xref: /linux/kernel/events/ring_buffer.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
105 static bool __always_inline
106 ring_buffer_has_space(unsigned long head, unsigned long tail,
107 		      unsigned long data_size, unsigned int size,
108 		      bool backward)
109 {
110 	if (!backward)
111 		return CIRC_SPACE(head, tail, data_size) >= size;
112 	else
113 		return CIRC_SPACE(tail, head, data_size) >= size;
114 }
115 
116 static int __always_inline
117 __perf_output_begin(struct perf_output_handle *handle,
118 		    struct perf_event *event, unsigned int size,
119 		    bool backward)
120 {
121 	struct ring_buffer *rb;
122 	unsigned long tail, offset, head;
123 	int have_lost, page_shift;
124 	struct {
125 		struct perf_event_header header;
126 		u64			 id;
127 		u64			 lost;
128 	} lost_event;
129 
130 	rcu_read_lock();
131 	/*
132 	 * For inherited events we send all the output towards the parent.
133 	 */
134 	if (event->parent)
135 		event = event->parent;
136 
137 	rb = rcu_dereference(event->rb);
138 	if (unlikely(!rb))
139 		goto out;
140 
141 	if (unlikely(rb->paused)) {
142 		if (rb->nr_pages)
143 			local_inc(&rb->lost);
144 		goto out;
145 	}
146 
147 	handle->rb    = rb;
148 	handle->event = event;
149 
150 	have_lost = local_read(&rb->lost);
151 	if (unlikely(have_lost)) {
152 		size += sizeof(lost_event);
153 		if (event->attr.sample_id_all)
154 			size += event->id_header_size;
155 	}
156 
157 	perf_output_get_handle(handle);
158 
159 	do {
160 		tail = READ_ONCE(rb->user_page->data_tail);
161 		offset = head = local_read(&rb->head);
162 		if (!rb->overwrite) {
163 			if (unlikely(!ring_buffer_has_space(head, tail,
164 							    perf_data_size(rb),
165 							    size, backward)))
166 				goto fail;
167 		}
168 
169 		/*
170 		 * The above forms a control dependency barrier separating the
171 		 * @tail load above from the data stores below. Since the @tail
172 		 * load is required to compute the branch to fail below.
173 		 *
174 		 * A, matches D; the full memory barrier userspace SHOULD issue
175 		 * after reading the data and before storing the new tail
176 		 * position.
177 		 *
178 		 * See perf_output_put_handle().
179 		 */
180 
181 		if (!backward)
182 			head += size;
183 		else
184 			head -= size;
185 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
186 
187 	if (backward) {
188 		offset = head;
189 		head = (u64)(-head);
190 	}
191 
192 	/*
193 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
194 	 * none of the data stores below can be lifted up by the compiler.
195 	 */
196 
197 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
198 		local_add(rb->watermark, &rb->wakeup);
199 
200 	page_shift = PAGE_SHIFT + page_order(rb);
201 
202 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
203 	offset &= (1UL << page_shift) - 1;
204 	handle->addr = rb->data_pages[handle->page] + offset;
205 	handle->size = (1UL << page_shift) - offset;
206 
207 	if (unlikely(have_lost)) {
208 		struct perf_sample_data sample_data;
209 
210 		lost_event.header.size = sizeof(lost_event);
211 		lost_event.header.type = PERF_RECORD_LOST;
212 		lost_event.header.misc = 0;
213 		lost_event.id          = event->id;
214 		lost_event.lost        = local_xchg(&rb->lost, 0);
215 
216 		perf_event_header__init_id(&lost_event.header,
217 					   &sample_data, event);
218 		perf_output_put(handle, lost_event);
219 		perf_event__output_id_sample(event, handle, &sample_data);
220 	}
221 
222 	return 0;
223 
224 fail:
225 	local_inc(&rb->lost);
226 	perf_output_put_handle(handle);
227 out:
228 	rcu_read_unlock();
229 
230 	return -ENOSPC;
231 }
232 
233 int perf_output_begin_forward(struct perf_output_handle *handle,
234 			     struct perf_event *event, unsigned int size)
235 {
236 	return __perf_output_begin(handle, event, size, false);
237 }
238 
239 int perf_output_begin_backward(struct perf_output_handle *handle,
