1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 149 static LIST_HEAD(pmus); 150 static DEFINE_MUTEX(pmus_lock); 151 static struct srcu_struct pmus_srcu; 152 153 /* 154 * perf event paranoia level: 155 * -1 - not paranoid at all 156 * 0 - disallow raw tracepoint access for unpriv 157 * 1 - disallow cpu events for unpriv 158 * 2 - disallow kernel profiling for unpriv 159 */ 160 int sysctl_perf_event_paranoid __read_mostly = 1; 161 162 /* Minimum for 512 kiB + 1 user control page */ 163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 164 165 /* 166 * max perf event sample rate 167 */ 168 #define DEFAULT_MAX_SAMPLE_RATE 100000 169 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 170 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 171 172 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 173 174 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 175 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 176 177 static atomic_t perf_sample_allowed_ns __read_mostly = 178 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100); 179 180 void update_perf_cpu_limits(void) 181 { 182 u64 tmp = perf_sample_period_ns; 183 184 tmp *= sysctl_perf_cpu_time_max_percent; 185 do_div(tmp, 100); 186 atomic_set(&perf_sample_allowed_ns, tmp); 187 } 188 189 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 190 191 int perf_proc_update_handler(struct ctl_table *table, int write, 192 void __user *buffer, size_t *lenp, 193 loff_t *ppos) 194 { 195 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 196 197 if (ret || !write) 198 return ret; 199 200 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 201 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 202 update_perf_cpu_limits(); 203 204 return 0; 205 } 206 207 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 208 209 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 210 void __user *buffer, size_t *lenp, 211 loff_t *ppos) 212 { 213 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 214 215 if (ret || !write) 216 return ret; 217 218 update_perf_cpu_limits(); 219 220 return 0; 221 } 222 223 /* 224 * perf samples are done in some very critical code paths (NMIs). 225 * If they take too much CPU time, the system can lock up and not 226 * get any real work done. This will drop the sample rate when 227 * we detect that events are taking too long. 228 */ 229 #define NR_ACCUMULATED_SAMPLES 128 230 DEFINE_PER_CPU(u64, running_sample_length); 231 232 void perf_sample_event_took(u64 sample_len_ns) 233 { 234 u64 avg_local_sample_len; 235 u64 local_samples_len; 236 237 if (atomic_read(&perf_sample_allowed_ns) == 0) 238 return; 239 240 /* decay the counter by 1 average sample */ 241 local_samples_len = __get_cpu_var(running_sample_length); 242 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 243 local_samples_len += sample_len_ns; 244 __get_cpu_var(running_sample_length) = local_samples_len; 245 246 /* 247 * note: this will be biased artifically low until we have 248 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 249 * from having to maintain a count. 250 */ 251 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 252 253 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns)) 254 return; 255 256 if (max_samples_per_tick <= 1) 257 return; 258 259 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 260 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 261 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 262 263 printk_ratelimited(KERN_WARNING 264 "perf samples too long (%lld > %d), lowering " 265 "kernel.perf_event_max_sample_rate to %d\n", 266 avg_local_sample_len, 267 atomic_read(&perf_sample_allowed_ns), 268 sysctl_perf_event_sample_rate); 269 270 update_perf_cpu_limits(); 271 } 272 273 static atomic64_t perf_event_id; 274 275 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 276 enum event_type_t event_type); 277 278 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 279 enum event_type_t event_type, 280 struct task_struct *task); 281 282 static void update_context_time(struct perf_event_context *ctx); 283 static u64 perf_event_time(struct perf_event *event); 284 285 void __weak perf_event_print_debug(void) { } 286 287 extern __weak const char *perf_pmu_name(void) 288 { 289 return "pmu"; 290 } 291 292 static inline u64 perf_clock(void) 293 { 294 return local_clock(); 295 } 296 297 static inline struct perf_cpu_context * 298 __get_cpu_context(struct perf_event_context *ctx) 299 { 300 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 301 } 302 303 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 304 struct perf_event_context *ctx) 305 { 306 raw_spin_lock(&cpuctx->ctx.lock); 307 if (ctx) 308 raw_spin_lock(&ctx->lock); 309 } 310 311 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 312 struct perf_event_context *ctx) 313 { 314 if (ctx) 315 raw_spin_unlock(&ctx->lock); 316 raw_spin_unlock(&cpuctx->ctx.lock); 317 } 318 319 #ifdef CONFIG_CGROUP_PERF 320 321 /* 322 * perf_cgroup_info keeps track of time_enabled for a cgroup. 323 * This is a per-cpu dynamically allocated data structure. 324 */ 325 struct perf_cgroup_info { 326 u64 time; 327 u64 timestamp; 328 }; 329 330 struct perf_cgroup { 331 struct cgroup_subsys_state css; 332 struct perf_cgroup_info __percpu *info; 333 }; 334 335 /* 336 * Must ensure cgroup is pinned (css_get) before calling 337 * this function. In other words, we cannot call this function 338 * if there is no cgroup event for the current CPU context. 339 */ 340 static inline struct perf_cgroup * 341 perf_cgroup_from_task(struct task_struct *task) 342 { 343 return container_of(task_subsys_state(task, perf_subsys_id), 344 struct perf_cgroup, css); 345 } 346 347 static inline bool 348 perf_cgroup_match(struct perf_event *event) 349 { 350 struct perf_event_context *ctx = event->ctx; 351 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 352 353 /* @event doesn't care about cgroup */ 354 if (!event->cgrp) 355 return true; 356 357 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 358 if (!cpuctx->cgrp) 359 return false; 360 361 /* 362 * Cgroup scoping is recursive. An event enabled for a cgroup is 363 * also enabled for all its descendant cgroups. If @cpuctx's 364 * cgroup is a descendant of @event's (the test covers identity 365 * case), it's a match. 366 */ 367 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 368 event->cgrp->css.cgroup); 369 } 370 371 static inline bool perf_tryget_cgroup(struct perf_event *event) 372 { 373 return css_tryget(&event->cgrp->css); 374 } 375 376 static inline void perf_put_cgroup(struct perf_event *event) 377 { 378 css_put(&event->cgrp->css); 379 } 380 381 static inline void perf_detach_cgroup(struct perf_event *event) 382 { 383 perf_put_cgroup(event); 384 event->cgrp = NULL; 385 } 386 387 static inline int is_cgroup_event(struct perf_event *event) 388 { 389 return event->cgrp != NULL; 390 } 391 392 static inline u64 perf_cgroup_event_time(struct perf_event *event) 393 { 394 struct perf_cgroup_info *t; 395 396 t = per_cpu_ptr(event->cgrp->info, event->cpu); 397 return t->time; 398 } 399 400 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 401 { 402 struct perf_cgroup_info *info; 403 u64 now; 404 405 now = perf_clock(); 406 407 info = this_cpu_ptr(cgrp->info); 408 409 info->time += now - info->timestamp; 410 info->timestamp = now; 411 } 412 413 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 414 { 415 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 416 if (cgrp_out) 417 __update_cgrp_time(cgrp_out); 418 } 419 420 static inline void update_cgrp_time_from_event(struct perf_event *event) 421 { 422 struct perf_cgroup *cgrp; 423 424 /* 425 * ensure we access cgroup data only when needed and 426 * when we know the cgroup is pinned (css_get) 427 */ 428 if (!is_cgroup_event(event)) 429 return; 430 431 cgrp = perf_cgroup_from_task(current); 432 /* 433 * Do not update time when cgroup is not active 434 */ 435 if (cgrp == event->cgrp) 436 __update_cgrp_time(event->cgrp); 437 } 438 439 static inline void 440 perf_cgroup_set_timestamp(struct task_struct *task, 441 struct perf_event_context *ctx) 442 { 443 struct perf_cgroup *cgrp; 444 struct perf_cgroup_info *info; 445 446 /* 447 * ctx->lock held by caller 448 * ensure we do not access cgroup data 449 * unless we have the cgroup pinned (css_get) 450 */ 451 if (!task || !ctx->nr_cgroups) 452 return; 453 454 cgrp = perf_cgroup_from_task(task); 455 info = this_cpu_ptr(cgrp->info); 456 info->timestamp = ctx->timestamp; 457 } 458 459 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 460 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 461 462 /* 463 * reschedule events based on the cgroup constraint of task. 464 * 465 * mode SWOUT : schedule out everything 466 * mode SWIN : schedule in based on cgroup for next 467 */ 468 void perf_cgroup_switch(struct task_struct *task, int mode) 469 { 470 struct perf_cpu_context *cpuctx; 471 struct pmu *pmu; 472 unsigned long flags; 473 474 /* 475 * disable interrupts to avoid geting nr_cgroup 476 * changes via __perf_event_disable(). Also 477 * avoids preemption. 478 */ 479 local_irq_save(flags); 480 481 /* 482 * we reschedule only in the presence of cgroup 483 * constrained events. 484 */ 485 rcu_read_lock(); 486 487 list_for_each_entry_rcu(pmu, &pmus, entry) { 488 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 489 if (cpuctx->unique_pmu != pmu) 490 continue; /* ensure we process each cpuctx once */ 491 492 /* 493 * perf_cgroup_events says at least one 494 * context on this CPU has cgroup events. 495 * 496 * ctx->nr_cgroups reports the number of cgroup 497 * events for a context. 498 */ 499 if (cpuctx->ctx.nr_cgroups > 0) { 500 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 501 perf_pmu_disable(cpuctx->ctx.pmu); 502 503 if (mode & PERF_CGROUP_SWOUT) { 504 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 505 /* 506 * must not be done before ctxswout due 507 * to event_filter_match() in event_sched_out() 508 */ 509 cpuctx->cgrp = NULL; 510 } 511 512 if (mode & PERF_CGROUP_SWIN) { 513 WARN_ON_ONCE(cpuctx->cgrp); 514 /* 515 * set cgrp before ctxsw in to allow 516 * event_filter_match() to not have to pass 517 * task around 518 */ 519 cpuctx->cgrp = perf_cgroup_from_task(task); 520 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 521 } 522 perf_pmu_enable(cpuctx->ctx.pmu); 523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 524 } 525 } 526 527 rcu_read_unlock(); 528 529 local_irq_restore(flags); 530 } 531 532 static inline void perf_cgroup_sched_out(struct task_struct *task, 533 struct task_struct *next) 534 { 535 struct perf_cgroup *cgrp1; 536 struct perf_cgroup *cgrp2 = NULL; 537 538 /* 539 * we come here when we know perf_cgroup_events > 0 540 */ 541 cgrp1 = perf_cgroup_from_task(task); 542 543 /* 544 * next is NULL when called from perf_event_enable_on_exec() 545 * that will systematically cause a cgroup_switch() 546 */ 547 if (next) 548 cgrp2 = perf_cgroup_from_task(next); 549 550 /* 551 * only schedule out current cgroup events if we know 552 * that we are switching to a different cgroup. Otherwise, 553 * do no touch the cgroup events. 554 */ 555 if (cgrp1 != cgrp2) 556 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 557 } 558 559 static inline void perf_cgroup_sched_in(struct task_struct *prev, 560 struct task_struct *task) 561 { 562 struct perf_cgroup *cgrp1; 563 struct perf_cgroup *cgrp2 = NULL; 564 565 /* 566 * we come here when we know perf_cgroup_events > 0 567 */ 568 cgrp1 = perf_cgroup_from_task(task); 569 570 /* prev can never be NULL */ 571 cgrp2 = perf_cgroup_from_task(prev); 572 573 /* 574 * only need to schedule in cgroup events if we are changing 575 * cgroup during ctxsw. Cgroup events were not scheduled 576 * out of ctxsw out if that was not the case. 577 */ 578 if (cgrp1 != cgrp2) 579 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 580 } 581 582 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 583 struct perf_event_attr *attr, 584 struct perf_event *group_leader) 585 { 586 struct perf_cgroup *cgrp; 587 struct cgroup_subsys_state *css; 588 struct fd f = fdget(fd); 589 int ret = 0; 590 591 if (!f.file) 592 return -EBADF; 593 594 css = cgroup_css_from_dir(f.file, perf_subsys_id); 595 if (IS_ERR(css)) { 596 ret = PTR_ERR(css); 597 goto out; 598 } 599 600 cgrp = container_of(css, struct perf_cgroup, css); 601 event->cgrp = cgrp; 602 603 /* must be done before we fput() the file */ 604 if (!perf_tryget_cgroup(event)) { 605 event->cgrp = NULL; 606 ret = -ENOENT; 607 goto out; 608 } 609 610 /* 611 * all events in a group must monitor 612 * the same cgroup because a task belongs 613 * to only one perf cgroup at a time 614 */ 615 if (group_leader && group_leader->cgrp != cgrp) { 616 perf_detach_cgroup(event); 617 ret = -EINVAL; 618 } 619 out: 620 fdput(f); 621 return ret; 622 } 623 624 static inline void 625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 626 { 627 struct perf_cgroup_info *t; 628 t = per_cpu_ptr(event->cgrp->info, event->cpu); 629 event->shadow_ctx_time = now - t->timestamp; 630 } 631 632 static inline void 633 perf_cgroup_defer_enabled(struct perf_event *event) 634 { 635 /* 636 * when the current task's perf cgroup does not match 637 * the event's, we need to remember to call the 638 * perf_mark_enable() function the first time a task with 639 * a matching perf cgroup is scheduled in. 640 */ 641 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 642 event->cgrp_defer_enabled = 1; 643 } 644 645 static inline void 646 perf_cgroup_mark_enabled(struct perf_event *event, 647 struct perf_event_context *ctx) 648 { 649 struct perf_event *sub; 650 u64 tstamp = perf_event_time(event); 651 652 if (!event->cgrp_defer_enabled) 653 return; 654 655 event->cgrp_defer_enabled = 0; 656 657 event->tstamp_enabled = tstamp - event->total_time_enabled; 658 list_for_each_entry(sub, &event->sibling_list, group_entry) { 659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 660 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 661 sub->cgrp_defer_enabled = 0; 662 } 663 } 664 } 665 #else /* !CONFIG_CGROUP_PERF */ 666 667 static inline bool 668 perf_cgroup_match(struct perf_event *event) 669 { 670 return true; 671 } 672 673 static inline void perf_detach_cgroup(struct perf_event *event) 674 {} 675 676 static inline int is_cgroup_event(struct perf_event *event) 677 { 678 return 0; 679 } 680 681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 682 { 683 return 0; 684 } 685 686 static inline void update_cgrp_time_from_event(struct perf_event *event) 687 { 688 } 689 690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 691 { 692 } 693 694 static inline void perf_cgroup_sched_out(struct task_struct *task, 695 struct task_struct *next) 696 { 697 } 698 699 static inline void perf_cgroup_sched_in(struct task_struct *prev, 700 struct task_struct *task) 701 { 702 } 703 704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 705 struct perf_event_attr *attr, 706 struct perf_event *group_leader) 707 { 708 return -EINVAL; 709 } 710 711 static inline void 712 perf_cgroup_set_timestamp(struct task_struct *task, 713 struct perf_event_context *ctx) 714 { 715 } 716 717 void 718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 719 { 720 } 721 722 static inline void 723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 724 { 725 } 726 727 static inline u64 perf_cgroup_event_time(struct perf_event *event) 728 { 729 return 0; 730 } 731 732 static inline void 733 perf_cgroup_defer_enabled(struct perf_event *event) 734 { 735 } 736 737 static inline void 738 perf_cgroup_mark_enabled(struct perf_event *event, 739 struct perf_event_context *ctx) 740 { 741 } 742 #endif 743 744 /* 745 * set default to be dependent on timer tick just 746 * like original code 747 */ 748 #define PERF_CPU_HRTIMER (1000 / HZ) 749 /* 750 * function must be called with interrupts disbled 751 */ 752 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 753 { 754 struct perf_cpu_context *cpuctx; 755 enum hrtimer_restart ret = HRTIMER_NORESTART; 756 int rotations = 0; 757 758 WARN_ON(!irqs_disabled()); 759 760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 761 762 rotations = perf_rotate_context(cpuctx); 763 764 /* 765 * arm timer if needed 766 */ 767 if (rotations) { 768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 769 ret = HRTIMER_RESTART; 770 } 771 772 return ret; 773 } 774 775 /* CPU is going down */ 776 void perf_cpu_hrtimer_cancel(int cpu) 777 { 778 struct perf_cpu_context *cpuctx; 779 struct pmu *pmu; 780 unsigned long flags; 781 782 if (WARN_ON(cpu != smp_processor_id())) 783 return; 784 785 local_irq_save(flags); 786 787 rcu_read_lock(); 788 789 list_for_each_entry_rcu(pmu, &pmus, entry) { 790 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 791 792 if (pmu->task_ctx_nr == perf_sw_context) 793 continue; 794 795 hrtimer_cancel(&cpuctx->hrtimer); 796 } 797 798 rcu_read_unlock(); 799 800 local_irq_restore(flags); 801 } 802 803 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 804 { 805 struct hrtimer *hr = &cpuctx->hrtimer; 806 struct pmu *pmu = cpuctx->ctx.pmu; 807 int timer; 808 809 /* no multiplexing needed for SW PMU */ 810 if (pmu->task_ctx_nr == perf_sw_context) 811 return; 812 813 /* 814 * check default is sane, if not set then force to 815 * default interval (1/tick) 816 */ 817 timer = pmu->hrtimer_interval_ms; 818 if (timer < 1) 819 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 820 821 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 822 823 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 824 hr->function = perf_cpu_hrtimer_handler; 825 } 826 827 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 828 { 829 struct hrtimer *hr = &cpuctx->hrtimer; 830 struct pmu *pmu = cpuctx->ctx.pmu; 831 832 /* not for SW PMU */ 833 if (pmu->task_ctx_nr == perf_sw_context) 834 return; 835 836 if (hrtimer_active(hr)) 837 return; 838 839 if (!hrtimer_callback_running(hr)) 840 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 841 0, HRTIMER_MODE_REL_PINNED, 0); 842 } 843 844 void perf_pmu_disable(struct pmu *pmu) 845 { 846 int *count = this_cpu_ptr(pmu->pmu_disable_count); 847 if (!(*count)++) 848 pmu->pmu_disable(pmu); 849 } 850 851 void perf_pmu_enable(struct pmu *pmu) 852 { 853 int *count = this_cpu_ptr(pmu->pmu_disable_count); 854 if (!--(*count)) 855 pmu->pmu_enable(pmu); 856 } 857 858 static DEFINE_PER_CPU(struct list_head, rotation_list); 859 860 /* 861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 862 * because they're strictly cpu affine and rotate_start is called with IRQs 863 * disabled, while rotate_context is called from IRQ context. 864 */ 865 static void perf_pmu_rotate_start(struct pmu *pmu) 866 { 867 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 868 struct list_head *head = &__get_cpu_var(rotation_list); 869 870 WARN_ON(!irqs_disabled()); 871 872 if (list_empty(&cpuctx->rotation_list)) { 873 int was_empty = list_empty(head); 874 list_add(&cpuctx->rotation_list, head); 875 if (was_empty) 876 tick_nohz_full_kick(); 877 } 878 } 879 880 static void get_ctx(struct perf_event_context *ctx) 881 { 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 883 } 884 885 static void put_ctx(struct perf_event_context *ctx) 886 { 887 if (atomic_dec_and_test(&ctx->refcount)) { 888 if (ctx->parent_ctx) 889 put_ctx(ctx->parent_ctx); 890 if (ctx->task) 891 put_task_struct(ctx->task); 892 kfree_rcu(ctx, rcu_head); 893 } 894 } 895 896 static void unclone_ctx(struct perf_event_context *ctx) 897 { 898 if (ctx->parent_ctx) { 899 put_ctx(ctx->parent_ctx); 900 ctx->parent_ctx = NULL; 901 } 902 } 903 904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 905 { 906 /* 907 * only top level events have the pid namespace they were created in 908 */ 909 if (event->parent) 910 event = event->parent; 911 912 return task_tgid_nr_ns(p, event->ns); 913 } 914 915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 916 { 917 /* 918 * only top level events have the pid namespace they were created in 919 */ 920 if (event->parent) 921 event = event->parent; 922 923 return task_pid_nr_ns(p, event->ns); 924 } 925 926 /* 927 * If we inherit events we want to return the parent event id 928 * to userspace. 929 */ 930 static u64 primary_event_id(struct perf_event *event) 931 { 932 u64 id = event->id; 933 934 if (event->parent) 935 id = event->parent->id; 936 937 return id; 938 } 939 940 /* 941 * Get the perf_event_context for a task and lock it. 942 * This has to cope with with the fact that until it is locked, 943 * the context could get moved to another task. 944 */ 945 static struct perf_event_context * 946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 947 { 948 struct perf_event_context *ctx; 949 950 rcu_read_lock(); 951 retry: 952 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 953 if (ctx) { 954 /* 955 * If this context is a clone of another, it might 956 * get swapped for another underneath us by 957 * perf_event_task_sched_out, though the 958 * rcu_read_lock() protects us from any context 959 * getting freed. Lock the context and check if it 960 * got swapped before we could get the lock, and retry 961 * if so. If we locked the right context, then it 962 * can't get swapped on us any more. 963 */ 964 raw_spin_lock_irqsave(&ctx->lock, *flags); 965 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 966 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 967 goto retry; 968 } 969 970 if (!atomic_inc_not_zero(&ctx->refcount)) { 971 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 972 ctx = NULL; 973 } 974 } 975 rcu_read_unlock(); 976 return ctx; 977 } 978 979 /* 980 * Get the context for a task and increment its pin_count so it 981 * can't get swapped to another task. This also increments its 982 * reference count so that the context can't get freed. 983 */ 984 static struct perf_event_context * 985 perf_pin_task_context(struct task_struct *task, int ctxn) 986 { 987 struct perf_event_context *ctx; 988 unsigned long flags; 989 990 ctx = perf_lock_task_context(task, ctxn, &flags); 991 if (ctx) { 992 ++ctx->pin_count; 993 raw_spin_unlock_irqrestore(&ctx->lock, flags); 994 } 995 return ctx; 996 } 997 998 static void perf_unpin_context(struct perf_event_context *ctx) 999 { 1000 unsigned long flags; 1001 1002 raw_spin_lock_irqsave(&ctx->lock, flags); 1003 --ctx->pin_count; 1004 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1005 } 1006 1007 /* 1008 * Update the record of the current time in a context. 