xref: /linux/kernel/events/hw_breakpoint.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2007 Alan Stern
4  * Copyright (C) IBM Corporation, 2009
5  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
6  *
7  * Thanks to Ingo Molnar for his many suggestions.
8  *
9  * Authors: Alan Stern <stern@rowland.harvard.edu>
10  *          K.Prasad <prasad@linux.vnet.ibm.com>
11  *          Frederic Weisbecker <fweisbec@gmail.com>
12  */
13 
14 /*
15  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
16  * using the CPU's debug registers.
17  * This file contains the arch-independent routines.
18  */
19 
20 #include <linux/irqflags.h>
21 #include <linux/kallsyms.h>
22 #include <linux/notifier.h>
23 #include <linux/kprobes.h>
24 #include <linux/kdebug.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/percpu.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/list.h>
32 #include <linux/cpu.h>
33 #include <linux/smp.h>
34 #include <linux/bug.h>
35 
36 #include <linux/hw_breakpoint.h>
37 /*
38  * Constraints data
39  */
40 struct bp_cpuinfo {
41 	/* Number of pinned cpu breakpoints in a cpu */
42 	unsigned int	cpu_pinned;
43 	/* tsk_pinned[n] is the number of tasks having n+1 breakpoints */
44 	unsigned int	*tsk_pinned;
45 	/* Number of non-pinned cpu/task breakpoints in a cpu */
46 	unsigned int	flexible; /* XXX: placeholder, see fetch_this_slot() */
47 };
48 
49 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
50 static int nr_slots[TYPE_MAX];
51 
52 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
53 {
54 	return per_cpu_ptr(bp_cpuinfo + type, cpu);
55 }
56 
57 /* Keep track of the breakpoints attached to tasks */
58 static LIST_HEAD(bp_task_head);
59 
60 static int constraints_initialized;
61 
62 /* Gather the number of total pinned and un-pinned bp in a cpuset */
63 struct bp_busy_slots {
64 	unsigned int pinned;
65 	unsigned int flexible;
66 };
67 
68 /* Serialize accesses to the above constraints */
69 static DEFINE_MUTEX(nr_bp_mutex);
70 
71 __weak int hw_breakpoint_weight(struct perf_event *bp)
72 {
73 	return 1;
74 }
75 
76 static inline enum bp_type_idx find_slot_idx(u64 bp_type)
77 {
78 	if (bp_type & HW_BREAKPOINT_RW)
79 		return TYPE_DATA;
80 
81 	return TYPE_INST;
82 }
83 
84 /*
85  * Report the maximum number of pinned breakpoints a task
86  * have in this cpu
87  */
88 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
89 {
90 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
91 	int i;
92 
93 	for (i = nr_slots[type] - 1; i >= 0; i--) {
94 		if (tsk_pinned[i] > 0)
95 			return i + 1;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * Count the number of breakpoints of the same type and same task.
103  * The given event must be not on the list.
104  */
105 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
106 {
107 	struct task_struct *tsk = bp->hw.target;
108 	struct perf_event *iter;
109 	int count = 0;
110 
111 	list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
112 		if (iter->hw.target == tsk &&
113 		    find_slot_idx(iter->attr.bp_type) == type &&
114 		    (iter->cpu < 0 || cpu == iter->cpu))
115 			count += hw_breakpoint_weight(iter);
116 	}
117 
118 	return count;
119 }
120 
121 static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
122 {
123 	if (bp->cpu >= 0)
124 		return cpumask_of(bp->cpu);
125 	return cpu_possible_mask;
126 }
127 
128 /*
129  * Report the number of pinned/un-pinned breakpoints we have in
130  * a given cpu (cpu > -1) or in all of them (cpu = -1).
