1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events ring-buffer code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/perf_event.h> 12 #include <linux/vmalloc.h> 13 #include <linux/slab.h> 14 #include <linux/circ_buf.h> 15 #include <linux/poll.h> 16 #include <linux/nospec.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, EPOLLIN); 23 24 handle->event->pending_wakeup = 1; 25 26 if (*perf_event_fasync(handle->event) && !handle->event->pending_kill) 27 handle->event->pending_kill = POLL_IN; 28 29 irq_work_queue(&handle->event->pending_irq); 30 } 31 32 /* 33 * We need to ensure a later event_id doesn't publish a head when a former 34 * event isn't done writing. However since we need to deal with NMIs we 35 * cannot fully serialize things. 36 * 37 * We only publish the head (and generate a wakeup) when the outer-most 38 * event completes. 39 */ 40 static void perf_output_get_handle(struct perf_output_handle *handle) 41 { 42 struct perf_buffer *rb = handle->rb; 43 44 preempt_disable(); 45 46 /* 47 * Avoid an explicit LOAD/STORE such that architectures with memops 48 * can use them. 49 */ 50 (*(volatile unsigned int *)&rb->nest)++; 51 handle->wakeup = local_read(&rb->wakeup); 52 } 53 54 static void perf_output_put_handle(struct perf_output_handle *handle) 55 { 56 struct perf_buffer *rb = handle->rb; 57 unsigned long head; 58 unsigned int nest; 59 60 /* 61 * If this isn't the outermost nesting, we don't have to update 62 * @rb->user_page->data_head. 63 */ 64 nest = READ_ONCE(rb->nest); 65 if (nest > 1) { 66 WRITE_ONCE(rb->nest, nest - 1); 67 goto out; 68 } 69 70 again: 71 /* 72 * In order to avoid publishing a head value that goes backwards, 73 * we must ensure the load of @rb->head happens after we've 74 * incremented @rb->nest. 75 * 76 * Otherwise we can observe a @rb->head value before one published 77 * by an IRQ/NMI happening between the load and the increment. 78 */ 79 barrier(); 80 head = local_read(&rb->head); 81 82 /* 83 * IRQ/NMI can happen here and advance @rb->head, causing our 84 * load above to be stale. 85 */ 86 87 /* 88 * Since the mmap() consumer (userspace) can run on a different CPU: 89 * 90 * kernel user 91 * 92 * if (LOAD ->data_tail) { LOAD ->data_head 93 * (A) smp_rmb() (C) 94 * STORE $data LOAD $data 95 * smp_wmb() (B) smp_mb() (D) 96 * STORE ->data_head STORE ->data_tail 97 * } 98 * 99 * Where A pairs with D, and B pairs with C. 100 * 101 * In our case (A) is a control dependency that separates the load of 102 * the ->data_tail and the stores of $data. In case ->data_tail 103 * indicates there is no room in the buffer to store $data we do not. 104 * 105 * D needs to be a full barrier since it separates the data READ 106 * from the tail WRITE. 107 * 108 * For B a WMB is sufficient since it separates two WRITEs, and for C 109 * an RMB is sufficient since it separates two READs. 110 * 111 * See perf_output_begin(). 112 */ 113 smp_wmb(); /* B, matches C */ 114 WRITE_ONCE(rb->user_page->data_head, head); 115 116 /* 117 * We must publish the head before decrementing the nest count, 118 * otherwise an IRQ/NMI can publish a more recent head value and our 119 * write will (temporarily) publish a stale value. 120 */ 121 barrier(); 122 WRITE_ONCE(rb->nest, 0); 123 124 /* 125 * Ensure we decrement @rb->nest before we validate the @rb->head. 126 * Otherwise we cannot be sure we caught the 'last' nested update. 