xref: /linux/kernel/events/core.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152 
153 /*
154  * perf event paranoia level:
155  *  -1 - not paranoid at all
156  *   0 - disallow raw tracepoint access for unpriv
157  *   1 - disallow cpu events for unpriv
158  *   2 - disallow kernel profiling for unpriv
159  */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161 
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 
165 /*
166  * max perf event sample rate
167  */
168 #define DEFAULT_MAX_SAMPLE_RATE		100000
169 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
170 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
171 
172 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
173 
174 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
175 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
176 
177 static atomic_t perf_sample_allowed_ns __read_mostly =
178 	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
179 
180 void update_perf_cpu_limits(void)
181 {
182 	u64 tmp = perf_sample_period_ns;
183 
184 	tmp *= sysctl_perf_cpu_time_max_percent;
185 	do_div(tmp, 100);
186 	atomic_set(&perf_sample_allowed_ns, tmp);
187 }
188 
189 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
190 
191 int perf_proc_update_handler(struct ctl_table *table, int write,
192 		void __user *buffer, size_t *lenp,
193 		loff_t *ppos)
194 {
195 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
196 
197 	if (ret || !write)
198 		return ret;
199 
200 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
201 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
202 	update_perf_cpu_limits();
203 
204 	return 0;
205 }
206 
207 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
208 
209 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
210 				void __user *buffer, size_t *lenp,
211 				loff_t *ppos)
212 {
213 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
214 
215 	if (ret || !write)
216 		return ret;
217 
218 	update_perf_cpu_limits();
219 
220 	return 0;
221 }
222 
223 /*
224  * perf samples are done in some very critical code paths (NMIs).
225  * If they take too much CPU time, the system can lock up and not
226  * get any real work done.  This will drop the sample rate when
227  * we detect that events are taking too long.
228  */
229 #define NR_ACCUMULATED_SAMPLES 128
230 DEFINE_PER_CPU(u64, running_sample_length);
231 
232 void perf_sample_event_took(u64 sample_len_ns)
233 {
234 	u64 avg_local_sample_len;
235 	u64 local_samples_len;
236 
237 	if (atomic_read(&perf_sample_allowed_ns) == 0)
238 		return;
239 
240 	/* decay the counter by 1 average sample */
241 	local_samples_len = __get_cpu_var(running_sample_length);
242 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
243 	local_samples_len += sample_len_ns;
244 	__get_cpu_var(running_sample_length) = local_samples_len;
245 
246 	/*
247 	 * note: this will be biased artifically low until we have
248 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
249 	 * from having to maintain a count.
250 	 */
251 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
252 
253 	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
254 		return;
255 
256 	if (max_samples_per_tick <= 1)
257 		return;
258 
259 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
260 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
261 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
262 
263 	printk_ratelimited(KERN_WARNING
264 			"perf samples too long (%lld > %d), lowering "
265 			"kernel.perf_event_max_sample_rate to %d\n",
266 			avg_local_sample_len,
267 			atomic_read(&perf_sample_allowed_ns),
268 			sysctl_perf_event_sample_rate);
269 
270 	update_perf_cpu_limits();
271 }
272 
273 static atomic64_t perf_event_id;
274 
275 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
276 			      enum event_type_t event_type);
277 
278 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
279 			     enum event_type_t event_type,
280 			     struct task_struct *task);
281 
282 static void update_context_time(struct perf_event_context *ctx);
283 static u64 perf_event_time(struct perf_event *event);
284 
285 void __weak perf_event_print_debug(void)	{ }
286 
287 extern __weak const char *perf_pmu_name(void)
288 {
289 	return "pmu";
290 }
291 
292 static inline u64 perf_clock(void)
293 {
294 	return local_clock();
295 }
296 
297 static inline struct perf_cpu_context *
298 __get_cpu_context(struct perf_event_context *ctx)
299 {
300 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
301 }
302 
303 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
304 			  struct perf_event_context *ctx)
305 {
306 	raw_spin_lock(&cpuctx->ctx.lock);
307 	if (ctx)
308 		raw_spin_lock(&ctx->lock);
309 }
310 
311 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
312 			    struct perf_event_context *ctx)
313 {
314 	if (ctx)
315 		raw_spin_unlock(&ctx->lock);
316 	raw_spin_unlock(&cpuctx->ctx.lock);
317 }
318 
319 #ifdef CONFIG_CGROUP_PERF
320 
321 /*
322  * perf_cgroup_info keeps track of time_enabled for a cgroup.
323  * This is a per-cpu dynamically allocated data structure.
324  */
325 struct perf_cgroup_info {
326 	u64				time;
327 	u64				timestamp;
328 };
329 
330 struct perf_cgroup {
331 	struct cgroup_subsys_state	css;
332 	struct perf_cgroup_info	__percpu *info;
333 };
334 
335 /*
336  * Must ensure cgroup is pinned (css_get) before calling
337  * this function. In other words, we cannot call this function
338  * if there is no cgroup event for the current CPU context.
339  */
340 static inline struct perf_cgroup *
341 perf_cgroup_from_task(struct task_struct *task)
342 {
343 	return container_of(task_subsys_state(task, perf_subsys_id),
344 			struct perf_cgroup, css);
345 }
346 
347 static inline bool
348 perf_cgroup_match(struct perf_event *event)
349 {
350 	struct perf_event_context *ctx = event->ctx;
351 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
352 
353 	/* @event doesn't care about cgroup */
354 	if (!event->cgrp)
355 		return true;
356 
357 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
358 	if (!cpuctx->cgrp)
359 		return false;
360 
361 	/*
362 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
363 	 * also enabled for all its descendant cgroups.  If @cpuctx's
364 	 * cgroup is a descendant of @event's (the test covers identity
365 	 * case), it's a match.
366 	 */
367 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
368 				    event->cgrp->css.cgroup);
369 }
370 
371 static inline bool perf_tryget_cgroup(struct perf_event *event)
372 {
373 	return css_tryget(&event->cgrp->css);
374 }
375 
376 static inline void perf_put_cgroup(struct perf_event *event)
377 {
378 	css_put(&event->cgrp->css);
379 }
380 
381 static inline void perf_detach_cgroup(struct perf_event *event)
382 {
383 	perf_put_cgroup(event);
384 	event->cgrp = NULL;
385 }
386 
387 static inline int is_cgroup_event(struct perf_event *event)
388 {
389 	return event->cgrp != NULL;
390 }
391 
392 static inline u64 perf_cgroup_event_time(struct perf_event *event)
393 {
394 	struct perf_cgroup_info *t;
395 
396 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
397 	return t->time;
398 }
399 
400 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
401 {
402 	struct perf_cgroup_info *info;
403 	u64 now;
404 
405 	now = perf_clock();
406 
407 	info = this_cpu_ptr(cgrp->info);
408 
409 	info->time += now - info->timestamp;
410 	info->timestamp = now;
411 }
412 
413 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
414 {
415 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
416 	if (cgrp_out)
417 		__update_cgrp_time(cgrp_out);
418 }
419 
420 static inline void update_cgrp_time_from_event(struct perf_event *event)
421 {
422 	struct perf_cgroup *cgrp;
423 
424 	/*
425 	 * ensure we access cgroup data only when needed and
426 	 * when we know the cgroup is pinned (css_get)
427 	 */
428 	if (!is_cgroup_event(event))
429 		return;
430 
431 	cgrp = perf_cgroup_from_task(current);
432 	/*
433 	 * Do not update time when cgroup is not active
434 	 */
435 	if (cgrp == event->cgrp)
436 		__update_cgrp_time(event->cgrp);
437 }
438 
439 static inline void
440 perf_cgroup_set_timestamp(struct task_struct *task,
441 			  struct perf_event_context *ctx)
442 {
443 	struct perf_cgroup *cgrp;
444 	struct perf_cgroup_info *info;
445 
446 	/*
447 	 * ctx->lock held by caller
448 	 * ensure we do not access cgroup data
449 	 * unless we have the cgroup pinned (css_get)
450 	 */
451 	if (!task || !ctx->nr_cgroups)
452 		return;
453 
454 	cgrp = perf_cgroup_from_task(task);
455 	info = this_cpu_ptr(cgrp->info);
456 	info->timestamp = ctx->timestamp;
457 }
458 
459 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
460 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
461 
462 /*
463  * reschedule events based on the cgroup constraint of task.
464  *
465  * mode SWOUT : schedule out everything
466  * mode SWIN : schedule in based on cgroup for next
467  */
468 void perf_cgroup_switch(struct task_struct *task, int mode)
469 {
470 	struct perf_cpu_context *cpuctx;
471 	struct pmu *pmu;
472 	unsigned long flags;
473 
474 	/*
475 	 * disable interrupts to avoid geting nr_cgroup
476 	 * changes via __perf_event_disable(). Also
477 	 * avoids preemption.
478 	 */
479 	local_irq_save(flags);
480 
481 	/*
482 	 * we reschedule only in the presence of cgroup
483 	 * constrained events.
484 	 */
485 	rcu_read_lock();
486 
487 	list_for_each_entry_rcu(pmu, &pmus, entry) {
488 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
489 		if (cpuctx->unique_pmu != pmu)
490 			continue; /* ensure we process each cpuctx once */
491 
492 		/*
493 		 * perf_cgroup_events says at least one
494 		 * context on this CPU has cgroup events.
495 		 *
496 		 * ctx->nr_cgroups reports the number of cgroup
497 		 * events for a context.
498 		 */
499 		if (cpuctx->ctx.nr_cgroups > 0) {
500 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
501 			perf_pmu_disable(cpuctx->ctx.pmu);
502 
503 			if (mode & PERF_CGROUP_SWOUT) {
504 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
505 				/*
506 				 * must not be done before ctxswout due
507 				 * to event_filter_match() in event_sched_out()
508 				 */
509 				cpuctx->cgrp = NULL;
510 			}
511 
512 			if (mode & PERF_CGROUP_SWIN) {
513 				WARN_ON_ONCE(cpuctx->cgrp);
514 				/*
515 				 * set cgrp before ctxsw in to allow
516 				 * event_filter_match() to not have to pass
517 				 * task around
518 				 */
519 				cpuctx->cgrp = perf_cgroup_from_task(task);
520 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
521 			}
522 			perf_pmu_enable(cpuctx->ctx.pmu);
523 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
524 		}
525 	}
526 
527 	rcu_read_unlock();
528 
529 	local_irq_restore(flags);
530 }
531 
532 static inline void perf_cgroup_sched_out(struct task_struct *task,
533 					 struct task_struct *next)
534 {
535 	struct perf_cgroup *cgrp1;
536 	struct perf_cgroup *cgrp2 = NULL;
537 
538 	/*
539 	 * we come here when we know perf_cgroup_events > 0
540 	 */
541 	cgrp1 = perf_cgroup_from_task(task);
542 
543 	/*
544 	 * next is NULL when called from perf_event_enable_on_exec()
545 	 * that will systematically cause a cgroup_switch()
546 	 */
547 	if (next)
548 		cgrp2 = perf_cgroup_from_task(next);
549 
550 	/*
551 	 * only schedule out current cgroup events if we know
552 	 * that we are switching to a different cgroup. Otherwise,
553 	 * do no touch the cgroup events.
554 	 */
555 	if (cgrp1 != cgrp2)
556 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
557 }
558 
559 static inline void perf_cgroup_sched_in(struct task_struct *prev,
560 					struct task_struct *task)
561 {
562 	struct perf_cgroup *cgrp1;
563 	struct perf_cgroup *cgrp2 = NULL;
564 
565 	/*
566 	 * we come here when we know perf_cgroup_events > 0
567 	 */
568 	cgrp1 = perf_cgroup_from_task(task);
569 
570 	/* prev can never be NULL */
571 	cgrp2 = perf_cgroup_from_task(prev);
572 
573 	/*
574 	 * only need to schedule in cgroup events if we are changing
575 	 * cgroup during ctxsw. Cgroup events were not scheduled
576 	 * out of ctxsw out if that was not the case.
577 	 */
578 	if (cgrp1 != cgrp2)
579 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
580 }
581 
582 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
583 				      struct perf_event_attr *attr,
584 				      struct perf_event *group_leader)
585 {
586 	struct perf_cgroup *cgrp;
587 	struct cgroup_subsys_state *css;
588 	struct fd f = fdget(fd);
589 	int ret = 0;
590 
591 	if (!f.file)
592 		return -EBADF;
593 
594 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
595 	if (IS_ERR(css)) {
596 		ret = PTR_ERR(css);
597 		goto out;
598 	}
599 
600 	cgrp = container_of(css, struct perf_cgroup, css);
601 	event->cgrp = cgrp;
602 
603 	/* must be done before we fput() the file */
604 	if (!perf_tryget_cgroup(event)) {
605 		event->cgrp = NULL;
606 		ret = -ENOENT;
607 		goto out;
608 	}
609 
610 	/*
611 	 * all events in a group must monitor
612 	 * the same cgroup because a task belongs
613 	 * to only one perf cgroup at a time
614 	 */
615 	if (group_leader && group_leader->cgrp != cgrp) {
616 		perf_detach_cgroup(event);
617 		ret = -EINVAL;
618 	}
619 out:
620 	fdput(f);
621 	return ret;
622 }
623 
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 	struct perf_cgroup_info *t;
628 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 	event->shadow_ctx_time = now - t->timestamp;
630 }
631 
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 	/*
636 	 * when the current task's perf cgroup does not match
637 	 * the event's, we need to remember to call the
638 	 * perf_mark_enable() function the first time a task with
639 	 * a matching perf cgroup is scheduled in.
640 	 */
641 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 		event->cgrp_defer_enabled = 1;
643 }
644 
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 			 struct perf_event_context *ctx)
648 {
649 	struct perf_event *sub;
650 	u64 tstamp = perf_event_time(event);
651 
652 	if (!event->cgrp_defer_enabled)
653 		return;
654 
655 	event->cgrp_defer_enabled = 0;
656 
657 	event->tstamp_enabled = tstamp - event->total_time_enabled;
658 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 			sub->cgrp_defer_enabled = 0;
662 		}
663 	}
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666 
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 	return true;
671 }
672 
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675 
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 	return 0;
679 }
680 
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 	return 0;
684 }
685 
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689 
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693 
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 					 struct task_struct *next)
696 {
697 }
698 
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 					struct task_struct *task)
701 {
702 }
703 
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 				      struct perf_event_attr *attr,
706 				      struct perf_event *group_leader)
707 {
708 	return -EINVAL;
709 }
710 
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 			  struct perf_event_context *ctx)
714 {
715 }
716 
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721 
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726 
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 	return 0;
730 }
731 
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736 
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 			 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743 
744 /*
745  * set default to be dependent on timer tick just
746  * like original code
747  */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750  * function must be called with interrupts disbled
751  */
752 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
753 {
754 	struct perf_cpu_context *cpuctx;
755 	enum hrtimer_restart ret = HRTIMER_NORESTART;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 
762 	rotations = perf_rotate_context(cpuctx);
763 
764 	/*
765 	 * arm timer if needed
766 	 */
767 	if (rotations) {
768 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
769 		ret = HRTIMER_RESTART;
770 	}
771 
772 	return ret;
773 }
774 
775 /* CPU is going down */
776 void perf_cpu_hrtimer_cancel(int cpu)
777 {
778 	struct perf_cpu_context *cpuctx;
779 	struct pmu *pmu;
780 	unsigned long flags;
781 
782 	if (WARN_ON(cpu != smp_processor_id()))
783 		return;
784 
785 	local_irq_save(flags);
786 
787 	rcu_read_lock();
788 
789 	list_for_each_entry_rcu(pmu, &pmus, entry) {
790 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
791 
792 		if (pmu->task_ctx_nr == perf_sw_context)
793 			continue;
794 
795 		hrtimer_cancel(&cpuctx->hrtimer);
796 	}
797 
798 	rcu_read_unlock();
799 
800 	local_irq_restore(flags);
801 }
802 
803 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
804 {
805 	struct hrtimer *hr = &cpuctx->hrtimer;
806 	struct pmu *pmu = cpuctx->ctx.pmu;
807 	int timer;
808 
809 	/* no multiplexing needed for SW PMU */
810 	if (pmu->task_ctx_nr == perf_sw_context)
811 		return;
812 
813 	/*
814 	 * check default is sane, if not set then force to
815 	 * default interval (1/tick)
816 	 */
817 	timer = pmu->hrtimer_interval_ms;
818 	if (timer < 1)
819 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
820 
821 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
822 
823 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
824 	hr->function = perf_cpu_hrtimer_handler;
825 }
826 
827 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
828 {
829 	struct hrtimer *hr = &cpuctx->hrtimer;
830 	struct pmu *pmu = cpuctx->ctx.pmu;
831 
832 	/* not for SW PMU */
833 	if (pmu->task_ctx_nr == perf_sw_context)
834 		return;
835 
836 	if (hrtimer_active(hr))
837 		return;
838 
839 	if (!hrtimer_callback_running(hr))
840 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
841 					 0, HRTIMER_MODE_REL_PINNED, 0);
842 }
843 
844 void perf_pmu_disable(struct pmu *pmu)
845 {
846 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 	if (!(*count)++)
848 		pmu->pmu_disable(pmu);
849 }
850 
851 void perf_pmu_enable(struct pmu *pmu)
852 {
853 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 	if (!--(*count))
855 		pmu->pmu_enable(pmu);
856 }
857 
858 static DEFINE_PER_CPU(struct list_head, rotation_list);
859 
860 /*
861  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
862  * because they're strictly cpu affine and rotate_start is called with IRQs
863  * disabled, while rotate_context is called from IRQ context.
864  */
865 static void perf_pmu_rotate_start(struct pmu *pmu)
866 {
867 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
868 	struct list_head *head = &__get_cpu_var(rotation_list);
869 
870 	WARN_ON(!irqs_disabled());
871 
872 	if (list_empty(&cpuctx->rotation_list)) {
873 		int was_empty = list_empty(head);
874 		list_add(&cpuctx->rotation_list, head);
875 		if (was_empty)
876 			tick_nohz_full_kick();
877 	}
878 }
879 
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884 
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 	if (atomic_dec_and_test(&ctx->refcount)) {
888 		if (ctx->parent_ctx)
889 			put_ctx(ctx->parent_ctx);
890 		if (ctx->task)
891 			put_task_struct(ctx->task);
892 		kfree_rcu(ctx, rcu_head);
893 	}
894 }
895 
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 	if (ctx->parent_ctx) {
899 		put_ctx(ctx->parent_ctx);
900 		ctx->parent_ctx = NULL;
901 	}
902 }
903 
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905 {
906 	/*
907 	 * only top level events have the pid namespace they were created in
908 	 */
909 	if (event->parent)
910 		event = event->parent;
911 
912 	return task_tgid_nr_ns(p, event->ns);
913 }
914 
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916 {
917 	/*
918 	 * only top level events have the pid namespace they were created in
919 	 */
920 	if (event->parent)
921 		event = event->parent;
922 
923 	return task_pid_nr_ns(p, event->ns);
924 }
925 
926 /*
927  * If we inherit events we want to return the parent event id
928  * to userspace.
929  */
930 static u64 primary_event_id(struct perf_event *event)
931 {
932 	u64 id = event->id;
933 
934 	if (event->parent)
935 		id = event->parent->id;
936 
937 	return id;
938 }
939 
940 /*
941  * Get the perf_event_context for a task and lock it.
942  * This has to cope with with the fact that until it is locked,
943  * the context could get moved to another task.
944  */
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947 {
948 	struct perf_event_context *ctx;
949 
950 	rcu_read_lock();
951 retry:
952 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
953 	if (ctx) {
954 		/*
955 		 * If this context is a clone of another, it might
956 		 * get swapped for another underneath us by
957 		 * perf_event_task_sched_out, though the
958 		 * rcu_read_lock() protects us from any context
959 		 * getting freed.  Lock the context and check if it
960 		 * got swapped before we could get the lock, and retry
961 		 * if so.  If we locked the right context, then it
962 		 * can't get swapped on us any more.
963 		 */
964 		raw_spin_lock_irqsave(&ctx->lock, *flags);
965 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
966 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
967 			goto retry;
968 		}
969 
970 		if (!atomic_inc_not_zero(&ctx->refcount)) {
971 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
972 			ctx = NULL;
973 		}
974 	}
975 	rcu_read_unlock();
976 	return ctx;
977 }
978 
979 /*
980  * Get the context for a task and increment its pin_count so it
981  * can't get swapped to another task.  This also increments its
982  * reference count so that the context can't get freed.
983  */
984 static struct perf_event_context *
985 perf_pin_task_context(struct task_struct *task, int ctxn)
986 {
987 	struct perf_event_context *ctx;
988 	unsigned long flags;
989 
990 	ctx = perf_lock_task_context(task, ctxn, &flags);
991 	if (ctx) {
992 		++ctx->pin_count;
993 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
994 	}
995 	return ctx;
996 }
997 
998 static void perf_unpin_context(struct perf_event_context *ctx)
999 {
1000 	unsigned long flags;
1001 
1002 	raw_spin_lock_irqsave(&ctx->lock, flags);
1003 	--ctx->pin_count;
1004 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1005 }
1006 
1007 /*
1008  * Update the record of the current time in a context.
1009  */
1010 static void update_context_time(struct perf_event_context *ctx)
1011 {
1012 	u64 now = perf_clock();
1013 
1014 	ctx->time += now - ctx->timestamp;
1015 	ctx->timestamp = now;
1016 }
1017 
1018 static u64 perf_event_time(struct perf_event *event)
1019 {
1020 	struct perf_event_context *ctx = event->ctx;
1021 
1022 	if (is_cgroup_event(event))
1023 		return perf_cgroup_event_time(event);
1024 
1025 	return ctx ? ctx->time : 0;
1026 }
1027 
1028 /*
1029  * Update the total_time_enabled and total_time_running fields for a event.
1030  * The caller of this function needs to hold the ctx->lock.
1031  */
1032 static void update_event_times(struct perf_event *event)
1033 {
1034 	struct perf_event_context *ctx = event->ctx;
1035 	u64 run_end;
1036 
1037 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1038 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1039 		return;
1040 	/*
1041 	 * in cgroup mode, time_enabled represents
1042 	 * the time the event was enabled AND active
1043 	 * tasks were in the monitored cgroup. This is
1044 	 * independent of the activity of the context as
1045 	 * there may be a mix of cgroup and non-cgroup events.
1046 	 *
1047 	 * That is why we treat cgroup events differently
1048 	 * here.
1049 	 */
1050 	if (is_cgroup_event(event))
1051 		run_end = perf_cgroup_event_time(event);
1052 	else if (ctx->is_active)
1053 		run_end = ctx->time;
1054 	else
1055 		run_end = event->tstamp_stopped;
1056 
1057 	event->total_time_enabled = run_end - event->tstamp_enabled;
1058 
1059 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1060 		run_end = event->tstamp_stopped;
1061 	else
1062 		run_end = perf_event_time(event);
1063 
1064 	event->total_time_running = run_end - event->tstamp_running;
1065 
1066 }
1067 
1068 /*
1069  * Update total_time_enabled and total_time_running for all events in a group.
1070  */
1071 static void update_group_times(struct perf_event *leader)
1072 {
1073 	struct perf_event *event;
1074 
1075 	update_event_times(leader);
1076 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1077 		update_event_times(event);
1078 }
1079 
1080 static struct list_head *
1081 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1082 {
1083 	if (event->attr.pinned)
1084 		return &ctx->pinned_groups;
1085 	else
1086 		return &ctx->flexible_groups;
1087 }
1088 
1089 /*
1090  * Add a event from the lists for its context.
1091  * Must be called with ctx->mutex and ctx->lock held.
1092  */
1093 static void
1094 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1095 {
1096 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1097 	event->attach_state |= PERF_ATTACH_CONTEXT;
1098 
1099 	/*
1100 	 * If we're a stand alone event or group leader, we go to the context
1101 	 * list, group events are kept attached to the group so that
1102 	 * perf_group_detach can, at all times, locate all siblings.
1103 	 */
1104 	if (event->group_leader == event) {
1105 		struct list_head *list;
1106 
1107 		if (is_software_event(event))
1108 			event->group_flags |= PERF_GROUP_SOFTWARE;
1109 
1110 		list = ctx_group_list(event, ctx);
1111 		list_add_tail(&event->group_entry, list);
1112 	}
1113 
1114 	if (is_cgroup_event(event))
1115 		ctx->nr_cgroups++;
1116 
1117 	if (has_branch_stack(event))
1118 		ctx->nr_branch_stack++;
1119 
1120 	list_add_rcu(&event->event_entry, &ctx->event_list);
1121 	if (!ctx->nr_events)
1122 		perf_pmu_rotate_start(ctx->pmu);
1123 	ctx->nr_events++;
1124 	if (event->attr.inherit_stat)
1125 		ctx->nr_stat++;
1126 }
1127 
1128 /*
1129  * Initialize event state based on the perf_event_attr::disabled.
1130  */
1131 static inline void perf_event__state_init(struct perf_event *event)
1132 {
1133 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1134 					      PERF_EVENT_STATE_INACTIVE;
1135 }
1136 
1137 /*
1138  * Called at perf_event creation and when events are attached/detached from a
1139  * group.
1140  */
1141 static void perf_event__read_size(struct perf_event *event)
1142 {
1143 	int entry = sizeof(u64); /* value */
1144 	int size = 0;
1145 	int nr = 1;
1146 
1147 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1148 		size += sizeof(u64);
1149 
1150 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1151 		size += sizeof(u64);
1152 
1153 	if (event->attr.read_format & PERF_FORMAT_ID)
1154 		entry += sizeof(u64);
1155 
1156 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1157 		nr += event->group_leader->nr_siblings;
1158 		size += sizeof(u64);
1159 	}
1160 
1161 	size += entry * nr;
1162 	event->read_size = size;
1163 }
1164 
1165 static void perf_event__header_size(struct perf_event *event)
1166 {
1167 	struct perf_sample_data *data;
1168 	u64 sample_type = event->attr.sample_type;
1169 	u16 size = 0;
1170 
1171 	perf_event__read_size(event);
1172 
1173 	if (sample_type & PERF_SAMPLE_IP)
1174 		size += sizeof(data->ip);
1175 
1176 	if (sample_type & PERF_SAMPLE_ADDR)
1177 		size += sizeof(data->addr);
1178 
1179 	if (sample_type & PERF_SAMPLE_PERIOD)
1180 		size += sizeof(data->period);
1181 
1182 	if (sample_type & PERF_SAMPLE_WEIGHT)
1183 		size += sizeof(data->weight);
1184 
1185 	if (sample_type & PERF_SAMPLE_READ)
1186 		size += event->read_size;
1187 
1188 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1189 		size += sizeof(data->data_src.val);
1190 
1191 	event->header_size = size;
1192 }
1193 
1194 static void perf_event__id_header_size(struct perf_event *event)
1195 {
1196 	struct perf_sample_data *data;
1197 	u64 sample_type = event->attr.sample_type;
1198 	u16 size = 0;
1199 
1200 	if (sample_type & PERF_SAMPLE_TID)
1201 		size += sizeof(data->tid_entry);
1202 
1203 	if (sample_type & PERF_SAMPLE_TIME)
1204 		size += sizeof(data->time);
1205 
1206 	if (sample_type & PERF_SAMPLE_ID)
1207 		size += sizeof(data->id);
1208 
1209 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1210 		size += sizeof(data->stream_id);
1211 
1212 	if (sample_type & PERF_SAMPLE_CPU)
1213 		size += sizeof(data->cpu_entry);
1214 
1215 	event->id_header_size = size;
1216 }
1217 
1218 static void perf_group_attach(struct perf_event *event)
1219 {
1220 	struct perf_event *group_leader = event->group_leader, *pos;
1221 
1222 	/*
1223 	 * We can have double attach due to group movement in perf_event_open.
1224 	 */
1225 	if (event->attach_state & PERF_ATTACH_GROUP)
1226 		return;
1227 
1228 	event->attach_state |= PERF_ATTACH_GROUP;
1229 
1230 	if (group_leader == event)
1231 		return;
1232 
1233 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1234 			!is_software_event(event))
1235 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1236 
1237 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1238 	group_leader->nr_siblings++;
1239 
1240 	perf_event__header_size(group_leader);
1241 
1242 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1243 		perf_event__header_size(pos);
1244 }
1245 
1246 /*
1247  * Remove a event from the lists for its context.
1248  * Must be called with ctx->mutex and ctx->lock held.
1249  */
1250 static void
1251 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1252 {
1253 	struct perf_cpu_context *cpuctx;
1254 	/*
1255 	 * We can have double detach due to exit/hot-unplug + close.