240 			       struct perf_event *event, unsigned int size)
241 {
242 	return __perf_output_begin(handle, event, size, true);
243 }
244 
245 int perf_output_begin(struct perf_output_handle *handle,
246 		      struct perf_event *event, unsigned int size)
247 {
248 
249 	return __perf_output_begin(handle, event, size,
250 				   unlikely(is_write_backward(event)));
251 }
252 
253 unsigned int perf_output_copy(struct perf_output_handle *handle,
254 		      const void *buf, unsigned int len)
255 {
256 	return __output_copy(handle, buf, len);
257 }
258 
259 unsigned int perf_output_skip(struct perf_output_handle *handle,
260 			      unsigned int len)
261 {
262 	return __output_skip(handle, NULL, len);
263 }
264 
265 void perf_output_end(struct perf_output_handle *handle)
266 {
267 	perf_output_put_handle(handle);
268 	rcu_read_unlock();
269 }
270 
271 static void
272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
273 {
274 	long max_size = perf_data_size(rb);
275 
276 	if (watermark)
277 		rb->watermark = min(max_size, watermark);
278 
279 	if (!rb->watermark)
280 		rb->watermark = max_size / 2;
281 
282 	if (flags & RING_BUFFER_WRITABLE)
283 		rb->overwrite = 0;
284 	else
285 		rb->overwrite = 1;
286 
287 	atomic_set(&rb->refcount, 1);
288 
289 	INIT_LIST_HEAD(&rb->event_list);
290 	spin_lock_init(&rb->event_lock);
291 
292 	/*
293 	 * perf_output_begin() only checks rb->paused, therefore
294 	 * rb->paused must be true if we have no pages for output.
295 	 */
296 	if (!rb->nr_pages)
297 		rb->paused = 1;
298 }
299 
300 /*
301  * This is called before hardware starts writing to the AUX area to
302  * obtain an output handle and make sure there's room in the buffer.
303  * When the capture completes, call perf_aux_output_end() to commit
304  * the recorded data to the buffer.
305  *
306  * The ordering is similar to that of perf_output_{begin,end}, with
307  * the exception of (B), which should be taken care of by the pmu
308  * driver, since ordering rules will differ depending on hardware.
309  *
310  * Call this from pmu::start(); see the comment in perf_aux_output_end()
311  * about its use in pmu callbacks. Both can also be called from the PMI
312  * handler if needed.
313  */
314 void *perf_aux_output_begin(struct perf_output_handle *handle,
315 			    struct perf_event *event)
316 {
317 	struct perf_event *output_event = event;
318 	unsigned long aux_head, aux_tail;
319 	struct ring_buffer *rb;
320 
321 	if (output_event->parent)
322 		output_event = output_event->parent;
323 
324 	/*
325 	 * Since this will typically be open across pmu::add/pmu::del, we
326 	 * grab ring_buffer's refcount instead of holding rcu read lock
327 	 * to make sure it doesn't disappear under us.
328 	 */
329 	rb = ring_buffer_get(output_event);
330 	if (!rb)
331 		return NULL;
332 
333 	if (!rb_has_aux(rb))
334 		goto err;
335 
336 	/*
337 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
338 	 * about to get freed, so we leave immediately.
339 	 *
340 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
341 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
342 	 * aux pages in this path, which is a bug, because in_atomic().
343 	 */
344 	if (!atomic_read(&rb->aux_mmap_count))
345 		goto err;
346 
347 	if (!atomic_inc_not_zero(&rb->aux_refcount))
348 		goto err;
349 
350 	/*
351 	 * Nesting is not supported for AUX area, make sure nested
352 	 * writers are caught early
353 	 */
354 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
355 		goto err_put;
356 
357 	aux_head = local_read(&rb->aux_head);
358 
359 	handle->rb = rb;
360 	handle->event = event;
361 	handle->head = aux_head;
362 	handle->size = 0;
363 
364 	/*
365 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
366 	 * therefore (A) control dependency barrier does not exist. The
367 	 * (B) <-> (C) ordering is still observed by the pmu driver.