1009 */ 1010 static void update_context_time(struct perf_event_context *ctx) 1011 { 1012 u64 now = perf_clock(); 1013 1014 ctx->time += now - ctx->timestamp; 1015 ctx->timestamp = now; 1016 } 1017 1018 static u64 perf_event_time(struct perf_event *event) 1019 { 1020 struct perf_event_context *ctx = event->ctx; 1021 1022 if (is_cgroup_event(event)) 1023 return perf_cgroup_event_time(event); 1024 1025 return ctx ? ctx->time : 0; 1026 } 1027 1028 /* 1029 * Update the total_time_enabled and total_time_running fields for a event. 1030 * The caller of this function needs to hold the ctx->lock. 1031 */ 1032 static void update_event_times(struct perf_event *event) 1033 { 1034 struct perf_event_context *ctx = event->ctx; 1035 u64 run_end; 1036 1037 if (event->state < PERF_EVENT_STATE_INACTIVE || 1038 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1039 return; 1040 /* 1041 * in cgroup mode, time_enabled represents 1042 * the time the event was enabled AND active 1043 * tasks were in the monitored cgroup. This is 1044 * independent of the activity of the context as 1045 * there may be a mix of cgroup and non-cgroup events. 1046 * 1047 * That is why we treat cgroup events differently 1048 * here. 1049 */ 1050 if (is_cgroup_event(event)) 1051 run_end = perf_cgroup_event_time(event); 1052 else if (ctx->is_active) 1053 run_end = ctx->time; 1054 else 1055 run_end = event->tstamp_stopped; 1056 1057 event->total_time_enabled = run_end - event->tstamp_enabled; 1058 1059 if (event->state == PERF_EVENT_STATE_INACTIVE) 1060 run_end = event->tstamp_stopped; 1061 else 1062 run_end = perf_event_time(event); 1063 1064 event->total_time_running = run_end - event->tstamp_running; 1065 1066 } 1067 1068 /* 1069 * Update total_time_enabled and total_time_running for all events in a group. 1070 */ 1071 static void update_group_times(struct perf_event *leader) 1072 { 1073 struct perf_event *event; 1074 1075 update_event_times(leader); 1076 list_for_each_entry(event, &leader->sibling_list, group_entry) 1077 update_event_times(event); 1078 } 1079 1080 static struct list_head * 1081 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1082 { 1083 if (event->attr.pinned) 1084 return &ctx->pinned_groups; 1085 else 1086 return &ctx->flexible_groups; 1087 } 1088 1089 /* 1090 * Add a event from the lists for its context. 1091 * Must be called with ctx->mutex and ctx->lock held. 1092 */ 1093 static void 1094 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1095 { 1096 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1097 event->attach_state |= PERF_ATTACH_CONTEXT; 1098 1099 /* 1100 * If we're a stand alone event or group leader, we go to the context 1101 * list, group events are kept attached to the group so that 1102 * perf_group_detach can, at all times, locate all siblings. 1103 */ 1104 if (event->group_leader == event) { 1105 struct list_head *list; 1106 1107 if (is_software_event(event)) 1108 event->group_flags |= PERF_GROUP_SOFTWARE; 1109 1110 list = ctx_group_list(event, ctx); 1111 list_add_tail(&event->group_entry, list); 1112 } 1113 1114 if (is_cgroup_event(event)) 1115 ctx->nr_cgroups++; 1116 1117 if (has_branch_stack(event)) 1118 ctx->nr_branch_stack++; 1119 1120 list_add_rcu(&event->event_entry, &ctx->event_list); 1121 if (!ctx->nr_events) 1122 perf_pmu_rotate_start(ctx->pmu); 1123 ctx->nr_events++; 1124 if (event->attr.inherit_stat) 1125 ctx->nr_stat++; 1126 } 1127 1128 /* 1129 * Initialize event state based on the perf_event_attr::disabled. 1130 */ 1131 static inline void perf_event__state_init(struct perf_event *event) 1132 { 1133 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1134 PERF_EVENT_STATE_INACTIVE; 1135 } 1136 1137 /* 1138 * Called at perf_event creation and when events are attached/detached from a 1139 * group. 1140 */ 1141 static void perf_event__read_size(struct perf_event *event) 1142 { 1143 int entry = sizeof(u64); /* value */ 1144 int size = 0; 1145 int nr = 1; 1146 1147 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1148 size += sizeof(u64); 1149 1150 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1151 size += sizeof(u64); 1152 1153 if (event->attr.read_format & PERF_FORMAT_ID) 1154 entry += sizeof(u64); 1155 1156 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1157 nr += event->group_leader->nr_siblings; 1158 size += sizeof(u64); 1159 } 1160 1161 size += entry * nr; 1162 event->read_size = size; 1163 } 1164 1165 static void perf_event__header_size(struct perf_event *event) 1166 { 1167 struct perf_sample_data *data; 1168 u64 sample_type = event->attr.sample_type; 1169 u16 size = 0; 1170 1171 perf_event__read_size(event); 1172 1173 if (sample_type & PERF_SAMPLE_IP) 1174 size += sizeof(data->ip); 1175 1176 if (sample_type & PERF_SAMPLE_ADDR) 1177 size += sizeof(data->addr); 1178 1179 if (sample_type & PERF_SAMPLE_PERIOD) 1180 size += sizeof(data->period); 1181 1182 if (sample_type & PERF_SAMPLE_WEIGHT) 1183 size += sizeof(data->weight); 1184 1185 if (sample_type & PERF_SAMPLE_READ) 1186 size += event->read_size; 1187 1188 if (sample_type & PERF_SAMPLE_DATA_SRC) 1189 size += sizeof(data->data_src.val); 1190 1191 event->header_size = size; 1192 } 1193 1194 static void perf_event__id_header_size(struct perf_event *event) 1195 { 1196 struct perf_sample_data *data; 1197 u64 sample_type = event->attr.sample_type; 1198 u16 size = 0; 1199 1200 if (sample_type & PERF_SAMPLE_TID) 1201 size += sizeof(data->tid_entry); 1202 1203 if (sample_type & PERF_SAMPLE_TIME) 1204 size += sizeof(data->time); 1205 1206 if (sample_type & PERF_SAMPLE_ID) 1207 size += sizeof(data->id); 1208 1209 if (sample_type & PERF_SAMPLE_STREAM_ID) 1210 size += sizeof(data->stream_id); 1211 1212 if (sample_type & PERF_SAMPLE_CPU) 1213 size += sizeof(data->cpu_entry); 1214 1215 event->id_header_size = size; 1216 } 1217 1218 static void perf_group_attach(struct perf_event *event) 1219 { 1220 struct perf_event *group_leader = event->group_leader, *pos; 1221 1222 /* 1223 * We can have double attach due to group movement in perf_event_open. 1224 */ 1225 if (event->attach_state & PERF_ATTACH_GROUP) 1226 return; 1227 1228 event->attach_state |= PERF_ATTACH_GROUP; 1229 1230 if (group_leader == event) 1231 return; 1232 1233 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1234 !is_software_event(event)) 1235 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1236 1237 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1238 group_leader->nr_siblings++; 1239 1240 perf_event__header_size(group_leader); 1241 1242 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1243 perf_event__header_size(pos); 1244 } 1245 1246 /* 1247 * Remove a event from the lists for its context. 1248 * Must be called with ctx->mutex and ctx->lock held. 1249 */ 1250 static void 1251 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1252 { 1253 struct perf_cpu_context *cpuctx; 1254 /* 1255 * We can have double detach due to exit/hot-unplug + close. 1256 */ 1257 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1258 return; 1259 1260 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1261 1262 if (is_cgroup_event(event)) { 1263 ctx->nr_cgroups--; 1264 cpuctx = __get_cpu_context(ctx); 1265 /* 1266 * if there are no more cgroup events 1267 * then cler cgrp to avoid stale pointer 1268 * in update_cgrp_time_from_cpuctx() 1269 */ 1270 if (!ctx->nr_cgroups) 1271 cpuctx->cgrp = NULL; 1272 } 1273 1274 if (has_branch_stack(event)) 1275 ctx->nr_branch_stack--; 1276 1277 ctx->nr_events--; 1278 if (event->attr.inherit_stat) 1279 ctx->nr_stat--; 1280 1281 list_del_rcu(&event->event_entry); 1282 1283 if (event->group_leader == event) 1284 list_del_init(&event->group_entry); 1285 1286 update_group_times(event); 1287 1288 /* 1289 * If event was in error state, then keep it 1290 * that way, otherwise bogus counts will be 1291 * returned on read(). The only way to get out 1292 * of error state is by explicit re-enabling 1293 * of the event 1294 */ 1295 if (event->state > PERF_EVENT_STATE_OFF) 1296 event->state = PERF_EVENT_STATE_OFF; 1297 } 1298 1299 static void perf_group_detach(struct perf_event *event) 1300 { 1301 struct perf_event *sibling, *tmp; 1302 struct list_head *list = NULL; 1303 1304 /* 1305 * We can have double detach due to exit/hot-unplug + close. 1306 */ 1307 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1308 return; 1309 1310 event->attach_state &= ~PERF_ATTACH_GROUP; 1311 1312 /* 1313 * If this is a sibling, remove it from its group. 1314 */ 1315 if (event->group_leader != event) { 1316 list_del_init(&event->group_entry); 1317 event->group_leader->nr_siblings--; 1318 goto out; 1319 } 1320 1321 if (!list_empty(&event->group_entry)) 1322 list = &event->group_entry; 1323 1324 /* 1325 * If this was a group event with sibling events then 1326 * upgrade the siblings to singleton events by adding them 1327 * to whatever list we are on. 1328 */ 1329 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1330 if (list) 1331 list_move_tail(&sibling->group_entry, list); 1332 sibling->group_leader = sibling; 1333 1334 /* Inherit group flags from the previous leader */ 1335 sibling->group_flags = event->group_flags; 1336 } 1337 1338 out: 1339 perf_event__header_size(event->group_leader); 1340 1341 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1342 perf_event__header_size(tmp); 1343 } 1344 1345 static inline int 1346 event_filter_match(struct perf_event *event) 1347 { 1348 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1349 && perf_cgroup_match(event); 1350 } 1351 1352 static void 1353 event_sched_out(struct perf_event *event, 1354 struct perf_cpu_context *cpuctx, 1355 struct perf_event_context *ctx) 1356 { 1357 u64 tstamp = perf_event_time(event); 1358 u64 delta; 1359 /* 1360 * An event which could not be activated because of 1361 * filter mismatch still needs to have its timings 1362 * maintained, otherwise bogus information is return 1363 * via read() for time_enabled, time_running: 1364 */ 1365 if (event->state == PERF_EVENT_STATE_INACTIVE 1366 && !event_filter_match(event)) { 1367 delta = tstamp - event->tstamp_stopped; 1368 event->tstamp_running += delta; 1369 event->tstamp_stopped = tstamp; 1370 } 1371 1372 if (event->state != PERF_EVENT_STATE_ACTIVE) 1373 return; 1374 1375 event->state = PERF_EVENT_STATE_INACTIVE; 1376 if (event->pending_disable) { 1377 event->pending_disable = 0; 1378 event->state = PERF_EVENT_STATE_OFF; 1379 } 1380 event->tstamp_stopped = tstamp; 1381 event->pmu->del(event, 0); 1382 event->oncpu = -1; 1383 1384 if (!is_software_event(event)) 1385 cpuctx->active_oncpu--; 1386 ctx->nr_active--; 1387 if (event->attr.freq && event->attr.sample_freq) 1388 ctx->nr_freq--; 1389 if (event->attr.exclusive || !cpuctx->active_oncpu) 1390 cpuctx->exclusive = 0; 1391 } 1392 1393 static void 1394 group_sched_out(struct perf_event *group_event, 1395 struct perf_cpu_context *cpuctx, 1396 struct perf_event_context *ctx) 1397 { 1398 struct perf_event *event; 1399 int state = group_event->state; 1400 1401 event_sched_out(group_event, cpuctx, ctx); 1402 1403 /* 1404 * Schedule out siblings (if any): 1405 */ 1406 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1407 event_sched_out(event, cpuctx, ctx); 1408 1409 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1410 cpuctx->exclusive = 0; 1411 } 1412 1413 /* 1414 * Cross CPU call to remove a performance event 1415 * 1416 * We disable the event on the hardware level first. After that we 1417 * remove it from the context list. 1418 */ 1419 static int __perf_remove_from_context(void *info) 1420 { 1421 struct perf_event *event = info; 1422 struct perf_event_context *ctx = event->ctx; 1423 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1424 1425 raw_spin_lock(&ctx->lock); 1426 event_sched_out(event, cpuctx, ctx); 1427 list_del_event(event, ctx); 1428 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1429 ctx->is_active = 0; 1430 cpuctx->task_ctx = NULL; 1431 } 1432 raw_spin_unlock(&ctx->lock); 1433 1434 return 0; 1435 } 1436 1437 1438 /* 1439 * Remove the event from a task's (or a CPU's) list of events. 1440 * 1441 * CPU events are removed with a smp call. For task events we only 1442 * call when the task is on a CPU. 1443 * 1444 * If event->ctx is a cloned context, callers must make sure that 1445 * every task struct that event->ctx->task could possibly point to 1446 * remains valid. This is OK when called from perf_release since 1447 * that only calls us on the top-level context, which can't be a clone. 1448 * When called from perf_event_exit_task, it's OK because the 1449 * context has been detached from its task. 1450 */ 1451 static void perf_remove_from_context(struct perf_event *event) 1452 { 1453 struct perf_event_context *ctx = event->ctx; 1454 struct task_struct *task = ctx->task; 1455 1456 lockdep_assert_held(&ctx->mutex); 1457 1458 if (!task) { 1459 /* 1460 * Per cpu events are removed via an smp call and 1461 * the removal is always successful. 1462 */ 1463 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1464 return; 1465 } 1466 1467 retry: 1468 if (!task_function_call(task, __perf_remove_from_context, event)) 1469 return; 1470 1471 raw_spin_lock_irq(&ctx->lock); 1472 /* 1473 * If we failed to find a running task, but find the context active now 1474 * that we've acquired the ctx->lock, retry. 1475 */ 1476 if (ctx->is_active) { 1477 raw_spin_unlock_irq(&ctx->lock); 1478 goto retry; 1479 } 1480 1481 /* 1482 * Since the task isn't running, its safe to remove the event, us 1483 * holding the ctx->lock ensures the task won't get scheduled in. 1484 */ 1485 list_del_event(event, ctx); 1486 raw_spin_unlock_irq(&ctx->lock); 1487 } 1488 1489 /* 1490 * Cross CPU call to disable a performance event 1491 */ 1492 int __perf_event_disable(void *info) 1493 { 1494 struct perf_event *event = info; 1495 struct perf_event_context *ctx = event->ctx; 1496 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1497 1498 /* 1499 * If this is a per-task event, need to check whether this 1500 * event's task is the current task on this cpu. 1501 * 1502 * Can trigger due to concurrent perf_event_context_sched_out() 1503 * flipping contexts around. 1504 */ 1505 if (ctx->task && cpuctx->task_ctx != ctx) 1506 return -EINVAL; 1507 1508 raw_spin_lock(&ctx->lock); 1509 1510 /* 1511 * If the event is on, turn it off. 1512 * If it is in error state, leave it in error state. 1513 */ 1514 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1515 update_context_time(ctx); 1516 update_cgrp_time_from_event(event); 1517 update_group_times(event); 1518 if (event == event->group_leader) 1519 group_sched_out(event, cpuctx, ctx); 1520 else 1521 event_sched_out(event, cpuctx, ctx); 1522 event->state = PERF_EVENT_STATE_OFF; 1523 } 1524 1525 raw_spin_unlock(&ctx->lock); 1526 1527 return 0; 1528 } 1529 1530 /* 1531 * Disable a event. 1532 * 1533 * If event->ctx is a cloned context, callers must make sure that 1534 * every task struct that event->ctx->task could possibly point to 1535 * remains valid. This condition is satisifed when called through 1536 * perf_event_for_each_child or perf_event_for_each because they 1537 * hold the top-level event's child_mutex, so any descendant that 1538 * goes to exit will block in sync_child_event. 1539 * When called from perf_pending_event it's OK because event->ctx 1540 * is the current context on this CPU and preemption is disabled, 1541 * hence we can't get into perf_event_task_sched_out for this context. 1542 */ 1543 void perf_event_disable(struct perf_event *event) 1544 { 1545 struct perf_event_context *ctx = event->ctx; 1546 struct task_struct *task = ctx->task; 1547 1548 if (!task) { 1549 /* 1550 * Disable the event on the cpu that it's on 1551 */ 1552 cpu_function_call(event->cpu, __perf_event_disable, event); 1553 return; 1554 } 1555 1556 retry: 1557 if (!task_function_call(task, __perf_event_disable, event)) 1558 return; 1559 1560 raw_spin_lock_irq(&ctx->lock); 1561 /* 1562 * If the event is still active, we need to retry the cross-call. 1563 */ 1564 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1565 raw_spin_unlock_irq(&ctx->lock); 1566 /* 1567 * Reload the task pointer, it might have been changed by 1568 * a concurrent perf_event_context_sched_out(). 1569 */ 1570 task = ctx->task; 1571 goto retry; 1572 } 1573 1574 /* 1575 * Since we have the lock this context can't be scheduled 1576 * in, so we can change the state safely. 1577 */ 1578 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1579 update_group_times(event); 1580 event->state = PERF_EVENT_STATE_OFF; 1581 } 1582 raw_spin_unlock_irq(&ctx->lock); 1583 } 1584 EXPORT_SYMBOL_GPL(perf_event_disable); 1585 1586 static void perf_set_shadow_time(struct perf_event *event, 1587 struct perf_event_context *ctx, 1588 u64 tstamp) 1589 { 1590 /* 1591 * use the correct time source for the time snapshot 1592 * 1593 * We could get by without this by leveraging the 1594 * fact that to get to this function, the caller 1595 * has most likely already called update_context_time() 1596 * and update_cgrp_time_xx() and thus both timestamp 1597 * are identical (or very close). Given that tstamp is, 1598 * already adjusted for cgroup, we could say that: 1599 * tstamp - ctx->timestamp 1600 * is equivalent to 1601 * tstamp - cgrp->timestamp. 1602 * 1603 * Then, in perf_output_read(), the calculation would 1604 * work with no changes because: 1605 * - event is guaranteed scheduled in 1606 * - no scheduled out in between 1607 * - thus the timestamp would be the same 1608 * 1609 * But this is a bit hairy. 1610 * 1611 * So instead, we have an explicit cgroup call to remain 1612 * within the time time source all along. We believe it 1613 * is cleaner and simpler to understand. 1614 */ 1615 if (is_cgroup_event(event)) 1616 perf_cgroup_set_shadow_time(event, tstamp); 1617 else 1618 event->shadow_ctx_time = tstamp - ctx->timestamp; 1619 } 1620 1621 #define MAX_INTERRUPTS (~0ULL) 1622 1623 static void perf_log_throttle(struct perf_event *event, int enable); 1624 1625 static int 1626 event_sched_in(struct perf_event *event, 1627 struct perf_cpu_context *cpuctx, 1628 struct perf_event_context *ctx) 1629 { 1630 u64 tstamp = perf_event_time(event); 1631 1632 if (event->state <= PERF_EVENT_STATE_OFF) 1633 return 0; 1634 1635 event->state = PERF_EVENT_STATE_ACTIVE; 1636 event->oncpu = smp_processor_id(); 1637 1638 /* 1639 * Unthrottle events, since we scheduled we might have missed several 1640 * ticks already, also for a heavily scheduling task there is little 1641 * guarantee it'll get a tick in a timely manner. 1642 */ 1643 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1644 perf_log_throttle(event, 1); 1645 event->hw.interrupts = 0; 1646 } 1647 1648 /* 1649 * The new state must be visible before we turn it on in the hardware: 1650 */ 1651 smp_wmb(); 1652 1653 if (event->pmu->add(event, PERF_EF_START)) { 1654 event->state = PERF_EVENT_STATE_INACTIVE; 1655 event->oncpu = -1; 1656 return -EAGAIN; 1657 } 1658 1659 event->tstamp_running += tstamp - event->tstamp_stopped; 1660 1661 perf_set_shadow_time(event, ctx, tstamp); 1662 1663 if (!is_software_event(event)) 1664 cpuctx->active_oncpu++; 1665 ctx->nr_active++; 1666 if (event->attr.freq && event->attr.sample_freq) 1667 ctx->nr_freq++; 1668 1669 if (event->attr.exclusive) 1670 cpuctx->exclusive = 1; 1671 1672 return 0; 1673 } 1674 1675 static int 1676 group_sched_in(struct perf_event *group_event, 1677 struct perf_cpu_context *cpuctx, 1678 struct perf_event_context *ctx) 1679 { 1680 struct perf_event *event, *partial_group = NULL; 1681 struct pmu *pmu = group_event->pmu; 1682 u64 now = ctx->time; 1683 bool simulate = false; 1684 1685 if (group_event->state == PERF_EVENT_STATE_OFF) 1686 return 0; 1687 1688 pmu->start_txn(pmu); 1689 1690 if (event_sched_in(group_event, cpuctx, ctx)) { 1691 pmu->cancel_txn(pmu); 1692 perf_cpu_hrtimer_restart(cpuctx); 1693 return -EAGAIN; 1694 } 1695 1696 /* 1697 * Schedule in siblings as one group (if any): 1698 */ 1699 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1700 if (event_sched_in(event, cpuctx, ctx)) { 1701 partial_group = event; 1702 goto group_error; 1703 } 1704 } 1705 1706 if (!pmu->commit_txn(pmu)) 1707 return 0; 1708 1709 group_error: 1710 /* 1711 * Groups can be scheduled in as one unit only, so undo any 1712 * partial group before returning: 1713 * The events up to the failed event are scheduled out normally, 1714 * tstamp_stopped will be updated. 1715 * 1716 * The failed events and the remaining siblings need to have 1717 * their timings updated as if they had gone thru event_sched_in() 1718 * and event_sched_out(). This is required to get consistent timings 1719 * across the group. This also takes care of the case where the group 1720 * could never be scheduled by ensuring tstamp_stopped is set to mark 1721 * the time the event was actually stopped, such that time delta 1722 * calculation in update_event_times() is correct. 