1256 	 */
1257 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1258 		return;
1259 
1260 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1261 
1262 	if (is_cgroup_event(event)) {
1263 		ctx->nr_cgroups--;
1264 		cpuctx = __get_cpu_context(ctx);
1265 		/*
1266 		 * if there are no more cgroup events
1267 		 * then cler cgrp to avoid stale pointer
1268 		 * in update_cgrp_time_from_cpuctx()
1269 		 */
1270 		if (!ctx->nr_cgroups)
1271 			cpuctx->cgrp = NULL;
1272 	}
1273 
1274 	if (has_branch_stack(event))
1275 		ctx->nr_branch_stack--;
1276 
1277 	ctx->nr_events--;
1278 	if (event->attr.inherit_stat)
1279 		ctx->nr_stat--;
1280 
1281 	list_del_rcu(&event->event_entry);
1282 
1283 	if (event->group_leader == event)
1284 		list_del_init(&event->group_entry);
1285 
1286 	update_group_times(event);
1287 
1288 	/*
1289 	 * If event was in error state, then keep it
1290 	 * that way, otherwise bogus counts will be
1291 	 * returned on read(). The only way to get out
1292 	 * of error state is by explicit re-enabling
1293 	 * of the event
1294 	 */
1295 	if (event->state > PERF_EVENT_STATE_OFF)
1296 		event->state = PERF_EVENT_STATE_OFF;
1297 }
1298 
1299 static void perf_group_detach(struct perf_event *event)
1300 {
1301 	struct perf_event *sibling, *tmp;
1302 	struct list_head *list = NULL;
1303 
1304 	/*
1305 	 * We can have double detach due to exit/hot-unplug + close.
1306 	 */
1307 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1308 		return;
1309 
1310 	event->attach_state &= ~PERF_ATTACH_GROUP;
1311 
1312 	/*
1313 	 * If this is a sibling, remove it from its group.
1314 	 */
1315 	if (event->group_leader != event) {
1316 		list_del_init(&event->group_entry);
1317 		event->group_leader->nr_siblings--;
1318 		goto out;
1319 	}
1320 
1321 	if (!list_empty(&event->group_entry))
1322 		list = &event->group_entry;
1323 
1324 	/*
1325 	 * If this was a group event with sibling events then
1326 	 * upgrade the siblings to singleton events by adding them
1327 	 * to whatever list we are on.
1328 	 */
1329 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1330 		if (list)
1331 			list_move_tail(&sibling->group_entry, list);
1332 		sibling->group_leader = sibling;
1333 
1334 		/* Inherit group flags from the previous leader */
1335 		sibling->group_flags = event->group_flags;
1336 	}
1337 
1338 out:
1339 	perf_event__header_size(event->group_leader);
1340 
1341 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1342 		perf_event__header_size(tmp);
1343 }
1344 
1345 static inline int
1346 event_filter_match(struct perf_event *event)
1347 {
1348 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1349 	    && perf_cgroup_match(event);
1350 }
1351 
1352 static void
1353 event_sched_out(struct perf_event *event,
1354 		  struct perf_cpu_context *cpuctx,
1355 		  struct perf_event_context *ctx)
1356 {
1357 	u64 tstamp = perf_event_time(event);
1358 	u64 delta;
1359 	/*
1360 	 * An event which could not be activated because of
1361 	 * filter mismatch still needs to have its timings
1362 	 * maintained, otherwise bogus information is return
1363 	 * via read() for time_enabled, time_running:
1364 	 */
1365 	if (event->state == PERF_EVENT_STATE_INACTIVE
1366 	    && !event_filter_match(event)) {
1367 		delta = tstamp - event->tstamp_stopped;
1368 		event->tstamp_running += delta;
1369 		event->tstamp_stopped = tstamp;
1370 	}
1371 
1372 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1373 		return;
1374 
1375 	event->state = PERF_EVENT_STATE_INACTIVE;
1376 	if (event->pending_disable) {
1377 		event->pending_disable = 0;
1378 		event->state = PERF_EVENT_STATE_OFF;
1379 	}
1380 	event->tstamp_stopped = tstamp;
1381 	event->pmu->del(event, 0);
1382 	event->oncpu = -1;
1383 
1384 	if (!is_software_event(event))
1385 		cpuctx->active_oncpu--;
1386 	ctx->nr_active--;
1387 	if (event->attr.freq && event->attr.sample_freq)
1388 		ctx->nr_freq--;
1389 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1390 		cpuctx->exclusive = 0;
1391 }
1392 
1393 static void
1394 group_sched_out(struct perf_event *group_event,
1395 		struct perf_cpu_context *cpuctx,
1396 		struct perf_event_context *ctx)
1397 {
1398 	struct perf_event *event;
1399 	int state = group_event->state;
1400 
1401 	event_sched_out(group_event, cpuctx, ctx);
1402 
1403 	/*
1404 	 * Schedule out siblings (if any):
1405 	 */
1406 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1407 		event_sched_out(event, cpuctx, ctx);
1408 
1409 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1410 		cpuctx->exclusive = 0;
1411 }
1412 
1413 /*
1414  * Cross CPU call to remove a performance event
1415  *
1416  * We disable the event on the hardware level first. After that we
1417  * remove it from the context list.
1418  */
1419 static int __perf_remove_from_context(void *info)
1420 {
1421 	struct perf_event *event = info;
1422 	struct perf_event_context *ctx = event->ctx;
1423 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1424 
1425 	raw_spin_lock(&ctx->lock);
1426 	event_sched_out(event, cpuctx, ctx);
1427 	list_del_event(event, ctx);
1428 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1429 		ctx->is_active = 0;
1430 		cpuctx->task_ctx = NULL;
1431 	}
1432 	raw_spin_unlock(&ctx->lock);
1433 
1434 	return 0;
1435 }
1436 
1437 
1438 /*
1439  * Remove the event from a task's (or a CPU's) list of events.
1440  *
1441  * CPU events are removed with a smp call. For task events we only
1442  * call when the task is on a CPU.
1443  *
1444  * If event->ctx is a cloned context, callers must make sure that
1445  * every task struct that event->ctx->task could possibly point to
1446  * remains valid.  This is OK when called from perf_release since
1447  * that only calls us on the top-level context, which can't be a clone.
1448  * When called from perf_event_exit_task, it's OK because the
1449  * context has been detached from its task.
1450  */
1451 static void perf_remove_from_context(struct perf_event *event)
1452 {
1453 	struct perf_event_context *ctx = event->ctx;
1454 	struct task_struct *task = ctx->task;
1455 
1456 	lockdep_assert_held(&ctx->mutex);
1457 
1458 	if (!task) {
1459 		/*
1460 		 * Per cpu events are removed via an smp call and
1461 		 * the removal is always successful.
1462 		 */
1463 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1464 		return;
1465 	}
1466 
1467 retry:
1468 	if (!task_function_call(task, __perf_remove_from_context, event))
1469 		return;
1470 
1471 	raw_spin_lock_irq(&ctx->lock);
1472 	/*
1473 	 * If we failed to find a running task, but find the context active now
1474 	 * that we've acquired the ctx->lock, retry.
1475 	 */
1476 	if (ctx->is_active) {
1477 		raw_spin_unlock_irq(&ctx->lock);
1478 		goto retry;
1479 	}
1480 
1481 	/*
1482 	 * Since the task isn't running, its safe to remove the event, us
1483 	 * holding the ctx->lock ensures the task won't get scheduled in.
1484 	 */
1485 	list_del_event(event, ctx);
1486 	raw_spin_unlock_irq(&ctx->lock);
1487 }
1488 
1489 /*
1490  * Cross CPU call to disable a performance event
1491  */
1492 int __perf_event_disable(void *info)
1493 {
1494 	struct perf_event *event = info;
1495 	struct perf_event_context *ctx = event->ctx;
1496 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1497 
1498 	/*
1499 	 * If this is a per-task event, need to check whether this
1500 	 * event's task is the current task on this cpu.
1501 	 *
1502 	 * Can trigger due to concurrent perf_event_context_sched_out()
1503 	 * flipping contexts around.
1504 	 */
1505 	if (ctx->task && cpuctx->task_ctx != ctx)
1506 		return -EINVAL;
1507 
1508 	raw_spin_lock(&ctx->lock);
1509 
1510 	/*
1511 	 * If the event is on, turn it off.
1512 	 * If it is in error state, leave it in error state.
1513 	 */
1514 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1515 		update_context_time(ctx);
1516 		update_cgrp_time_from_event(event);
1517 		update_group_times(event);
1518 		if (event == event->group_leader)
1519 			group_sched_out(event, cpuctx, ctx);
1520 		else
1521 			event_sched_out(event, cpuctx, ctx);
1522 		event->state = PERF_EVENT_STATE_OFF;
1523 	}
1524 
1525 	raw_spin_unlock(&ctx->lock);
1526 
1527 	return 0;
1528 }
1529 
1530 /*
1531  * Disable a event.
1532  *
1533  * If event->ctx is a cloned context, callers must make sure that
1534  * every task struct that event->ctx->task could possibly point to
1535  * remains valid.  This condition is satisifed when called through
1536  * perf_event_for_each_child or perf_event_for_each because they
1537  * hold the top-level event's child_mutex, so any descendant that
1538  * goes to exit will block in sync_child_event.
1539  * When called from perf_pending_event it's OK because event->ctx
1540  * is the current context on this CPU and preemption is disabled,
1541  * hence we can't get into perf_event_task_sched_out for this context.
1542  */
1543 void perf_event_disable(struct perf_event *event)
1544 {
1545 	struct perf_event_context *ctx = event->ctx;
1546 	struct task_struct *task = ctx->task;
1547 
1548 	if (!task) {
1549 		/*
1550 		 * Disable the event on the cpu that it's on
1551 		 */
1552 		cpu_function_call(event->cpu, __perf_event_disable, event);
1553 		return;
1554 	}
1555 
1556 retry:
1557 	if (!task_function_call(task, __perf_event_disable, event))
1558 		return;
1559 
1560 	raw_spin_lock_irq(&ctx->lock);
1561 	/*
1562 	 * If the event is still active, we need to retry the cross-call.
1563 	 */
1564 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1565 		raw_spin_unlock_irq(&ctx->lock);
1566 		/*
1567 		 * Reload the task pointer, it might have been changed by
1568 		 * a concurrent perf_event_context_sched_out().
1569 		 */
1570 		task = ctx->task;
1571 		goto retry;
1572 	}
1573 
1574 	/*
1575 	 * Since we have the lock this context can't be scheduled
1576 	 * in, so we can change the state safely.
1577 	 */
1578 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1579 		update_group_times(event);
1580 		event->state = PERF_EVENT_STATE_OFF;
1581 	}
1582 	raw_spin_unlock_irq(&ctx->lock);
1583 }
1584 EXPORT_SYMBOL_GPL(perf_event_disable);
1585 
1586 static void perf_set_shadow_time(struct perf_event *event,
1587 				 struct perf_event_context *ctx,
1588 				 u64 tstamp)
1589 {
1590 	/*
1591 	 * use the correct time source for the time snapshot
1592 	 *
1593 	 * We could get by without this by leveraging the
1594 	 * fact that to get to this function, the caller
1595 	 * has most likely already called update_context_time()
1596 	 * and update_cgrp_time_xx() and thus both timestamp
1597 	 * are identical (or very close). Given that tstamp is,
1598 	 * already adjusted for cgroup, we could say that:
1599 	 *    tstamp - ctx->timestamp
1600 	 * is equivalent to
1601 	 *    tstamp - cgrp->timestamp.
1602 	 *
1603 	 * Then, in perf_output_read(), the calculation would
1604 	 * work with no changes because:
1605 	 * - event is guaranteed scheduled in
1606 	 * - no scheduled out in between
1607 	 * - thus the timestamp would be the same
1608 	 *
1609 	 * But this is a bit hairy.
1610 	 *
1611 	 * So instead, we have an explicit cgroup call to remain
1612 	 * within the time time source all along. We believe it
1613 	 * is cleaner and simpler to understand.
1614 	 */
1615 	if (is_cgroup_event(event))
1616 		perf_cgroup_set_shadow_time(event, tstamp);
1617 	else
1618 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1619 }
1620 
1621 #define MAX_INTERRUPTS (~0ULL)
1622 
1623 static void perf_log_throttle(struct perf_event *event, int enable);
1624 
1625 static int
1626 event_sched_in(struct perf_event *event,
1627 		 struct perf_cpu_context *cpuctx,
1628 		 struct perf_event_context *ctx)
1629 {
1630 	u64 tstamp = perf_event_time(event);
1631 
1632 	if (event->state <= PERF_EVENT_STATE_OFF)
1633 		return 0;
1634 
1635 	event->state = PERF_EVENT_STATE_ACTIVE;
1636 	event->oncpu = smp_processor_id();
1637 
1638 	/*
1639 	 * Unthrottle events, since we scheduled we might have missed several
1640 	 * ticks already, also for a heavily scheduling task there is little
1641 	 * guarantee it'll get a tick in a timely manner.
1642 	 */
1643 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1644 		perf_log_throttle(event, 1);
1645 		event->hw.interrupts = 0;
1646 	}
1647 
1648 	/*
1649 	 * The new state must be visible before we turn it on in the hardware:
1650 	 */
1651 	smp_wmb();
1652 
1653 	if (event->pmu->add(event, PERF_EF_START)) {
1654 		event->state = PERF_EVENT_STATE_INACTIVE;
1655 		event->oncpu = -1;
1656 		return -EAGAIN;
1657 	}
1658 
1659 	event->tstamp_running += tstamp - event->tstamp_stopped;
1660 
1661 	perf_set_shadow_time(event, ctx, tstamp);
1662 
1663 	if (!is_software_event(event))
1664 		cpuctx->active_oncpu++;
1665 	ctx->nr_active++;
1666 	if (event->attr.freq && event->attr.sample_freq)
1667 		ctx->nr_freq++;
1668 
1669 	if (event->attr.exclusive)
1670 		cpuctx->exclusive = 1;
1671 
1672 	return 0;
1673 }
1674 
1675 static int
1676 group_sched_in(struct perf_event *group_event,
1677 	       struct perf_cpu_context *cpuctx,
1678 	       struct perf_event_context *ctx)
1679 {
1680 	struct perf_event *event, *partial_group = NULL;
1681 	struct pmu *pmu = group_event->pmu;
1682 	u64 now = ctx->time;
1683 	bool simulate = false;
1684 
1685 	if (group_event->state == PERF_EVENT_STATE_OFF)
1686 		return 0;
1687 
1688 	pmu->start_txn(pmu);
1689 
1690 	if (event_sched_in(group_event, cpuctx, ctx)) {
1691 		pmu->cancel_txn(pmu);
1692 		perf_cpu_hrtimer_restart(cpuctx);
1693 		return -EAGAIN;
1694 	}
1695 
1696 	/*
1697 	 * Schedule in siblings as one group (if any):
1698 	 */
1699 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1700 		if (event_sched_in(event, cpuctx, ctx)) {
1701 			partial_group = event;
1702 			goto group_error;
1703 		}
1704 	}
1705 
1706 	if (!pmu->commit_txn(pmu))
1707 		return 0;
1708 
1709 group_error:
1710 	/*
1711 	 * Groups can be scheduled in as one unit only, so undo any
1712 	 * partial group before returning:
1713 	 * The events up to the failed event are scheduled out normally,
1714 	 * tstamp_stopped will be updated.
1715 	 *
1716 	 * The failed events and the remaining siblings need to have
1717 	 * their timings updated as if they had gone thru event_sched_in()
1718 	 * and event_sched_out(). This is required to get consistent timings
1719 	 * across the group. This also takes care of the case where the group
1720 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1721 	 * the time the event was actually stopped, such that time delta
1722 	 * calculation in update_event_times() is correct.
1723 	 */
1724 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1725 		if (event == partial_group)
1726 			simulate = true;
1727 
1728 		if (simulate) {
1729 			event->tstamp_running += now - event->tstamp_stopped;
1730 			event->tstamp_stopped = now;
1731 		} else {
1732 			event_sched_out(event, cpuctx, ctx);
1733 		}
1734 	}
1735 	event_sched_out(group_event, cpuctx, ctx);
1736 
1737 	pmu->cancel_txn(pmu);
1738 
1739 	perf_cpu_hrtimer_restart(cpuctx);
1740 
1741 	return -EAGAIN;
1742 }
1743 
1744 /*
1745  * Work out whether we can put this event group on the CPU now.
1746  */
1747 static int group_can_go_on(struct perf_event *event,
1748 			   struct perf_cpu_context *cpuctx,
1749 			   int can_add_hw)
1750 {
1751 	/*
1752 	 * Groups consisting entirely of software events can always go on.
1753 	 */
1754 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1755 		return 1;
1756 	/*
1757 	 * If an exclusive group is already on, no other hardware
1758 	 * events can go on.
1759 	 */
1760 	if (cpuctx->exclusive)
1761 		return 0;
1762 	/*
1763 	 * If this group is exclusive and there are already
1764 	 * events on the CPU, it can't go on.
1765 	 */
1766 	if (event->attr.exclusive && cpuctx->active_oncpu)
1767 		return 0;
1768 	/*
1769 	 * Otherwise, try to add it if all previous groups were able
1770 	 * to go on.
1771 	 */
1772 	return can_add_hw;
1773 }
1774 
1775 static void add_event_to_ctx(struct perf_event *event,
1776 			       struct perf_event_context *ctx)
1777 {
1778 	u64 tstamp = perf_event_time(event);
1779 
1780 	list_add_event(event, ctx);
1781 	perf_group_attach(event);
1782 	event->tstamp_enabled = tstamp;
1783 	event->tstamp_running = tstamp;
1784 	event->tstamp_stopped = tstamp;
1785 }
1786 
1787 static void task_ctx_sched_out(struct perf_event_context *ctx);
1788 static void
1789 ctx_sched_in(struct perf_event_context *ctx,
1790 	     struct perf_cpu_context *cpuctx,
1791 	     enum event_type_t event_type,
1792 	     struct task_struct *task);
1793 
1794 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1795 				struct perf_event_context *ctx,
1796 				struct task_struct *task)
1797 {
1798 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1799 	if (ctx)
1800 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1801 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1802 	if (ctx)
1803 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1804 }
1805 
1806 /*
1807  * Cross CPU call to install and enable a performance event
1808  *
1809  * Must be called with ctx->mutex held
1810  */
1811 static int  __perf_install_in_context(void *info)
1812 {
1813 	struct perf_event *event = info;
1814 	struct perf_event_context *ctx = event->ctx;
1815 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1816 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1817 	struct task_struct *task = current;
1818 
1819 	perf_ctx_lock(cpuctx, task_ctx);
1820 	perf_pmu_disable(cpuctx->ctx.pmu);
1821 
1822 	/*
1823 	 * If there was an active task_ctx schedule it out.
1824 	 */
1825 	if (task_ctx)
1826 		task_ctx_sched_out(task_ctx);
1827 
1828 	/*
1829 	 * If the context we're installing events in is not the
1830 	 * active task_ctx, flip them.
1831 	 */
1832 	if (ctx->task && task_ctx != ctx) {
1833 		if (task_ctx)
1834 			raw_spin_unlock(&task_ctx->lock);
1835 		raw_spin_lock(&ctx->lock);
1836 		task_ctx = ctx;
1837 	}
1838 
1839 	if (task_ctx) {
1840 		cpuctx->task_ctx = task_ctx;
1841 		task = task_ctx->task;
1842 	}
1843 
1844 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1845 
1846 	update_context_time(ctx);
1847 	/*
1848 	 * update cgrp time only if current cgrp
1849 	 * matches event->cgrp. Must be done before
1850 	 * calling add_event_to_ctx()
1851 	 */
1852 	update_cgrp_time_from_event(event);
1853 
1854 	add_event_to_ctx(event, ctx);
1855 
1856 	/*
1857 	 * Schedule everything back in
1858 	 */
1859 	perf_event_sched_in(cpuctx, task_ctx, task);
1860 
1861 	perf_pmu_enable(cpuctx->ctx.pmu);
1862 	perf_ctx_unlock(cpuctx, task_ctx);
1863 
1864 	return 0;
1865 }
1866 
1867 /*
1868  * Attach a performance event to a context
1869  *
1870  * First we add the event to the list with the hardware enable bit
1871  * in event->hw_config cleared.
1872  *
1873  * If the event is attached to a task which is on a CPU we use a smp
1874  * call to enable it in the task context. The task might have been
1875  * scheduled away, but we check this in the smp call again.
1876  */
1877 static void
1878 perf_install_in_context(struct perf_event_context *ctx,
1879 			struct perf_event *event,
1880 			int cpu)
1881 {
1882 	struct task_struct *task = ctx->task;
1883 
1884 	lockdep_assert_held(&ctx->mutex);
1885 
1886 	event->ctx = ctx;
1887 	if (event->cpu != -1)
1888 		event->cpu = cpu;
1889 
1890 	if (!task) {
1891 		/*
1892 		 * Per cpu events are installed via an smp call and
1893 		 * the install is always successful.
1894 		 */
1895 		cpu_function_call(cpu, __perf_install_in_context, event);
1896 		return;
1897 	}
1898 
1899 retry:
1900 	if (!task_function_call(task, __perf_install_in_context, event))
1901 		return;
1902 
1903 	raw_spin_lock_irq(&ctx->lock);
1904 	/*
1905 	 * If we failed to find a running task, but find the context active now
1906 	 * that we've acquired the ctx->lock, retry.
1907 	 */
1908 	if (ctx->is_active) {
1909 		raw_spin_unlock_irq(&ctx->lock);
1910 		goto retry;
1911 	}
1912 
1913 	/*
1914 	 * Since the task isn't running, its safe to add the event, us holding
1915 	 * the ctx->lock ensures the task won't get scheduled in.
1916 	 */
1917 	add_event_to_ctx(event, ctx);
1918 	raw_spin_unlock_irq(&ctx->lock);
1919 }
1920 
1921 /*
1922  * Put a event into inactive state and update time fields.
1923  * Enabling the leader of a group effectively enables all
1924  * the group members that aren't explicitly disabled, so we
1925  * have to update their ->tstamp_enabled also.
1926  * Note: this works for group members as well as group leaders
1927  * since the non-leader members' sibling_lists will be empty.
1928  */
1929 static void __perf_event_mark_enabled(struct perf_event *event)
1930 {
1931 	struct perf_event *sub;
1932 	u64 tstamp = perf_event_time(event);
1933 
1934 	event->state = PERF_EVENT_STATE_INACTIVE;
1935 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1936 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1937 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1938 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1939 	}
1940 }
1941 
1942 /*
1943  * Cross CPU call to enable a performance event
1944  */
1945 static int __perf_event_enable(void *info)
1946 {
1947 	struct perf_event *event = info;
1948 	struct perf_event_context *ctx = event->ctx;
1949 	struct perf_event *leader = event->group_leader;
1950 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1951 	int err;
1952 
1953 	if (WARN_ON_ONCE(!ctx->is_active))
1954 		return -EINVAL;
1955 
1956 	raw_spin_lock(&ctx->lock);
1957 	update_context_time(ctx);
1958 
1959 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1960 		goto unlock;
1961 
1962 	/*
1963 	 * set current task's cgroup time reference point
1964 	 */
1965 	perf_cgroup_set_timestamp(current, ctx);
1966 
1967 	__perf_event_mark_enabled(event);
1968 
1969 	if (!event_filter_match(event)) {
1970 		if (is_cgroup_event(event))
1971 			perf_cgroup_defer_enabled(event);
1972 		goto unlock;
1973 	}
1974 
1975 	/*
1976 	 * If the event is in a group and isn't the group leader,
1977 	 * then don't put it on unless the group is on.
1978 	 */
1979 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1980 		goto unlock;
1981 
1982 	if (!group_can_go_on(event, cpuctx, 1)) {
1983 		err = -EEXIST;
1984 	} else {
1985 		if (event == leader)
1986 			err = group_sched_in(event, cpuctx, ctx);
1987 		else
1988 			err = event_sched_in(event, cpuctx, ctx);
1989 	}
1990 
1991 	if (err) {
1992 		/*
1993 		 * If this event can't go on and it's part of a
1994 		 * group, then the whole group has to come off.
1995 		 */
1996 		if (leader != event) {
1997 			group_sched_out(leader, cpuctx, ctx);
1998 			perf_cpu_hrtimer_restart(cpuctx);
1999 		}
2000 		if (leader->attr.pinned) {
2001 			update_group_times(leader);
2002 			leader->state = PERF_EVENT_STATE_ERROR;
2003 		}
2004 	}
2005 
2006 unlock:
2007 	raw_spin_unlock(&ctx->lock);
2008 
2009 	return 0;
2010 }
2011 
2012 /*
2013  * Enable a event.
2014  *
2015  * If event->ctx is a cloned context, callers must make sure that
2016  * every task struct that event->ctx->task could possibly point to
2017  * remains valid.  This condition is satisfied when called through
2018  * perf_event_for_each_child or perf_event_for_each as described
2019  * for perf_event_disable.
2020  */
2021 void perf_event_enable(struct perf_event *event)
2022 {
2023 	struct perf_event_context *ctx = event->ctx;
2024 	struct task_struct *task = ctx->task;
2025 
2026 	if (!task) {
2027 		/*
2028 		 * Enable the event on the cpu that it's on
2029 		 */
2030 		cpu_function_call(event->cpu, __perf_event_enable, event);
2031 		return;
2032 	}
2033 
2034 	raw_spin_lock_irq(&ctx->lock);
2035 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2036 		goto out;
2037 
2038 	/*
2039 	 * If the event is in error state, clear that first.
2040 	 * That way, if we see the event in error state below, we
2041 	 * know that it has gone back into error state, as distinct
2042 	 * from the task having been scheduled away before the
2043 	 * cross-call arrived.
2044 	 */
2045 	if (event->state == PERF_EVENT_STATE_ERROR)
2046 		event->state = PERF_EVENT_STATE_OFF;
2047 
2048 retry:
2049 	if (!ctx->is_active) {
2050 		__perf_event_mark_enabled(event);
2051 		goto out;
2052 	}
2053 
2054 	raw_spin_unlock_irq(&ctx->lock);
2055 
2056 	if (!task_function_call(task, __perf_event_enable, event))
2057 		return;
2058 
2059 	raw_spin_lock_irq(&ctx->lock);
2060 
2061 	/*
2062 	 * If the context is active and the event is still off,
2063 	 * we need to retry the cross-call.
2064 	 */
2065 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2066 		/*
2067 		 * task could have been flipped by a concurrent
2068 		 * perf_event_context_sched_out()
2069 		 */
2070 		task = ctx->task;
2071 		goto retry;
2072 	}
2073 
2074 out:
2075 	raw_spin_unlock_irq(&ctx->lock);
2076 }
2077 EXPORT_SYMBOL_GPL(perf_event_enable);
2078 
2079 int perf_event_refresh(struct perf_event *event, int refresh)
2080 {
2081 	/*
2082 	 * not supported on inherited events
2083 	 */
2084 	if (event->attr.inherit || !is_sampling_event(event))
2085 		return -EINVAL;
2086 
2087 	atomic_add(refresh, &event->event_limit);
2088 	perf_event_enable(event);
2089 
2090 	return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(perf_event_refresh);
2093 
2094 static void ctx_sched_out(struct perf_event_context *ctx,
2095 			  struct perf_cpu_context *cpuctx,
2096 			  enum event_type_t event_type)
2097 {
2098 	struct perf_event *event;
2099 	int is_active = ctx->is_active;
2100 
2101 	ctx->is_active &= ~event_type;
2102 	if (likely(!ctx->nr_events))
2103 		return;
2104 
2105 	update_context_time(ctx);
2106 	update_cgrp_time_from_cpuctx(cpuctx);
2107 	if (!ctx->nr_active)
2108 		return;
2109 
2110 	perf_pmu_disable(ctx->pmu);
2111 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2112 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2113 			group_sched_out(event, cpuctx, ctx);
2114 	}
2115 
2116 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2117 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2118 			group_sched_out(event, cpuctx, ctx);
2119 	}
2120 	perf_pmu_enable(ctx->pmu);
2121 }
2122 
2123 /*
2124  * Test whether two contexts are equivalent, i.e. whether they
2125  * have both been cloned from the same version of the same context
2126  * and they both have the same number of enabled events.
2127  * If the number of enabled events is the same, then the set
2128  * of enabled events should be the same, because these are both
2129  * inherited contexts, therefore we can't access individual events
2130  * in them directly with an fd; we can only enable/disable all
2131  * events via prctl, or enable/disable all events in a family
2132  * via ioctl, which will have the same effect on both contexts.
2133  */
2134 static int context_equiv(struct perf_event_context *ctx1,
2135 			 struct perf_event_context *ctx2)
2136 {
2137 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2138 		&& ctx1->parent_gen == ctx2->parent_gen
2139 		&& !ctx1->pin_count && !ctx2->pin_count;
2140 }
2141 
2142 static void __perf_event_sync_stat(struct perf_event *event,
2143 				     struct perf_event *next_event)
2144 {
2145 	u64 value;
2146 
2147 	if (!event->attr.inherit_stat)
2148 		return;
2149 
2150 	/*
2151 	 * Update the event value, we cannot use perf_event_read()
2152 	 * because we're in the middle of a context switch and have IRQs
2153 	 * disabled, which upsets smp_call_function_single(), however
2154 	 * we know the event must be on the current CPU, therefore we
2155 	 * don't need to use it.
