1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN | EPOLLRDNORM); 23 24 handle->event->pending_wakeup = 1; 25 26 if (*perf_event_fasync(handle->event) && !handle->event->pending_kill) 27 handle->event->pending_kill = POLL_IN; 28 29 irq_work_queue(&handle->event->pending_irq); 30 } 31 32 /* 33 * We need to ensure a later event_id doesn't publish a head when a former 34 * event isn't done writing. However since we need to deal with NMIs we 35 * cannot fully serialize things. 36 * 37 * We only publish the head (and generate a wakeup) when the outer-most 38 * event completes. 39 */ 40 static void perf_output_get_handle(struct perf_output_handle *handle) 41 { 42 struct perf_buffer *rb = handle->rb; 43 44 preempt_disable(); 45 46 /* 47 * Avoid an explicit LOAD/STORE such that architectures with memops 48 * can use them. 49 */ 50 (*(volatile unsigned int *)&rb->nest)++; 51 handle->wakeup = local_read(&rb->wakeup); 52 } 53 54 static void perf_output_put_handle(struct perf_output_handle *handle) 55 { 56 struct perf_buffer *rb = handle->rb; 57 unsigned long head; 58 unsigned int nest; 59 60 /* 61 * If this isn't the outermost nesting, we don't have to update 62 * @rb->user_page->data_head. 63 */ 64 nest = READ_ONCE(rb->nest); 65 if (nest > 1) { 66 WRITE_ONCE(rb->nest, nest - 1); 67 goto out; 68 } 69 70 again: 71 /* 72 * In order to avoid publishing a head value that goes backwards, 73 * we must ensure the load of @rb->head happens after we've 74 * incremented @rb->nest. 75 * 76 * Otherwise we can observe a @rb->head value before one published 77 * by an IRQ/NMI happening between the load and the increment. 78 */ 79 barrier(); 80 head = local_read(&rb->head); 81 82 /* 83 * IRQ/NMI can happen here and advance @rb->head, causing our 84 * load above to be stale. 85 */ 86 87 /* 88 * Since the mmap() consumer (userspace) can run on a different CPU: 89 * 90 * kernel user 91 * 92 * if (LOAD ->data_tail) { LOAD ->data_head 93 * (A) smp_rmb() (C) 94 * STORE $data LOAD $data 95 * smp_wmb() (B) smp_mb() (D) 96 * STORE ->data_head STORE ->data_tail 97 * } 98 * 99 * Where A pairs with D, and B pairs with C. 100 * 101 * In our case (A) is a control dependency that separates the load of 102 * the ->data_tail and the stores of $data. In case ->data_tail 103 * indicates there is no room in the buffer to store $data we do not. 104 * 105 * D needs to be a full barrier since it separates the data READ 106 * from the tail WRITE. 107 * 108 * For B a WMB is sufficient since it separates two WRITEs, and for C 109 * an RMB is sufficient since it separates two READs. 110 * 111 * See perf_output_begin(). 112 */ 113 smp_wmb(); /* B, matches C */ 114 WRITE_ONCE(rb->user_page->data_head, head); 115 116 /* 117 * We must publish the head before decrementing the nest count, 118 * otherwise an IRQ/NMI can publish a more recent head value and our 119 * write will (temporarily) publish a stale value. 120 */ 121 barrier(); 122 WRITE_ONCE(rb->nest, 0); 123 124 /* 125 * Ensure we decrement @rb->nest before we validate the @rb->head. 126 * Otherwise we cannot be sure we caught the 'last' nested update. 127 */ 128 barrier(); 129 if (unlikely(head != local_read(&rb->head))) { 130 WRITE_ONCE(rb->nest, 1); 131 goto again; 132 } 133 134 if (handle->wakeup != local_read(&rb->wakeup)) 135 perf_output_wakeup(handle); 136 137 out: 138 preempt_enable(); 139 } 140 141 static __always_inline bool 142 ring_buffer_has_space(unsigned long head, unsigned long tail, 143 unsigned long data_size, unsigned int size, 144 bool backward) 145 { 146 if (!backward) 147 return CIRC_SPACE(head, tail, data_size) >= size; 148 else 149 return CIRC_SPACE(tail, head, data_size) >= size; 150 } 151 152 static __always_inline int 153 __perf_output_begin(struct perf_output_handle *handle, 154 struct perf_sample_data *data, 155 struct perf_event *event, unsigned int size, 156 bool backward) 157 { 158 struct perf_buffer *rb; 159 unsigned long tail, offset, head; 160 int have_lost, page_shift; 161 struct { 162 struct perf_event_header header; 163 u64 id; 164 u64 lost; 165 } lost_event; 166 167 rcu_read_lock(); 168 /* 169 * For inherited events we send all the output towards the parent. 