485 * can pretend this insn was not executed yet and get 1486 * the (correct) SIGSEGV after restart. 1487 */ 1488 instruction_pointer_set(regs, bp_vaddr); 1489 } 1490 return; 1491 } 1492 1493 utask = current->utask; 1494 if (!utask) { 1495 utask = add_utask(); 1496 /* Cannot allocate; re-execute the instruction. */ 1497 if (!utask) 1498 goto cleanup_ret; 1499 } 1500 utask->active_uprobe = uprobe; 1501 handler_chain(uprobe, regs); 1502 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs)) 1503 goto cleanup_ret; 1504 1505 utask->state = UTASK_SSTEP; 1506 if (!pre_ssout(uprobe, regs, bp_vaddr)) { 1507 arch_uprobe_enable_step(&uprobe->arch); 1508 return; 1509 } 1510 1511 cleanup_ret: 1512 if (utask) { 1513 utask->active_uprobe = NULL; 1514 utask->state = UTASK_RUNNING; 1515 } 1516 if (!(uprobe->flags & UPROBE_SKIP_SSTEP)) 1517 1518 /* 1519 * cannot singlestep; cannot skip instruction; 1520 * re-execute the instruction. 1521 */ 1522 instruction_pointer_set(regs, bp_vaddr); 1523 1524 put_uprobe(uprobe); 1525 } 1526 1527 /* 1528 * Perform required fix-ups and disable singlestep. 1529 * Allow pending signals to take effect. 1530 */ 1531 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1532 { 1533 struct uprobe *uprobe; 1534 1535 uprobe = utask->active_uprobe; 1536 if (utask->state == UTASK_SSTEP_ACK) 1537 arch_uprobe_post_xol(&uprobe->arch, regs); 1538 else if (utask->state == UTASK_SSTEP_TRAPPED) 1539 arch_uprobe_abort_xol(&uprobe->arch, regs); 1540 else 1541 WARN_ON_ONCE(1); 1542 1543 arch_uprobe_disable_step(&uprobe->arch); 1544 put_uprobe(uprobe); 1545 utask->active_uprobe = NULL; 1546 utask->state = UTASK_RUNNING; 1547 xol_free_insn_slot(current); 1548 1549 spin_lock_irq(¤t->sighand->siglock); 1550 recalc_sigpending(); /* see uprobe_deny_signal() */ 1551 spin_unlock_irq(¤t->sighand->siglock); 1552 } 1553 1554 /* 1555 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on 1556 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and 1557 * allows the thread to return from interrupt. 1558 * 1559 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and 1560 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from 1561 * interrupt. 1562 * 1563 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1564 * uprobe_notify_resume(). 1565 */ 1566 void uprobe_notify_resume(struct pt_regs *regs) 1567 { 1568 struct uprobe_task *utask; 1569 1570 utask = current->utask; 1571 if (!utask || utask->state == UTASK_BP_HIT) 1572 handle_swbp(regs); 1573 else 1574 handle_singlestep(utask, regs); 1575 } 1576 1577 /* 1578 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1579 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1580 */ 1581 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1582 { 1583 struct uprobe_task *utask; 1584 1585 if (!current->mm || !test_bit(MMF_HAS_UPROBES, ¤t->mm->flags)) 1586 return 0; 1587 1588 utask = current->utask; 1589 if (utask) 1590 utask->state = UTASK_BP_HIT; 1591 1592 set_thread_flag(TIF_UPROBE); 1593 1594 return 1; 1595 } 1596 1597 /* 1598 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1599 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1600 */ 1601 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1602 { 1603 struct uprobe_task *utask = current->utask; 1604 1605 if (!current->mm || !utask || !utask->active_uprobe) 1606 /* task is currently not uprobed */ 1607 return 0; 1608 1609 utask->state = UTASK_SSTEP_ACK; 1610 set_thread_flag(TIF_UPROBE); 1611 return 1; 1612 } 1613 1614 static struct notifier_block uprobe_exception_nb = { 1615 .notifier_call = arch_uprobe_exception_notify, 1616 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1617 }; 1618 1619 static int __init init_uprobes(void) 1620 { 1621 int i; 1622 1623 for (i = 0; i < UPROBES_HASH_SZ; i++) { 1624 mutex_init(&uprobes_mutex[i]); 1625 mutex_init(&uprobes_mmap_mutex[i]); 1626 } 1627 1628 return register_die_notifier(&uprobe_exception_nb); 1629 } 1630 module_init(init_uprobes); 1631 1632 static void __exit exit_uprobes(void) 1633 { 1634 } 1635 module_exit(exit_uprobes); 1636