2156 	 */
2157 	switch (event->state) {
2158 	case PERF_EVENT_STATE_ACTIVE:
2159 		event->pmu->read(event);
2160 		/* fall-through */
2161 
2162 	case PERF_EVENT_STATE_INACTIVE:
2163 		update_event_times(event);
2164 		break;
2165 
2166 	default:
2167 		break;
2168 	}
2169 
2170 	/*
2171 	 * In order to keep per-task stats reliable we need to flip the event
2172 	 * values when we flip the contexts.
2173 	 */
2174 	value = local64_read(&next_event->count);
2175 	value = local64_xchg(&event->count, value);
2176 	local64_set(&next_event->count, value);
2177 
2178 	swap(event->total_time_enabled, next_event->total_time_enabled);
2179 	swap(event->total_time_running, next_event->total_time_running);
2180 
2181 	/*
2182 	 * Since we swizzled the values, update the user visible data too.
2183 	 */
2184 	perf_event_update_userpage(event);
2185 	perf_event_update_userpage(next_event);
2186 }
2187 
2188 #define list_next_entry(pos, member) \
2189 	list_entry(pos->member.next, typeof(*pos), member)
2190 
2191 static void perf_event_sync_stat(struct perf_event_context *ctx,
2192 				   struct perf_event_context *next_ctx)
2193 {
2194 	struct perf_event *event, *next_event;
2195 
2196 	if (!ctx->nr_stat)
2197 		return;
2198 
2199 	update_context_time(ctx);
2200 
2201 	event = list_first_entry(&ctx->event_list,
2202 				   struct perf_event, event_entry);
2203 
2204 	next_event = list_first_entry(&next_ctx->event_list,
2205 					struct perf_event, event_entry);
2206 
2207 	while (&event->event_entry != &ctx->event_list &&
2208 	       &next_event->event_entry != &next_ctx->event_list) {
2209 
2210 		__perf_event_sync_stat(event, next_event);
2211 
2212 		event = list_next_entry(event, event_entry);
2213 		next_event = list_next_entry(next_event, event_entry);
2214 	}
2215 }
2216 
2217 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2218 					 struct task_struct *next)
2219 {
2220 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2221 	struct perf_event_context *next_ctx;
2222 	struct perf_event_context *parent;
2223 	struct perf_cpu_context *cpuctx;
2224 	int do_switch = 1;
2225 
2226 	if (likely(!ctx))
2227 		return;
2228 
2229 	cpuctx = __get_cpu_context(ctx);
2230 	if (!cpuctx->task_ctx)
2231 		return;
2232 
2233 	rcu_read_lock();
2234 	parent = rcu_dereference(ctx->parent_ctx);
2235 	next_ctx = next->perf_event_ctxp[ctxn];
2236 	if (parent && next_ctx &&
2237 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2238 		/*
2239 		 * Looks like the two contexts are clones, so we might be
2240 		 * able to optimize the context switch.  We lock both
2241 		 * contexts and check that they are clones under the
2242 		 * lock (including re-checking that neither has been
2243 		 * uncloned in the meantime).  It doesn't matter which
2244 		 * order we take the locks because no other cpu could
2245 		 * be trying to lock both of these tasks.
2246 		 */
2247 		raw_spin_lock(&ctx->lock);
2248 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2249 		if (context_equiv(ctx, next_ctx)) {
2250 			/*
2251 			 * XXX do we need a memory barrier of sorts
2252 			 * wrt to rcu_dereference() of perf_event_ctxp
2253 			 */
2254 			task->perf_event_ctxp[ctxn] = next_ctx;
2255 			next->perf_event_ctxp[ctxn] = ctx;
2256 			ctx->task = next;
2257 			next_ctx->task = task;
2258 			do_switch = 0;
2259 
2260 			perf_event_sync_stat(ctx, next_ctx);
2261 		}
2262 		raw_spin_unlock(&next_ctx->lock);
2263 		raw_spin_unlock(&ctx->lock);
2264 	}
2265 	rcu_read_unlock();
2266 
2267 	if (do_switch) {
2268 		raw_spin_lock(&ctx->lock);
2269 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2270 		cpuctx->task_ctx = NULL;
2271 		raw_spin_unlock(&ctx->lock);
2272 	}
2273 }
2274 
2275 #define for_each_task_context_nr(ctxn)					\
2276 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2277 
2278 /*
2279  * Called from scheduler to remove the events of the current task,
2280  * with interrupts disabled.
2281  *
2282  * We stop each event and update the event value in event->count.
2283  *
2284  * This does not protect us against NMI, but disable()
2285  * sets the disabled bit in the control field of event _before_
2286  * accessing the event control register. If a NMI hits, then it will
2287  * not restart the event.
2288  */
2289 void __perf_event_task_sched_out(struct task_struct *task,
2290 				 struct task_struct *next)
2291 {
2292 	int ctxn;
2293 
2294 	for_each_task_context_nr(ctxn)
2295 		perf_event_context_sched_out(task, ctxn, next);
2296 
2297 	/*
2298 	 * if cgroup events exist on this CPU, then we need
2299 	 * to check if we have to switch out PMU state.
2300 	 * cgroup event are system-wide mode only
2301 	 */
2302 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2303 		perf_cgroup_sched_out(task, next);
2304 }
2305 
2306 static void task_ctx_sched_out(struct perf_event_context *ctx)
2307 {
2308 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2309 
2310 	if (!cpuctx->task_ctx)
2311 		return;
2312 
2313 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2314 		return;
2315 
2316 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2317 	cpuctx->task_ctx = NULL;
2318 }
2319 
2320 /*
2321  * Called with IRQs disabled
2322  */
2323 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2324 			      enum event_type_t event_type)
2325 {
2326 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2327 }
2328 
2329 static void
2330 ctx_pinned_sched_in(struct perf_event_context *ctx,
2331 		    struct perf_cpu_context *cpuctx)
2332 {
2333 	struct perf_event *event;
2334 
2335 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2336 		if (event->state <= PERF_EVENT_STATE_OFF)
2337 			continue;
2338 		if (!event_filter_match(event))
2339 			continue;
2340 
2341 		/* may need to reset tstamp_enabled */
2342 		if (is_cgroup_event(event))
2343 			perf_cgroup_mark_enabled(event, ctx);
2344 
2345 		if (group_can_go_on(event, cpuctx, 1))
2346 			group_sched_in(event, cpuctx, ctx);
2347 
2348 		/*
2349 		 * If this pinned group hasn't been scheduled,
2350 		 * put it in error state.
2351 		 */
2352 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2353 			update_group_times(event);
2354 			event->state = PERF_EVENT_STATE_ERROR;
2355 		}
2356 	}
2357 }
2358 
2359 static void
2360 ctx_flexible_sched_in(struct perf_event_context *ctx,
2361 		      struct perf_cpu_context *cpuctx)
2362 {
2363 	struct perf_event *event;
2364 	int can_add_hw = 1;
2365 
2366 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2367 		/* Ignore events in OFF or ERROR state */
2368 		if (event->state <= PERF_EVENT_STATE_OFF)
2369 			continue;
2370 		/*
2371 		 * Listen to the 'cpu' scheduling filter constraint
2372 		 * of events:
2373 		 */
2374 		if (!event_filter_match(event))
2375 			continue;
2376 
2377 		/* may need to reset tstamp_enabled */
2378 		if (is_cgroup_event(event))
2379 			perf_cgroup_mark_enabled(event, ctx);
2380 
2381 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2382 			if (group_sched_in(event, cpuctx, ctx))
2383 				can_add_hw = 0;
2384 		}
2385 	}
2386 }
2387 
2388 static void
2389 ctx_sched_in(struct perf_event_context *ctx,
2390 	     struct perf_cpu_context *cpuctx,
2391 	     enum event_type_t event_type,
2392 	     struct task_struct *task)
2393 {
2394 	u64 now;
2395 	int is_active = ctx->is_active;
2396 
2397 	ctx->is_active |= event_type;
2398 	if (likely(!ctx->nr_events))
2399 		return;
2400 
2401 	now = perf_clock();
2402 	ctx->timestamp = now;
2403 	perf_cgroup_set_timestamp(task, ctx);
2404 	/*
2405 	 * First go through the list and put on any pinned groups
2406 	 * in order to give them the best chance of going on.
2407 	 */
2408 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2409 		ctx_pinned_sched_in(ctx, cpuctx);
2410 
2411 	/* Then walk through the lower prio flexible groups */
2412 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2413 		ctx_flexible_sched_in(ctx, cpuctx);
2414 }
2415 
2416 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2417 			     enum event_type_t event_type,
2418 			     struct task_struct *task)
2419 {
2420 	struct perf_event_context *ctx = &cpuctx->ctx;
2421 
2422 	ctx_sched_in(ctx, cpuctx, event_type, task);
2423 }
2424 
2425 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2426 					struct task_struct *task)
2427 {
2428 	struct perf_cpu_context *cpuctx;
2429 
2430 	cpuctx = __get_cpu_context(ctx);
2431 	if (cpuctx->task_ctx == ctx)
2432 		return;
2433 
2434 	perf_ctx_lock(cpuctx, ctx);
2435 	perf_pmu_disable(ctx->pmu);
2436 	/*
2437 	 * We want to keep the following priority order:
2438 	 * cpu pinned (that don't need to move), task pinned,
2439 	 * cpu flexible, task flexible.
2440 	 */
2441 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2442 
2443 	if (ctx->nr_events)
2444 		cpuctx->task_ctx = ctx;
2445 
2446 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2447 
2448 	perf_pmu_enable(ctx->pmu);
2449 	perf_ctx_unlock(cpuctx, ctx);
2450 
2451 	/*
2452 	 * Since these rotations are per-cpu, we need to ensure the
2453 	 * cpu-context we got scheduled on is actually rotating.
2454 	 */
2455 	perf_pmu_rotate_start(ctx->pmu);
2456 }
2457 
2458 /*
2459  * When sampling the branck stack in system-wide, it may be necessary
2460  * to flush the stack on context switch. This happens when the branch
2461  * stack does not tag its entries with the pid of the current task.
2462  * Otherwise it becomes impossible to associate a branch entry with a
2463  * task. This ambiguity is more likely to appear when the branch stack
2464  * supports priv level filtering and the user sets it to monitor only
2465  * at the user level (which could be a useful measurement in system-wide
2466  * mode). In that case, the risk is high of having a branch stack with
2467  * branch from multiple tasks. Flushing may mean dropping the existing
2468  * entries or stashing them somewhere in the PMU specific code layer.
2469  *
2470  * This function provides the context switch callback to the lower code
2471  * layer. It is invoked ONLY when there is at least one system-wide context
2472  * with at least one active event using taken branch sampling.
2473  */
2474 static void perf_branch_stack_sched_in(struct task_struct *prev,
2475 				       struct task_struct *task)
2476 {
2477 	struct perf_cpu_context *cpuctx;
2478 	struct pmu *pmu;
2479 	unsigned long flags;
2480 
2481 	/* no need to flush branch stack if not changing task */
2482 	if (prev == task)
2483 		return;
2484 
2485 	local_irq_save(flags);
2486 
2487 	rcu_read_lock();
2488 
2489 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2490 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2491 
2492 		/*
2493 		 * check if the context has at least one
2494 		 * event using PERF_SAMPLE_BRANCH_STACK
2495 		 */
2496 		if (cpuctx->ctx.nr_branch_stack > 0
2497 		    && pmu->flush_branch_stack) {
2498 
2499 			pmu = cpuctx->ctx.pmu;
2500 
2501 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2502 
2503 			perf_pmu_disable(pmu);
2504 
2505 			pmu->flush_branch_stack();
2506 
2507 			perf_pmu_enable(pmu);
2508 
2509 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2510 		}
2511 	}
2512 
2513 	rcu_read_unlock();
2514 
2515 	local_irq_restore(flags);
2516 }
2517 
2518 /*
2519  * Called from scheduler to add the events of the current task
2520  * with interrupts disabled.
2521  *
2522  * We restore the event value and then enable it.
2523  *
2524  * This does not protect us against NMI, but enable()
2525  * sets the enabled bit in the control field of event _before_
2526  * accessing the event control register. If a NMI hits, then it will
2527  * keep the event running.
2528  */
2529 void __perf_event_task_sched_in(struct task_struct *prev,
2530 				struct task_struct *task)
2531 {
2532 	struct perf_event_context *ctx;
2533 	int ctxn;
2534 
2535 	for_each_task_context_nr(ctxn) {
2536 		ctx = task->perf_event_ctxp[ctxn];
2537 		if (likely(!ctx))
2538 			continue;
2539 
2540 		perf_event_context_sched_in(ctx, task);
2541 	}
2542 	/*
2543 	 * if cgroup events exist on this CPU, then we need
2544 	 * to check if we have to switch in PMU state.
2545 	 * cgroup event are system-wide mode only
2546 	 */
2547 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2548 		perf_cgroup_sched_in(prev, task);
2549 
2550 	/* check for system-wide branch_stack events */
2551 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2552 		perf_branch_stack_sched_in(prev, task);
2553 }
2554 
2555 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2556 {
2557 	u64 frequency = event->attr.sample_freq;
2558 	u64 sec = NSEC_PER_SEC;
2559 	u64 divisor, dividend;
2560 
2561 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2562 
2563 	count_fls = fls64(count);
2564 	nsec_fls = fls64(nsec);
2565 	frequency_fls = fls64(frequency);
2566 	sec_fls = 30;
2567 
2568 	/*
2569 	 * We got @count in @nsec, with a target of sample_freq HZ
2570 	 * the target period becomes:
2571 	 *
2572 	 *             @count * 10^9
2573 	 * period = -------------------
2574 	 *          @nsec * sample_freq
2575 	 *
2576 	 */
2577 
2578 	/*
2579 	 * Reduce accuracy by one bit such that @a and @b converge
2580 	 * to a similar magnitude.
2581 	 */
2582 #define REDUCE_FLS(a, b)		\
2583 do {					\
2584 	if (a##_fls > b##_fls) {	\
2585 		a >>= 1;		\
2586 		a##_fls--;		\
2587 	} else {			\
2588 		b >>= 1;		\
2589 		b##_fls--;		\
2590 	}				\
2591 } while (0)
2592 
2593 	/*
2594 	 * Reduce accuracy until either term fits in a u64, then proceed with
2595 	 * the other, so that finally we can do a u64/u64 division.
2596 	 */
2597 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2598 		REDUCE_FLS(nsec, frequency);
2599 		REDUCE_FLS(sec, count);
2600 	}
2601 
2602 	if (count_fls + sec_fls > 64) {
2603 		divisor = nsec * frequency;
2604 
2605 		while (count_fls + sec_fls > 64) {
2606 			REDUCE_FLS(count, sec);
2607 			divisor >>= 1;
2608 		}
2609 
2610 		dividend = count * sec;
2611 	} else {
2612 		dividend = count * sec;
2613 
2614 		while (nsec_fls + frequency_fls > 64) {
2615 			REDUCE_FLS(nsec, frequency);
2616 			dividend >>= 1;
2617 		}
2618 
2619 		divisor = nsec * frequency;
2620 	}
2621 
2622 	if (!divisor)
2623 		return dividend;
2624 
2625 	return div64_u64(dividend, divisor);
2626 }
2627 
2628 static DEFINE_PER_CPU(int, perf_throttled_count);
2629 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2630 
2631 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2632 {
2633 	struct hw_perf_event *hwc = &event->hw;
2634 	s64 period, sample_period;
2635 	s64 delta;
2636 
2637 	period = perf_calculate_period(event, nsec, count);
2638 
2639 	delta = (s64)(period - hwc->sample_period);
2640 	delta = (delta + 7) / 8; /* low pass filter */
2641 
2642 	sample_period = hwc->sample_period + delta;
2643 
2644 	if (!sample_period)
2645 		sample_period = 1;
2646 
2647 	hwc->sample_period = sample_period;
2648 
2649 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2650 		if (disable)
2651 			event->pmu->stop(event, PERF_EF_UPDATE);
2652 
2653 		local64_set(&hwc->period_left, 0);
2654 
2655 		if (disable)
2656 			event->pmu->start(event, PERF_EF_RELOAD);
2657 	}
2658 }
2659 
2660 /*
2661  * combine freq adjustment with unthrottling to avoid two passes over the
2662  * events. At the same time, make sure, having freq events does not change
2663  * the rate of unthrottling as that would introduce bias.
2664  */
2665 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2666 					   int needs_unthr)
2667 {
2668 	struct perf_event *event;
2669 	struct hw_perf_event *hwc;
2670 	u64 now, period = TICK_NSEC;
2671 	s64 delta;
2672 
2673 	/*
2674 	 * only need to iterate over all events iff:
2675 	 * - context have events in frequency mode (needs freq adjust)
2676 	 * - there are events to unthrottle on this cpu
2677 	 */
2678 	if (!(ctx->nr_freq || needs_unthr))
2679 		return;
2680 
2681 	raw_spin_lock(&ctx->lock);
2682 	perf_pmu_disable(ctx->pmu);
2683 
2684 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2685 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2686 			continue;
2687 
2688 		if (!event_filter_match(event))
2689 			continue;
2690 
2691 		hwc = &event->hw;
2692 
2693 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2694 			hwc->interrupts = 0;
2695 			perf_log_throttle(event, 1);
2696 			event->pmu->start(event, 0);
2697 		}
2698 
2699 		if (!event->attr.freq || !event->attr.sample_freq)
2700 			continue;
2701 
2702 		/*
2703 		 * stop the event and update event->count
2704 		 */
2705 		event->pmu->stop(event, PERF_EF_UPDATE);
2706 
2707 		now = local64_read(&event->count);
2708 		delta = now - hwc->freq_count_stamp;
2709 		hwc->freq_count_stamp = now;
2710 
2711 		/*
2712 		 * restart the event
2713 		 * reload only if value has changed
2714 		 * we have stopped the event so tell that
2715 		 * to perf_adjust_period() to avoid stopping it
2716 		 * twice.
2717 		 */
2718 		if (delta > 0)
2719 			perf_adjust_period(event, period, delta, false);
2720 
2721 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2722 	}
2723 
2724 	perf_pmu_enable(ctx->pmu);
2725 	raw_spin_unlock(&ctx->lock);
2726 }
2727 
2728 /*
2729  * Round-robin a context's events:
2730  */
2731 static void rotate_ctx(struct perf_event_context *ctx)
2732 {
2733 	/*
2734 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2735 	 * disabled by the inheritance code.
2736 	 */
2737 	if (!ctx->rotate_disable)
2738 		list_rotate_left(&ctx->flexible_groups);
2739 }
2740 
2741 /*
2742  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2743  * because they're strictly cpu affine and rotate_start is called with IRQs
2744  * disabled, while rotate_context is called from IRQ context.
2745  */
2746 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2747 {
2748 	struct perf_event_context *ctx = NULL;
2749 	int rotate = 0, remove = 1;
2750 
2751 	if (cpuctx->ctx.nr_events) {
2752 		remove = 0;
2753 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2754 			rotate = 1;
2755 	}
2756 
2757 	ctx = cpuctx->task_ctx;
2758 	if (ctx && ctx->nr_events) {
2759 		remove = 0;
2760 		if (ctx->nr_events != ctx->nr_active)
2761 			rotate = 1;
2762 	}
2763 
2764 	if (!rotate)
2765 		goto done;
2766 
2767 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2768 	perf_pmu_disable(cpuctx->ctx.pmu);
2769 
2770 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2771 	if (ctx)
2772 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2773 
2774 	rotate_ctx(&cpuctx->ctx);
2775 	if (ctx)
2776 		rotate_ctx(ctx);
2777 
2778 	perf_event_sched_in(cpuctx, ctx, current);
2779 
2780 	perf_pmu_enable(cpuctx->ctx.pmu);
2781 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2782 done:
2783 	if (remove)
2784 		list_del_init(&cpuctx->rotation_list);
2785 
2786 	return rotate;
2787 }
2788 
2789 #ifdef CONFIG_NO_HZ_FULL
2790 bool perf_event_can_stop_tick(void)
2791 {
2792 	if (list_empty(&__get_cpu_var(rotation_list)))
2793 		return true;
2794 	else
2795 		return false;
2796 }
2797 #endif
2798 
2799 void perf_event_task_tick(void)
2800 {
2801 	struct list_head *head = &__get_cpu_var(rotation_list);
2802 	struct perf_cpu_context *cpuctx, *tmp;
2803 	struct perf_event_context *ctx;
2804 	int throttled;
2805 
2806 	WARN_ON(!irqs_disabled());
2807 
2808 	__this_cpu_inc(perf_throttled_seq);
2809 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2810 
2811 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2812 		ctx = &cpuctx->ctx;
2813 		perf_adjust_freq_unthr_context(ctx, throttled);
2814 
2815 		ctx = cpuctx->task_ctx;
2816 		if (ctx)
2817 			perf_adjust_freq_unthr_context(ctx, throttled);
2818 	}
2819 }
2820 
2821 static int event_enable_on_exec(struct perf_event *event,
2822 				struct perf_event_context *ctx)
2823 {
2824 	if (!event->attr.enable_on_exec)
2825 		return 0;
2826 
2827 	event->attr.enable_on_exec = 0;
2828 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2829 		return 0;
2830 
2831 	__perf_event_mark_enabled(event);
2832 
2833 	return 1;
2834 }
2835 
2836 /*
2837  * Enable all of a task's events that have been marked enable-on-exec.
2838  * This expects task == current.
2839  */
2840 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2841 {
2842 	struct perf_event *event;
2843 	unsigned long flags;
2844 	int enabled = 0;
2845 	int ret;
2846 
2847 	local_irq_save(flags);
2848 	if (!ctx || !ctx->nr_events)
2849 		goto out;
2850 
2851 	/*
2852 	 * We must ctxsw out cgroup events to avoid conflict
2853 	 * when invoking perf_task_event_sched_in() later on
2854 	 * in this function. Otherwise we end up trying to
2855 	 * ctxswin cgroup events which are already scheduled
2856 	 * in.
2857 	 */
2858 	perf_cgroup_sched_out(current, NULL);
2859 
2860 	raw_spin_lock(&ctx->lock);
2861 	task_ctx_sched_out(ctx);
2862 
2863 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2864 		ret = event_enable_on_exec(event, ctx);
2865 		if (ret)
2866 			enabled = 1;
2867 	}
2868 
2869 	/*
2870 	 * Unclone this context if we enabled any event.
2871 	 */
2872 	if (enabled)
2873 		unclone_ctx(ctx);
2874 
2875 	raw_spin_unlock(&ctx->lock);
2876 
2877 	/*
2878 	 * Also calls ctxswin for cgroup events, if any:
2879 	 */
2880 	perf_event_context_sched_in(ctx, ctx->task);
2881 out:
2882 	local_irq_restore(flags);
2883 }
2884 
2885 /*
2886  * Cross CPU call to read the hardware event
2887  */
2888 static void __perf_event_read(void *info)
2889 {
2890 	struct perf_event *event = info;
2891 	struct perf_event_context *ctx = event->ctx;
2892 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2893 
2894 	/*
2895 	 * If this is a task context, we need to check whether it is
2896 	 * the current task context of this cpu.  If not it has been
2897 	 * scheduled out before the smp call arrived.  In that case
2898 	 * event->count would have been updated to a recent sample
2899 	 * when the event was scheduled out.
2900 	 */
2901 	if (ctx->task && cpuctx->task_ctx != ctx)
2902 		return;
2903 
2904 	raw_spin_lock(&ctx->lock);
2905 	if (ctx->is_active) {
2906 		update_context_time(ctx);
2907 		update_cgrp_time_from_event(event);
2908 	}
2909 	update_event_times(event);
2910 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2911 		event->pmu->read(event);
2912 	raw_spin_unlock(&ctx->lock);
2913 }
2914 
2915 static inline u64 perf_event_count(struct perf_event *event)
2916 {
2917 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2918 }
2919 
2920 static u64 perf_event_read(struct perf_event *event)
2921 {
2922 	/*
2923 	 * If event is enabled and currently active on a CPU, update the
2924 	 * value in the event structure:
2925 	 */
2926 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2927 		smp_call_function_single(event->oncpu,
2928 					 __perf_event_read, event, 1);
2929 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2930 		struct perf_event_context *ctx = event->ctx;
2931 		unsigned long flags;
2932 
2933 		raw_spin_lock_irqsave(&ctx->lock, flags);
2934 		/*
2935 		 * may read while context is not active
2936 		 * (e.g., thread is blocked), in that case
2937 		 * we cannot update context time
2938 		 */
2939 		if (ctx->is_active) {
2940 			update_context_time(ctx);
2941 			update_cgrp_time_from_event(event);
2942 		}
2943 		update_event_times(event);
2944 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2945 	}
2946 
2947 	return perf_event_count(event);
2948 }
2949 
2950 /*
2951  * Initialize the perf_event context in a task_struct:
2952  */
2953 static void __perf_event_init_context(struct perf_event_context *ctx)
2954 {
2955 	raw_spin_lock_init(&ctx->lock);
2956 	mutex_init(&ctx->mutex);
2957 	INIT_LIST_HEAD(&ctx->pinned_groups);
2958 	INIT_LIST_HEAD(&ctx->flexible_groups);
2959 	INIT_LIST_HEAD(&ctx->event_list);
2960 	atomic_set(&ctx->refcount, 1);
2961 }
2962 
2963 static struct perf_event_context *
2964 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2965 {
2966 	struct perf_event_context *ctx;
2967 
2968 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2969 	if (!ctx)
2970 		return NULL;
2971 
2972 	__perf_event_init_context(ctx);
2973 	if (task) {
2974 		ctx->task = task;
2975 		get_task_struct(task);
2976 	}
2977 	ctx->pmu = pmu;
2978 
2979 	return ctx;
2980 }
2981 
2982 static struct task_struct *
2983 find_lively_task_by_vpid(pid_t vpid)
2984 {
2985 	struct task_struct *task;
2986 	int err;
2987 
2988 	rcu_read_lock();
2989 	if (!vpid)
2990 		task = current;
2991 	else
2992 		task = find_task_by_vpid(vpid);
2993 	if (task)
2994 		get_task_struct(task);
2995 	rcu_read_unlock();
2996 
2997 	if (!task)
2998 		return ERR_PTR(-ESRCH);
2999 
3000 	/* Reuse ptrace permission checks for now. */
3001 	err = -EACCES;
3002 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3003 		goto errout;
3004 
3005 	return task;
3006 errout:
3007 	put_task_struct(task);
3008 	return ERR_PTR(err);
3009 
3010 }
3011 
3012 /*
3013  * Returns a matching context with refcount and pincount.
3014  */
3015 static struct perf_event_context *
3016 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3017 {
3018 	struct perf_event_context *ctx;
3019 	struct perf_cpu_context *cpuctx;
3020 	unsigned long flags;
3021 	int ctxn, err;
3022 
3023 	if (!task) {
3024 		/* Must be root to operate on a CPU event: */
3025 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3026 			return ERR_PTR(-EACCES);
3027 
3028 		/*
3029 		 * We could be clever and allow to attach a event to an
3030 		 * offline CPU and activate it when the CPU comes up, but
3031 		 * that's for later.
3032 		 */
3033 		if (!cpu_online(cpu))
3034 			return ERR_PTR(-ENODEV);
3035 
3036 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3037 		ctx = &cpuctx->ctx;
3038 		get_ctx(ctx);
3039 		++ctx->pin_count;
3040 
3041 		return ctx;
3042 	}
3043 
3044 	err = -EINVAL;
3045 	ctxn = pmu->task_ctx_nr;
3046 	if (ctxn < 0)
3047 		goto errout;
3048 
3049 retry:
3050 	ctx = perf_lock_task_context(task, ctxn, &flags);
3051 	if (ctx) {
3052 		unclone_ctx(ctx);
3053 		++ctx->pin_count;
3054 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3055 	} else {
3056 		ctx = alloc_perf_context(pmu, task);
3057 		err = -ENOMEM;
3058 		if (!ctx)
3059 			goto errout;
3060 
3061 		err = 0;
3062 		mutex_lock(&task->perf_event_mutex);
3063 		/*
3064 		 * If it has already passed perf_event_exit_task().
3065 		 * we must see PF_EXITING, it takes this mutex too.
