xref: /linux/kernel/events/ring_buffer.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 
16 #include "internal.h"
17 
18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
19 			      unsigned long offset, unsigned long head)
20 {
21 	unsigned long mask;
22 
23 	if (!rb->writable)
24 		return true;
25 
26 	mask = perf_data_size(rb) - 1;
27 
28 	offset = (offset - tail) & mask;
29 	head   = (head   - tail) & mask;
30 
31 	if ((int)(head - offset) < 0)
32 		return false;
33 
34 	return true;
35 }
36 
37 static void perf_output_wakeup(struct perf_output_handle *handle)
38 {
39 	atomic_set(&handle->rb->poll, POLL_IN);
40 
41 	handle->event->pending_wakeup = 1;
42 	irq_work_queue(&handle->event->pending);
43 }
44 
45 /*
46  * We need to ensure a later event_id doesn't publish a head when a former
47  * event isn't done writing. However since we need to deal with NMIs we
48  * cannot fully serialize things.
49  *
50  * We only publish the head (and generate a wakeup) when the outer-most
51  * event completes.
52  */
53 static void perf_output_get_handle(struct perf_output_handle *handle)
54 {
55 	struct ring_buffer *rb = handle->rb;
56 
57 	preempt_disable();
58 	local_inc(&rb->nest);
59 	handle->wakeup = local_read(&rb->wakeup);
60 }
61 
62 static void perf_output_put_handle(struct perf_output_handle *handle)
63 {
64 	struct ring_buffer *rb = handle->rb;
65 	unsigned long head;
66 
67 again:
68 	head = local_read(&rb->head);
69 
70 	/*
71 	 * IRQ/NMI can happen here, which means we can miss a head update.
72 	 */
73 
74 	if (!local_dec_and_test(&rb->nest))
75 		goto out;
76 
77 	/*
78 	 * Publish the known good head. Rely on the full barrier implied
79 	 * by atomic_dec_and_test() order the rb->head read and this
80 	 * write.
81 	 */
82 	rb->user_page->data_head = head;
83 
84 	/*
85 	 * Now check if we missed an update, rely on the (compiler)
86 	 * barrier in atomic_dec_and_test() to re-read rb->head.
87 	 */
88 	if (unlikely(head != local_read(&rb->head))) {
89 		local_inc(&rb->nest);
90 		goto again;
91 	}
92 
93 	if (handle->wakeup != local_read(&rb->wakeup))
94 		perf_output_wakeup(handle);
95 
96 out:
97 	preempt_enable();
98 }
99 
100 int perf_output_begin(struct perf_output_handle *handle,
101 		      struct perf_event *event, unsigned int size)
102 {
103 	struct ring_buffer *rb;
104 	unsigned long tail, offset, head;
105 	int have_lost;
106 	struct perf_sample_data sample_data;
107 	struct {
108 		struct perf_event_header header;
109 		u64			 id;
110 		u64			 lost;
111 	} lost_event;
112 
113 	rcu_read_lock();
114 	/*
115 	 * For inherited events we send all the output towards the parent.
116 	 */
117 	if (event->parent)
118 		event = event->parent;
119 
120 	rb = rcu_dereference(event->rb);
121 	if (!rb)
122 		goto out;
123 
124 	handle->rb	= rb;
125 	handle->event	= event;
126 
127 	if (!rb->nr_pages)
128 		goto out;
129 
130 	have_lost = local_read(&rb->lost);
131 	if (have_lost) {
132 		lost_event.header.size = sizeof(lost_event);
133 		perf_event_header__init_id(&lost_event.header, &sample_data,
134 					   event);
135 		size += lost_event.header.size;
136 	}
137 
138 	perf_output_get_handle(handle);
139 
140 	do {
141 		/*
142 		 * Userspace could choose to issue a mb() before updating the
143 		 * tail pointer. So that all reads will be completed before the
144 		 * write is issued.
