xref: /linux/kernel/events/ring_buffer.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 
18 #include "internal.h"
19 
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, POLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 	local_inc(&rb->nest);
42 	handle->wakeup = local_read(&rb->wakeup);
43 }
44 
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 	struct ring_buffer *rb = handle->rb;
48 	unsigned long head;
49 
50 again:
51 	head = local_read(&rb->head);
52 
53 	/*
54 	 * IRQ/NMI can happen here, which means we can miss a head update.
55 	 */
56 
57 	if (!local_dec_and_test(&rb->nest))
58 		goto out;
59 
60 	/*
61 	 * Since the mmap() consumer (userspace) can run on a different CPU:
62 	 *
63 	 *   kernel				user
64 	 *
65 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
66 	 *			(A)		smp_rmb()	(C)
67 	 *	STORE $data			LOAD $data
68 	 *	smp_wmb()	(B)		smp_mb()	(D)
69 	 *	STORE ->data_head		STORE ->data_tail
70 	 *   }
71 	 *
72 	 * Where A pairs with D, and B pairs with C.
73 	 *
74 	 * In our case (A) is a control dependency that separates the load of
75 	 * the ->data_tail and the stores of $data. In case ->data_tail
76 	 * indicates there is no room in the buffer to store $data we do not.
77 	 *
78 	 * D needs to be a full barrier since it separates the data READ
79 	 * from the tail WRITE.
80 	 *
81 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 	 * an RMB is sufficient since it separates two READs.
83 	 *
84 	 * See perf_output_begin().
85 	 */
86 	smp_wmb(); /* B, matches C */
87 	rb->user_page->data_head = head;
88 
89 	/*
90 	 * Now check if we missed an update -- rely on previous implied
91 	 * compiler barriers to force a re-read.
92 	 */
93 	if (unlikely(head != local_read(&rb->head))) {
94 		local_inc(&rb->nest);
95 		goto again;
96 	}
97 
98 	if (handle->wakeup != local_read(&rb->wakeup))
99 		perf_output_wakeup(handle);
100 
101 out:
102 	preempt_enable();
103 }
104 
105 static bool __always_inline
106 ring_buffer_has_space(unsigned long head, unsigned long tail,
107 		      unsigned long data_size, unsigned int size,
108 		      bool backward)
109 {
110 	if (!backward)
111 		return CIRC_SPACE(head, tail, data_size) >= size;
112 	else
113 		return CIRC_SPACE(tail, head, data_size) >= size;
114 }
115 
116 static int __always_inline
117 __perf_output_begin(struct perf_output_handle *handle,
118 		    struct perf_event *event, unsigned int size,
119 		    bool backward)
120 {
121 	struct ring_buffer *rb;
122 	unsigned long tail, offset, head;
123 	int have_lost, page_shift;
124 	struct {
125 		struct perf_event_header header;
126 		u64			 id;
127 		u64			 lost;
128 	} lost_event;
129 
130 	rcu_read_lock();
131 	/*
132 	 * For inherited events we send all the output towards the parent.
133 	 */
134 	if (event->parent)
135 		event = event->parent;
136 
137 	rb = rcu_dereference(event->rb);
138 	if (unlikely(!rb))
139 		goto out;
140 
141 	if (unlikely(rb->paused)) {
142 		if (rb->nr_pages)
143 			local_inc(&rb->lost);
144 		goto out;
145 	}
146 
147 	handle->rb    = rb;
148 	handle->event = event;
149 
150 	have_lost = local_read(&rb->lost);
151 	if (unlikely(have_lost)) {
152 		size += sizeof(lost_event);
153 		if (event->attr.sample_id_all)
154 			size += event->id_header_size;
155 	}
156 
157 	perf_output_get_handle(handle);
158 
159 	do {
160 		tail = READ_ONCE(rb->user_page->data_tail);
161 		offset = head = local_read(&rb->head);
162 		if (!rb->overwrite) {
163 			if (unlikely(!ring_buffer_has_space(head, tail,
164 							    perf_data_size(rb),
165 							    size, backward)))
166 				goto fail;
167 		}
168 
169 		/*
170 		 * The above forms a control dependency barrier separating the
171 		 * @tail load above from the data stores below. Since the @tail
172 		 * load is required to compute the branch to fail below.
