1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> /* anon_vma_prepare */ 20 #include <linux/mmu_notifier.h> 21 #include <linux/swap.h> /* folio_free_swap */ 22 #include <linux/ptrace.h> /* user_enable_single_step */ 23 #include <linux/kdebug.h> /* notifier mechanism */ 24 #include <linux/percpu-rwsem.h> 25 #include <linux/task_work.h> 26 #include <linux/shmem_fs.h> 27 #include <linux/khugepaged.h> 28 #include <linux/rcupdate_trace.h> 29 #include <linux/workqueue.h> 30 #include <linux/srcu.h> 31 #include <linux/oom.h> /* check_stable_address_space */ 32 33 #include <linux/uprobes.h> 34 35 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 36 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 37 38 static struct rb_root uprobes_tree = RB_ROOT; 39 /* 40 * allows us to skip the uprobe_mmap if there are no uprobe events active 41 * at this time. Probably a fine grained per inode count is better? 42 */ 43 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 44 45 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ 46 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); 47 48 #define UPROBES_HASH_SZ 13 49 /* serialize uprobe->pending_list */ 50 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 51 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 52 53 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 54 55 /* Covers return_instance's uprobe lifetime. */ 56 DEFINE_STATIC_SRCU(uretprobes_srcu); 57 58 /* Have a copy of original instruction */ 59 #define UPROBE_COPY_INSN 0 60 61 struct uprobe { 62 struct rb_node rb_node; /* node in the rb tree */ 63 refcount_t ref; 64 struct rw_semaphore register_rwsem; 65 struct rw_semaphore consumer_rwsem; 66 struct list_head pending_list; 67 struct list_head consumers; 68 struct inode *inode; /* Also hold a ref to inode */ 69 union { 70 struct rcu_head rcu; 71 struct work_struct work; 72 }; 73 loff_t offset; 74 loff_t ref_ctr_offset; 75 unsigned long flags; /* "unsigned long" so bitops work */ 76 77 /* 78 * The generic code assumes that it has two members of unknown type 79 * owned by the arch-specific code: 80 * 81 * insn - copy_insn() saves the original instruction here for 82 * arch_uprobe_analyze_insn(). 83 * 84 * ixol - potentially modified instruction to execute out of 85 * line, copied to xol_area by xol_get_insn_slot(). 86 */ 87 struct arch_uprobe arch; 88 }; 89 90 struct delayed_uprobe { 91 struct list_head list; 92 struct uprobe *uprobe; 93 struct mm_struct *mm; 94 }; 95 96 static DEFINE_MUTEX(delayed_uprobe_lock); 97 static LIST_HEAD(delayed_uprobe_list); 98 99 /* 100 * Execute out of line area: anonymous executable mapping installed 101 * by the probed task to execute the copy of the original instruction 102 * mangled by set_swbp(). 103 * 104 * On a breakpoint hit, thread contests for a slot. It frees the 105 * slot after singlestep. Currently a fixed number of slots are 106 * allocated. 107 */ 108 struct xol_area { 109 wait_queue_head_t wq; /* if all slots are busy */ 110 unsigned long *bitmap; /* 0 = free slot */ 111 112 struct page *page; 113 /* 114 * We keep the vma's vm_start rather than a pointer to the vma 115 * itself. The probed process or a naughty kernel module could make 116 * the vma go away, and we must handle that reasonably gracefully. 117 */ 118 unsigned long vaddr; /* Page(s) of instruction slots */ 119 }; 120 121 static void uprobe_warn(struct task_struct *t, const char *msg) 122 { 123 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); 124 } 125 126 /* 127 * valid_vma: Verify if the specified vma is an executable vma 128 * Relax restrictions while unregistering: vm_flags might have 129 * changed after breakpoint was inserted. 130 * - is_register: indicates if we are in register context. 131 * - Return 1 if the specified virtual address is in an 132 * executable vma. 133 */ 134 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 135 { 136 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 137 138 if (is_register) 139 flags |= VM_WRITE; 140 141 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 142 } 143 144 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 145 { 146 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 147 } 148 149 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 150 { 151 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 152 } 153 154 /** 155 * __replace_page - replace page in vma by new page. 156 * based on replace_page in mm/ksm.c 157 * 158 * @vma: vma that holds the pte pointing to page 159 * @addr: address the old @page is mapped at 160 * @old_page: the page we are replacing by new_page 161 * @new_page: the modified page we replace page by 162 * 163 * If @new_page is NULL, only unmap @old_page. 164 * 165 * Returns 0 on success, negative error code otherwise. 166 */ 167 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 168 struct page *old_page, struct page *new_page) 169 { 170 struct folio *old_folio = page_folio(old_page); 171 struct folio *new_folio; 172 struct mm_struct *mm = vma->vm_mm; 173 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 174 int err; 175 struct mmu_notifier_range range; 176 177 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 178 addr + PAGE_SIZE); 179 180 if (new_page) { 181 new_folio = page_folio(new_page); 182 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 183 if (err) 184 return err; 185 } 186 187 /* For folio_free_swap() below */ 188 folio_lock(old_folio); 189 190 mmu_notifier_invalidate_range_start(&range); 191 err = -EAGAIN; 192 if (!page_vma_mapped_walk(&pvmw)) 193 goto unlock; 194 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 195 196 if (new_page) { 197 folio_get(new_folio); 198 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE); 199 folio_add_lru_vma(new_folio, vma); 200 } else 201 /* no new page, just dec_mm_counter for old_page */ 202 dec_mm_counter(mm, MM_ANONPAGES); 203 204 if (!folio_test_anon(old_folio)) { 205 dec_mm_counter(mm, mm_counter_file(old_folio)); 206 inc_mm_counter(mm, MM_ANONPAGES); 207 } 208 209 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte))); 210 ptep_clear_flush(vma, addr, pvmw.pte); 211 if (new_page) 212 set_pte_at(mm, addr, pvmw.pte, 213 mk_pte(new_page, vma->vm_page_prot)); 214 215 folio_remove_rmap_pte(old_folio, old_page, vma); 216 if (!folio_mapped(old_folio)) 217 folio_free_swap(old_folio); 218 page_vma_mapped_walk_done(&pvmw); 219 folio_put(old_folio); 220 221 err = 0; 222 unlock: 223 mmu_notifier_invalidate_range_end(&range); 224 folio_unlock(old_folio); 225 return err; 226 } 227 228 /** 229 * is_swbp_insn - check if instruction is breakpoint instruction. 230 * @insn: instruction to be checked. 231 * Default implementation of is_swbp_insn 232 * Returns true if @insn is a breakpoint instruction. 233 */ 234 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 235 { 236 return *insn == UPROBE_SWBP_INSN; 237 } 238 239 /** 240 * is_trap_insn - check if instruction is breakpoint instruction. 241 * @insn: instruction to be checked. 242 * Default implementation of is_trap_insn 243 * Returns true if @insn is a breakpoint instruction. 244 * 245 * This function is needed for the case where an architecture has multiple 246 * trap instructions (like powerpc). 247 */ 248 bool __weak is_trap_insn(uprobe_opcode_t *insn) 249 { 250 return is_swbp_insn(insn); 251 } 252 253 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 254 { 255 void *kaddr = kmap_atomic(page); 256 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 257 kunmap_atomic(kaddr); 258 } 259 260 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 261 { 262 void *kaddr = kmap_atomic(page); 263 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 264 kunmap_atomic(kaddr); 265 } 266 267 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 268 { 269 uprobe_opcode_t old_opcode; 270 bool is_swbp; 271 272 /* 273 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 274 * We do not check if it is any other 'trap variant' which could 275 * be conditional trap instruction such as the one powerpc supports. 276 * 277 * The logic is that we do not care if the underlying instruction 278 * is a trap variant; uprobes always wins over any other (gdb) 279 * breakpoint. 280 */ 281 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 282 is_swbp = is_swbp_insn(&old_opcode); 283 284 if (is_swbp_insn(new_opcode)) { 285 if (is_swbp) /* register: already installed? */ 286 return 0; 287 } else { 288 if (!is_swbp) /* unregister: was it changed by us? */ 289 return 0; 290 } 291 292 return 1; 293 } 294 295 static struct delayed_uprobe * 296 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 297 { 298 struct delayed_uprobe *du; 299 300 list_for_each_entry(du, &delayed_uprobe_list, list) 301 if (du->uprobe == uprobe && du->mm == mm) 302 return du; 303 return NULL; 304 } 305 306 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 307 { 308 struct delayed_uprobe *du; 309 310 if (delayed_uprobe_check(uprobe, mm)) 311 return 0; 312 313 du = kzalloc(sizeof(*du), GFP_KERNEL); 314 if (!du) 315 return -ENOMEM; 316 317 du->uprobe = uprobe; 318 du->mm = mm; 319 list_add(&du->list, &delayed_uprobe_list); 320 return 0; 321 } 322 323 static void delayed_uprobe_delete(struct delayed_uprobe *du) 324 { 325 if (WARN_ON(!du)) 326 return; 327 list_del(&du->list); 328 kfree(du); 329 } 330 331 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 332 { 333 struct list_head *pos, *q; 334 struct delayed_uprobe *du; 335 336 if (!uprobe && !mm) 337 return; 338 339 list_for_each_safe(pos, q, &delayed_uprobe_list) { 340 du = list_entry(pos, struct delayed_uprobe, list); 341 342 if (uprobe && du->uprobe != uprobe) 343 continue; 344 if (mm && du->mm != mm) 345 continue; 346 347 delayed_uprobe_delete(du); 348 } 349 } 350 351 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 352 struct vm_area_struct *vma) 353 { 354 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 355 356 return uprobe->ref_ctr_offset && 357 vma->vm_file && 358 file_inode(vma->vm_file) == uprobe->inode && 359 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 360 vma->vm_start <= vaddr && 361 vma->vm_end > vaddr; 362 } 363 364 static struct vm_area_struct * 365 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 366 { 367 VMA_ITERATOR(vmi, mm, 0); 368 struct vm_area_struct *tmp; 369 370 for_each_vma(vmi, tmp) 371 if (valid_ref_ctr_vma(uprobe, tmp)) 372 return tmp; 373 374 return NULL; 375 } 376 377 static int 378 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 379 { 380 void *kaddr; 381 struct page *page; 382 int ret; 383 short *ptr; 384 385 if (!vaddr || !d) 386 return -EINVAL; 387 388 ret = get_user_pages_remote(mm, vaddr, 1, 389 FOLL_WRITE, &page, NULL); 390 if (unlikely(ret <= 0)) { 391 /* 392 * We are asking for 1 page. If get_user_pages_remote() fails, 393 * it may return 0, in that case we have to return error. 