1723 */ 1724 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1725 if (event == partial_group) 1726 simulate = true; 1727 1728 if (simulate) { 1729 event->tstamp_running += now - event->tstamp_stopped; 1730 event->tstamp_stopped = now; 1731 } else { 1732 event_sched_out(event, cpuctx, ctx); 1733 } 1734 } 1735 event_sched_out(group_event, cpuctx, ctx); 1736 1737 pmu->cancel_txn(pmu); 1738 1739 perf_cpu_hrtimer_restart(cpuctx); 1740 1741 return -EAGAIN; 1742 } 1743 1744 /* 1745 * Work out whether we can put this event group on the CPU now. 1746 */ 1747 static int group_can_go_on(struct perf_event *event, 1748 struct perf_cpu_context *cpuctx, 1749 int can_add_hw) 1750 { 1751 /* 1752 * Groups consisting entirely of software events can always go on. 1753 */ 1754 if (event->group_flags & PERF_GROUP_SOFTWARE) 1755 return 1; 1756 /* 1757 * If an exclusive group is already on, no other hardware 1758 * events can go on. 1759 */ 1760 if (cpuctx->exclusive) 1761 return 0; 1762 /* 1763 * If this group is exclusive and there are already 1764 * events on the CPU, it can't go on. 1765 */ 1766 if (event->attr.exclusive && cpuctx->active_oncpu) 1767 return 0; 1768 /* 1769 * Otherwise, try to add it if all previous groups were able 1770 * to go on. 1771 */ 1772 return can_add_hw; 1773 } 1774 1775 static void add_event_to_ctx(struct perf_event *event, 1776 struct perf_event_context *ctx) 1777 { 1778 u64 tstamp = perf_event_time(event); 1779 1780 list_add_event(event, ctx); 1781 perf_group_attach(event); 1782 event->tstamp_enabled = tstamp; 1783 event->tstamp_running = tstamp; 1784 event->tstamp_stopped = tstamp; 1785 } 1786 1787 static void task_ctx_sched_out(struct perf_event_context *ctx); 1788 static void 1789 ctx_sched_in(struct perf_event_context *ctx, 1790 struct perf_cpu_context *cpuctx, 1791 enum event_type_t event_type, 1792 struct task_struct *task); 1793 1794 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1795 struct perf_event_context *ctx, 1796 struct task_struct *task) 1797 { 1798 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1799 if (ctx) 1800 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1801 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1802 if (ctx) 1803 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1804 } 1805 1806 /* 1807 * Cross CPU call to install and enable a performance event 1808 * 1809 * Must be called with ctx->mutex held 1810 */ 1811 static int __perf_install_in_context(void *info) 1812 { 1813 struct perf_event *event = info; 1814 struct perf_event_context *ctx = event->ctx; 1815 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1816 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1817 struct task_struct *task = current; 1818 1819 perf_ctx_lock(cpuctx, task_ctx); 1820 perf_pmu_disable(cpuctx->ctx.pmu); 1821 1822 /* 1823 * If there was an active task_ctx schedule it out. 1824 */ 1825 if (task_ctx) 1826 task_ctx_sched_out(task_ctx); 1827 1828 /* 1829 * If the context we're installing events in is not the 1830 * active task_ctx, flip them. 1831 */ 1832 if (ctx->task && task_ctx != ctx) { 1833 if (task_ctx) 1834 raw_spin_unlock(&task_ctx->lock); 1835 raw_spin_lock(&ctx->lock); 1836 task_ctx = ctx; 1837 } 1838 1839 if (task_ctx) { 1840 cpuctx->task_ctx = task_ctx; 1841 task = task_ctx->task; 1842 } 1843 1844 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1845 1846 update_context_time(ctx); 1847 /* 1848 * update cgrp time only if current cgrp 1849 * matches event->cgrp. Must be done before 1850 * calling add_event_to_ctx() 1851 */ 1852 update_cgrp_time_from_event(event); 1853 1854 add_event_to_ctx(event, ctx); 1855 1856 /* 1857 * Schedule everything back in 1858 */ 1859 perf_event_sched_in(cpuctx, task_ctx, task); 1860 1861 perf_pmu_enable(cpuctx->ctx.pmu); 1862 perf_ctx_unlock(cpuctx, task_ctx); 1863 1864 return 0; 1865 } 1866 1867 /* 1868 * Attach a performance event to a context 1869 * 1870 * First we add the event to the list with the hardware enable bit 1871 * in event->hw_config cleared. 1872 * 1873 * If the event is attached to a task which is on a CPU we use a smp 1874 * call to enable it in the task context. The task might have been 1875 * scheduled away, but we check this in the smp call again. 1876 */ 1877 static void 1878 perf_install_in_context(struct perf_event_context *ctx, 1879 struct perf_event *event, 1880 int cpu) 1881 { 1882 struct task_struct *task = ctx->task; 1883 1884 lockdep_assert_held(&ctx->mutex); 1885 1886 event->ctx = ctx; 1887 if (event->cpu != -1) 1888 event->cpu = cpu; 1889 1890 if (!task) { 1891 /* 1892 * Per cpu events are installed via an smp call and 1893 * the install is always successful. 1894 */ 1895 cpu_function_call(cpu, __perf_install_in_context, event); 1896 return; 1897 } 1898 1899 retry: 1900 if (!task_function_call(task, __perf_install_in_context, event)) 1901 return; 1902 1903 raw_spin_lock_irq(&ctx->lock); 1904 /* 1905 * If we failed to find a running task, but find the context active now 1906 * that we've acquired the ctx->lock, retry. 1907 */ 1908 if (ctx->is_active) { 1909 raw_spin_unlock_irq(&ctx->lock); 1910 goto retry; 1911 } 1912 1913 /* 1914 * Since the task isn't running, its safe to add the event, us holding 1915 * the ctx->lock ensures the task won't get scheduled in. 1916 */ 1917 add_event_to_ctx(event, ctx); 1918 raw_spin_unlock_irq(&ctx->lock); 1919 } 1920 1921 /* 1922 * Put a event into inactive state and update time fields. 1923 * Enabling the leader of a group effectively enables all 1924 * the group members that aren't explicitly disabled, so we 1925 * have to update their ->tstamp_enabled also. 1926 * Note: this works for group members as well as group leaders 1927 * since the non-leader members' sibling_lists will be empty. 1928 */ 1929 static void __perf_event_mark_enabled(struct perf_event *event) 1930 { 1931 struct perf_event *sub; 1932 u64 tstamp = perf_event_time(event); 1933 1934 event->state = PERF_EVENT_STATE_INACTIVE; 1935 event->tstamp_enabled = tstamp - event->total_time_enabled; 1936 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1937 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1938 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1939 } 1940 } 1941 1942 /* 1943 * Cross CPU call to enable a performance event 1944 */ 1945 static int __perf_event_enable(void *info) 1946 { 1947 struct perf_event *event = info; 1948 struct perf_event_context *ctx = event->ctx; 1949 struct perf_event *leader = event->group_leader; 1950 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1951 int err; 1952 1953 if (WARN_ON_ONCE(!ctx->is_active)) 1954 return -EINVAL; 1955 1956 raw_spin_lock(&ctx->lock); 1957 update_context_time(ctx); 1958 1959 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1960 goto unlock; 1961 1962 /* 1963 * set current task's cgroup time reference point 1964 */ 1965 perf_cgroup_set_timestamp(current, ctx); 1966 1967 __perf_event_mark_enabled(event); 1968 1969 if (!event_filter_match(event)) { 1970 if (is_cgroup_event(event)) 1971 perf_cgroup_defer_enabled(event); 1972 goto unlock; 1973 } 1974 1975 /* 1976 * If the event is in a group and isn't the group leader, 1977 * then don't put it on unless the group is on. 1978 */ 1979 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1980 goto unlock; 1981 1982 if (!group_can_go_on(event, cpuctx, 1)) { 1983 err = -EEXIST; 1984 } else { 1985 if (event == leader) 1986 err = group_sched_in(event, cpuctx, ctx); 1987 else 1988 err = event_sched_in(event, cpuctx, ctx); 1989 } 1990 1991 if (err) { 1992 /* 1993 * If this event can't go on and it's part of a 1994 * group, then the whole group has to come off. 1995 */ 1996 if (leader != event) { 1997 group_sched_out(leader, cpuctx, ctx); 1998 perf_cpu_hrtimer_restart(cpuctx); 1999 } 2000 if (leader->attr.pinned) { 2001 update_group_times(leader); 2002 leader->state = PERF_EVENT_STATE_ERROR; 2003 } 2004 } 2005 2006 unlock: 2007 raw_spin_unlock(&ctx->lock); 2008 2009 return 0; 2010 } 2011 2012 /* 2013 * Enable a event. 2014 * 2015 * If event->ctx is a cloned context, callers must make sure that 2016 * every task struct that event->ctx->task could possibly point to 2017 * remains valid. This condition is satisfied when called through 2018 * perf_event_for_each_child or perf_event_for_each as described 2019 * for perf_event_disable. 2020 */ 2021 void perf_event_enable(struct perf_event *event) 2022 { 2023 struct perf_event_context *ctx = event->ctx; 2024 struct task_struct *task = ctx->task; 2025 2026 if (!task) { 2027 /* 2028 * Enable the event on the cpu that it's on 2029 */ 2030 cpu_function_call(event->cpu, __perf_event_enable, event); 2031 return; 2032 } 2033 2034 raw_spin_lock_irq(&ctx->lock); 2035 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2036 goto out; 2037 2038 /* 2039 * If the event is in error state, clear that first. 2040 * That way, if we see the event in error state below, we 2041 * know that it has gone back into error state, as distinct 2042 * from the task having been scheduled away before the 2043 * cross-call arrived. 2044 */ 2045 if (event->state == PERF_EVENT_STATE_ERROR) 2046 event->state = PERF_EVENT_STATE_OFF; 2047 2048 retry: 2049 if (!ctx->is_active) { 2050 __perf_event_mark_enabled(event); 2051 goto out; 2052 } 2053 2054 raw_spin_unlock_irq(&ctx->lock); 2055 2056 if (!task_function_call(task, __perf_event_enable, event)) 2057 return; 2058 2059 raw_spin_lock_irq(&ctx->lock); 2060 2061 /* 2062 * If the context is active and the event is still off, 2063 * we need to retry the cross-call. 2064 */ 2065 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2066 /* 2067 * task could have been flipped by a concurrent 2068 * perf_event_context_sched_out() 2069 */ 2070 task = ctx->task; 2071 goto retry; 2072 } 2073 2074 out: 2075 raw_spin_unlock_irq(&ctx->lock); 2076 } 2077 EXPORT_SYMBOL_GPL(perf_event_enable); 2078 2079 int perf_event_refresh(struct perf_event *event, int refresh) 2080 { 2081 /* 2082 * not supported on inherited events 2083 */ 2084 if (event->attr.inherit || !is_sampling_event(event)) 2085 return -EINVAL; 2086 2087 atomic_add(refresh, &event->event_limit); 2088 perf_event_enable(event); 2089 2090 return 0; 2091 } 2092 EXPORT_SYMBOL_GPL(perf_event_refresh); 2093 2094 static void ctx_sched_out(struct perf_event_context *ctx, 2095 struct perf_cpu_context *cpuctx, 2096 enum event_type_t event_type) 2097 { 2098 struct perf_event *event; 2099 int is_active = ctx->is_active; 2100 2101 ctx->is_active &= ~event_type; 2102 if (likely(!ctx->nr_events)) 2103 return; 2104 2105 update_context_time(ctx); 2106 update_cgrp_time_from_cpuctx(cpuctx); 2107 if (!ctx->nr_active) 2108 return; 2109 2110 perf_pmu_disable(ctx->pmu); 2111 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2112 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2113 group_sched_out(event, cpuctx, ctx); 2114 } 2115 2116 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2117 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2118 group_sched_out(event, cpuctx, ctx); 2119 } 2120 perf_pmu_enable(ctx->pmu); 2121 } 2122 2123 /* 2124 * Test whether two contexts are equivalent, i.e. whether they 2125 * have both been cloned from the same version of the same context 2126 * and they both have the same number of enabled events. 2127 * If the number of enabled events is the same, then the set 2128 * of enabled events should be the same, because these are both 2129 * inherited contexts, therefore we can't access individual events 2130 * in them directly with an fd; we can only enable/disable all 2131 * events via prctl, or enable/disable all events in a family 2132 * via ioctl, which will have the same effect on both contexts. 2133 */ 2134 static int context_equiv(struct perf_event_context *ctx1, 2135 struct perf_event_context *ctx2) 2136 { 2137 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 2138 && ctx1->parent_gen == ctx2->parent_gen 2139 && !ctx1->pin_count && !ctx2->pin_count; 2140 } 2141 2142 static void __perf_event_sync_stat(struct perf_event *event, 2143 struct perf_event *next_event) 2144 { 2145 u64 value; 2146 2147 if (!event->attr.inherit_stat) 2148 return; 2149 2150 /* 2151 * Update the event value, we cannot use perf_event_read() 2152 * because we're in the middle of a context switch and have IRQs 2153 * disabled, which upsets smp_call_function_single(), however 2154 * we know the event must be on the current CPU, therefore we 2155 * don't need to use it. 2156 */ 2157 switch (event->state) { 2158 case PERF_EVENT_STATE_ACTIVE: 2159 event->pmu->read(event); 2160 /* fall-through */ 2161 2162 case PERF_EVENT_STATE_INACTIVE: 2163 update_event_times(event); 2164 break; 2165 2166 default: 2167 break; 2168 } 2169 2170 /* 2171 * In order to keep per-task stats reliable we need to flip the event 2172 * values when we flip the contexts. 2173 */ 2174 value = local64_read(&next_event->count); 2175 value = local64_xchg(&event->count, value); 2176 local64_set(&next_event->count, value); 2177 2178 swap(event->total_time_enabled, next_event->total_time_enabled); 2179 swap(event->total_time_running, next_event->total_time_running); 2180 2181 /* 2182 * Since we swizzled the values, update the user visible data too. 2183 */ 2184 perf_event_update_userpage(event); 2185 perf_event_update_userpage(next_event); 2186 } 2187 2188 #define list_next_entry(pos, member) \ 2189 list_entry(pos->member.next, typeof(*pos), member) 2190 2191 static void perf_event_sync_stat(struct perf_event_context *ctx, 2192 struct perf_event_context *next_ctx) 2193 { 2194 struct perf_event *event, *next_event; 2195 2196 if (!ctx->nr_stat) 2197 return; 2198 2199 update_context_time(ctx); 2200 2201 event = list_first_entry(&ctx->event_list, 2202 struct perf_event, event_entry); 2203 2204 next_event = list_first_entry(&next_ctx->event_list, 2205 struct perf_event, event_entry); 2206 2207 while (&event->event_entry != &ctx->event_list && 2208 &next_event->event_entry != &next_ctx->event_list) { 2209 2210 __perf_event_sync_stat(event, next_event); 2211 2212 event = list_next_entry(event, event_entry); 2213 next_event = list_next_entry(next_event, event_entry); 2214 } 2215 } 2216 2217 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2218 struct task_struct *next) 2219 { 2220 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2221 struct perf_event_context *next_ctx; 2222 struct perf_event_context *parent; 2223 struct perf_cpu_context *cpuctx; 2224 int do_switch = 1; 2225 2226 if (likely(!ctx)) 2227 return; 2228 2229 cpuctx = __get_cpu_context(ctx); 2230 if (!cpuctx->task_ctx) 2231 return; 2232 2233 rcu_read_lock(); 2234 parent = rcu_dereference(ctx->parent_ctx); 2235 next_ctx = next->perf_event_ctxp[ctxn]; 2236 if (parent && next_ctx && 2237 rcu_dereference(next_ctx->parent_ctx) == parent) { 2238 /* 2239 * Looks like the two contexts are clones, so we might be 2240 * able to optimize the context switch. We lock both 2241 * contexts and check that they are clones under the 2242 * lock (including re-checking that neither has been 2243 * uncloned in the meantime). It doesn't matter which 2244 * order we take the locks because no other cpu could 2245 * be trying to lock both of these tasks. 2246 */ 2247 raw_spin_lock(&ctx->lock); 2248 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2249 if (context_equiv(ctx, next_ctx)) { 2250 /* 2251 * XXX do we need a memory barrier of sorts 2252 * wrt to rcu_dereference() of perf_event_ctxp 2253 */ 2254 task->perf_event_ctxp[ctxn] = next_ctx; 2255 next->perf_event_ctxp[ctxn] = ctx; 2256 ctx->task = next; 2257 next_ctx->task = task; 2258 do_switch = 0; 2259 2260 perf_event_sync_stat(ctx, next_ctx); 2261 } 2262 raw_spin_unlock(&next_ctx->lock); 2263 raw_spin_unlock(&ctx->lock); 2264 } 2265 rcu_read_unlock(); 2266 2267 if (do_switch) { 2268 raw_spin_lock(&ctx->lock); 2269 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2270 cpuctx->task_ctx = NULL; 2271 raw_spin_unlock(&ctx->lock); 2272 } 2273 } 2274 2275 #define for_each_task_context_nr(ctxn) \ 2276 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2277 2278 /* 2279 * Called from scheduler to remove the events of the current task, 2280 * with interrupts disabled. 2281 * 2282 * We stop each event and update the event value in event->count. 2283 * 2284 * This does not protect us against NMI, but disable() 2285 * sets the disabled bit in the control field of event _before_ 2286 * accessing the event control register. If a NMI hits, then it will 2287 * not restart the event. 2288 */ 2289 void __perf_event_task_sched_out(struct task_struct *task, 2290 struct task_struct *next) 2291 { 2292 int ctxn; 2293 2294 for_each_task_context_nr(ctxn) 2295 perf_event_context_sched_out(task, ctxn, next); 2296 2297 /* 2298 * if cgroup events exist on this CPU, then we need 2299 * to check if we have to switch out PMU state. 2300 * cgroup event are system-wide mode only 2301 */ 2302 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2303 perf_cgroup_sched_out(task, next); 2304 } 2305 2306 static void task_ctx_sched_out(struct perf_event_context *ctx) 2307 { 2308 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2309 2310 if (!cpuctx->task_ctx) 2311 return; 2312 2313 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2314 return; 2315 2316 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2317 cpuctx->task_ctx = NULL; 2318 } 2319 2320 /* 2321 * Called with IRQs disabled 2322 */ 2323 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2324 enum event_type_t event_type) 2325 { 2326 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2327 } 2328 2329 static void 2330 ctx_pinned_sched_in(struct perf_event_context *ctx, 2331 struct perf_cpu_context *cpuctx) 2332 { 2333 struct perf_event *event; 2334 2335 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2336 if (event->state <= PERF_EVENT_STATE_OFF) 2337 continue; 2338 if (!event_filter_match(event)) 2339 continue; 2340 2341 /* may need to reset tstamp_enabled */ 2342 if (is_cgroup_event(event)) 2343 perf_cgroup_mark_enabled(event, ctx); 2344 2345 if (group_can_go_on(event, cpuctx, 1)) 2346 group_sched_in(event, cpuctx, ctx); 2347 2348 /* 2349 * If this pinned group hasn't been scheduled, 2350 * put it in error state. 2351 */ 2352 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2353 update_group_times(event); 2354 event->state = PERF_EVENT_STATE_ERROR; 2355 } 2356 } 2357 } 2358 2359 static void 2360 ctx_flexible_sched_in(struct perf_event_context *ctx, 2361 struct perf_cpu_context *cpuctx) 2362 { 2363 struct perf_event *event; 2364 int can_add_hw = 1; 2365 2366 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2367 /* Ignore events in OFF or ERROR state */ 2368 if (event->state <= PERF_EVENT_STATE_OFF) 2369 continue; 2370 /* 2371 * Listen to the 'cpu' scheduling filter constraint 2372 * of events: 2373 */ 2374 if (!event_filter_match(event)) 2375 continue; 2376 2377 /* may need to reset tstamp_enabled */ 2378 if (is_cgroup_event(event)) 2379 perf_cgroup_mark_enabled(event, ctx); 2380 2381 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2382 if (group_sched_in(event, cpuctx, ctx)) 2383 can_add_hw = 0; 2384 } 2385 } 2386 } 2387 2388 static void 2389 ctx_sched_in(struct perf_event_context *ctx, 2390 struct perf_cpu_context *cpuctx, 2391 enum event_type_t event_type, 2392 struct task_struct *task) 2393 { 2394 u64 now; 2395 int is_active = ctx->is_active; 2396 2397 ctx->is_active |= event_type; 2398 if (likely(!ctx->nr_events)) 2399 return; 2400 2401 now = perf_clock(); 2402 ctx->timestamp = now; 2403 perf_cgroup_set_timestamp(task, ctx); 2404 /* 2405 * First go through the list and put on any pinned groups 2406 * in order to give them the best chance of going on. 2407 */ 2408 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2409 ctx_pinned_sched_in(ctx, cpuctx); 2410 2411 /* Then walk through the lower prio flexible groups */ 2412 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2413 ctx_flexible_sched_in(ctx, cpuctx); 2414 } 2415 2416 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2417 enum event_type_t event_type, 2418 struct task_struct *task) 2419 { 2420 struct perf_event_context *ctx = &cpuctx->ctx; 2421 2422 ctx_sched_in(ctx, cpuctx, event_type, task); 2423 } 2424 2425 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2426 struct task_struct *task) 2427 { 2428 struct perf_cpu_context *cpuctx; 2429 2430 cpuctx = __get_cpu_context(ctx); 2431 if (cpuctx->task_ctx == ctx) 2432 return; 2433 2434 perf_ctx_lock(cpuctx, ctx); 2435 perf_pmu_disable(ctx->pmu); 2436 /* 2437 * We want to keep the following priority order: 2438 * cpu pinned (that don't need to move), task pinned, 2439 * cpu flexible, task flexible. 2440 */ 2441 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2442 2443 if (ctx->nr_events) 2444 cpuctx->task_ctx = ctx; 2445 2446 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2447 2448 perf_pmu_enable(ctx->pmu); 2449 perf_ctx_unlock(cpuctx, ctx); 2450 2451 /* 2452 * Since these rotations are per-cpu, we need to ensure the 2453 * cpu-context we got scheduled on is actually rotating. 2454 */ 2455 perf_pmu_rotate_start(ctx->pmu); 2456 } 2457 2458 /* 2459 * When sampling the branck stack in system-wide, it may be necessary 2460 * to flush the stack on context switch. This happens when the branch 2461 * stack does not tag its entries with the pid of the current task. 2462 * Otherwise it becomes impossible to associate a branch entry with a 2463 * task. This ambiguity is more likely to appear when the branch stack 2464 * supports priv level filtering and the user sets it to monitor only 2465 * at the user level (which could be a useful measurement in system-wide 2466 * mode). In that case, the risk is high of having a branch stack with 2467 * branch from multiple tasks. Flushing may mean dropping the existing 2468 * entries or stashing them somewhere in the PMU specific code layer. 2469 * 2470 * This function provides the context switch callback to the lower code 2471 * layer. It is invoked ONLY when there is at least one system-wide context 2472 * with at least one active event using taken branch sampling. 2473 */ 2474 static void perf_branch_stack_sched_in(struct task_struct *prev, 2475 struct task_struct *task) 2476 { 2477 struct perf_cpu_context *cpuctx; 2478 struct pmu *pmu; 2479 unsigned long flags; 2480 2481 /* no need to flush branch stack if not changing task */ 2482 if (prev == task) 2483 return; 2484 2485 local_irq_save(flags); 2486 2487 rcu_read_lock(); 2488 2489 list_for_each_entry_rcu(pmu, &pmus, entry) { 2490 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2491 2492 /* 2493 * check if the context has at least one 2494 * event using PERF_SAMPLE_BRANCH_STACK 2495 */ 2496 if (cpuctx->ctx.nr_branch_stack > 0 2497 && pmu->flush_branch_stack) { 2498 2499 pmu = cpuctx->ctx.pmu; 2500 2501 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2502 2503 perf_pmu_disable(pmu); 2504 2505 pmu->flush_branch_stack(); 2506 2507 perf_pmu_enable(pmu); 2508 2509 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2510 } 2511 } 2512 2513 rcu_read_unlock(); 2514 2515 local_irq_restore(flags); 2516 } 2517 2518 /* 2519 * Called from scheduler to add the events of the current task 2520 * with interrupts disabled. 2521 * 2522 * We restore the event value and then enable it. 2523 * 2524 * This does not protect us against NMI, but enable() 2525 * sets the enabled bit in the control field of event _before_ 2526 * accessing the event control register. If a NMI hits, then it will 2527 * keep the event running. 2528 */ 2529 void __perf_event_task_sched_in(struct task_struct *prev, 2530 struct task_struct *task) 2531 { 2532 struct perf_event_context *ctx; 2533 int ctxn; 2534 2535 for_each_task_context_nr(ctxn) { 2536 ctx = task->perf_event_ctxp[ctxn]; 2537 if (likely(!ctx)) 2538 continue; 2539 2540 perf_event_context_sched_in(ctx, task); 2541 } 2542 /* 2543 * if cgroup events exist on this CPU, then we need 2544 * to check if we have to switch in PMU state. 