173 		 *
174 		 * A, matches D; the full memory barrier userspace SHOULD issue
175 		 * after reading the data and before storing the new tail
176 		 * position.
177 		 *
178 		 * See perf_output_put_handle().
179 		 */
180 
181 		if (!backward)
182 			head += size;
183 		else
184 			head -= size;
185 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
186 
187 	if (backward) {
188 		offset = head;
189 		head = (u64)(-head);
190 	}
191 
192 	/*
193 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
194 	 * none of the data stores below can be lifted up by the compiler.
195 	 */
196 
197 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
198 		local_add(rb->watermark, &rb->wakeup);
199 
200 	page_shift = PAGE_SHIFT + page_order(rb);
201 
202 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
203 	offset &= (1UL << page_shift) - 1;
204 	handle->addr = rb->data_pages[handle->page] + offset;
205 	handle->size = (1UL << page_shift) - offset;
206 
207 	if (unlikely(have_lost)) {
208 		struct perf_sample_data sample_data;
209 
210 		lost_event.header.size = sizeof(lost_event);
211 		lost_event.header.type = PERF_RECORD_LOST;
212 		lost_event.header.misc = 0;
213 		lost_event.id          = event->id;
214 		lost_event.lost        = local_xchg(&rb->lost, 0);
215 
216 		perf_event_header__init_id(&lost_event.header,
217 					   &sample_data, event);
218 		perf_output_put(handle, lost_event);
219 		perf_event__output_id_sample(event, handle, &sample_data);
220 	}
221 
222 	return 0;
223 
224 fail:
225 	local_inc(&rb->lost);
226 	perf_output_put_handle(handle);
227 out:
228 	rcu_read_unlock();
229 
230 	return -ENOSPC;
231 }
232 
233 int perf_output_begin_forward(struct perf_output_handle *handle,
234 			     struct perf_event *event, unsigned int size)
235 {
236 	return __perf_output_begin(handle, event, size, false);
237 }
238 
239 int perf_output_begin_backward(struct perf_output_handle *handle,
240 			       struct perf_event *event, unsigned int size)
241 {
242 	return __perf_output_begin(handle, event, size, true);
243 }
244 
245 int perf_output_begin(struct perf_output_handle *handle,
246 		      struct perf_event *event, unsigned int size)
247 {
248 
249 	return __perf_output_begin(handle, event, size,
250 				   unlikely(is_write_backward(event)));
251 }
252 
253 unsigned int perf_output_copy(struct perf_output_handle *handle,
254 		      const void *buf, unsigned int len)
255 {
256 	return __output_copy(handle, buf, len);
257 }
258 
259 unsigned int perf_output_skip(struct perf_output_handle *handle,
260 			      unsigned int len)
261 {
262 	return __output_skip(handle, NULL, len);
263 }
264 
265 void perf_output_end(struct perf_output_handle *handle)
266 {
267 	perf_output_put_handle(handle);
268 	rcu_read_unlock();
269 }
270 
271 static void
272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
273 {
274 	long max_size = perf_data_size(rb);
275 
276 	if (watermark)
277 		rb->watermark = min(max_size, watermark);
278 
279 	if (!rb->watermark)
280 		rb->watermark = max_size / 2;
281 
282 	if (flags & RING_BUFFER_WRITABLE)
283 		rb->overwrite = 0;
284 	else
285 		rb->overwrite = 1;
286 
287 	atomic_set(&rb->refcount, 1);
288 
289 	INIT_LIST_HEAD(&rb->event_list);
290 	spin_lock_init(&rb->event_lock);
291 
292 	/*
293 	 * perf_output_begin() only checks rb->paused, therefore
294 	 * rb->paused must be true if we have no pages for output.