3066 		 */
3067 		if (task->flags & PF_EXITING)
3068 			err = -ESRCH;
3069 		else if (task->perf_event_ctxp[ctxn])
3070 			err = -EAGAIN;
3071 		else {
3072 			get_ctx(ctx);
3073 			++ctx->pin_count;
3074 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3075 		}
3076 		mutex_unlock(&task->perf_event_mutex);
3077 
3078 		if (unlikely(err)) {
3079 			put_ctx(ctx);
3080 
3081 			if (err == -EAGAIN)
3082 				goto retry;
3083 			goto errout;
3084 		}
3085 	}
3086 
3087 	return ctx;
3088 
3089 errout:
3090 	return ERR_PTR(err);
3091 }
3092 
3093 static void perf_event_free_filter(struct perf_event *event);
3094 
3095 static void free_event_rcu(struct rcu_head *head)
3096 {
3097 	struct perf_event *event;
3098 
3099 	event = container_of(head, struct perf_event, rcu_head);
3100 	if (event->ns)
3101 		put_pid_ns(event->ns);
3102 	perf_event_free_filter(event);
3103 	kfree(event);
3104 }
3105 
3106 static void ring_buffer_put(struct ring_buffer *rb);
3107 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3108 
3109 static void free_event(struct perf_event *event)
3110 {
3111 	irq_work_sync(&event->pending);
3112 
3113 	if (!event->parent) {
3114 		if (event->attach_state & PERF_ATTACH_TASK)
3115 			static_key_slow_dec_deferred(&perf_sched_events);
3116 		if (event->attr.mmap || event->attr.mmap_data)
3117 			atomic_dec(&nr_mmap_events);
3118 		if (event->attr.comm)
3119 			atomic_dec(&nr_comm_events);
3120 		if (event->attr.task)
3121 			atomic_dec(&nr_task_events);
3122 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3123 			put_callchain_buffers();
3124 		if (is_cgroup_event(event)) {
3125 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3126 			static_key_slow_dec_deferred(&perf_sched_events);
3127 		}
3128 
3129 		if (has_branch_stack(event)) {
3130 			static_key_slow_dec_deferred(&perf_sched_events);
3131 			/* is system-wide event */
3132 			if (!(event->attach_state & PERF_ATTACH_TASK)) {
3133 				atomic_dec(&per_cpu(perf_branch_stack_events,
3134 						    event->cpu));
3135 			}
3136 		}
3137 	}
3138 
3139 	if (event->rb) {
3140 		struct ring_buffer *rb;
3141 
3142 		/*
3143 		 * Can happen when we close an event with re-directed output.
3144 		 *
3145 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3146 		 * over us; possibly making our ring_buffer_put() the last.
3147 		 */
3148 		mutex_lock(&event->mmap_mutex);
3149 		rb = event->rb;
3150 		if (rb) {
3151 			rcu_assign_pointer(event->rb, NULL);
3152 			ring_buffer_detach(event, rb);
3153 			ring_buffer_put(rb); /* could be last */
3154 		}
3155 		mutex_unlock(&event->mmap_mutex);
3156 	}
3157 
3158 	if (is_cgroup_event(event))
3159 		perf_detach_cgroup(event);
3160 
3161 	if (event->destroy)
3162 		event->destroy(event);
3163 
3164 	if (event->ctx)
3165 		put_ctx(event->ctx);
3166 
3167 	call_rcu(&event->rcu_head, free_event_rcu);
3168 }
3169 
3170 int perf_event_release_kernel(struct perf_event *event)
3171 {
3172 	struct perf_event_context *ctx = event->ctx;
3173 
3174 	WARN_ON_ONCE(ctx->parent_ctx);
3175 	/*
3176 	 * There are two ways this annotation is useful:
3177 	 *
3178 	 *  1) there is a lock recursion from perf_event_exit_task
3179 	 *     see the comment there.
3180 	 *
3181 	 *  2) there is a lock-inversion with mmap_sem through
3182 	 *     perf_event_read_group(), which takes faults while
3183 	 *     holding ctx->mutex, however this is called after
3184 	 *     the last filedesc died, so there is no possibility
3185 	 *     to trigger the AB-BA case.
3186 	 */
3187 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3188 	raw_spin_lock_irq(&ctx->lock);
3189 	perf_group_detach(event);
3190 	raw_spin_unlock_irq(&ctx->lock);
3191 	perf_remove_from_context(event);
3192 	mutex_unlock(&ctx->mutex);
3193 
3194 	free_event(event);
3195 
3196 	return 0;
3197 }
3198 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3199 
3200 /*
3201  * Called when the last reference to the file is gone.
3202  */
3203 static void put_event(struct perf_event *event)
3204 {
3205 	struct task_struct *owner;
3206 
3207 	if (!atomic_long_dec_and_test(&event->refcount))
3208 		return;
3209 
3210 	rcu_read_lock();
3211 	owner = ACCESS_ONCE(event->owner);
3212 	/*
3213 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3214 	 * !owner it means the list deletion is complete and we can indeed
3215 	 * free this event, otherwise we need to serialize on
3216 	 * owner->perf_event_mutex.
3217 	 */
3218 	smp_read_barrier_depends();
3219 	if (owner) {
3220 		/*
3221 		 * Since delayed_put_task_struct() also drops the last
3222 		 * task reference we can safely take a new reference
3223 		 * while holding the rcu_read_lock().
3224 		 */
3225 		get_task_struct(owner);
3226 	}
3227 	rcu_read_unlock();
3228 
3229 	if (owner) {
3230 		mutex_lock(&owner->perf_event_mutex);
3231 		/*
3232 		 * We have to re-check the event->owner field, if it is cleared
3233 		 * we raced with perf_event_exit_task(), acquiring the mutex
3234 		 * ensured they're done, and we can proceed with freeing the
3235 		 * event.
3236 		 */
3237 		if (event->owner)
3238 			list_del_init(&event->owner_entry);
3239 		mutex_unlock(&owner->perf_event_mutex);
3240 		put_task_struct(owner);
3241 	}
3242 
3243 	perf_event_release_kernel(event);
3244 }
3245 
3246 static int perf_release(struct inode *inode, struct file *file)
3247 {
3248 	put_event(file->private_data);
3249 	return 0;
3250 }
3251 
3252 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3253 {
3254 	struct perf_event *child;
3255 	u64 total = 0;
3256 
3257 	*enabled = 0;
3258 	*running = 0;
3259 
3260 	mutex_lock(&event->child_mutex);
3261 	total += perf_event_read(event);
3262 	*enabled += event->total_time_enabled +
3263 			atomic64_read(&event->child_total_time_enabled);
3264 	*running += event->total_time_running +
3265 			atomic64_read(&event->child_total_time_running);
3266 
3267 	list_for_each_entry(child, &event->child_list, child_list) {
3268 		total += perf_event_read(child);
3269 		*enabled += child->total_time_enabled;
3270 		*running += child->total_time_running;
3271 	}
3272 	mutex_unlock(&event->child_mutex);
3273 
3274 	return total;
3275 }
3276 EXPORT_SYMBOL_GPL(perf_event_read_value);
3277 
3278 static int perf_event_read_group(struct perf_event *event,
3279 				   u64 read_format, char __user *buf)
3280 {
3281 	struct perf_event *leader = event->group_leader, *sub;
3282 	int n = 0, size = 0, ret = -EFAULT;
3283 	struct perf_event_context *ctx = leader->ctx;
3284 	u64 values[5];
3285 	u64 count, enabled, running;
3286 
3287 	mutex_lock(&ctx->mutex);
3288 	count = perf_event_read_value(leader, &enabled, &running);
3289 
3290 	values[n++] = 1 + leader->nr_siblings;
3291 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3292 		values[n++] = enabled;
3293 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3294 		values[n++] = running;
3295 	values[n++] = count;
3296 	if (read_format & PERF_FORMAT_ID)
3297 		values[n++] = primary_event_id(leader);
3298 
3299 	size = n * sizeof(u64);
3300 
3301 	if (copy_to_user(buf, values, size))
3302 		goto unlock;
3303 
3304 	ret = size;
3305 
3306 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3307 		n = 0;
3308 
3309 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3310 		if (read_format & PERF_FORMAT_ID)
3311 			values[n++] = primary_event_id(sub);
3312 
3313 		size = n * sizeof(u64);
3314 
3315 		if (copy_to_user(buf + ret, values, size)) {
3316 			ret = -EFAULT;
3317 			goto unlock;
3318 		}
3319 
3320 		ret += size;
3321 	}
3322 unlock:
3323 	mutex_unlock(&ctx->mutex);
3324 
3325 	return ret;
3326 }
3327 
3328 static int perf_event_read_one(struct perf_event *event,
3329 				 u64 read_format, char __user *buf)
3330 {
3331 	u64 enabled, running;
3332 	u64 values[4];
3333 	int n = 0;
3334 
3335 	values[n++] = perf_event_read_value(event, &enabled, &running);
3336 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3337 		values[n++] = enabled;
3338 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3339 		values[n++] = running;
3340 	if (read_format & PERF_FORMAT_ID)
3341 		values[n++] = primary_event_id(event);
3342 
3343 	if (copy_to_user(buf, values, n * sizeof(u64)))
3344 		return -EFAULT;
3345 
3346 	return n * sizeof(u64);
3347 }
3348 
3349 /*
3350  * Read the performance event - simple non blocking version for now
3351  */
3352 static ssize_t
3353 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3354 {
3355 	u64 read_format = event->attr.read_format;
3356 	int ret;
3357 
3358 	/*
3359 	 * Return end-of-file for a read on a event that is in
3360 	 * error state (i.e. because it was pinned but it couldn't be
3361 	 * scheduled on to the CPU at some point).
3362 	 */
3363 	if (event->state == PERF_EVENT_STATE_ERROR)
3364 		return 0;
3365 
3366 	if (count < event->read_size)
3367 		return -ENOSPC;
3368 
3369 	WARN_ON_ONCE(event->ctx->parent_ctx);
3370 	if (read_format & PERF_FORMAT_GROUP)
3371 		ret = perf_event_read_group(event, read_format, buf);
3372 	else
3373 		ret = perf_event_read_one(event, read_format, buf);
3374 
3375 	return ret;
3376 }
3377 
3378 static ssize_t
3379 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3380 {
3381 	struct perf_event *event = file->private_data;
3382 
3383 	return perf_read_hw(event, buf, count);
3384 }
3385 
3386 static unsigned int perf_poll(struct file *file, poll_table *wait)
3387 {
3388 	struct perf_event *event = file->private_data;
3389 	struct ring_buffer *rb;
3390 	unsigned int events = POLL_HUP;
3391 
3392 	/*
3393 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3394 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3395 	 */
3396 	mutex_lock(&event->mmap_mutex);
3397 	rb = event->rb;
3398 	if (rb)
3399 		events = atomic_xchg(&rb->poll, 0);
3400 	mutex_unlock(&event->mmap_mutex);
3401 
3402 	poll_wait(file, &event->waitq, wait);
3403 
3404 	return events;
3405 }
3406 
3407 static void perf_event_reset(struct perf_event *event)
3408 {
3409 	(void)perf_event_read(event);
3410 	local64_set(&event->count, 0);
3411 	perf_event_update_userpage(event);
3412 }
3413 
3414 /*
3415  * Holding the top-level event's child_mutex means that any
3416  * descendant process that has inherited this event will block
3417  * in sync_child_event if it goes to exit, thus satisfying the
3418  * task existence requirements of perf_event_enable/disable.
3419  */
3420 static void perf_event_for_each_child(struct perf_event *event,
3421 					void (*func)(struct perf_event *))
3422 {
3423 	struct perf_event *child;
3424 
3425 	WARN_ON_ONCE(event->ctx->parent_ctx);
3426 	mutex_lock(&event->child_mutex);
3427 	func(event);
3428 	list_for_each_entry(child, &event->child_list, child_list)
3429 		func(child);
3430 	mutex_unlock(&event->child_mutex);
3431 }
3432 
3433 static void perf_event_for_each(struct perf_event *event,
3434 				  void (*func)(struct perf_event *))
3435 {
3436 	struct perf_event_context *ctx = event->ctx;
3437 	struct perf_event *sibling;
3438 
3439 	WARN_ON_ONCE(ctx->parent_ctx);
3440 	mutex_lock(&ctx->mutex);
3441 	event = event->group_leader;
3442 
3443 	perf_event_for_each_child(event, func);
3444 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3445 		perf_event_for_each_child(sibling, func);
3446 	mutex_unlock(&ctx->mutex);
3447 }
3448 
3449 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3450 {
3451 	struct perf_event_context *ctx = event->ctx;
3452 	int ret = 0;
3453 	u64 value;
3454 
3455 	if (!is_sampling_event(event))
3456 		return -EINVAL;
3457 
3458 	if (copy_from_user(&value, arg, sizeof(value)))
3459 		return -EFAULT;
3460 
3461 	if (!value)
3462 		return -EINVAL;
3463 
3464 	raw_spin_lock_irq(&ctx->lock);
3465 	if (event->attr.freq) {
3466 		if (value > sysctl_perf_event_sample_rate) {
3467 			ret = -EINVAL;
3468 			goto unlock;
3469 		}
3470 
3471 		event->attr.sample_freq = value;
3472 	} else {
3473 		event->attr.sample_period = value;
3474 		event->hw.sample_period = value;
3475 	}
3476 unlock:
3477 	raw_spin_unlock_irq(&ctx->lock);
3478 
3479 	return ret;
3480 }
3481 
3482 static const struct file_operations perf_fops;
3483 
3484 static inline int perf_fget_light(int fd, struct fd *p)
3485 {
3486 	struct fd f = fdget(fd);
3487 	if (!f.file)
3488 		return -EBADF;
3489 
3490 	if (f.file->f_op != &perf_fops) {
3491 		fdput(f);
3492 		return -EBADF;
3493 	}
3494 	*p = f;
3495 	return 0;
3496 }
3497 
3498 static int perf_event_set_output(struct perf_event *event,
3499 				 struct perf_event *output_event);
3500 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3501 
3502 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3503 {
3504 	struct perf_event *event = file->private_data;
3505 	void (*func)(struct perf_event *);
3506 	u32 flags = arg;
3507 
3508 	switch (cmd) {
3509 	case PERF_EVENT_IOC_ENABLE:
3510 		func = perf_event_enable;
3511 		break;
3512 	case PERF_EVENT_IOC_DISABLE:
3513 		func = perf_event_disable;
3514 		break;
3515 	case PERF_EVENT_IOC_RESET:
3516 		func = perf_event_reset;
3517 		break;
3518 
3519 	case PERF_EVENT_IOC_REFRESH:
3520 		return perf_event_refresh(event, arg);
3521 
3522 	case PERF_EVENT_IOC_PERIOD:
3523 		return perf_event_period(event, (u64 __user *)arg);
3524 
3525 	case PERF_EVENT_IOC_SET_OUTPUT:
3526 	{
3527 		int ret;
3528 		if (arg != -1) {
3529 			struct perf_event *output_event;
3530 			struct fd output;
3531 			ret = perf_fget_light(arg, &output);
3532 			if (ret)
3533 				return ret;
3534 			output_event = output.file->private_data;
3535 			ret = perf_event_set_output(event, output_event);
3536 			fdput(output);
3537 		} else {
3538 			ret = perf_event_set_output(event, NULL);
3539 		}
3540 		return ret;
3541 	}
3542 
3543 	case PERF_EVENT_IOC_SET_FILTER:
3544 		return perf_event_set_filter(event, (void __user *)arg);
3545 
3546 	default:
3547 		return -ENOTTY;
3548 	}
3549 
3550 	if (flags & PERF_IOC_FLAG_GROUP)
3551 		perf_event_for_each(event, func);
3552 	else
3553 		perf_event_for_each_child(event, func);
3554 
3555 	return 0;
3556 }
3557 
3558 int perf_event_task_enable(void)
3559 {
3560 	struct perf_event *event;
3561 
3562 	mutex_lock(&current->perf_event_mutex);
3563 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3564 		perf_event_for_each_child(event, perf_event_enable);
3565 	mutex_unlock(&current->perf_event_mutex);
3566 
3567 	return 0;
3568 }
3569 
3570 int perf_event_task_disable(void)
3571 {
3572 	struct perf_event *event;
3573 
3574 	mutex_lock(&current->perf_event_mutex);
3575 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3576 		perf_event_for_each_child(event, perf_event_disable);
3577 	mutex_unlock(&current->perf_event_mutex);
3578 
3579 	return 0;
3580 }
3581 
3582 static int perf_event_index(struct perf_event *event)
3583 {
3584 	if (event->hw.state & PERF_HES_STOPPED)
3585 		return 0;
3586 
3587 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3588 		return 0;
3589 
3590 	return event->pmu->event_idx(event);
3591 }
3592 
3593 static void calc_timer_values(struct perf_event *event,
3594 				u64 *now,
3595 				u64 *enabled,
3596 				u64 *running)
3597 {
3598 	u64 ctx_time;
3599 
3600 	*now = perf_clock();
3601 	ctx_time = event->shadow_ctx_time + *now;
3602 	*enabled = ctx_time - event->tstamp_enabled;
3603 	*running = ctx_time - event->tstamp_running;
3604 }
3605 
3606 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3607 {
3608 }
3609 
3610 /*
3611  * Callers need to ensure there can be no nesting of this function, otherwise
3612  * the seqlock logic goes bad. We can not serialize this because the arch
3613  * code calls this from NMI context.
3614  */
3615 void perf_event_update_userpage(struct perf_event *event)
3616 {
3617 	struct perf_event_mmap_page *userpg;
3618 	struct ring_buffer *rb;
3619 	u64 enabled, running, now;
3620 
3621 	rcu_read_lock();
3622 	/*
3623 	 * compute total_time_enabled, total_time_running
3624 	 * based on snapshot values taken when the event
3625 	 * was last scheduled in.
3626 	 *
3627 	 * we cannot simply called update_context_time()
3628 	 * because of locking issue as we can be called in
3629 	 * NMI context
3630 	 */
3631 	calc_timer_values(event, &now, &enabled, &running);
3632 	rb = rcu_dereference(event->rb);
3633 	if (!rb)
3634 		goto unlock;
3635 
3636 	userpg = rb->user_page;
3637 
3638 	/*
3639 	 * Disable preemption so as to not let the corresponding user-space
3640 	 * spin too long if we get preempted.
3641 	 */
3642 	preempt_disable();
3643 	++userpg->lock;
3644 	barrier();
3645 	userpg->index = perf_event_index(event);
3646 	userpg->offset = perf_event_count(event);
3647 	if (userpg->index)
3648 		userpg->offset -= local64_read(&event->hw.prev_count);
3649 
3650 	userpg->time_enabled = enabled +
3651 			atomic64_read(&event->child_total_time_enabled);
3652 
3653 	userpg->time_running = running +
3654 			atomic64_read(&event->child_total_time_running);
3655 
3656 	arch_perf_update_userpage(userpg, now);
3657 
3658 	barrier();
3659 	++userpg->lock;
3660 	preempt_enable();
3661 unlock:
3662 	rcu_read_unlock();
3663 }
3664 
3665 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3666 {
3667 	struct perf_event *event = vma->vm_file->private_data;
3668 	struct ring_buffer *rb;
3669 	int ret = VM_FAULT_SIGBUS;
3670 
3671 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3672 		if (vmf->pgoff == 0)
3673 			ret = 0;
3674 		return ret;
3675 	}
3676 
3677 	rcu_read_lock();
3678 	rb = rcu_dereference(event->rb);
3679 	if (!rb)
3680 		goto unlock;
3681 
3682 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3683 		goto unlock;
3684 
3685 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3686 	if (!vmf->page)
3687 		goto unlock;
3688 
3689 	get_page(vmf->page);
3690 	vmf->page->mapping = vma->vm_file->f_mapping;
3691 	vmf->page->index   = vmf->pgoff;
3692 
3693 	ret = 0;
3694 unlock:
3695 	rcu_read_unlock();
3696 
3697 	return ret;
3698 }
3699 
3700 static void ring_buffer_attach(struct perf_event *event,
3701 			       struct ring_buffer *rb)
3702 {
3703 	unsigned long flags;
3704 
3705 	if (!list_empty(&event->rb_entry))
3706 		return;
3707 
3708 	spin_lock_irqsave(&rb->event_lock, flags);
3709 	if (list_empty(&event->rb_entry))
3710 		list_add(&event->rb_entry, &rb->event_list);
3711 	spin_unlock_irqrestore(&rb->event_lock, flags);
3712 }
3713 
3714 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3715 {
3716 	unsigned long flags;
3717 
3718 	if (list_empty(&event->rb_entry))
3719 		return;
3720 
3721 	spin_lock_irqsave(&rb->event_lock, flags);
3722 	list_del_init(&event->rb_entry);
3723 	wake_up_all(&event->waitq);
3724 	spin_unlock_irqrestore(&rb->event_lock, flags);
3725 }
3726 
3727 static void ring_buffer_wakeup(struct perf_event *event)
3728 {
3729 	struct ring_buffer *rb;
3730 
3731 	rcu_read_lock();
3732 	rb = rcu_dereference(event->rb);
3733 	if (rb) {
3734 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3735 			wake_up_all(&event->waitq);
3736 	}
3737 	rcu_read_unlock();
3738 }
3739 
3740 static void rb_free_rcu(struct rcu_head *rcu_head)
3741 {
3742 	struct ring_buffer *rb;
3743 
3744 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3745 	rb_free(rb);
3746 }
3747 
3748 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3749 {
3750 	struct ring_buffer *rb;
3751 
3752 	rcu_read_lock();
3753 	rb = rcu_dereference(event->rb);
3754 	if (rb) {
3755 		if (!atomic_inc_not_zero(&rb->refcount))
3756 			rb = NULL;
3757 	}
3758 	rcu_read_unlock();
3759 
3760 	return rb;
3761 }
3762 
3763 static void ring_buffer_put(struct ring_buffer *rb)
3764 {
3765 	if (!atomic_dec_and_test(&rb->refcount))
3766 		return;
3767 
3768 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3769 
3770 	call_rcu(&rb->rcu_head, rb_free_rcu);
3771 }
3772 
3773 static void perf_mmap_open(struct vm_area_struct *vma)
3774 {
3775 	struct perf_event *event = vma->vm_file->private_data;
3776 
3777 	atomic_inc(&event->mmap_count);
3778 	atomic_inc(&event->rb->mmap_count);
3779 }
3780 
3781 /*
3782  * A buffer can be mmap()ed multiple times; either directly through the same
3783  * event, or through other events by use of perf_event_set_output().
3784  *
3785  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3786  * the buffer here, where we still have a VM context. This means we need
3787  * to detach all events redirecting to us.
3788  */
3789 static void perf_mmap_close(struct vm_area_struct *vma)
3790 {
3791 	struct perf_event *event = vma->vm_file->private_data;
3792 
3793 	struct ring_buffer *rb = event->rb;
3794 	struct user_struct *mmap_user = rb->mmap_user;
3795 	int mmap_locked = rb->mmap_locked;
3796 	unsigned long size = perf_data_size(rb);
3797 
3798 	atomic_dec(&rb->mmap_count);
3799 
3800 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3801 		return;
3802 
3803 	/* Detach current event from the buffer. */
3804 	rcu_assign_pointer(event->rb, NULL);
3805 	ring_buffer_detach(event, rb);
3806 	mutex_unlock(&event->mmap_mutex);
3807 
3808 	/* If there's still other mmap()s of this buffer, we're done. */
3809 	if (atomic_read(&rb->mmap_count)) {
3810 		ring_buffer_put(rb); /* can't be last */
3811 		return;
3812 	}
3813 
3814 	/*
3815 	 * No other mmap()s, detach from all other events that might redirect
3816 	 * into the now unreachable buffer. Somewhat complicated by the
3817 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3818 	 */
3819 again:
3820 	rcu_read_lock();
3821 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3822 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3823 			/*
3824 			 * This event is en-route to free_event() which will
3825 			 * detach it and remove it from the list.
3826 			 */
3827 			continue;
3828 		}
3829 		rcu_read_unlock();
3830 
3831 		mutex_lock(&event->mmap_mutex);
3832 		/*
3833 		 * Check we didn't race with perf_event_set_output() which can
3834 		 * swizzle the rb from under us while we were waiting to
3835 		 * acquire mmap_mutex.
3836 		 *
3837 		 * If we find a different rb; ignore this event, a next
3838 		 * iteration will no longer find it on the list. We have to
3839 		 * still restart the iteration to make sure we're not now
3840 		 * iterating the wrong list.
3841 		 */
3842 		if (event->rb == rb) {
3843 			rcu_assign_pointer(event->rb, NULL);
3844 			ring_buffer_detach(event, rb);
3845 			ring_buffer_put(rb); /* can't be last, we still have one */
3846 		}
3847 		mutex_unlock(&event->mmap_mutex);
3848 		put_event(event);
3849 
3850 		/*
3851 		 * Restart the iteration; either we're on the wrong list or
3852 		 * destroyed its integrity by doing a deletion.
3853 		 */
3854 		goto again;
3855 	}
3856 	rcu_read_unlock();
3857 
3858 	/*
3859 	 * It could be there's still a few 0-ref events on the list; they'll
3860 	 * get cleaned up by free_event() -- they'll also still have their
3861 	 * ref on the rb and will free it whenever they are done with it.
3862 	 *
3863 	 * Aside from that, this buffer is 'fully' detached and unmapped,
3864 	 * undo the VM accounting.
3865 	 */
3866 
3867 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3868 	vma->vm_mm->pinned_vm -= mmap_locked;
3869 	free_uid(mmap_user);
3870 
3871 	ring_buffer_put(rb); /* could be last */
3872 }
3873 
3874 static const struct vm_operations_struct perf_mmap_vmops = {
3875 	.open		= perf_mmap_open,
3876 	.close		= perf_mmap_close,
3877 	.fault		= perf_mmap_fault,
3878 	.page_mkwrite	= perf_mmap_fault,
3879 };
3880 
3881 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3882 {
3883 	struct perf_event *event = file->private_data;
3884 	unsigned long user_locked, user_lock_limit;
3885 	struct user_struct *user = current_user();
3886 	unsigned long locked, lock_limit;
3887 	struct ring_buffer *rb;
3888 	unsigned long vma_size;
3889 	unsigned long nr_pages;
3890 	long user_extra, extra;
3891 	int ret = 0, flags = 0;
3892 
3893 	/*
3894 	 * Don't allow mmap() of inherited per-task counters. This would
3895 	 * create a performance issue due to all children writing to the
3896 	 * same rb.
3897 	 */
3898 	if (event->cpu == -1 && event->attr.inherit)
3899 		return -EINVAL;
3900 
3901 	if (!(vma->vm_flags & VM_SHARED))
3902 		return -EINVAL;
3903 
3904 	vma_size = vma->vm_end - vma->vm_start;
3905 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3906 
3907 	/*
3908 	 * If we have rb pages ensure they're a power-of-two number, so we
3909 	 * can do bitmasks instead of modulo.
3910 	 */
3911 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3912 		return -EINVAL;
3913 
3914 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3915 		return -EINVAL;
3916 
3917 	if (vma->vm_pgoff != 0)
3918 		return -EINVAL;
3919 
3920 	WARN_ON_ONCE(event->ctx->parent_ctx);
3921 again:
3922 	mutex_lock(&event->mmap_mutex);
3923 	if (event->rb) {
3924 		if (event->rb->nr_pages != nr_pages) {
3925 			ret = -EINVAL;
3926 			goto unlock;
3927 		}
3928 
3929 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3930 			/*
3931 			 * Raced against perf_mmap_close() through
3932 			 * perf_event_set_output(). Try again, hope for better
3933 			 * luck.
3934 			 */
3935 			mutex_unlock(&event->mmap_mutex);
3936 			goto again;
3937 		}
3938 
3939 		goto unlock;
3940 	}
3941 
3942 	user_extra = nr_pages + 1;
3943 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3944 
3945 	/*
3946 	 * Increase the limit linearly with more CPUs:
3947 	 */
3948 	user_lock_limit *= num_online_cpus();
3949 
3950 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3951 
3952 	extra = 0;
3953 	if (user_locked > user_lock_limit)
3954 		extra = user_locked - user_lock_limit;
3955 
3956 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3957 	lock_limit >>= PAGE_SHIFT;
3958 	locked = vma->vm_mm->pinned_vm + extra;
3959 
3960 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3961 		!capable(CAP_IPC_LOCK)) {
3962 		ret = -EPERM;
3963 		goto unlock;
3964 	}
3965 
3966 	WARN_ON(event->rb);
3967 
3968 	if (vma->vm_flags & VM_WRITE)
3969 		flags |= RING_BUFFER_WRITABLE;
3970 
3971 	rb = rb_alloc(nr_pages,
3972 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3973 		event->cpu, flags);
3974 
3975 	if (!rb) {
3976 		ret = -ENOMEM;
3977 		goto unlock;
3978 	}
3979 
3980 	atomic_set(&rb->mmap_count, 1);
3981 	rb->mmap_locked = extra;
3982 	rb->mmap_user = get_current_user();
3983 
3984 	atomic_long_add(user_extra, &user->locked_vm);
3985 	vma->vm_mm->pinned_vm += extra;
3986 
3987 	ring_buffer_attach(event, rb);
3988 	rcu_assign_pointer(event->rb, rb);
3989 
3990 	perf_event_update_userpage(event);
3991 
3992 unlock:
3993 	if (!ret)
3994 		atomic_inc(&event->mmap_count);
3995 	mutex_unlock(&event->mmap_mutex);
3996 
3997 	/*
3998 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
3999 	 * vma.
