xref: /linux/kernel/events/hw_breakpoint.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2007 Alan Stern
4  * Copyright (C) IBM Corporation, 2009
5  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
6  *
7  * Thanks to Ingo Molnar for his many suggestions.
8  *
9  * Authors: Alan Stern <stern@rowland.harvard.edu>
10  *          K.Prasad <prasad@linux.vnet.ibm.com>
11  *          Frederic Weisbecker <fweisbec@gmail.com>
12  */
13 
14 /*
15  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
16  * using the CPU's debug registers.
17  * This file contains the arch-independent routines.
18  */
19 
20 #include <linux/irqflags.h>
21 #include <linux/kallsyms.h>
22 #include <linux/notifier.h>
23 #include <linux/kprobes.h>
24 #include <linux/kdebug.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/percpu.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/list.h>
32 #include <linux/cpu.h>
33 #include <linux/smp.h>
34 #include <linux/bug.h>
35 
36 #include <linux/hw_breakpoint.h>
37 /*
38  * Constraints data
39  */
40 struct bp_cpuinfo {
41 	/* Number of pinned cpu breakpoints in a cpu */
42 	unsigned int	cpu_pinned;
43 	/* tsk_pinned[n] is the number of tasks having n+1 breakpoints */
44 	unsigned int	*tsk_pinned;
45 	/* Number of non-pinned cpu/task breakpoints in a cpu */
46 	unsigned int	flexible; /* XXX: placeholder, see fetch_this_slot() */
47 };
48 
49 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
50 static int nr_slots[TYPE_MAX];
51 
52 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
53 {
54 	return per_cpu_ptr(bp_cpuinfo + type, cpu);
55 }
56 
57 /* Keep track of the breakpoints attached to tasks */
58 static LIST_HEAD(bp_task_head);
59 
60 static int constraints_initialized;
61 
62 /* Gather the number of total pinned and un-pinned bp in a cpuset */
63 struct bp_busy_slots {
64 	unsigned int pinned;
65 	unsigned int flexible;
66 };
67 
68 /* Serialize accesses to the above constraints */
69 static DEFINE_MUTEX(nr_bp_mutex);
70 
71 __weak int hw_breakpoint_weight(struct perf_event *bp)
72 {
73 	return 1;
74 }
75 
76 static inline enum bp_type_idx find_slot_idx(u64 bp_type)
77 {
78 	if (bp_type & HW_BREAKPOINT_RW)
79 		return TYPE_DATA;
80 
81 	return TYPE_INST;
82 }
83 
84 /*
85  * Report the maximum number of pinned breakpoints a task
86  * have in this cpu
87  */
88 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
89 {
90 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
91 	int i;
92 
93 	for (i = nr_slots[type] - 1; i >= 0; i--) {
94 		if (tsk_pinned[i] > 0)
95 			return i + 1;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * Count the number of breakpoints of the same type and same task.
103  * The given event must be not on the list.
104  */
105 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
106 {
107 	struct task_struct *tsk = bp->hw.target;
108 	struct perf_event *iter;
109 	int count = 0;
110 
111 	list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
112 		if (iter->hw.target == tsk &&
113 		    find_slot_idx(iter->attr.bp_type) == type &&
114 		    (iter->cpu < 0 || cpu == iter->cpu))
115 			count += hw_breakpoint_weight(iter);
116 	}
117 
118 	return count;
119 }
120 
121 static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
122 {
123 	if (bp->cpu >= 0)
124 		return cpumask_of(bp->cpu);
125 	return cpu_possible_mask;
126 }
127 
128 /*
129  * Report the number of pinned/un-pinned breakpoints we have in
130  * a given cpu (cpu > -1) or in all of them (cpu = -1).