295 	 */
296 	if (!rb->nr_pages)
297 		rb->paused = 1;
298 }
299 
300 /*
301  * This is called before hardware starts writing to the AUX area to
302  * obtain an output handle and make sure there's room in the buffer.
303  * When the capture completes, call perf_aux_output_end() to commit
304  * the recorded data to the buffer.
305  *
306  * The ordering is similar to that of perf_output_{begin,end}, with
307  * the exception of (B), which should be taken care of by the pmu
308  * driver, since ordering rules will differ depending on hardware.
309  *
310  * Call this from pmu::start(); see the comment in perf_aux_output_end()
311  * about its use in pmu callbacks. Both can also be called from the PMI
312  * handler if needed.
313  */
314 void *perf_aux_output_begin(struct perf_output_handle *handle,
315 			    struct perf_event *event)
316 {
317 	struct perf_event *output_event = event;
318 	unsigned long aux_head, aux_tail;
319 	struct ring_buffer *rb;
320 
321 	if (output_event->parent)
322 		output_event = output_event->parent;
323 
324 	/*
325 	 * Since this will typically be open across pmu::add/pmu::del, we
326 	 * grab ring_buffer's refcount instead of holding rcu read lock
327 	 * to make sure it doesn't disappear under us.
328 	 */
329 	rb = ring_buffer_get(output_event);
330 	if (!rb)
331 		return NULL;
332 
333 	if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
334 		goto err;
335 
336 	/*
337 	 * If rb::aux_mmap_count is zero (and rb_has_aux() above went through),
338 	 * the aux buffer is in perf_mmap_close(), about to get freed.
339 	 */
340 	if (!atomic_read(&rb->aux_mmap_count))
341 		goto err_put;
342 
343 	/*
344 	 * Nesting is not supported for AUX area, make sure nested
345 	 * writers are caught early
346 	 */
347 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
348 		goto err_put;
349 
350 	aux_head = local_read(&rb->aux_head);
351 
352 	handle->rb = rb;
353 	handle->event = event;
354 	handle->head = aux_head;
355 	handle->size = 0;
356 
357 	/*
358 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
359 	 * therefore (A) control dependency barrier does not exist. The
360 	 * (B) <-> (C) ordering is still observed by the pmu driver.
361 	 */
362 	if (!rb->aux_overwrite) {
363 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
364 		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
365 		if (aux_head - aux_tail < perf_aux_size(rb))
366 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
367 
368 		/*
369 		 * handle->size computation depends on aux_tail load; this forms a
370 		 * control dependency barrier separating aux_tail load from aux data
371 		 * store that will be enabled on successful return
372 		 */
373 		if (!handle->size) { /* A, matches D */
374 			event->pending_disable = 1;
375 			perf_output_wakeup(handle);
376 			local_set(&rb->aux_nest, 0);
377 			goto err_put;
378 		}
379 	}
380 
381 	return handle->rb->aux_priv;
382 
383 err_put:
384 	/* can't be last */
385 	rb_free_aux(rb);
386 
387 err:
388 	ring_buffer_put(rb);
389 	handle->event = NULL;
390 
391 	return NULL;
392 }
393 
394 /*
395  * Commit the data written by hardware into the ring buffer by adjusting
396  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
397  * pmu driver's responsibility to observe ordering rules of the hardware,
398  * so that all the data is externally visible before this is called.
399  *
400  * Note: this has to be called from pmu::stop() callback, as the assumption
401  * of the AUX buffer management code is that after pmu::stop(), the AUX
402  * transaction must be stopped and therefore drop the AUX reference count.