170 */ 171 if (event->parent) 172 event = event->parent; 173 174 rb = rcu_dereference(event->rb); 175 if (unlikely(!rb)) 176 goto out; 177 178 if (unlikely(rb->paused)) { 179 if (rb->nr_pages) { 180 local_inc(&rb->lost); 181 atomic64_inc(&event->lost_samples); 182 } 183 goto out; 184 } 185 186 handle->rb = rb; 187 handle->event = event; 188 handle->flags = 0; 189 190 have_lost = local_read(&rb->lost); 191 if (unlikely(have_lost)) { 192 size += sizeof(lost_event); 193 if (event->attr.sample_id_all) 194 size += event->id_header_size; 195 } 196 197 perf_output_get_handle(handle); 198 199 offset = local_read(&rb->head); 200 do { 201 head = offset; 202 tail = READ_ONCE(rb->user_page->data_tail); 203 if (!rb->overwrite) { 204 if (unlikely(!ring_buffer_has_space(head, tail, 205 perf_data_size(rb), 206 size, backward))) 207 goto fail; 208 } 209 210 /* 211 * The above forms a control dependency barrier separating the 212 * @tail load above from the data stores below. Since the @tail 213 * load is required to compute the branch to fail below. 214 * 215 * A, matches D; the full memory barrier userspace SHOULD issue 216 * after reading the data and before storing the new tail 217 * position. 218 * 219 * See perf_output_put_handle(). 220 */ 221 222 if (!backward) 223 head += size; 224 else 225 head -= size; 226 } while (!local_try_cmpxchg(&rb->head, &offset, head)); 227 228 if (backward) { 229 offset = head; 230 head = (u64)(-head); 231 } 232 233 /* 234 * We rely on the implied barrier() by local_cmpxchg() to ensure 235 * none of the data stores below can be lifted up by the compiler. 236 */ 237 238 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 239 local_add(rb->watermark, &rb->wakeup); 240 241 page_shift = PAGE_SHIFT + page_order(rb); 242 243 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 244 offset &= (1UL << page_shift) - 1; 245 handle->addr = rb->data_pages[handle->page] + offset; 246 handle->size = (1UL << page_shift) - offset; 247 248 if (unlikely(have_lost)) { 249 lost_event.header.size = sizeof(lost_event); 250 lost_event.header.type = PERF_RECORD_LOST; 251 lost_event.header.misc = 0; 252 lost_event.id = event->id; 253 lost_event.lost = local_xchg(&rb->lost, 0); 254 255 /* XXX mostly redundant; @data is already fully initializes */ 256 perf_event_header__init_id(&lost_event.header, data, event); 257 perf_output_put(handle, lost_event); 258 perf_event__output_id_sample(event, handle, data); 259 } 260 261 return 0; 262 263 fail: 264 local_inc(&rb->lost); 265 atomic64_inc(&event->lost_samples); 266 perf_output_put_handle(handle); 267 out: 268 rcu_read_unlock(); 269 270 return -ENOSPC; 271 } 272 273 int perf_output_begin_forward(struct perf_output_handle *handle, 274 struct perf_sample_data *data, 275 struct perf_event *event, unsigned int size) 276 { 277 return __perf_output_begin(handle, data, event, size, false); 278 } 279 280 int perf_output_begin_backward(struct perf_output_handle *handle, 281 struct perf_sample_data *data, 282 struct perf_event *event, unsigned int size) 283 { 284 return __perf_output_begin(handle, data, event, size, true); 285 } 286 287 int perf_output_begin(struct