131  */
132 static void
133 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
134 		    enum bp_type_idx type)
135 {
136 	const struct cpumask *cpumask = cpumask_of_bp(bp);
137 	int cpu;
138 
139 	for_each_cpu(cpu, cpumask) {
140 		struct bp_cpuinfo *info = get_bp_info(cpu, type);
141 		int nr;
142 
143 		nr = info->cpu_pinned;
144 		if (!bp->hw.target)
145 			nr += max_task_bp_pinned(cpu, type);
146 		else
147 			nr += task_bp_pinned(cpu, bp, type);
148 
149 		if (nr > slots->pinned)
150 			slots->pinned = nr;
151 
152 		nr = info->flexible;
153 		if (nr > slots->flexible)
154 			slots->flexible = nr;
155 	}
156 }
157 
158 /*
159  * For now, continue to consider flexible as pinned, until we can
160  * ensure no flexible event can ever be scheduled before a pinned event
161  * in a same cpu.
162  */
163 static void
164 fetch_this_slot(struct bp_busy_slots *slots, int weight)
165 {
166 	slots->pinned += weight;
167 }
168 
169 /*
170  * Add a pinned breakpoint for the given task in our constraint table
171  */
172 static void toggle_bp_task_slot(struct perf_event *bp, int cpu,
173 				enum bp_type_idx type, int weight)
174 {
175 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
176 	int old_idx, new_idx;
177 
178 	old_idx = task_bp_pinned(cpu, bp, type) - 1;
179 	new_idx = old_idx + weight;
180 
181 	if (old_idx >= 0)
182 		tsk_pinned[old_idx]--;
183 	if (new_idx >= 0)
184 		tsk_pinned[new_idx]++;
185 }
186 
187 /*
188  * Add/remove the given breakpoint in our constraint table
189  */
190 static void
191 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
192 	       int weight)
193 {
194 	const struct cpumask *cpumask = cpumask_of_bp(bp);
195 	int cpu;
196 
197 	if (!enable)
198 		weight = -weight;
199 
200 	/* Pinned counter cpu profiling */
201 	if (!bp->hw.target) {
202 		get_bp_info(bp->cpu, type)->cpu_pinned += weight;
203 		return;
204 	}
205 
206 	/* Pinned counter task profiling */
207 	for_each_cpu(cpu, cpumask)
208 		toggle_bp_task_slot(bp, cpu, type, weight);
209 
210 	if (enable)
211 		list_add_tail(&bp->hw.bp_list, &bp_task_head);
212 	else
213 		list_del(&bp->hw.bp_list);
214 }
215 
216 /*
217  * Function to perform processor-specific cleanup during unregistration
218  */
219 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
220 {
221 	/*
222 	 * A weak stub function here for those archs that don't define
223 	 * it inside arch/.../kernel/hw_breakpoint.c
224 	 */
225 }
226 
227 /*
228  * Constraints to check before allowing this new breakpoint counter:
229  *
230  *  == Non-pinned counter == (Considered as pinned for now)
231  *
232  *   - If attached to a single cpu, check:
233  *
234  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
235  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
236  *
237  *       -> If there are already non-pinned counters in this cpu, it means
238  *          there is already a free slot for them.
239  *          Otherwise, we check that the maximum number of per task
240  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
241  *          (for this cpu) doesn't cover every registers.
242  *
243  *   - If attached to every cpus, check:
244  *
245  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
246  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
247  *
248  *       -> This is roughly the same, except we check the number of per cpu
249  *          bp for every cpu and we keep the max one. Same for the per tasks
250  *          breakpoints.
251  *
252  *
253  * == Pinned counter ==
254  *
255  *   - If attached to a single cpu, check:
256  *
257  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
258  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
259  *
260  *       -> Same checks as before. But now the info->flexible, if any, must keep
261  *          one register at least (or they will never be fed).
262  *
263  *   - If attached to every cpus, check:
264  *
265  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
266  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
267  */
268 static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
269 {
270 	struct bp_busy_slots slots = {0};
271 	enum bp_type_idx type;
272 	int weight;
273 
274 	/* We couldn't initialize breakpoint constraints on boot */
275 	if (!constraints_initialized)
276 		return -ENOMEM;
277 
278 	/* Basic checks */
279 	if (bp_type == HW_BREAKPOINT_EMPTY ||
280 	    bp_type == HW_BREAKPOINT_INVALID)
281 		return -EINVAL;
282 
283 	type = find_slot_idx(bp_type);
284 	weight = hw_breakpoint_weight(bp);
285 
286 	fetch_bp_busy_slots(&slots, bp, type);
287 	/*
288 	 * Simulate the addition of this breakpoint to the constraints
289 	 * and see the result.