403  */
404 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
405 			 bool truncated)
406 {
407 	struct ring_buffer *rb = handle->rb;
408 	bool wakeup = truncated;
409 	unsigned long aux_head;
410 	u64 flags = 0;
411 
412 	if (truncated)
413 		flags |= PERF_AUX_FLAG_TRUNCATED;
414 
415 	/* in overwrite mode, driver provides aux_head via handle */
416 	if (rb->aux_overwrite) {
417 		flags |= PERF_AUX_FLAG_OVERWRITE;
418 
419 		aux_head = handle->head;
420 		local_set(&rb->aux_head, aux_head);
421 	} else {
422 		aux_head = local_read(&rb->aux_head);
423 		local_add(size, &rb->aux_head);
424 	}
425 
426 	if (size || flags) {
427 		/*
428 		 * Only send RECORD_AUX if we have something useful to communicate
429 		 */
430 
431 		perf_event_aux_event(handle->event, aux_head, size, flags);
432 	}
433 
434 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
435 
436 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
437 		wakeup = true;
438 		local_add(rb->aux_watermark, &rb->aux_wakeup);
439 	}
440 
441 	if (wakeup) {
442 		if (truncated)
443 			handle->event->pending_disable = 1;
444 		perf_output_wakeup(handle);
445 	}
446 
447 	handle->event = NULL;
448 
449 	local_set(&rb->aux_nest, 0);
450 	/* can't be last */
451 	rb_free_aux(rb);
452 	ring_buffer_put(rb);
453 }
454 
455 /*
456  * Skip over a given number of bytes in the AUX buffer, due to, for example,
457  * hardware's alignment constraints.
458  */
459 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
460 {
461 	struct ring_buffer *rb = handle->rb;
462 	unsigned long aux_head;
463 
464 	if (size > handle->size)
465 		return -ENOSPC;
466 
467 	local_add(size, &rb->aux_head);
468 
469 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
470 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
471 		perf_output_wakeup(handle);
472 		local_add(rb->aux_watermark, &rb->aux_wakeup);
473 		handle->wakeup = local_read(&rb->aux_wakeup) +
474 				 rb->aux_watermark;
475 	}
476 
477 	handle->head = aux_head;
478 	handle->size -= size;
479 
480 	return 0;
481 }
482 
483 void *perf_get_aux(struct perf_output_handle *handle)
484 {
485 	/* this is only valid between perf_aux_output_begin and *_end */
486 	if (!handle->event)
487 		return NULL;
488 
489 	return handle->rb->aux_priv;
490 }
491 
492 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
493 
494 static struct page *rb_alloc_aux_page(int node, int order)
495 {
496 	struct page *page;
497 
498 	if (order > MAX_ORDER)
499 		order = MAX_ORDER;
500 
501 	do {
502 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
503 	} while (!page && order--);
504 
505 	if (page && order) {
506 		/*
507 		 * Communicate the allocation size to the driver:
508 		 * if we managed to secure a high-order allocation,
509 		 * set its first page's private to this order;
510 		 * !PagePrivate(page) means it's just a normal page.
511 		 */
512 		split_page(page, order);
513 		SetPagePrivate(page);
514 		set_page_private(page, order);
515 	}
516 
517 	return page;
518 }
519 
520 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
521 {
522 	struct page *page = virt_to_page(rb->aux_pages[idx]);
523 
524 	ClearPagePrivate(page);
525 	page->mapping = NULL;
526 	__free_page(page);
527 }
528 
529 static void __rb_free_aux(struct ring_buffer *rb)
530 {
531 	int pg;
532 
533 	/*
534 	 * Should never happen, the last reference should be dropped from
535 	 * perf_mmap_close() path, which first stops aux transactions (which
536 	 * in turn are the atomic holders of aux_refcount) and then does the
537 	 * last rb_free_aux().
