xref: /linux/kernel/events/ring_buffer.c (revision d6a7f73db712a11b1c30b2566758de65b308da73)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 
16 #include "internal.h"
17 
18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
19 			      unsigned long offset, unsigned long head)
20 {
21 	unsigned long sz = perf_data_size(rb);
22 	unsigned long mask = sz - 1;
23 
24 	/*
25 	 * check if user-writable
26 	 * overwrite : over-write its own tail
27 	 * !overwrite: buffer possibly drops events.
28 	 */
29 	if (rb->overwrite)
30 		return true;
31 
32 	/*
33 	 * verify that payload is not bigger than buffer
34 	 * otherwise masking logic may fail to detect
35 	 * the "not enough space" condition
36 	 */
37 	if ((head - offset) > sz)
38 		return false;
39 
40 	offset = (offset - tail) & mask;
41 	head   = (head   - tail) & mask;
42 
43 	if ((int)(head - offset) < 0)
44 		return false;
45 
46 	return true;
47 }
48 
49 static void perf_output_wakeup(struct perf_output_handle *handle)
50 {
51 	atomic_set(&handle->rb->poll, POLL_IN);
52 
53 	handle->event->pending_wakeup = 1;
54 	irq_work_queue(&handle->event->pending);
55 }
56 
57 /*
58  * We need to ensure a later event_id doesn't publish a head when a former
59  * event isn't done writing. However since we need to deal with NMIs we
60  * cannot fully serialize things.
61  *
62  * We only publish the head (and generate a wakeup) when the outer-most
63  * event completes.
64  */
65 static void perf_output_get_handle(struct perf_output_handle *handle)
66 {
67 	struct ring_buffer *rb = handle->rb;
68 
69 	preempt_disable();
70 	local_inc(&rb->nest);
71 	handle->wakeup = local_read(&rb->wakeup);
72 }
73 
74 static void perf_output_put_handle(struct perf_output_handle *handle)
75 {
76 	struct ring_buffer *rb = handle->rb;
77 	unsigned long head;
78 
79 again:
80 	head = local_read(&rb->head);
81 
82 	/*
83 	 * IRQ/NMI can happen here, which means we can miss a head update.
84 	 */
85 
86 	if (!local_dec_and_test(&rb->nest))
87 		goto out;
88 
89 	/*
90 	 * Since the mmap() consumer (userspace) can run on a different CPU:
91 	 *
92 	 *   kernel				user
93 	 *
94 	 *   READ ->data_tail			READ ->data_head
95 	 *   smp_mb()	(A)			smp_rmb()	(C)
96 	 *   WRITE $data			READ $data
97 	 *   smp_wmb()	(B)			smp_mb()	(D)
98 	 *   STORE ->data_head			WRITE ->data_tail
99 	 *
100 	 * Where A pairs with D, and B pairs with C.
101 	 *
102 	 * I don't think A needs to be a full barrier because we won't in fact
103 	 * write data until we see the store from userspace. So we simply don't
104 	 * issue the data WRITE until we observe it. Be conservative for now.
105 	 *
106 	 * OTOH, D needs to be a full barrier since it separates the data READ
107 	 * from the tail WRITE.
108 	 *
109 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
110 	 * an RMB is sufficient since it separates two READs.
111 	 *
112 	 * See perf_output_begin().
113 	 */
114 	smp_wmb();
115 	rb->user_page->data_head = head;
116 
117 	/*
118 	 * Now check if we missed an update, rely on the (compiler)
119 	 * barrier in atomic_dec_and_test() to re-read rb->head.
120 	 */
121 	if (unlikely(head != local_read(&rb->head))) {
122 		local_inc(&rb->nest);
123 		goto again;
124 	}
125 
126 	if (handle->wakeup != local_read(&rb->wakeup))
127 		perf_output_wakeup(handle);
128 
129 out:
130 	preempt_enable();
131 }
132 
133 int perf_output_begin(struct perf_output_handle *handle,
134 		      struct perf_event *event, unsigned int size)
135 {
136 	struct ring_buffer *rb;
137 	unsigned long tail, offset, head;
138 	int have_lost;
139 	struct perf_sample_data sample_data;
140 	struct {
141 		struct perf_event_header header;
142 		u64			 id;
143 		u64			 lost;
144 	} lost_event;
145 
146 	rcu_read_lock();
147 	/*
148 	 * For inherited events we send all the output towards the parent.