131  */
132 static void
133 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
134 		    enum bp_type_idx type)
135 {
136 	const struct cpumask *cpumask = cpumask_of_bp(bp);
137 	int cpu;
138 
139 	for_each_cpu(cpu, cpumask) {
140 		struct bp_cpuinfo *info = get_bp_info(cpu, type);
141 		int nr;
142 
143 		nr = info->cpu_pinned;
144 		if (!bp->hw.target)
145 			nr += max_task_bp_pinned(cpu, type);
146 		else
147 			nr += task_bp_pinned(cpu, bp, type);
148 
149 		if (nr > slots->pinned)
150 			slots->pinned = nr;
151 
152 		nr = info->flexible;
153 		if (nr > slots->flexible)
154 			slots->flexible = nr;
155 	}
156 }
157 
158 /*
159  * For now, continue to consider flexible as pinned, until we can
160  * ensure no flexible event can ever be scheduled before a pinned event
161  * in a same cpu.
162  */
163 static void
164 fetch_this_slot(struct bp_busy_slots *slots, int weight)
165 {
166 	slots->pinned += weight;
167 }
168 
169 /*
170  * Add a pinned breakpoint for the given task in our constraint table
171  */
172 static void toggle_bp_task_slot(struct perf_event *bp, int cpu,
173 				enum bp_type_idx type, int weight)
174 {
175 	unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
176 	int old_idx, new_idx;
177 
178 	old_idx = task_bp_pinned(cpu, bp, type) - 1;
179 	new_idx = old_idx + weight;
180 
181 	if (old_idx >= 0)
182 		tsk_pinned[old_idx]--;
183 	if (new_idx >= 0)
184 		tsk_pinned[new_idx]++;
185 }
186 
187 /*
188  * Add/remove the given breakpoint in our constraint table
189  */
190 static void
191 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
192 	       int weight)
193 {
194 	const struct cpumask *cpumask = cpumask_of_bp(bp);
195 	int cpu;
196 
197 	if (!enable)
198 		weight = -weight;
199 
200 	/* Pinned counter cpu profiling */
201 	if (!bp->hw.target) {
202 		get_bp_info(bp->cpu, type)->cpu_pinned += weight;
203 		return;
204 	}
205 
206 	/* Pinned counter task profiling */
207 	for_each_cpu(cpu, cpumask)
208 		toggle_bp_task_slot(bp, cpu, type, weight);
209 
210 	if (enable)
211 		list_add_tail(&bp->hw.bp_list, &bp_task_head);
212 	else
213 		list_del(&bp->hw.bp_list);
214 }
215 
216 __weak int arch_reserve_bp_slot(struct perf_event *bp)
217 {
218 	return 0;
219 }
220 
221 __weak void arch_release_bp_slot(struct perf_event *bp)
222 {
223 }
224 
225 /*
226  * Function to perform processor-specific cleanup during unregistration
227  */
228 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
229 {
230 	/*
231 	 * A weak stub function here for those archs that don't define
232 	 * it inside arch/.../kernel/hw_breakpoint.c
233 	 */
234 }
235 
236 /*
237  * Constraints to check before allowing this new breakpoint counter:
238  *
239  *  == Non-pinned counter == (Considered as pinned for now)
240  *
241  *   - If attached to a single cpu, check:
242  *
243  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
244  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
245  *
246  *       -> If there are already non-pinned counters in this cpu, it means
247  *          there is already a free slot for them.
248  *          Otherwise, we check that the maximum number of per task
249  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
250  *          (for this cpu) doesn't cover every registers.
251  *
252  *   - If attached to every cpus, check:
253  *
254  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
255  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
256  *
257  *       -> This is roughly the same, except we check the number of per cpu
258  *          bp for every cpu and we keep the max one. Same for the per tasks
259  *          breakpoints.
260  *
261  *
262  * == Pinned counter ==
263  *
264  *   - If attached to a single cpu, check:
265  *
266  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
267  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
268  *
269  *       -> Same checks as before. But now the info->flexible, if any, must keep
270  *          one register at least (or they will never be fed).
271  *
272  *   - If attached to every cpus, check:
273  *
274  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
275  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
276  */
277 static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
278 {
279 	struct bp_busy_slots slots = {0};
280 	enum bp_type_idx type;
281 	int weight;
282 	int ret;
283 
284 	/* We couldn't initialize breakpoint constraints on boot */
285 	if (!constraints_initialized)
286 		return -ENOMEM;
287 
288 	/* Basic checks */
289 	if (bp_type == HW_BREAKPOINT_EMPTY ||
290 	    bp_type == HW_BREAKPOINT_INVALID)
291 		return -EINVAL;
292 
293 	type = find_slot_idx(bp_type);
294 	weight = hw_breakpoint_weight(bp);
295 
296 	fetch_bp_busy_slots(&slots, bp, type);
297 	/*
298 	 * Simulate the addition of this breakpoint to the constraints
299 	 * and see the result.