2545 * cgroup event are system-wide mode only 2546 */ 2547 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2548 perf_cgroup_sched_in(prev, task); 2549 2550 /* check for system-wide branch_stack events */ 2551 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2552 perf_branch_stack_sched_in(prev, task); 2553 } 2554 2555 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2556 { 2557 u64 frequency = event->attr.sample_freq; 2558 u64 sec = NSEC_PER_SEC; 2559 u64 divisor, dividend; 2560 2561 int count_fls, nsec_fls, frequency_fls, sec_fls; 2562 2563 count_fls = fls64(count); 2564 nsec_fls = fls64(nsec); 2565 frequency_fls = fls64(frequency); 2566 sec_fls = 30; 2567 2568 /* 2569 * We got @count in @nsec, with a target of sample_freq HZ 2570 * the target period becomes: 2571 * 2572 * @count * 10^9 2573 * period = ------------------- 2574 * @nsec * sample_freq 2575 * 2576 */ 2577 2578 /* 2579 * Reduce accuracy by one bit such that @a and @b converge 2580 * to a similar magnitude. 2581 */ 2582 #define REDUCE_FLS(a, b) \ 2583 do { \ 2584 if (a##_fls > b##_fls) { \ 2585 a >>= 1; \ 2586 a##_fls--; \ 2587 } else { \ 2588 b >>= 1; \ 2589 b##_fls--; \ 2590 } \ 2591 } while (0) 2592 2593 /* 2594 * Reduce accuracy until either term fits in a u64, then proceed with 2595 * the other, so that finally we can do a u64/u64 division. 2596 */ 2597 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2598 REDUCE_FLS(nsec, frequency); 2599 REDUCE_FLS(sec, count); 2600 } 2601 2602 if (count_fls + sec_fls > 64) { 2603 divisor = nsec * frequency; 2604 2605 while (count_fls + sec_fls > 64) { 2606 REDUCE_FLS(count, sec); 2607 divisor >>= 1; 2608 } 2609 2610 dividend = count * sec; 2611 } else { 2612 dividend = count * sec; 2613 2614 while (nsec_fls + frequency_fls > 64) { 2615 REDUCE_FLS(nsec, frequency); 2616 dividend >>= 1; 2617 } 2618 2619 divisor = nsec * frequency; 2620 } 2621 2622 if (!divisor) 2623 return dividend; 2624 2625 return div64_u64(dividend, divisor); 2626 } 2627 2628 static DEFINE_PER_CPU(int, perf_throttled_count); 2629 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2630 2631 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2632 { 2633 struct hw_perf_event *hwc = &event->hw; 2634 s64 period, sample_period; 2635 s64 delta; 2636 2637 period = perf_calculate_period(event, nsec, count); 2638 2639 delta = (s64)(period - hwc->sample_period); 2640 delta = (delta + 7) / 8; /* low pass filter */ 2641 2642 sample_period = hwc->sample_period + delta; 2643 2644 if (!sample_period) 2645 sample_period = 1; 2646 2647 hwc->sample_period = sample_period; 2648 2649 if (local64_read(&hwc->period_left) > 8*sample_period) { 2650 if (disable) 2651 event->pmu->stop(event, PERF_EF_UPDATE); 2652 2653 local64_set(&hwc->period_left, 0); 2654 2655 if (disable) 2656 event->pmu->start(event, PERF_EF_RELOAD); 2657 } 2658 } 2659 2660 /* 2661 * combine freq adjustment with unthrottling to avoid two passes over the 2662 * events. At the same time, make sure, having freq events does not change 2663 * the rate of unthrottling as that would introduce bias. 2664 */ 2665 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2666 int needs_unthr) 2667 { 2668 struct perf_event *event; 2669 struct hw_perf_event *hwc; 2670 u64 now, period = TICK_NSEC; 2671 s64 delta; 2672 2673 /* 2674 * only need to iterate over all events iff: 2675 * - context have events in frequency mode (needs freq adjust) 2676 * - there are events to unthrottle on this cpu 2677 */ 2678 if (!(ctx->nr_freq || needs_unthr)) 2679 return; 2680 2681 raw_spin_lock(&ctx->lock); 2682 perf_pmu_disable(ctx->pmu); 2683 2684 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2685 if (event->state != PERF_EVENT_STATE_ACTIVE) 2686 continue; 2687 2688 if (!event_filter_match(event)) 2689 continue; 2690 2691 hwc = &event->hw; 2692 2693 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2694 hwc->interrupts = 0; 2695 perf_log_throttle(event, 1); 2696 event->pmu->start(event, 0); 2697 } 2698 2699 if (!event->attr.freq || !event->attr.sample_freq) 2700 continue; 2701 2702 /* 2703 * stop the event and update event->count 2704 */ 2705 event->pmu->stop(event, PERF_EF_UPDATE); 2706 2707 now = local64_read(&event->count); 2708 delta = now - hwc->freq_count_stamp; 2709 hwc->freq_count_stamp = now; 2710 2711 /* 2712 * restart the event 2713 * reload only if value has changed 2714 * we have stopped the event so tell that 2715 * to perf_adjust_period() to avoid stopping it 2716 * twice. 2717 */ 2718 if (delta > 0) 2719 perf_adjust_period(event, period, delta, false); 2720 2721 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2722 } 2723 2724 perf_pmu_enable(ctx->pmu); 2725 raw_spin_unlock(&ctx->lock); 2726 } 2727 2728 /* 2729 * Round-robin a context's events: 2730 */ 2731 static void rotate_ctx(struct perf_event_context *ctx) 2732 { 2733 /* 2734 * Rotate the first entry last of non-pinned groups. Rotation might be 2735 * disabled by the inheritance code. 2736 */ 2737 if (!ctx->rotate_disable) 2738 list_rotate_left(&ctx->flexible_groups); 2739 } 2740 2741 /* 2742 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2743 * because they're strictly cpu affine and rotate_start is called with IRQs 2744 * disabled, while rotate_context is called from IRQ context. 2745 */ 2746 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2747 { 2748 struct perf_event_context *ctx = NULL; 2749 int rotate = 0, remove = 1; 2750 2751 if (cpuctx->ctx.nr_events) { 2752 remove = 0; 2753 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2754 rotate = 1; 2755 } 2756 2757 ctx = cpuctx->task_ctx; 2758 if (ctx && ctx->nr_events) { 2759 remove = 0; 2760 if (ctx->nr_events != ctx->nr_active) 2761 rotate = 1; 2762 } 2763 2764 if (!rotate) 2765 goto done; 2766 2767 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2768 perf_pmu_disable(cpuctx->ctx.pmu); 2769 2770 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2771 if (ctx) 2772 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2773 2774 rotate_ctx(&cpuctx->ctx); 2775 if (ctx) 2776 rotate_ctx(ctx); 2777 2778 perf_event_sched_in(cpuctx, ctx, current); 2779 2780 perf_pmu_enable(cpuctx->ctx.pmu); 2781 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2782 done: 2783 if (remove) 2784 list_del_init(&cpuctx->rotation_list); 2785 2786 return rotate; 2787 } 2788 2789 #ifdef CONFIG_NO_HZ_FULL 2790 bool perf_event_can_stop_tick(void) 2791 { 2792 if (list_empty(&__get_cpu_var(rotation_list))) 2793 return true; 2794 else 2795 return false; 2796 } 2797 #endif 2798 2799 void perf_event_task_tick(void) 2800 { 2801 struct list_head *head = &__get_cpu_var(rotation_list); 2802 struct perf_cpu_context *cpuctx, *tmp; 2803 struct perf_event_context *ctx; 2804 int throttled; 2805 2806 WARN_ON(!irqs_disabled()); 2807 2808 __this_cpu_inc(perf_throttled_seq); 2809 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2810 2811 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2812 ctx = &cpuctx->ctx; 2813 perf_adjust_freq_unthr_context(ctx, throttled); 2814 2815 ctx = cpuctx->task_ctx; 2816 if (ctx) 2817 perf_adjust_freq_unthr_context(ctx, throttled); 2818 } 2819 } 2820 2821 static int event_enable_on_exec(struct perf_event *event, 2822 struct perf_event_context *ctx) 2823 { 2824 if (!event->attr.enable_on_exec) 2825 return 0; 2826 2827 event->attr.enable_on_exec = 0; 2828 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2829 return 0; 2830 2831 __perf_event_mark_enabled(event); 2832 2833 return 1; 2834 } 2835 2836 /* 2837 * Enable all of a task's events that have been marked enable-on-exec. 2838 * This expects task == current. 2839 */ 2840 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2841 { 2842 struct perf_event *event; 2843 unsigned long flags; 2844 int enabled = 0; 2845 int ret; 2846 2847 local_irq_save(flags); 2848 if (!ctx || !ctx->nr_events) 2849 goto out; 2850 2851 /* 2852 * We must ctxsw out cgroup events to avoid conflict 2853 * when invoking perf_task_event_sched_in() later on 2854 * in this function. Otherwise we end up trying to 2855 * ctxswin cgroup events which are already scheduled 2856 * in. 2857 */ 2858 perf_cgroup_sched_out(current, NULL); 2859 2860 raw_spin_lock(&ctx->lock); 2861 task_ctx_sched_out(ctx); 2862 2863 list_for_each_entry(event, &ctx->event_list, event_entry) { 2864 ret = event_enable_on_exec(event, ctx); 2865 if (ret) 2866 enabled = 1; 2867 } 2868 2869 /* 2870 * Unclone this context if we enabled any event. 2871 */ 2872 if (enabled) 2873 unclone_ctx(ctx); 2874 2875 raw_spin_unlock(&ctx->lock); 2876 2877 /* 2878 * Also calls ctxswin for cgroup events, if any: 2879 */ 2880 perf_event_context_sched_in(ctx, ctx->task); 2881 out: 2882 local_irq_restore(flags); 2883 } 2884 2885 /* 2886 * Cross CPU call to read the hardware event 2887 */ 2888 static void __perf_event_read(void *info) 2889 { 2890 struct perf_event *event = info; 2891 struct perf_event_context *ctx = event->ctx; 2892 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2893 2894 /* 2895 * If this is a task context, we need to check whether it is 2896 * the current task context of this cpu. If not it has been 2897 * scheduled out before the smp call arrived. In that case 2898 * event->count would have been updated to a recent sample 2899 * when the event was scheduled out. 2900 */ 2901 if (ctx->task && cpuctx->task_ctx != ctx) 2902 return; 2903 2904 raw_spin_lock(&ctx->lock); 2905 if (ctx->is_active) { 2906 update_context_time(ctx); 2907 update_cgrp_time_from_event(event); 2908 } 2909 update_event_times(event); 2910 if (event->state == PERF_EVENT_STATE_ACTIVE) 2911 event->pmu->read(event); 2912 raw_spin_unlock(&ctx->lock); 2913 } 2914 2915 static inline u64 perf_event_count(struct perf_event *event) 2916 { 2917 return local64_read(&event->count) + atomic64_read(&event->child_count); 2918 } 2919 2920 static u64 perf_event_read(struct perf_event *event) 2921 { 2922 /* 2923 * If event is enabled and currently active on a CPU, update the 2924 * value in the event structure: 2925 */ 2926 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2927 smp_call_function_single(event->oncpu, 2928 __perf_event_read, event, 1); 2929 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2930 struct perf_event_context *ctx = event->ctx; 2931 unsigned long flags; 2932 2933 raw_spin_lock_irqsave(&ctx->lock, flags); 2934 /* 2935 * may read while context is not active 2936 * (e.g., thread is blocked), in that case 2937 * we cannot update context time 2938 */ 2939 if (ctx->is_active) { 2940 update_context_time(ctx); 2941 update_cgrp_time_from_event(event); 2942 } 2943 update_event_times(event); 2944 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2945 } 2946 2947 return perf_event_count(event); 2948 } 2949 2950 /* 2951 * Initialize the perf_event context in a task_struct: 2952 */ 2953 static void __perf_event_init_context(struct perf_event_context *ctx) 2954 { 2955 raw_spin_lock_init(&ctx->lock); 2956 mutex_init(&ctx->mutex); 2957 INIT_LIST_HEAD(&ctx->pinned_groups); 2958 INIT_LIST_HEAD(&ctx->flexible_groups); 2959 INIT_LIST_HEAD(&ctx->event_list); 2960 atomic_set(&ctx->refcount, 1); 2961 } 2962 2963 static struct perf_event_context * 2964 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2965 { 2966 struct perf_event_context *ctx; 2967 2968 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2969 if (!ctx) 2970 return NULL; 2971 2972 __perf_event_init_context(ctx); 2973 if (task) { 2974 ctx->task = task; 2975 get_task_struct(task); 2976 } 2977 ctx->pmu = pmu; 2978 2979 return ctx; 2980 } 2981 2982 static struct task_struct * 2983 find_lively_task_by_vpid(pid_t vpid) 2984 { 2985 struct task_struct *task; 2986 int err; 2987 2988 rcu_read_lock(); 2989 if (!vpid) 2990 task = current; 2991 else 2992 task = find_task_by_vpid(vpid); 2993 if (task) 2994 get_task_struct(task); 2995 rcu_read_unlock(); 2996 2997 if (!task) 2998 return ERR_PTR(-ESRCH); 2999 3000 /* Reuse ptrace permission checks for now. */ 3001 err = -EACCES; 3002 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3003 goto errout; 3004 3005 return task; 3006 errout: 3007 put_task_struct(task); 3008 return ERR_PTR(err); 3009 3010 } 3011 3012 /* 3013 * Returns a matching context with refcount and pincount. 3014 */ 3015 static struct perf_event_context * 3016 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3017 { 3018 struct perf_event_context *ctx; 3019 struct perf_cpu_context *cpuctx; 3020 unsigned long flags; 3021 int ctxn, err; 3022 3023 if (!task) { 3024 /* Must be root to operate on a CPU event: */ 3025 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3026 return ERR_PTR(-EACCES); 3027 3028 /* 3029 * We could be clever and allow to attach a event to an 3030 * offline CPU and activate it when the CPU comes up, but 3031 * that's for later. 3032 */ 3033 if (!cpu_online(cpu)) 3034 return ERR_PTR(-ENODEV); 3035 3036 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3037 ctx = &cpuctx->ctx; 3038 get_ctx(ctx); 3039 ++ctx->pin_count; 3040 3041 return ctx; 3042 } 3043 3044 err = -EINVAL; 3045 ctxn = pmu->task_ctx_nr; 3046 if (ctxn < 0) 3047 goto errout; 3048 3049 retry: 3050 ctx = perf_lock_task_context(task, ctxn, &flags); 3051 if (ctx) { 3052 unclone_ctx(ctx); 3053 ++ctx->pin_count; 3054 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3055 } else { 3056 ctx = alloc_perf_context(pmu, task); 3057 err = -ENOMEM; 3058 if (!ctx) 3059 goto errout; 3060 3061 err = 0; 3062 mutex_lock(&task->perf_event_mutex); 3063 /* 3064 * If it has already passed perf_event_exit_task(). 3065 * we must see PF_EXITING, it takes this mutex too. 3066 */ 3067 if (task->flags & PF_EXITING) 3068 err = -ESRCH; 3069 else if (task->perf_event_ctxp[ctxn]) 3070 err = -EAGAIN; 3071 else { 3072 get_ctx(ctx); 3073 ++ctx->pin_count; 3074 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3075 } 3076 mutex_unlock(&task->perf_event_mutex); 3077 3078 if (unlikely(err)) { 3079 put_ctx(ctx); 3080 3081 if (err == -EAGAIN) 3082 goto retry; 3083 goto errout; 3084 } 3085 } 3086 3087 return ctx; 3088 3089 errout: 3090 return ERR_PTR(err); 3091 } 3092 3093 static void perf_event_free_filter(struct perf_event *event); 3094 3095 static void free_event_rcu(struct rcu_head *head) 3096 { 3097 struct perf_event *event; 3098 3099 event = container_of(head, struct perf_event, rcu_head); 3100 if (event->ns) 3101 put_pid_ns(event->ns); 3102 perf_event_free_filter(event); 3103 kfree(event); 3104 } 3105 3106 static void ring_buffer_put(struct ring_buffer *rb); 3107 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb); 3108 3109 static void free_event(struct perf_event *event) 3110 { 3111 irq_work_sync(&event->pending); 3112 3113 if (!event->parent) { 3114 if (event->attach_state & PERF_ATTACH_TASK) 3115 static_key_slow_dec_deferred(&perf_sched_events); 3116 if (event->attr.mmap || event->attr.mmap_data) 3117 atomic_dec(&nr_mmap_events); 3118 if (event->attr.comm) 3119 atomic_dec(&nr_comm_events); 3120 if (event->attr.task) 3121 atomic_dec(&nr_task_events); 3122 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3123 put_callchain_buffers(); 3124 if (is_cgroup_event(event)) { 3125 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 3126 static_key_slow_dec_deferred(&perf_sched_events); 3127 } 3128 3129 if (has_branch_stack(event)) { 3130 static_key_slow_dec_deferred(&perf_sched_events); 3131 /* is system-wide event */ 3132 if (!(event->attach_state & PERF_ATTACH_TASK)) { 3133 atomic_dec(&per_cpu(perf_branch_stack_events, 3134 event->cpu)); 3135 } 3136 } 3137 } 3138 3139 if (event->rb) { 3140 struct ring_buffer *rb; 3141 3142 /* 3143 * Can happen when we close an event with re-directed output. 3144 * 3145 * Since we have a 0 refcount, perf_mmap_close() will skip 3146 * over us; possibly making our ring_buffer_put() the last. 3147 */ 3148 mutex_lock(&event->mmap_mutex); 3149 rb = event->rb; 3150 if (rb) { 3151 rcu_assign_pointer(event->rb, NULL); 3152 ring_buffer_detach(event, rb); 3153 ring_buffer_put(rb); /* could be last */ 3154 } 3155 mutex_unlock(&event->mmap_mutex); 3156 } 3157 3158 if (is_cgroup_event(event)) 3159 perf_detach_cgroup(event); 3160 3161 if (event->destroy) 3162 event->destroy(event); 3163 3164 if (event->ctx) 3165 put_ctx(event->ctx); 3166 3167 call_rcu(&event->rcu_head, free_event_rcu); 3168 } 3169 3170 int perf_event_release_kernel(struct perf_event *event) 3171 { 3172 struct perf_event_context *ctx = event->ctx; 3173 3174 WARN_ON_ONCE(ctx->parent_ctx); 3175 /* 3176 * There are two ways this annotation is useful: 3177 * 3178 * 1) there is a lock recursion from perf_event_exit_task 3179 * see the comment there. 3180 * 3181 * 2) there is a lock-inversion with mmap_sem through 3182 * perf_event_read_group(), which takes faults while 3183 * holding ctx->mutex, however this is called after 3184 * the last filedesc died, so there is no possibility 3185 * to trigger the AB-BA case. 3186 */ 3187 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3188 raw_spin_lock_irq(&ctx->lock); 3189 perf_group_detach(event); 3190 raw_spin_unlock_irq(&ctx->lock); 3191 perf_remove_from_context(event); 3192 mutex_unlock(&ctx->mutex); 3193 3194 free_event(event); 3195 3196 return 0; 3197 } 3198 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3199 3200 /* 3201 * Called when the last reference to the file is gone. 3202 */ 3203 static void put_event(struct perf_event *event) 3204 { 3205 struct task_struct *owner; 3206 3207 if (!atomic_long_dec_and_test(&event->refcount)) 3208 return; 3209 3210 rcu_read_lock(); 3211 owner = ACCESS_ONCE(event->owner); 3212 /* 3213 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3214 * !owner it means the list deletion is complete and we can indeed 3215 * free this event, otherwise we need to serialize on 3216 * owner->perf_event_mutex. 3217 */ 3218 smp_read_barrier_depends(); 3219 if (owner) { 3220 /* 3221 * Since delayed_put_task_struct() also drops the last 3222 * task reference we can safely take a new reference 3223 * while holding the rcu_read_lock(). 3224 */ 3225 get_task_struct(owner); 3226 } 3227 rcu_read_unlock(); 3228 3229 if (owner) { 3230 mutex_lock(&owner->perf_event_mutex); 3231 /* 3232 * We have to re-check the event->owner field, if it is cleared 3233 * we raced with perf_event_exit_task(), acquiring the mutex 3234 * ensured they're done, and we can proceed with freeing the 3235 * event. 3236 */ 3237 if (event->owner) 3238 list_del_init(&event->owner_entry); 3239 mutex_unlock(&owner->perf_event_mutex); 3240 put_task_struct(owner); 3241 } 3242 3243 perf_event_release_kernel(event); 3244 } 3245 3246 static int perf_release(struct inode *inode, struct file *file) 3247 { 3248 put_event(file->private_data); 3249 return 0; 3250 } 3251 3252 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3253 { 3254 struct perf_event *child; 3255 u64 total = 0; 3256 3257 *enabled = 0; 3258 *running = 0; 3259 3260 mutex_lock(&event->child_mutex); 3261 total += perf_event_read(event); 3262 *enabled += event->total_time_enabled + 3263 atomic64_read(&event->child_total_time_enabled); 3264 *running += event->total_time_running + 3265 atomic64_read(&event->child_total_time_running); 3266 3267 list_for_each_entry(child, &event->child_list, child_list) { 3268 total += perf_event_read(child); 3269 *enabled += child->total_time_enabled; 3270 *running += child->total_time_running; 3271 } 3272 mutex_unlock(&event->child_mutex); 3273 3274 return total; 3275 } 3276 EXPORT_SYMBOL_GPL(perf_event_read_value); 3277 3278 static int perf_event_read_group(struct perf_event *event, 3279 u64 read_format, char __user *buf) 3280 { 3281 struct perf_event *leader = event->group_leader, *sub; 3282 int n = 0, size = 0, ret = -EFAULT; 3283 struct perf_event_context *ctx = leader->ctx; 3284 u64 values[5]; 3285 u64 count, enabled, running; 3286 3287 mutex_lock(&ctx->mutex); 3288 count = perf_event_read_value(leader, &enabled, &running); 3289 3290 values[n++] = 1 + leader->nr_siblings; 3291 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3292 values[n++] = enabled; 3293 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3294 values[n++] = running; 3295 values[n++] = count; 3296 if (read_format & PERF_FORMAT_ID) 3297 values[n++] = primary_event_id(leader); 3298 3299 size = n * sizeof(u64); 3300 3301 if (copy_to_user(buf, values, size)) 3302 goto unlock; 3303 3304 ret = size; 3305 3306 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3307 n = 0; 3308 3309 values[n++] = perf_event_read_value(sub, &enabled, &running); 3310 if (read_format & PERF_FORMAT_ID) 3311 values[n++] = primary_event_id(sub); 3312 3313 size = n * sizeof(u64); 3314 3315 if (copy_to_user(buf + ret, values, size)) { 3316 ret = -EFAULT; 3317 goto unlock; 3318 } 3319 3320 ret += size; 3321 } 3322 unlock: 3323 mutex_unlock(&ctx->mutex); 3324 3325 return ret; 3326 } 3327 3328 static int perf_event_read_one(struct perf_event *event, 3329 u64 read_format, char __user *buf) 3330 { 3331 u64 enabled, running; 3332 u64 values[4]; 3333 int n = 0; 3334 3335 values[n++] = perf_event_read_value(event, &enabled, &running); 3336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3337 values[n++] = enabled; 3338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3339 values[n++] = running; 3340 if (read_format & PERF_FORMAT_ID) 3341 values[n++] = primary_event_id(event); 3342 3343 if (copy_to_user(buf, values, n * sizeof(u64))) 3344 return -EFAULT; 3345 3346 return n * sizeof(u64); 3347 } 3348 3349 /* 3350 * Read the performance event - simple non blocking version for now 3351 */ 3352 static ssize_t 3353 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3354 { 3355 u64 read_format = event->attr.read_format; 3356 int ret; 3357 3358 /* 3359 * Return end-of-file for a read on a event that is in 3360 * error state (i.e. because it was pinned but it couldn't be 3361 * scheduled on to the CPU at some point). 