394 */ 395 return ret == 0 ? -EBUSY : ret; 396 } 397 398 kaddr = kmap_atomic(page); 399 ptr = kaddr + (vaddr & ~PAGE_MASK); 400 401 if (unlikely(*ptr + d < 0)) { 402 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 403 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 404 ret = -EINVAL; 405 goto out; 406 } 407 408 *ptr += d; 409 ret = 0; 410 out: 411 kunmap_atomic(kaddr); 412 put_page(page); 413 return ret; 414 } 415 416 static void update_ref_ctr_warn(struct uprobe *uprobe, 417 struct mm_struct *mm, short d) 418 { 419 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 420 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n", 421 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 422 (unsigned long long) uprobe->offset, 423 (unsigned long long) uprobe->ref_ctr_offset, mm); 424 } 425 426 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 427 short d) 428 { 429 struct vm_area_struct *rc_vma; 430 unsigned long rc_vaddr; 431 int ret = 0; 432 433 rc_vma = find_ref_ctr_vma(uprobe, mm); 434 435 if (rc_vma) { 436 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 437 ret = __update_ref_ctr(mm, rc_vaddr, d); 438 if (ret) 439 update_ref_ctr_warn(uprobe, mm, d); 440 441 if (d > 0) 442 return ret; 443 } 444 445 mutex_lock(&delayed_uprobe_lock); 446 if (d > 0) 447 ret = delayed_uprobe_add(uprobe, mm); 448 else 449 delayed_uprobe_remove(uprobe, mm); 450 mutex_unlock(&delayed_uprobe_lock); 451 452 return ret; 453 } 454 455 /* 456 * NOTE: 457 * Expect the breakpoint instruction to be the smallest size instruction for 458 * the architecture. If an arch has variable length instruction and the 459 * breakpoint instruction is not of the smallest length instruction 460 * supported by that architecture then we need to modify is_trap_at_addr and 461 * uprobe_write_opcode accordingly. This would never be a problem for archs 462 * that have fixed length instructions. 463 * 464 * uprobe_write_opcode - write the opcode at a given virtual address. 465 * @auprobe: arch specific probepoint information. 466 * @mm: the probed process address space. 467 * @vaddr: the virtual address to store the opcode. 468 * @opcode: opcode to be written at @vaddr. 469 * 470 * Called with mm->mmap_lock held for read or write. 471 * Return 0 (success) or a negative errno. 472 */ 473 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 474 unsigned long vaddr, uprobe_opcode_t opcode) 475 { 476 struct uprobe *uprobe; 477 struct page *old_page, *new_page; 478 struct vm_area_struct *vma; 479 int ret, is_register, ref_ctr_updated = 0; 480 bool orig_page_huge = false; 481 unsigned int gup_flags = FOLL_FORCE; 482 483 is_register = is_swbp_insn(&opcode); 484 uprobe = container_of(auprobe, struct uprobe, arch); 485 486 retry: 487 if (is_register) 488 gup_flags |= FOLL_SPLIT_PMD; 489 /* Read the page with vaddr into memory */ 490 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); 491 if (IS_ERR(old_page)) 492 return PTR_ERR(old_page); 493 494 ret = verify_opcode(old_page, vaddr, &opcode); 495 if (ret <= 0) 496 goto put_old; 497 498 if (is_zero_page(old_page)) { 499 ret = -EINVAL; 500 goto put_old; 501 } 502 503 if (WARN(!is_register && PageCompound(old_page), 504 "uprobe unregister should never work on compound page\n")) { 505 ret = -EINVAL; 506 goto put_old; 507 } 508 509 /* We are going to replace instruction, update ref_ctr. */ 510 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 511 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 512 if (ret) 513 goto put_old; 514 515 ref_ctr_updated = 1; 516 } 517 518 ret = 0; 519 if (!is_register && !PageAnon(old_page)) 520 goto put_old; 521 522 ret = anon_vma_prepare(vma); 523 if (ret) 524 goto put_old; 525 526 ret = -ENOMEM; 527 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 528 if (!new_page) 529 goto put_old; 530 531 __SetPageUptodate(new_page); 532 copy_highpage(new_page, old_page); 533 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 534 535 if (!is_register) { 536 struct page *orig_page; 537 pgoff_t index; 538 539 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 540 541 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 542 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 543 index); 544 545 if (orig_page) { 546 if (PageUptodate(orig_page) && 547 pages_identical(new_page, orig_page)) { 548 /* let go new_page */ 549 put_page(new_page); 550 new_page = NULL; 551 552 if (PageCompound(orig_page)) 553 orig_page_huge = true; 554 } 555 put_page(orig_page); 556 } 557 } 558 559 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page); 560 if (new_page) 561 put_page(new_page); 562 put_old: 563 put_page(old_page); 564 565 if (unlikely(ret == -EAGAIN)) 566 goto retry; 567 568 /* Revert back reference counter if instruction update failed. */ 569 if (ret && is_register && ref_ctr_updated) 570 update_ref_ctr(uprobe, mm, -1); 571 572 /* try collapse pmd for compound page */ 573 if (!ret && orig_page_huge) 574 collapse_pte_mapped_thp(mm, vaddr, false); 575 576 return ret; 577 } 578 579 /** 580 * set_swbp - store breakpoint at a given address. 581 * @auprobe: arch specific probepoint information. 582 * @mm: the probed process address space. 583 * @vaddr: the virtual address to insert the opcode. 584 * 585 * For mm @mm, store the breakpoint instruction at @vaddr. 586 * Return 0 (success) or a negative errno. 587 */ 588 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 589 { 590 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 591 } 592 593 /** 594 * set_orig_insn - Restore the original instruction. 595 * @mm: the probed process address space. 596 * @auprobe: arch specific probepoint information. 597 * @vaddr: the virtual address to insert the opcode. 598 * 599 * For mm @mm, restore the original opcode (opcode) at @vaddr. 600 * Return 0 (success) or a negative errno. 601 */ 602 int __weak 603 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 604 { 605 return uprobe_write_opcode(auprobe, mm, vaddr, 606 *(uprobe_opcode_t *)&auprobe->insn); 607 } 608 609 /* uprobe should have guaranteed positive refcount */ 610 static struct uprobe *get_uprobe(struct uprobe *uprobe) 611 { 612 refcount_inc(&uprobe->ref); 613 return uprobe; 614 } 615 616 /* 617 * uprobe should have guaranteed lifetime, which can be either of: 618 * - caller already has refcount taken (and wants an extra one); 619 * - uprobe is RCU protected and won't be freed until after grace period; 620 * - we are holding uprobes_treelock (for read or write, doesn't matter). 621 */ 622 static struct uprobe *try_get_uprobe(struct uprobe *uprobe) 623 { 624 if (refcount_inc_not_zero(&uprobe->ref)) 625 return uprobe; 626 return NULL; 627 } 628 629 static inline bool uprobe_is_active(struct uprobe *uprobe) 630 { 631 return !RB_EMPTY_NODE(&uprobe->rb_node); 632 } 633 634 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu) 635 { 636 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 637 638 kfree(uprobe); 639 } 640 641 static void uprobe_free_srcu(struct rcu_head *rcu) 642 { 643 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 644 645 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace); 646 } 647 648 static void uprobe_free_deferred(struct work_struct *work) 649 { 650 struct uprobe *uprobe = container_of(work, struct uprobe, work); 651 652 write_lock(&uprobes_treelock); 653 654 if (uprobe_is_active(uprobe)) { 655 write_seqcount_begin(&uprobes_seqcount); 656 rb_erase(&uprobe->rb_node, &uprobes_tree); 657 write_seqcount_end(&uprobes_seqcount); 658 } 659 660 write_unlock(&uprobes_treelock); 661 662 /* 663 * If application munmap(exec_vma) before uprobe_unregister() 664 * gets called, we don't get a chance to remove uprobe from 665 * delayed_uprobe_list from remove_breakpoint(). Do it here. 666 */ 667 mutex_lock(&delayed_uprobe_lock); 668 delayed_uprobe_remove(uprobe, NULL); 669 mutex_unlock(&delayed_uprobe_lock); 670 671 /* start srcu -> rcu_tasks_trace -> kfree chain */ 672 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu); 673 } 674 675 static void put_uprobe(struct uprobe *uprobe) 676 { 677 if (!refcount_dec_and_test(&uprobe->ref)) 678 return; 679 680 INIT_WORK(&uprobe->work, uprobe_free_deferred); 681 schedule_work(&uprobe->work); 682 } 683 684 /* Initialize hprobe as SRCU-protected "leased" uprobe */ 685 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx) 686 { 687 WARN_ON(!uprobe); 688 hprobe->state = HPROBE_LEASED; 689 hprobe->uprobe = uprobe; 690 hprobe->srcu_idx = srcu_idx; 691 } 692 693 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */ 694 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe) 695 { 696 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE; 697 hprobe->uprobe = uprobe; 698 hprobe->srcu_idx = -1; 699 } 700 701 /* 702 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether 703 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be 704 * used only once for a given hprobe. 705 * 706 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so 707 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever 708 * is appropriate. 