127 */ 128 barrier(); 129 if (unlikely(head != local_read(&rb->head))) { 130 WRITE_ONCE(rb->nest, 1); 131 goto again; 132 } 133 134 if (handle->wakeup != local_read(&rb->wakeup)) 135 perf_output_wakeup(handle); 136 137 out: 138 preempt_enable(); 139 } 140 141 static __always_inline bool 142 ring_buffer_has_space(unsigned long head, unsigned long tail, 143 unsigned long data_size, unsigned int size, 144 bool backward) 145 { 146 if (!backward) 147 return CIRC_SPACE(head, tail, data_size) >= size; 148 else 149 return CIRC_SPACE(tail, head, data_size) >= size; 150 } 151 152 static __always_inline int 153 __perf_output_begin(struct perf_output_handle *handle, 154 struct perf_sample_data *data, 155 struct perf_event *event, unsigned int size, 156 bool backward) 157 { 158 struct perf_buffer *rb; 159 unsigned long tail, offset, head; 160 int have_lost, page_shift; 161 struct { 162 struct perf_event_header header; 163 u64 id; 164 u64 lost; 165 } lost_event; 166 167 rcu_read_lock(); 168 /* 169 * For inherited events we send all the output towards the parent. 170 */ 171 if (event->parent) 172 event = event->parent; 173 174 rb = rcu_dereference(event->rb); 175 if (unlikely(!rb)) 176 goto out; 177 178 if (unlikely(rb->paused)) { 179 if (rb->nr_pages) { 180 local_inc(&rb->lost); 181 atomic64_inc(&event->lost_samples); 182 } 183 goto out; 184 } 185 186 handle->rb = rb; 187 handle->event = event; 188 189 have_lost = local_read(&rb->lost); 190 if (unlikely(have_lost)) { 191 size += sizeof(lost_event); 192 if (event->attr.sample_id_all) 193 size += event->id_header_size; 194 } 195 196 perf_output_get_handle(handle); 197 198 offset = local_read(&rb->head); 199 do { 200 head = offset; 201 tail = READ_ONCE(rb->user_page->data_tail); 202 if (!rb->overwrite) { 203 if (unlikely(!ring_buffer_has_space(head, tail, 204 perf_data_size(rb), 205 size, backward))) 206 goto fail; 207 } 208 209 /* 210 * The above forms a control dependency barrier separating the 211 * @tail load above from the data stores below. Since the @tail 212 * load is required to compute the branch to fail below. 213 * 214 * A, matches D; the full memory barrier userspace SHOULD issue 215 * after reading the data and before storing the new tail 216 * position. 217 * 218 * See perf_output_put_handle(). 219 */ 220 221 if (!backward) 222 head += size; 223 else 224 head -= size; 225 } while (!local_try_cmpxchg(&rb->head, &offset, head)); 226 227 if (backward) { 228 offset = head; 229 head = (u64)(-head); 230 } 231 232 /* 233 * We rely on the implied barrier() by local_cmpxchg() to ensure 234 * none of the data stores below can be lifted up by the compiler. 235 */ 236 237 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 238 local_add(rb->watermark, &rb->wakeup); 239 240 page_shift = PAGE_SHIFT + page_order(rb); 241 242 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 243 offset &= (1UL << page_shift) - 1; 244 handle->addr = rb->data_pages[handle->page] + offset; 245 handle->size = (1UL << page_shift) - offset; 246 247 if (unlikely(have_lost)) { 248 lost_event.header.size = sizeof(lost_event); 249 lost_event.header.type = PERF_RECORD_LOST; 250 lost_event.header.misc = 0; 251 lost_event.id = event->id; 252 lost_event.lost = local_xchg(&rb->lost, 0); 253 254 /* XXX mostly redundant; @data is already fully initializes */ 255 perf_event_header__init_id(&lost_event.header, data, event); 256 perf_output_put(handle, lost_event); 257 perf_event__output_id_sample(event, handle, data); 258 } 259 260 return 0; 261 262 fail: 263 local_inc(&rb->lost); 264 atomic64_inc(&event->lost_samples); 265 perf_output_put_handle(handle); 266 out: 267 rcu_read_unlock(); 268 269 return -ENOSPC; 270 } 271 272 int perf_output_begin_forward(struct perf_output_handle *handle, 273 struct perf_sample_data *data, 274 struct perf_event *event, unsigned int size) 275 { 276 return __perf_output_begin(handle, data, event, size, false); 277 } 278 279 int