xref: /linux/kernel/events/ring_buffer.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
105 int perf_output_begin(struct perf_output_handle *handle,
106 		      struct perf_event *event, unsigned int size)
107 {
108 	struct ring_buffer *rb;
109 	unsigned long tail, offset, head;
110 	int have_lost, page_shift;
111 	struct {
112 		struct perf_event_header header;
113 		u64			 id;
114 		u64			 lost;
115 	} lost_event;
116 
117 	rcu_read_lock();
118 	/*
119 	 * For inherited events we send all the output towards the parent.
120 	 */
121 	if (event->parent)
122 		event = event->parent;
123 
124 	rb = rcu_dereference(event->rb);
125 	if (unlikely(!rb))
126 		goto out;
127 
128 	if (unlikely(!rb->nr_pages))
129 		goto out;
130 
131 	handle->rb    = rb;
132 	handle->event = event;
133 
134 	have_lost = local_read(&rb->lost);
135 	if (unlikely(have_lost)) {
136 		size += sizeof(lost_event);
137 		if (event->attr.sample_id_all)
138 			size += event->id_header_size;
139 	}
140 
141 	perf_output_get_handle(handle);
142 
143 	do {
144 		tail = READ_ONCE(rb->user_page->data_tail);
145 		offset = head = local_read(&rb->head);
146 		if (!rb->overwrite &&
147 		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148 			goto fail;
149 
150 		/*
151 		 * The above forms a control dependency barrier separating the
152 		 * @tail load above from the data stores below. Since the @tail
153 		 * load is required to compute the branch to fail below.
154 		 *
155 		 * A, matches D; the full memory barrier userspace SHOULD issue
156 		 * after reading the data and before storing the new tail
157 		 * position.
158 		 *
159 		 * See perf_output_put_handle().
160 		 */
161 
162 		head += size;
163 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
164 
165 	/*
166 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
167 	 * none of the data stores below can be lifted up by the compiler.
168 	 */
169 
170 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171 		local_add(rb->watermark, &rb->wakeup);
172 
173 	page_shift = PAGE_SHIFT + page_order(rb);
174 
175 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
176 	offset &= (1UL << page_shift) - 1;
177 	handle->addr = rb->data_pages[handle->page] + offset;
178 	handle->size = (1UL << page_shift) - offset;
179 
180 	if (unlikely(have_lost)) {
181 		struct perf_sample_data sample_data;
182 
183 		lost_event.header.size = sizeof(lost_event);
184 		lost_event.header.type = PERF_RECORD_LOST;
185 		lost_event.header.misc = 0;
186 		lost_event.id          = event->id;
187 		lost_event.lost        = local_xchg(&rb->lost, 0);
188 
189 		perf_event_header__init_id(&lost_event.header,
190 					   &sample_data, event);
191 		perf_output_put(handle, lost_event);
192 		perf_event__output_id_sample(event, handle, &sample_data);
193 	}
194 
195 	return 0;
196 
197 fail:
198 	local_inc(&rb->lost);
199 	perf_output_put_handle(handle);
200 out:
201 	rcu_read_unlock();
202 
203 	return -ENOSPC;
204 }
205 
206 unsigned int perf_output_copy(struct perf_output_handle *handle,
207 		      const void *buf, unsigned int len)
208 {
209 	return __output_copy(handle, buf, len);
210 }
211 
212 unsigned int perf_output_skip(struct perf_output_handle *handle,
213 			      unsigned int len)
214 {
215 	return __output_skip(handle, NULL, len);
216 }
217 
218 void perf_output_end(struct perf_output_handle *handle)
219 {
220 	perf_output_put_handle(handle);
221 	rcu_read_unlock();
222 }
223 
224 static void rb_irq_work(struct irq_work *work);
225 
226 static void
227 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
228 {
229 	long max_size = perf_data_size(rb);
230 
231 	if (watermark)
232 		rb->watermark = min(max_size, watermark);
233 
234 	if (!rb->watermark)
235 		rb->watermark = max_size / 2;
236 
237 	if (flags & RING_BUFFER_WRITABLE)
238 		rb->overwrite = 0;
239 	else
240 		rb->overwrite = 1;
241 
242 	atomic_set(&rb->refcount, 1);
243 
244 	INIT_LIST_HEAD(&rb->event_list);
245 	spin_lock_init(&rb->event_lock);
246 	init_irq_work(&rb->irq_work, rb_irq_work);
247 }
248 
249 static void ring_buffer_put_async(struct ring_buffer *rb)
250 {
251 	if (!atomic_dec_and_test(&rb->refcount))
252 		return;
253 
254 	rb->rcu_head.next = (void *)rb;
255 	irq_work_queue(&rb->irq_work);
256 }
257 
258 /*
259  * This is called before hardware starts writing to the AUX area to
260  * obtain an output handle and make sure there's room in the buffer.