709 */ 710 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate) 711 { 712 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED); 713 switch (*hstate) { 714 case HPROBE_LEASED: 715 case HPROBE_STABLE: 716 return hprobe->uprobe; 717 case HPROBE_GONE: /* uprobe is NULL, no SRCU */ 718 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */ 719 return NULL; 720 default: 721 WARN(1, "hprobe invalid state %d", *hstate); 722 return NULL; 723 } 724 } 725 726 /* 727 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock. 728 * hprobe_finalize() can only be used from current context after 729 * hprobe_consume() call (which determines uprobe and hstate value). 730 */ 731 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate) 732 { 733 switch (hstate) { 734 case HPROBE_LEASED: 735 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 736 break; 737 case HPROBE_STABLE: 738 put_uprobe(hprobe->uprobe); 739 break; 740 case HPROBE_GONE: 741 case HPROBE_CONSUMED: 742 break; 743 default: 744 WARN(1, "hprobe invalid state %d", hstate); 745 break; 746 } 747 } 748 749 /* 750 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED) 751 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of 752 * them can win the race to perform SRCU unlocking. Whoever wins must perform 753 * SRCU unlock. 754 * 755 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe 756 * to begin with or we failed to bump its refcount and it's going away. 757 * 758 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU 759 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has 760 * an extra refcount for caller to assume and use. Otherwise, it's not 761 * guaranteed that returned uprobe has a positive refcount, so caller has to 762 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current 763 * SRCU lock region. See dup_utask(). 764 */ 765 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get) 766 { 767 enum hprobe_state hstate; 768 769 /* 770 * Caller should guarantee that return_instance is not going to be 771 * freed from under us. This can be achieved either through holding 772 * rcu_read_lock() or by owning return_instance in the first place. 773 * 774 * Underlying uprobe is itself protected from reuse by SRCU, so ensure 775 * SRCU lock is held properly. 776 */ 777 lockdep_assert(srcu_read_lock_held(&uretprobes_srcu)); 778 779 hstate = READ_ONCE(hprobe->state); 780 switch (hstate) { 781 case HPROBE_STABLE: 782 /* uprobe has positive refcount, bump refcount, if necessary */ 783 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe; 784 case HPROBE_GONE: 785 /* 786 * SRCU was unlocked earlier and we didn't manage to take 787 * uprobe refcnt, so it's effectively NULL 788 */ 789 return NULL; 790 case HPROBE_CONSUMED: 791 /* 792 * uprobe was consumed, so it's effectively NULL as far as 793 * uretprobe processing logic is concerned 794 */ 795 return NULL; 796 case HPROBE_LEASED: { 797 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe); 798 /* 799 * Try to switch hprobe state, guarding against 800 * hprobe_consume() or another hprobe_expire() racing with us. 801 * Note, if we failed to get uprobe refcount, we use special 802 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't 803 * be used as it will be freed after SRCU is unlocked. 804 */ 805 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) { 806 /* We won the race, we are the ones to unlock SRCU */ 807 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 808 return get ? get_uprobe(uprobe) : uprobe; 809 } 810 811 /* 812 * We lost the race, undo refcount bump (if it ever happened), 813 * unless caller would like an extra refcount anyways. 814 */ 815 if (uprobe && !get) 816 put_uprobe(uprobe); 817 /* 818 * Even if hprobe_consume() or another hprobe_expire() wins 819 * the state update race and unlocks SRCU from under us, we 820 * still have a guarantee that underyling uprobe won't be 821 * freed due to ongoing caller's SRCU lock region, so we can 822 * return it regardless. Also, if `get` was true, we also have 823 * an extra ref for the caller to own. This is used in dup_utask(). 824 */ 825 return uprobe; 826 } 827 default: 828 WARN(1, "unknown hprobe state %d", hstate); 829 return NULL; 830 } 831 } 832 833 static __always_inline 834 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 835 const struct uprobe *r) 836 { 837 if (l_inode < r->inode) 838 return -1; 839 840 if (l_inode > r->inode) 841 return 1; 842 843 if (l_offset < r->offset) 844 return -1; 845 846 if (l_offset > r->offset) 847 return 1; 848 849 return 0; 850 } 851 852 #define __node_2_uprobe(node) \ 853 rb_entry((node), struct uprobe, rb_node) 854 855 struct __uprobe_key { 856 struct inode *inode; 857 loff_t offset; 858 }; 859 860 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 861 { 862 const struct __uprobe_key *a = key; 863 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 864 } 865 866 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 867 { 868 struct uprobe *u = __node_2_uprobe(a); 869 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 870 } 871 872 /* 873 * Assumes being inside RCU protected region. 874 * No refcount is taken on returned uprobe. 875 */ 876 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) 877 { 878 struct __uprobe_key key = { 879 .inode = inode, 880 .offset = offset, 881 }; 882 struct rb_node *node; 883 unsigned int seq; 884 885 lockdep_assert(rcu_read_lock_trace_held()); 886 887 do { 888 seq = read_seqcount_begin(&uprobes_seqcount); 889 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); 890 /* 891 * Lockless RB-tree lookups can result only in false negatives. 892 * If the element is found, it is correct and can be returned 893 * under RCU protection. If we find nothing, we need to 894 * validate that seqcount didn't change. If it did, we have to 895 * try again as we might have missed the element (false 896 * negative). If seqcount is unchanged, search truly failed. 897 */ 898 if (node) 899 return __node_2_uprobe(node); 900 } while (read_seqcount_retry(&uprobes_seqcount, seq)); 901 902 return NULL; 903 } 904 905 /* 906 * Attempt to insert a new uprobe into uprobes_tree. 907 * 908 * If uprobe already exists (for given inode+offset), we just increment 909 * refcount of previously existing uprobe. 910 * 911 * If not, a provided new instance of uprobe is inserted into the tree (with 912 * assumed initial refcount == 1). 913 * 914 * In any case, we return a uprobe instance that ends up being in uprobes_tree. 915 * Caller has to clean up new uprobe instance, if it ended up not being 916 * inserted into the tree. 917 * 918 * We assume that uprobes_treelock is held for writing. 919 */ 920 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 921 { 922 struct rb_node *node; 923 again: 924 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 925 if (node) { 926 struct uprobe *u = __node_2_uprobe(node); 927 928 if (!try_get_uprobe(u)) { 929 rb_erase(node, &uprobes_tree); 930 RB_CLEAR_NODE(&u->rb_node); 931 goto again; 932 } 933 934 return u; 935 } 936 937 return uprobe; 938 } 939 940 /* 941 * Acquire uprobes_treelock and insert uprobe into uprobes_tree 942 * (or reuse existing one, see __insert_uprobe() comments above). 943 */ 944 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 945 { 946 struct uprobe *u; 947 948 write_lock(&uprobes_treelock); 949 write_seqcount_begin(&uprobes_seqcount); 950 u = __insert_uprobe(uprobe); 951 write_seqcount_end(&uprobes_seqcount); 952 write_unlock(&uprobes_treelock); 953 954 return u; 955 } 956 957 static void 958 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 959 { 960 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 961 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 962 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 963 (unsigned long long) cur_uprobe->ref_ctr_offset, 964 (unsigned long long) uprobe->ref_ctr_offset); 965 } 966 967 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 968 loff_t ref_ctr_offset) 969 { 970 struct uprobe *uprobe, *cur_uprobe; 971 972 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 973 if (!uprobe) 974 return ERR_PTR(-ENOMEM); 975 976 uprobe->inode = inode; 977 uprobe->offset = offset; 978 uprobe->ref_ctr_offset = ref_ctr_offset; 979 INIT_LIST_HEAD(&uprobe->consumers); 980 init_rwsem(&uprobe->register_rwsem); 981 init_rwsem(&uprobe->consumer_rwsem); 982 RB_CLEAR_NODE(&uprobe->rb_node); 983 refcount_set(&uprobe->ref, 1); 984 985 /* add to uprobes_tree, sorted on inode:offset */ 986 cur_uprobe = insert_uprobe(uprobe); 987 /* a uprobe exists for this inode:offset combination */ 988 if (cur_uprobe != uprobe) { 989 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 990 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 991 put_uprobe(cur_uprobe); 992 kfree(uprobe); 993 return ERR_PTR(-EINVAL); 994 } 995 kfree(uprobe); 996 uprobe = cur_uprobe; 997 } 998 999 return uprobe; 1000 } 1001 1002 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 1003 { 1004 static atomic64_t id; 1005 1006 down_write(&uprobe->consumer_rwsem); 1007 list_add_rcu(&uc->cons_node, &uprobe->consumers); 1008 uc->id = (__u64) atomic64_inc_return(&id); 1009 up_write(&uprobe->consumer_rwsem); 1010 } 1011 1012 /* 1013 * For uprobe @uprobe, delete the consumer @uc. 1014 * Should never be called with consumer that's not part of @uprobe->consumers. 1015 */ 1016 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 1017 { 1018 down_write(&uprobe->consumer_rwsem); 1019 list_del_rcu(&uc->cons_node); 1020 up_write(&uprobe->consumer_rwsem); 1021 } 1022 1023 static int __copy_insn(struct address_space *mapping, struct file *filp, 1024 void *insn, int nbytes, loff_t offset) 1025 { 1026 struct page *page; 1027 /* 1028 * Ensure that the page that has the original instruction is populated 1029 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 1030 * see uprobe_register(). 