290 	 */
291 	fetch_this_slot(&slots, weight);
292 
293 	/* Flexible counters need to keep at least one slot */
294 	if (slots.pinned + (!!slots.flexible) > nr_slots[type])
295 		return -ENOSPC;
296 
297 	toggle_bp_slot(bp, true, type, weight);
298 
299 	return 0;
300 }
301 
302 int reserve_bp_slot(struct perf_event *bp)
303 {
304 	int ret;
305 
306 	mutex_lock(&nr_bp_mutex);
307 
308 	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
309 
310 	mutex_unlock(&nr_bp_mutex);
311 
312 	return ret;
313 }
314 
315 static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
316 {
317 	enum bp_type_idx type;
318 	int weight;
319 
320 	type = find_slot_idx(bp_type);
321 	weight = hw_breakpoint_weight(bp);
322 	toggle_bp_slot(bp, false, type, weight);
323 }
324 
325 void release_bp_slot(struct perf_event *bp)
326 {
327 	mutex_lock(&nr_bp_mutex);
328 
329 	arch_unregister_hw_breakpoint(bp);
330 	__release_bp_slot(bp, bp->attr.bp_type);
331 
332 	mutex_unlock(&nr_bp_mutex);
333 }
334 
335 static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
336 {
337 	int err;
338 
339 	__release_bp_slot(bp, old_type);
340 
341 	err = __reserve_bp_slot(bp, new_type);
342 	if (err) {
343 		/*
344 		 * Reserve the old_type slot back in case
345 		 * there's no space for the new type.
346 		 *
347 		 * This must succeed, because we just released
348 		 * the old_type slot in the __release_bp_slot
349 		 * call above. If not, something is broken.
350 		 */
351 		WARN_ON(__reserve_bp_slot(bp, old_type));
352 	}
353 
354 	return err;
355 }
356 
357 static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
358 {
359 	int ret;
360 
361 	mutex_lock(&nr_bp_mutex);
362 	ret = __modify_bp_slot(bp, old_type, new_type);
363 	mutex_unlock(&nr_bp_mutex);
364 	return ret;
365 }
366 
367 /*
368  * Allow the kernel debugger to reserve breakpoint slots without
369  * taking a lock using the dbg_* variant of for the reserve and
370  * release breakpoint slots.
371  */
372 int dbg_reserve_bp_slot(struct perf_event *bp)
373 {
374 	if (mutex_is_locked(&nr_bp_mutex))
375 		return -1;
376 
377 	return __reserve_bp_slot(bp, bp->attr.bp_type);
378 }
379 
380 int dbg_release_bp_slot(struct perf_event *bp)
381 {
382 	if (mutex_is_locked(&nr_bp_mutex))
383 		return -1;
384 
385 	__release_bp_slot(bp, bp->attr.bp_type);
386 
387 	return 0;
388 }
389 
390 static int hw_breakpoint_parse(struct perf_event *bp,
391 			       const struct perf_event_attr *attr,
392 			       struct arch_hw_breakpoint *hw)
393 {
394 	int err;
395 
396 	err = hw_breakpoint_arch_parse(bp, attr, hw);
397 	if (err)
398 		return err;
399 
400 	if (arch_check_bp_in_kernelspace(hw)) {
401 		if (attr->exclude_kernel)
402 			return -EINVAL;
403 		/*
404 		 * Don't let unprivileged users set a breakpoint in the trap
405 		 * path to avoid trap recursion attacks.