261  * When the capture completes, call perf_aux_output_end() to commit
262  * the recorded data to the buffer.
263  *
264  * The ordering is similar to that of perf_output_{begin,end}, with
265  * the exception of (B), which should be taken care of by the pmu
266  * driver, since ordering rules will differ depending on hardware.
267  */
268 void *perf_aux_output_begin(struct perf_output_handle *handle,
269 			    struct perf_event *event)
270 {
271 	struct perf_event *output_event = event;
272 	unsigned long aux_head, aux_tail;
273 	struct ring_buffer *rb;
274 
275 	if (output_event->parent)
276 		output_event = output_event->parent;
277 
278 	/*
279 	 * Since this will typically be open across pmu::add/pmu::del, we
280 	 * grab ring_buffer's refcount instead of holding rcu read lock
281 	 * to make sure it doesn't disappear under us.
282 	 */
283 	rb = ring_buffer_get(output_event);
284 	if (!rb)
285 		return NULL;
286 
287 	if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
288 		goto err;
289 
290 	/*
291 	 * Nesting is not supported for AUX area, make sure nested
292 	 * writers are caught early
293 	 */
294 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
295 		goto err_put;
296 
297 	aux_head = local_read(&rb->aux_head);
298 
299 	handle->rb = rb;
300 	handle->event = event;
301 	handle->head = aux_head;
302 	handle->size = 0;
303 
304 	/*
305 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
306 	 * therefore (A) control dependency barrier does not exist. The
307 	 * (B) <-> (C) ordering is still observed by the pmu driver.
308 	 */
309 	if (!rb->aux_overwrite) {
310 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
311 		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
312 		if (aux_head - aux_tail < perf_aux_size(rb))
313 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
314 
315 		/*
316 		 * handle->size computation depends on aux_tail load; this forms a
317 		 * control dependency barrier separating aux_tail load from aux data
318 		 * store that will be enabled on successful return
319 		 */
320 		if (!handle->size) { /* A, matches D */
321 			event->pending_disable = 1;
322 			perf_output_wakeup(handle);
323 			local_set(&rb->aux_nest, 0);
324 			goto err_put;
325 		}
326 	}
327 
328 	return handle->rb->aux_priv;
329 
330 err_put:
331 	rb_free_aux(rb);
332 
333 err:
334 	ring_buffer_put_async(rb);
335 	handle->event = NULL;
336 
337 	return NULL;
338 }
339 
340 /*
341  * Commit the data written by hardware into the ring buffer by adjusting
342  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
343  * pmu driver's responsibility to observe ordering rules of the hardware,
344  * so that all the data is externally visible before this is called.
345  */
346 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
347 			 bool truncated)
348 {
349 	struct ring_buffer *rb = handle->rb;
350 	unsigned long aux_head;
351 	u64 flags = 0;
352 
353 	if (truncated)
354 		flags |= PERF_AUX_FLAG_TRUNCATED;
355 
356 	/* in overwrite mode, driver provides aux_head via handle */
357 	if (rb->aux_overwrite) {
358 		flags |= PERF_AUX_FLAG_OVERWRITE;
359 
360 		aux_head = handle->head;
361 		local_set(&rb->aux_head, aux_head);
362 	} else {
363 		aux_head = local_read(&rb->aux_head);
364 		local_add(size, &rb->aux_head);
365 	}
366 
367 	if (size || flags) {
368 		/*
369 		 * Only send RECORD_AUX if we have something useful to communicate
370 		 */
371 
372 		perf_event_aux_event(handle->event, aux_head, size, flags);
373 	}
374 
375 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
376 
377 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
378 		perf_output_wakeup(handle);
379 		local_add(rb->aux_watermark, &rb->aux_wakeup);
380 	}
381 	handle->event = NULL;
382 
383 	local_set(&rb->aux_nest, 0);
384 	rb_free_aux(rb);
385 	ring_buffer_put_async(rb);
386 }
387 
388 /*
389  * Skip over a given number of bytes in the AUX buffer, due to, for example,
390  * hardware's alignment constraints.