1031 */ 1032 if (mapping->a_ops->read_folio) 1033 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 1034 else 1035 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 1036 if (IS_ERR(page)) 1037 return PTR_ERR(page); 1038 1039 copy_from_page(page, offset, insn, nbytes); 1040 put_page(page); 1041 1042 return 0; 1043 } 1044 1045 static int copy_insn(struct uprobe *uprobe, struct file *filp) 1046 { 1047 struct address_space *mapping = uprobe->inode->i_mapping; 1048 loff_t offs = uprobe->offset; 1049 void *insn = &uprobe->arch.insn; 1050 int size = sizeof(uprobe->arch.insn); 1051 int len, err = -EIO; 1052 1053 /* Copy only available bytes, -EIO if nothing was read */ 1054 do { 1055 if (offs >= i_size_read(uprobe->inode)) 1056 break; 1057 1058 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 1059 err = __copy_insn(mapping, filp, insn, len, offs); 1060 if (err) 1061 break; 1062 1063 insn += len; 1064 offs += len; 1065 size -= len; 1066 } while (size); 1067 1068 return err; 1069 } 1070 1071 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 1072 struct mm_struct *mm, unsigned long vaddr) 1073 { 1074 int ret = 0; 1075 1076 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1077 return ret; 1078 1079 /* TODO: move this into _register, until then we abuse this sem. */ 1080 down_write(&uprobe->consumer_rwsem); 1081 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1082 goto out; 1083 1084 ret = copy_insn(uprobe, file); 1085 if (ret) 1086 goto out; 1087 1088 ret = -ENOTSUPP; 1089 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 1090 goto out; 1091 1092 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 1093 if (ret) 1094 goto out; 1095 1096 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 1097 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 1098 1099 out: 1100 up_write(&uprobe->consumer_rwsem); 1101 1102 return ret; 1103 } 1104 1105 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) 1106 { 1107 return !uc->filter || uc->filter(uc, mm); 1108 } 1109 1110 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) 1111 { 1112 struct uprobe_consumer *uc; 1113 bool ret = false; 1114 1115 down_read(&uprobe->consumer_rwsem); 1116 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1117 ret = consumer_filter(uc, mm); 1118 if (ret) 1119 break; 1120 } 1121 up_read(&uprobe->consumer_rwsem); 1122 1123 return ret; 1124 } 1125 1126 static int 1127 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 1128 struct vm_area_struct *vma, unsigned long vaddr) 1129 { 1130 bool first_uprobe; 1131 int ret; 1132 1133 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 1134 if (ret) 1135 return ret; 1136 1137 /* 1138 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 1139 * the task can hit this breakpoint right after __replace_page(). 1140 */ 1141 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 1142 if (first_uprobe) 1143 set_bit(MMF_HAS_UPROBES, &mm->flags); 1144 1145 ret = set_swbp(&uprobe->arch, mm, vaddr); 1146 if (!ret) 1147 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 1148 else if (first_uprobe) 1149 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1150 1151 return ret; 1152 } 1153 1154 static int 1155 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 1156 { 1157 set_bit(MMF_RECALC_UPROBES, &mm->flags); 1158 return set_orig_insn(&uprobe->arch, mm, vaddr); 1159 } 1160 1161 struct map_info { 1162 struct map_info *next; 1163 struct mm_struct *mm; 1164 unsigned long vaddr; 1165 }; 1166 1167 static inline struct map_info *free_map_info(struct map_info *info) 1168 { 1169 struct map_info *next = info->next; 1170 kfree(info); 1171 return next; 1172 } 1173 1174 static struct map_info * 1175 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 1176 { 1177 unsigned long pgoff = offset >> PAGE_SHIFT; 1178 struct vm_area_struct *vma; 1179 struct map_info *curr = NULL; 1180 struct map_info *prev = NULL; 1181 struct map_info *info; 1182 int more = 0; 1183 1184 again: 1185 i_mmap_lock_read(mapping); 1186 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1187 if (!valid_vma(vma, is_register)) 1188 continue; 1189 1190 if (!prev && !more) { 1191 /* 1192 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1193 * reclaim. This is optimistic, no harm done if it fails. 1194 */ 1195 prev = kmalloc(sizeof(struct map_info), 1196 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1197 if (prev) 1198 prev->next = NULL; 1199 } 1200 if (!prev) { 1201 more++; 1202 continue; 1203 } 1204 1205 if (!mmget_not_zero(vma->vm_mm)) 1206 continue; 1207 1208 info = prev; 1209 prev = prev->next; 1210 info->next = curr; 1211 curr = info; 1212 1213 info->mm = vma->vm_mm; 1214 info->vaddr = offset_to_vaddr(vma, offset); 1215 } 1216 i_mmap_unlock_read(mapping); 1217 1218 if (!more) 1219 goto out; 1220 1221 prev = curr; 1222 while (curr) { 1223 mmput(curr->mm); 1224 curr = curr->next; 1225 } 1226 1227 do { 1228 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1229 if (!info) { 1230 curr = ERR_PTR(-ENOMEM); 1231 goto out; 1232 } 1233 info->next = prev; 1234 prev = info; 1235 } while (--more); 1236 1237 goto again; 1238 out: 1239 while (prev) 1240 prev = free_map_info(prev); 1241 return curr; 1242 } 1243 1244 static int 1245 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1246 { 1247 bool is_register = !!new; 1248 struct map_info *info; 1249 int err = 0; 1250 1251 percpu_down_write(&dup_mmap_sem); 1252 info = build_map_info(uprobe->inode->i_mapping, 1253 uprobe->offset, is_register); 1254 if (IS_ERR(info)) { 1255 err = PTR_ERR(info); 1256 goto out; 1257 } 1258 1259 while (info) { 1260 struct mm_struct *mm = info->mm; 1261 struct vm_area_struct *vma; 1262 1263 if (err && is_register) 1264 goto free; 1265 /* 1266 * We take mmap_lock for writing to avoid the race with 1267 * find_active_uprobe_rcu() which takes mmap_lock for reading. 1268 * Thus this install_breakpoint() can not make 1269 * is_trap_at_addr() true right after find_uprobe_rcu() 1270 * returns NULL in find_active_uprobe_rcu(). 1271 */ 1272 mmap_write_lock(mm); 1273 if (check_stable_address_space(mm)) 1274 goto unlock; 1275 1276 vma = find_vma(mm, info->vaddr); 1277 if (!vma || !valid_vma(vma, is_register) || 1278 file_inode(vma->vm_file) != uprobe->inode) 1279 goto unlock; 1280 1281 if (vma->vm_start > info->vaddr || 1282 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1283 goto unlock; 1284 1285 if (is_register) { 1286 /* consult only the "caller", new consumer. */ 1287 if (consumer_filter(new, mm)) 1288 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1289 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1290 if (!filter_chain(uprobe, mm)) 1291 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1292 } 1293 1294 unlock: 1295 mmap_write_unlock(mm); 1296 free: 1297 mmput(mm); 1298 info = free_map_info(info); 1299 } 1300 out: 1301 percpu_up_write(&dup_mmap_sem); 1302 return err; 1303 } 1304 1305 /** 1306 * uprobe_unregister_nosync - unregister an already registered probe. 1307 * @uprobe: uprobe to remove 1308 * @uc: identify which probe if multiple probes are colocated. 1309 */ 1310 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) 1311 { 1312 int err; 1313 1314 down_write(&uprobe->register_rwsem); 1315 consumer_del(uprobe, uc); 1316 err = register_for_each_vma(uprobe, NULL); 1317 up_write(&uprobe->register_rwsem); 1318 1319 /* TODO : cant unregister? schedule a worker thread */ 1320 if (unlikely(err)) { 1321 uprobe_warn(current, "unregister, leaking uprobe"); 1322 return; 1323 } 1324 1325 put_uprobe(uprobe); 1326 } 1327 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); 1328 1329 void uprobe_unregister_sync(void) 1330 { 1331 /* 1332 * Now that handler_chain() and handle_uretprobe_chain() iterate over 1333 * uprobe->consumers list under RCU protection without holding 1334 * uprobe->register_rwsem, we need to wait for RCU grace period to 1335 * make sure that we can't call into just unregistered 1336 * uprobe_consumer's callbacks anymore. If we don't do that, fast and 1337 * unlucky enough caller can free consumer's memory and cause 1338 * handler_chain() or handle_uretprobe_chain() to do an use-after-free. 1339 */ 1340 synchronize_rcu_tasks_trace(); 1341 synchronize_srcu(&uretprobes_srcu); 1342 } 1343 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); 1344 1345 /** 1346 * uprobe_register - register a probe 1347 * @inode: the file in which the probe has to be placed. 1348 * @offset: offset from the start of the file. 1349 * @ref_ctr_offset: offset of SDT marker / reference counter 1350 * @uc: information on howto handle the probe.. 1351 * 1352 * Apart from the access refcount, uprobe_register() takes a creation 1353 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1354 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1355 * tuple). Creation refcount stops uprobe_unregister from freeing the 1356 * @uprobe even before the register operation is complete. Creation 1357 * refcount is released when the last @uc for the @uprobe 1358 * unregisters. Caller of uprobe_register() is required to keep @inode 1359 * (and the containing mount) referenced. 1360 * 1361 * Return: pointer to the new uprobe on success or an ERR_PTR on failure. 1362 */ 1363 struct uprobe *uprobe_register(struct inode *inode, 1364 loff_t offset, loff_t ref_ctr_offset, 1365 struct uprobe_consumer *uc) 1366 { 1367 struct uprobe *uprobe; 1368 int ret; 1369 1370 /* Uprobe must have at least one set consumer */ 1371 if (!uc->handler && !uc->ret_handler) 1372 return ERR_PTR(-EINVAL); 1373 1374 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1375 if (!inode->i_mapping->a_ops->read_folio && 1376 !shmem_mapping(inode->i_mapping)) 1377 return ERR_PTR(-EIO); 1378 /* Racy, just to catch the obvious mistakes */ 1379 if (offset > i_size_read(inode)) 1380 return ERR_PTR(-EINVAL); 1381 1382 /* 1383 * This ensures that copy_from_page(), copy_to_page() and 1384 * __update_ref_ctr() can't cross page boundary. 