149 	 */
150 	if (event->parent)
151 		event = event->parent;
152 
153 	rb = rcu_dereference(event->rb);
154 	if (!rb)
155 		goto out;
156 
157 	handle->rb	= rb;
158 	handle->event	= event;
159 
160 	if (!rb->nr_pages)
161 		goto out;
162 
163 	have_lost = local_read(&rb->lost);
164 	if (have_lost) {
165 		lost_event.header.size = sizeof(lost_event);
166 		perf_event_header__init_id(&lost_event.header, &sample_data,
167 					   event);
168 		size += lost_event.header.size;
169 	}
170 
171 	perf_output_get_handle(handle);
172 
173 	do {
174 		/*
175 		 * Userspace could choose to issue a mb() before updating the
176 		 * tail pointer. So that all reads will be completed before the
177 		 * write is issued.
178 		 *
179 		 * See perf_output_put_handle().
180 		 */
181 		tail = ACCESS_ONCE(rb->user_page->data_tail);
182 		smp_mb();
183 		offset = head = local_read(&rb->head);
184 		head += size;
185 		if (unlikely(!perf_output_space(rb, tail, offset, head)))
186 			goto fail;
187 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
188 
189 	if (head - local_read(&rb->wakeup) > rb->watermark)
190 		local_add(rb->watermark, &rb->wakeup);
191 
192 	handle->page = offset >> (PAGE_SHIFT + page_order(rb));
193 	handle->page &= rb->nr_pages - 1;
194 	handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
195 	handle->addr = rb->data_pages[handle->page];
196 	handle->addr += handle->size;
197 	handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
198 
199 	if (have_lost) {
200 		lost_event.header.type = PERF_RECORD_LOST;
201 		lost_event.header.misc = 0;
202 		lost_event.id          = event->id;
203 		lost_event.lost        = local_xchg(&rb->lost, 0);
204 
205 		perf_output_put(handle, lost_event);
206 		perf_event__output_id_sample(event, handle, &sample_data);
207 	}
208 
209 	return 0;
210 
211 fail:
212 	local_inc(&rb->lost);
213 	perf_output_put_handle(handle);
214 out:
215 	rcu_read_unlock();
216 
217 	return -ENOSPC;
218 }
219 
220 unsigned int perf_output_copy(struct perf_output_handle *handle,
221 		      const void *buf, unsigned int len)
222 {
223 	return __output_copy(handle, buf, len);
224 }
225 
226 unsigned int perf_output_skip(struct perf_output_handle *handle,
227 			      unsigned int len)
228 {
229 	return __output_skip(handle, NULL, len);
230 }
231 
232 void perf_output_end(struct perf_output_handle *handle)
233 {
234 	perf_output_put_handle(handle);
235 	rcu_read_unlock();
236 }
237 
238 static void
239 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
240 {
241 	long max_size = perf_data_size(rb);
242 
243 	if (watermark)
244 		rb->watermark = min(max_size, watermark);
245 
246 	if (!rb->watermark)
247 		rb->watermark = max_size / 2;
248 
249 	if (flags & RING_BUFFER_WRITABLE)
250 		rb->overwrite = 0;
251 	else
252 		rb->overwrite = 1;
253 
254 	atomic_set(&rb->refcount, 1);
255 
256 	INIT_LIST_HEAD(&rb->event_list);
257 	spin_lock_init(&rb->event_lock);
258 }
259 
260 #ifndef CONFIG_PERF_USE_VMALLOC
261 
262 /*
263  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
264  */
265 
266 struct page *
267 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
268 {
269 	if (pgoff > rb->nr_pages)
270 		return NULL;
271 
272 	if (pgoff == 0)
273 		return virt_to_page(rb->user_page);
274 
275 	return virt_to_page(rb->data_pages[pgoff - 1]);
276 }
277 
278 static void *perf_mmap_alloc_page(int cpu)