perf_output_begin_backward(struct perf_output_handle *handle, 280 struct perf_sample_data *data, 281 struct perf_event *event, unsigned int size) 282 { 283 return __perf_output_begin(handle, data, event, size, true); 284 } 285 286 int perf_output_begin(struct perf_output_handle *handle, 287 struct perf_sample_data *data, 288 struct perf_event *event, unsigned int size) 289 { 290 291 return __perf_output_begin(handle, data, event, size, 292 unlikely(is_write_backward(event))); 293 } 294 295 unsigned int perf_output_copy(struct perf_output_handle *handle, 296 const void *buf, unsigned int len) 297 { 298 return __output_copy(handle, buf, len); 299 } 300 301 unsigned int perf_output_skip(struct perf_output_handle *handle, 302 unsigned int len) 303 { 304 return __output_skip(handle, NULL, len); 305 } 306 307 void perf_output_end(struct perf_output_handle *handle) 308 { 309 perf_output_put_handle(handle); 310 rcu_read_unlock(); 311 } 312 313 static void 314 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags) 315 { 316 long max_size = perf_data_size(rb); 317 318 if (watermark) 319 rb->watermark = min(max_size, watermark); 320 321 if (!rb->watermark) 322 rb->watermark = max_size / 2; 323 324 if (flags & RING_BUFFER_WRITABLE) 325 rb->overwrite = 0; 326 else 327 rb->overwrite = 1; 328 329 refcount_set(&rb->refcount, 1); 330 331 INIT_LIST_HEAD(&rb->event_list); 332 spin_lock_init(&rb->event_lock); 333 334 /* 335 * perf_output_begin() only checks rb->paused, therefore 336 * rb->paused must be true if we have no pages for output. 337 */ 338 if (!rb->nr_pages) 339 rb->paused = 1; 340 } 341 342 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) 343 { 344 /* 345 * OVERWRITE is determined by perf_aux_output_end() and can't 346 * be passed in directly. 347 */ 348 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) 349 return; 350 351 handle->aux_flags |= flags; 352 } 353 EXPORT_SYMBOL_GPL(perf_aux_output_flag); 354 355 /* 356 * This is called before hardware starts writing to the AUX area to 357 * obtain an output handle and make sure there's room in the buffer. 358 * When the capture completes, call perf_aux_output_end() to commit 359 * the recorded data to the buffer. 360 * 361 * The ordering is similar to that of perf_output_{begin,end}, with 362 * the exception of (B), which should be taken care of by the pmu 363 * driver, since ordering rules will differ depending on hardware. 364 * 365 * Call this from pmu::start(); see the comment in perf_aux_output_end() 366 * about its use in pmu callbacks. Both can also be called from the PMI 367 * handler if needed. 368 */ 369 void *perf_aux_output_begin(struct perf_output_handle *handle, 370 struct perf_event *event) 371 { 372 struct perf_event *output_event = event; 373 unsigned long aux_head, aux_tail; 374 struct perf_buffer *rb; 375 unsigned int nest; 376 377 if (output_event->parent) 378 output_event = output_event->parent; 379 380 /* 381 * Since this will typically be open across pmu::add/pmu::del, we 382 * grab ring_buffer's refcount instead of holding rcu read lock 383 * to make sure it doesn't disappear under us. 384 */ 385 rb = ring_buffer_get(output_event); 386 if (!rb) 387 return NULL; 388 389 if (!rb_has_aux(rb)) 390 goto err; 391 392 /* 393 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), 394 * about to get freed, so we leave immediately. 395 * 396 * Checking rb::aux_mmap_count and rb::refcount has to be done in 397 * the same order, see perf_mmap_close. Otherwise we end up freeing 398 * aux pages in this path, which is a bug, because in_atomic(). 