perf_output_handle *handle, 288 struct perf_sample_data *data, 289 struct perf_event *event, unsigned int size) 290 { 291 292 return __perf_output_begin(handle, data, event, size, 293 unlikely(is_write_backward(event))); 294 } 295 296 unsigned int perf_output_copy(struct perf_output_handle *handle, 297 const void *buf, unsigned int len) 298 { 299 return __output_copy(handle, buf, len); 300 } 301 302 unsigned int perf_output_skip(struct perf_output_handle *handle, 303 unsigned int len) 304 { 305 return __output_skip(handle, NULL, len); 306 } 307 308 void perf_output_end(struct perf_output_handle *handle) 309 { 310 perf_output_put_handle(handle); 311 rcu_read_unlock(); 312 } 313 314 static void 315 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags) 316 { 317 long max_size = perf_data_size(rb); 318 319 if (watermark) 320 rb->watermark = min(max_size, watermark); 321 322 if (!rb->watermark) 323 rb->watermark = max_size / 2; 324 325 if (flags & RING_BUFFER_WRITABLE) 326 rb->overwrite = 0; 327 else 328 rb->overwrite = 1; 329 330 refcount_set(&rb->refcount, 1); 331 332 INIT_LIST_HEAD(&rb->event_list); 333 spin_lock_init(&rb->event_lock); 334 335 /* 336 * perf_output_begin() only checks rb->paused, therefore 337 * rb->paused must be true if we have no pages for output. 338 */ 339 if (!rb->nr_pages) 340 rb->paused = 1; 341 342 mutex_init(&rb->aux_mutex); 343 } 344 345 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 346 { 347 /* 348 * OVERWRITE is determined by perf_aux_output_end() and can't 349 * be passed in directly. 350 */ 351 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 352 return; 353 354 handle->aux_flags |= flags; 355 } 356 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 357 358 /* 359 * This is called before hardware starts writing to the AUX area to 360 * obtain an output handle and make sure there's room in the buffer. 361 * When the capture completes, call perf_aux_output_end() to commit 362 * the recorded data to the buffer. 363 * 364 * The ordering is similar to that of perf_output_{begin,end}, with 365 * the exception of (B), which should be taken care of by the pmu 366 * driver, since ordering rules will differ depending on hardware. 367 * 368 * Call this from pmu::start(); see the comment in perf_aux_output_end() 369 * about its use in pmu callbacks. Both can also be called from the PMI 370 * handler if needed. 371 */ 372 void *perf_aux_output_begin(struct perf_output_handle *handle, 373 struct perf_event *event) 374 { 375 struct perf_event *output_event = event; 376 unsigned long aux_head, aux_tail; 377 struct perf_buffer *rb; 378 unsigned int nest; 379 380 if (output_event->parent) 381 output_event = output_event->parent; 382 383 /* 384 * Since this will typically be open across pmu::add/pmu::del, we 385 * grab ring_buffer's refcount instead of holding rcu read lock 386 * to make sure it doesn't disappear under us. 387 */ 388 rb = ring_buffer_get(output_event); 389 if (!rb) 390 return NULL; 391 392 if (!rb_has_aux(rb)) 393 goto err; 394 395 /* 396 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 397 * about to get freed, so we leave immediately. 398 * 399 * Checking rb::aux_mmap_count and rb::refcount has to be done in 400 * the same order, see perf_mmap_close. Otherwise we end up freeing 401 * aux pages in this path, which is a bug, because in_atomic(). 