4000 	 */
4001 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4002 	vma->vm_ops = &perf_mmap_vmops;
4003 
4004 	return ret;
4005 }
4006 
4007 static int perf_fasync(int fd, struct file *filp, int on)
4008 {
4009 	struct inode *inode = file_inode(filp);
4010 	struct perf_event *event = filp->private_data;
4011 	int retval;
4012 
4013 	mutex_lock(&inode->i_mutex);
4014 	retval = fasync_helper(fd, filp, on, &event->fasync);
4015 	mutex_unlock(&inode->i_mutex);
4016 
4017 	if (retval < 0)
4018 		return retval;
4019 
4020 	return 0;
4021 }
4022 
4023 static const struct file_operations perf_fops = {
4024 	.llseek			= no_llseek,
4025 	.release		= perf_release,
4026 	.read			= perf_read,
4027 	.poll			= perf_poll,
4028 	.unlocked_ioctl		= perf_ioctl,
4029 	.compat_ioctl		= perf_ioctl,
4030 	.mmap			= perf_mmap,
4031 	.fasync			= perf_fasync,
4032 };
4033 
4034 /*
4035  * Perf event wakeup
4036  *
4037  * If there's data, ensure we set the poll() state and publish everything
4038  * to user-space before waking everybody up.
4039  */
4040 
4041 void perf_event_wakeup(struct perf_event *event)
4042 {
4043 	ring_buffer_wakeup(event);
4044 
4045 	if (event->pending_kill) {
4046 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4047 		event->pending_kill = 0;
4048 	}
4049 }
4050 
4051 static void perf_pending_event(struct irq_work *entry)
4052 {
4053 	struct perf_event *event = container_of(entry,
4054 			struct perf_event, pending);
4055 
4056 	if (event->pending_disable) {
4057 		event->pending_disable = 0;
4058 		__perf_event_disable(event);
4059 	}
4060 
4061 	if (event->pending_wakeup) {
4062 		event->pending_wakeup = 0;
4063 		perf_event_wakeup(event);
4064 	}
4065 }
4066 
4067 /*
4068  * We assume there is only KVM supporting the callbacks.
4069  * Later on, we might change it to a list if there is
4070  * another virtualization implementation supporting the callbacks.
4071  */
4072 struct perf_guest_info_callbacks *perf_guest_cbs;
4073 
4074 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4075 {
4076 	perf_guest_cbs = cbs;
4077 	return 0;
4078 }
4079 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4080 
4081 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4082 {
4083 	perf_guest_cbs = NULL;
4084 	return 0;
4085 }
4086 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4087 
4088 static void
4089 perf_output_sample_regs(struct perf_output_handle *handle,
4090 			struct pt_regs *regs, u64 mask)
4091 {
4092 	int bit;
4093 
4094 	for_each_set_bit(bit, (const unsigned long *) &mask,
4095 			 sizeof(mask) * BITS_PER_BYTE) {
4096 		u64 val;
4097 
4098 		val = perf_reg_value(regs, bit);
4099 		perf_output_put(handle, val);
4100 	}
4101 }
4102 
4103 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4104 				  struct pt_regs *regs)
4105 {
4106 	if (!user_mode(regs)) {
4107 		if (current->mm)
4108 			regs = task_pt_regs(current);
4109 		else
4110 			regs = NULL;
4111 	}
4112 
4113 	if (regs) {
4114 		regs_user->regs = regs;
4115 		regs_user->abi  = perf_reg_abi(current);
4116 	}
4117 }
4118 
4119 /*
4120  * Get remaining task size from user stack pointer.
4121  *
4122  * It'd be better to take stack vma map and limit this more
4123  * precisly, but there's no way to get it safely under interrupt,
4124  * so using TASK_SIZE as limit.
4125  */
4126 static u64 perf_ustack_task_size(struct pt_regs *regs)
4127 {
4128 	unsigned long addr = perf_user_stack_pointer(regs);
4129 
4130 	if (!addr || addr >= TASK_SIZE)
4131 		return 0;
4132 
4133 	return TASK_SIZE - addr;
4134 }
4135 
4136 static u16
4137 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4138 			struct pt_regs *regs)
4139 {
4140 	u64 task_size;
4141 
4142 	/* No regs, no stack pointer, no dump. */
4143 	if (!regs)
4144 		return 0;
4145 
4146 	/*
4147 	 * Check if we fit in with the requested stack size into the:
4148 	 * - TASK_SIZE
4149 	 *   If we don't, we limit the size to the TASK_SIZE.
4150 	 *
4151 	 * - remaining sample size
4152 	 *   If we don't, we customize the stack size to
4153 	 *   fit in to the remaining sample size.
4154 	 */
4155 
4156 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4157 	stack_size = min(stack_size, (u16) task_size);
4158 
4159 	/* Current header size plus static size and dynamic size. */
4160 	header_size += 2 * sizeof(u64);
4161 
4162 	/* Do we fit in with the current stack dump size? */
4163 	if ((u16) (header_size + stack_size) < header_size) {
4164 		/*
4165 		 * If we overflow the maximum size for the sample,
4166 		 * we customize the stack dump size to fit in.
4167 		 */
4168 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4169 		stack_size = round_up(stack_size, sizeof(u64));
4170 	}
4171 
4172 	return stack_size;
4173 }
4174 
4175 static void
4176 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4177 			  struct pt_regs *regs)
4178 {
4179 	/* Case of a kernel thread, nothing to dump */
4180 	if (!regs) {
4181 		u64 size = 0;
4182 		perf_output_put(handle, size);
4183 	} else {
4184 		unsigned long sp;
4185 		unsigned int rem;
4186 		u64 dyn_size;
4187 
4188 		/*
4189 		 * We dump:
4190 		 * static size
4191 		 *   - the size requested by user or the best one we can fit
4192 		 *     in to the sample max size
4193 		 * data
4194 		 *   - user stack dump data
4195 		 * dynamic size
4196 		 *   - the actual dumped size
4197 		 */
4198 
4199 		/* Static size. */
4200 		perf_output_put(handle, dump_size);
4201 
4202 		/* Data. */
4203 		sp = perf_user_stack_pointer(regs);
4204 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4205 		dyn_size = dump_size - rem;
4206 
4207 		perf_output_skip(handle, rem);
4208 
4209 		/* Dynamic size. */
4210 		perf_output_put(handle, dyn_size);
4211 	}
4212 }
4213 
4214 static void __perf_event_header__init_id(struct perf_event_header *header,
4215 					 struct perf_sample_data *data,
4216 					 struct perf_event *event)
4217 {
4218 	u64 sample_type = event->attr.sample_type;
4219 
4220 	data->type = sample_type;
4221 	header->size += event->id_header_size;
4222 
4223 	if (sample_type & PERF_SAMPLE_TID) {
4224 		/* namespace issues */
4225 		data->tid_entry.pid = perf_event_pid(event, current);
4226 		data->tid_entry.tid = perf_event_tid(event, current);
4227 	}
4228 
4229 	if (sample_type & PERF_SAMPLE_TIME)
4230 		data->time = perf_clock();
4231 
4232 	if (sample_type & PERF_SAMPLE_ID)
4233 		data->id = primary_event_id(event);
4234 
4235 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4236 		data->stream_id = event->id;
4237 
4238 	if (sample_type & PERF_SAMPLE_CPU) {
4239 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4240 		data->cpu_entry.reserved = 0;
4241 	}
4242 }
4243 
4244 void perf_event_header__init_id(struct perf_event_header *header,
4245 				struct perf_sample_data *data,
4246 				struct perf_event *event)
4247 {
4248 	if (event->attr.sample_id_all)
4249 		__perf_event_header__init_id(header, data, event);
4250 }
4251 
4252 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4253 					   struct perf_sample_data *data)
4254 {
4255 	u64 sample_type = data->type;
4256 
4257 	if (sample_type & PERF_SAMPLE_TID)
4258 		perf_output_put(handle, data->tid_entry);
4259 
4260 	if (sample_type & PERF_SAMPLE_TIME)
4261 		perf_output_put(handle, data->time);
4262 
4263 	if (sample_type & PERF_SAMPLE_ID)
4264 		perf_output_put(handle, data->id);
4265 
4266 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4267 		perf_output_put(handle, data->stream_id);
4268 
4269 	if (sample_type & PERF_SAMPLE_CPU)
4270 		perf_output_put(handle, data->cpu_entry);
4271 }
4272 
4273 void perf_event__output_id_sample(struct perf_event *event,
4274 				  struct perf_output_handle *handle,
4275 				  struct perf_sample_data *sample)
4276 {
4277 	if (event->attr.sample_id_all)
4278 		__perf_event__output_id_sample(handle, sample);
4279 }
4280 
4281 static void perf_output_read_one(struct perf_output_handle *handle,
4282 				 struct perf_event *event,
4283 				 u64 enabled, u64 running)
4284 {
4285 	u64 read_format = event->attr.read_format;
4286 	u64 values[4];
4287 	int n = 0;
4288 
4289 	values[n++] = perf_event_count(event);
4290 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4291 		values[n++] = enabled +
4292 			atomic64_read(&event->child_total_time_enabled);
4293 	}
4294 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4295 		values[n++] = running +
4296 			atomic64_read(&event->child_total_time_running);
4297 	}
4298 	if (read_format & PERF_FORMAT_ID)
4299 		values[n++] = primary_event_id(event);
4300 
4301 	__output_copy(handle, values, n * sizeof(u64));
4302 }
4303 
4304 /*
4305  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4306  */
4307 static void perf_output_read_group(struct perf_output_handle *handle,
4308 			    struct perf_event *event,
4309 			    u64 enabled, u64 running)
4310 {
4311 	struct perf_event *leader = event->group_leader, *sub;
4312 	u64 read_format = event->attr.read_format;
4313 	u64 values[5];
4314 	int n = 0;
4315 
4316 	values[n++] = 1 + leader->nr_siblings;
4317 
4318 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4319 		values[n++] = enabled;
4320 
4321 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4322 		values[n++] = running;
4323 
4324 	if (leader != event)
4325 		leader->pmu->read(leader);
4326 
4327 	values[n++] = perf_event_count(leader);
4328 	if (read_format & PERF_FORMAT_ID)
4329 		values[n++] = primary_event_id(leader);
4330 
4331 	__output_copy(handle, values, n * sizeof(u64));
4332 
4333 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4334 		n = 0;
4335 
4336 		if (sub != event)
4337 			sub->pmu->read(sub);
4338 
4339 		values[n++] = perf_event_count(sub);
4340 		if (read_format & PERF_FORMAT_ID)
4341 			values[n++] = primary_event_id(sub);
4342 
4343 		__output_copy(handle, values, n * sizeof(u64));
4344 	}
4345 }
4346 
4347 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4348 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4349 
4350 static void perf_output_read(struct perf_output_handle *handle,
4351 			     struct perf_event *event)
4352 {
4353 	u64 enabled = 0, running = 0, now;
4354 	u64 read_format = event->attr.read_format;
4355 
4356 	/*
4357 	 * compute total_time_enabled, total_time_running
4358 	 * based on snapshot values taken when the event
4359 	 * was last scheduled in.
4360 	 *
4361 	 * we cannot simply called update_context_time()
4362 	 * because of locking issue as we are called in
4363 	 * NMI context
4364 	 */
4365 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4366 		calc_timer_values(event, &now, &enabled, &running);
4367 
4368 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4369 		perf_output_read_group(handle, event, enabled, running);
4370 	else
4371 		perf_output_read_one(handle, event, enabled, running);
4372 }
4373 
4374 void perf_output_sample(struct perf_output_handle *handle,
4375 			struct perf_event_header *header,
4376 			struct perf_sample_data *data,
4377 			struct perf_event *event)
4378 {
4379 	u64 sample_type = data->type;
4380 
4381 	perf_output_put(handle, *header);
4382 
4383 	if (sample_type & PERF_SAMPLE_IP)
4384 		perf_output_put(handle, data->ip);
4385 
4386 	if (sample_type & PERF_SAMPLE_TID)
4387 		perf_output_put(handle, data->tid_entry);
4388 
4389 	if (sample_type & PERF_SAMPLE_TIME)
4390 		perf_output_put(handle, data->time);
4391 
4392 	if (sample_type & PERF_SAMPLE_ADDR)
4393 		perf_output_put(handle, data->addr);
4394 
4395 	if (sample_type & PERF_SAMPLE_ID)
4396 		perf_output_put(handle, data->id);
4397 
4398 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4399 		perf_output_put(handle, data->stream_id);
4400 
4401 	if (sample_type & PERF_SAMPLE_CPU)
4402 		perf_output_put(handle, data->cpu_entry);
4403 
4404 	if (sample_type & PERF_SAMPLE_PERIOD)
4405 		perf_output_put(handle, data->period);
4406 
4407 	if (sample_type & PERF_SAMPLE_READ)
4408 		perf_output_read(handle, event);
4409 
4410 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4411 		if (data->callchain) {
4412 			int size = 1;
4413 
4414 			if (data->callchain)
4415 				size += data->callchain->nr;
4416 
4417 			size *= sizeof(u64);
4418 
4419 			__output_copy(handle, data->callchain, size);
4420 		} else {
4421 			u64 nr = 0;
4422 			perf_output_put(handle, nr);
4423 		}
4424 	}
4425 
4426 	if (sample_type & PERF_SAMPLE_RAW) {
4427 		if (data->raw) {
4428 			perf_output_put(handle, data->raw->size);
4429 			__output_copy(handle, data->raw->data,
4430 					   data->raw->size);
4431 		} else {
4432 			struct {
4433 				u32	size;
4434 				u32	data;
4435 			} raw = {
4436 				.size = sizeof(u32),
4437 				.data = 0,
4438 			};
4439 			perf_output_put(handle, raw);
4440 		}
4441 	}
4442 
4443 	if (!event->attr.watermark) {
4444 		int wakeup_events = event->attr.wakeup_events;
4445 
4446 		if (wakeup_events) {
4447 			struct ring_buffer *rb = handle->rb;
4448 			int events = local_inc_return(&rb->events);
4449 
4450 			if (events >= wakeup_events) {
4451 				local_sub(wakeup_events, &rb->events);
4452 				local_inc(&rb->wakeup);
4453 			}
4454 		}
4455 	}
4456 
4457 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4458 		if (data->br_stack) {
4459 			size_t size;
4460 
4461 			size = data->br_stack->nr
4462 			     * sizeof(struct perf_branch_entry);
4463 
4464 			perf_output_put(handle, data->br_stack->nr);
4465 			perf_output_copy(handle, data->br_stack->entries, size);
4466 		} else {
4467 			/*
4468 			 * we always store at least the value of nr
4469 			 */
4470 			u64 nr = 0;
4471 			perf_output_put(handle, nr);
4472 		}
4473 	}
4474 
4475 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4476 		u64 abi = data->regs_user.abi;
4477 
4478 		/*
4479 		 * If there are no regs to dump, notice it through
4480 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4481 		 */
4482 		perf_output_put(handle, abi);
4483 
4484 		if (abi) {
4485 			u64 mask = event->attr.sample_regs_user;
4486 			perf_output_sample_regs(handle,
4487 						data->regs_user.regs,
4488 						mask);
4489 		}
4490 	}
4491 
4492 	if (sample_type & PERF_SAMPLE_STACK_USER)
4493 		perf_output_sample_ustack(handle,
4494 					  data->stack_user_size,
4495 					  data->regs_user.regs);
4496 
4497 	if (sample_type & PERF_SAMPLE_WEIGHT)
4498 		perf_output_put(handle, data->weight);
4499 
4500 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4501 		perf_output_put(handle, data->data_src.val);
4502 }
4503 
4504 void perf_prepare_sample(struct perf_event_header *header,
4505 			 struct perf_sample_data *data,
4506 			 struct perf_event *event,
4507 			 struct pt_regs *regs)
4508 {
4509 	u64 sample_type = event->attr.sample_type;
4510 
4511 	header->type = PERF_RECORD_SAMPLE;
4512 	header->size = sizeof(*header) + event->header_size;
4513 
4514 	header->misc = 0;
4515 	header->misc |= perf_misc_flags(regs);
4516 
4517 	__perf_event_header__init_id(header, data, event);
4518 
4519 	if (sample_type & PERF_SAMPLE_IP)
4520 		data->ip = perf_instruction_pointer(regs);
4521 
4522 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4523 		int size = 1;
4524 
4525 		data->callchain = perf_callchain(event, regs);
4526 
4527 		if (data->callchain)
4528 			size += data->callchain->nr;
4529 
4530 		header->size += size * sizeof(u64);
4531 	}
4532 
4533 	if (sample_type & PERF_SAMPLE_RAW) {
4534 		int size = sizeof(u32);
4535 
4536 		if (data->raw)
4537 			size += data->raw->size;
4538 		else
4539 			size += sizeof(u32);
4540 
4541 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4542 		header->size += size;
4543 	}
4544 
4545 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4546 		int size = sizeof(u64); /* nr */
4547 		if (data->br_stack) {
4548 			size += data->br_stack->nr
4549 			      * sizeof(struct perf_branch_entry);
4550 		}
4551 		header->size += size;
4552 	}
4553 
4554 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4555 		/* regs dump ABI info */
4556 		int size = sizeof(u64);
4557 
4558 		perf_sample_regs_user(&data->regs_user, regs);
4559 
4560 		if (data->regs_user.regs) {
4561 			u64 mask = event->attr.sample_regs_user;
4562 			size += hweight64(mask) * sizeof(u64);
4563 		}
4564 
4565 		header->size += size;
4566 	}
4567 
4568 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4569 		/*
4570 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4571 		 * processed as the last one or have additional check added
4572 		 * in case new sample type is added, because we could eat
4573 		 * up the rest of the sample size.
4574 		 */
4575 		struct perf_regs_user *uregs = &data->regs_user;
4576 		u16 stack_size = event->attr.sample_stack_user;
4577 		u16 size = sizeof(u64);
4578 
4579 		if (!uregs->abi)
4580 			perf_sample_regs_user(uregs, regs);
4581 
4582 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4583 						     uregs->regs);
4584 
4585 		/*
4586 		 * If there is something to dump, add space for the dump
4587 		 * itself and for the field that tells the dynamic size,
4588 		 * which is how many have been actually dumped.
4589 		 */
4590 		if (stack_size)
4591 			size += sizeof(u64) + stack_size;
4592 
4593 		data->stack_user_size = stack_size;
4594 		header->size += size;
4595 	}
4596 }
4597 
4598 static void perf_event_output(struct perf_event *event,
4599 				struct perf_sample_data *data,
4600 				struct pt_regs *regs)
4601 {
4602 	struct perf_output_handle handle;
4603 	struct perf_event_header header;
4604 
4605 	/* protect the callchain buffers */
4606 	rcu_read_lock();
4607 
4608 	perf_prepare_sample(&header, data, event, regs);
4609 
4610 	if (perf_output_begin(&handle, event, header.size))
4611 		goto exit;
4612 
4613 	perf_output_sample(&handle, &header, data, event);
4614 
4615 	perf_output_end(&handle);
4616 
4617 exit:
4618 	rcu_read_unlock();
4619 }
4620 
4621 /*
4622  * read event_id
4623  */
4624 
4625 struct perf_read_event {
4626 	struct perf_event_header	header;
4627 
4628 	u32				pid;
4629 	u32				tid;
4630 };
4631 
4632 static void
4633 perf_event_read_event(struct perf_event *event,
4634 			struct task_struct *task)
4635 {
4636 	struct perf_output_handle handle;
4637 	struct perf_sample_data sample;
4638 	struct perf_read_event read_event = {
4639 		.header = {
4640 			.type = PERF_RECORD_READ,
4641 			.misc = 0,
4642 			.size = sizeof(read_event) + event->read_size,
4643 		},
4644 		.pid = perf_event_pid(event, task),
4645 		.tid = perf_event_tid(event, task),
4646 	};
4647 	int ret;
4648 
4649 	perf_event_header__init_id(&read_event.header, &sample, event);
4650 	ret = perf_output_begin(&handle, event, read_event.header.size);
4651 	if (ret)
4652 		return;
4653 
4654 	perf_output_put(&handle, read_event);
4655 	perf_output_read(&handle, event);
4656 	perf_event__output_id_sample(event, &handle, &sample);
4657 
4658 	perf_output_end(&handle);
4659 }
4660 
4661 typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4662 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4663 
4664 static void
4665 perf_event_aux_ctx(struct perf_event_context *ctx,
4666 		   perf_event_aux_match_cb match,
4667 		   perf_event_aux_output_cb output,
4668 		   void *data)
4669 {
4670 	struct perf_event *event;
4671 
4672 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4673 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4674 			continue;
4675 		if (!event_filter_match(event))
4676 			continue;
4677 		if (match(event, data))
4678 			output(event, data);
4679 	}
4680 }
4681 
4682 static void
4683 perf_event_aux(perf_event_aux_match_cb match,
4684 	       perf_event_aux_output_cb output,
4685 	       void *data,
4686 	       struct perf_event_context *task_ctx)
4687 {
4688 	struct perf_cpu_context *cpuctx;
4689 	struct perf_event_context *ctx;
4690 	struct pmu *pmu;
4691 	int ctxn;
4692 
4693 	rcu_read_lock();
4694 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4695 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4696 		if (cpuctx->unique_pmu != pmu)
4697 			goto next;
4698 		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4699 		if (task_ctx)
4700 			goto next;
4701 		ctxn = pmu->task_ctx_nr;
4702 		if (ctxn < 0)
4703 			goto next;
4704 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4705 		if (ctx)
4706 			perf_event_aux_ctx(ctx, match, output, data);
4707 next:
4708 		put_cpu_ptr(pmu->pmu_cpu_context);
4709 	}
4710 
4711 	if (task_ctx) {
4712 		preempt_disable();
4713 		perf_event_aux_ctx(task_ctx, match, output, data);
4714 		preempt_enable();
4715 	}
4716 	rcu_read_unlock();
4717 }
4718 
4719 /*
4720  * task tracking -- fork/exit
4721  *
4722  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4723  */
4724 
4725 struct perf_task_event {
4726 	struct task_struct		*task;
4727 	struct perf_event_context	*task_ctx;
4728 
4729 	struct {
4730 		struct perf_event_header	header;
4731 
4732 		u32				pid;
4733 		u32				ppid;
4734 		u32				tid;
4735 		u32				ptid;
4736 		u64				time;
4737 	} event_id;
4738 };
4739 
4740 static void perf_event_task_output(struct perf_event *event,
4741 				   void *data)
4742 {
4743 	struct perf_task_event *task_event = data;
4744 	struct perf_output_handle handle;
4745 	struct perf_sample_data	sample;
4746 	struct task_struct *task = task_event->task;
4747 	int ret, size = task_event->event_id.header.size;
4748 
4749 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4750 
4751 	ret = perf_output_begin(&handle, event,
4752 				task_event->event_id.header.size);
4753 	if (ret)
4754 		goto out;
4755 
4756 	task_event->event_id.pid = perf_event_pid(event, task);
4757 	task_event->event_id.ppid = perf_event_pid(event, current);
4758 
4759 	task_event->event_id.tid = perf_event_tid(event, task);
4760 	task_event->event_id.ptid = perf_event_tid(event, current);
4761 
4762 	perf_output_put(&handle, task_event->event_id);
4763 
4764 	perf_event__output_id_sample(event, &handle, &sample);
4765 
4766 	perf_output_end(&handle);
4767 out:
4768 	task_event->event_id.header.size = size;
4769 }
4770 
4771 static int perf_event_task_match(struct perf_event *event,
4772 				 void *data __maybe_unused)
4773 {
4774 	return event->attr.comm || event->attr.mmap ||
4775 	       event->attr.mmap_data || event->attr.task;
4776 }
4777 
4778 static void perf_event_task(struct task_struct *task,
4779 			      struct perf_event_context *task_ctx,
4780 			      int new)
4781 {
4782 	struct perf_task_event task_event;
4783 
4784 	if (!atomic_read(&nr_comm_events) &&
4785 	    !atomic_read(&nr_mmap_events) &&
4786 	    !atomic_read(&nr_task_events))
4787 		return;
4788 
4789 	task_event = (struct perf_task_event){
4790 		.task	  = task,
4791 		.task_ctx = task_ctx,
4792 		.event_id    = {
4793 			.header = {
4794 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4795 				.misc = 0,
4796 				.size = sizeof(task_event.event_id),
4797 			},
4798 			/* .pid  */
4799 			/* .ppid */
4800 			/* .tid  */
4801 			/* .ptid */
4802 			.time = perf_clock(),
4803 		},
4804 	};
4805 
4806 	perf_event_aux(perf_event_task_match,
4807 		       perf_event_task_output,
4808 		       &task_event,
4809 		       task_ctx);
4810 }
4811 
4812 void perf_event_fork(struct task_struct *task)
4813 {
4814 	perf_event_task(task, NULL, 1);
4815 }
4816 
4817 /*
4818  * comm tracking
4819  */
4820 
4821 struct perf_comm_event {
4822 	struct task_struct	*task;
4823 	char			*comm;
4824 	int			comm_size;
4825 
4826 	struct {
4827 		struct perf_event_header	header;
4828 
4829 		u32				pid;
4830 		u32				tid;
4831 	} event_id;
4832 };
4833 
4834 static void perf_event_comm_output(struct perf_event *event,
4835 				   void *data)
4836 {
4837 	struct perf_comm_event *comm_event = data;
4838 	struct perf_output_handle handle;
4839 	struct perf_sample_data sample;
4840 	int size = comm_event->event_id.header.size;
4841 	int ret;
4842 
4843 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4844 	ret = perf_output_begin(&handle, event,
4845 				comm_event->event_id.header.size);
4846 
4847 	if (ret)
4848 		goto out;
4849 
4850 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4851 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4852 
4853 	perf_output_put(&handle, comm_event->event_id);
4854 	__output_copy(&handle, comm_event->comm,
4855 				   comm_event->comm_size);
4856 
4857 	perf_event__output_id_sample(event, &handle, &sample);
4858 
4859 	perf_output_end(&handle);
4860 out:
4861 	comm_event->event_id.header.size = size;
4862 }
4863 
4864 static int perf_event_comm_match(struct perf_event *event,
4865 				 void *data __maybe_unused)
4866 {
4867 	return event->attr.comm;
4868 }
4869 
4870 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4871 {
4872 	char comm[TASK_COMM_LEN];
4873 	unsigned int size;
4874 
4875 	memset(comm, 0, sizeof(comm));
4876 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4877 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4878 
4879 	comm_event->comm = comm;
4880 	comm_event->comm_size = size;
4881 
4882 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4883 
4884 	perf_event_aux(perf_event_comm_match,
4885 		       perf_event_comm_output,
4886 		       comm_event,
4887 		       NULL);
4888 }
4889 
4890 void perf_event_comm(struct task_struct *task)
4891 {
4892 	struct perf_comm_event comm_event;
4893 	struct perf_event_context *ctx;
4894 	int ctxn;
4895 
4896 	rcu_read_lock();
4897 	for_each_task_context_nr(ctxn) {
4898 		ctx = task->perf_event_ctxp[ctxn];
4899 		if (!ctx)
4900 			continue;
4901 
4902 		perf_event_enable_on_exec(ctx);
4903 	}
4904 	rcu_read_unlock();
4905 
4906 	if (!atomic_read(&nr_comm_events))
4907 		return;
4908 
4909 	comm_event = (struct perf_comm_event){
4910 		.task	= task,
4911 		/* .comm      */
4912 		/* .comm_size */
4913 		.event_id  = {
4914 			.header = {
4915 				.type = PERF_RECORD_COMM,
4916 				.misc = 0,
4917 				/* .size */
4918 			},
4919 			/* .pid */
4920 			/* .tid */
4921 		},
4922 	};
4923 
4924 	perf_event_comm_event(&comm_event);
4925 }
4926 
4927 /*
4928  * mmap tracking
4929  */
4930 
4931 struct perf_mmap_event {
4932 	struct vm_area_struct	*vma;
4933 
4934 	const char		*file_name;
4935 	int			file_size;
4936 
4937 	struct {
4938 		struct perf_event_header	header;
4939 
4940 		u32				pid;
4941 		u32				tid;
4942 		u64				start;
4943 		u64				len;
4944 		u64				pgoff;
4945 	} event_id;
4946 };
4947 
4948 static void perf_event_mmap_output(struct perf_event *event,
4949 				   void *data)
4950 {
4951 	struct perf_mmap_event *mmap_event = data;
4952 	struct perf_output_handle handle;
4953 	struct perf_sample_data sample;
4954 	int size = mmap_event->event_id.header.size;
4955 	int ret;
4956 
4957 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4958 	ret = perf_output_begin(&handle, event,
4959 				mmap_event->event_id.header.size);
4960 	if (ret)
4961 		goto out;
4962 
4963 	mmap_event->event_id.pid = perf_event_pid(event, current);
4964 	mmap_event->event_id.tid = perf_event_tid(event, current);
4965 
4966 	perf_output_put(&handle, mmap_event->event_id);
4967 	__output_copy(&handle, mmap_event->file_name,
4968 				   mmap_event->file_size);
4969 
4970 	perf_event__output_id_sample(event, &handle, &sample);
4971 
4972 	perf_output_end(&handle);
4973 out:
4974 	mmap_event->event_id.header.size = size;
4975 }
4976 
4977 static int perf_event_mmap_match(struct perf_event *event,
4978 				 void *data)
4979 {
4980 	struct perf_mmap_event *mmap_event = data;
4981 	struct vm_area_struct *vma = mmap_event->vma;
4982 	int executable = vma->vm_flags & VM_EXEC;
4983 
4984 	return (!executable && event->attr.mmap_data) ||
4985 	       (executable && event->attr.mmap);
4986 }
4987 
4988 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4989 {
4990 	struct vm_area_struct *vma = mmap_event->vma;
4991 	struct file *file = vma->vm_file;
4992 	unsigned int size;
4993 	char tmp[16];
4994 	char *buf = NULL;
4995 	const char *name;
4996 
4997 	memset(tmp, 0, sizeof(tmp));
4998 
4999 	if (file) {
5000 		/*
5001 		 * d_path works from the end of the rb backwards, so we
5002 		 * need to add enough zero bytes after the string to handle
5003 		 * the 64bit alignment we do later.