279 {
280 	struct page *page;
281 	int node;
282 
283 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
284 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
285 	if (!page)
286 		return NULL;
287 
288 	return page_address(page);
289 }
290 
291 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
292 {
293 	struct ring_buffer *rb;
294 	unsigned long size;
295 	int i;
296 
297 	size = sizeof(struct ring_buffer);
298 	size += nr_pages * sizeof(void *);
299 
300 	rb = kzalloc(size, GFP_KERNEL);
301 	if (!rb)
302 		goto fail;
303 
304 	rb->user_page = perf_mmap_alloc_page(cpu);
305 	if (!rb->user_page)
306 		goto fail_user_page;
307 
308 	for (i = 0; i < nr_pages; i++) {
309 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
310 		if (!rb->data_pages[i])
311 			goto fail_data_pages;
312 	}
313 
314 	rb->nr_pages = nr_pages;
315 
316 	ring_buffer_init(rb, watermark, flags);
317 
318 	return rb;
319 
320 fail_data_pages:
321 	for (i--; i >= 0; i--)
322 		free_page((unsigned long)rb->data_pages[i]);
323 
324 	free_page((unsigned long)rb->user_page);
325 
326 fail_user_page:
327 	kfree(rb);
328 
329 fail:
330 	return NULL;
331 }
332 
333 static void perf_mmap_free_page(unsigned long addr)
334 {
335 	struct page *page = virt_to_page((void *)addr);
336 
337 	page->mapping = NULL;
338 	__free_page(page);
339 }
340 
341 void rb_free(struct ring_buffer *rb)
342 {
343 	int i;
344 
345 	perf_mmap_free_page((unsigned long)rb->user_page);
346 	for (i = 0; i < rb->nr_pages; i++)
347 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
348 	kfree(rb);
349 }
350 
351 #else
352 static int data_page_nr(struct ring_buffer *rb)
353 {
354 	return rb->nr_pages << page_order(rb);
355 }
356 
357 struct page *
358 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
359 {
360 	/* The '>' counts in the user page. */
361 	if (pgoff > data_page_nr(rb))
362 		return NULL;
363 
364 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
365 }
366 
367 static void perf_mmap_unmark_page(void *addr)
368 {
369 	struct page *page = vmalloc_to_page(addr);
370 
371 	page->mapping = NULL;
372 }
373 
374 static void rb_free_work(struct work_struct *work)
375 {
376 	struct ring_buffer *rb;
377 	void *base;
378 	int i, nr;
379 
380 	rb = container_of(work, struct ring_buffer, work);
381 	nr = data_page_nr(rb);
382 
383 	base = rb->user_page;
384 	/* The '<=' counts in the user page. */
385 	for (i = 0; i <= nr; i++)
386 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
387 
388 	vfree(base);
389 	kfree(rb);
390 }
391 
392 void rb_free(struct ring_buffer *rb)
393 {
394 	schedule_work(&rb->work);
395 }
396 
397 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
398 {
399 	struct ring_buffer *rb;
400 	unsigned long size;
401 	void *all_buf;
402 
403 	size = sizeof(struct ring_buffer);
404 	size += sizeof(void *);
405 
406 	rb = kzalloc(size, GFP_KERNEL);
407 	if (!rb)
408 		goto fail;
409 
410 	INIT_WORK(&rb->work, rb_free_work);
411 
412 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
413 	if (!all_buf)
414 		goto fail_all_buf;
415 
416 	rb->user_page = all_buf;
417 	rb->data_pages[0] = all_buf + PAGE_SIZE;
418 	rb->page_order = ilog2(nr_pages);
419 	rb->nr_pages = !!nr_pages;
420 
421 	ring_buffer_init(rb, watermark, flags);
422 
423 	return rb;
424 
425 fail_all_buf:
426 	kfree(rb);
427 
428 fail:
429 	return NULL;
430 }
431 
432 #endif
433