402 */ 403 if (!atomic_read(&rb->aux_mmap_count)) 404 goto err; 405 406 if (!refcount_inc_not_zero(&rb->aux_refcount)) 407 goto err; 408 409 nest = READ_ONCE(rb->aux_nest); 410 /* 411 * Nesting is not supported for AUX area, make sure nested 412 * writers are caught early 413 */ 414 if (WARN_ON_ONCE(nest)) 415 goto err_put; 416 417 WRITE_ONCE(rb->aux_nest, nest + 1); 418 419 aux_head = rb->aux_head; 420 421 handle->rb = rb; 422 handle->event = event; 423 handle->head = aux_head; 424 handle->size = 0; 425 handle->aux_flags = 0; 426 427 /* 428 * In overwrite mode, AUX data stores do not depend on aux_tail, 429 * therefore (A) control dependency barrier does not exist. The 430 * (B) <-> (C) ordering is still observed by the pmu driver. 431 */ 432 if (!rb->aux_overwrite) { 433 aux_tail = READ_ONCE(rb->user_page->aux_tail); 434 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 435 if (aux_head - aux_tail < perf_aux_size(rb)) 436 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 437 438 /* 439 * handle->size computation depends on aux_tail load; this forms a 440 * control dependency barrier separating aux_tail load from aux data 441 * store that will be enabled on successful return 442 */ 443 if (!handle->size) { /* A, matches D */ 444 perf_event_disable_inatomic(handle->event); 445 perf_output_wakeup(handle); 446 WRITE_ONCE(rb->aux_nest, 0); 447 goto err_put; 448 } 449 } 450 451 return handle->rb->aux_priv; 452 453 err_put: 454 /* can't be last */ 455 rb_free_aux(rb); 456 457 err: 458 ring_buffer_put(rb); 459 handle->event = NULL; 460 461 return NULL; 462 } 463 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 464 465 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb) 466 { 467 if (rb->aux_overwrite) 468 return false; 469 470 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 471 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 472 return true; 473 } 474 475 return false; 476 } 477 478 /* 479 * Commit the data written by hardware into the ring buffer by adjusting 480 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 481 * pmu driver's responsibility to observe ordering rules of the hardware, 482 * so that all the data is externally visible before this is called. 483 * 484 * Note: this has to be called from pmu::stop() callback, as the assumption 485 * of the AUX buffer management code is that after pmu::stop(), the AUX 486 * transaction must be stopped and therefore drop the AUX reference count. 487 */ 488 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 489 { 490 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 491 struct perf_buffer *rb = handle->rb; 492 unsigned long aux_head; 493 494 /* in overwrite mode, driver provides aux_head via handle */ 495 if (rb->aux_overwrite) { 496 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 497 498 aux_head = handle->head; 499 rb->aux_head = aux_head; 500 } else { 501 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 502 503 aux_head = rb->aux_head; 504 rb->aux_head += size; 505 } 506 507 /* 508 * Only send RECORD_AUX if we have something useful to communicate 509 * 510 * Note: the OVERWRITE records by themselves are not considered 511 * useful, as they don't communicate any *new* information, 512 * aside from the short-lived offset, that becomes history at 513 * the next event sched-in and therefore isn't useful. 514 * The userspace that needs to copy out AUX data in overwrite 515 * mode should know to use user_page::aux_head for the actual 516 * offset. So, from now on we don't output AUX records that 517 * have *only* OVERWRITE flag set. 518 */ 519 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) 520 perf_event_aux_event(handle->event, aux_head, size, 521 handle->aux_flags); 522 523 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 524 if (rb_need_aux_wakeup(rb)) 525 wakeup = true; 526 527 if (wakeup) { 528 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 529 perf_event_disable_inatomic(handle->event); 530 perf_output_wakeup(handle); 531 } 532 533 handle->event = NULL; 534 535 WRITE_ONCE(rb->aux_nest, 0); 536 /* can't be last */ 537 rb_free_aux(rb); 538 ring_buffer_put(rb); 539 } 540 EXPORT_SYMBOL_GPL(perf_aux_output_end); 541 542 /* 543 * Skip over a given number of bytes in the AUX buffer, due to, for example, 544 * hardware's alignment constraints. 