5004 		 */
5005 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5006 		if (!buf) {
5007 			name = strncpy(tmp, "//enomem", sizeof(tmp));
5008 			goto got_name;
5009 		}
5010 		name = d_path(&file->f_path, buf, PATH_MAX);
5011 		if (IS_ERR(name)) {
5012 			name = strncpy(tmp, "//toolong", sizeof(tmp));
5013 			goto got_name;
5014 		}
5015 	} else {
5016 		if (arch_vma_name(mmap_event->vma)) {
5017 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5018 				       sizeof(tmp) - 1);
5019 			tmp[sizeof(tmp) - 1] = '\0';
5020 			goto got_name;
5021 		}
5022 
5023 		if (!vma->vm_mm) {
5024 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
5025 			goto got_name;
5026 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
5027 				vma->vm_end >= vma->vm_mm->brk) {
5028 			name = strncpy(tmp, "[heap]", sizeof(tmp));
5029 			goto got_name;
5030 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
5031 				vma->vm_end >= vma->vm_mm->start_stack) {
5032 			name = strncpy(tmp, "[stack]", sizeof(tmp));
5033 			goto got_name;
5034 		}
5035 
5036 		name = strncpy(tmp, "//anon", sizeof(tmp));
5037 		goto got_name;
5038 	}
5039 
5040 got_name:
5041 	size = ALIGN(strlen(name)+1, sizeof(u64));
5042 
5043 	mmap_event->file_name = name;
5044 	mmap_event->file_size = size;
5045 
5046 	if (!(vma->vm_flags & VM_EXEC))
5047 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5048 
5049 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5050 
5051 	perf_event_aux(perf_event_mmap_match,
5052 		       perf_event_mmap_output,
5053 		       mmap_event,
5054 		       NULL);
5055 
5056 	kfree(buf);
5057 }
5058 
5059 void perf_event_mmap(struct vm_area_struct *vma)
5060 {
5061 	struct perf_mmap_event mmap_event;
5062 
5063 	if (!atomic_read(&nr_mmap_events))
5064 		return;
5065 
5066 	mmap_event = (struct perf_mmap_event){
5067 		.vma	= vma,
5068 		/* .file_name */
5069 		/* .file_size */
5070 		.event_id  = {
5071 			.header = {
5072 				.type = PERF_RECORD_MMAP,
5073 				.misc = PERF_RECORD_MISC_USER,
5074 				/* .size */
5075 			},
5076 			/* .pid */
5077 			/* .tid */
5078 			.start  = vma->vm_start,
5079 			.len    = vma->vm_end - vma->vm_start,
5080 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5081 		},
5082 	};
5083 
5084 	perf_event_mmap_event(&mmap_event);
5085 }
5086 
5087 /*
5088  * IRQ throttle logging
5089  */
5090 
5091 static void perf_log_throttle(struct perf_event *event, int enable)
5092 {
5093 	struct perf_output_handle handle;
5094 	struct perf_sample_data sample;
5095 	int ret;
5096 
5097 	struct {
5098 		struct perf_event_header	header;
5099 		u64				time;
5100 		u64				id;
5101 		u64				stream_id;
5102 	} throttle_event = {
5103 		.header = {
5104 			.type = PERF_RECORD_THROTTLE,
5105 			.misc = 0,
5106 			.size = sizeof(throttle_event),
5107 		},
5108 		.time		= perf_clock(),
5109 		.id		= primary_event_id(event),
5110 		.stream_id	= event->id,
5111 	};
5112 
5113 	if (enable)
5114 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5115 
5116 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5117 
5118 	ret = perf_output_begin(&handle, event,
5119 				throttle_event.header.size);
5120 	if (ret)
5121 		return;
5122 
5123 	perf_output_put(&handle, throttle_event);
5124 	perf_event__output_id_sample(event, &handle, &sample);
5125 	perf_output_end(&handle);
5126 }
5127 
5128 /*
5129  * Generic event overflow handling, sampling.
5130  */
5131 
5132 static int __perf_event_overflow(struct perf_event *event,
5133 				   int throttle, struct perf_sample_data *data,
5134 				   struct pt_regs *regs)
5135 {
5136 	int events = atomic_read(&event->event_limit);
5137 	struct hw_perf_event *hwc = &event->hw;
5138 	u64 seq;
5139 	int ret = 0;
5140 
5141 	/*
5142 	 * Non-sampling counters might still use the PMI to fold short
5143 	 * hardware counters, ignore those.
5144 	 */
5145 	if (unlikely(!is_sampling_event(event)))
5146 		return 0;
5147 
5148 	seq = __this_cpu_read(perf_throttled_seq);
5149 	if (seq != hwc->interrupts_seq) {
5150 		hwc->interrupts_seq = seq;
5151 		hwc->interrupts = 1;
5152 	} else {
5153 		hwc->interrupts++;
5154 		if (unlikely(throttle
5155 			     && hwc->interrupts >= max_samples_per_tick)) {
5156 			__this_cpu_inc(perf_throttled_count);
5157 			hwc->interrupts = MAX_INTERRUPTS;
5158 			perf_log_throttle(event, 0);
5159 			ret = 1;
5160 		}
5161 	}
5162 
5163 	if (event->attr.freq) {
5164 		u64 now = perf_clock();
5165 		s64 delta = now - hwc->freq_time_stamp;
5166 
5167 		hwc->freq_time_stamp = now;
5168 
5169 		if (delta > 0 && delta < 2*TICK_NSEC)
5170 			perf_adjust_period(event, delta, hwc->last_period, true);
5171 	}
5172 
5173 	/*
5174 	 * XXX event_limit might not quite work as expected on inherited
5175 	 * events
5176 	 */
5177 
5178 	event->pending_kill = POLL_IN;
5179 	if (events && atomic_dec_and_test(&event->event_limit)) {
5180 		ret = 1;
5181 		event->pending_kill = POLL_HUP;
5182 		event->pending_disable = 1;
5183 		irq_work_queue(&event->pending);
5184 	}
5185 
5186 	if (event->overflow_handler)
5187 		event->overflow_handler(event, data, regs);
5188 	else
5189 		perf_event_output(event, data, regs);
5190 
5191 	if (event->fasync && event->pending_kill) {
5192 		event->pending_wakeup = 1;
5193 		irq_work_queue(&event->pending);
5194 	}
5195 
5196 	return ret;
5197 }
5198 
5199 int perf_event_overflow(struct perf_event *event,
5200 			  struct perf_sample_data *data,
5201 			  struct pt_regs *regs)
5202 {
5203 	return __perf_event_overflow(event, 1, data, regs);
5204 }
5205 
5206 /*
5207  * Generic software event infrastructure
5208  */
5209 
5210 struct swevent_htable {
5211 	struct swevent_hlist		*swevent_hlist;
5212 	struct mutex			hlist_mutex;
5213 	int				hlist_refcount;
5214 
5215 	/* Recursion avoidance in each contexts */
5216 	int				recursion[PERF_NR_CONTEXTS];
5217 };
5218 
5219 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5220 
5221 /*
5222  * We directly increment event->count and keep a second value in
5223  * event->hw.period_left to count intervals. This period event
5224  * is kept in the range [-sample_period, 0] so that we can use the
5225  * sign as trigger.
5226  */
5227 
5228 u64 perf_swevent_set_period(struct perf_event *event)
5229 {
5230 	struct hw_perf_event *hwc = &event->hw;
5231 	u64 period = hwc->last_period;
5232 	u64 nr, offset;
5233 	s64 old, val;
5234 
5235 	hwc->last_period = hwc->sample_period;
5236 
5237 again:
5238 	old = val = local64_read(&hwc->period_left);
5239 	if (val < 0)
5240 		return 0;
5241 
5242 	nr = div64_u64(period + val, period);
5243 	offset = nr * period;
5244 	val -= offset;
5245 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5246 		goto again;
5247 
5248 	return nr;
5249 }
5250 
5251 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5252 				    struct perf_sample_data *data,
5253 				    struct pt_regs *regs)
5254 {
5255 	struct hw_perf_event *hwc = &event->hw;
5256 	int throttle = 0;
5257 
5258 	if (!overflow)
5259 		overflow = perf_swevent_set_period(event);
5260 
5261 	if (hwc->interrupts == MAX_INTERRUPTS)
5262 		return;
5263 
5264 	for (; overflow; overflow--) {
5265 		if (__perf_event_overflow(event, throttle,
5266 					    data, regs)) {
5267 			/*
5268 			 * We inhibit the overflow from happening when
5269 			 * hwc->interrupts == MAX_INTERRUPTS.
5270 			 */
5271 			break;
5272 		}
5273 		throttle = 1;
5274 	}
5275 }
5276 
5277 static void perf_swevent_event(struct perf_event *event, u64 nr,
5278 			       struct perf_sample_data *data,
5279 			       struct pt_regs *regs)
5280 {
5281 	struct hw_perf_event *hwc = &event->hw;
5282 
5283 	local64_add(nr, &event->count);
5284 
5285 	if (!regs)
5286 		return;
5287 
5288 	if (!is_sampling_event(event))
5289 		return;
5290 
5291 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5292 		data->period = nr;
5293 		return perf_swevent_overflow(event, 1, data, regs);
5294 	} else
5295 		data->period = event->hw.last_period;
5296 
5297 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5298 		return perf_swevent_overflow(event, 1, data, regs);
5299 
5300 	if (local64_add_negative(nr, &hwc->period_left))
5301 		return;
5302 
5303 	perf_swevent_overflow(event, 0, data, regs);
5304 }
5305 
5306 static int perf_exclude_event(struct perf_event *event,
5307 			      struct pt_regs *regs)
5308 {
5309 	if (event->hw.state & PERF_HES_STOPPED)
5310 		return 1;
5311 
5312 	if (regs) {
5313 		if (event->attr.exclude_user && user_mode(regs))
5314 			return 1;
5315 
5316 		if (event->attr.exclude_kernel && !user_mode(regs))
5317 			return 1;
5318 	}
5319 
5320 	return 0;
5321 }
5322 
5323 static int perf_swevent_match(struct perf_event *event,
5324 				enum perf_type_id type,
5325 				u32 event_id,
5326 				struct perf_sample_data *data,
5327 				struct pt_regs *regs)
5328 {
5329 	if (event->attr.type != type)
5330 		return 0;
5331 
5332 	if (event->attr.config != event_id)
5333 		return 0;
5334 
5335 	if (perf_exclude_event(event, regs))
5336 		return 0;
5337 
5338 	return 1;
5339 }
5340 
5341 static inline u64 swevent_hash(u64 type, u32 event_id)
5342 {
5343 	u64 val = event_id | (type << 32);
5344 
5345 	return hash_64(val, SWEVENT_HLIST_BITS);
5346 }
5347 
5348 static inline struct hlist_head *
5349 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5350 {
5351 	u64 hash = swevent_hash(type, event_id);
5352 
5353 	return &hlist->heads[hash];
5354 }
5355 
5356 /* For the read side: events when they trigger */
5357 static inline struct hlist_head *
5358 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5359 {
5360 	struct swevent_hlist *hlist;
5361 
5362 	hlist = rcu_dereference(swhash->swevent_hlist);
5363 	if (!hlist)
5364 		return NULL;
5365 
5366 	return __find_swevent_head(hlist, type, event_id);
5367 }
5368 
5369 /* For the event head insertion and removal in the hlist */
5370 static inline struct hlist_head *
5371 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5372 {
5373 	struct swevent_hlist *hlist;
5374 	u32 event_id = event->attr.config;
5375 	u64 type = event->attr.type;
5376 
5377 	/*
5378 	 * Event scheduling is always serialized against hlist allocation
5379 	 * and release. Which makes the protected version suitable here.
5380 	 * The context lock guarantees that.
5381 	 */
5382 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5383 					  lockdep_is_held(&event->ctx->lock));
5384 	if (!hlist)
5385 		return NULL;
5386 
5387 	return __find_swevent_head(hlist, type, event_id);
5388 }
5389 
5390 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5391 				    u64 nr,
5392 				    struct perf_sample_data *data,
5393 				    struct pt_regs *regs)
5394 {
5395 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5396 	struct perf_event *event;
5397 	struct hlist_head *head;
5398 
5399 	rcu_read_lock();
5400 	head = find_swevent_head_rcu(swhash, type, event_id);
5401 	if (!head)
5402 		goto end;
5403 
5404 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5405 		if (perf_swevent_match(event, type, event_id, data, regs))
5406 			perf_swevent_event(event, nr, data, regs);
5407 	}
5408 end:
5409 	rcu_read_unlock();
5410 }
5411 
5412 int perf_swevent_get_recursion_context(void)
5413 {
5414 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5415 
5416 	return get_recursion_context(swhash->recursion);
5417 }
5418 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5419 
5420 inline void perf_swevent_put_recursion_context(int rctx)
5421 {
5422 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5423 
5424 	put_recursion_context(swhash->recursion, rctx);
5425 }
5426 
5427 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5428 {
5429 	struct perf_sample_data data;
5430 	int rctx;
5431 
5432 	preempt_disable_notrace();
5433 	rctx = perf_swevent_get_recursion_context();
5434 	if (rctx < 0)
5435 		return;
5436 
5437 	perf_sample_data_init(&data, addr, 0);
5438 
5439 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5440 
5441 	perf_swevent_put_recursion_context(rctx);
5442 	preempt_enable_notrace();
5443 }
5444 
5445 static void perf_swevent_read(struct perf_event *event)
5446 {
5447 }
5448 
5449 static int perf_swevent_add(struct perf_event *event, int flags)
5450 {
5451 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5452 	struct hw_perf_event *hwc = &event->hw;
5453 	struct hlist_head *head;
5454 
5455 	if (is_sampling_event(event)) {
5456 		hwc->last_period = hwc->sample_period;
5457 		perf_swevent_set_period(event);
5458 	}
5459 
5460 	hwc->state = !(flags & PERF_EF_START);
5461 
5462 	head = find_swevent_head(swhash, event);
5463 	if (WARN_ON_ONCE(!head))
5464 		return -EINVAL;
5465 
5466 	hlist_add_head_rcu(&event->hlist_entry, head);
5467 
5468 	return 0;
5469 }
5470 
5471 static void perf_swevent_del(struct perf_event *event, int flags)
5472 {
5473 	hlist_del_rcu(&event->hlist_entry);
5474 }
5475 
5476 static void perf_swevent_start(struct perf_event *event, int flags)
5477 {
5478 	event->hw.state = 0;
5479 }
5480 
5481 static void perf_swevent_stop(struct perf_event *event, int flags)
5482 {
5483 	event->hw.state = PERF_HES_STOPPED;
5484 }
5485 
5486 /* Deref the hlist from the update side */
5487 static inline struct swevent_hlist *
5488 swevent_hlist_deref(struct swevent_htable *swhash)
5489 {
5490 	return rcu_dereference_protected(swhash->swevent_hlist,
5491 					 lockdep_is_held(&swhash->hlist_mutex));
5492 }
5493 
5494 static void swevent_hlist_release(struct swevent_htable *swhash)
5495 {
5496 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5497 
5498 	if (!hlist)
5499 		return;
5500 
5501 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5502 	kfree_rcu(hlist, rcu_head);
5503 }
5504 
5505 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5506 {
5507 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5508 
5509 	mutex_lock(&swhash->hlist_mutex);
5510 
5511 	if (!--swhash->hlist_refcount)
5512 		swevent_hlist_release(swhash);
5513 
5514 	mutex_unlock(&swhash->hlist_mutex);
5515 }
5516 
5517 static void swevent_hlist_put(struct perf_event *event)
5518 {
5519 	int cpu;
5520 
5521 	if (event->cpu != -1) {
5522 		swevent_hlist_put_cpu(event, event->cpu);
5523 		return;
5524 	}
5525 
5526 	for_each_possible_cpu(cpu)
5527 		swevent_hlist_put_cpu(event, cpu);
5528 }
5529 
5530 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5531 {
5532 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5533 	int err = 0;
5534 
5535 	mutex_lock(&swhash->hlist_mutex);
5536 
5537 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5538 		struct swevent_hlist *hlist;
5539 
5540 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5541 		if (!hlist) {
5542 			err = -ENOMEM;
5543 			goto exit;
5544 		}
5545 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5546 	}
5547 	swhash->hlist_refcount++;
5548 exit:
5549 	mutex_unlock(&swhash->hlist_mutex);
5550 
5551 	return err;
5552 }
5553 
5554 static int swevent_hlist_get(struct perf_event *event)
5555 {
5556 	int err;
5557 	int cpu, failed_cpu;
5558 
5559 	if (event->cpu != -1)
5560 		return swevent_hlist_get_cpu(event, event->cpu);
5561 
5562 	get_online_cpus();
5563 	for_each_possible_cpu(cpu) {
5564 		err = swevent_hlist_get_cpu(event, cpu);
5565 		if (err) {
5566 			failed_cpu = cpu;
5567 			goto fail;
5568 		}
5569 	}
5570 	put_online_cpus();
5571 
5572 	return 0;
5573 fail:
5574 	for_each_possible_cpu(cpu) {
5575 		if (cpu == failed_cpu)
5576 			break;
5577 		swevent_hlist_put_cpu(event, cpu);
5578 	}
5579 
5580 	put_online_cpus();
5581 	return err;
5582 }
5583 
5584 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5585 
5586 static void sw_perf_event_destroy(struct perf_event *event)
5587 {
5588 	u64 event_id = event->attr.config;
5589 
5590 	WARN_ON(event->parent);
5591 
5592 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5593 	swevent_hlist_put(event);
5594 }
5595 
5596 static int perf_swevent_init(struct perf_event *event)
5597 {
5598 	u64 event_id = event->attr.config;
5599 
5600 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5601 		return -ENOENT;
5602 
5603 	/*
5604 	 * no branch sampling for software events
5605 	 */
5606 	if (has_branch_stack(event))
5607 		return -EOPNOTSUPP;
5608 
5609 	switch (event_id) {
5610 	case PERF_COUNT_SW_CPU_CLOCK:
5611 	case PERF_COUNT_SW_TASK_CLOCK:
5612 		return -ENOENT;
5613 
5614 	default:
5615 		break;
5616 	}
5617 
5618 	if (event_id >= PERF_COUNT_SW_MAX)
5619 		return -ENOENT;
5620 
5621 	if (!event->parent) {
5622 		int err;
5623 
5624 		err = swevent_hlist_get(event);
5625 		if (err)
5626 			return err;
5627 
5628 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5629 		event->destroy = sw_perf_event_destroy;
5630 	}
5631 
5632 	return 0;
5633 }
5634 
5635 static int perf_swevent_event_idx(struct perf_event *event)
5636 {
5637 	return 0;
5638 }
5639 
5640 static struct pmu perf_swevent = {
5641 	.task_ctx_nr	= perf_sw_context,
5642 
5643 	.event_init	= perf_swevent_init,
5644 	.add		= perf_swevent_add,
5645 	.del		= perf_swevent_del,
5646 	.start		= perf_swevent_start,
5647 	.stop		= perf_swevent_stop,
5648 	.read		= perf_swevent_read,
5649 
5650 	.event_idx	= perf_swevent_event_idx,
5651 };
5652 
5653 #ifdef CONFIG_EVENT_TRACING
5654 
5655 static int perf_tp_filter_match(struct perf_event *event,
5656 				struct perf_sample_data *data)
5657 {
5658 	void *record = data->raw->data;
5659 
5660 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5661 		return 1;
5662 	return 0;
5663 }
5664 
5665 static int perf_tp_event_match(struct perf_event *event,
5666 				struct perf_sample_data *data,
5667 				struct pt_regs *regs)
5668 {
5669 	if (event->hw.state & PERF_HES_STOPPED)
5670 		return 0;
5671 	/*
5672 	 * All tracepoints are from kernel-space.
5673 	 */
5674 	if (event->attr.exclude_kernel)
5675 		return 0;
5676 
5677 	if (!perf_tp_filter_match(event, data))
5678 		return 0;
5679 
5680 	return 1;
5681 }
5682 
5683 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5684 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5685 		   struct task_struct *task)
5686 {
5687 	struct perf_sample_data data;
5688 	struct perf_event *event;
5689 
5690 	struct perf_raw_record raw = {
5691 		.size = entry_size,
5692 		.data = record,
5693 	};
5694 
5695 	perf_sample_data_init(&data, addr, 0);
5696 	data.raw = &raw;
5697 
5698 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5699 		if (perf_tp_event_match(event, &data, regs))
5700 			perf_swevent_event(event, count, &data, regs);
5701 	}
5702 
5703 	/*
5704 	 * If we got specified a target task, also iterate its context and
5705 	 * deliver this event there too.
5706 	 */
5707 	if (task && task != current) {
5708 		struct perf_event_context *ctx;
5709 		struct trace_entry *entry = record;
5710 
5711 		rcu_read_lock();
5712 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5713 		if (!ctx)
5714 			goto unlock;
5715 
5716 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5717 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5718 				continue;
5719 			if (event->attr.config != entry->type)
5720 				continue;
5721 			if (perf_tp_event_match(event, &data, regs))
5722 				perf_swevent_event(event, count, &data, regs);
5723 		}
5724 unlock:
5725 		rcu_read_unlock();
5726 	}
5727 
5728 	perf_swevent_put_recursion_context(rctx);
5729 }
5730 EXPORT_SYMBOL_GPL(perf_tp_event);
5731 
5732 static void tp_perf_event_destroy(struct perf_event *event)
5733 {
5734 	perf_trace_destroy(event);
5735 }
5736 
5737 static int perf_tp_event_init(struct perf_event *event)
5738 {
5739 	int err;
5740 
5741 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5742 		return -ENOENT;
5743 
5744 	/*
5745 	 * no branch sampling for tracepoint events
5746 	 */
5747 	if (has_branch_stack(event))
5748 		return -EOPNOTSUPP;
5749 
5750 	err = perf_trace_init(event);
5751 	if (err)
5752 		return err;
5753 
5754 	event->destroy = tp_perf_event_destroy;
5755 
5756 	return 0;
5757 }
5758 
5759 static struct pmu perf_tracepoint = {
5760 	.task_ctx_nr	= perf_sw_context,
5761 
5762 	.event_init	= perf_tp_event_init,
5763 	.add		= perf_trace_add,
5764 	.del		= perf_trace_del,
5765 	.start		= perf_swevent_start,
5766 	.stop		= perf_swevent_stop,
5767 	.read		= perf_swevent_read,
5768 
5769 	.event_idx	= perf_swevent_event_idx,
5770 };
5771 
5772 static inline void perf_tp_register(void)
5773 {
5774 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5775 }
5776 
5777 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5778 {
5779 	char *filter_str;
5780 	int ret;
5781 
5782 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5783 		return -EINVAL;
5784 
5785 	filter_str = strndup_user(arg, PAGE_SIZE);
5786 	if (IS_ERR(filter_str))
5787 		return PTR_ERR(filter_str);
5788 
5789 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5790 
5791 	kfree(filter_str);
5792 	return ret;
5793 }
5794 
5795 static void perf_event_free_filter(struct perf_event *event)
5796 {
5797 	ftrace_profile_free_filter(event);
5798 }
5799 
5800 #else
5801 
5802 static inline void perf_tp_register(void)
5803 {
5804 }
5805 
5806 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5807 {
5808 	return -ENOENT;
5809 }
5810 
5811 static void perf_event_free_filter(struct perf_event *event)
5812 {
5813 }
5814 
5815 #endif /* CONFIG_EVENT_TRACING */
5816 
5817 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5818 void perf_bp_event(struct perf_event *bp, void *data)
5819 {
5820 	struct perf_sample_data sample;
5821 	struct pt_regs *regs = data;
5822 
5823 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5824 
5825 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5826 		perf_swevent_event(bp, 1, &sample, regs);
5827 }
5828 #endif
5829 
5830 /*
5831  * hrtimer based swevent callback
5832  */
5833 
5834 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5835 {
5836 	enum hrtimer_restart ret = HRTIMER_RESTART;
5837 	struct perf_sample_data data;
5838 	struct pt_regs *regs;
5839 	struct perf_event *event;
5840 	u64 period;
5841 
5842 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5843 
5844 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5845 		return HRTIMER_NORESTART;
5846 
5847 	event->pmu->read(event);
5848 
5849 	perf_sample_data_init(&data, 0, event->hw.last_period);
5850 	regs = get_irq_regs();
5851 
5852 	if (regs && !perf_exclude_event(event, regs)) {
5853 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5854 			if (__perf_event_overflow(event, 1, &data, regs))
5855 				ret = HRTIMER_NORESTART;
5856 	}
5857 
5858 	period = max_t(u64, 10000, event->hw.sample_period);
5859 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5860 
5861 	return ret;
5862 }
5863 
5864 static void perf_swevent_start_hrtimer(struct perf_event *event)
5865 {
5866 	struct hw_perf_event *hwc = &event->hw;
5867 	s64 period;
5868 
5869 	if (!is_sampling_event(event))
5870 		return;
5871 
5872 	period = local64_read(&hwc->period_left);
5873 	if (period) {
5874 		if (period < 0)
5875 			period = 10000;
5876 
5877 		local64_set(&hwc->period_left, 0);
5878 	} else {
5879 		period = max_t(u64, 10000, hwc->sample_period);
5880 	}
5881 	__hrtimer_start_range_ns(&hwc->hrtimer,
5882 				ns_to_ktime(period), 0,
5883 				HRTIMER_MODE_REL_PINNED, 0);
5884 }
5885 
5886 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5887 {
5888 	struct hw_perf_event *hwc = &event->hw;
5889 
5890 	if (is_sampling_event(event)) {
5891 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5892 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5893 
5894 		hrtimer_cancel(&hwc->hrtimer);
5895 	}
5896 }
5897 
5898 static void perf_swevent_init_hrtimer(struct perf_event *event)
5899 {
5900 	struct hw_perf_event *hwc = &event->hw;
5901 
5902 	if (!is_sampling_event(event))
5903 		return;
5904 
5905 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5906 	hwc->hrtimer.function = perf_swevent_hrtimer;
5907 
5908 	/*
5909 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5910 	 * mapping and avoid the whole period adjust feedback stuff.