368 	 */
369 	if (!rb->aux_overwrite) {
370 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
371 		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
372 		if (aux_head - aux_tail < perf_aux_size(rb))
373 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
374 
375 		/*
376 		 * handle->size computation depends on aux_tail load; this forms a
377 		 * control dependency barrier separating aux_tail load from aux data
378 		 * store that will be enabled on successful return
379 		 */
380 		if (!handle->size) { /* A, matches D */
381 			event->pending_disable = 1;
382 			perf_output_wakeup(handle);
383 			local_set(&rb->aux_nest, 0);
384 			goto err_put;
385 		}
386 	}
387 
388 	return handle->rb->aux_priv;
389 
390 err_put:
391 	/* can't be last */
392 	rb_free_aux(rb);
393 
394 err:
395 	ring_buffer_put(rb);
396 	handle->event = NULL;
397 
398 	return NULL;
399 }
400 
401 /*
402  * Commit the data written by hardware into the ring buffer by adjusting
403  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
404  * pmu driver's responsibility to observe ordering rules of the hardware,
405  * so that all the data is externally visible before this is called.
406  *
407  * Note: this has to be called from pmu::stop() callback, as the assumption
408  * of the AUX buffer management code is that after pmu::stop(), the AUX
409  * transaction must be stopped and therefore drop the AUX reference count.
410  */
411 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
412 			 bool truncated)
413 {
414 	struct ring_buffer *rb = handle->rb;
415 	bool wakeup = truncated;
416 	unsigned long aux_head;
417 	u64 flags = 0;
418 
419 	if (truncated)
420 		flags |= PERF_AUX_FLAG_TRUNCATED;
421 
422 	/* in overwrite mode, driver provides aux_head via handle */
423 	if (rb->aux_overwrite) {
424 		flags |= PERF_AUX_FLAG_OVERWRITE;
425 
426 		aux_head = handle->head;
427 		local_set(&rb->aux_head, aux_head);
428 	} else {
429 		aux_head = local_read(&rb->aux_head);
430 		local_add(size, &rb->aux_head);
431 	}
432 
433 	if (size || flags) {
434 		/*
435 		 * Only send RECORD_AUX if we have something useful to communicate
436 		 */
437 
438 		perf_event_aux_event(handle->event, aux_head, size, flags);
439 	}
440 
441 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
442 
443 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
444 		wakeup = true;
445 		local_add(rb->aux_watermark, &rb->aux_wakeup);
446 	}
447 
448 	if (wakeup) {
449 		if (truncated)
450 			handle->event->pending_disable = 1;
451 		perf_output_wakeup(handle);
452 	}
453 
454 	handle->event = NULL;
455 
456 	local_set(&rb->aux_nest, 0);
457 	/* can't be last */
458 	rb_free_aux(rb);
459 	ring_buffer_put(rb);
460 }
461 
462 /*
463  * Skip over a given number of bytes in the AUX buffer, due to, for example,
464  * hardware's alignment constraints.
465  */
466 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
467 {
468 	struct ring_buffer *rb = handle->rb;
469 	unsigned long aux_head;
470 
471 	if (size > handle->size)
472 		return -ENOSPC;
473 
474 	local_add(size, &rb->aux_head);
475 
476 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
477 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
478 		perf_output_wakeup(handle);
479 		local_add(rb->aux_watermark, &rb->aux_wakeup);
480 		handle->wakeup = local_read(&rb->aux_wakeup) +
481 				 rb->aux_watermark;
482 	}
483 
484 	handle->head = aux_head;
485 	handle->size -= size;
486 
487 	return 0;
488 }
489 
490 void *perf_get_aux(struct perf_output_handle *handle)
491 {
492 	/* this is only valid between perf_aux_output_begin and *_end */
493 	if (!handle->event)
494 		return NULL;
495 
496 	return handle->rb->aux_priv;
497 }
498 
499 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
500 
501 static struct page *rb_alloc_aux_page(int node, int order)
502 {
503 	struct page *page;
504 
505 	if (order > MAX_ORDER)
506 		order = MAX_ORDER;
507 
508 	do {
509 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
510 	} while (!page && order--);
511 
512 	if (page && order) {
513 		/*
514 		 * Communicate the allocation size to the driver:
515 		 * if we managed to secure a high-order allocation,
516 		 * set its first page's private to this order;
517 		 * !PagePrivate(page) means it's just a normal page.