399 */ 400 if (!atomic_read(&rb->aux_mmap_count)) 401 goto err; 402 403 if (!refcount_inc_not_zero(&rb->aux_refcount)) 404 goto err; 405 406 nest = READ_ONCE(rb->aux_nest); 407 /* 408 * Nesting is not supported for AUX area, make sure nested 409 * writers are caught early 410 */ 411 if (WARN_ON_ONCE(nest)) 412 goto err_put; 413 414 WRITE_ONCE(rb->aux_nest, nest + 1); 415 416 aux_head = rb->aux_head; 417 418 handle->rb = rb; 419 handle->event = event; 420 handle->head = aux_head; 421 handle->size = 0; 422 handle->aux_flags = 0; 423 424 /* 425 * In overwrite mode, AUX data stores do not depend on aux_tail, 426 * therefore (A) control dependency barrier does not exist. The 427 * (B) <-> (C) ordering is still observed by the pmu driver. 428 */ 429 if (!rb->aux_overwrite) { 430 aux_tail = READ_ONCE(rb->user_page->aux_tail); 431 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 432 if (aux_head - aux_tail < perf_aux_size(rb)) 433 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 434 435 /* 436 * handle->size computation depends on aux_tail load; this forms a 437 * control dependency barrier separating aux_tail load from aux data 438 * store that will be enabled on successful return 439 */ 440 if (!handle->size) { /* A, matches D */ 441 event->pending_disable = smp_processor_id(); 442 perf_output_wakeup(handle); 443 WRITE_ONCE(rb->aux_nest, 0); 444 goto err_put; 445 } 446 } 447 448 return handle->rb->aux_priv; 449 450 err_put: 451 /* can't be last */ 452 rb_free_aux(rb); 453 454 err: 455 ring_buffer_put(rb); 456 handle->event = NULL; 457 458 return NULL; 459 } 460 EXPORT_SYMBOL_GPL(perf_aux_output_begin); 461 462 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb) 463 { 464 if (rb->aux_overwrite) 465 return false; 466 467 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { 468 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); 469 return true; 470 } 471 472 return false; 473 } 474 475 /* 476 * Commit the data written by hardware into the ring buffer by adjusting 477 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 478 * pmu driver's responsibility to observe ordering rules of the hardware, 479 * so that all the data is externally visible before this is called. 480 * 481 * Note: this has to be called from pmu::stop() callback, as the assumption 482 * of the AUX buffer management code is that after pmu::stop(), the AUX 483 * transaction must be stopped and therefore drop the AUX reference count. 484 */ 485 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 486 { 487 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); 488 struct perf_buffer *rb = handle->rb; 489 unsigned long aux_head; 490 491 /* in overwrite mode, driver provides aux_head via handle */ 492 if (rb->aux_overwrite) { 493 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; 494 495 aux_head = handle->head; 496 rb->aux_head = aux_head; 497 } else { 498 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; 499 500 aux_head = rb->aux_head; 501 rb->aux_head += size; 502 } 503 504 /* 505 * Only send RECORD_AUX if we have something useful to communicate 506 * 507 * Note: the OVERWRITE records by themselves are not considered 508 * useful, as they don't communicate any *new* information, 509 * aside from the short-lived offset, that becomes history at 510 * the next event sched-in and therefore isn't useful. 