3362 */ 3363 if (event->state == PERF_EVENT_STATE_ERROR) 3364 return 0; 3365 3366 if (count < event->read_size) 3367 return -ENOSPC; 3368 3369 WARN_ON_ONCE(event->ctx->parent_ctx); 3370 if (read_format & PERF_FORMAT_GROUP) 3371 ret = perf_event_read_group(event, read_format, buf); 3372 else 3373 ret = perf_event_read_one(event, read_format, buf); 3374 3375 return ret; 3376 } 3377 3378 static ssize_t 3379 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3380 { 3381 struct perf_event *event = file->private_data; 3382 3383 return perf_read_hw(event, buf, count); 3384 } 3385 3386 static unsigned int perf_poll(struct file *file, poll_table *wait) 3387 { 3388 struct perf_event *event = file->private_data; 3389 struct ring_buffer *rb; 3390 unsigned int events = POLL_HUP; 3391 3392 /* 3393 * Pin the event->rb by taking event->mmap_mutex; otherwise 3394 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3395 */ 3396 mutex_lock(&event->mmap_mutex); 3397 rb = event->rb; 3398 if (rb) 3399 events = atomic_xchg(&rb->poll, 0); 3400 mutex_unlock(&event->mmap_mutex); 3401 3402 poll_wait(file, &event->waitq, wait); 3403 3404 return events; 3405 } 3406 3407 static void perf_event_reset(struct perf_event *event) 3408 { 3409 (void)perf_event_read(event); 3410 local64_set(&event->count, 0); 3411 perf_event_update_userpage(event); 3412 } 3413 3414 /* 3415 * Holding the top-level event's child_mutex means that any 3416 * descendant process that has inherited this event will block 3417 * in sync_child_event if it goes to exit, thus satisfying the 3418 * task existence requirements of perf_event_enable/disable. 3419 */ 3420 static void perf_event_for_each_child(struct perf_event *event, 3421 void (*func)(struct perf_event *)) 3422 { 3423 struct perf_event *child; 3424 3425 WARN_ON_ONCE(event->ctx->parent_ctx); 3426 mutex_lock(&event->child_mutex); 3427 func(event); 3428 list_for_each_entry(child, &event->child_list, child_list) 3429 func(child); 3430 mutex_unlock(&event->child_mutex); 3431 } 3432 3433 static void perf_event_for_each(struct perf_event *event, 3434 void (*func)(struct perf_event *)) 3435 { 3436 struct perf_event_context *ctx = event->ctx; 3437 struct perf_event *sibling; 3438 3439 WARN_ON_ONCE(ctx->parent_ctx); 3440 mutex_lock(&ctx->mutex); 3441 event = event->group_leader; 3442 3443 perf_event_for_each_child(event, func); 3444 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3445 perf_event_for_each_child(sibling, func); 3446 mutex_unlock(&ctx->mutex); 3447 } 3448 3449 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3450 { 3451 struct perf_event_context *ctx = event->ctx; 3452 int ret = 0; 3453 u64 value; 3454 3455 if (!is_sampling_event(event)) 3456 return -EINVAL; 3457 3458 if (copy_from_user(&value, arg, sizeof(value))) 3459 return -EFAULT; 3460 3461 if (!value) 3462 return -EINVAL; 3463 3464 raw_spin_lock_irq(&ctx->lock); 3465 if (event->attr.freq) { 3466 if (value > sysctl_perf_event_sample_rate) { 3467 ret = -EINVAL; 3468 goto unlock; 3469 } 3470 3471 event->attr.sample_freq = value; 3472 } else { 3473 event->attr.sample_period = value; 3474 event->hw.sample_period = value; 3475 } 3476 unlock: 3477 raw_spin_unlock_irq(&ctx->lock); 3478 3479 return ret; 3480 } 3481 3482 static const struct file_operations perf_fops; 3483 3484 static inline int perf_fget_light(int fd, struct fd *p) 3485 { 3486 struct fd f = fdget(fd); 3487 if (!f.file) 3488 return -EBADF; 3489 3490 if (f.file->f_op != &perf_fops) { 3491 fdput(f); 3492 return -EBADF; 3493 } 3494 *p = f; 3495 return 0; 3496 } 3497 3498 static int perf_event_set_output(struct perf_event *event, 3499 struct perf_event *output_event); 3500 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3501 3502 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3503 { 3504 struct perf_event *event = file->private_data; 3505 void (*func)(struct perf_event *); 3506 u32 flags = arg; 3507 3508 switch (cmd) { 3509 case PERF_EVENT_IOC_ENABLE: 3510 func = perf_event_enable; 3511 break; 3512 case PERF_EVENT_IOC_DISABLE: 3513 func = perf_event_disable; 3514 break; 3515 case PERF_EVENT_IOC_RESET: 3516 func = perf_event_reset; 3517 break; 3518 3519 case PERF_EVENT_IOC_REFRESH: 3520 return perf_event_refresh(event, arg); 3521 3522 case PERF_EVENT_IOC_PERIOD: 3523 return perf_event_period(event, (u64 __user *)arg); 3524 3525 case PERF_EVENT_IOC_SET_OUTPUT: 3526 { 3527 int ret; 3528 if (arg != -1) { 3529 struct perf_event *output_event; 3530 struct fd output; 3531 ret = perf_fget_light(arg, &output); 3532 if (ret) 3533 return ret; 3534 output_event = output.file->private_data; 3535 ret = perf_event_set_output(event, output_event); 3536 fdput(output); 3537 } else { 3538 ret = perf_event_set_output(event, NULL); 3539 } 3540 return ret; 3541 } 3542 3543 case PERF_EVENT_IOC_SET_FILTER: 3544 return perf_event_set_filter(event, (void __user *)arg); 3545 3546 default: 3547 return -ENOTTY; 3548 } 3549 3550 if (flags & PERF_IOC_FLAG_GROUP) 3551 perf_event_for_each(event, func); 3552 else 3553 perf_event_for_each_child(event, func); 3554 3555 return 0; 3556 } 3557 3558 int perf_event_task_enable(void) 3559 { 3560 struct perf_event *event; 3561 3562 mutex_lock(¤t->perf_event_mutex); 3563 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3564 perf_event_for_each_child(event, perf_event_enable); 3565 mutex_unlock(¤t->perf_event_mutex); 3566 3567 return 0; 3568 } 3569 3570 int perf_event_task_disable(void) 3571 { 3572 struct perf_event *event; 3573 3574 mutex_lock(¤t->perf_event_mutex); 3575 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3576 perf_event_for_each_child(event, perf_event_disable); 3577 mutex_unlock(¤t->perf_event_mutex); 3578 3579 return 0; 3580 } 3581 3582 static int perf_event_index(struct perf_event *event) 3583 { 3584 if (event->hw.state & PERF_HES_STOPPED) 3585 return 0; 3586 3587 if (event->state != PERF_EVENT_STATE_ACTIVE) 3588 return 0; 3589 3590 return event->pmu->event_idx(event); 3591 } 3592 3593 static void calc_timer_values(struct perf_event *event, 3594 u64 *now, 3595 u64 *enabled, 3596 u64 *running) 3597 { 3598 u64 ctx_time; 3599 3600 *now = perf_clock(); 3601 ctx_time = event->shadow_ctx_time + *now; 3602 *enabled = ctx_time - event->tstamp_enabled; 3603 *running = ctx_time - event->tstamp_running; 3604 } 3605 3606 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3607 { 3608 } 3609 3610 /* 3611 * Callers need to ensure there can be no nesting of this function, otherwise 3612 * the seqlock logic goes bad. We can not serialize this because the arch 3613 * code calls this from NMI context. 3614 */ 3615 void perf_event_update_userpage(struct perf_event *event) 3616 { 3617 struct perf_event_mmap_page *userpg; 3618 struct ring_buffer *rb; 3619 u64 enabled, running, now; 3620 3621 rcu_read_lock(); 3622 /* 3623 * compute total_time_enabled, total_time_running 3624 * based on snapshot values taken when the event 3625 * was last scheduled in. 3626 * 3627 * we cannot simply called update_context_time() 3628 * because of locking issue as we can be called in 3629 * NMI context 3630 */ 3631 calc_timer_values(event, &now, &enabled, &running); 3632 rb = rcu_dereference(event->rb); 3633 if (!rb) 3634 goto unlock; 3635 3636 userpg = rb->user_page; 3637 3638 /* 3639 * Disable preemption so as to not let the corresponding user-space 3640 * spin too long if we get preempted. 3641 */ 3642 preempt_disable(); 3643 ++userpg->lock; 3644 barrier(); 3645 userpg->index = perf_event_index(event); 3646 userpg->offset = perf_event_count(event); 3647 if (userpg->index) 3648 userpg->offset -= local64_read(&event->hw.prev_count); 3649 3650 userpg->time_enabled = enabled + 3651 atomic64_read(&event->child_total_time_enabled); 3652 3653 userpg->time_running = running + 3654 atomic64_read(&event->child_total_time_running); 3655 3656 arch_perf_update_userpage(userpg, now); 3657 3658 barrier(); 3659 ++userpg->lock; 3660 preempt_enable(); 3661 unlock: 3662 rcu_read_unlock(); 3663 } 3664 3665 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3666 { 3667 struct perf_event *event = vma->vm_file->private_data; 3668 struct ring_buffer *rb; 3669 int ret = VM_FAULT_SIGBUS; 3670 3671 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3672 if (vmf->pgoff == 0) 3673 ret = 0; 3674 return ret; 3675 } 3676 3677 rcu_read_lock(); 3678 rb = rcu_dereference(event->rb); 3679 if (!rb) 3680 goto unlock; 3681 3682 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3683 goto unlock; 3684 3685 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3686 if (!vmf->page) 3687 goto unlock; 3688 3689 get_page(vmf->page); 3690 vmf->page->mapping = vma->vm_file->f_mapping; 3691 vmf->page->index = vmf->pgoff; 3692 3693 ret = 0; 3694 unlock: 3695 rcu_read_unlock(); 3696 3697 return ret; 3698 } 3699 3700 static void ring_buffer_attach(struct perf_event *event, 3701 struct ring_buffer *rb) 3702 { 3703 unsigned long flags; 3704 3705 if (!list_empty(&event->rb_entry)) 3706 return; 3707 3708 spin_lock_irqsave(&rb->event_lock, flags); 3709 if (list_empty(&event->rb_entry)) 3710 list_add(&event->rb_entry, &rb->event_list); 3711 spin_unlock_irqrestore(&rb->event_lock, flags); 3712 } 3713 3714 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb) 3715 { 3716 unsigned long flags; 3717 3718 if (list_empty(&event->rb_entry)) 3719 return; 3720 3721 spin_lock_irqsave(&rb->event_lock, flags); 3722 list_del_init(&event->rb_entry); 3723 wake_up_all(&event->waitq); 3724 spin_unlock_irqrestore(&rb->event_lock, flags); 3725 } 3726 3727 static void ring_buffer_wakeup(struct perf_event *event) 3728 { 3729 struct ring_buffer *rb; 3730 3731 rcu_read_lock(); 3732 rb = rcu_dereference(event->rb); 3733 if (rb) { 3734 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3735 wake_up_all(&event->waitq); 3736 } 3737 rcu_read_unlock(); 3738 } 3739 3740 static void rb_free_rcu(struct rcu_head *rcu_head) 3741 { 3742 struct ring_buffer *rb; 3743 3744 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3745 rb_free(rb); 3746 } 3747 3748 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3749 { 3750 struct ring_buffer *rb; 3751 3752 rcu_read_lock(); 3753 rb = rcu_dereference(event->rb); 3754 if (rb) { 3755 if (!atomic_inc_not_zero(&rb->refcount)) 3756 rb = NULL; 3757 } 3758 rcu_read_unlock(); 3759 3760 return rb; 3761 } 3762 3763 static void ring_buffer_put(struct ring_buffer *rb) 3764 { 3765 if (!atomic_dec_and_test(&rb->refcount)) 3766 return; 3767 3768 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3769 3770 call_rcu(&rb->rcu_head, rb_free_rcu); 3771 } 3772 3773 static void perf_mmap_open(struct vm_area_struct *vma) 3774 { 3775 struct perf_event *event = vma->vm_file->private_data; 3776 3777 atomic_inc(&event->mmap_count); 3778 atomic_inc(&event->rb->mmap_count); 3779 } 3780 3781 /* 3782 * A buffer can be mmap()ed multiple times; either directly through the same 3783 * event, or through other events by use of perf_event_set_output(). 3784 * 3785 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3786 * the buffer here, where we still have a VM context. This means we need 3787 * to detach all events redirecting to us. 3788 */ 3789 static void perf_mmap_close(struct vm_area_struct *vma) 3790 { 3791 struct perf_event *event = vma->vm_file->private_data; 3792 3793 struct ring_buffer *rb = event->rb; 3794 struct user_struct *mmap_user = rb->mmap_user; 3795 int mmap_locked = rb->mmap_locked; 3796 unsigned long size = perf_data_size(rb); 3797 3798 atomic_dec(&rb->mmap_count); 3799 3800 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3801 return; 3802 3803 /* Detach current event from the buffer. */ 3804 rcu_assign_pointer(event->rb, NULL); 3805 ring_buffer_detach(event, rb); 3806 mutex_unlock(&event->mmap_mutex); 3807 3808 /* If there's still other mmap()s of this buffer, we're done. */ 3809 if (atomic_read(&rb->mmap_count)) { 3810 ring_buffer_put(rb); /* can't be last */ 3811 return; 3812 } 3813 3814 /* 3815 * No other mmap()s, detach from all other events that might redirect 3816 * into the now unreachable buffer. Somewhat complicated by the 3817 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3818 */ 3819 again: 3820 rcu_read_lock(); 3821 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 3822 if (!atomic_long_inc_not_zero(&event->refcount)) { 3823 /* 3824 * This event is en-route to free_event() which will 3825 * detach it and remove it from the list. 3826 */ 3827 continue; 3828 } 3829 rcu_read_unlock(); 3830 3831 mutex_lock(&event->mmap_mutex); 3832 /* 3833 * Check we didn't race with perf_event_set_output() which can 3834 * swizzle the rb from under us while we were waiting to 3835 * acquire mmap_mutex. 3836 * 3837 * If we find a different rb; ignore this event, a next 3838 * iteration will no longer find it on the list. We have to 3839 * still restart the iteration to make sure we're not now 3840 * iterating the wrong list. 3841 */ 3842 if (event->rb == rb) { 3843 rcu_assign_pointer(event->rb, NULL); 3844 ring_buffer_detach(event, rb); 3845 ring_buffer_put(rb); /* can't be last, we still have one */ 3846 } 3847 mutex_unlock(&event->mmap_mutex); 3848 put_event(event); 3849 3850 /* 3851 * Restart the iteration; either we're on the wrong list or 3852 * destroyed its integrity by doing a deletion. 3853 */ 3854 goto again; 3855 } 3856 rcu_read_unlock(); 3857 3858 /* 3859 * It could be there's still a few 0-ref events on the list; they'll 3860 * get cleaned up by free_event() -- they'll also still have their 3861 * ref on the rb and will free it whenever they are done with it. 3862 * 3863 * Aside from that, this buffer is 'fully' detached and unmapped, 3864 * undo the VM accounting. 3865 */ 3866 3867 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 3868 vma->vm_mm->pinned_vm -= mmap_locked; 3869 free_uid(mmap_user); 3870 3871 ring_buffer_put(rb); /* could be last */ 3872 } 3873 3874 static const struct vm_operations_struct perf_mmap_vmops = { 3875 .open = perf_mmap_open, 3876 .close = perf_mmap_close, 3877 .fault = perf_mmap_fault, 3878 .page_mkwrite = perf_mmap_fault, 3879 }; 3880 3881 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3882 { 3883 struct perf_event *event = file->private_data; 3884 unsigned long user_locked, user_lock_limit; 3885 struct user_struct *user = current_user(); 3886 unsigned long locked, lock_limit; 3887 struct ring_buffer *rb; 3888 unsigned long vma_size; 3889 unsigned long nr_pages; 3890 long user_extra, extra; 3891 int ret = 0, flags = 0; 3892 3893 /* 3894 * Don't allow mmap() of inherited per-task counters. This would 3895 * create a performance issue due to all children writing to the 3896 * same rb. 3897 */ 3898 if (event->cpu == -1 && event->attr.inherit) 3899 return -EINVAL; 3900 3901 if (!(vma->vm_flags & VM_SHARED)) 3902 return -EINVAL; 3903 3904 vma_size = vma->vm_end - vma->vm_start; 3905 nr_pages = (vma_size / PAGE_SIZE) - 1; 3906 3907 /* 3908 * If we have rb pages ensure they're a power-of-two number, so we 3909 * can do bitmasks instead of modulo. 3910 */ 3911 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3912 return -EINVAL; 3913 3914 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3915 return -EINVAL; 3916 3917 if (vma->vm_pgoff != 0) 3918 return -EINVAL; 3919 3920 WARN_ON_ONCE(event->ctx->parent_ctx); 3921 again: 3922 mutex_lock(&event->mmap_mutex); 3923 if (event->rb) { 3924 if (event->rb->nr_pages != nr_pages) { 3925 ret = -EINVAL; 3926 goto unlock; 3927 } 3928 3929 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 3930 /* 3931 * Raced against perf_mmap_close() through 3932 * perf_event_set_output(). Try again, hope for better 3933 * luck. 3934 */ 3935 mutex_unlock(&event->mmap_mutex); 3936 goto again; 3937 } 3938 3939 goto unlock; 3940 } 3941 3942 user_extra = nr_pages + 1; 3943 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3944 3945 /* 3946 * Increase the limit linearly with more CPUs: 3947 */ 3948 user_lock_limit *= num_online_cpus(); 3949 3950 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3951 3952 extra = 0; 3953 if (user_locked > user_lock_limit) 3954 extra = user_locked - user_lock_limit; 3955 3956 lock_limit = rlimit(RLIMIT_MEMLOCK); 3957 lock_limit >>= PAGE_SHIFT; 3958 locked = vma->vm_mm->pinned_vm + extra; 3959 3960 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3961 !capable(CAP_IPC_LOCK)) { 3962 ret = -EPERM; 3963 goto unlock; 3964 } 3965 3966 WARN_ON(event->rb); 3967 3968 if (vma->vm_flags & VM_WRITE) 3969 flags |= RING_BUFFER_WRITABLE; 3970 3971 rb = rb_alloc(nr_pages, 3972 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3973 event->cpu, flags); 3974 3975 if (!rb) { 3976 ret = -ENOMEM; 3977 goto unlock; 3978 } 3979 3980 atomic_set(&rb->mmap_count, 1); 3981 rb->mmap_locked = extra; 3982 rb->mmap_user = get_current_user(); 3983 3984 atomic_long_add(user_extra, &user->locked_vm); 3985 vma->vm_mm->pinned_vm += extra; 3986 3987 ring_buffer_attach(event, rb); 3988 rcu_assign_pointer(event->rb, rb); 3989 3990 perf_event_update_userpage(event); 3991 3992 unlock: 3993 if (!ret) 3994 atomic_inc(&event->mmap_count); 3995 mutex_unlock(&event->mmap_mutex); 3996 3997 /* 3998 * Since pinned accounting is per vm we cannot allow fork() to copy our 3999 * vma. 4000 */ 4001 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4002 vma->vm_ops = &perf_mmap_vmops; 4003 4004 return ret; 4005 } 4006 4007 static int perf_fasync(int fd, struct file *filp, int on) 4008 { 4009 struct inode *inode = file_inode(filp); 4010 struct perf_event *event = filp->private_data; 4011 int retval; 4012 4013 mutex_lock(&inode->i_mutex); 4014 retval = fasync_helper(fd, filp, on, &event->fasync); 4015 mutex_unlock(&inode->i_mutex); 4016 4017 if (retval < 0) 4018 return retval; 4019 4020 return 0; 4021 } 4022 4023 static const struct file_operations perf_fops = { 4024 .llseek = no_llseek, 4025 .release = perf_release, 4026 .read = perf_read, 4027 .poll = perf_poll, 4028 .unlocked_ioctl = perf_ioctl, 4029 .compat_ioctl = perf_ioctl, 4030 .mmap = perf_mmap, 4031 .fasync = perf_fasync, 4032 }; 4033 4034 /* 4035 * Perf event wakeup 4036 * 4037 * If there's data, ensure we set the poll() state and publish everything 4038 * to user-space before waking everybody up. 4039 */ 4040 4041 void perf_event_wakeup(struct perf_event *event) 4042 { 4043 ring_buffer_wakeup(event); 4044 4045 if (event->pending_kill) { 4046 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4047 event->pending_kill = 0; 4048 } 4049 } 4050 4051 static void perf_pending_event(struct irq_work *entry) 4052 { 4053 struct perf_event *event = container_of(entry, 4054 struct perf_event, pending); 4055 4056 if (event->pending_disable) { 4057 event->pending_disable = 0; 4058 __perf_event_disable(event); 4059 } 4060 4061 if (event->pending_wakeup) { 4062 event->pending_wakeup = 0; 4063 perf_event_wakeup(event); 4064 } 4065 } 4066 4067 /* 4068 * We assume there is only KVM supporting the callbacks. 4069 * Later on, we might change it to a list if there is 4070 * another virtualization implementation supporting the callbacks. 4071 */ 4072 struct perf_guest_info_callbacks *perf_guest_cbs; 4073 4074 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4075 { 4076 perf_guest_cbs = cbs; 4077 return 0; 4078 } 4079 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4080 4081 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4082 { 4083 perf_guest_cbs = NULL; 4084 return 0; 4085 } 4086 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4087 4088 static void 4089 perf_output_sample_regs(struct perf_output_handle *handle, 4090 struct pt_regs *regs, u64 mask) 4091 { 4092 int bit; 4093 4094 for_each_set_bit(bit, (const unsigned long *) &mask, 4095 sizeof(mask) * BITS_PER_BYTE) { 4096 u64 val; 4097 4098 val = perf_reg_value(regs, bit); 4099 perf_output_put(handle, val); 4100 } 4101 } 4102 4103 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4104 struct pt_regs *regs) 4105 { 4106 if (!user_mode(regs)) { 4107 if (current->mm) 4108 regs = task_pt_regs(current); 4109 else 4110 regs = NULL; 4111 } 4112 4113 if (regs) { 4114 regs_user->regs = regs; 4115 regs_user->abi = perf_reg_abi(current); 4116 } 4117 } 4118 4119 /* 4120 * Get remaining task size from user stack pointer. 4121 * 4122 * It'd be better to take stack vma map and limit this more 4123 * precisly, but there's no way to get it safely under interrupt, 4124 * so using TASK_SIZE as limit. 