538 	 */
539 	WARN_ON_ONCE(in_atomic());
540 
541 	if (rb->aux_priv) {
542 		rb->free_aux(rb->aux_priv);
543 		rb->free_aux = NULL;
544 		rb->aux_priv = NULL;
545 	}
546 
547 	if (rb->aux_nr_pages) {
548 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
549 			rb_free_aux_page(rb, pg);
550 
551 		kfree(rb->aux_pages);
552 		rb->aux_nr_pages = 0;
553 	}
554 }
555 
556 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
557 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
558 {
559 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
560 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
561 	int ret = -ENOMEM, max_order = 0;
562 
563 	if (!has_aux(event))
564 		return -ENOTSUPP;
565 
566 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
567 		/*
568 		 * We need to start with the max_order that fits in nr_pages,
569 		 * not the other way around, hence ilog2() and not get_order.
570 		 */
571 		max_order = ilog2(nr_pages);
572 
573 		/*
574 		 * PMU requests more than one contiguous chunks of memory
575 		 * for SW double buffering
576 		 */
577 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
578 		    !overwrite) {
579 			if (!max_order)
580 				return -EINVAL;
581 
582 			max_order--;
583 		}
584 	}
585 
586 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
587 	if (!rb->aux_pages)
588 		return -ENOMEM;
589 
590 	rb->free_aux = event->pmu->free_aux;
591 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
592 		struct page *page;
593 		int last, order;
594 
595 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
596 		page = rb_alloc_aux_page(node, order);
597 		if (!page)
598 			goto out;
599 
600 		for (last = rb->aux_nr_pages + (1 << page_private(page));
601 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
602 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
603 	}
604 
605 	/*
606 	 * In overwrite mode, PMUs that don't support SG may not handle more
607 	 * than one contiguous allocation, since they rely on PMI to do double
608 	 * buffering. In this case, the entire buffer has to be one contiguous
609 	 * chunk.
610 	 */
611 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
612 	    overwrite) {
613 		struct page *page = virt_to_page(rb->aux_pages[0]);
614 
615 		if (page_private(page) != max_order)
616 			goto out;
617 	}
618 
619 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
620 					     overwrite);
621 	if (!rb->aux_priv)
622 		goto out;
623 
624 	ret = 0;
625 
626 	/*
627 	 * aux_pages (and pmu driver's private data, aux_priv) will be
628 	 * referenced in both producer's and consumer's contexts, thus
629 	 * we keep a refcount here to make sure either of the two can
630 	 * reference them safely.
631 	 */
632 	atomic_set(&rb->aux_refcount, 1);
633 
634 	rb->aux_overwrite = overwrite;
635 	rb->aux_watermark = watermark;
636 
637 	if (!rb->aux_watermark && !rb->aux_overwrite)
638 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
639 
640 out:
641 	if (!ret)
642 		rb->aux_pgoff = pgoff;
643 	else
644 		__rb_free_aux(rb);
645 
646 	return ret;
647 }
648 
649 void rb_free_aux(struct ring_buffer *rb)
650 {
651 	if (atomic_dec_and_test(&rb->aux_refcount))
652 		__rb_free_aux(rb);
653 }
654 
655 #ifndef CONFIG_PERF_USE_VMALLOC
656 
657 /*
658  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
659  */
660 
661 static struct page *
662 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
663 {
664 	if (pgoff > rb->nr_pages)
665 		return NULL;
666 
667 	if (pgoff == 0)
668 		return virt_to_page(rb->user_page);
669 
670 	return virt_to_page(rb->data_pages[pgoff - 1]);
671 }
672 
673 static void *perf_mmap_alloc_page(int cpu)
674 {
675 	struct page *page;
676 	int node;
677 
678 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