406 		 */
407 		if (!capable(CAP_SYS_ADMIN))
408 			return -EPERM;
409 	}
410 
411 	return 0;
412 }
413 
414 int register_perf_hw_breakpoint(struct perf_event *bp)
415 {
416 	struct arch_hw_breakpoint hw = { };
417 	int err;
418 
419 	err = reserve_bp_slot(bp);
420 	if (err)
421 		return err;
422 
423 	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
424 	if (err) {
425 		release_bp_slot(bp);
426 		return err;
427 	}
428 
429 	bp->hw.info = hw;
430 
431 	return 0;
432 }
433 
434 /**
435  * register_user_hw_breakpoint - register a hardware breakpoint for user space
436  * @attr: breakpoint attributes
437  * @triggered: callback to trigger when we hit the breakpoint
438  * @tsk: pointer to 'task_struct' of the process to which the address belongs
439  */
440 struct perf_event *
441 register_user_hw_breakpoint(struct perf_event_attr *attr,
442 			    perf_overflow_handler_t triggered,
443 			    void *context,
444 			    struct task_struct *tsk)
445 {
446 	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
447 						context);
448 }
449 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
450 
451 static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
452 				    struct perf_event_attr *from)
453 {
454 	to->bp_addr = from->bp_addr;
455 	to->bp_type = from->bp_type;
456 	to->bp_len  = from->bp_len;
457 	to->disabled = from->disabled;
458 }
459 
460 int
461 modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
462 			        bool check)
463 {
464 	struct arch_hw_breakpoint hw = { };
465 	int err;
466 
467 	err = hw_breakpoint_parse(bp, attr, &hw);
468 	if (err)
469 		return err;
470 
471 	if (check) {
472 		struct perf_event_attr old_attr;
473 
474 		old_attr = bp->attr;
475 		hw_breakpoint_copy_attr(&old_attr, attr);
476 		if (memcmp(&old_attr, attr, sizeof(*attr)))
477 			return -EINVAL;
478 	}
479 
480 	if (bp->attr.bp_type != attr->bp_type) {
481 		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
482 		if (err)
483 			return err;
484 	}
485 
486 	hw_breakpoint_copy_attr(&bp->attr, attr);
487 	bp->hw.info = hw;
488 
489 	return 0;
490 }
491 
492 /**
493  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
494  * @bp: the breakpoint structure to modify
495  * @attr: new breakpoint attributes
496  */
497 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
498 {
499 	int err;
500 
501 	/*
502 	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
503 	 * will not be possible to raise IPIs that invoke __perf_event_disable.
504 	 * So call the function directly after making sure we are targeting the
505 	 * current task.
506 	 */
507 	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
508 		perf_event_disable_local(bp);
509 	else
510 		perf_event_disable(bp);
511 
512 	err = modify_user_hw_breakpoint_check(bp, attr, false);
513 
514 	if (!bp->attr.disabled)
515 		perf_event_enable(bp);
516 
517 	return err;
518 }
519 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
520 
521 /**
522  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
523  * @bp: the breakpoint structure to unregister
524  */
525 void unregister_hw_breakpoint(struct perf_event *bp)
526 {
527 	if (!bp)
528 		return;
529 	perf_event_release_kernel(bp);
530 }
531 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
532 
533 /**
534  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
535  * @attr: breakpoint attributes
536  * @triggered: callback to trigger when we hit the breakpoint
537  *
538  * @return a set of per_cpu pointers to perf events
539  */
540 struct perf_event * __percpu *
541 register_wide_hw_breakpoint(struct perf_event_attr *attr,
542 			    perf_overflow_handler_t triggered,
543 			    void *context)
544 {
545 	struct perf_event * __percpu *cpu_events, *bp;
546 	long err = 0;