4125 */ 4126 static u64 perf_ustack_task_size(struct pt_regs *regs) 4127 { 4128 unsigned long addr = perf_user_stack_pointer(regs); 4129 4130 if (!addr || addr >= TASK_SIZE) 4131 return 0; 4132 4133 return TASK_SIZE - addr; 4134 } 4135 4136 static u16 4137 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4138 struct pt_regs *regs) 4139 { 4140 u64 task_size; 4141 4142 /* No regs, no stack pointer, no dump. */ 4143 if (!regs) 4144 return 0; 4145 4146 /* 4147 * Check if we fit in with the requested stack size into the: 4148 * - TASK_SIZE 4149 * If we don't, we limit the size to the TASK_SIZE. 4150 * 4151 * - remaining sample size 4152 * If we don't, we customize the stack size to 4153 * fit in to the remaining sample size. 4154 */ 4155 4156 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4157 stack_size = min(stack_size, (u16) task_size); 4158 4159 /* Current header size plus static size and dynamic size. */ 4160 header_size += 2 * sizeof(u64); 4161 4162 /* Do we fit in with the current stack dump size? */ 4163 if ((u16) (header_size + stack_size) < header_size) { 4164 /* 4165 * If we overflow the maximum size for the sample, 4166 * we customize the stack dump size to fit in. 4167 */ 4168 stack_size = USHRT_MAX - header_size - sizeof(u64); 4169 stack_size = round_up(stack_size, sizeof(u64)); 4170 } 4171 4172 return stack_size; 4173 } 4174 4175 static void 4176 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4177 struct pt_regs *regs) 4178 { 4179 /* Case of a kernel thread, nothing to dump */ 4180 if (!regs) { 4181 u64 size = 0; 4182 perf_output_put(handle, size); 4183 } else { 4184 unsigned long sp; 4185 unsigned int rem; 4186 u64 dyn_size; 4187 4188 /* 4189 * We dump: 4190 * static size 4191 * - the size requested by user or the best one we can fit 4192 * in to the sample max size 4193 * data 4194 * - user stack dump data 4195 * dynamic size 4196 * - the actual dumped size 4197 */ 4198 4199 /* Static size. */ 4200 perf_output_put(handle, dump_size); 4201 4202 /* Data. */ 4203 sp = perf_user_stack_pointer(regs); 4204 rem = __output_copy_user(handle, (void *) sp, dump_size); 4205 dyn_size = dump_size - rem; 4206 4207 perf_output_skip(handle, rem); 4208 4209 /* Dynamic size. */ 4210 perf_output_put(handle, dyn_size); 4211 } 4212 } 4213 4214 static void __perf_event_header__init_id(struct perf_event_header *header, 4215 struct perf_sample_data *data, 4216 struct perf_event *event) 4217 { 4218 u64 sample_type = event->attr.sample_type; 4219 4220 data->type = sample_type; 4221 header->size += event->id_header_size; 4222 4223 if (sample_type & PERF_SAMPLE_TID) { 4224 /* namespace issues */ 4225 data->tid_entry.pid = perf_event_pid(event, current); 4226 data->tid_entry.tid = perf_event_tid(event, current); 4227 } 4228 4229 if (sample_type & PERF_SAMPLE_TIME) 4230 data->time = perf_clock(); 4231 4232 if (sample_type & PERF_SAMPLE_ID) 4233 data->id = primary_event_id(event); 4234 4235 if (sample_type & PERF_SAMPLE_STREAM_ID) 4236 data->stream_id = event->id; 4237 4238 if (sample_type & PERF_SAMPLE_CPU) { 4239 data->cpu_entry.cpu = raw_smp_processor_id(); 4240 data->cpu_entry.reserved = 0; 4241 } 4242 } 4243 4244 void perf_event_header__init_id(struct perf_event_header *header, 4245 struct perf_sample_data *data, 4246 struct perf_event *event) 4247 { 4248 if (event->attr.sample_id_all) 4249 __perf_event_header__init_id(header, data, event); 4250 } 4251 4252 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4253 struct perf_sample_data *data) 4254 { 4255 u64 sample_type = data->type; 4256 4257 if (sample_type & PERF_SAMPLE_TID) 4258 perf_output_put(handle, data->tid_entry); 4259 4260 if (sample_type & PERF_SAMPLE_TIME) 4261 perf_output_put(handle, data->time); 4262 4263 if (sample_type & PERF_SAMPLE_ID) 4264 perf_output_put(handle, data->id); 4265 4266 if (sample_type & PERF_SAMPLE_STREAM_ID) 4267 perf_output_put(handle, data->stream_id); 4268 4269 if (sample_type & PERF_SAMPLE_CPU) 4270 perf_output_put(handle, data->cpu_entry); 4271 } 4272 4273 void perf_event__output_id_sample(struct perf_event *event, 4274 struct perf_output_handle *handle, 4275 struct perf_sample_data *sample) 4276 { 4277 if (event->attr.sample_id_all) 4278 __perf_event__output_id_sample(handle, sample); 4279 } 4280 4281 static void perf_output_read_one(struct perf_output_handle *handle, 4282 struct perf_event *event, 4283 u64 enabled, u64 running) 4284 { 4285 u64 read_format = event->attr.read_format; 4286 u64 values[4]; 4287 int n = 0; 4288 4289 values[n++] = perf_event_count(event); 4290 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4291 values[n++] = enabled + 4292 atomic64_read(&event->child_total_time_enabled); 4293 } 4294 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4295 values[n++] = running + 4296 atomic64_read(&event->child_total_time_running); 4297 } 4298 if (read_format & PERF_FORMAT_ID) 4299 values[n++] = primary_event_id(event); 4300 4301 __output_copy(handle, values, n * sizeof(u64)); 4302 } 4303 4304 /* 4305 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4306 */ 4307 static void perf_output_read_group(struct perf_output_handle *handle, 4308 struct perf_event *event, 4309 u64 enabled, u64 running) 4310 { 4311 struct perf_event *leader = event->group_leader, *sub; 4312 u64 read_format = event->attr.read_format; 4313 u64 values[5]; 4314 int n = 0; 4315 4316 values[n++] = 1 + leader->nr_siblings; 4317 4318 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4319 values[n++] = enabled; 4320 4321 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4322 values[n++] = running; 4323 4324 if (leader != event) 4325 leader->pmu->read(leader); 4326 4327 values[n++] = perf_event_count(leader); 4328 if (read_format & PERF_FORMAT_ID) 4329 values[n++] = primary_event_id(leader); 4330 4331 __output_copy(handle, values, n * sizeof(u64)); 4332 4333 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4334 n = 0; 4335 4336 if (sub != event) 4337 sub->pmu->read(sub); 4338 4339 values[n++] = perf_event_count(sub); 4340 if (read_format & PERF_FORMAT_ID) 4341 values[n++] = primary_event_id(sub); 4342 4343 __output_copy(handle, values, n * sizeof(u64)); 4344 } 4345 } 4346 4347 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4348 PERF_FORMAT_TOTAL_TIME_RUNNING) 4349 4350 static void perf_output_read(struct perf_output_handle *handle, 4351 struct perf_event *event) 4352 { 4353 u64 enabled = 0, running = 0, now; 4354 u64 read_format = event->attr.read_format; 4355 4356 /* 4357 * compute total_time_enabled, total_time_running 4358 * based on snapshot values taken when the event 4359 * was last scheduled in. 4360 * 4361 * we cannot simply called update_context_time() 4362 * because of locking issue as we are called in 4363 * NMI context 4364 */ 4365 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4366 calc_timer_values(event, &now, &enabled, &running); 4367 4368 if (event->attr.read_format & PERF_FORMAT_GROUP) 4369 perf_output_read_group(handle, event, enabled, running); 4370 else 4371 perf_output_read_one(handle, event, enabled, running); 4372 } 4373 4374 void perf_output_sample(struct perf_output_handle *handle, 4375 struct perf_event_header *header, 4376 struct perf_sample_data *data, 4377 struct perf_event *event) 4378 { 4379 u64 sample_type = data->type; 4380 4381 perf_output_put(handle, *header); 4382 4383 if (sample_type & PERF_SAMPLE_IP) 4384 perf_output_put(handle, data->ip); 4385 4386 if (sample_type & PERF_SAMPLE_TID) 4387 perf_output_put(handle, data->tid_entry); 4388 4389 if (sample_type & PERF_SAMPLE_TIME) 4390 perf_output_put(handle, data->time); 4391 4392 if (sample_type & PERF_SAMPLE_ADDR) 4393 perf_output_put(handle, data->addr); 4394 4395 if (sample_type & PERF_SAMPLE_ID) 4396 perf_output_put(handle, data->id); 4397 4398 if (sample_type & PERF_SAMPLE_STREAM_ID) 4399 perf_output_put(handle, data->stream_id); 4400 4401 if (sample_type & PERF_SAMPLE_CPU) 4402 perf_output_put(handle, data->cpu_entry); 4403 4404 if (sample_type & PERF_SAMPLE_PERIOD) 4405 perf_output_put(handle, data->period); 4406 4407 if (sample_type & PERF_SAMPLE_READ) 4408 perf_output_read(handle, event); 4409 4410 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4411 if (data->callchain) { 4412 int size = 1; 4413 4414 if (data->callchain) 4415 size += data->callchain->nr; 4416 4417 size *= sizeof(u64); 4418 4419 __output_copy(handle, data->callchain, size); 4420 } else { 4421 u64 nr = 0; 4422 perf_output_put(handle, nr); 4423 } 4424 } 4425 4426 if (sample_type & PERF_SAMPLE_RAW) { 4427 if (data->raw) { 4428 perf_output_put(handle, data->raw->size); 4429 __output_copy(handle, data->raw->data, 4430 data->raw->size); 4431 } else { 4432 struct { 4433 u32 size; 4434 u32 data; 4435 } raw = { 4436 .size = sizeof(u32), 4437 .data = 0, 4438 }; 4439 perf_output_put(handle, raw); 4440 } 4441 } 4442 4443 if (!event->attr.watermark) { 4444 int wakeup_events = event->attr.wakeup_events; 4445 4446 if (wakeup_events) { 4447 struct ring_buffer *rb = handle->rb; 4448 int events = local_inc_return(&rb->events); 4449 4450 if (events >= wakeup_events) { 4451 local_sub(wakeup_events, &rb->events); 4452 local_inc(&rb->wakeup); 4453 } 4454 } 4455 } 4456 4457 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4458 if (data->br_stack) { 4459 size_t size; 4460 4461 size = data->br_stack->nr 4462 * sizeof(struct perf_branch_entry); 4463 4464 perf_output_put(handle, data->br_stack->nr); 4465 perf_output_copy(handle, data->br_stack->entries, size); 4466 } else { 4467 /* 4468 * we always store at least the value of nr 4469 */ 4470 u64 nr = 0; 4471 perf_output_put(handle, nr); 4472 } 4473 } 4474 4475 if (sample_type & PERF_SAMPLE_REGS_USER) { 4476 u64 abi = data->regs_user.abi; 4477 4478 /* 4479 * If there are no regs to dump, notice it through 4480 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4481 */ 4482 perf_output_put(handle, abi); 4483 4484 if (abi) { 4485 u64 mask = event->attr.sample_regs_user; 4486 perf_output_sample_regs(handle, 4487 data->regs_user.regs, 4488 mask); 4489 } 4490 } 4491 4492 if (sample_type & PERF_SAMPLE_STACK_USER) 4493 perf_output_sample_ustack(handle, 4494 data->stack_user_size, 4495 data->regs_user.regs); 4496 4497 if (sample_type & PERF_SAMPLE_WEIGHT) 4498 perf_output_put(handle, data->weight); 4499 4500 if (sample_type & PERF_SAMPLE_DATA_SRC) 4501 perf_output_put(handle, data->data_src.val); 4502 } 4503 4504 void perf_prepare_sample(struct perf_event_header *header, 4505 struct perf_sample_data *data, 4506 struct perf_event *event, 4507 struct pt_regs *regs) 4508 { 4509 u64 sample_type = event->attr.sample_type; 4510 4511 header->type = PERF_RECORD_SAMPLE; 4512 header->size = sizeof(*header) + event->header_size; 4513 4514 header->misc = 0; 4515 header->misc |= perf_misc_flags(regs); 4516 4517 __perf_event_header__init_id(header, data, event); 4518 4519 if (sample_type & PERF_SAMPLE_IP) 4520 data->ip = perf_instruction_pointer(regs); 4521 4522 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4523 int size = 1; 4524 4525 data->callchain = perf_callchain(event, regs); 4526 4527 if (data->callchain) 4528 size += data->callchain->nr; 4529 4530 header->size += size * sizeof(u64); 4531 } 4532 4533 if (sample_type & PERF_SAMPLE_RAW) { 4534 int size = sizeof(u32); 4535 4536 if (data->raw) 4537 size += data->raw->size; 4538 else 4539 size += sizeof(u32); 4540 4541 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4542 header->size += size; 4543 } 4544 4545 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4546 int size = sizeof(u64); /* nr */ 4547 if (data->br_stack) { 4548 size += data->br_stack->nr 4549 * sizeof(struct perf_branch_entry); 4550 } 4551 header->size += size; 4552 } 4553 4554 if (sample_type & PERF_SAMPLE_REGS_USER) { 4555 /* regs dump ABI info */ 4556 int size = sizeof(u64); 4557 4558 perf_sample_regs_user(&data->regs_user, regs); 4559 4560 if (data->regs_user.regs) { 4561 u64 mask = event->attr.sample_regs_user; 4562 size += hweight64(mask) * sizeof(u64); 4563 } 4564 4565 header->size += size; 4566 } 4567 4568 if (sample_type & PERF_SAMPLE_STACK_USER) { 4569 /* 4570 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4571 * processed as the last one or have additional check added 4572 * in case new sample type is added, because we could eat 4573 * up the rest of the sample size. 4574 */ 4575 struct perf_regs_user *uregs = &data->regs_user; 4576 u16 stack_size = event->attr.sample_stack_user; 4577 u16 size = sizeof(u64); 4578 4579 if (!uregs->abi) 4580 perf_sample_regs_user(uregs, regs); 4581 4582 stack_size = perf_sample_ustack_size(stack_size, header->size, 4583 uregs->regs); 4584 4585 /* 4586 * If there is something to dump, add space for the dump 4587 * itself and for the field that tells the dynamic size, 4588 * which is how many have been actually dumped. 4589 */ 4590 if (stack_size) 4591 size += sizeof(u64) + stack_size; 4592 4593 data->stack_user_size = stack_size; 4594 header->size += size; 4595 } 4596 } 4597 4598 static void perf_event_output(struct perf_event *event, 4599 struct perf_sample_data *data, 4600 struct pt_regs *regs) 4601 { 4602 struct perf_output_handle handle; 4603 struct perf_event_header header; 4604 4605 /* protect the callchain buffers */ 4606 rcu_read_lock(); 4607 4608 perf_prepare_sample(&header, data, event, regs); 4609 4610 if (perf_output_begin(&handle, event, header.size)) 4611 goto exit; 4612 4613 perf_output_sample(&handle, &header, data, event); 4614 4615 perf_output_end(&handle); 4616 4617 exit: 4618 rcu_read_unlock(); 4619 } 4620 4621 /* 4622 * read event_id 4623 */ 4624 4625 struct perf_read_event { 4626 struct perf_event_header header; 4627 4628 u32 pid; 4629 u32 tid; 4630 }; 4631 4632 static void 4633 perf_event_read_event(struct perf_event *event, 4634 struct task_struct *task) 4635 { 4636 struct perf_output_handle handle; 4637 struct perf_sample_data sample; 4638 struct perf_read_event read_event = { 4639 .header = { 4640 .type = PERF_RECORD_READ, 4641 .misc = 0, 4642 .size = sizeof(read_event) + event->read_size, 4643 }, 4644 .pid = perf_event_pid(event, task), 4645 .tid = perf_event_tid(event, task), 4646 }; 4647 int ret; 4648 4649 perf_event_header__init_id(&read_event.header, &sample, event); 4650 ret = perf_output_begin(&handle, event, read_event.header.size); 4651 if (ret) 4652 return; 4653 4654 perf_output_put(&handle, read_event); 4655 perf_output_read(&handle, event); 4656 perf_event__output_id_sample(event, &handle, &sample); 4657 4658 perf_output_end(&handle); 4659 } 4660 4661 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data); 4662 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4663 4664 static void 4665 perf_event_aux_ctx(struct perf_event_context *ctx, 4666 perf_event_aux_match_cb match, 4667 perf_event_aux_output_cb output, 4668 void *data) 4669 { 4670 struct perf_event *event; 4671 4672 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4673 if (event->state < PERF_EVENT_STATE_INACTIVE) 4674 continue; 4675 if (!event_filter_match(event)) 4676 continue; 4677 if (match(event, data)) 4678 output(event, data); 4679 } 4680 } 4681 4682 static void 4683 perf_event_aux(perf_event_aux_match_cb match, 4684 perf_event_aux_output_cb output, 4685 void *data, 4686 struct perf_event_context *task_ctx) 4687 { 4688 struct perf_cpu_context *cpuctx; 4689 struct perf_event_context *ctx; 4690 struct pmu *pmu; 4691 int ctxn; 4692 4693 rcu_read_lock(); 4694 list_for_each_entry_rcu(pmu, &pmus, entry) { 4695 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4696 if (cpuctx->unique_pmu != pmu) 4697 goto next; 4698 perf_event_aux_ctx(&cpuctx->ctx, match, output, data); 4699 if (task_ctx) 4700 goto next; 4701 ctxn = pmu->task_ctx_nr; 4702 if (ctxn < 0) 4703 goto next; 4704 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4705 if (ctx) 4706 perf_event_aux_ctx(ctx, match, output, data); 4707 next: 4708 put_cpu_ptr(pmu->pmu_cpu_context); 4709 } 4710 4711 if (task_ctx) { 4712 preempt_disable(); 4713 perf_event_aux_ctx(task_ctx, match, output, data); 4714 preempt_enable(); 4715 } 4716 rcu_read_unlock(); 4717 } 4718 4719 /* 4720 * task tracking -- fork/exit 4721 * 4722 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4723 */ 4724 4725 struct perf_task_event { 4726 struct task_struct *task; 4727 struct perf_event_context *task_ctx; 4728 4729 struct { 4730 struct perf_event_header header; 4731 4732 u32 pid; 4733 u32 ppid; 4734 u32 tid; 4735 u32 ptid; 4736 u64 time; 4737 } event_id; 4738 }; 4739 4740 static void perf_event_task_output(struct perf_event *event, 4741 void *data) 4742 { 4743 struct perf_task_event *task_event = data; 4744 struct perf_output_handle handle; 4745 struct perf_sample_data sample; 4746 struct task_struct *task = task_event->task; 4747 int ret, size = task_event->event_id.header.size; 4748 4749 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4750 4751 ret = perf_output_begin(&handle, event, 4752 task_event->event_id.header.size); 4753 if (ret) 4754 goto out; 4755 4756 task_event->event_id.pid = perf_event_pid(event, task); 4757 task_event->event_id.ppid = perf_event_pid(event, current); 4758 4759 task_event->event_id.tid = perf_event_tid(event, task); 4760 task_event->event_id.ptid = perf_event_tid(event, current); 4761 4762 perf_output_put(&handle, task_event->event_id); 4763 4764 perf_event__output_id_sample(event, &handle, &sample); 4765 4766 perf_output_end(&handle); 4767 out: 4768 task_event->event_id.header.size = size; 4769 } 4770 4771 static int perf_event_task_match(struct perf_event *event, 4772 void *data __maybe_unused) 4773 { 4774 return event->attr.comm || event->attr.mmap || 4775 event->attr.mmap_data || event->attr.task; 4776 } 4777 4778 static void perf_event_task(struct task_struct *task, 4779 struct perf_event_context *task_ctx, 4780 int new) 4781 { 4782 struct perf_task_event task_event; 4783 4784 if (!atomic_read(&nr_comm_events) && 4785 !atomic_read(&nr_mmap_events) && 4786 !atomic_read(&nr_task_events)) 4787 return; 4788 4789 task_event = (struct perf_task_event){ 4790 .task = task, 4791 .task_ctx = task_ctx, 4792 .event_id = { 4793 .header = { 4794 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4795 .misc = 0, 4796 .size = sizeof(task_event.event_id), 4797 }, 4798 /* .pid */ 4799 /* .ppid */ 4800 /* .tid */ 4801 /* .ptid */ 4802 .time = perf_clock(), 4803 }, 4804 }; 4805 4806 perf_event_aux(perf_event_task_match, 4807 perf_event_task_output, 4808 &task_event, 4809 task_ctx); 4810 } 4811 4812 void perf_event_fork(struct task_struct *task) 4813 { 4814 perf_event_task(task, NULL, 1); 4815 } 4816 4817 /* 4818 * comm tracking 4819 */ 4820 4821 struct perf_comm_event { 4822 struct task_struct *task; 4823 char *comm; 4824 int comm_size; 4825 4826 struct { 4827 struct perf_event_header header; 4828 4829 u32 pid; 4830 u32 tid; 4831 } event_id; 4832 }; 4833 4834 static void perf_event_comm_output(struct perf_event *event, 4835 void *data) 4836 { 4837 struct perf_comm_event *comm_event = data; 4838 struct perf_output_handle handle; 4839 struct perf_sample_data sample; 4840 int size = comm_event->event_id.header.size; 4841 int ret; 4842 4843 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4844 ret = perf_output_begin(&handle, event, 4845 comm_event->event_id.header.size); 4846 4847 if (ret) 4848 goto out; 4849 4850 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4851 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4852 4853 perf_output_put(&handle, comm_event->event_id); 4854 __output_copy(&handle, comm_event->comm, 4855 comm_event->comm_size); 4856 4857 perf_event__output_id_sample(event, &handle, &sample); 4858 4859 perf_output_end(&handle); 4860 out: 4861 comm_event->event_id.header.size = size; 4862 } 4863 4864 static int perf_event_comm_match(struct perf_event *event, 4865 void *data __maybe_unused) 4866 { 4867 return event->attr.comm; 4868 } 4869 4870 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4871 { 4872 char comm[TASK_COMM_LEN]; 4873 unsigned int size; 4874 4875 memset(comm, 0, sizeof(comm)); 4876 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4877 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4878 4879 comm_event->comm = comm; 4880 comm_event->comm_size = size; 4881 4882 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4883 4884 perf_event_aux(perf_event_comm_match, 4885 perf_event_comm_output, 4886 comm_event, 4887 NULL); 4888 } 4889 4890 void perf_event_comm(struct task_struct *task) 4891 { 4892 struct perf_comm_event comm_event; 4893 struct perf_event_context *ctx; 4894 int ctxn; 4895 4896 rcu_read_lock(); 4897 for_each_task_context_nr(ctxn) { 4898 ctx = task->perf_event_ctxp[ctxn]; 4899 if (!ctx) 4900 continue; 4901 4902 perf_event_enable_on_exec(ctx); 4903 } 4904 rcu_read_unlock(); 4905 4906 if (!atomic_read(&nr_comm_events)) 4907 return; 4908 4909 comm_event = (struct perf_comm_event){ 4910 .task = task, 4911 /* .comm */ 4912 /* .comm_size */ 4913 .event_id = { 4914 .header = { 4915 .type = PERF_RECORD_COMM, 4916 .misc = 0, 4917 /* .size */ 4918 }, 4919 /* .pid */ 4920 /* .tid */ 4921 }, 4922 }; 4923 4924 perf_event_comm_event(&comm_event); 4925 } 4926 4927 /* 4928 * mmap tracking 4929 */ 4930 4931 struct perf_mmap_event { 4932 struct vm_area_struct *vma; 4933 4934 const char *file_name; 4935 int file_size; 4936 4937 struct { 4938 struct perf_event_header header; 4939 4940 u32 pid; 4941 u32 tid; 4942 u64 start; 4943 u64 len; 4944 u64 pgoff; 4945 } event_id; 4946 }; 4947 4948 static void perf_event_mmap_output(struct perf_event *event, 4949 void *data) 4950 { 4951 struct perf_mmap_event *mmap_event = data; 4952 struct perf_output_handle handle; 4953 struct perf_sample_data sample; 4954 int size = mmap_event->event_id.header.size; 4955 int ret; 4956 4957 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4958 ret = perf_output_begin(&handle, event, 4959 mmap_event->event_id.header.size); 4960 if (ret) 4961 goto out; 4962 4963 mmap_event->event_id.pid = perf_event_pid(event, current); 4964 mmap_event->event_id.tid = perf_event_tid(event, current); 4965 4966 perf_output_put(&handle, mmap_event->event_id); 4967 __output_copy(&handle, mmap_event->file_name, 4968 mmap_event->file_size); 4969 4970 perf_event__output_id_sample(event, &handle, &sample); 4971 4972 perf_output_end(&handle); 4973 out: 4974 mmap_event->event_id.header.size = size; 4975 } 4976 4977 static int perf_event_mmap_match(struct perf_event *event, 4978 void *data) 4979 { 4980 struct perf_mmap_event *mmap_event = data; 4981 struct vm_area_struct *vma = mmap_event->vma; 4982 int executable = vma->vm_flags & VM_EXEC; 4983 4984 return (!executable && event->attr.mmap_data) || 4985 (executable && event->attr.mmap); 4986 } 4987 4988 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4989 { 4990 struct vm_area_struct *vma = mmap_event->vma; 4991 struct file *file = vma->vm_file; 4992 unsigned int size; 4993 char tmp[16]; 4994 char *buf = NULL; 4995 const char *name; 4996 4997 memset(tmp, 0, sizeof(tmp)); 4998 4999 if (file) { 5000 /* 5001 * d_path works from the end of the rb backwards, so we 5002 * need to add enough zero bytes after the string to handle 5003 * the 64bit alignment we do later. 5004 */ 5005 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 5006 if (!buf) { 5007 name = strncpy(tmp, "//enomem", sizeof(tmp)); 5008 goto got_name; 5009 } 5010 name = d_path(&file->f_path, buf, PATH_MAX); 5011 if (IS_ERR(name)) { 5012 name = strncpy(tmp, "//toolong", sizeof(tmp)); 5013 goto got_name; 5014 } 5015 } else { 5016 if (arch_vma_name(mmap_event->vma)) { 5017 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 5018 sizeof(tmp) - 1); 5019 tmp[sizeof(tmp) - 1] = '\0'; 5020 goto got_name; 5021 } 5022 5023 if (!vma->vm_mm) { 5024 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 5025 goto got_name; 5026 } else if (vma->vm_start <= vma->vm_mm->start_brk && 5027 vma->vm_end >= vma->vm_mm->brk) { 5028 name = strncpy(tmp, "[heap]", sizeof(tmp)); 5029 goto got_name; 5030 } else if (vma->vm_start <= vma->vm_mm->start_stack && 5031 vma->vm_end >= vma->vm_mm->start_stack) { 5032 name = strncpy(tmp, "[stack]", sizeof(tmp)); 5033 goto got_name; 5034 } 5035 5036 name = strncpy(tmp, "//anon", sizeof(tmp)); 5037 goto got_name; 5038 } 5039 5040 got_name: 5041 size = ALIGN(strlen(name)+1, sizeof(u64)); 5042 5043 mmap_event->file_name = name; 5044 mmap_event->file_size = size; 5045 5046 if (!