679 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
680 	if (!page)
681 		return NULL;
682 
683 	return page_address(page);
684 }
685 
686 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
687 {
688 	struct ring_buffer *rb;
689 	unsigned long size;
690 	int i;
691 
692 	size = sizeof(struct ring_buffer);
693 	size += nr_pages * sizeof(void *);
694 
695 	rb = kzalloc(size, GFP_KERNEL);
696 	if (!rb)
697 		goto fail;
698 
699 	rb->user_page = perf_mmap_alloc_page(cpu);
700 	if (!rb->user_page)
701 		goto fail_user_page;
702 
703 	for (i = 0; i < nr_pages; i++) {
704 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
705 		if (!rb->data_pages[i])
706 			goto fail_data_pages;
707 	}
708 
709 	rb->nr_pages = nr_pages;
710 
711 	ring_buffer_init(rb, watermark, flags);
712 
713 	return rb;
714 
715 fail_data_pages:
716 	for (i--; i >= 0; i--)
717 		free_page((unsigned long)rb->data_pages[i]);
718 
719 	free_page((unsigned long)rb->user_page);
720 
721 fail_user_page:
722 	kfree(rb);
723 
724 fail:
725 	return NULL;
726 }
727 
728 static void perf_mmap_free_page(unsigned long addr)
729 {
730 	struct page *page = virt_to_page((void *)addr);
731 
732 	page->mapping = NULL;
733 	__free_page(page);
734 }
735 
736 void rb_free(struct ring_buffer *rb)
737 {
738 	int i;
739 
740 	perf_mmap_free_page((unsigned long)rb->user_page);
741 	for (i = 0; i < rb->nr_pages; i++)
742 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
743 	kfree(rb);
744 }
745 
746 #else
747 static int data_page_nr(struct ring_buffer *rb)
748 {
749 	return rb->nr_pages << page_order(rb);
750 }
751 
752 static struct page *
753 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
754 {
755 	/* The '>' counts in the user page. */
756 	if (pgoff > data_page_nr(rb))
757 		return NULL;
758 
759 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
760 }
761 
762 static void perf_mmap_unmark_page(void *addr)
763 {
764 	struct page *page = vmalloc_to_page(addr);
765 
766 	page->mapping = NULL;
767 }
768 
769 static void rb_free_work(struct work_struct *work)
770 {
771 	struct ring_buffer *rb;
772 	void *base;
773 	int i, nr;
774 
775 	rb = container_of(work, struct ring_buffer, work);
776 	nr = data_page_nr(rb);
777 
778 	base = rb->user_page;
779 	/* The '<=' counts in the user page. */
780 	for (i = 0; i <= nr; i++)
781 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
782 
783 	vfree(base);
784 	kfree(rb);
785 }
786 
787 void rb_free(struct ring_buffer *rb)
788 {
789 	schedule_work(&rb->work);
790 }
791 
792 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
793 {
794 	struct ring_buffer *rb;
795 	unsigned long size;
796 	void *all_buf;
797 
798 	size = sizeof(struct ring_buffer);
799 	size += sizeof(void *);
800 
801 	rb = kzalloc(size, GFP_KERNEL);
802 	if (!rb)
803 		goto fail;
804 
805 	INIT_WORK(&rb->work, rb_free_work);
806 
807 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
808 	if (!all_buf)
809 		goto fail_all_buf;
810 
811 	rb->user_page = all_buf;
812 	rb->data_pages[0] = all_buf + PAGE_SIZE;
813 	if (nr_pages) {
814 		rb->nr_pages = 1;
815 		rb->page_order = ilog2(nr_pages);
816 	}
817 
818 	ring_buffer_init(rb, watermark, flags);
819 
820 	return rb;
821 
822 fail_all_buf:
823 	kfree(rb);
824 
825 fail:
826 	return NULL;
827 }
828 
829 #endif
830 
831 struct page *
832 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
833 {
834 	if (rb->aux_nr_pages) {
835 		/* above AUX space */
836 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
837 			return NULL;
838 
839 		/* AUX space */
840 		if (pgoff >= rb->aux_pgoff)
841 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
842 	}
843 
844 	return __perf_mmap_to_page(rb, pgoff);
845 }
846