145 		 */
146 		tail = ACCESS_ONCE(rb->user_page->data_tail);
147 		smp_rmb();
148 		offset = head = local_read(&rb->head);
149 		head += size;
150 		if (unlikely(!perf_output_space(rb, tail, offset, head)))
151 			goto fail;
152 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
153 
154 	if (head - local_read(&rb->wakeup) > rb->watermark)
155 		local_add(rb->watermark, &rb->wakeup);
156 
157 	handle->page = offset >> (PAGE_SHIFT + page_order(rb));
158 	handle->page &= rb->nr_pages - 1;
159 	handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
160 	handle->addr = rb->data_pages[handle->page];
161 	handle->addr += handle->size;
162 	handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
163 
164 	if (have_lost) {
165 		lost_event.header.type = PERF_RECORD_LOST;
166 		lost_event.header.misc = 0;
167 		lost_event.id          = event->id;
168 		lost_event.lost        = local_xchg(&rb->lost, 0);
169 
170 		perf_output_put(handle, lost_event);
171 		perf_event__output_id_sample(event, handle, &sample_data);
172 	}
173 
174 	return 0;
175 
176 fail:
177 	local_inc(&rb->lost);
178 	perf_output_put_handle(handle);
179 out:
180 	rcu_read_unlock();
181 
182 	return -ENOSPC;
183 }
184 
185 unsigned int perf_output_copy(struct perf_output_handle *handle,
186 		      const void *buf, unsigned int len)
187 {
188 	return __output_copy(handle, buf, len);
189 }
190 
191 unsigned int perf_output_skip(struct perf_output_handle *handle,
192 			      unsigned int len)
193 {
194 	return __output_skip(handle, NULL, len);
195 }
196 
197 void perf_output_end(struct perf_output_handle *handle)
198 {
199 	perf_output_put_handle(handle);
200 	rcu_read_unlock();
201 }
202 
203 static void
204 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
205 {
206 	long max_size = perf_data_size(rb);
207 
208 	if (watermark)
209 		rb->watermark = min(max_size, watermark);
210 
211 	if (!rb->watermark)
212 		rb->watermark = max_size / 2;
213 
214 	if (flags & RING_BUFFER_WRITABLE)
215 		rb->writable = 1;
216 
217 	atomic_set(&rb->refcount, 1);
218 
219 	INIT_LIST_HEAD(&rb->event_list);
220 	spin_lock_init(&rb->event_lock);
221 }
222 
223 #ifndef CONFIG_PERF_USE_VMALLOC
224 
225 /*
226  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
227  */
228 
229 struct page *
230 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
231 {
232 	if (pgoff > rb->nr_pages)
233 		return NULL;
234 
235 	if (pgoff == 0)
236 		return virt_to_page(rb->user_page);
237 
238 	return virt_to_page(rb->data_pages[pgoff - 1]);
239 }
240 
241 static void *perf_mmap_alloc_page(int cpu)
242 {
243 	struct page *page;
244 	int node;
245 
246 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
247 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
248 	if (!page)
249 		return NULL;
250 
251 	return page_address(page);
252 }
253 
254 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
255 {
256 	struct ring_buffer *rb;
257 	unsigned long size;
258 	int i;
259 
260 	size = sizeof(struct ring_buffer);
261 	size += nr_pages * sizeof(void *);
262 
263 	rb = kzalloc(size, GFP_KERNEL);
264 	if (!rb)
265 		goto fail;
266 
267 	rb->user_page = perf_mmap_alloc_page(cpu);
268 	if (!rb->user_page)
269 		goto fail_user_page;
270 
271 	for (i = 0; i < nr_pages; i++) {
272 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
273 		if (!rb->data_pages[i])
274 			goto fail_data_pages;
275 	}
276 
277 	rb->nr_pages = nr_pages;
278 
279 	ring_buffer_init(rb, watermark, flags);
280 
281 	return rb;
282 
283 fail_data_pages:
284 	for (i--; i >= 0; i--)
285 		free_page((unsigned long)rb->data_pages[i]);
286 
287 	free_page((unsigned long)rb->user_page);
288 
289 fail_user_page:
290 	kfree(rb);
291 
292 fail:
293 	return NULL;
294 }
295 
296 static void perf_mmap_free_page(unsigned long addr)
297 {
298 	struct page *page = virt_to_page((void *)addr);
299 
300 	page->mapping = NULL;
301 	__free_page(page);
302 }
303 
304 void rb_free(struct ring_buffer *rb)
305 {
306 	int i;
307 
308 	perf_mmap_free_page((unsigned long)rb->user_page);
309 	for (i = 0; i < rb->nr_pages; i++)
310 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
311 	kfree(rb);
312 }
313 
314 #else
315 
316 struct page *
317 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
318 {
319 	if (pgoff > (1UL << page_order(rb)))
320 		return NULL;
321 
322 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
323 }
324 
325 static void perf_mmap_unmark_page(void *addr)
326 {
327 	struct page *page = vmalloc_to_page(addr);
328 
329 	page->mapping = NULL;
330 }
331 
332 static void rb_free_work(struct work_struct *work)
333 {
334 	struct ring_buffer *rb;
335 	void *base;
336 	int i, nr;
337 
338 	rb = container_of(work, struct ring_buffer, work);
339 	nr = 1 << page_order(rb);
340 
341 	base = rb->user_page;
342 	for (i = 0; i < nr + 1; i++)
343 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
344 
345 	vfree(base);
346 	kfree(rb);
347 }
348 
349 void rb_free(struct ring_buffer *rb)
350 {
351 	schedule_work(&rb->work);
352 }
353 
354 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
355 {
356 	struct ring_buffer *rb;
357 	unsigned long size;
358 	void *all_buf;
359 
360 	size = sizeof(struct ring_buffer);
361 	size += sizeof(void *);
362 
363 	rb = kzalloc(size, GFP_KERNEL);
364 	if (!rb)
365 		goto fail;
366 
367 	INIT_WORK(&rb->work, rb_free_work);
368 
369 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
370 	if (!all_buf)
371 		goto fail_all_buf;
372 
373 	rb->user_page = all_buf;
374 	rb->data_pages[0] = all_buf + PAGE_SIZE;
375 	rb->page_order = ilog2(nr_pages);
376 	rb->nr_pages = 1;
377 
378 	ring_buffer_init(rb, watermark, flags);
379 
380 	return rb;
381 
382 fail_all_buf:
383 	kfree(rb);
384 
385 fail:
386 	return NULL;
387 }
388 
389 #endif
390