518 		 */
519 		split_page(page, order);
520 		SetPagePrivate(page);
521 		set_page_private(page, order);
522 	}
523 
524 	return page;
525 }
526 
527 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
528 {
529 	struct page *page = virt_to_page(rb->aux_pages[idx]);
530 
531 	ClearPagePrivate(page);
532 	page->mapping = NULL;
533 	__free_page(page);
534 }
535 
536 static void __rb_free_aux(struct ring_buffer *rb)
537 {
538 	int pg;
539 
540 	/*
541 	 * Should never happen, the last reference should be dropped from
542 	 * perf_mmap_close() path, which first stops aux transactions (which
543 	 * in turn are the atomic holders of aux_refcount) and then does the
544 	 * last rb_free_aux().
545 	 */
546 	WARN_ON_ONCE(in_atomic());
547 
548 	if (rb->aux_priv) {
549 		rb->free_aux(rb->aux_priv);
550 		rb->free_aux = NULL;
551 		rb->aux_priv = NULL;
552 	}
553 
554 	if (rb->aux_nr_pages) {
555 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
556 			rb_free_aux_page(rb, pg);
557 
558 		kfree(rb->aux_pages);
559 		rb->aux_nr_pages = 0;
560 	}
561 }
562 
563 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
564 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
565 {
566 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
567 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
568 	int ret = -ENOMEM, max_order = 0;
569 
570 	if (!has_aux(event))
571 		return -ENOTSUPP;
572 
573 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
574 		/*
575 		 * We need to start with the max_order that fits in nr_pages,
576 		 * not the other way around, hence ilog2() and not get_order.
577 		 */
578 		max_order = ilog2(nr_pages);
579 
580 		/*
581 		 * PMU requests more than one contiguous chunks of memory
582 		 * for SW double buffering
583 		 */
584 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
585 		    !overwrite) {
586 			if (!max_order)
587 				return -EINVAL;
588 
589 			max_order--;
590 		}
591 	}
592 
593 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
594 	if (!rb->aux_pages)
595 		return -ENOMEM;
596 
597 	rb->free_aux = event->pmu->free_aux;
598 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
599 		struct page *page;
600 		int last, order;
601 
602 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
603 		page = rb_alloc_aux_page(node, order);
604 		if (!page)
605 			goto out;
606 
607 		for (last = rb->aux_nr_pages + (1 << page_private(page));
608 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
609 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
610 	}
611 
612 	/*
613 	 * In overwrite mode, PMUs that don't support SG may not handle more
614 	 * than one contiguous allocation, since they rely on PMI to do double
615 	 * buffering. In this case, the entire buffer has to be one contiguous
616 	 * chunk.
617 	 */
618 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
619 	    overwrite) {
620 		struct page *page = virt_to_page(rb->aux_pages[0]);
621 
622 		if (page_private(page) != max_order)
623 			goto out;
624 	}
625 
626 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
627 					     overwrite);
628 	if (!rb->aux_priv)
629 		goto out;
630 
631 	ret = 0;
632 
633 	/*
634 	 * aux_pages (and pmu driver's private data, aux_priv) will be
635 	 * referenced in both producer's and consumer's contexts, thus
636 	 * we keep a refcount here to make sure either of the two can
637 	 * reference them safely.