5911 	 */
5912 	if (event->attr.freq) {
5913 		long freq = event->attr.sample_freq;
5914 
5915 		event->attr.sample_period = NSEC_PER_SEC / freq;
5916 		hwc->sample_period = event->attr.sample_period;
5917 		local64_set(&hwc->period_left, hwc->sample_period);
5918 		hwc->last_period = hwc->sample_period;
5919 		event->attr.freq = 0;
5920 	}
5921 }
5922 
5923 /*
5924  * Software event: cpu wall time clock
5925  */
5926 
5927 static void cpu_clock_event_update(struct perf_event *event)
5928 {
5929 	s64 prev;
5930 	u64 now;
5931 
5932 	now = local_clock();
5933 	prev = local64_xchg(&event->hw.prev_count, now);
5934 	local64_add(now - prev, &event->count);
5935 }
5936 
5937 static void cpu_clock_event_start(struct perf_event *event, int flags)
5938 {
5939 	local64_set(&event->hw.prev_count, local_clock());
5940 	perf_swevent_start_hrtimer(event);
5941 }
5942 
5943 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5944 {
5945 	perf_swevent_cancel_hrtimer(event);
5946 	cpu_clock_event_update(event);
5947 }
5948 
5949 static int cpu_clock_event_add(struct perf_event *event, int flags)
5950 {
5951 	if (flags & PERF_EF_START)
5952 		cpu_clock_event_start(event, flags);
5953 
5954 	return 0;
5955 }
5956 
5957 static void cpu_clock_event_del(struct perf_event *event, int flags)
5958 {
5959 	cpu_clock_event_stop(event, flags);
5960 }
5961 
5962 static void cpu_clock_event_read(struct perf_event *event)
5963 {
5964 	cpu_clock_event_update(event);
5965 }
5966 
5967 static int cpu_clock_event_init(struct perf_event *event)
5968 {
5969 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5970 		return -ENOENT;
5971 
5972 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5973 		return -ENOENT;
5974 
5975 	/*
5976 	 * no branch sampling for software events
5977 	 */
5978 	if (has_branch_stack(event))
5979 		return -EOPNOTSUPP;
5980 
5981 	perf_swevent_init_hrtimer(event);
5982 
5983 	return 0;
5984 }
5985 
5986 static struct pmu perf_cpu_clock = {
5987 	.task_ctx_nr	= perf_sw_context,
5988 
5989 	.event_init	= cpu_clock_event_init,
5990 	.add		= cpu_clock_event_add,
5991 	.del		= cpu_clock_event_del,
5992 	.start		= cpu_clock_event_start,
5993 	.stop		= cpu_clock_event_stop,
5994 	.read		= cpu_clock_event_read,
5995 
5996 	.event_idx	= perf_swevent_event_idx,
5997 };
5998 
5999 /*
6000  * Software event: task time clock
6001  */
6002 
6003 static void task_clock_event_update(struct perf_event *event, u64 now)
6004 {
6005 	u64 prev;
6006 	s64 delta;
6007 
6008 	prev = local64_xchg(&event->hw.prev_count, now);
6009 	delta = now - prev;
6010 	local64_add(delta, &event->count);
6011 }
6012 
6013 static void task_clock_event_start(struct perf_event *event, int flags)
6014 {
6015 	local64_set(&event->hw.prev_count, event->ctx->time);
6016 	perf_swevent_start_hrtimer(event);
6017 }
6018 
6019 static void task_clock_event_stop(struct perf_event *event, int flags)
6020 {
6021 	perf_swevent_cancel_hrtimer(event);
6022 	task_clock_event_update(event, event->ctx->time);
6023 }
6024 
6025 static int task_clock_event_add(struct perf_event *event, int flags)
6026 {
6027 	if (flags & PERF_EF_START)
6028 		task_clock_event_start(event, flags);
6029 
6030 	return 0;
6031 }
6032 
6033 static void task_clock_event_del(struct perf_event *event, int flags)
6034 {
6035 	task_clock_event_stop(event, PERF_EF_UPDATE);
6036 }
6037 
6038 static void task_clock_event_read(struct perf_event *event)
6039 {
6040 	u64 now = perf_clock();
6041 	u64 delta = now - event->ctx->timestamp;
6042 	u64 time = event->ctx->time + delta;
6043 
6044 	task_clock_event_update(event, time);
6045 }
6046 
6047 static int task_clock_event_init(struct perf_event *event)
6048 {
6049 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6050 		return -ENOENT;
6051 
6052 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6053 		return -ENOENT;
6054 
6055 	/*
6056 	 * no branch sampling for software events
6057 	 */
6058 	if (has_branch_stack(event))
6059 		return -EOPNOTSUPP;
6060 
6061 	perf_swevent_init_hrtimer(event);
6062 
6063 	return 0;
6064 }
6065 
6066 static struct pmu perf_task_clock = {
6067 	.task_ctx_nr	= perf_sw_context,
6068 
6069 	.event_init	= task_clock_event_init,
6070 	.add		= task_clock_event_add,
6071 	.del		= task_clock_event_del,
6072 	.start		= task_clock_event_start,
6073 	.stop		= task_clock_event_stop,
6074 	.read		= task_clock_event_read,
6075 
6076 	.event_idx	= perf_swevent_event_idx,
6077 };
6078 
6079 static void perf_pmu_nop_void(struct pmu *pmu)
6080 {
6081 }
6082 
6083 static int perf_pmu_nop_int(struct pmu *pmu)
6084 {
6085 	return 0;
6086 }
6087 
6088 static void perf_pmu_start_txn(struct pmu *pmu)
6089 {
6090 	perf_pmu_disable(pmu);
6091 }
6092 
6093 static int perf_pmu_commit_txn(struct pmu *pmu)
6094 {
6095 	perf_pmu_enable(pmu);
6096 	return 0;
6097 }
6098 
6099 static void perf_pmu_cancel_txn(struct pmu *pmu)
6100 {
6101 	perf_pmu_enable(pmu);
6102 }
6103 
6104 static int perf_event_idx_default(struct perf_event *event)
6105 {
6106 	return event->hw.idx + 1;
6107 }
6108 
6109 /*
6110  * Ensures all contexts with the same task_ctx_nr have the same
6111  * pmu_cpu_context too.
6112  */
6113 static void *find_pmu_context(int ctxn)
6114 {
6115 	struct pmu *pmu;
6116 
6117 	if (ctxn < 0)
6118 		return NULL;
6119 
6120 	list_for_each_entry(pmu, &pmus, entry) {
6121 		if (pmu->task_ctx_nr == ctxn)
6122 			return pmu->pmu_cpu_context;
6123 	}
6124 
6125 	return NULL;
6126 }
6127 
6128 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6129 {
6130 	int cpu;
6131 
6132 	for_each_possible_cpu(cpu) {
6133 		struct perf_cpu_context *cpuctx;
6134 
6135 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6136 
6137 		if (cpuctx->unique_pmu == old_pmu)
6138 			cpuctx->unique_pmu = pmu;
6139 	}
6140 }
6141 
6142 static void free_pmu_context(struct pmu *pmu)
6143 {
6144 	struct pmu *i;
6145 
6146 	mutex_lock(&pmus_lock);
6147 	/*
6148 	 * Like a real lame refcount.
6149 	 */
6150 	list_for_each_entry(i, &pmus, entry) {
6151 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6152 			update_pmu_context(i, pmu);
6153 			goto out;
6154 		}
6155 	}
6156 
6157 	free_percpu(pmu->pmu_cpu_context);
6158 out:
6159 	mutex_unlock(&pmus_lock);
6160 }
6161 static struct idr pmu_idr;
6162 
6163 static ssize_t
6164 type_show(struct device *dev, struct device_attribute *attr, char *page)
6165 {
6166 	struct pmu *pmu = dev_get_drvdata(dev);
6167 
6168 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6169 }
6170 
6171 static ssize_t
6172 perf_event_mux_interval_ms_show(struct device *dev,
6173 				struct device_attribute *attr,
6174 				char *page)
6175 {
6176 	struct pmu *pmu = dev_get_drvdata(dev);
6177 
6178 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6179 }
6180 
6181 static ssize_t
6182 perf_event_mux_interval_ms_store(struct device *dev,
6183 				 struct device_attribute *attr,
6184 				 const char *buf, size_t count)
6185 {
6186 	struct pmu *pmu = dev_get_drvdata(dev);
6187 	int timer, cpu, ret;
6188 
6189 	ret = kstrtoint(buf, 0, &timer);
6190 	if (ret)
6191 		return ret;
6192 
6193 	if (timer < 1)
6194 		return -EINVAL;
6195 
6196 	/* same value, noting to do */
6197 	if (timer == pmu->hrtimer_interval_ms)
6198 		return count;
6199 
6200 	pmu->hrtimer_interval_ms = timer;
6201 
6202 	/* update all cpuctx for this PMU */
6203 	for_each_possible_cpu(cpu) {
6204 		struct perf_cpu_context *cpuctx;
6205 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6206 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6207 
6208 		if (hrtimer_active(&cpuctx->hrtimer))
6209 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6210 	}
6211 
6212 	return count;
6213 }
6214 
6215 #define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)
6216 
6217 static struct device_attribute pmu_dev_attrs[] = {
6218 	__ATTR_RO(type),
6219 	__ATTR_RW(perf_event_mux_interval_ms),
6220 	__ATTR_NULL,
6221 };
6222 
6223 static int pmu_bus_running;
6224 static struct bus_type pmu_bus = {
6225 	.name		= "event_source",
6226 	.dev_attrs	= pmu_dev_attrs,
6227 };
6228 
6229 static void pmu_dev_release(struct device *dev)
6230 {
6231 	kfree(dev);
6232 }
6233 
6234 static int pmu_dev_alloc(struct pmu *pmu)
6235 {
6236 	int ret = -ENOMEM;
6237 
6238 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6239 	if (!pmu->dev)
6240 		goto out;
6241 
6242 	pmu->dev->groups = pmu->attr_groups;
6243 	device_initialize(pmu->dev);
6244 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6245 	if (ret)
6246 		goto free_dev;
6247 
6248 	dev_set_drvdata(pmu->dev, pmu);
6249 	pmu->dev->bus = &pmu_bus;
6250 	pmu->dev->release = pmu_dev_release;
6251 	ret = device_add(pmu->dev);
6252 	if (ret)
6253 		goto free_dev;
6254 
6255 out:
6256 	return ret;
6257 
6258 free_dev:
6259 	put_device(pmu->dev);
6260 	goto out;
6261 }
6262 
6263 static struct lock_class_key cpuctx_mutex;
6264 static struct lock_class_key cpuctx_lock;
6265 
6266 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6267 {
6268 	int cpu, ret;
6269 
6270 	mutex_lock(&pmus_lock);
6271 	ret = -ENOMEM;
6272 	pmu->pmu_disable_count = alloc_percpu(int);
6273 	if (!pmu->pmu_disable_count)
6274 		goto unlock;
6275 
6276 	pmu->type = -1;
6277 	if (!name)
6278 		goto skip_type;
6279 	pmu->name = name;
6280 
6281 	if (type < 0) {
6282 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6283 		if (type < 0) {
6284 			ret = type;
6285 			goto free_pdc;
6286 		}
6287 	}
6288 	pmu->type = type;
6289 
6290 	if (pmu_bus_running) {
6291 		ret = pmu_dev_alloc(pmu);
6292 		if (ret)
6293 			goto free_idr;
6294 	}
6295 
6296 skip_type:
6297 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6298 	if (pmu->pmu_cpu_context)
6299 		goto got_cpu_context;
6300 
6301 	ret = -ENOMEM;
6302 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6303 	if (!pmu->pmu_cpu_context)
6304 		goto free_dev;
6305 
6306 	for_each_possible_cpu(cpu) {
6307 		struct perf_cpu_context *cpuctx;
6308 
6309 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6310 		__perf_event_init_context(&cpuctx->ctx);
6311 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6312 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6313 		cpuctx->ctx.type = cpu_context;
6314 		cpuctx->ctx.pmu = pmu;
6315 
6316 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6317 
6318 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6319 		cpuctx->unique_pmu = pmu;
6320 	}
6321 
6322 got_cpu_context:
6323 	if (!pmu->start_txn) {
6324 		if (pmu->pmu_enable) {
6325 			/*
6326 			 * If we have pmu_enable/pmu_disable calls, install
6327 			 * transaction stubs that use that to try and batch
6328 			 * hardware accesses.
6329 			 */
6330 			pmu->start_txn  = perf_pmu_start_txn;
6331 			pmu->commit_txn = perf_pmu_commit_txn;
6332 			pmu->cancel_txn = perf_pmu_cancel_txn;
6333 		} else {
6334 			pmu->start_txn  = perf_pmu_nop_void;
6335 			pmu->commit_txn = perf_pmu_nop_int;
6336 			pmu->cancel_txn = perf_pmu_nop_void;
6337 		}
6338 	}
6339 
6340 	if (!pmu->pmu_enable) {
6341 		pmu->pmu_enable  = perf_pmu_nop_void;
6342 		pmu->pmu_disable = perf_pmu_nop_void;
6343 	}
6344 
6345 	if (!pmu->event_idx)
6346 		pmu->event_idx = perf_event_idx_default;
6347 
6348 	list_add_rcu(&pmu->entry, &pmus);
6349 	ret = 0;
6350 unlock:
6351 	mutex_unlock(&pmus_lock);
6352 
6353 	return ret;
6354 
6355 free_dev:
6356 	device_del(pmu->dev);
6357 	put_device(pmu->dev);
6358 
6359 free_idr:
6360 	if (pmu->type >= PERF_TYPE_MAX)
6361 		idr_remove(&pmu_idr, pmu->type);
6362 
6363 free_pdc:
6364 	free_percpu(pmu->pmu_disable_count);
6365 	goto unlock;
6366 }
6367 
6368 void perf_pmu_unregister(struct pmu *pmu)
6369 {
6370 	mutex_lock(&pmus_lock);
6371 	list_del_rcu(&pmu->entry);
6372 	mutex_unlock(&pmus_lock);
6373 
6374 	/*
6375 	 * We dereference the pmu list under both SRCU and regular RCU, so
6376 	 * synchronize against both of those.
6377 	 */
6378 	synchronize_srcu(&pmus_srcu);
6379 	synchronize_rcu();
6380 
6381 	free_percpu(pmu->pmu_disable_count);
6382 	if (pmu->type >= PERF_TYPE_MAX)
6383 		idr_remove(&pmu_idr, pmu->type);
6384 	device_del(pmu->dev);
6385 	put_device(pmu->dev);
6386 	free_pmu_context(pmu);
6387 }
6388 
6389 struct pmu *perf_init_event(struct perf_event *event)
6390 {
6391 	struct pmu *pmu = NULL;
6392 	int idx;
6393 	int ret;
6394 
6395 	idx = srcu_read_lock(&pmus_srcu);
6396 
6397 	rcu_read_lock();
6398 	pmu = idr_find(&pmu_idr, event->attr.type);
6399 	rcu_read_unlock();
6400 	if (pmu) {
6401 		event->pmu = pmu;
6402 		ret = pmu->event_init(event);
6403 		if (ret)
6404 			pmu = ERR_PTR(ret);
6405 		goto unlock;
6406 	}
6407 
6408 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6409 		event->pmu = pmu;
6410 		ret = pmu->event_init(event);
6411 		if (!ret)
6412 			goto unlock;
6413 
6414 		if (ret != -ENOENT) {
6415 			pmu = ERR_PTR(ret);
6416 			goto unlock;
6417 		}
6418 	}
6419 	pmu = ERR_PTR(-ENOENT);
6420 unlock:
6421 	srcu_read_unlock(&pmus_srcu, idx);
6422 
6423 	return pmu;
6424 }
6425 
6426 /*
6427  * Allocate and initialize a event structure
6428  */
6429 static struct perf_event *
6430 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6431 		 struct task_struct *task,
6432 		 struct perf_event *group_leader,
6433 		 struct perf_event *parent_event,
6434 		 perf_overflow_handler_t overflow_handler,
6435 		 void *context)
6436 {
6437 	struct pmu *pmu;
6438 	struct perf_event *event;
6439 	struct hw_perf_event *hwc;
6440 	long err;
6441 
6442 	if ((unsigned)cpu >= nr_cpu_ids) {
6443 		if (!task || cpu != -1)
6444 			return ERR_PTR(-EINVAL);
6445 	}
6446 
6447 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6448 	if (!event)
6449 		return ERR_PTR(-ENOMEM);
6450 
6451 	/*
6452 	 * Single events are their own group leaders, with an
6453 	 * empty sibling list:
6454 	 */
6455 	if (!group_leader)
6456 		group_leader = event;
6457 
6458 	mutex_init(&event->child_mutex);
6459 	INIT_LIST_HEAD(&event->child_list);
6460 
6461 	INIT_LIST_HEAD(&event->group_entry);
6462 	INIT_LIST_HEAD(&event->event_entry);
6463 	INIT_LIST_HEAD(&event->sibling_list);
6464 	INIT_LIST_HEAD(&event->rb_entry);
6465 
6466 	init_waitqueue_head(&event->waitq);
6467 	init_irq_work(&event->pending, perf_pending_event);
6468 
6469 	mutex_init(&event->mmap_mutex);
6470 
6471 	atomic_long_set(&event->refcount, 1);
6472 	event->cpu		= cpu;
6473 	event->attr		= *attr;
6474 	event->group_leader	= group_leader;
6475 	event->pmu		= NULL;
6476 	event->oncpu		= -1;
6477 
6478 	event->parent		= parent_event;
6479 
6480 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6481 	event->id		= atomic64_inc_return(&perf_event_id);
6482 
6483 	event->state		= PERF_EVENT_STATE_INACTIVE;
6484 
6485 	if (task) {
6486 		event->attach_state = PERF_ATTACH_TASK;
6487 
6488 		if (attr->type == PERF_TYPE_TRACEPOINT)
6489 			event->hw.tp_target = task;
6490 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6491 		/*
6492 		 * hw_breakpoint is a bit difficult here..
6493 		 */
6494 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6495 			event->hw.bp_target = task;
6496 #endif
6497 	}
6498 
6499 	if (!overflow_handler && parent_event) {
6500 		overflow_handler = parent_event->overflow_handler;
6501 		context = parent_event->overflow_handler_context;
6502 	}
6503 
6504 	event->overflow_handler	= overflow_handler;
6505 	event->overflow_handler_context = context;
6506 
6507 	perf_event__state_init(event);
6508 
6509 	pmu = NULL;
6510 
6511 	hwc = &event->hw;
6512 	hwc->sample_period = attr->sample_period;
6513 	if (attr->freq && attr->sample_freq)
6514 		hwc->sample_period = 1;
6515 	hwc->last_period = hwc->sample_period;
6516 
6517 	local64_set(&hwc->period_left, hwc->sample_period);
6518 
6519 	/*
6520 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6521 	 */
6522 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6523 		goto done;
6524 
6525 	pmu = perf_init_event(event);
6526 
6527 done:
6528 	err = 0;
6529 	if (!pmu)
6530 		err = -EINVAL;
6531 	else if (IS_ERR(pmu))
6532 		err = PTR_ERR(pmu);
6533 
6534 	if (err) {
6535 		if (event->ns)
6536 			put_pid_ns(event->ns);
6537 		kfree(event);
6538 		return ERR_PTR(err);
6539 	}
6540 
6541 	if (!event->parent) {
6542 		if (event->attach_state & PERF_ATTACH_TASK)
6543 			static_key_slow_inc(&perf_sched_events.key);
6544 		if (event->attr.mmap || event->attr.mmap_data)
6545 			atomic_inc(&nr_mmap_events);
6546 		if (event->attr.comm)
6547 			atomic_inc(&nr_comm_events);
6548 		if (event->attr.task)
6549 			atomic_inc(&nr_task_events);
6550 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6551 			err = get_callchain_buffers();
6552 			if (err) {
6553 				free_event(event);
6554 				return ERR_PTR(err);
6555 			}
6556 		}
6557 		if (has_branch_stack(event)) {
6558 			static_key_slow_inc(&perf_sched_events.key);
6559 			if (!(event->attach_state & PERF_ATTACH_TASK))
6560 				atomic_inc(&per_cpu(perf_branch_stack_events,
6561 						    event->cpu));
6562 		}
6563 	}
6564 
6565 	return event;
6566 }
6567 
6568 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6569 			  struct perf_event_attr *attr)
6570 {
6571 	u32 size;
6572 	int ret;
6573 
6574 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6575 		return -EFAULT;
6576 
6577 	/*
6578 	 * zero the full structure, so that a short copy will be nice.
6579 	 */
6580 	memset(attr, 0, sizeof(*attr));
6581 
6582 	ret = get_user(size, &uattr->size);
6583 	if (ret)
6584 		return ret;
6585 
6586 	if (size > PAGE_SIZE)	/* silly large */
6587 		goto err_size;
6588 
6589 	if (!size)		/* abi compat */
6590 		size = PERF_ATTR_SIZE_VER0;
6591 
6592 	if (size < PERF_ATTR_SIZE_VER0)
6593 		goto err_size;
6594 
6595 	/*
6596 	 * If we're handed a bigger struct than we know of,
6597 	 * ensure all the unknown bits are 0 - i.e. new
6598 	 * user-space does not rely on any kernel feature
6599 	 * extensions we dont know about yet.
6600 	 */
6601 	if (size > sizeof(*attr)) {
6602 		unsigned char __user *addr;
6603 		unsigned char __user *end;
6604 		unsigned char val;
6605 
6606 		addr = (void __user *)uattr + sizeof(*attr);
6607 		end  = (void __user *)uattr + size;
6608 
6609 		for (; addr < end; addr++) {
6610 			ret = get_user(val, addr);
6611 			if (ret)
6612 				return ret;
6613 			if (val)
6614 				goto err_size;
6615 		}
6616 		size = sizeof(*attr);
6617 	}
6618 
6619 	ret = copy_from_user(attr, uattr, size);
6620 	if (ret)
6621 		return -EFAULT;
6622 
6623 	if (attr->__reserved_1)
6624 		return -EINVAL;
6625 
6626 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6627 		return -EINVAL;
6628 
6629 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6630 		return -EINVAL;
6631 
6632 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6633 		u64 mask = attr->branch_sample_type;
6634 
6635 		/* only using defined bits */
6636 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6637 			return -EINVAL;
6638 
6639 		/* at least one branch bit must be set */
6640 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6641 			return -EINVAL;
6642 
6643 		/* propagate priv level, when not set for branch */
6644 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6645 
6646 			/* exclude_kernel checked on syscall entry */
6647 			if (!attr->exclude_kernel)
6648 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6649 
6650 			if (!attr->exclude_user)
6651 				mask |= PERF_SAMPLE_BRANCH_USER;
6652 
6653 			if (!attr->exclude_hv)
6654 				mask |= PERF_SAMPLE_BRANCH_HV;
6655 			/*
6656 			 * adjust user setting (for HW filter setup)
6657 			 */
6658 			attr->branch_sample_type = mask;
6659 		}
6660 		/* privileged levels capture (kernel, hv): check permissions */
6661 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6662 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6663 			return -EACCES;
6664 	}
6665 
6666 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6667 		ret = perf_reg_validate(attr->sample_regs_user);
6668 		if (ret)
6669 			return ret;
6670 	}
6671 
6672 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6673 		if (!arch_perf_have_user_stack_dump())
6674 			return -ENOSYS;
6675 
6676 		/*
6677 		 * We have __u32 type for the size, but so far
6678 		 * we can only use __u16 as maximum due to the
6679 		 * __u16 sample size limit.
6680 		 */
6681 		if (attr->sample_stack_user >= USHRT_MAX)
6682 			ret = -EINVAL;
6683 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6684 			ret = -EINVAL;
6685 	}
6686 
6687 out:
6688 	return ret;
6689 
6690 err_size:
6691 	put_user(sizeof(*attr), &uattr->size);
6692 	ret = -E2BIG;
6693 	goto out;
6694 }
6695 
6696 static int
6697 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6698 {
6699 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6700 	int ret = -EINVAL;
6701 
6702 	if (!output_event)
6703 		goto set;
6704 
6705 	/* don't allow circular references */
6706 	if (event == output_event)
6707 		goto out;
6708 
6709 	/*
6710 	 * Don't allow cross-cpu buffers
6711 	 */
6712 	if (output_event->cpu != event->cpu)
6713 		goto out;
6714 
6715 	/*
6716 	 * If its not a per-cpu rb, it must be the same task.
6717 	 */
6718 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6719 		goto out;
6720 
6721 set:
6722 	mutex_lock(&event->mmap_mutex);
6723 	/* Can't redirect output if we've got an active mmap() */
6724 	if (atomic_read(&event->mmap_count))
6725 		goto unlock;
6726 
6727 	old_rb = event->rb;
6728 
6729 	if (output_event) {
6730 		/* get the rb we want to redirect to */
6731 		rb = ring_buffer_get(output_event);
6732 		if (!rb)
6733 			goto unlock;
6734 	}
6735 
6736 	if (old_rb)
6737 		ring_buffer_detach(event, old_rb);
6738 
6739 	if (rb)
6740 		ring_buffer_attach(event, rb);
6741 
6742 	rcu_assign_pointer(event->rb, rb);
6743 
6744 	if (old_rb) {
6745 		ring_buffer_put(old_rb);
6746 		/*
6747 		 * Since we detached before setting the new rb, so that we
6748 		 * could attach the new rb, we could have missed a wakeup.
6749 		 * Provide it now.
6750 		 */
6751 		wake_up_all(&event->waitq);
6752 	}
6753 
6754 	ret = 0;
6755 unlock:
6756 	mutex_unlock(&event->mmap_mutex);
6757 
6758 out:
6759 	return ret;
6760 }
6761 
6762 /**
6763  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6764  *
6765  * @attr_uptr:	event_id type attributes for monitoring/sampling
6766  * @pid:		target pid
6767  * @cpu:		target cpu
6768  * @group_fd:		group leader event fd
6769  */
6770 SYSCALL_DEFINE5(perf_event_open,
6771 		struct perf_event_attr __user *, attr_uptr,
6772 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6773 {
6774 	struct perf_event *group_leader = NULL, *output_event = NULL;
6775 	struct perf_event *event, *sibling;
6776 	struct perf_event_attr attr;
6777 	struct perf_event_context *ctx;
6778 	struct file *event_file = NULL;
6779 	struct fd group = {NULL, 0};
6780 	struct task_struct *task = NULL;
6781 	struct pmu *pmu;
6782 	int event_fd;
6783 	int move_group = 0;
6784 	int err;
6785 
6786 	/* for future expandability... */
6787 	if (flags & ~PERF_FLAG_ALL)
6788 		return -EINVAL;
6789 
6790 	err = perf_copy_attr(attr_uptr, &attr);
6791 	if (err)
6792 		return err;
6793 
6794 	if (!attr.exclude_kernel) {
6795 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6796 			return -EACCES;
6797 	}
6798 
6799 	if (attr.freq) {
6800 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6801 			return -EINVAL;
6802 	}
6803 
6804 	/*
6805 	 * In cgroup mode, the pid argument is used to pass the fd
6806 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6807 	 * designates the cpu on which to monitor threads from that
6808 	 * cgroup.
6809 	 */
6810 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6811 		return -EINVAL;
6812 
6813 	event_fd = get_unused_fd();
6814 	if (event_fd < 0)
6815 		return event_fd;
6816 
6817 	if (group_fd != -1) {
6818 		err = perf_fget_light(group_fd, &group);
6819 		if (err)
6820 			goto err_fd;
6821 		group_leader = group.file->private_data;
6822 		if (flags & PERF_FLAG_FD_OUTPUT)
6823 			output_event = group_leader;
6824 		if (flags & PERF_FLAG_FD_NO_GROUP)
6825 			group_leader = NULL;
6826 	}
6827 
6828 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6829 		task = find_lively_task_by_vpid(pid);
6830 		if (IS_ERR(task)) {
6831 			err = PTR_ERR(task);
6832 			goto err_group_fd;
6833 		}
6834 	}
6835 
6836 	get_online_cpus();
6837 
6838 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6839 				 NULL, NULL);
6840 	if (IS_ERR(event)) {
6841 		err = PTR_ERR(event);
6842 		goto err_task;
6843 	}
6844 
6845 	if (flags & PERF_FLAG_PID_CGROUP) {
6846 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6847 		if (err)
6848 			goto err_alloc;
6849 		/*
6850 		 * one more event:
6851 		 * - that has cgroup constraint on event->cpu
6852 		 * - that may need work on context switch
6853 		 */
6854 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6855 		static_key_slow_inc(&perf_sched_events.key);
6856 	}
6857 
6858 	/*
6859 	 * Special case software events and allow them to be part of
6860 	 * any hardware group.
6861 	 */
6862 	pmu = event->pmu;
6863 
6864 	if (group_leader &&
6865 	    (is_software_event(event) != is_software_event(group_leader))) {
6866 		if (is_software_event(event)) {
6867 			/*
6868 			 * If event and group_leader are not both a software
6869 			 * event, and event is, then group leader is not.
6870 			 *
6871 			 * Allow the addition of software events to !software
6872 			 * groups, this is safe because software events never
6873 			 * fail to schedule.
6874 			 */
6875 			pmu = group_leader->pmu;
6876 		} else if (is_software_event(group_leader) &&
6877 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6878 			/*
6879 			 * In case the group is a pure software group, and we
6880 			 * try to add a hardware event, move the whole group to
6881 			 * the hardware context.
6882 			 */
6883 			move_group = 1;
6884 		}
6885 	}
6886 
6887 	/*
6888 	 * Get the target context (task or percpu):
6889 	 */
6890 	ctx = find_get_context(pmu, task, event->cpu);
6891 	if (IS_ERR(ctx)) {
6892 		err = PTR_ERR(ctx);
6893 		goto err_alloc;
6894 	}
6895 
6896 	if (task) {
6897 		put_task_struct(task);
6898 		task = NULL;
6899 	}
6900 
6901 	/*
6902 	 * Look up the group leader (we will attach this event to it):
6903 	 */
6904 	if (group_leader) {
6905 		err = -EINVAL;
6906 
6907 		/*
6908 		 * Do not allow a recursive hierarchy (this new sibling
6909 		 * becoming part of another group-sibling):
6910 		 */
6911 		if (group_leader->group_leader != group_leader)
6912 			goto err_context;
6913 		/*
6914 		 * Do not allow to attach to a group in a different
6915 		 * task or CPU context:
6916 		 */
6917 		if (move_group) {
6918 			if (group_leader->ctx->type != ctx->type)
6919 				goto err_context;
6920 		} else {
6921 			if (group_leader->ctx != ctx)
6922 				goto err_context;
6923 		}
6924 
6925 		/*
6926 		 * Only a group leader can be exclusive or pinned
6927 		 */
6928 		if (attr.exclusive || attr.pinned)
6929 			goto err_context;
6930 	}
6931 
6932 	if (output_event) {
6933 		err = perf_event_set_output(event, output_event);
6934 		if (err)
6935 			goto err_context;
6936 	}
6937 
6938 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6939 	if (IS_ERR(event_file)) {
6940 		err = PTR_ERR(event_file);
6941 		goto err_context;
6942 	}
6943 
6944 	if (move_group) {
6945 		struct perf_event_context *gctx = group_leader->ctx;
6946 
6947 		mutex_lock(&gctx->mutex);
6948 		perf_remove_from_context(group_leader);
6949 
6950 		/*
6951 		 * Removing from the context ends up with disabled
6952 		 * event. What we want here is event in the initial
6953 		 * startup state, ready to be add into new context.