300 	 */
301 	fetch_this_slot(&slots, weight);
302 
303 	/* Flexible counters need to keep at least one slot */
304 	if (slots.pinned + (!!slots.flexible) > nr_slots[type])
305 		return -ENOSPC;
306 
307 	ret = arch_reserve_bp_slot(bp);
308 	if (ret)
309 		return ret;
310 
311 	toggle_bp_slot(bp, true, type, weight);
312 
313 	return 0;
314 }
315 
316 int reserve_bp_slot(struct perf_event *bp)
317 {
318 	int ret;
319 
320 	mutex_lock(&nr_bp_mutex);
321 
322 	ret = __reserve_bp_slot(bp, bp->attr.bp_type);
323 
324 	mutex_unlock(&nr_bp_mutex);
325 
326 	return ret;
327 }
328 
329 static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
330 {
331 	enum bp_type_idx type;
332 	int weight;
333 
334 	arch_release_bp_slot(bp);
335 
336 	type = find_slot_idx(bp_type);
337 	weight = hw_breakpoint_weight(bp);
338 	toggle_bp_slot(bp, false, type, weight);
339 }
340 
341 void release_bp_slot(struct perf_event *bp)
342 {
343 	mutex_lock(&nr_bp_mutex);
344 
345 	arch_unregister_hw_breakpoint(bp);
346 	__release_bp_slot(bp, bp->attr.bp_type);
347 
348 	mutex_unlock(&nr_bp_mutex);
349 }
350 
351 static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
352 {
353 	int err;
354 
355 	__release_bp_slot(bp, old_type);
356 
357 	err = __reserve_bp_slot(bp, new_type);
358 	if (err) {
359 		/*
360 		 * Reserve the old_type slot back in case
361 		 * there's no space for the new type.
362 		 *
363 		 * This must succeed, because we just released
364 		 * the old_type slot in the __release_bp_slot
365 		 * call above. If not, something is broken.
366 		 */
367 		WARN_ON(__reserve_bp_slot(bp, old_type));
368 	}
369 
370 	return err;
371 }
372 
373 static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
374 {
375 	int ret;
376 
377 	mutex_lock(&nr_bp_mutex);
378 	ret = __modify_bp_slot(bp, old_type, new_type);
379 	mutex_unlock(&nr_bp_mutex);
380 	return ret;
381 }
382 
383 /*
384  * Allow the kernel debugger to reserve breakpoint slots without
385  * taking a lock using the dbg_* variant of for the reserve and
386  * release breakpoint slots.
387  */
388 int dbg_reserve_bp_slot(struct perf_event *bp)
389 {
390 	if (mutex_is_locked(&nr_bp_mutex))
391 		return -1;
392 
393 	return __reserve_bp_slot(bp, bp->attr.bp_type);
394 }
395 
396 int dbg_release_bp_slot(struct perf_event *bp)
397 {
398 	if (mutex_is_locked(&nr_bp_mutex))
399 		return -1;
400 
401 	__release_bp_slot(bp, bp->attr.bp_type);
402 
403 	return 0;
404 }
405 
406 static int hw_breakpoint_parse(struct perf_event *bp,
407 			       const struct perf_event_attr *attr,
408 			       struct arch_hw_breakpoint *hw)
409 {
410 	int err;
411 
412 	err = hw_breakpoint_arch_parse(bp, attr, hw);
413 	if (err)
414 		return err;
415 
416 	if (arch_check_bp_in_kernelspace(hw)) {
417 		if (attr->exclude_kernel)
418 			return -EINVAL;
419 		/*
420 		 * Don't let unprivileged users set a breakpoint in the trap
421 		 * path to avoid trap recursion attacks.