545 */ 546 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 547 { 548 struct perf_buffer *rb = handle->rb; 549 550 if (size > handle->size) 551 return -ENOSPC; 552 553 rb->aux_head += size; 554 555 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 556 if (rb_need_aux_wakeup(rb)) { 557 perf_output_wakeup(handle); 558 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 559 } 560 561 handle->head = rb->aux_head; 562 handle->size -= size; 563 564 return 0; 565 } 566 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 567 568 void *perf_get_aux(struct perf_output_handle *handle) 569 { 570 /* this is only valid between perf_aux_output_begin and *_end */ 571 if (!handle->event) 572 return NULL; 573 574 return handle->rb->aux_priv; 575 } 576 EXPORT_SYMBOL_GPL(perf_get_aux); 577 578 /* 579 * Copy out AUX data from an AUX handle. 580 */ 581 long perf_output_copy_aux(struct perf_output_handle *aux_handle, 582 struct perf_output_handle *handle, 583 unsigned long from, unsigned long to) 584 { 585 struct perf_buffer *rb = aux_handle->rb; 586 unsigned long tocopy, remainder, len = 0; 587 void *addr; 588 589 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 590 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 591 592 do { 593 tocopy = PAGE_SIZE - offset_in_page(from); 594 if (to > from) 595 tocopy = min(tocopy, to - from); 596 if (!tocopy) 597 break; 598 599 addr = rb->aux_pages[from >> PAGE_SHIFT]; 600 addr += offset_in_page(from); 601 602 remainder = perf_output_copy(handle, addr, tocopy); 603 if (remainder) 604 return -EFAULT; 605 606 len += tocopy; 607 from += tocopy; 608 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 609 } while (to != from); 610 611 return len; 612 } 613 614 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 615 616 static struct page *rb_alloc_aux_page(int node, int order) 617 { 618 struct page *page; 619 620 if (order > MAX_PAGE_ORDER) 621 order = MAX_PAGE_ORDER; 622 623 do { 624 page = alloc_pages_node(node, PERF_AUX_GFP, order); 625 } while (!page && order--); 626 627 if (page && order) { 628 /* 629 * Communicate the allocation size to the driver: 630 * if we managed to secure a high-order allocation, 631 * set its first page's private to this order; 632 * !PagePrivate(page) means it's just a normal page. 633 */ 634 split_page(page, order); 635 SetPagePrivate(page); 636 set_page_private(page, order); 637 } 638 639 return page; 640 } 641 642 static void rb_free_aux_page(struct perf_buffer *rb, int idx) 643 { 644 struct page *page = virt_to_page(rb->aux_pages[idx]); 645 646 ClearPagePrivate(page); 647 __free_page(page); 648 } 649 650 static void __rb_free_aux(struct perf_buffer *rb) 651 { 652 int pg; 653 654 /* 655 * Should never happen, the last reference should be dropped from 656 * perf_mmap_close() path, which first stops aux transactions (which 657 * in turn are the atomic holders of aux_refcount) and then does the 658 * last rb_free_aux(). 