(vma->vm_flags & VM_EXEC)) 5047 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5048 5049 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5050 5051 perf_event_aux(perf_event_mmap_match, 5052 perf_event_mmap_output, 5053 mmap_event, 5054 NULL); 5055 5056 kfree(buf); 5057 } 5058 5059 void perf_event_mmap(struct vm_area_struct *vma) 5060 { 5061 struct perf_mmap_event mmap_event; 5062 5063 if (!atomic_read(&nr_mmap_events)) 5064 return; 5065 5066 mmap_event = (struct perf_mmap_event){ 5067 .vma = vma, 5068 /* .file_name */ 5069 /* .file_size */ 5070 .event_id = { 5071 .header = { 5072 .type = PERF_RECORD_MMAP, 5073 .misc = PERF_RECORD_MISC_USER, 5074 /* .size */ 5075 }, 5076 /* .pid */ 5077 /* .tid */ 5078 .start = vma->vm_start, 5079 .len = vma->vm_end - vma->vm_start, 5080 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5081 }, 5082 }; 5083 5084 perf_event_mmap_event(&mmap_event); 5085 } 5086 5087 /* 5088 * IRQ throttle logging 5089 */ 5090 5091 static void perf_log_throttle(struct perf_event *event, int enable) 5092 { 5093 struct perf_output_handle handle; 5094 struct perf_sample_data sample; 5095 int ret; 5096 5097 struct { 5098 struct perf_event_header header; 5099 u64 time; 5100 u64 id; 5101 u64 stream_id; 5102 } throttle_event = { 5103 .header = { 5104 .type = PERF_RECORD_THROTTLE, 5105 .misc = 0, 5106 .size = sizeof(throttle_event), 5107 }, 5108 .time = perf_clock(), 5109 .id = primary_event_id(event), 5110 .stream_id = event->id, 5111 }; 5112 5113 if (enable) 5114 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5115 5116 perf_event_header__init_id(&throttle_event.header, &sample, event); 5117 5118 ret = perf_output_begin(&handle, event, 5119 throttle_event.header.size); 5120 if (ret) 5121 return; 5122 5123 perf_output_put(&handle, throttle_event); 5124 perf_event__output_id_sample(event, &handle, &sample); 5125 perf_output_end(&handle); 5126 } 5127 5128 /* 5129 * Generic event overflow handling, sampling. 5130 */ 5131 5132 static int __perf_event_overflow(struct perf_event *event, 5133 int throttle, struct perf_sample_data *data, 5134 struct pt_regs *regs) 5135 { 5136 int events = atomic_read(&event->event_limit); 5137 struct hw_perf_event *hwc = &event->hw; 5138 u64 seq; 5139 int ret = 0; 5140 5141 /* 5142 * Non-sampling counters might still use the PMI to fold short 5143 * hardware counters, ignore those. 5144 */ 5145 if (unlikely(!is_sampling_event(event))) 5146 return 0; 5147 5148 seq = __this_cpu_read(perf_throttled_seq); 5149 if (seq != hwc->interrupts_seq) { 5150 hwc->interrupts_seq = seq; 5151 hwc->interrupts = 1; 5152 } else { 5153 hwc->interrupts++; 5154 if (unlikely(throttle 5155 && hwc->interrupts >= max_samples_per_tick)) { 5156 __this_cpu_inc(perf_throttled_count); 5157 hwc->interrupts = MAX_INTERRUPTS; 5158 perf_log_throttle(event, 0); 5159 ret = 1; 5160 } 5161 } 5162 5163 if (event->attr.freq) { 5164 u64 now = perf_clock(); 5165 s64 delta = now - hwc->freq_time_stamp; 5166 5167 hwc->freq_time_stamp = now; 5168 5169 if (delta > 0 && delta < 2*TICK_NSEC) 5170 perf_adjust_period(event, delta, hwc->last_period, true); 5171 } 5172 5173 /* 5174 * XXX event_limit might not quite work as expected on inherited 5175 * events 5176 */ 5177 5178 event->pending_kill = POLL_IN; 5179 if (events && atomic_dec_and_test(&event->event_limit)) { 5180 ret = 1; 5181 event->pending_kill = POLL_HUP; 5182 event->pending_disable = 1; 5183 irq_work_queue(&event->pending); 5184 } 5185 5186 if (event->overflow_handler) 5187 event->overflow_handler(event, data, regs); 5188 else 5189 perf_event_output(event, data, regs); 5190 5191 if (event->fasync && event->pending_kill) { 5192 event->pending_wakeup = 1; 5193 irq_work_queue(&event->pending); 5194 } 5195 5196 return ret; 5197 } 5198 5199 int perf_event_overflow(struct perf_event *event, 5200 struct perf_sample_data *data, 5201 struct pt_regs *regs) 5202 { 5203 return __perf_event_overflow(event, 1, data, regs); 5204 } 5205 5206 /* 5207 * Generic software event infrastructure 5208 */ 5209 5210 struct swevent_htable { 5211 struct swevent_hlist *swevent_hlist; 5212 struct mutex hlist_mutex; 5213 int hlist_refcount; 5214 5215 /* Recursion avoidance in each contexts */ 5216 int recursion[PERF_NR_CONTEXTS]; 5217 }; 5218 5219 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5220 5221 /* 5222 * We directly increment event->count and keep a second value in 5223 * event->hw.period_left to count intervals. This period event 5224 * is kept in the range [-sample_period, 0] so that we can use the 5225 * sign as trigger. 5226 */ 5227 5228 u64 perf_swevent_set_period(struct perf_event *event) 5229 { 5230 struct hw_perf_event *hwc = &event->hw; 5231 u64 period = hwc->last_period; 5232 u64 nr, offset; 5233 s64 old, val; 5234 5235 hwc->last_period = hwc->sample_period; 5236 5237 again: 5238 old = val = local64_read(&hwc->period_left); 5239 if (val < 0) 5240 return 0; 5241 5242 nr = div64_u64(period + val, period); 5243 offset = nr * period; 5244 val -= offset; 5245 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5246 goto again; 5247 5248 return nr; 5249 } 5250 5251 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5252 struct perf_sample_data *data, 5253 struct pt_regs *regs) 5254 { 5255 struct hw_perf_event *hwc = &event->hw; 5256 int throttle = 0; 5257 5258 if (!overflow) 5259 overflow = perf_swevent_set_period(event); 5260 5261 if (hwc->interrupts == MAX_INTERRUPTS) 5262 return; 5263 5264 for (; overflow; overflow--) { 5265 if (__perf_event_overflow(event, throttle, 5266 data, regs)) { 5267 /* 5268 * We inhibit the overflow from happening when 5269 * hwc->interrupts == MAX_INTERRUPTS. 5270 */ 5271 break; 5272 } 5273 throttle = 1; 5274 } 5275 } 5276 5277 static void perf_swevent_event(struct perf_event *event, u64 nr, 5278 struct perf_sample_data *data, 5279 struct pt_regs *regs) 5280 { 5281 struct hw_perf_event *hwc = &event->hw; 5282 5283 local64_add(nr, &event->count); 5284 5285 if (!regs) 5286 return; 5287 5288 if (!is_sampling_event(event)) 5289 return; 5290 5291 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5292 data->period = nr; 5293 return perf_swevent_overflow(event, 1, data, regs); 5294 } else 5295 data->period = event->hw.last_period; 5296 5297 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5298 return perf_swevent_overflow(event, 1, data, regs); 5299 5300 if (local64_add_negative(nr, &hwc->period_left)) 5301 return; 5302 5303 perf_swevent_overflow(event, 0, data, regs); 5304 } 5305 5306 static int perf_exclude_event(struct perf_event *event, 5307 struct pt_regs *regs) 5308 { 5309 if (event->hw.state & PERF_HES_STOPPED) 5310 return 1; 5311 5312 if (regs) { 5313 if (event->attr.exclude_user && user_mode(regs)) 5314 return 1; 5315 5316 if (event->attr.exclude_kernel && !user_mode(regs)) 5317 return 1; 5318 } 5319 5320 return 0; 5321 } 5322 5323 static int perf_swevent_match(struct perf_event *event, 5324 enum perf_type_id type, 5325 u32 event_id, 5326 struct perf_sample_data *data, 5327 struct pt_regs *regs) 5328 { 5329 if (event->attr.type != type) 5330 return 0; 5331 5332 if (event->attr.config != event_id) 5333 return 0; 5334 5335 if (perf_exclude_event(event, regs)) 5336 return 0; 5337 5338 return 1; 5339 } 5340 5341 static inline u64 swevent_hash(u64 type, u32 event_id) 5342 { 5343 u64 val = event_id | (type << 32); 5344 5345 return hash_64(val, SWEVENT_HLIST_BITS); 5346 } 5347 5348 static inline struct hlist_head * 5349 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5350 { 5351 u64 hash = swevent_hash(type, event_id); 5352 5353 return &hlist->heads[hash]; 5354 } 5355 5356 /* For the read side: events when they trigger */ 5357 static inline struct hlist_head * 5358 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5359 { 5360 struct swevent_hlist *hlist; 5361 5362 hlist = rcu_dereference(swhash->swevent_hlist); 5363 if (!hlist) 5364 return NULL; 5365 5366 return __find_swevent_head(hlist, type, event_id); 5367 } 5368 5369 /* For the event head insertion and removal in the hlist */ 5370 static inline struct hlist_head * 5371 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5372 { 5373 struct swevent_hlist *hlist; 5374 u32 event_id = event->attr.config; 5375 u64 type = event->attr.type; 5376 5377 /* 5378 * Event scheduling is always serialized against hlist allocation 5379 * and release. Which makes the protected version suitable here. 5380 * The context lock guarantees that. 5381 */ 5382 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5383 lockdep_is_held(&event->ctx->lock)); 5384 if (!hlist) 5385 return NULL; 5386 5387 return __find_swevent_head(hlist, type, event_id); 5388 } 5389 5390 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5391 u64 nr, 5392 struct perf_sample_data *data, 5393 struct pt_regs *regs) 5394 { 5395 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5396 struct perf_event *event; 5397 struct hlist_head *head; 5398 5399 rcu_read_lock(); 5400 head = find_swevent_head_rcu(swhash, type, event_id); 5401 if (!head) 5402 goto end; 5403 5404 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5405 if (perf_swevent_match(event, type, event_id, data, regs)) 5406 perf_swevent_event(event, nr, data, regs); 5407 } 5408 end: 5409 rcu_read_unlock(); 5410 } 5411 5412 int perf_swevent_get_recursion_context(void) 5413 { 5414 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5415 5416 return get_recursion_context(swhash->recursion); 5417 } 5418 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5419 5420 inline void perf_swevent_put_recursion_context(int rctx) 5421 { 5422 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5423 5424 put_recursion_context(swhash->recursion, rctx); 5425 } 5426 5427 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5428 { 5429 struct perf_sample_data data; 5430 int rctx; 5431 5432 preempt_disable_notrace(); 5433 rctx = perf_swevent_get_recursion_context(); 5434 if (rctx < 0) 5435 return; 5436 5437 perf_sample_data_init(&data, addr, 0); 5438 5439 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5440 5441 perf_swevent_put_recursion_context(rctx); 5442 preempt_enable_notrace(); 5443 } 5444 5445 static void perf_swevent_read(struct perf_event *event) 5446 { 5447 } 5448 5449 static int perf_swevent_add(struct perf_event *event, int flags) 5450 { 5451 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5452 struct hw_perf_event *hwc = &event->hw; 5453 struct hlist_head *head; 5454 5455 if (is_sampling_event(event)) { 5456 hwc->last_period = hwc->sample_period; 5457 perf_swevent_set_period(event); 5458 } 5459 5460 hwc->state = !(flags & PERF_EF_START); 5461 5462 head = find_swevent_head(swhash, event); 5463 if (WARN_ON_ONCE(!head)) 5464 return -EINVAL; 5465 5466 hlist_add_head_rcu(&event->hlist_entry, head); 5467 5468 return 0; 5469 } 5470 5471 static void perf_swevent_del(struct perf_event *event, int flags) 5472 { 5473 hlist_del_rcu(&event->hlist_entry); 5474 } 5475 5476 static void perf_swevent_start(struct perf_event *event, int flags) 5477 { 5478 event->hw.state = 0; 5479 } 5480 5481 static void perf_swevent_stop(struct perf_event *event, int flags) 5482 { 5483 event->hw.state = PERF_HES_STOPPED; 5484 } 5485 5486 /* Deref the hlist from the update side */ 5487 static inline struct swevent_hlist * 5488 swevent_hlist_deref(struct swevent_htable *swhash) 5489 { 5490 return rcu_dereference_protected(swhash->swevent_hlist, 5491 lockdep_is_held(&swhash->hlist_mutex)); 5492 } 5493 5494 static void swevent_hlist_release(struct swevent_htable *swhash) 5495 { 5496 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5497 5498 if (!hlist) 5499 return; 5500 5501 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5502 kfree_rcu(hlist, rcu_head); 5503 } 5504 5505 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5506 { 5507 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5508 5509 mutex_lock(&swhash->hlist_mutex); 5510 5511 if (!--swhash->hlist_refcount) 5512 swevent_hlist_release(swhash); 5513 5514 mutex_unlock(&swhash->hlist_mutex); 5515 } 5516 5517 static void swevent_hlist_put(struct perf_event *event) 5518 { 5519 int cpu; 5520 5521 if (event->cpu != -1) { 5522 swevent_hlist_put_cpu(event, event->cpu); 5523 return; 5524 } 5525 5526 for_each_possible_cpu(cpu) 5527 swevent_hlist_put_cpu(event, cpu); 5528 } 5529 5530 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5531 { 5532 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5533 int err = 0; 5534 5535 mutex_lock(&swhash->hlist_mutex); 5536 5537 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5538 struct swevent_hlist *hlist; 5539 5540 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5541 if (!hlist) { 5542 err = -ENOMEM; 5543 goto exit; 5544 } 5545 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5546 } 5547 swhash->hlist_refcount++; 5548 exit: 5549 mutex_unlock(&swhash->hlist_mutex); 5550 5551 return err; 5552 } 5553 5554 static int swevent_hlist_get(struct perf_event *event) 5555 { 5556 int err; 5557 int cpu, failed_cpu; 5558 5559 if (event->cpu != -1) 5560 return swevent_hlist_get_cpu(event, event->cpu); 5561 5562 get_online_cpus(); 5563 for_each_possible_cpu(cpu) { 5564 err = swevent_hlist_get_cpu(event, cpu); 5565 if (err) { 5566 failed_cpu = cpu; 5567 goto fail; 5568 } 5569 } 5570 put_online_cpus(); 5571 5572 return 0; 5573 fail: 5574 for_each_possible_cpu(cpu) { 5575 if (cpu == failed_cpu) 5576 break; 5577 swevent_hlist_put_cpu(event, cpu); 5578 } 5579 5580 put_online_cpus(); 5581 return err; 5582 } 5583 5584 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5585 5586 static void sw_perf_event_destroy(struct perf_event *event) 5587 { 5588 u64 event_id = event->attr.config; 5589 5590 WARN_ON(event->parent); 5591 5592 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5593 swevent_hlist_put(event); 5594 } 5595 5596 static int perf_swevent_init(struct perf_event *event) 5597 { 5598 u64 event_id = event->attr.config; 5599 5600 if (event->attr.type != PERF_TYPE_SOFTWARE) 5601 return -ENOENT; 5602 5603 /* 5604 * no branch sampling for software events 5605 */ 5606 if (has_branch_stack(event)) 5607 return -EOPNOTSUPP; 5608 5609 switch (event_id) { 5610 case PERF_COUNT_SW_CPU_CLOCK: 5611 case PERF_COUNT_SW_TASK_CLOCK: 5612 return -ENOENT; 5613 5614 default: 5615 break; 5616 } 5617 5618 if (event_id >= PERF_COUNT_SW_MAX) 5619 return -ENOENT; 5620 5621 if (!event->parent) { 5622 int err; 5623 5624 err = swevent_hlist_get(event); 5625 if (err) 5626 return err; 5627 5628 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5629 event->destroy = sw_perf_event_destroy; 5630 } 5631 5632 return 0; 5633 } 5634 5635 static int perf_swevent_event_idx(struct perf_event *event) 5636 { 5637 return 0; 5638 } 5639 5640 static struct pmu perf_swevent = { 5641 .task_ctx_nr = perf_sw_context, 5642 5643 .event_init = perf_swevent_init, 5644 .add = perf_swevent_add, 5645 .del = perf_swevent_del, 5646 .start = perf_swevent_start, 5647 .stop = perf_swevent_stop, 5648 .read = perf_swevent_read, 5649 5650 .event_idx = perf_swevent_event_idx, 5651 }; 5652 5653 #ifdef CONFIG_EVENT_TRACING 5654 5655 static int perf_tp_filter_match(struct perf_event *event, 5656 struct perf_sample_data *data) 5657 { 5658 void *record = data->raw->data; 5659 5660 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5661 return 1; 5662 return 0; 5663 } 5664 5665 static int perf_tp_event_match(struct perf_event *event, 5666 struct perf_sample_data *data, 5667 struct pt_regs *regs) 5668 { 5669 if (event->hw.state & PERF_HES_STOPPED) 5670 return 0; 5671 /* 5672 * All tracepoints are from kernel-space. 5673 */ 5674 if (event->attr.exclude_kernel) 5675 return 0; 5676 5677 if (!perf_tp_filter_match(event, data)) 5678 return 0; 5679 5680 return 1; 5681 } 5682 5683 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5684 struct pt_regs *regs, struct hlist_head *head, int rctx, 5685 struct task_struct *task) 5686 { 5687 struct perf_sample_data data; 5688 struct perf_event *event; 5689 5690 struct perf_raw_record raw = { 5691 .size = entry_size, 5692 .data = record, 5693 }; 5694 5695 perf_sample_data_init(&data, addr, 0); 5696 data.raw = &raw; 5697 5698 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5699 if (perf_tp_event_match(event, &data, regs)) 5700 perf_swevent_event(event, count, &data, regs); 5701 } 5702 5703 /* 5704 * If we got specified a target task, also iterate its context and 5705 * deliver this event there too. 5706 */ 5707 if (task && task != current) { 5708 struct perf_event_context *ctx; 5709 struct trace_entry *entry = record; 5710 5711 rcu_read_lock(); 5712 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5713 if (!ctx) 5714 goto unlock; 5715 5716 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5717 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5718 continue; 5719 if (event->attr.config != entry->type) 5720 continue; 5721 if (perf_tp_event_match(event, &data, regs)) 5722 perf_swevent_event(event, count, &data, regs); 5723 } 5724 unlock: 5725 rcu_read_unlock(); 5726 } 5727 5728 perf_swevent_put_recursion_context(rctx); 5729 } 5730 EXPORT_SYMBOL_GPL(perf_tp_event); 5731 5732 static void tp_perf_event_destroy(struct perf_event *event) 5733 { 5734 perf_trace_destroy(event); 5735 } 5736 5737 static int perf_tp_event_init(struct perf_event *event) 5738 { 5739 int err; 5740 5741 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5742 return -ENOENT; 5743 5744 /* 5745 * no branch sampling for tracepoint events 5746 */ 5747 if (has_branch_stack(event)) 5748 return -EOPNOTSUPP; 5749 5750 err = perf_trace_init(event); 5751 if (err) 5752 return err; 5753 5754 event->destroy = tp_perf_event_destroy; 5755 5756 return 0; 5757 } 5758 5759 static struct pmu perf_tracepoint = { 5760 .task_ctx_nr = perf_sw_context, 5761 5762 .event_init = perf_tp_event_init, 5763 .add = perf_trace_add, 5764 .del = perf_trace_del, 5765 .start = perf_swevent_start, 5766 .stop = perf_swevent_stop, 5767 .read = perf_swevent_read, 5768 5769 .event_idx = perf_swevent_event_idx, 5770 }; 5771 5772 static inline void perf_tp_register(void) 5773 { 5774 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5775 } 5776 5777 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5778 { 5779 char *filter_str; 5780 int ret; 5781 5782 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5783 return -EINVAL; 5784 5785 filter_str = strndup_user(arg, PAGE_SIZE); 5786 if (IS_ERR(filter_str)) 5787 return PTR_ERR(filter_str); 5788 5789 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5790 5791 kfree(filter_str); 5792 return ret; 5793 } 5794 5795 static void perf_event_free_filter(struct perf_event *event) 5796 { 5797 ftrace_profile_free_filter(event); 5798 } 5799 5800 #else 5801 5802 static inline void perf_tp_register(void) 5803 { 5804 } 5805 5806 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5807 { 5808 return -ENOENT; 5809 } 5810 5811 static void perf_event_free_filter(struct perf_event *event) 5812 { 5813 } 5814 5815 #endif /* CONFIG_EVENT_TRACING */ 5816 5817 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5818 void perf_bp_event(struct perf_event *bp, void *data) 5819 { 5820 struct perf_sample_data sample; 5821 struct pt_regs *regs = data; 5822 5823 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5824 5825 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5826 perf_swevent_event(bp, 1, &sample, regs); 5827 } 5828 #endif 5829 5830 /* 5831 * hrtimer based swevent callback 5832 */ 5833 5834 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5835 { 5836 enum hrtimer_restart ret = HRTIMER_RESTART; 5837 struct perf_sample_data data; 5838 struct pt_regs *regs; 5839 struct perf_event *event; 5840 u64 period; 5841 5842 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5843 5844 if (event->state != PERF_EVENT_STATE_ACTIVE) 5845 return HRTIMER_NORESTART; 5846 5847 event->pmu->read(event); 5848 5849 perf_sample_data_init(&data, 0, event->hw.last_period); 5850 regs = get_irq_regs(); 5851 5852 if (regs && !perf_exclude_event(event, regs)) { 5853 if (!(event->attr.exclude_idle && is_idle_task(current))) 5854 if (__perf_event_overflow(event, 1, &data, regs)) 5855 ret = HRTIMER_NORESTART; 5856 } 5857 5858 period = max_t(u64, 10000, event->hw.sample_period); 5859 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5860 5861 return ret; 5862 } 5863 5864 static void perf_swevent_start_hrtimer(struct perf_event *event) 5865 { 5866 struct hw_perf_event *hwc = &event->hw; 5867 s64 period; 5868 5869 if (!is_sampling_event(event)) 5870 return; 5871 5872 period = local64_read(&hwc->period_left); 5873 if (period) { 5874 if (period < 0) 5875 period = 10000; 5876 5877 local64_set(&hwc->period_left, 0); 5878 } else { 5879 period = max_t(u64, 10000, hwc->sample_period); 5880 } 5881 __hrtimer_start_range_ns(&hwc->hrtimer, 5882 ns_to_ktime(period), 0, 5883 HRTIMER_MODE_REL_PINNED, 0); 5884 } 5885 5886 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5887 { 5888 struct hw_perf_event *hwc = &event->hw; 5889 5890 if (is_sampling_event(event)) { 5891 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5892 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5893 5894 hrtimer_cancel(&hwc->hrtimer); 5895 } 5896 } 5897 5898 static void perf_swevent_init_hrtimer(struct perf_event *event) 5899 { 5900 struct hw_perf_event *hwc = &event->hw; 5901 5902 if (!is_sampling_event(event)) 5903 return; 5904 5905 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5906 hwc->hrtimer.function = perf_swevent_hrtimer; 5907 5908 /* 5909 * Since hrtimers have a fixed rate, we can do a static freq->period 5910 * mapping and avoid the whole period adjust feedback stuff. 