547 	int cpu;
548 
549 	cpu_events = alloc_percpu(typeof(*cpu_events));
550 	if (!cpu_events)
551 		return (void __percpu __force *)ERR_PTR(-ENOMEM);
552 
553 	get_online_cpus();
554 	for_each_online_cpu(cpu) {
555 		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
556 						      triggered, context);
557 		if (IS_ERR(bp)) {
558 			err = PTR_ERR(bp);
559 			break;
560 		}
561 
562 		per_cpu(*cpu_events, cpu) = bp;
563 	}
564 	put_online_cpus();
565 
566 	if (likely(!err))
567 		return cpu_events;
568 
569 	unregister_wide_hw_breakpoint(cpu_events);
570 	return (void __percpu __force *)ERR_PTR(err);
571 }
572 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
573 
574 /**
575  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
576  * @cpu_events: the per cpu set of events to unregister
577  */
578 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
579 {
580 	int cpu;
581 
582 	for_each_possible_cpu(cpu)
583 		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
584 
585 	free_percpu(cpu_events);
586 }
587 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
588 
589 static struct notifier_block hw_breakpoint_exceptions_nb = {
590 	.notifier_call = hw_breakpoint_exceptions_notify,
591 	/* we need to be notified first */
592 	.priority = 0x7fffffff
593 };
594 
595 static void bp_perf_event_destroy(struct perf_event *event)
596 {
597 	release_bp_slot(event);
598 }
599 
600 static int hw_breakpoint_event_init(struct perf_event *bp)
601 {
602 	int err;
603 
604 	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
605 		return -ENOENT;
606 
607 	/*
608 	 * no branch sampling for breakpoint events
609 	 */
610 	if (has_branch_stack(bp))
611 		return -EOPNOTSUPP;
612 
613 	err = register_perf_hw_breakpoint(bp);
614 	if (err)
615 		return err;
616 
617 	bp->destroy = bp_perf_event_destroy;
618 
619 	return 0;
620 }
621 
622 static int hw_breakpoint_add(struct perf_event *bp, int flags)
623 {
624 	if (!(flags & PERF_EF_START))
625 		bp->hw.state = PERF_HES_STOPPED;
626 
627 	if (is_sampling_event(bp)) {
628 		bp->hw.last_period = bp->hw.sample_period;
629 		perf_swevent_set_period(bp);
630 	}
631 
632 	return arch_install_hw_breakpoint(bp);
633 }
634 
635 static void hw_breakpoint_del(struct perf_event *bp, int flags)
636 {
637 	arch_uninstall_hw_breakpoint(bp);
638 }
639 
640 static void hw_breakpoint_start(struct perf_event *bp, int flags)
641 {
642 	bp->hw.state = 0;
643 }
644 
645 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
646 {
647 	bp->hw.state = PERF_HES_STOPPED;
648 }
649 
650 static struct pmu perf_breakpoint = {
651 	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
652 
653 	.event_init	= hw_breakpoint_event_init,
654 	.add		= hw_breakpoint_add,
655 	.del		= hw_breakpoint_del,
656 	.start		= hw_breakpoint_start,
657 	.stop		= hw_breakpoint_stop,
658 	.read		= hw_breakpoint_pmu_read,
659 };
660 
661 int __init init_hw_breakpoint(void)
662 {
663 	int cpu, err_cpu;
664 	int i;
665 
666 	for (i = 0; i < TYPE_MAX; i++)
667 		nr_slots[i] = hw_breakpoint_slots(i);
668 
669 	for_each_possible_cpu(cpu) {
670 		for (i = 0; i < TYPE_MAX; i++) {
671 			struct bp_cpuinfo *info = get_bp_info(cpu, i);
672 
673 			info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int),
674 							GFP_KERNEL);
675 			if (!info->tsk_pinned)
676 				goto err_alloc;
677 		}
678 	}
679 
680 	constraints_initialized = 1;
681 
682 	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
683 
684 	return register_die_notifier(&hw_breakpoint_exceptions_nb);
685 
686  err_alloc:
687 	for_each_possible_cpu(err_cpu) {
688 		for (i = 0; i < TYPE_MAX; i++)
689 			kfree(get_bp_info(err_cpu, i)->tsk_pinned);
690 		if (err_cpu == cpu)
691 			break;
692 	}
693 
694 	return -ENOMEM;
695 }
696 
697 
698