659 */ 660 WARN_ON_ONCE(in_atomic()); 661 662 if (rb->aux_priv) { 663 rb->free_aux(rb->aux_priv); 664 rb->free_aux = NULL; 665 rb->aux_priv = NULL; 666 } 667 668 if (rb->aux_nr_pages) { 669 for (pg = 0; pg < rb->aux_nr_pages; pg++) 670 rb_free_aux_page(rb, pg); 671 672 kfree(rb->aux_pages); 673 rb->aux_nr_pages = 0; 674 } 675 } 676 677 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, 678 pgoff_t pgoff, int nr_pages, long watermark, int flags) 679 { 680 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 681 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 682 bool use_contiguous_pages = event->pmu->capabilities & ( 683 PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_PREFER_LARGE); 684 /* 685 * Initialize max_order to 0 for page allocation. This allocates single 686 * pages to minimize memory fragmentation. This is overridden if the 687 * PMU needs or prefers contiguous pages (use_contiguous_pages = true). 688 */ 689 int max_order = 0; 690 int ret = -ENOMEM; 691 692 if (!has_aux(event)) 693 return -EOPNOTSUPP; 694 695 if (nr_pages <= 0) 696 return -EINVAL; 697 698 if (!overwrite) { 699 /* 700 * Watermark defaults to half the buffer, to aid PMU drivers 701 * in double buffering. 702 */ 703 if (!watermark) 704 watermark = min_t(unsigned long, 705 U32_MAX, 706 (unsigned long)nr_pages << (PAGE_SHIFT - 1)); 707 708 /* 709 * If using contiguous pages, use aux_watermark as the basis 710 * for chunking to help PMU drivers honor the watermark. 711 */ 712 if (use_contiguous_pages) 713 max_order = get_order(watermark); 714 } else { 715 /* 716 * If using contiguous pages, we need to start with the 717 * max_order that fits in nr_pages, not the other way around, 718 * hence ilog2() and not get_order. 719 */ 720 if (use_contiguous_pages) 721 max_order = ilog2(nr_pages); 722 watermark = 0; 723 } 724 725 /* 726 * kcalloc_node() is unable to allocate buffer if the size is larger 727 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case. 728 */ 729 if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER) 730 return -ENOMEM; 731 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 732 node); 733 if (!rb->aux_pages) 734 return -ENOMEM; 735 736 rb->free_aux = event->pmu->free_aux; 737 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 738 struct page *page; 739 int last, order; 740 741 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 742 page = rb_alloc_aux_page(node, order); 743 if (!page) 744 goto out; 745 746 for (last = rb->aux_nr_pages + (1 << page_private(page)); 747 last > rb->aux_nr_pages; rb->aux_nr_pages++) 748 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 749 } 750 751 /* 752 * In overwrite mode, PMUs that don't support SG may not handle more 753 * than one contiguous allocation, since they rely on PMI to do double 754 * buffering. In this case, the entire buffer has to be one contiguous 755 * chunk. 756 */ 757 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 758 overwrite) { 759 struct page *page = virt_to_page(rb->aux_pages[0]); 760 761 if (page_private(page) != max_order) 762 goto out; 763 } 764 765 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 766 overwrite); 767 if (!rb->aux_priv) 768 goto out; 769 770 ret = 0; 771 772 /* 773 * aux_pages (and pmu driver's private data, aux_priv) will be 774 * referenced in both producer's and consumer's contexts, thus 775 * we keep a refcount here to make sure either of the two can 776 * reference them safely. 777 */ 778 refcount_set(&rb->aux_refcount, 1); 779 780 rb->aux_overwrite = overwrite; 781 rb->aux_watermark = watermark; 782 783 out: 784 if (!ret) 785 rb->aux_pgoff = pgoff; 786 else 787 __rb_free_aux(rb); 788 789 return ret; 790 } 791 792 void rb_free_aux(struct perf_buffer *rb) 793 { 794 if (refcount_dec_and_test(&rb->aux_refcount)) 795 __rb_free_aux(rb); 796 } 797 798 #ifndef CONFIG_PERF_USE_VMALLOC 799 800 /* 801 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 802 */ 803 804 static struct page * 805 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 