6954 		 */
6955 		perf_event__state_init(group_leader);
6956 		list_for_each_entry(sibling, &group_leader->sibling_list,
6957 				    group_entry) {
6958 			perf_remove_from_context(sibling);
6959 			perf_event__state_init(sibling);
6960 			put_ctx(gctx);
6961 		}
6962 		mutex_unlock(&gctx->mutex);
6963 		put_ctx(gctx);
6964 	}
6965 
6966 	WARN_ON_ONCE(ctx->parent_ctx);
6967 	mutex_lock(&ctx->mutex);
6968 
6969 	if (move_group) {
6970 		synchronize_rcu();
6971 		perf_install_in_context(ctx, group_leader, event->cpu);
6972 		get_ctx(ctx);
6973 		list_for_each_entry(sibling, &group_leader->sibling_list,
6974 				    group_entry) {
6975 			perf_install_in_context(ctx, sibling, event->cpu);
6976 			get_ctx(ctx);
6977 		}
6978 	}
6979 
6980 	perf_install_in_context(ctx, event, event->cpu);
6981 	++ctx->generation;
6982 	perf_unpin_context(ctx);
6983 	mutex_unlock(&ctx->mutex);
6984 
6985 	put_online_cpus();
6986 
6987 	event->owner = current;
6988 
6989 	mutex_lock(&current->perf_event_mutex);
6990 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6991 	mutex_unlock(&current->perf_event_mutex);
6992 
6993 	/*
6994 	 * Precalculate sample_data sizes
6995 	 */
6996 	perf_event__header_size(event);
6997 	perf_event__id_header_size(event);
6998 
6999 	/*
7000 	 * Drop the reference on the group_event after placing the
7001 	 * new event on the sibling_list. This ensures destruction
7002 	 * of the group leader will find the pointer to itself in
7003 	 * perf_group_detach().
7004 	 */
7005 	fdput(group);
7006 	fd_install(event_fd, event_file);
7007 	return event_fd;
7008 
7009 err_context:
7010 	perf_unpin_context(ctx);
7011 	put_ctx(ctx);
7012 err_alloc:
7013 	free_event(event);
7014 err_task:
7015 	put_online_cpus();
7016 	if (task)
7017 		put_task_struct(task);
7018 err_group_fd:
7019 	fdput(group);
7020 err_fd:
7021 	put_unused_fd(event_fd);
7022 	return err;
7023 }
7024 
7025 /**
7026  * perf_event_create_kernel_counter
7027  *
7028  * @attr: attributes of the counter to create
7029  * @cpu: cpu in which the counter is bound
7030  * @task: task to profile (NULL for percpu)
7031  */
7032 struct perf_event *
7033 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7034 				 struct task_struct *task,
7035 				 perf_overflow_handler_t overflow_handler,
7036 				 void *context)
7037 {
7038 	struct perf_event_context *ctx;
7039 	struct perf_event *event;
7040 	int err;
7041 
7042 	/*
7043 	 * Get the target context (task or percpu):
7044 	 */
7045 
7046 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7047 				 overflow_handler, context);
7048 	if (IS_ERR(event)) {
7049 		err = PTR_ERR(event);
7050 		goto err;
7051 	}
7052 
7053 	ctx = find_get_context(event->pmu, task, cpu);
7054 	if (IS_ERR(ctx)) {
7055 		err = PTR_ERR(ctx);
7056 		goto err_free;
7057 	}
7058 
7059 	WARN_ON_ONCE(ctx->parent_ctx);
7060 	mutex_lock(&ctx->mutex);
7061 	perf_install_in_context(ctx, event, cpu);
7062 	++ctx->generation;
7063 	perf_unpin_context(ctx);
7064 	mutex_unlock(&ctx->mutex);
7065 
7066 	return event;
7067 
7068 err_free:
7069 	free_event(event);
7070 err:
7071 	return ERR_PTR(err);
7072 }
7073 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7074 
7075 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7076 {
7077 	struct perf_event_context *src_ctx;
7078 	struct perf_event_context *dst_ctx;
7079 	struct perf_event *event, *tmp;
7080 	LIST_HEAD(events);
7081 
7082 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7083 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7084 
7085 	mutex_lock(&src_ctx->mutex);
7086 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7087 				 event_entry) {
7088 		perf_remove_from_context(event);
7089 		put_ctx(src_ctx);
7090 		list_add(&event->event_entry, &events);
7091 	}
7092 	mutex_unlock(&src_ctx->mutex);
7093 
7094 	synchronize_rcu();
7095 
7096 	mutex_lock(&dst_ctx->mutex);
7097 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
7098 		list_del(&event->event_entry);
7099 		if (event->state >= PERF_EVENT_STATE_OFF)
7100 			event->state = PERF_EVENT_STATE_INACTIVE;
7101 		perf_install_in_context(dst_ctx, event, dst_cpu);
7102 		get_ctx(dst_ctx);
7103 	}
7104 	mutex_unlock(&dst_ctx->mutex);
7105 }
7106 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7107 
7108 static void sync_child_event(struct perf_event *child_event,
7109 			       struct task_struct *child)
7110 {
7111 	struct perf_event *parent_event = child_event->parent;
7112 	u64 child_val;
7113 
7114 	if (child_event->attr.inherit_stat)
7115 		perf_event_read_event(child_event, child);
7116 
7117 	child_val = perf_event_count(child_event);
7118 
7119 	/*
7120 	 * Add back the child's count to the parent's count:
7121 	 */
7122 	atomic64_add(child_val, &parent_event->child_count);
7123 	atomic64_add(child_event->total_time_enabled,
7124 		     &parent_event->child_total_time_enabled);
7125 	atomic64_add(child_event->total_time_running,
7126 		     &parent_event->child_total_time_running);
7127 
7128 	/*
7129 	 * Remove this event from the parent's list
7130 	 */
7131 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7132 	mutex_lock(&parent_event->child_mutex);
7133 	list_del_init(&child_event->child_list);
7134 	mutex_unlock(&parent_event->child_mutex);
7135 
7136 	/*
7137 	 * Release the parent event, if this was the last
7138 	 * reference to it.
7139 	 */
7140 	put_event(parent_event);
7141 }
7142 
7143 static void
7144 __perf_event_exit_task(struct perf_event *child_event,
7145 			 struct perf_event_context *child_ctx,
7146 			 struct task_struct *child)
7147 {
7148 	if (child_event->parent) {
7149 		raw_spin_lock_irq(&child_ctx->lock);
7150 		perf_group_detach(child_event);
7151 		raw_spin_unlock_irq(&child_ctx->lock);
7152 	}
7153 
7154 	perf_remove_from_context(child_event);
7155 
7156 	/*
7157 	 * It can happen that the parent exits first, and has events
7158 	 * that are still around due to the child reference. These
7159 	 * events need to be zapped.
7160 	 */
7161 	if (child_event->parent) {
7162 		sync_child_event(child_event, child);
7163 		free_event(child_event);
7164 	}
7165 }
7166 
7167 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7168 {
7169 	struct perf_event *child_event, *tmp;
7170 	struct perf_event_context *child_ctx;
7171 	unsigned long flags;
7172 
7173 	if (likely(!child->perf_event_ctxp[ctxn])) {
7174 		perf_event_task(child, NULL, 0);
7175 		return;
7176 	}
7177 
7178 	local_irq_save(flags);
7179 	/*
7180 	 * We can't reschedule here because interrupts are disabled,
7181 	 * and either child is current or it is a task that can't be
7182 	 * scheduled, so we are now safe from rescheduling changing
7183 	 * our context.
7184 	 */
7185 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7186 
7187 	/*
7188 	 * Take the context lock here so that if find_get_context is
7189 	 * reading child->perf_event_ctxp, we wait until it has
7190 	 * incremented the context's refcount before we do put_ctx below.
7191 	 */
7192 	raw_spin_lock(&child_ctx->lock);
7193 	task_ctx_sched_out(child_ctx);
7194 	child->perf_event_ctxp[ctxn] = NULL;
7195 	/*
7196 	 * If this context is a clone; unclone it so it can't get
7197 	 * swapped to another process while we're removing all
7198 	 * the events from it.
7199 	 */
7200 	unclone_ctx(child_ctx);
7201 	update_context_time(child_ctx);
7202 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7203 
7204 	/*
7205 	 * Report the task dead after unscheduling the events so that we
7206 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7207 	 * get a few PERF_RECORD_READ events.
7208 	 */
7209 	perf_event_task(child, child_ctx, 0);
7210 
7211 	/*
7212 	 * We can recurse on the same lock type through:
7213 	 *
7214 	 *   __perf_event_exit_task()
7215 	 *     sync_child_event()
7216 	 *       put_event()
7217 	 *         mutex_lock(&ctx->mutex)
7218 	 *
7219 	 * But since its the parent context it won't be the same instance.
7220 	 */
7221 	mutex_lock(&child_ctx->mutex);
7222 
7223 again:
7224 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7225 				 group_entry)
7226 		__perf_event_exit_task(child_event, child_ctx, child);
7227 
7228 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7229 				 group_entry)
7230 		__perf_event_exit_task(child_event, child_ctx, child);
7231 
7232 	/*
7233 	 * If the last event was a group event, it will have appended all
7234 	 * its siblings to the list, but we obtained 'tmp' before that which
7235 	 * will still point to the list head terminating the iteration.
7236 	 */
7237 	if (!list_empty(&child_ctx->pinned_groups) ||
7238 	    !list_empty(&child_ctx->flexible_groups))
7239 		goto again;
7240 
7241 	mutex_unlock(&child_ctx->mutex);
7242 
7243 	put_ctx(child_ctx);
7244 }
7245 
7246 /*
7247  * When a child task exits, feed back event values to parent events.
7248  */
7249 void perf_event_exit_task(struct task_struct *child)
7250 {
7251 	struct perf_event *event, *tmp;
7252 	int ctxn;
7253 
7254 	mutex_lock(&child->perf_event_mutex);
7255 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7256 				 owner_entry) {
7257 		list_del_init(&event->owner_entry);
7258 
7259 		/*
7260 		 * Ensure the list deletion is visible before we clear
7261 		 * the owner, closes a race against perf_release() where
7262 		 * we need to serialize on the owner->perf_event_mutex.
7263 		 */
7264 		smp_wmb();
7265 		event->owner = NULL;
7266 	}
7267 	mutex_unlock(&child->perf_event_mutex);
7268 
7269 	for_each_task_context_nr(ctxn)
7270 		perf_event_exit_task_context(child, ctxn);
7271 }
7272 
7273 static void perf_free_event(struct perf_event *event,
7274 			    struct perf_event_context *ctx)
7275 {
7276 	struct perf_event *parent = event->parent;
7277 
7278 	if (WARN_ON_ONCE(!parent))
7279 		return;
7280 
7281 	mutex_lock(&parent->child_mutex);
7282 	list_del_init(&event->child_list);
7283 	mutex_unlock(&parent->child_mutex);
7284 
7285 	put_event(parent);
7286 
7287 	perf_group_detach(event);
7288 	list_del_event(event, ctx);
7289 	free_event(event);
7290 }
7291 
7292 /*
7293  * free an unexposed, unused context as created by inheritance by
7294  * perf_event_init_task below, used by fork() in case of fail.
7295  */
7296 void perf_event_free_task(struct task_struct *task)
7297 {
7298 	struct perf_event_context *ctx;
7299 	struct perf_event *event, *tmp;
7300 	int ctxn;
7301 
7302 	for_each_task_context_nr(ctxn) {
7303 		ctx = task->perf_event_ctxp[ctxn];
7304 		if (!ctx)
7305 			continue;
7306 
7307 		mutex_lock(&ctx->mutex);
7308 again:
7309 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7310 				group_entry)
7311 			perf_free_event(event, ctx);
7312 
7313 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7314 				group_entry)
7315 			perf_free_event(event, ctx);
7316 
7317 		if (!list_empty(&ctx->pinned_groups) ||
7318 				!list_empty(&ctx->flexible_groups))
7319 			goto again;
7320 
7321 		mutex_unlock(&ctx->mutex);
7322 
7323 		put_ctx(ctx);
7324 	}
7325 }
7326 
7327 void perf_event_delayed_put(struct task_struct *task)
7328 {
7329 	int ctxn;
7330 
7331 	for_each_task_context_nr(ctxn)
7332 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7333 }
7334 
7335 /*
7336  * inherit a event from parent task to child task:
7337  */
7338 static struct perf_event *
7339 inherit_event(struct perf_event *parent_event,
7340 	      struct task_struct *parent,
7341 	      struct perf_event_context *parent_ctx,
7342 	      struct task_struct *child,
7343 	      struct perf_event *group_leader,
7344 	      struct perf_event_context *child_ctx)
7345 {
7346 	struct perf_event *child_event;
7347 	unsigned long flags;
7348 
7349 	/*
7350 	 * Instead of creating recursive hierarchies of events,
7351 	 * we link inherited events back to the original parent,
7352 	 * which has a filp for sure, which we use as the reference
7353 	 * count:
7354 	 */
7355 	if (parent_event->parent)
7356 		parent_event = parent_event->parent;
7357 
7358 	child_event = perf_event_alloc(&parent_event->attr,
7359 					   parent_event->cpu,
7360 					   child,
7361 					   group_leader, parent_event,
7362 				           NULL, NULL);
7363 	if (IS_ERR(child_event))
7364 		return child_event;
7365 
7366 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7367 		free_event(child_event);
7368 		return NULL;
7369 	}
7370 
7371 	get_ctx(child_ctx);
7372 
7373 	/*
7374 	 * Make the child state follow the state of the parent event,
7375 	 * not its attr.disabled bit.  We hold the parent's mutex,
7376 	 * so we won't race with perf_event_{en, dis}able_family.
7377 	 */
7378 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7379 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7380 	else
7381 		child_event->state = PERF_EVENT_STATE_OFF;
7382 
7383 	if (parent_event->attr.freq) {
7384 		u64 sample_period = parent_event->hw.sample_period;
7385 		struct hw_perf_event *hwc = &child_event->hw;
7386 
7387 		hwc->sample_period = sample_period;
7388 		hwc->last_period   = sample_period;
7389 
7390 		local64_set(&hwc->period_left, sample_period);
7391 	}
7392 
7393 	child_event->ctx = child_ctx;
7394 	child_event->overflow_handler = parent_event->overflow_handler;
7395 	child_event->overflow_handler_context
7396 		= parent_event->overflow_handler_context;
7397 
7398 	/*
7399 	 * Precalculate sample_data sizes
7400 	 */
7401 	perf_event__header_size(child_event);
7402 	perf_event__id_header_size(child_event);
7403 
7404 	/*
7405 	 * Link it up in the child's context:
7406 	 */
7407 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7408 	add_event_to_ctx(child_event, child_ctx);
7409 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7410 
7411 	/*
7412 	 * Link this into the parent event's child list
7413 	 */
7414 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7415 	mutex_lock(&parent_event->child_mutex);
7416 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7417 	mutex_unlock(&parent_event->child_mutex);
7418 
7419 	return child_event;
7420 }
7421 
7422 static int inherit_group(struct perf_event *parent_event,
7423 	      struct task_struct *parent,
7424 	      struct perf_event_context *parent_ctx,
7425 	      struct task_struct *child,
7426 	      struct perf_event_context *child_ctx)
7427 {
7428 	struct perf_event *leader;
7429 	struct perf_event *sub;
7430 	struct perf_event *child_ctr;
7431 
7432 	leader = inherit_event(parent_event, parent, parent_ctx,
7433 				 child, NULL, child_ctx);
7434 	if (IS_ERR(leader))
7435 		return PTR_ERR(leader);
7436 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7437 		child_ctr = inherit_event(sub, parent, parent_ctx,
7438 					    child, leader, child_ctx);
7439 		if (IS_ERR(child_ctr))
7440 			return PTR_ERR(child_ctr);
7441 	}
7442 	return 0;
7443 }
7444 
7445 static int
7446 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7447 		   struct perf_event_context *parent_ctx,
7448 		   struct task_struct *child, int ctxn,
7449 		   int *inherited_all)
7450 {
7451 	int ret;
7452 	struct perf_event_context *child_ctx;
7453 
7454 	if (!event->attr.inherit) {
7455 		*inherited_all = 0;
7456 		return 0;
7457 	}
7458 
7459 	child_ctx = child->perf_event_ctxp[ctxn];
7460 	if (!child_ctx) {
7461 		/*
7462 		 * This is executed from the parent task context, so
7463 		 * inherit events that have been marked for cloning.
7464 		 * First allocate and initialize a context for the
7465 		 * child.
7466 		 */
7467 
7468 		child_ctx = alloc_perf_context(event->pmu, child);
7469 		if (!child_ctx)
7470 			return -ENOMEM;
7471 
7472 		child->perf_event_ctxp[ctxn] = child_ctx;
7473 	}
7474 
7475 	ret = inherit_group(event, parent, parent_ctx,
7476 			    child, child_ctx);
7477 
7478 	if (ret)
7479 		*inherited_all = 0;
7480 
7481 	return ret;
7482 }
7483 
7484 /*
7485  * Initialize the perf_event context in task_struct
7486  */
7487 int perf_event_init_context(struct task_struct *child, int ctxn)
7488 {
7489 	struct perf_event_context *child_ctx, *parent_ctx;
7490 	struct perf_event_context *cloned_ctx;
7491 	struct perf_event *event;
7492 	struct task_struct *parent = current;
7493 	int inherited_all = 1;
7494 	unsigned long flags;
7495 	int ret = 0;
7496 
7497 	if (likely(!parent->perf_event_ctxp[ctxn]))
7498 		return 0;
7499 
7500 	/*
7501 	 * If the parent's context is a clone, pin it so it won't get
7502 	 * swapped under us.
7503 	 */
7504 	parent_ctx = perf_pin_task_context(parent, ctxn);
7505 
7506 	/*
7507 	 * No need to check if parent_ctx != NULL here; since we saw
7508 	 * it non-NULL earlier, the only reason for it to become NULL
7509 	 * is if we exit, and since we're currently in the middle of
7510 	 * a fork we can't be exiting at the same time.
7511 	 */
7512 
7513 	/*
7514 	 * Lock the parent list. No need to lock the child - not PID
7515 	 * hashed yet and not running, so nobody can access it.
7516 	 */
7517 	mutex_lock(&parent_ctx->mutex);
7518 
7519 	/*
7520 	 * We dont have to disable NMIs - we are only looking at
7521 	 * the list, not manipulating it:
7522 	 */
7523 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7524 		ret = inherit_task_group(event, parent, parent_ctx,
7525 					 child, ctxn, &inherited_all);
7526 		if (ret)
7527 			break;
7528 	}
7529 
7530 	/*
7531 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7532 	 * to allocations, but we need to prevent rotation because
7533 	 * rotate_ctx() will change the list from interrupt context.
7534 	 */
7535 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7536 	parent_ctx->rotate_disable = 1;
7537 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7538 
7539 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7540 		ret = inherit_task_group(event, parent, parent_ctx,
7541 					 child, ctxn, &inherited_all);
7542 		if (ret)
7543 			break;
7544 	}
7545 
7546 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7547 	parent_ctx->rotate_disable = 0;
7548 
7549 	child_ctx = child->perf_event_ctxp[ctxn];
7550 
7551 	if (child_ctx && inherited_all) {
7552 		/*
7553 		 * Mark the child context as a clone of the parent
7554 		 * context, or of whatever the parent is a clone of.
7555 		 *
7556 		 * Note that if the parent is a clone, the holding of
7557 		 * parent_ctx->lock avoids it from being uncloned.
7558 		 */
7559 		cloned_ctx = parent_ctx->parent_ctx;
7560 		if (cloned_ctx) {
7561 			child_ctx->parent_ctx = cloned_ctx;
7562 			child_ctx->parent_gen = parent_ctx->parent_gen;
7563 		} else {
7564 			child_ctx->parent_ctx = parent_ctx;
7565 			child_ctx->parent_gen = parent_ctx->generation;
7566 		}
7567 		get_ctx(child_ctx->parent_ctx);
7568 	}
7569 
7570 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7571 	mutex_unlock(&parent_ctx->mutex);
7572 
7573 	perf_unpin_context(parent_ctx);
7574 	put_ctx(parent_ctx);
7575 
7576 	return ret;
7577 }
7578 
7579 /*
7580  * Initialize the perf_event context in task_struct
7581  */
7582 int perf_event_init_task(struct task_struct *child)
7583 {
7584 	int ctxn, ret;
7585 
7586 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7587 	mutex_init(&child->perf_event_mutex);
7588 	INIT_LIST_HEAD(&child->perf_event_list);
7589 
7590 	for_each_task_context_nr(ctxn) {
7591 		ret = perf_event_init_context(child, ctxn);
7592 		if (ret)
7593 			return ret;
7594 	}
7595 
7596 	return 0;
7597 }
7598 
7599 static void __init perf_event_init_all_cpus(void)
7600 {
7601 	struct swevent_htable *swhash;
7602 	int cpu;
7603 
7604 	for_each_possible_cpu(cpu) {
7605 		swhash = &per_cpu(swevent_htable, cpu);
7606 		mutex_init(&swhash->hlist_mutex);
7607 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7608 	}
7609 }
7610 
7611 static void __cpuinit perf_event_init_cpu(int cpu)
7612 {
7613 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7614 
7615 	mutex_lock(&swhash->hlist_mutex);
7616 	if (swhash->hlist_refcount > 0) {
7617 		struct swevent_hlist *hlist;
7618 
7619 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7620 		WARN_ON(!hlist);
7621 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7622 	}
7623 	mutex_unlock(&swhash->hlist_mutex);
7624 }
7625 
7626 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7627 static void perf_pmu_rotate_stop(struct pmu *pmu)
7628 {
7629 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7630 
7631 	WARN_ON(!irqs_disabled());
7632 
7633 	list_del_init(&cpuctx->rotation_list);
7634 }
7635 
7636 static void __perf_event_exit_context(void *__info)
7637 {
7638 	struct perf_event_context *ctx = __info;
7639 	struct perf_event *event, *tmp;
7640 
7641 	perf_pmu_rotate_stop(ctx->pmu);
7642 
7643 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7644 		__perf_remove_from_context(event);
7645 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7646 		__perf_remove_from_context(event);
7647 }
7648 
7649 static void perf_event_exit_cpu_context(int cpu)
7650 {
7651 	struct perf_event_context *ctx;
7652 	struct pmu *pmu;
7653 	int idx;
7654 
7655 	idx = srcu_read_lock(&pmus_srcu);
7656 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7657 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7658 
7659 		mutex_lock(&ctx->mutex);
7660 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7661 		mutex_unlock(&ctx->mutex);
7662 	}
7663 	srcu_read_unlock(&pmus_srcu, idx);
7664 }
7665 
7666 static void perf_event_exit_cpu(int cpu)
7667 {
7668 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7669 
7670 	mutex_lock(&swhash->hlist_mutex);
7671 	swevent_hlist_release(swhash);
7672 	mutex_unlock(&swhash->hlist_mutex);
7673 
7674 	perf_event_exit_cpu_context(cpu);
7675 }
7676 #else
7677 static inline void perf_event_exit_cpu(int cpu) { }
7678 #endif
7679 
7680 static int
7681 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7682 {
7683 	int cpu;
7684 
7685 	for_each_online_cpu(cpu)
7686 		perf_event_exit_cpu(cpu);
7687 
7688 	return NOTIFY_OK;
7689 }
7690 
7691 /*
7692  * Run the perf reboot notifier at the very last possible moment so that
7693  * the generic watchdog code runs as long as possible.
7694  */
7695 static struct notifier_block perf_reboot_notifier = {
7696 	.notifier_call = perf_reboot,
7697 	.priority = INT_MIN,
7698 };
7699 
7700 static int __cpuinit
7701 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7702 {
7703 	unsigned int cpu = (long)hcpu;
7704 
7705 	switch (action & ~CPU_TASKS_FROZEN) {
7706 
7707 	case CPU_UP_PREPARE:
7708 	case CPU_DOWN_FAILED:
7709 		perf_event_init_cpu(cpu);
7710 		break;
7711 
7712 	case CPU_UP_CANCELED:
7713 	case CPU_DOWN_PREPARE:
7714 		perf_event_exit_cpu(cpu);
7715 		break;
7716 	default:
7717 		break;
7718 	}
7719 
7720 	return NOTIFY_OK;
7721 }
7722 
7723 void __init perf_event_init(void)
7724 {
7725 	int ret;
7726 
7727 	idr_init(&pmu_idr);
7728 
7729 	perf_event_init_all_cpus();
7730 	init_srcu_struct(&pmus_srcu);
7731 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7732 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7733 	perf_pmu_register(&perf_task_clock, NULL, -1);
7734 	perf_tp_register();
7735 	perf_cpu_notifier(perf_cpu_notify);
7736 	register_reboot_notifier(&perf_reboot_notifier);
7737 
7738 	ret = init_hw_breakpoint();
7739 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7740 
7741 	/* do not patch jump label more than once per second */
7742 	jump_label_rate_limit(&perf_sched_events, HZ);
7743 
7744 	/*
7745 	 * Build time assertion that we keep the data_head at the intended
7746 	 * location.  IOW, validation we got the __reserved[] size right.
7747 	 */
7748 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7749 		     != 1024);
7750 }
7751 
7752 static int __init perf_event_sysfs_init(void)
7753 {
7754 	struct pmu *pmu;
7755 	int ret;
7756 
7757 	mutex_lock(&pmus_lock);
7758 
7759 	ret = bus_register(&pmu_bus);
7760 	if (ret)
7761 		goto unlock;
7762 
7763 	list_for_each_entry(pmu, &pmus, entry) {
7764 		if (!pmu->name || pmu->type < 0)
7765 			continue;
7766 
7767 		ret = pmu_dev_alloc(pmu);
7768 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7769 	}
7770 	pmu_bus_running = 1;
7771 	ret = 0;
7772 
7773 unlock:
7774 	mutex_unlock(&pmus_lock);
7775 
7776 	return ret;
7777 }
7778 device_initcall(perf_event_sysfs_init);
7779 
7780 #ifdef CONFIG_CGROUP_PERF
7781 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7782 {
7783 	struct perf_cgroup *jc;
7784 
7785 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7786 	if (!jc)
7787 		return ERR_PTR(-ENOMEM);
7788 
7789 	jc->info = alloc_percpu(struct perf_cgroup_info);
7790 	if (!jc->info) {
7791 		kfree(jc);
7792 		return ERR_PTR(-ENOMEM);
7793 	}
7794 
7795 	return &jc->css;
7796 }
7797 
7798 static void perf_cgroup_css_free(struct cgroup *cont)
7799 {
7800 	struct perf_cgroup *jc;
7801 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7802 			  struct perf_cgroup, css);
7803 	free_percpu(jc->info);
7804 	kfree(jc);
7805 }
7806 
7807 static int __perf_cgroup_move(void *info)
7808 {
7809 	struct task_struct *task = info;
7810 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7811 	return 0;
7812 }
7813 
7814 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7815 {
7816 	struct task_struct *task;
7817 
7818 	cgroup_taskset_for_each(task, cgrp, tset)
7819 		task_function_call(task, __perf_cgroup_move, task);
7820 }
7821 
7822 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7823 			     struct task_struct *task)
7824 {
7825 	/*
7826 	 * cgroup_exit() is called in the copy_process() failure path.
7827 	 * Ignore this case since the task hasn't ran yet, this avoids
7828 	 * trying to poke a half freed task state from generic code.
7829 	 */
7830 	if (!(task->flags & PF_EXITING))
7831 		return;
7832 
7833 	task_function_call(task, __perf_cgroup_move, task);
7834 }
7835 
7836 struct cgroup_subsys perf_subsys = {
7837 	.name		= "perf_event",
7838 	.subsys_id	= perf_subsys_id,
7839 	.css_alloc	= perf_cgroup_css_alloc,
7840 	.css_free	= perf_cgroup_css_free,
7841 	.exit		= perf_cgroup_exit,
7842 	.attach		= perf_cgroup_attach,
7843 };
7844 #endif /* CONFIG_CGROUP_PERF */
7845