511 * The userspace that needs to copy out AUX data in overwrite 512 * mode should know to use user_page::aux_head for the actual 513 * offset. So, from now on we don't output AUX records that 514 * have *only* OVERWRITE flag set. 515 */ 516 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) 517 perf_event_aux_event(handle->event, aux_head, size, 518 handle->aux_flags); 519 520 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 521 if (rb_need_aux_wakeup(rb)) 522 wakeup = true; 523 524 if (wakeup) { 525 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) 526 handle->event->pending_disable = smp_processor_id(); 527 perf_output_wakeup(handle); 528 } 529 530 handle->event = NULL; 531 532 WRITE_ONCE(rb->aux_nest, 0); 533 /* can't be last */ 534 rb_free_aux(rb); 535 ring_buffer_put(rb); 536 } 537 EXPORT_SYMBOL_GPL(perf_aux_output_end); 538 539 /* 540 * Skip over a given number of bytes in the AUX buffer, due to, for example, 541 * hardware's alignment constraints. 542 */ 543 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 544 { 545 struct perf_buffer *rb = handle->rb; 546 547 if (size > handle->size) 548 return -ENOSPC; 549 550 rb->aux_head += size; 551 552 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); 553 if (rb_need_aux_wakeup(rb)) { 554 perf_output_wakeup(handle); 555 handle->wakeup = rb->aux_wakeup + rb->aux_watermark; 556 } 557 558 handle->head = rb->aux_head; 559 handle->size -= size; 560 561 return 0; 562 } 563 EXPORT_SYMBOL_GPL(perf_aux_output_skip); 564 565 void *perf_get_aux(struct perf_output_handle *handle) 566 { 567 /* this is only valid between perf_aux_output_begin and *_end */ 568 if (!handle->event) 569 return NULL; 570 571 return handle->rb->aux_priv; 572 } 573 EXPORT_SYMBOL_GPL(perf_get_aux); 574 575 /* 576 * Copy out AUX data from an AUX handle. 577 */ 578 long perf_output_copy_aux(struct perf_output_handle *aux_handle, 579 struct perf_output_handle *handle, 580 unsigned long from, unsigned long to) 581 { 582 struct perf_buffer *rb = aux_handle->rb; 583 unsigned long tocopy, remainder, len = 0; 584 void *addr; 585 586 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 587 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 588 589 do { 590 tocopy = PAGE_SIZE - offset_in_page(from); 591 if (to > from) 592 tocopy = min(tocopy, to - from); 593 if (!tocopy) 594 break; 595 596 addr = rb->aux_pages[from >> PAGE_SHIFT]; 597 addr += offset_in_page(from); 598 599 remainder = perf_output_copy(handle, addr, tocopy); 600 if (remainder) 601 return -EFAULT; 602 603 len += tocopy; 604 from += tocopy; 605 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; 606 } while (to != from); 607 608 return len; 609 } 610 611 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 612 613 static struct page *rb_alloc_aux_page(int node, int order) 614 { 615 struct page *page; 616 617 if (order > MAX_PAGE_ORDER) 618 order = MAX_PAGE_ORDER; 619 620 do { 621 page = alloc_pages_node(node, PERF_AUX_GFP, order); 622 } while (!page && order--); 623 624 if (page && order) { 625 /* 626 * Communicate the allocation size to the driver: 627 * if we managed to secure a high-order allocation, 628 * set its first page's private to this order; 629 * !PagePrivate(page) means it's just a normal page. 630 */ 631 split_page(page, order); 632 SetPagePrivate(page); 633 set_page_private(page, order); 634 } 635 636 return page; 637 } 638 639 static void rb_free_aux_page(struct perf_buffer *rb, int idx) 640 { 641 struct page *page = virt_to_page(rb->aux_pages[idx]); 642 643 ClearPagePrivate(page); 644 page->mapping = NULL; 645 __free_page(page); 646 } 647 648 static void __rb_free_aux(struct perf_buffer *rb) 649 { 650 int pg; 651 652 /* 653 * Should never happen, the last reference should be dropped from 654 * perf_mmap_close() path, which first stops aux transactions (which 655 * in turn are the atomic holders of aux_refcount) and then does the 656 * last rb_free_aux(). 