806 { 807 if (pgoff > rb->nr_pages) 808 return NULL; 809 810 if (pgoff == 0) 811 return virt_to_page(rb->user_page); 812 813 return virt_to_page(rb->data_pages[pgoff - 1]); 814 } 815 816 static void *perf_mmap_alloc_page(int cpu) 817 { 818 struct page *page; 819 int node; 820 821 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 822 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 823 if (!page) 824 return NULL; 825 826 return page_address(page); 827 } 828 829 static void perf_mmap_free_page(void *addr) 830 { 831 struct page *page = virt_to_page(addr); 832 833 __free_page(page); 834 } 835 836 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 837 { 838 struct perf_buffer *rb; 839 unsigned long size; 840 int i, node; 841 842 size = sizeof(struct perf_buffer); 843 size += nr_pages * sizeof(void *); 844 845 if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER) 846 goto fail; 847 848 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 849 rb = kzalloc_node(size, GFP_KERNEL, node); 850 if (!rb) 851 goto fail; 852 853 rb->user_page = perf_mmap_alloc_page(cpu); 854 if (!rb->user_page) 855 goto fail_user_page; 856 857 for (i = 0; i < nr_pages; i++) { 858 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 859 if (!rb->data_pages[i]) 860 goto fail_data_pages; 861 } 862 863 rb->nr_pages = nr_pages; 864 865 ring_buffer_init(rb, watermark, flags); 866 867 return rb; 868 869 fail_data_pages: 870 for (i--; i >= 0; i--) 871 perf_mmap_free_page(rb->data_pages[i]); 872 873 perf_mmap_free_page(rb->user_page); 874 875 fail_user_page: 876 kfree(rb); 877 878 fail: 879 return NULL; 880 } 881 882 void rb_free(struct perf_buffer *rb) 883 { 884 int i; 885 886 perf_mmap_free_page(rb->user_page); 887 for (i = 0; i < rb->nr_pages; i++) 888 perf_mmap_free_page(rb->data_pages[i]); 889 kfree(rb); 890 } 891 892 #else 893 static struct page * 894 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 895 { 896 /* The '>' counts in the user page. */ 897 if (pgoff > data_page_nr(rb)) 898 return NULL; 899 900 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 901 } 902 903 static void rb_free_work(struct work_struct *work) 904 { 905 struct perf_buffer *rb; 906 907 rb = container_of(work, struct perf_buffer, work); 908 909 vfree(rb->user_page); 910 kfree(rb); 911 } 912 913 void rb_free(struct perf_buffer *rb) 914 { 915 schedule_work(&rb->work); 916 } 917 918 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 919 { 920 struct perf_buffer *rb; 921 unsigned long size; 922 void *all_buf; 923 int node; 924 925 size = sizeof(struct perf_buffer); 926 size += sizeof(void *); 927 928 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 929 rb = kzalloc_node(size, GFP_KERNEL, node); 930 if (!rb) 931 goto fail; 932 933 INIT_WORK(&rb->work, rb_free_work); 934 935 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 936 if (!all_buf) 937 goto fail_all_buf; 938 939 rb->user_page = all_buf; 940 rb->data_pages[0] = all_buf + PAGE_SIZE; 941 if (nr_pages) { 942 rb->nr_pages = 1; 943 rb->page_order = ilog2(nr_pages); 944 } 945 946 ring_buffer_init(rb, watermark, flags); 947 948 return rb; 949 950 fail_all_buf: 951 kfree(rb); 952 953 fail: 954 return NULL; 955 } 956 957 #endif 958 959 struct page * 960 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 961 { 962 if (rb->aux_nr_pages) { 963 /* above AUX space */ 964 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 965 return NULL; 966 967 /* AUX space */ 968 if (pgoff >= rb->aux_pgoff) { 969 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 970 return virt_to_page(rb->aux_pages[aux_pgoff]); 971 } 972 } 973 974 return __perf_mmap_to_page(rb, pgoff); 975 } 976