638 	 */
639 	atomic_set(&rb->aux_refcount, 1);
640 
641 	rb->aux_overwrite = overwrite;
642 	rb->aux_watermark = watermark;
643 
644 	if (!rb->aux_watermark && !rb->aux_overwrite)
645 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
646 
647 out:
648 	if (!ret)
649 		rb->aux_pgoff = pgoff;
650 	else
651 		__rb_free_aux(rb);
652 
653 	return ret;
654 }
655 
656 void rb_free_aux(struct ring_buffer *rb)
657 {
658 	if (atomic_dec_and_test(&rb->aux_refcount))
659 		__rb_free_aux(rb);
660 }
661 
662 #ifndef CONFIG_PERF_USE_VMALLOC
663 
664 /*
665  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
666  */
667 
668 static struct page *
669 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
670 {
671 	if (pgoff > rb->nr_pages)
672 		return NULL;
673 
674 	if (pgoff == 0)
675 		return virt_to_page(rb->user_page);
676 
677 	return virt_to_page(rb->data_pages[pgoff - 1]);
678 }
679 
680 static void *perf_mmap_alloc_page(int cpu)
681 {
682 	struct page *page;
683 	int node;
684 
685 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
686 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
687 	if (!page)
688 		return NULL;
689 
690 	return page_address(page);
691 }
692 
693 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
694 {
695 	struct ring_buffer *rb;
696 	unsigned long size;
697 	int i;
698 
699 	size = sizeof(struct ring_buffer);
700 	size += nr_pages * sizeof(void *);
701 
702 	rb = kzalloc(size, GFP_KERNEL);
703 	if (!rb)
704 		goto fail;
705 
706 	rb->user_page = perf_mmap_alloc_page(cpu);
707 	if (!rb->user_page)
708 		goto fail_user_page;
709 
710 	for (i = 0; i < nr_pages; i++) {
711 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
712 		if (!rb->data_pages[i])
713 			goto fail_data_pages;
714 	}
715 
716 	rb->nr_pages = nr_pages;
717 
718 	ring_buffer_init(rb, watermark, flags);
719 
720 	return rb;
721 
722 fail_data_pages:
723 	for (i--; i >= 0; i--)
724 		free_page((unsigned long)rb->data_pages[i]);
725 
726 	free_page((unsigned long)rb->user_page);
727 
728 fail_user_page:
729 	kfree(rb);
730 
731 fail:
732 	return NULL;
733 }
734 
735 static void perf_mmap_free_page(unsigned long addr)
736 {
737 	struct page *page = virt_to_page((void *)addr);
738 
739 	page->mapping = NULL;
740 	__free_page(page);
741 }
742 
743 void rb_free(struct ring_buffer *rb)
744 {
745 	int i;
746 
747 	perf_mmap_free_page((unsigned long)rb->user_page);
748 	for (i = 0; i < rb->nr_pages; i++)
749 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
750 	kfree(rb);
751 }
752 
753 #else
754 static int data_page_nr(struct ring_buffer *rb)
755 {
756 	return rb->nr_pages << page_order(rb);
757 }
758 
759 static struct page *
760 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
761 {
762 	/* The '>' counts in the user page. */
763 	if (pgoff > data_page_nr(rb))
764 		return NULL;
765 
766 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
767 }
768 
769 static void perf_mmap_unmark_page(void *addr)
770 {
771 	struct page *page = vmalloc_to_page(addr);
772 
773 	page->mapping = NULL;
774 }
775 
776 static void rb_free_work(struct work_struct *work)
777 {
778 	struct ring_buffer *rb;
779 	void *base;
780 	int i, nr;
781 
782 	rb = container_of(work, struct ring_buffer, work);
783 	nr = data_page_nr(rb);
784 
785 	base = rb->user_page;
786 	/* The '<=' counts in the user page. */
787 	for (i = 0; i <= nr; i++)
788 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
789 
790 	vfree(base);
791 	kfree(rb);
792 }
793 
794 void rb_free(struct ring_buffer *rb)
795 {
796 	schedule_work(&rb->work);
797 }
798 
799 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
800 {
801 	struct ring_buffer *rb;
802 	unsigned long size;
803 	void *all_buf;
804 
805 	size = sizeof(struct ring_buffer);
806 	size += sizeof(void *);
807 
808 	rb = kzalloc(size, GFP_KERNEL);
809 	if (!rb)
810 		goto fail;
811 
812 	INIT_WORK(&rb->work, rb_free_work);
813 
814 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
815 	if (!all_buf)
816 		goto fail_all_buf;
817 
818 	rb->user_page = all_buf;
819 	rb->data_pages[0] = all_buf + PAGE_SIZE;
820 	if (nr_pages) {
821 		rb->nr_pages = 1;
822 		rb->page_order = ilog2(nr_pages);
823 	}
824 
825 	ring_buffer_init(rb, watermark, flags);
826 
827 	return rb;
828 
829 fail_all_buf:
830 	kfree(rb);
831 
832 fail:
833 	return NULL;
834 }
835 
836 #endif
837 
838 struct page *
839 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
840 {
841 	if (rb->aux_nr_pages) {
842 		/* above AUX space */
843 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
844 			return NULL;
845 
846 		/* AUX space */
847 		if (pgoff >= rb->aux_pgoff)
848 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
849 	}
850 
851 	return __perf_mmap_to_page(rb, pgoff);
852 }
853