657 */ 658 WARN_ON_ONCE(in_atomic()); 659 660 if (rb->aux_priv) { 661 rb->free_aux(rb->aux_priv); 662 rb->free_aux = NULL; 663 rb->aux_priv = NULL; 664 } 665 666 if (rb->aux_nr_pages) { 667 for (pg = 0; pg < rb->aux_nr_pages; pg++) 668 rb_free_aux_page(rb, pg); 669 670 kfree(rb->aux_pages); 671 rb->aux_nr_pages = 0; 672 } 673 } 674 675 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, 676 pgoff_t pgoff, int nr_pages, long watermark, int flags) 677 { 678 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 679 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 680 int ret = -ENOMEM, max_order; 681 682 if (!has_aux(event)) 683 return -EOPNOTSUPP; 684 685 if (!overwrite) { 686 /* 687 * Watermark defaults to half the buffer, and so does the 688 * max_order, to aid PMU drivers in double buffering. 689 */ 690 if (!watermark) 691 watermark = nr_pages << (PAGE_SHIFT - 1); 692 693 /* 694 * Use aux_watermark as the basis for chunking to 695 * help PMU drivers honor the watermark. 696 */ 697 max_order = get_order(watermark); 698 } else { 699 /* 700 * We need to start with the max_order that fits in nr_pages, 701 * not the other way around, hence ilog2() and not get_order. 702 */ 703 max_order = ilog2(nr_pages); 704 watermark = 0; 705 } 706 707 /* 708 * kcalloc_node() is unable to allocate buffer if the size is larger 709 * than: PAGE_SIZE << MAX_PAGE_ORDER; directly bail out in this case. 710 */ 711 if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_PAGE_ORDER) 712 return -ENOMEM; 713 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, 714 node); 715 if (!rb->aux_pages) 716 return -ENOMEM; 717 718 rb->free_aux = event->pmu->free_aux; 719 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 720 struct page *page; 721 int last, order; 722 723 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 724 page = rb_alloc_aux_page(node, order); 725 if (!page) 726 goto out; 727 728 for (last = rb->aux_nr_pages + (1 << page_private(page)); 729 last > rb->aux_nr_pages; rb->aux_nr_pages++) 730 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 731 } 732 733 /* 734 * In overwrite mode, PMUs that don't support SG may not handle more 735 * than one contiguous allocation, since they rely on PMI to do double 736 * buffering. In this case, the entire buffer has to be one contiguous 737 * chunk. 738 */ 739 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 740 overwrite) { 741 struct page *page = virt_to_page(rb->aux_pages[0]); 742 743 if (page_private(page) != max_order) 744 goto out; 745 } 746 747 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, 748 overwrite); 749 if (!rb->aux_priv) 750 goto out; 751 752 ret = 0; 753 754 /* 755 * aux_pages (and pmu driver's private data, aux_priv) will be 756 * referenced in both producer's and consumer's contexts, thus 757 * we keep a refcount here to make sure either of the two can 758 * reference them safely. 759 */ 760 refcount_set(&rb->aux_refcount, 1); 761 762 rb->aux_overwrite = overwrite; 763 rb->aux_watermark = watermark; 764 765 out: 766 if (!ret) 767 rb->aux_pgoff = pgoff; 768 else 769 __rb_free_aux(rb); 770 771 return ret; 772 } 773 774 void rb_free_aux(struct perf_buffer *rb) 775 { 776 if (refcount_dec_and_test(&rb->aux_refcount)) 777 __rb_free_aux(rb); 778 } 779 780 #ifndef CONFIG_PERF_USE_VMALLOC 781 782 /* 783 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 784 */ 785 786 static struct page * 787 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 788 { 789 if (pgoff > rb->nr_pages) 790 return NULL; 791 792 if (pgoff == 0) 793 return virt_to_page(rb->user_page); 794 795 return virt_to_page(rb->data_pages[pgoff - 1]); 796 } 797 798 static void *perf_mmap_alloc_page(int cpu) 799 { 800 struct page *page; 801 int node; 802 803 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 804 