1385 */ 1386 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1387 return ERR_PTR(-EINVAL); 1388 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1389 return ERR_PTR(-EINVAL); 1390 1391 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1392 if (IS_ERR(uprobe)) 1393 return uprobe; 1394 1395 down_write(&uprobe->register_rwsem); 1396 consumer_add(uprobe, uc); 1397 ret = register_for_each_vma(uprobe, uc); 1398 up_write(&uprobe->register_rwsem); 1399 1400 if (ret) { 1401 uprobe_unregister_nosync(uprobe, uc); 1402 /* 1403 * Registration might have partially succeeded, so we can have 1404 * this consumer being called right at this time. We need to 1405 * sync here. It's ok, it's unlikely slow path. 1406 */ 1407 uprobe_unregister_sync(); 1408 return ERR_PTR(ret); 1409 } 1410 1411 return uprobe; 1412 } 1413 EXPORT_SYMBOL_GPL(uprobe_register); 1414 1415 /** 1416 * uprobe_apply - add or remove the breakpoints according to @uc->filter 1417 * @uprobe: uprobe which "owns" the breakpoint 1418 * @uc: consumer which wants to add more or remove some breakpoints 1419 * @add: add or remove the breakpoints 1420 * Return: 0 on success or negative error code. 1421 */ 1422 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) 1423 { 1424 struct uprobe_consumer *con; 1425 int ret = -ENOENT; 1426 1427 down_write(&uprobe->register_rwsem); 1428 1429 rcu_read_lock_trace(); 1430 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1431 if (con == uc) { 1432 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1433 break; 1434 } 1435 } 1436 rcu_read_unlock_trace(); 1437 1438 up_write(&uprobe->register_rwsem); 1439 1440 return ret; 1441 } 1442 1443 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1444 { 1445 VMA_ITERATOR(vmi, mm, 0); 1446 struct vm_area_struct *vma; 1447 int err = 0; 1448 1449 mmap_read_lock(mm); 1450 for_each_vma(vmi, vma) { 1451 unsigned long vaddr; 1452 loff_t offset; 1453 1454 if (!valid_vma(vma, false) || 1455 file_inode(vma->vm_file) != uprobe->inode) 1456 continue; 1457 1458 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1459 if (uprobe->offset < offset || 1460 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1461 continue; 1462 1463 vaddr = offset_to_vaddr(vma, uprobe->offset); 1464 err |= remove_breakpoint(uprobe, mm, vaddr); 1465 } 1466 mmap_read_unlock(mm); 1467 1468 return err; 1469 } 1470 1471 static struct rb_node * 1472 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1473 { 1474 struct rb_node *n = uprobes_tree.rb_node; 1475 1476 while (n) { 1477 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1478 1479 if (inode < u->inode) { 1480 n = n->rb_left; 1481 } else if (inode > u->inode) { 1482 n = n->rb_right; 1483 } else { 1484 if (max < u->offset) 1485 n = n->rb_left; 1486 else if (min > u->offset) 1487 n = n->rb_right; 1488 else 1489 break; 1490 } 1491 } 1492 1493 return n; 1494 } 1495 1496 /* 1497 * For a given range in vma, build a list of probes that need to be inserted. 1498 */ 1499 static void build_probe_list(struct inode *inode, 1500 struct vm_area_struct *vma, 1501 unsigned long start, unsigned long end, 1502 struct list_head *head) 1503 { 1504 loff_t min, max; 1505 struct rb_node *n, *t; 1506 struct uprobe *u; 1507 1508 INIT_LIST_HEAD(head); 1509 min = vaddr_to_offset(vma, start); 1510 max = min + (end - start) - 1; 1511 1512 read_lock(&uprobes_treelock); 1513 n = find_node_in_range(inode, min, max); 1514 if (n) { 1515 for (t = n; t; t = rb_prev(t)) { 1516 u = rb_entry(t, struct uprobe, rb_node); 1517 if (u->inode != inode || u->offset < min) 1518 break; 1519 /* if uprobe went away, it's safe to ignore it */ 1520 if (try_get_uprobe(u)) 1521 list_add(&u->pending_list, head); 1522 } 1523 for (t = n; (t = rb_next(t)); ) { 1524 u = rb_entry(t, struct uprobe, rb_node); 1525 if (u->inode != inode || u->offset > max) 1526 break; 1527 /* if uprobe went away, it's safe to ignore it */ 1528 if (try_get_uprobe(u)) 1529 list_add(&u->pending_list, head); 1530 } 1531 } 1532 read_unlock(&uprobes_treelock); 1533 } 1534 1535 /* @vma contains reference counter, not the probed instruction. */ 1536 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1537 { 1538 struct list_head *pos, *q; 1539 struct delayed_uprobe *du; 1540 unsigned long vaddr; 1541 int ret = 0, err = 0; 1542 1543 mutex_lock(&delayed_uprobe_lock); 1544 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1545 du = list_entry(pos, struct delayed_uprobe, list); 1546 1547 if (du->mm != vma->vm_mm || 1548 !valid_ref_ctr_vma(du->uprobe, vma)) 1549 continue; 1550 1551 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1552 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1553 if (ret) { 1554 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1555 if (!err) 1556 err = ret; 1557 } 1558 delayed_uprobe_delete(du); 1559 } 1560 mutex_unlock(&delayed_uprobe_lock); 1561 return err; 1562 } 1563 1564 /* 1565 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1566 * 1567 * Currently we ignore all errors and always return 0, the callers 1568 * can't handle the failure anyway. 1569 */ 1570 int uprobe_mmap(struct vm_area_struct *vma) 1571 { 1572 struct list_head tmp_list; 1573 struct uprobe *uprobe, *u; 1574 struct inode *inode; 1575 1576 if (no_uprobe_events()) 1577 return 0; 1578 1579 if (vma->vm_file && 1580 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1581 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1582 delayed_ref_ctr_inc(vma); 1583 1584 if (!valid_vma(vma, true)) 1585 return 0; 1586 1587 inode = file_inode(vma->vm_file); 1588 if (!inode) 1589 return 0; 1590 1591 mutex_lock(uprobes_mmap_hash(inode)); 1592 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1593 /* 1594 * We can race with uprobe_unregister(), this uprobe can be already 1595 * removed. But in this case filter_chain() must return false, all 1596 * consumers have gone away. 1597 */ 1598 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1599 if (!fatal_signal_pending(current) && 1600 filter_chain(uprobe, vma->vm_mm)) { 1601 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1602 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1603 } 1604 put_uprobe(uprobe); 1605 } 1606 mutex_unlock(uprobes_mmap_hash(inode)); 1607 1608 return 0; 1609 } 1610 1611 static bool 1612 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1613 { 1614 loff_t min, max; 1615 struct inode *inode; 1616 struct rb_node *n; 1617 1618 inode = file_inode(vma->vm_file); 1619 1620 min = vaddr_to_offset(vma, start); 1621 max = min + (end - start) - 1; 1622 1623 read_lock(&uprobes_treelock); 1624 n = find_node_in_range(inode, min, max); 1625 read_unlock(&uprobes_treelock); 1626 1627 return !!n; 1628 } 1629 1630 /* 1631 * Called in context of a munmap of a vma. 1632 */ 1633 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1634 { 1635 if (no_uprobe_events() || !valid_vma(vma, false)) 1636 return; 1637 1638 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1639 return; 1640 1641 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1642 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1643 return; 1644 1645 if (vma_has_uprobes(vma, start, end)) 1646 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1647 } 1648 1649 static vm_fault_t xol_fault(const struct vm_special_mapping *sm, 1650 struct vm_area_struct *vma, struct vm_fault *vmf) 1651 { 1652 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; 1653 1654 vmf->page = area->page; 1655 get_page(vmf->page); 1656 return 0; 1657 } 1658 1659 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) 1660 { 1661 return -EPERM; 1662 } 1663 1664 static const struct vm_special_mapping xol_mapping = { 1665 .name = "[uprobes]", 1666 .fault = xol_fault, 1667 .mremap = xol_mremap, 1668 }; 1669 1670 /* Slot allocation for XOL */ 1671 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1672 { 1673 struct vm_area_struct *vma; 1674 int ret; 1675 1676 if (mmap_write_lock_killable(mm)) 1677 return -EINTR; 1678 1679 if (mm->uprobes_state.xol_area) { 1680 ret = -EALREADY; 1681 goto fail; 1682 } 1683 1684 if (!area->vaddr) { 1685 /* Try to map as high as possible, this is only a hint. */ 1686 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1687 PAGE_SIZE, 0, 0); 1688 if (IS_ERR_VALUE(area->vaddr)) { 1689 ret = area->vaddr; 1690 goto fail; 1691 } 1692 } 1693 1694 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1695 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1696 &xol_mapping); 1697 if (IS_ERR(vma)) { 1698 ret = PTR_ERR(vma); 1699 goto fail; 1700 } 1701 1702 ret = 0; 1703 /* pairs with get_xol_area() */ 1704 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1705 fail: 1706 mmap_write_unlock(mm); 1707 1708 return ret; 1709 } 1710 1711 void * __weak arch_uprobe_trampoline(unsigned long *psize) 1712 { 1713 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1714 1715 *psize = UPROBE_SWBP_INSN_SIZE; 1716 return &insn; 1717 } 1718 1719 static struct xol_area *__create_xol_area(unsigned long vaddr) 1720 { 1721 struct mm_struct *mm = current->mm; 1722 unsigned long insns_size; 1723 struct xol_area *area; 1724 void *insns; 1725 1726 area = kzalloc(sizeof(*area), GFP_KERNEL); 1727 if (unlikely(!area)) 1728 goto out; 1729 1730 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1731 GFP_KERNEL); 1732 if (!area->bitmap) 1733 goto free_area; 1734 1735 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1736 if (!area->page) 1737 goto free_bitmap; 1738 1739 area->vaddr = vaddr; 1740 init_waitqueue_head(&area->wq); 1741 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1742 set_bit(0, area->bitmap); 1743 insns = arch_uprobe_trampoline(&insns_size); 1744 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); 1745 1746 if (!xol_add_vma(mm, area)) 1747 return area; 1748 1749 __free_page(area->page); 1750 free_bitmap: 1751 kfree(area->bitmap); 1752 free_area: 1753 kfree(area); 1754 out: 1755 return NULL; 1756 } 1757 1758 /* 1759 * get_xol_area - Allocate process's xol_area if necessary. 