391  */
392 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
393 {
394 	struct ring_buffer *rb = handle->rb;
395 	unsigned long aux_head;
396 
397 	if (size > handle->size)
398 		return -ENOSPC;
399 
400 	local_add(size, &rb->aux_head);
401 
402 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
403 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
404 		perf_output_wakeup(handle);
405 		local_add(rb->aux_watermark, &rb->aux_wakeup);
406 		handle->wakeup = local_read(&rb->aux_wakeup) +
407 				 rb->aux_watermark;
408 	}
409 
410 	handle->head = aux_head;
411 	handle->size -= size;
412 
413 	return 0;
414 }
415 
416 void *perf_get_aux(struct perf_output_handle *handle)
417 {
418 	/* this is only valid between perf_aux_output_begin and *_end */
419 	if (!handle->event)
420 		return NULL;
421 
422 	return handle->rb->aux_priv;
423 }
424 
425 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
426 
427 static struct page *rb_alloc_aux_page(int node, int order)
428 {
429 	struct page *page;
430 
431 	if (order > MAX_ORDER)
432 		order = MAX_ORDER;
433 
434 	do {
435 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
436 	} while (!page && order--);
437 
438 	if (page && order) {
439 		/*
440 		 * Communicate the allocation size to the driver:
441 		 * if we managed to secure a high-order allocation,
442 		 * set its first page's private to this order;
443 		 * !PagePrivate(page) means it's just a normal page.
444 		 */
445 		split_page(page, order);
446 		SetPagePrivate(page);
447 		set_page_private(page, order);
448 	}
449 
450 	return page;
451 }
452 
453 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
454 {
455 	struct page *page = virt_to_page(rb->aux_pages[idx]);
456 
457 	ClearPagePrivate(page);
458 	page->mapping = NULL;
459 	__free_page(page);
460 }
461 
462 static void __rb_free_aux(struct ring_buffer *rb)
463 {
464 	int pg;
465 
466 	if (rb->aux_priv) {
467 		rb->free_aux(rb->aux_priv);
468 		rb->free_aux = NULL;
469 		rb->aux_priv = NULL;
470 	}
471 
472 	if (rb->aux_nr_pages) {
473 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
474 			rb_free_aux_page(rb, pg);
475 
476 		kfree(rb->aux_pages);
477 		rb->aux_nr_pages = 0;
478 	}
479 }
480 
481 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
482 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
483 {
484 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
485 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
486 	int ret = -ENOMEM, max_order = 0;
487 
488 	if (!has_aux(event))
489 		return -ENOTSUPP;
490 
491 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
492 		/*
493 		 * We need to start with the max_order that fits in nr_pages,
494 		 * not the other way around, hence ilog2() and not get_order.
495 		 */
496 		max_order = ilog2(nr_pages);
497 
498 		/*
499 		 * PMU requests more than one contiguous chunks of memory
500 		 * for SW double buffering
501 		 */
502 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
503 		    !overwrite) {
504 			if (!max_order)
505 				return -EINVAL;
506 
507 			max_order--;
508 		}
509 	}
510 
511 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
512 	if (!rb->aux_pages)
513 		return -ENOMEM;
514 
515 	rb->free_aux = event->pmu->free_aux;
516 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
517 		struct page *page;
518 		int last, order;
519 
520 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
521 		page = rb_alloc_aux_page(node, order);
522 		if (!page)
523 			goto out;
524 
525 		for (last = rb->aux_nr_pages + (1 << page_private(page));
526 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
527 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
528 	}
529 
530 	/*
531 	 * In overwrite mode, PMUs that don't support SG may not handle more
532 	 * than one contiguous allocation, since they rely on PMI to do double
533 	 * buffering. In this case, the entire buffer has to be one contiguous
534 	 * chunk.
535 	 */
536 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
537 	    overwrite) {
538 		struct page *page = virt_to_page(rb->aux_pages[0]);
539 
540 		if (page_private(page) != max_order)
541 			goto out;
542 	}
543 
544 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
545 					     overwrite);
546 	if (!rb->aux_priv)
547 		goto out;
548 
549 	ret = 0;
550 
551 	/*
552 	 * aux_pages (and pmu driver's private data, aux_priv) will be
553 	 * referenced in both producer's and consumer's contexts, thus
554 	 * we keep a refcount here to make sure either of the two can
555 	 * reference them safely.