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 805 if (!page) 806 return NULL; 807 808 return page_address(page); 809 } 810 811 static void perf_mmap_free_page(void *addr) 812 { 813 struct page *page = virt_to_page(addr); 814 815 page->mapping = NULL; 816 __free_page(page); 817 } 818 819 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 820 { 821 struct perf_buffer *rb; 822 unsigned long size; 823 int i, node; 824 825 size = sizeof(struct perf_buffer); 826 size += nr_pages * sizeof(void *); 827 828 if (order_base_2(size) > PAGE_SHIFT+MAX_PAGE_ORDER) 829 goto fail; 830 831 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 832 rb = kzalloc_node(size, GFP_KERNEL, node); 833 if (!rb) 834 goto fail; 835 836 rb->user_page = perf_mmap_alloc_page(cpu); 837 if (!rb->user_page) 838 goto fail_user_page; 839 840 for (i = 0; i < nr_pages; i++) { 841 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 842 if (!rb->data_pages[i]) 843 goto fail_data_pages; 844 } 845 846 rb->nr_pages = nr_pages; 847 848 ring_buffer_init(rb, watermark, flags); 849 850 return rb; 851 852 fail_data_pages: 853 for (i--; i >= 0; i--) 854 perf_mmap_free_page(rb->data_pages[i]); 855 856 perf_mmap_free_page(rb->user_page); 857 858 fail_user_page: 859 kfree(rb); 860 861 fail: 862 return NULL; 863 } 864 865 void rb_free(struct perf_buffer *rb) 866 { 867 int i; 868 869 perf_mmap_free_page(rb->user_page); 870 for (i = 0; i < rb->nr_pages; i++) 871 perf_mmap_free_page(rb->data_pages[i]); 872 kfree(rb); 873 } 874 875 #else 876 static struct page * 877 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 878 { 879 /* The '>' counts in the user page. */ 880 if (pgoff > data_page_nr(rb)) 881 return NULL; 882 883 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 884 } 885 886 static void perf_mmap_unmark_page(void *addr) 887 { 888 struct page *page = vmalloc_to_page(addr); 889 890 page->mapping = NULL; 891 } 892 893 static void rb_free_work(struct work_struct *work) 894 { 895 struct perf_buffer *rb; 896 void *base; 897 int i, nr; 898 899 rb = container_of(work, struct perf_buffer, work); 900 nr = data_page_nr(rb); 901 902 base = rb->user_page; 903 /* The '<=' counts in the user page. */ 904 for (i = 0; i <= nr; i++) 905 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 906 907 vfree(base); 908 kfree(rb); 909 } 910 911 void rb_free(struct perf_buffer *rb) 912 { 913 schedule_work(&rb->work); 914 } 915 916 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 917 { 918 struct perf_buffer *rb; 919 unsigned long size; 920 void *all_buf; 921 int node; 922 923 size = sizeof(struct perf_buffer); 924 size += sizeof(void *); 925 926 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 927 rb = kzalloc_node(size, GFP_KERNEL, node); 928 if (!rb) 929 goto fail; 930 931 INIT_WORK(&rb->work, rb_free_work); 932 933 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 934 if (!all_buf) 935 goto fail_all_buf; 936 937 rb->user_page = all_buf; 938 rb->data_pages[0] = all_buf + PAGE_SIZE; 939 if (nr_pages) { 940 rb->nr_pages = 1; 941 rb->page_order = ilog2(nr_pages); 942 } 943 944 ring_buffer_init(rb, watermark, flags); 945 946 return rb; 947 948 fail_all_buf: 949 kfree(rb); 950 951 fail: 952 return NULL; 953 } 954 955 #endif 956 957 struct page * 958 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) 959 { 960 if (rb->aux_nr_pages) { 961 /* above AUX space */ 962 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 963 return NULL; 964 965 /* AUX space */ 966 if (pgoff >= rb->aux_pgoff) { 967 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); 968 return virt_to_page(rb->aux_pages[aux_pgoff]); 969 } 970 } 971 972 return __perf_mmap_to_page(rb, pgoff); 973 } 974