1760 * This area will be used for storing instructions for execution out of line. 1761 * 1762 * Returns the allocated area or NULL. 1763 */ 1764 static struct xol_area *get_xol_area(void) 1765 { 1766 struct mm_struct *mm = current->mm; 1767 struct xol_area *area; 1768 1769 if (!mm->uprobes_state.xol_area) 1770 __create_xol_area(0); 1771 1772 /* Pairs with xol_add_vma() smp_store_release() */ 1773 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1774 return area; 1775 } 1776 1777 /* 1778 * uprobe_clear_state - Free the area allocated for slots. 1779 */ 1780 void uprobe_clear_state(struct mm_struct *mm) 1781 { 1782 struct xol_area *area = mm->uprobes_state.xol_area; 1783 1784 mutex_lock(&delayed_uprobe_lock); 1785 delayed_uprobe_remove(NULL, mm); 1786 mutex_unlock(&delayed_uprobe_lock); 1787 1788 if (!area) 1789 return; 1790 1791 put_page(area->page); 1792 kfree(area->bitmap); 1793 kfree(area); 1794 } 1795 1796 void uprobe_start_dup_mmap(void) 1797 { 1798 percpu_down_read(&dup_mmap_sem); 1799 } 1800 1801 void uprobe_end_dup_mmap(void) 1802 { 1803 percpu_up_read(&dup_mmap_sem); 1804 } 1805 1806 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1807 { 1808 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1809 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1810 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1811 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1812 } 1813 } 1814 1815 static unsigned long xol_get_slot_nr(struct xol_area *area) 1816 { 1817 unsigned long slot_nr; 1818 1819 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1820 if (slot_nr < UINSNS_PER_PAGE) { 1821 if (!test_and_set_bit(slot_nr, area->bitmap)) 1822 return slot_nr; 1823 } 1824 1825 return UINSNS_PER_PAGE; 1826 } 1827 1828 /* 1829 * xol_get_insn_slot - allocate a slot for xol. 1830 */ 1831 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask) 1832 { 1833 struct xol_area *area = get_xol_area(); 1834 unsigned long slot_nr; 1835 1836 if (!area) 1837 return false; 1838 1839 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE); 1840 1841 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES; 1842 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr, 1843 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1844 return true; 1845 } 1846 1847 /* 1848 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot() 1849 */ 1850 static void xol_free_insn_slot(struct uprobe_task *utask) 1851 { 1852 struct xol_area *area = current->mm->uprobes_state.xol_area; 1853 unsigned long offset = utask->xol_vaddr - area->vaddr; 1854 unsigned int slot_nr; 1855 1856 utask->xol_vaddr = 0; 1857 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */ 1858 if (WARN_ON_ONCE(offset >= PAGE_SIZE)) 1859 return; 1860 1861 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1862 clear_bit(slot_nr, area->bitmap); 1863 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1864 if (waitqueue_active(&area->wq)) 1865 wake_up(&area->wq); 1866 } 1867 1868 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1869 void *src, unsigned long len) 1870 { 1871 /* Initialize the slot */ 1872 copy_to_page(page, vaddr, src, len); 1873 1874 /* 1875 * We probably need flush_icache_user_page() but it needs vma. 1876 * This should work on most of architectures by default. If 1877 * architecture needs to do something different it can define 1878 * its own version of the function. 1879 */ 1880 flush_dcache_page(page); 1881 } 1882 1883 /** 1884 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1885 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1886 * instruction. 1887 * Return the address of the breakpoint instruction. 1888 */ 1889 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1890 { 1891 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1892 } 1893 1894 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1895 { 1896 struct uprobe_task *utask = current->utask; 1897 1898 if (unlikely(utask && utask->active_uprobe)) 1899 return utask->vaddr; 1900 1901 return instruction_pointer(regs); 1902 } 1903 1904 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri) 1905 { 1906 ri->cons_cnt = 0; 1907 ri->next = utask->ri_pool; 1908 utask->ri_pool = ri; 1909 } 1910 1911 static struct return_instance *ri_pool_pop(struct uprobe_task *utask) 1912 { 1913 struct return_instance *ri = utask->ri_pool; 1914 1915 if (likely(ri)) 1916 utask->ri_pool = ri->next; 1917 1918 return ri; 1919 } 1920 1921 static void ri_free(struct return_instance *ri) 1922 { 1923 kfree(ri->extra_consumers); 1924 kfree_rcu(ri, rcu); 1925 } 1926 1927 static void free_ret_instance(struct uprobe_task *utask, 1928 struct return_instance *ri, bool cleanup_hprobe) 1929 { 1930 unsigned seq; 1931 1932 if (cleanup_hprobe) { 1933 enum hprobe_state hstate; 1934 1935 (void)hprobe_consume(&ri->hprobe, &hstate); 1936 hprobe_finalize(&ri->hprobe, hstate); 1937 } 1938 1939 /* 1940 * At this point return_instance is unlinked from utask's 1941 * return_instances list and this has become visible to ri_timer(). 1942 * If seqcount now indicates that ri_timer's return instance 1943 * processing loop isn't active, we can return ri into the pool of 1944 * to-be-reused return instances for future uretprobes. If ri_timer() 1945 * happens to be running right now, though, we fallback to safety and 1946 * just perform RCU-delated freeing of ri. 1947 */ 1948 if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) { 1949 /* immediate reuse of ri without RCU GP is OK */ 1950 ri_pool_push(utask, ri); 1951 } else { 1952 /* we might be racing with ri_timer(), so play it safe */ 1953 ri_free(ri); 1954 } 1955 } 1956 1957 /* 1958 * Called with no locks held. 1959 * Called in context of an exiting or an exec-ing thread. 1960 */ 1961 void uprobe_free_utask(struct task_struct *t) 1962 { 1963 struct uprobe_task *utask = t->utask; 1964 struct return_instance *ri, *ri_next; 1965 1966 if (!utask) 1967 return; 1968 1969 t->utask = NULL; 1970 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr); 1971 1972 timer_delete_sync(&utask->ri_timer); 1973 1974 ri = utask->return_instances; 1975 while (ri) { 1976 ri_next = ri->next; 1977 free_ret_instance(utask, ri, true /* cleanup_hprobe */); 1978 ri = ri_next; 1979 } 1980 1981 /* free_ret_instance() above might add to ri_pool, so this loop should come last */ 1982 ri = utask->ri_pool; 1983 while (ri) { 1984 ri_next = ri->next; 1985 ri_free(ri); 1986 ri = ri_next; 1987 } 1988 1989 kfree(utask); 1990 } 1991 1992 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */ 1993 1994 #define for_each_ret_instance_rcu(pos, head) \ 1995 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next)) 1996 1997 static void ri_timer(struct timer_list *timer) 1998 { 1999 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer); 2000 struct return_instance *ri; 2001 2002 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */ 2003 guard(srcu)(&uretprobes_srcu); 2004 /* RCU protects return_instance from freeing. */ 2005 guard(rcu)(); 2006 2007 write_seqcount_begin(&utask->ri_seqcount); 2008 2009 for_each_ret_instance_rcu(ri, utask->return_instances) 2010 hprobe_expire(&ri->hprobe, false); 2011 2012 write_seqcount_end(&utask->ri_seqcount); 2013 } 2014 2015 static struct uprobe_task *alloc_utask(void) 2016 { 2017 struct uprobe_task *utask; 2018 2019 utask = kzalloc(sizeof(*utask), GFP_KERNEL); 2020 if (!utask) 2021 return NULL; 2022 2023 timer_setup(&utask->ri_timer, ri_timer, 0); 2024 seqcount_init(&utask->ri_seqcount); 2025 2026 return utask; 2027 } 2028 2029 /* 2030 * Allocate a uprobe_task object for the task if necessary. 2031 * Called when the thread hits a breakpoint. 2032 * 2033 * Returns: 2034 * - pointer to new uprobe_task on success 2035 * - NULL otherwise 2036 */ 2037 static struct uprobe_task *get_utask(void) 2038 { 2039 if (!current->utask) 2040 current->utask = alloc_utask(); 2041 return current->utask; 2042 } 2043 2044 static struct return_instance *alloc_return_instance(struct uprobe_task *utask) 2045 { 2046 struct return_instance *ri; 2047 2048 ri = ri_pool_pop(utask); 2049 if (ri) 2050 return ri; 2051 2052 ri = kzalloc(sizeof(*ri), GFP_KERNEL); 2053 if (!ri) 2054 return ZERO_SIZE_PTR; 2055 2056 return ri; 2057 } 2058 2059 static struct return_instance *dup_return_instance(struct return_instance *old) 2060 { 2061 struct return_instance *ri; 2062 2063 ri = kmemdup(old, sizeof(*ri), GFP_KERNEL); 2064 if (!ri) 2065 return NULL; 2066 2067 if (unlikely(old->cons_cnt > 1)) { 2068 ri->extra_consumers = kmemdup(old->extra_consumers, 2069 sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1), 2070 GFP_KERNEL); 2071 if (!ri->extra_consumers) { 2072 kfree(ri); 2073 return NULL; 2074 } 2075 } 2076 2077 return ri; 2078 } 2079 2080 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 2081 { 2082 struct uprobe_task *n_utask; 2083 struct return_instance **p, *o, *n; 2084 struct uprobe *uprobe; 2085 2086 n_utask = alloc_utask(); 2087 if (!n_utask) 2088 return -ENOMEM; 2089 t->utask = n_utask; 2090 2091 /* protect uprobes from freeing, we'll need try_get_uprobe() them */ 2092 guard(srcu)(&uretprobes_srcu); 2093 2094 p = &n_utask->return_instances; 2095 for (o = o_utask->return_instances; o; o = o->next) { 2096 n = dup_return_instance(o); 2097 if (!n) 2098 return -ENOMEM; 2099 2100 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */ 2101 uprobe = hprobe_expire(&o->hprobe, true); 2102 2103 /* 2104 * New utask will have stable properly refcounted uprobe or 2105 * NULL. Even if we failed to get refcounted uprobe, we still 2106 * need to preserve full set of return_instances for proper 2107 * uretprobe handling and nesting in forked task. 2108 */ 2109 hprobe_init_stable(&n->hprobe, uprobe); 2110 2111 n->next = NULL; 2112 rcu_assign_pointer(*p, n); 2113 p = &n->next; 2114 2115 n_utask->depth++; 2116 } 2117 2118 return 0; 2119 } 2120 2121 static void dup_xol_work(struct callback_head *work) 2122 { 2123 if (current->flags & PF_EXITING) 2124 return; 2125 2126 if (!