556 	 */
557 	atomic_set(&rb->aux_refcount, 1);
558 
559 	rb->aux_overwrite = overwrite;
560 	rb->aux_watermark = watermark;
561 
562 	if (!rb->aux_watermark && !rb->aux_overwrite)
563 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
564 
565 out:
566 	if (!ret)
567 		rb->aux_pgoff = pgoff;
568 	else
569 		__rb_free_aux(rb);
570 
571 	return ret;
572 }
573 
574 void rb_free_aux(struct ring_buffer *rb)
575 {
576 	if (atomic_dec_and_test(&rb->aux_refcount))
577 		irq_work_queue(&rb->irq_work);
578 }
579 
580 static void rb_irq_work(struct irq_work *work)
581 {
582 	struct ring_buffer *rb = container_of(work, struct ring_buffer, irq_work);
583 
584 	if (!atomic_read(&rb->aux_refcount))
585 		__rb_free_aux(rb);
586 
587 	if (rb->rcu_head.next == (void *)rb)
588 		call_rcu(&rb->rcu_head, rb_free_rcu);
589 }
590 
591 #ifndef CONFIG_PERF_USE_VMALLOC
592 
593 /*
594  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
595  */
596 
597 static struct page *
598 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
599 {
600 	if (pgoff > rb->nr_pages)
601 		return NULL;
602 
603 	if (pgoff == 0)
604 		return virt_to_page(rb->user_page);
605 
606 	return virt_to_page(rb->data_pages[pgoff - 1]);
607 }
608 
609 static void *perf_mmap_alloc_page(int cpu)
610 {
611 	struct page *page;
612 	int node;
613 
614 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
615 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
616 	if (!page)
617 		return NULL;
618 
619 	return page_address(page);
620 }
621 
622 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
623 {
624 	struct ring_buffer *rb;
625 	unsigned long size;
626 	int i;
627 
628 	size = sizeof(struct ring_buffer);
629 	size += nr_pages * sizeof(void *);
630 
631 	rb = kzalloc(size, GFP_KERNEL);
632 	if (!rb)
633 		goto fail;
634 
635 	rb->user_page = perf_mmap_alloc_page(cpu);
636 	if (!rb->user_page)
637 		goto fail_user_page;
638 
639 	for (i = 0; i < nr_pages; i++) {
640 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
641 		if (!rb->data_pages[i])
642 			goto fail_data_pages;
643 	}
644 
645 	rb->nr_pages = nr_pages;
646 
647 	ring_buffer_init(rb, watermark, flags);
648 
649 	return rb;
650 
651 fail_data_pages:
652 	for (i--; i >= 0; i--)
653 		free_page((unsigned long)rb->data_pages[i]);
654 
655 	free_page((unsigned long)rb->user_page);
656 
657 fail_user_page:
658 	kfree(rb);
659 
660 fail:
661 	return NULL;
662 }
663 
664 static void perf_mmap_free_page(unsigned long addr)
665 {
666 	struct page *page = virt_to_page((void *)addr);
667 
668 	page->mapping = NULL;
669 	__free_page(page);
670 }
671 
672 void rb_free(struct ring_buffer *rb)
673 {
674 	int i;
675 
676 	perf_mmap_free_page((unsigned long)rb->user_page);
677 	for (i = 0; i < rb->nr_pages; i++)
678 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
679 	kfree(rb);
680 }
681 
682 #else
683 static int data_page_nr(struct ring_buffer *rb)
684 {
685 	return rb->nr_pages << page_order(rb);
686 }
687 
688 static struct page *
689 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
690 {
691 	/* The '>' counts in the user page. */
692 	if (pgoff > data_page_nr(rb))
693 		return NULL;
694 
695 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
696 }
697 
698 static void perf_mmap_unmark_page(void *addr)
699 {
700 	struct page *page = vmalloc_to_page(addr);
701 
702 	page->mapping = NULL;
703 }
704 
705 static void rb_free_work(struct work_struct *work)
706 {
707 	struct ring_buffer *rb;
708 	void *base;
709 	int i, nr;
710 
711 	rb = container_of(work, struct ring_buffer, work);
712 	nr = data_page_nr(rb);
713 
714 	base = rb->user_page;
715 	/* The '<=' counts in the user page. */
716 	for (i = 0; i <= nr; i++)
717 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
718 
719 	vfree(base);
720 	kfree(rb);
721 }
722 
723 void rb_free(struct ring_buffer *rb)
724 {
725 	schedule_work(&rb->work);
726 }
727 
728 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
729 {
730 	struct ring_buffer *rb;
731 	unsigned long size;
732 	void *all_buf;
733 
734 	size = sizeof(struct ring_buffer);
735 	size += sizeof(void *);
736 
737 	rb = kzalloc(size, GFP_KERNEL);
738 	if (!rb)
739 		goto fail;
740 
741 	INIT_WORK(&rb->work, rb_free_work);
742 
743 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
744 	if (!all_buf)
745 		goto fail_all_buf;
746 
747 	rb->user_page = all_buf;
748 	rb->data_pages[0] = all_buf + PAGE_SIZE;
749 	rb->page_order = ilog2(nr_pages);
750 	rb->nr_pages = !!nr_pages;
751 
752 	ring_buffer_init(rb, watermark, flags);
753 
754 	return rb;
755 
756 fail_all_buf:
757 	kfree(rb);
758 
759 fail:
760 	return NULL;
761 }
762 
763 #endif
764 
765 struct page *
766 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
767 {
768 	if (rb->aux_nr_pages) {
769 		/* above AUX space */
770 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
771 			return NULL;
772 
773 		/* AUX space */
774 		if (pgoff >= rb->aux_pgoff)
775 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
776 	}
777 
778 	return __perf_mmap_to_page(rb, pgoff);
779 }
780