422 		 */
423 		if (!capable(CAP_SYS_ADMIN))
424 			return -EPERM;
425 	}
426 
427 	return 0;
428 }
429 
430 int register_perf_hw_breakpoint(struct perf_event *bp)
431 {
432 	struct arch_hw_breakpoint hw = { };
433 	int err;
434 
435 	err = reserve_bp_slot(bp);
436 	if (err)
437 		return err;
438 
439 	err = hw_breakpoint_parse(bp, &bp->attr, &hw);
440 	if (err) {
441 		release_bp_slot(bp);
442 		return err;
443 	}
444 
445 	bp->hw.info = hw;
446 
447 	return 0;
448 }
449 
450 /**
451  * register_user_hw_breakpoint - register a hardware breakpoint for user space
452  * @attr: breakpoint attributes
453  * @triggered: callback to trigger when we hit the breakpoint
454  * @context: context data could be used in the triggered callback
455  * @tsk: pointer to 'task_struct' of the process to which the address belongs
456  */
457 struct perf_event *
458 register_user_hw_breakpoint(struct perf_event_attr *attr,
459 			    perf_overflow_handler_t triggered,
460 			    void *context,
461 			    struct task_struct *tsk)
462 {
463 	return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
464 						context);
465 }
466 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
467 
468 static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
469 				    struct perf_event_attr *from)
470 {
471 	to->bp_addr = from->bp_addr;
472 	to->bp_type = from->bp_type;
473 	to->bp_len  = from->bp_len;
474 	to->disabled = from->disabled;
475 }
476 
477 int
478 modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
479 			        bool check)
480 {
481 	struct arch_hw_breakpoint hw = { };
482 	int err;
483 
484 	err = hw_breakpoint_parse(bp, attr, &hw);
485 	if (err)
486 		return err;
487 
488 	if (check) {
489 		struct perf_event_attr old_attr;
490 
491 		old_attr = bp->attr;
492 		hw_breakpoint_copy_attr(&old_attr, attr);
493 		if (memcmp(&old_attr, attr, sizeof(*attr)))
494 			return -EINVAL;
495 	}
496 
497 	if (bp->attr.bp_type != attr->bp_type) {
498 		err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
499 		if (err)
500 			return err;
501 	}
502 
503 	hw_breakpoint_copy_attr(&bp->attr, attr);
504 	bp->hw.info = hw;
505 
506 	return 0;
507 }
508 
509 /**
510  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
511  * @bp: the breakpoint structure to modify
512  * @attr: new breakpoint attributes
513  */
514 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
515 {
516 	int err;
517 
518 	/*
519 	 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
520 	 * will not be possible to raise IPIs that invoke __perf_event_disable.
521 	 * So call the function directly after making sure we are targeting the
522 	 * current task.
523 	 */
524 	if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
525 		perf_event_disable_local(bp);
526 	else
527 		perf_event_disable(bp);
528 
529 	err = modify_user_hw_breakpoint_check(bp, attr, false);
530 
531 	if (!bp->attr.disabled)
532 		perf_event_enable(bp);
533 
534 	return err;
535 }
536 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
537 
538 /**
539  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
540  * @bp: the breakpoint structure to unregister
541  */
542 void unregister_hw_breakpoint(struct perf_event *bp)
543 {
544 	if (!bp)
545 		return;
546 	perf_event_release_kernel(bp);
547 }
548 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
549 
550 /**
551  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
552  * @attr: breakpoint attributes
553  * @triggered: callback to trigger when we hit the breakpoint
554  * @context: context data could be used in the triggered callback
555  *
556  * @return a set of per_cpu pointers to perf events
557  */
558 struct perf_event * __percpu *
559 register_wide_hw_breakpoint(struct perf_event_attr *attr,
560 			    perf_overflow_handler_t triggered,
561 			    void *context)
562 {