__create_xol_area(current->utask->dup_xol_addr) && 2127 !fatal_signal_pending(current)) 2128 uprobe_warn(current, "dup xol area"); 2129 } 2130 2131 /* 2132 * Called in context of a new clone/fork from copy_process. 2133 */ 2134 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 2135 { 2136 struct uprobe_task *utask = current->utask; 2137 struct mm_struct *mm = current->mm; 2138 struct xol_area *area; 2139 2140 t->utask = NULL; 2141 2142 if (!utask || !utask->return_instances) 2143 return; 2144 2145 if (mm == t->mm && !(flags & CLONE_VFORK)) 2146 return; 2147 2148 if (dup_utask(t, utask)) 2149 return uprobe_warn(t, "dup ret instances"); 2150 2151 /* The task can fork() after dup_xol_work() fails */ 2152 area = mm->uprobes_state.xol_area; 2153 if (!area) 2154 return uprobe_warn(t, "dup xol area"); 2155 2156 if (mm == t->mm) 2157 return; 2158 2159 t->utask->dup_xol_addr = area->vaddr; 2160 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 2161 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 2162 } 2163 2164 /* 2165 * Current area->vaddr notion assume the trampoline address is always 2166 * equal area->vaddr. 2167 * 2168 * Returns -1 in case the xol_area is not allocated. 2169 */ 2170 unsigned long uprobe_get_trampoline_vaddr(void) 2171 { 2172 struct xol_area *area; 2173 unsigned long trampoline_vaddr = -1; 2174 2175 /* Pairs with xol_add_vma() smp_store_release() */ 2176 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 2177 if (area) 2178 trampoline_vaddr = area->vaddr; 2179 2180 return trampoline_vaddr; 2181 } 2182 2183 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 2184 struct pt_regs *regs) 2185 { 2186 struct return_instance *ri = utask->return_instances, *ri_next; 2187 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 2188 2189 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 2190 ri_next = ri->next; 2191 rcu_assign_pointer(utask->return_instances, ri_next); 2192 utask->depth--; 2193 2194 free_ret_instance(utask, ri, true /* cleanup_hprobe */); 2195 ri = ri_next; 2196 } 2197 } 2198 2199 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs, 2200 struct return_instance *ri) 2201 { 2202 struct uprobe_task *utask = current->utask; 2203 unsigned long orig_ret_vaddr, trampoline_vaddr; 2204 bool chained; 2205 int srcu_idx; 2206 2207 if (!get_xol_area()) 2208 goto free; 2209 2210 if (utask->depth >= MAX_URETPROBE_DEPTH) { 2211 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 2212 " nestedness limit pid/tgid=%d/%d\n", 2213 current->pid, current->tgid); 2214 goto free; 2215 } 2216 2217 trampoline_vaddr = uprobe_get_trampoline_vaddr(); 2218 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 2219 if (orig_ret_vaddr == -1) 2220 goto free; 2221 2222 /* drop the entries invalidated by longjmp() */ 2223 chained = (orig_ret_vaddr == trampoline_vaddr); 2224 cleanup_return_instances(utask, chained, regs); 2225 2226 /* 2227 * We don't want to keep trampoline address in stack, rather keep the 2228 * original return address of first caller thru all the consequent 2229 * instances. This also makes breakpoint unwrapping easier. 2230 */ 2231 if (chained) { 2232 if (!utask->return_instances) { 2233 /* 2234 * This situation is not possible. Likely we have an 2235 * attack from user-space. 2236 */ 2237 uprobe_warn(current, "handle tail call"); 2238 goto free; 2239 } 2240 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 2241 } 2242 2243 /* __srcu_read_lock() because SRCU lock survives switch to user space */ 2244 srcu_idx = __srcu_read_lock(&uretprobes_srcu); 2245 2246 ri->func = instruction_pointer(regs); 2247 ri->stack = user_stack_pointer(regs); 2248 ri->orig_ret_vaddr = orig_ret_vaddr; 2249 ri->chained = chained; 2250 2251 utask->depth++; 2252 2253 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx); 2254 ri->next = utask->return_instances; 2255 rcu_assign_pointer(utask->return_instances, ri); 2256 2257 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD); 2258 2259 return; 2260 free: 2261 ri_free(ri); 2262 } 2263 2264 /* Prepare to single-step probed instruction out of line. */ 2265 static int 2266 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 2267 { 2268 struct uprobe_task *utask = current->utask; 2269 int err; 2270 2271 if (!try_get_uprobe(uprobe)) 2272 return -EINVAL; 2273 2274 if (!xol_get_insn_slot(uprobe, utask)) { 2275 err = -ENOMEM; 2276 goto err_out; 2277 } 2278 2279 utask->vaddr = bp_vaddr; 2280 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2281 if (unlikely(err)) { 2282 xol_free_insn_slot(utask); 2283 goto err_out; 2284 } 2285 2286 utask->active_uprobe = uprobe; 2287 utask->state = UTASK_SSTEP; 2288 return 0; 2289 err_out: 2290 put_uprobe(uprobe); 2291 return err; 2292 } 2293 2294 /* 2295 * If we are singlestepping, then ensure this thread is not connected to 2296 * non-fatal signals until completion of singlestep. When xol insn itself 2297 * triggers the signal, restart the original insn even if the task is 2298 * already SIGKILL'ed (since coredump should report the correct ip). This 2299 * is even more important if the task has a handler for SIGSEGV/etc, The 2300 * _same_ instruction should be repeated again after return from the signal 2301 * handler, and SSTEP can never finish in this case. 2302 */ 2303 bool uprobe_deny_signal(void) 2304 { 2305 struct task_struct *t = current; 2306 struct uprobe_task *utask = t->utask; 2307 2308 if (likely(!utask || !utask->active_uprobe)) 2309 return false; 2310 2311 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2312 2313 if (task_sigpending(t)) { 2314 spin_lock_irq(&t->sighand->siglock); 2315 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2316 spin_unlock_irq(&t->sighand->siglock); 2317 2318 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2319 utask->state = UTASK_SSTEP_TRAPPED; 2320 set_tsk_thread_flag(t, TIF_UPROBE); 2321 } 2322 } 2323 2324 return true; 2325 } 2326 2327 static void mmf_recalc_uprobes(struct mm_struct *mm) 2328 { 2329 VMA_ITERATOR(vmi, mm, 0); 2330 struct vm_area_struct *vma; 2331 2332 for_each_vma(vmi, vma) { 2333 if (!valid_vma(vma, false)) 2334 continue; 2335 /* 2336 * This is not strictly accurate, we can race with 2337 * uprobe_unregister() and see the already removed 2338 * uprobe if delete_uprobe() was not yet called. 2339 * Or this uprobe can be filtered out. 2340 */ 2341 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2342 return; 2343 } 2344 2345 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2346 } 2347 2348 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2349 { 2350 struct page *page; 2351 uprobe_opcode_t opcode; 2352 int result; 2353 2354 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2355 return -EINVAL; 2356 2357 pagefault_disable(); 2358 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2359 pagefault_enable(); 2360 2361 if (likely(result == 0)) 2362 goto out; 2363 2364 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); 2365 if (result < 0) 2366 return result; 2367 2368 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2369 put_page(page); 2370 out: 2371 /* This needs to return true for any variant of the trap insn */ 2372 return is_trap_insn(&opcode); 2373 } 2374 2375 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr) 2376 { 2377 struct mm_struct *mm = current->mm; 2378 struct uprobe *uprobe = NULL; 2379 struct vm_area_struct *vma; 2380 struct file *vm_file; 2381 loff_t offset; 2382 unsigned int seq; 2383 2384 guard(rcu)(); 2385 2386 if (!mmap_lock_speculate_try_begin(mm, &seq)) 2387 return NULL; 2388 2389 vma = vma_lookup(mm, bp_vaddr); 2390 if (!vma) 2391 return NULL; 2392 2393 /* 2394 * vm_file memory can be reused for another instance of struct file, 2395 * but can't be freed from under us, so it's safe to read fields from 2396 * it, even if the values are some garbage values; ultimately 2397 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure 2398 * that whatever we speculatively found is correct 2399 */ 2400 vm_file = READ_ONCE(vma->vm_file); 2401 if (!vm_file) 2402 return NULL; 2403 2404 offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start); 2405 uprobe = find_uprobe_rcu(vm_file->f_inode, offset); 2406 if (!uprobe) 2407 return NULL; 2408 2409 /* now double check that nothing about MM changed */ 2410 if (mmap_lock_speculate_retry(mm, seq)) 2411 return NULL; 2412 2413 return uprobe; 2414 } 2415 2416 /* assumes being inside RCU protected region */ 2417 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) 2418 { 2419 struct mm_struct *mm = current->mm; 2420 struct uprobe *uprobe = NULL; 2421 struct vm_area_struct *vma; 2422 2423 uprobe = find_active_uprobe_speculative(bp_vaddr); 2424 if (uprobe) 2425 return uprobe; 2426 2427 mmap_read_lock(mm); 2428 vma = vma_lookup(mm, bp_vaddr); 2429 if (vma) { 2430 if (vma->vm_file) { 2431 struct inode *inode = file_inode(vma->vm_file); 2432 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2433 2434 uprobe = find_uprobe_rcu(inode, offset); 2435 } 2436 2437 if (!uprobe) 2438 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2439 } else { 2440 *is_swbp = -EFAULT; 2441 } 2442 2443 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2444 mmf_recalc_uprobes(mm); 2445 mmap_read_unlock(mm); 2446 2447 return uprobe; 2448 } 2449 2450 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie) 2451 { 2452 struct return_consumer *ric; 2453 2454 if (unlikely(ri == ZERO_SIZE_PTR)) 2455 return ri; 2456 2457 if (unlikely(ri->cons_cnt > 0)) { 2458 ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL); 2459 if (!ric) { 2460 ri_free(ri); 2461 return ZERO_SIZE_PTR; 2462 } 2463 ri->extra_consumers = ric; 2464 } 2465 2466 ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1]; 2467 ric->id = id; 2468 ric->cookie = cookie; 2469 2470 ri->cons_cnt++; 2471 return ri; 2472 } 2473 2474 static struct return_consumer * 2475 return_consumer_find(struct return_instance *ri, int *iter, int id) 2476 { 2477 struct return_consumer *ric; 2478 int idx; 2479 2480 for (idx = *iter; idx < ri->cons_cnt; idx++) 2481 { 2482 ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1]; 2483 if (ric->id == id) { 2484 *iter = idx + 1; 2485 return ric; 2486 } 2487 } 2488 2489 return NULL; 2490 } 2491 2492 static bool ignore_ret_handler(int rc) 2493 { 2494 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE; 2495 } 2496 2497 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2498 { 2499 struct uprobe_consumer *uc; 2500 bool has_consumers = false, remove = true; 2501 struct return_instance *ri = NULL; 2502 struct uprobe_task *utask = current->utask; 2503 2504 utask->auprobe = &uprobe->arch; 2505 2506 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2507 bool session = uc->handler && uc->ret_handler; 2508 __u64 cookie = 0; 2509 int rc = 0; 2510 2511 if (uc->handler) { 2512 rc = uc->handler(uc, regs, &cookie); 2513 WARN(rc < 0 || rc > 2, 2514 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2515 } 2516 2517 remove &= rc == UPROBE_HANDLER_REMOVE; 2518 has_consumers = true; 2519 2520 if (!uc->ret_handler || ignore_ret_handler(rc)) 2521 continue; 2522 2523 if (!ri) 2524 ri = alloc_return_instance(utask); 2525 2526 if (session) 2527 ri = push_consumer(ri, uc->id, cookie); 2528 } 2529 utask->auprobe = NULL; 2530 2531 if (!ZERO_OR_NULL_PTR(ri)) 2532 prepare_uretprobe(uprobe, regs, ri); 2533 2534 if (remove && has_consumers) { 2535 down_read(&uprobe->register_rwsem); 2536 2537 /* re-check that removal is still required, this time under lock */ 2538 if (!filter_chain(uprobe, current->mm)) { 2539 WARN_ON(!uprobe_is_active(uprobe)); 2540 unapply_uprobe(uprobe, current->mm); 2541 } 2542 2543 up_read(&uprobe->register_rwsem); 2544 } 2545 } 2546 2547 static void 2548 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs) 2549 { 2550 struct return_consumer *ric; 2551 struct uprobe_consumer *uc; 2552 int ric_idx = 0; 2553 2554 /* all consumers unsubscribed meanwhile */ 2555 if (unlikely(!uprobe)) 2556 return; 2557 2558 rcu_read_lock_trace(); 2559 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2560 bool session = uc->handler && uc->ret_handler; 2561 2562 if (uc->ret_handler) { 2563 ric = return_consumer_find(ri, &ric_idx, uc->id); 2564 if (!session || ric) 2565 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL); 2566 } 2567 } 2568 rcu_read_unlock_trace(); 2569 } 2570 2571 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2572 { 2573 bool chained; 2574 2575 do { 2576 chained = ri->chained; 2577 ri = ri->next; /* can't be NULL if chained */ 2578 } while (chained); 2579 2580 return ri; 2581 } 2582 2583 void uprobe_handle_trampoline(struct pt_regs *regs) 2584 { 2585 struct uprobe_task *utask; 2586 struct return_instance *ri, *ri_next, *next_chain; 2587 struct uprobe *uprobe; 2588 enum hprobe_state hstate; 2589 bool valid; 2590 2591 utask = current->utask; 2592 if (!utask) 2593 goto sigill; 2594 2595 ri = utask->return_instances; 2596 if (!ri) 2597 goto sigill; 2598 2599 do { 2600 /* 2601 * We should throw out the frames invalidated by longjmp(). 2602 * If this chain is valid, then the next one should be alive 2603 * or NULL; the latter case means that nobody but ri->func 2604 * could hit this trampoline on return. TODO: sigaltstack(). 2605 */ 2606 next_chain = find_next_ret_chain(ri); 2607 valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs); 2608 2609 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2610 do { 2611 /* pop current instance from the stack of pending return instances, 2612 * as it's not pending anymore: we just fixed up original 2613 * instruction pointer in regs and are about to call handlers; 2614 * this allows fixup_uretprobe_trampoline_entries() to properly fix up 2615 * captured stack traces from uretprobe handlers, in which pending 2616 * trampoline addresses on the stack are replaced with correct 2617 * original return addresses 2618 */ 2619 ri_next = ri->next; 2620 rcu_assign_pointer(utask->return_instances, ri_next); 2621 utask->depth--; 2622 2623 uprobe = hprobe_consume(&ri->hprobe, &hstate); 2624 if (valid) 2625 handle_uretprobe_chain(ri, uprobe, regs); 2626 hprobe_finalize(&ri->hprobe, hstate); 2627 2628 /* We already took care of hprobe, no need to waste more time on that. */ 2629 free_ret_instance(utask, ri, false /* !cleanup_hprobe */); 2630 ri = ri_next; 2631 } while (ri != next_chain); 2632 } while (!valid); 2633 2634 return; 2635 2636 sigill: 2637 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2638 force_sig(SIGILL); 2639 } 2640 2641 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2642 { 2643 return false; 2644 } 2645 2646 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2647 struct pt_regs *regs) 2648 { 2649 return true; 2650 } 2651 2652 /* 2653 * Run handler and ask thread to singlestep. 2654 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2655 */ 2656 static void handle_swbp(struct pt_regs *regs) 2657 { 2658 struct uprobe *uprobe; 2659 unsigned long bp_vaddr; 2660 int is_swbp; 2661 2662 bp_vaddr = uprobe_get_swbp_addr(regs); 2663 if (bp_vaddr == uprobe_get_trampoline_vaddr()) 2664 return uprobe_handle_trampoline(regs); 2665 2666 rcu_read_lock_trace(); 2667 2668 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); 2669 if (!uprobe) { 2670 if (is_swbp > 0) { 2671 /* No matching uprobe; signal SIGTRAP. */ 2672 force_sig(SIGTRAP); 2673 } else { 2674 /* 2675 * Either we raced with uprobe_unregister() or we can't 2676 * access this memory. The latter is only possible if 2677 * another thread plays with our ->mm. In both cases 2678 * we can simply restart. If this vma was unmapped we 2679 * can pretend this insn was not executed yet and get 2680 * the (correct) SIGSEGV after restart. 2681 */ 2682 instruction_pointer_set(regs, bp_vaddr); 2683 } 2684 goto out; 2685 } 2686 2687 /* change it in advance for ->handler() and restart */ 2688 instruction_pointer_set(regs, bp_vaddr); 2689 2690 /* 2691 * TODO: move copy_insn/etc into _register and remove this hack. 2692 * After we hit the bp, _unregister + _register can install the 2693 * new and not-yet-analyzed uprobe at the same address, restart. 2694 */ 2695 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2696 goto out; 2697 2698 /* 2699 * Pairs with the smp_wmb() in prepare_uprobe(). 2700 * 2701 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2702 * we must also see the stores to &uprobe->arch performed by the 2703 * prepare_uprobe() call. 2704 */ 2705 smp_rmb(); 2706 2707 /* Tracing handlers use ->utask to communicate with fetch methods */ 2708 if (!get_utask()) 2709 goto out; 2710 2711 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2712 goto out; 2713 2714 handler_chain(uprobe, regs); 2715 2716 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2717 goto out; 2718 2719 if (pre_ssout(uprobe, regs, bp_vaddr)) 2720 goto out; 2721 2722 out: 2723 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2724 rcu_read_unlock_trace(); 2725 } 2726 2727 /* 2728 * Perform required fix-ups and disable singlestep. 2729 * Allow pending signals to take effect. 2730 */ 2731 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2732 { 2733 struct uprobe *uprobe; 2734 int err = 0; 2735 2736 uprobe = utask->active_uprobe; 2737 if (utask->state == UTASK_SSTEP_ACK) 2738 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2739 else if (utask->state == UTASK_SSTEP_TRAPPED) 2740 arch_uprobe_abort_xol(&uprobe->arch, regs); 2741 else 2742 WARN_ON_ONCE(1); 2743 2744 put_uprobe(uprobe); 2745 utask->active_uprobe = NULL; 2746 utask->state = UTASK_RUNNING; 2747 xol_free_insn_slot(utask); 2748 2749 spin_lock_irq(¤t->sighand->siglock); 2750 recalc_sigpending(); /* see uprobe_deny_signal() */ 2751 spin_unlock_irq(¤t->sighand->siglock); 2752 2753 if (unlikely(err)) { 2754 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2755 force_sig(SIGILL); 2756 } 2757 } 2758 2759 /* 2760 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2761 * allows the thread to return from interrupt. After that handle_swbp() 2762 * sets utask->active_uprobe. 2763 * 2764 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2765 * and allows the thread to return from interrupt. 2766 * 2767 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2768 * uprobe_notify_resume(). 2769 */ 2770 void uprobe_notify_resume(struct pt_regs *regs) 2771 { 2772 struct uprobe_task *utask; 2773 2774 clear_thread_flag(TIF_UPROBE); 2775 2776 utask = current->utask; 2777 if (utask && utask->active_uprobe) 2778 handle_singlestep(utask, regs); 2779 else 2780 handle_swbp(regs); 2781 } 2782 2783 /* 2784 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2785 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2786 */ 2787 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2788 { 2789 if (!current->mm) 2790 return 0; 2791 2792 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2793 (!current->utask || !current->utask->return_instances)) 2794 return 0; 2795 2796 set_thread_flag(TIF_UPROBE); 2797 return 1; 2798 } 2799 2800 /* 2801 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2802 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2803 */ 2804 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2805 { 2806 struct uprobe_task *utask = current->utask; 2807 2808 if (!current->mm || !utask || !utask->active_uprobe) 2809 /* task is currently not uprobed */ 2810 return 0; 2811 2812 utask->state = UTASK_SSTEP_ACK; 2813 set_thread_flag(TIF_UPROBE); 2814 return 1; 2815 } 2816 2817 static struct notifier_block uprobe_exception_nb = { 2818 .notifier_call = arch_uprobe_exception_notify, 2819 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2820 }; 2821 2822 void __init uprobes_init(void) 2823 { 2824 int i; 2825 2826 for (i = 0; i < UPROBES_HASH_SZ; i++) 2827 mutex_init(&uprobes_mmap_mutex[i]); 2828 2829 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2830 } 2831