563 	struct perf_event * __percpu *cpu_events, *bp;
564 	long err = 0;
565 	int cpu;
566 
567 	cpu_events = alloc_percpu(typeof(*cpu_events));
568 	if (!cpu_events)
569 		return (void __percpu __force *)ERR_PTR(-ENOMEM);
570 
571 	cpus_read_lock();
572 	for_each_online_cpu(cpu) {
573 		bp = perf_event_create_kernel_counter(attr, cpu, NULL,
574 						      triggered, context);
575 		if (IS_ERR(bp)) {
576 			err = PTR_ERR(bp);
577 			break;
578 		}
579 
580 		per_cpu(*cpu_events, cpu) = bp;
581 	}
582 	cpus_read_unlock();
583 
584 	if (likely(!err))
585 		return cpu_events;
586 
587 	unregister_wide_hw_breakpoint(cpu_events);
588 	return (void __percpu __force *)ERR_PTR(err);
589 }
590 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
591 
592 /**
593  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
594  * @cpu_events: the per cpu set of events to unregister
595  */
596 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
597 {
598 	int cpu;
599 
600 	for_each_possible_cpu(cpu)
601 		unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
602 
603 	free_percpu(cpu_events);
604 }
605 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
606 
607 static struct notifier_block hw_breakpoint_exceptions_nb = {
608 	.notifier_call = hw_breakpoint_exceptions_notify,
609 	/* we need to be notified first */
610 	.priority = 0x7fffffff
611 };
612 
613 static void bp_perf_event_destroy(struct perf_event *event)
614 {
615 	release_bp_slot(event);
616 }
617 
618 static int hw_breakpoint_event_init(struct perf_event *bp)
619 {
620 	int err;
621 
622 	if (bp->attr.type != PERF_TYPE_BREAKPOINT)
623 		return -ENOENT;
624 
625 	/*
626 	 * no branch sampling for breakpoint events
627 	 */
628 	if (has_branch_stack(bp))
629 		return -EOPNOTSUPP;
630 
631 	err = register_perf_hw_breakpoint(bp);
632 	if (err)
633 		return err;
634 
635 	bp->destroy = bp_perf_event_destroy;
636 
637 	return 0;
638 }
639 
640 static int hw_breakpoint_add(struct perf_event *bp, int flags)
641 {
642 	if (!(flags & PERF_EF_START))
643 		bp->hw.state = PERF_HES_STOPPED;
644 
645 	if (is_sampling_event(bp)) {
646 		bp->hw.last_period = bp->hw.sample_period;
647 		perf_swevent_set_period(bp);
648 	}
649 
650 	return arch_install_hw_breakpoint(bp);
651 }
652 
653 static void hw_breakpoint_del(struct perf_event *bp, int flags)
654 {
655 	arch_uninstall_hw_breakpoint(bp);
656 }
657 
658 static void hw_breakpoint_start(struct perf_event *bp, int flags)
659 {
660 	bp->hw.state = 0;
661 }
662 
663 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
664 {
665 	bp->hw.state = PERF_HES_STOPPED;
666 }
667 
668 static struct pmu perf_breakpoint = {
669 	.task_ctx_nr	= perf_sw_context, /* could eventually get its own */
670 
671 	.event_init	= hw_breakpoint_event_init,
672 	.add		= hw_breakpoint_add,
673 	.del		= hw_breakpoint_del,
674 	.start		= hw_breakpoint_start,
675 	.stop		= hw_breakpoint_stop,
676 	.read		= hw_breakpoint_pmu_read,
677 };
678 
679 int __init init_hw_breakpoint(void)
680 {
681 	int cpu, err_cpu;
682 	int i;
683 
684 	for (i = 0; i < TYPE_MAX; i++)
685 		nr_slots[i] = hw_breakpoint_slots(i);
686 
687 	for_each_possible_cpu(cpu) {
688 		for (i = 0; i < TYPE_MAX; i++) {
689 			struct bp_cpuinfo *info = get_bp_info(cpu, i);
690 
691 			info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int),
692 							GFP_KERNEL);
693 			if (!info->tsk_pinned)
694 				goto err_alloc;
695 		}
696 	}
697 
698 	constraints_initialized = 1;
699 
700 	perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
701 
702 	return register_die_notifier(&hw_breakpoint_exceptions_nb);
703 
704  err_alloc:
705 	for_each_possible_cpu(err_cpu) {
706 		for (i = 0; i < TYPE_MAX; i++)
707 			kfree(get_bp_info(err_cpu, i)->tsk_pinned);
708 		if (err_cpu == cpu)
709 			break;
710 	}
711 
712 	return -ENOMEM;
713 }
714 
715 
716