5911 */ 5912 if (event->attr.freq) { 5913 long freq = event->attr.sample_freq; 5914 5915 event->attr.sample_period = NSEC_PER_SEC / freq; 5916 hwc->sample_period = event->attr.sample_period; 5917 local64_set(&hwc->period_left, hwc->sample_period); 5918 hwc->last_period = hwc->sample_period; 5919 event->attr.freq = 0; 5920 } 5921 } 5922 5923 /* 5924 * Software event: cpu wall time clock 5925 */ 5926 5927 static void cpu_clock_event_update(struct perf_event *event) 5928 { 5929 s64 prev; 5930 u64 now; 5931 5932 now = local_clock(); 5933 prev = local64_xchg(&event->hw.prev_count, now); 5934 local64_add(now - prev, &event->count); 5935 } 5936 5937 static void cpu_clock_event_start(struct perf_event *event, int flags) 5938 { 5939 local64_set(&event->hw.prev_count, local_clock()); 5940 perf_swevent_start_hrtimer(event); 5941 } 5942 5943 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5944 { 5945 perf_swevent_cancel_hrtimer(event); 5946 cpu_clock_event_update(event); 5947 } 5948 5949 static int cpu_clock_event_add(struct perf_event *event, int flags) 5950 { 5951 if (flags & PERF_EF_START) 5952 cpu_clock_event_start(event, flags); 5953 5954 return 0; 5955 } 5956 5957 static void cpu_clock_event_del(struct perf_event *event, int flags) 5958 { 5959 cpu_clock_event_stop(event, flags); 5960 } 5961 5962 static void cpu_clock_event_read(struct perf_event *event) 5963 { 5964 cpu_clock_event_update(event); 5965 } 5966 5967 static int cpu_clock_event_init(struct perf_event *event) 5968 { 5969 if (event->attr.type != PERF_TYPE_SOFTWARE) 5970 return -ENOENT; 5971 5972 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5973 return -ENOENT; 5974 5975 /* 5976 * no branch sampling for software events 5977 */ 5978 if (has_branch_stack(event)) 5979 return -EOPNOTSUPP; 5980 5981 perf_swevent_init_hrtimer(event); 5982 5983 return 0; 5984 } 5985 5986 static struct pmu perf_cpu_clock = { 5987 .task_ctx_nr = perf_sw_context, 5988 5989 .event_init = cpu_clock_event_init, 5990 .add = cpu_clock_event_add, 5991 .del = cpu_clock_event_del, 5992 .start = cpu_clock_event_start, 5993 .stop = cpu_clock_event_stop, 5994 .read = cpu_clock_event_read, 5995 5996 .event_idx = perf_swevent_event_idx, 5997 }; 5998 5999 /* 6000 * Software event: task time clock 6001 */ 6002 6003 static void task_clock_event_update(struct perf_event *event, u64 now) 6004 { 6005 u64 prev; 6006 s64 delta; 6007 6008 prev = local64_xchg(&event->hw.prev_count, now); 6009 delta = now - prev; 6010 local64_add(delta, &event->count); 6011 } 6012 6013 static void task_clock_event_start(struct perf_event *event, int flags) 6014 { 6015 local64_set(&event->hw.prev_count, event->ctx->time); 6016 perf_swevent_start_hrtimer(event); 6017 } 6018 6019 static void task_clock_event_stop(struct perf_event *event, int flags) 6020 { 6021 perf_swevent_cancel_hrtimer(event); 6022 task_clock_event_update(event, event->ctx->time); 6023 } 6024 6025 static int task_clock_event_add(struct perf_event *event, int flags) 6026 { 6027 if (flags & PERF_EF_START) 6028 task_clock_event_start(event, flags); 6029 6030 return 0; 6031 } 6032 6033 static void task_clock_event_del(struct perf_event *event, int flags) 6034 { 6035 task_clock_event_stop(event, PERF_EF_UPDATE); 6036 } 6037 6038 static void task_clock_event_read(struct perf_event *event) 6039 { 6040 u64 now = perf_clock(); 6041 u64 delta = now - event->ctx->timestamp; 6042 u64 time = event->ctx->time + delta; 6043 6044 task_clock_event_update(event, time); 6045 } 6046 6047 static int task_clock_event_init(struct perf_event *event) 6048 { 6049 if (event->attr.type != PERF_TYPE_SOFTWARE) 6050 return -ENOENT; 6051 6052 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6053 return -ENOENT; 6054 6055 /* 6056 * no branch sampling for software events 6057 */ 6058 if (has_branch_stack(event)) 6059 return -EOPNOTSUPP; 6060 6061 perf_swevent_init_hrtimer(event); 6062 6063 return 0; 6064 } 6065 6066 static struct pmu perf_task_clock = { 6067 .task_ctx_nr = perf_sw_context, 6068 6069 .event_init = task_clock_event_init, 6070 .add = task_clock_event_add, 6071 .del = task_clock_event_del, 6072 .start = task_clock_event_start, 6073 .stop = task_clock_event_stop, 6074 .read = task_clock_event_read, 6075 6076 .event_idx = perf_swevent_event_idx, 6077 }; 6078 6079 static void perf_pmu_nop_void(struct pmu *pmu) 6080 { 6081 } 6082 6083 static int perf_pmu_nop_int(struct pmu *pmu) 6084 { 6085 return 0; 6086 } 6087 6088 static void perf_pmu_start_txn(struct pmu *pmu) 6089 { 6090 perf_pmu_disable(pmu); 6091 } 6092 6093 static int perf_pmu_commit_txn(struct pmu *pmu) 6094 { 6095 perf_pmu_enable(pmu); 6096 return 0; 6097 } 6098 6099 static void perf_pmu_cancel_txn(struct pmu *pmu) 6100 { 6101 perf_pmu_enable(pmu); 6102 } 6103 6104 static int perf_event_idx_default(struct perf_event *event) 6105 { 6106 return event->hw.idx + 1; 6107 } 6108 6109 /* 6110 * Ensures all contexts with the same task_ctx_nr have the same 6111 * pmu_cpu_context too. 6112 */ 6113 static void *find_pmu_context(int ctxn) 6114 { 6115 struct pmu *pmu; 6116 6117 if (ctxn < 0) 6118 return NULL; 6119 6120 list_for_each_entry(pmu, &pmus, entry) { 6121 if (pmu->task_ctx_nr == ctxn) 6122 return pmu->pmu_cpu_context; 6123 } 6124 6125 return NULL; 6126 } 6127 6128 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6129 { 6130 int cpu; 6131 6132 for_each_possible_cpu(cpu) { 6133 struct perf_cpu_context *cpuctx; 6134 6135 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6136 6137 if (cpuctx->unique_pmu == old_pmu) 6138 cpuctx->unique_pmu = pmu; 6139 } 6140 } 6141 6142 static void free_pmu_context(struct pmu *pmu) 6143 { 6144 struct pmu *i; 6145 6146 mutex_lock(&pmus_lock); 6147 /* 6148 * Like a real lame refcount. 6149 */ 6150 list_for_each_entry(i, &pmus, entry) { 6151 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6152 update_pmu_context(i, pmu); 6153 goto out; 6154 } 6155 } 6156 6157 free_percpu(pmu->pmu_cpu_context); 6158 out: 6159 mutex_unlock(&pmus_lock); 6160 } 6161 static struct idr pmu_idr; 6162 6163 static ssize_t 6164 type_show(struct device *dev, struct device_attribute *attr, char *page) 6165 { 6166 struct pmu *pmu = dev_get_drvdata(dev); 6167 6168 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6169 } 6170 6171 static ssize_t 6172 perf_event_mux_interval_ms_show(struct device *dev, 6173 struct device_attribute *attr, 6174 char *page) 6175 { 6176 struct pmu *pmu = dev_get_drvdata(dev); 6177 6178 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6179 } 6180 6181 static ssize_t 6182 perf_event_mux_interval_ms_store(struct device *dev, 6183 struct device_attribute *attr, 6184 const char *buf, size_t count) 6185 { 6186 struct pmu *pmu = dev_get_drvdata(dev); 6187 int timer, cpu, ret; 6188 6189 ret = kstrtoint(buf, 0, &timer); 6190 if (ret) 6191 return ret; 6192 6193 if (timer < 1) 6194 return -EINVAL; 6195 6196 /* same value, noting to do */ 6197 if (timer == pmu->hrtimer_interval_ms) 6198 return count; 6199 6200 pmu->hrtimer_interval_ms = timer; 6201 6202 /* update all cpuctx for this PMU */ 6203 for_each_possible_cpu(cpu) { 6204 struct perf_cpu_context *cpuctx; 6205 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6206 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6207 6208 if (hrtimer_active(&cpuctx->hrtimer)) 6209 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6210 } 6211 6212 return count; 6213 } 6214 6215 #define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store) 6216 6217 static struct device_attribute pmu_dev_attrs[] = { 6218 __ATTR_RO(type), 6219 __ATTR_RW(perf_event_mux_interval_ms), 6220 __ATTR_NULL, 6221 }; 6222 6223 static int pmu_bus_running; 6224 static struct bus_type pmu_bus = { 6225 .name = "event_source", 6226 .dev_attrs = pmu_dev_attrs, 6227 }; 6228 6229 static void pmu_dev_release(struct device *dev) 6230 { 6231 kfree(dev); 6232 } 6233 6234 static int pmu_dev_alloc(struct pmu *pmu) 6235 { 6236 int ret = -ENOMEM; 6237 6238 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6239 if (!pmu->dev) 6240 goto out; 6241 6242 pmu->dev->groups = pmu->attr_groups; 6243 device_initialize(pmu->dev); 6244 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6245 if (ret) 6246 goto free_dev; 6247 6248 dev_set_drvdata(pmu->dev, pmu); 6249 pmu->dev->bus = &pmu_bus; 6250 pmu->dev->release = pmu_dev_release; 6251 ret = device_add(pmu->dev); 6252 if (ret) 6253 goto free_dev; 6254 6255 out: 6256 return ret; 6257 6258 free_dev: 6259 put_device(pmu->dev); 6260 goto out; 6261 } 6262 6263 static struct lock_class_key cpuctx_mutex; 6264 static struct lock_class_key cpuctx_lock; 6265 6266 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6267 { 6268 int cpu, ret; 6269 6270 mutex_lock(&pmus_lock); 6271 ret = -ENOMEM; 6272 pmu->pmu_disable_count = alloc_percpu(int); 6273 if (!pmu->pmu_disable_count) 6274 goto unlock; 6275 6276 pmu->type = -1; 6277 if (!name) 6278 goto skip_type; 6279 pmu->name = name; 6280 6281 if (type < 0) { 6282 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6283 if (type < 0) { 6284 ret = type; 6285 goto free_pdc; 6286 } 6287 } 6288 pmu->type = type; 6289 6290 if (pmu_bus_running) { 6291 ret = pmu_dev_alloc(pmu); 6292 if (ret) 6293 goto free_idr; 6294 } 6295 6296 skip_type: 6297 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6298 if (pmu->pmu_cpu_context) 6299 goto got_cpu_context; 6300 6301 ret = -ENOMEM; 6302 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6303 if (!pmu->pmu_cpu_context) 6304 goto free_dev; 6305 6306 for_each_possible_cpu(cpu) { 6307 struct perf_cpu_context *cpuctx; 6308 6309 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6310 __perf_event_init_context(&cpuctx->ctx); 6311 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6312 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6313 cpuctx->ctx.type = cpu_context; 6314 cpuctx->ctx.pmu = pmu; 6315 6316 __perf_cpu_hrtimer_init(cpuctx, cpu); 6317 6318 INIT_LIST_HEAD(&cpuctx->rotation_list); 6319 cpuctx->unique_pmu = pmu; 6320 } 6321 6322 got_cpu_context: 6323 if (!pmu->start_txn) { 6324 if (pmu->pmu_enable) { 6325 /* 6326 * If we have pmu_enable/pmu_disable calls, install 6327 * transaction stubs that use that to try and batch 6328 * hardware accesses. 6329 */ 6330 pmu->start_txn = perf_pmu_start_txn; 6331 pmu->commit_txn = perf_pmu_commit_txn; 6332 pmu->cancel_txn = perf_pmu_cancel_txn; 6333 } else { 6334 pmu->start_txn = perf_pmu_nop_void; 6335 pmu->commit_txn = perf_pmu_nop_int; 6336 pmu->cancel_txn = perf_pmu_nop_void; 6337 } 6338 } 6339 6340 if (!pmu->pmu_enable) { 6341 pmu->pmu_enable = perf_pmu_nop_void; 6342 pmu->pmu_disable = perf_pmu_nop_void; 6343 } 6344 6345 if (!pmu->event_idx) 6346 pmu->event_idx = perf_event_idx_default; 6347 6348 list_add_rcu(&pmu->entry, &pmus); 6349 ret = 0; 6350 unlock: 6351 mutex_unlock(&pmus_lock); 6352 6353 return ret; 6354 6355 free_dev: 6356 device_del(pmu->dev); 6357 put_device(pmu->dev); 6358 6359 free_idr: 6360 if (pmu->type >= PERF_TYPE_MAX) 6361 idr_remove(&pmu_idr, pmu->type); 6362 6363 free_pdc: 6364 free_percpu(pmu->pmu_disable_count); 6365 goto unlock; 6366 } 6367 6368 void perf_pmu_unregister(struct pmu *pmu) 6369 { 6370 mutex_lock(&pmus_lock); 6371 list_del_rcu(&pmu->entry); 6372 mutex_unlock(&pmus_lock); 6373 6374 /* 6375 * We dereference the pmu list under both SRCU and regular RCU, so 6376 * synchronize against both of those. 6377 */ 6378 synchronize_srcu(&pmus_srcu); 6379 synchronize_rcu(); 6380 6381 free_percpu(pmu->pmu_disable_count); 6382 if (pmu->type >= PERF_TYPE_MAX) 6383 idr_remove(&pmu_idr, pmu->type); 6384 device_del(pmu->dev); 6385 put_device(pmu->dev); 6386 free_pmu_context(pmu); 6387 } 6388 6389 struct pmu *perf_init_event(struct perf_event *event) 6390 { 6391 struct pmu *pmu = NULL; 6392 int idx; 6393 int ret; 6394 6395 idx = srcu_read_lock(&pmus_srcu); 6396 6397 rcu_read_lock(); 6398 pmu = idr_find(&pmu_idr, event->attr.type); 6399 rcu_read_unlock(); 6400 if (pmu) { 6401 event->pmu = pmu; 6402 ret = pmu->event_init(event); 6403 if (ret) 6404 pmu = ERR_PTR(ret); 6405 goto unlock; 6406 } 6407 6408 list_for_each_entry_rcu(pmu, &pmus, entry) { 6409 event->pmu = pmu; 6410 ret = pmu->event_init(event); 6411 if (!ret) 6412 goto unlock; 6413 6414 if (ret != -ENOENT) { 6415 pmu = ERR_PTR(ret); 6416 goto unlock; 6417 } 6418 } 6419 pmu = ERR_PTR(-ENOENT); 6420 unlock: 6421 srcu_read_unlock(&pmus_srcu, idx); 6422 6423 return pmu; 6424 } 6425 6426 /* 6427 * Allocate and initialize a event structure 6428 */ 6429 static struct perf_event * 6430 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6431 struct task_struct *task, 6432 struct perf_event *group_leader, 6433 struct perf_event *parent_event, 6434 perf_overflow_handler_t overflow_handler, 6435 void *context) 6436 { 6437 struct pmu *pmu; 6438 struct perf_event *event; 6439 struct hw_perf_event *hwc; 6440 long err; 6441 6442 if ((unsigned)cpu >= nr_cpu_ids) { 6443 if (!task || cpu != -1) 6444 return ERR_PTR(-EINVAL); 6445 } 6446 6447 event = kzalloc(sizeof(*event), GFP_KERNEL); 6448 if (!event) 6449 return ERR_PTR(-ENOMEM); 6450 6451 /* 6452 * Single events are their own group leaders, with an 6453 * empty sibling list: 6454 */ 6455 if (!group_leader) 6456 group_leader = event; 6457 6458 mutex_init(&event->child_mutex); 6459 INIT_LIST_HEAD(&event->child_list); 6460 6461 INIT_LIST_HEAD(&event->group_entry); 6462 INIT_LIST_HEAD(&event->event_entry); 6463 INIT_LIST_HEAD(&event->sibling_list); 6464 INIT_LIST_HEAD(&event->rb_entry); 6465 6466 init_waitqueue_head(&event->waitq); 6467 init_irq_work(&event->pending, perf_pending_event); 6468 6469 mutex_init(&event->mmap_mutex); 6470 6471 atomic_long_set(&event->refcount, 1); 6472 event->cpu = cpu; 6473 event->attr = *attr; 6474 event->group_leader = group_leader; 6475 event->pmu = NULL; 6476 event->oncpu = -1; 6477 6478 event->parent = parent_event; 6479 6480 event->ns = get_pid_ns(task_active_pid_ns(current)); 6481 event->id = atomic64_inc_return(&perf_event_id); 6482 6483 event->state = PERF_EVENT_STATE_INACTIVE; 6484 6485 if (task) { 6486 event->attach_state = PERF_ATTACH_TASK; 6487 6488 if (attr->type == PERF_TYPE_TRACEPOINT) 6489 event->hw.tp_target = task; 6490 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6491 /* 6492 * hw_breakpoint is a bit difficult here.. 6493 */ 6494 else if (attr->type == PERF_TYPE_BREAKPOINT) 6495 event->hw.bp_target = task; 6496 #endif 6497 } 6498 6499 if (!overflow_handler && parent_event) { 6500 overflow_handler = parent_event->overflow_handler; 6501 context = parent_event->overflow_handler_context; 6502 } 6503 6504 event->overflow_handler = overflow_handler; 6505 event->overflow_handler_context = context; 6506 6507 perf_event__state_init(event); 6508 6509 pmu = NULL; 6510 6511 hwc = &event->hw; 6512 hwc->sample_period = attr->sample_period; 6513 if (attr->freq && attr->sample_freq) 6514 hwc->sample_period = 1; 6515 hwc->last_period = hwc->sample_period; 6516 6517 local64_set(&hwc->period_left, hwc->sample_period); 6518 6519 /* 6520 * we currently do not support PERF_FORMAT_GROUP on inherited events 6521 */ 6522 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6523 goto done; 6524 6525 pmu = perf_init_event(event); 6526 6527 done: 6528 err = 0; 6529 if (!pmu) 6530 err = -EINVAL; 6531 else if (IS_ERR(pmu)) 6532 err = PTR_ERR(pmu); 6533 6534 if (err) { 6535 if (event->ns) 6536 put_pid_ns(event->ns); 6537 kfree(event); 6538 return ERR_PTR(err); 6539 } 6540 6541 if (!event->parent) { 6542 if (event->attach_state & PERF_ATTACH_TASK) 6543 static_key_slow_inc(&perf_sched_events.key); 6544 if (event->attr.mmap || event->attr.mmap_data) 6545 atomic_inc(&nr_mmap_events); 6546 if (event->attr.comm) 6547 atomic_inc(&nr_comm_events); 6548 if (event->attr.task) 6549 atomic_inc(&nr_task_events); 6550 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6551 err = get_callchain_buffers(); 6552 if (err) { 6553 free_event(event); 6554 return ERR_PTR(err); 6555 } 6556 } 6557 if (has_branch_stack(event)) { 6558 static_key_slow_inc(&perf_sched_events.key); 6559 if (!(event->attach_state & PERF_ATTACH_TASK)) 6560 atomic_inc(&per_cpu(perf_branch_stack_events, 6561 event->cpu)); 6562 } 6563 } 6564 6565 return event; 6566 } 6567 6568 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6569 struct perf_event_attr *attr) 6570 { 6571 u32 size; 6572 int ret; 6573 6574 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6575 return -EFAULT; 6576 6577 /* 6578 * zero the full structure, so that a short copy will be nice. 6579 */ 6580 memset(attr, 0, sizeof(*attr)); 6581 6582 ret = get_user(size, &uattr->size); 6583 if (ret) 6584 return ret; 6585 6586 if (size > PAGE_SIZE) /* silly large */ 6587 goto err_size; 6588 6589 if (!size) /* abi compat */ 6590 size = PERF_ATTR_SIZE_VER0; 6591 6592 if (size < PERF_ATTR_SIZE_VER0) 6593 goto err_size; 6594 6595 /* 6596 * If we're handed a bigger struct than we know of, 6597 * ensure all the unknown bits are 0 - i.e. new 6598 * user-space does not rely on any kernel feature 6599 * extensions we dont know about yet. 6600 */ 6601 if (size > sizeof(*attr)) { 6602 unsigned char __user *addr; 6603 unsigned char __user *end; 6604 unsigned char val; 6605 6606 addr = (void __user *)uattr + sizeof(*attr); 6607 end = (void __user *)uattr + size; 6608 6609 for (; addr < end; addr++) { 6610 ret = get_user(val, addr); 6611 if (ret) 6612 return ret; 6613 if (val) 6614 goto err_size; 6615 } 6616 size = sizeof(*attr); 6617 } 6618 6619 ret = copy_from_user(attr, uattr, size); 6620 if (ret) 6621 return -EFAULT; 6622 6623 if (attr->__reserved_1) 6624 return -EINVAL; 6625 6626 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6627 return -EINVAL; 6628 6629 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6630 return -EINVAL; 6631 6632 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6633 u64 mask = attr->branch_sample_type; 6634 6635 /* only using defined bits */ 6636 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6637 return -EINVAL; 6638 6639 /* at least one branch bit must be set */ 6640 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6641 return -EINVAL; 6642 6643 /* propagate priv level, when not set for branch */ 6644 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6645 6646 /* exclude_kernel checked on syscall entry */ 6647 if (!attr->exclude_kernel) 6648 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6649 6650 if (!attr->exclude_user) 6651 mask |= PERF_SAMPLE_BRANCH_USER; 6652 6653 if (!attr->exclude_hv) 6654 mask |= PERF_SAMPLE_BRANCH_HV; 6655 /* 6656 * adjust user setting (for HW filter setup) 6657 */ 6658 attr->branch_sample_type = mask; 6659 } 6660 /* privileged levels capture (kernel, hv): check permissions */ 6661 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6662 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6663 return -EACCES; 6664 } 6665 6666 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6667 ret = perf_reg_validate(attr->sample_regs_user); 6668 if (ret) 6669 return ret; 6670 } 6671 6672 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6673 if (!arch_perf_have_user_stack_dump()) 6674 return -ENOSYS; 6675 6676 /* 6677 * We have __u32 type for the size, but so far 6678 * we can only use __u16 as maximum due to the 6679 * __u16 sample size limit. 6680 */ 6681 if (attr->sample_stack_user >= USHRT_MAX) 6682 ret = -EINVAL; 6683 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6684 ret = -EINVAL; 6685 } 6686 6687 out: 6688 return ret; 6689 6690 err_size: 6691 put_user(sizeof(*attr), &uattr->size); 6692 ret = -E2BIG; 6693 goto out; 6694 } 6695 6696 static int 6697 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6698 { 6699 struct ring_buffer *rb = NULL, *old_rb = NULL; 6700 int ret = -EINVAL; 6701 6702 if (!output_event) 6703 goto set; 6704 6705 /* don't allow circular references */ 6706 if (event == output_event) 6707 goto out; 6708 6709 /* 6710 * Don't allow cross-cpu buffers 6711 */ 6712 if (output_event->cpu != event->cpu) 6713 goto out; 6714 6715 /* 6716 * If its not a per-cpu rb, it must be the same task. 6717 */ 6718 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6719 goto out; 6720 6721 set: 6722 mutex_lock(&event->mmap_mutex); 6723 /* Can't redirect output if we've got an active mmap() */ 6724 if (atomic_read(&event->mmap_count)) 6725 goto unlock; 6726 6727 old_rb = event->rb; 6728 6729 if (output_event) { 6730 /* get the rb we want to redirect to */ 6731 rb = ring_buffer_get(output_event); 6732 if (!rb) 6733 goto unlock; 6734 } 6735 6736 if (old_rb) 6737 ring_buffer_detach(event, old_rb); 6738 6739 if (rb) 6740 ring_buffer_attach(event, rb); 6741 6742 rcu_assign_pointer(event->rb, rb); 6743 6744 if (old_rb) { 6745 ring_buffer_put(old_rb); 6746 /* 6747 * Since we detached before setting the new rb, so that we 6748 * could attach the new rb, we could have missed a wakeup. 6749 * Provide it now. 6750 */ 6751 wake_up_all(&event->waitq); 6752 } 6753 6754 ret = 0; 6755 unlock: 6756 mutex_unlock(&event->mmap_mutex); 6757 6758 out: 6759 return ret; 6760 } 6761 6762 /** 6763 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6764 * 6765 * @attr_uptr: event_id type attributes for monitoring/sampling 6766 * @pid: target pid 6767 * @cpu: target cpu 6768 * @group_fd: group leader event fd 6769 */ 6770 SYSCALL_DEFINE5(perf_event_open, 6771 struct perf_event_attr __user *, attr_uptr, 6772 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6773 { 6774 struct perf_event *group_leader = NULL, *output_event = NULL; 6775 struct perf_event *event, *sibling; 6776 struct perf_event_attr attr; 6777 struct perf_event_context *ctx; 6778 struct file *event_file = NULL; 6779 struct fd group = {NULL, 0}; 6780 struct task_struct *task = NULL; 6781 struct pmu *pmu; 6782 int event_fd; 6783 int move_group = 0; 6784 int err; 6785 6786 /* for future expandability... */ 6787 if (flags & ~PERF_FLAG_ALL) 6788 return -EINVAL; 6789 6790 err = perf_copy_attr(attr_uptr, &attr); 6791 if (err) 6792 return err; 6793 6794 if (!attr.exclude_kernel) { 6795 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6796 return -EACCES; 6797 } 6798 6799 if (attr.freq) { 6800 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6801 return -EINVAL; 6802 } 6803 6804 /* 6805 * In cgroup mode, the pid argument is used to pass the fd 6806 * opened to the cgroup directory in cgroupfs. The cpu argument 6807 * designates the cpu on which to monitor threads from that 6808 * cgroup. 6809 */ 6810 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6811 return -EINVAL; 6812 6813 event_fd = get_unused_fd(); 6814 if (event_fd < 0) 6815 return event_fd; 6816 6817 if (group_fd != -1) { 6818 err = perf_fget_light(group_fd, &group); 6819 if (err) 6820 goto err_fd; 6821 group_leader = group.file->private_data; 6822 if (flags & PERF_FLAG_FD_OUTPUT) 6823 output_event = group_leader; 6824 if (flags & PERF_FLAG_FD_NO_GROUP) 6825 group_leader = NULL; 6826 } 6827 6828 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6829 task = find_lively_task_by_vpid(pid); 6830 if (IS_ERR(task)) { 6831 err = PTR_ERR(task); 6832 goto err_group_fd; 6833 } 6834 } 6835 6836 get_online_cpus(); 6837 6838 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6839 NULL, NULL); 6840 if (IS_ERR(event)) { 6841 err = PTR_ERR(event); 6842 goto err_task; 6843 } 6844 6845 if (flags & PERF_FLAG_PID_CGROUP) { 6846 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6847 if (err) 6848 goto err_alloc; 6849 /* 6850 * one more event: 6851 * - that has cgroup constraint on event->cpu 6852 * - that may need work on context switch 6853 */ 6854 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6855 static_key_slow_inc(&perf_sched_events.key); 6856 } 6857 6858 /* 6859 * Special case software events and allow them to be part of 6860 * any hardware group. 6861 */ 6862 pmu = event->pmu; 6863 6864 if (group_leader && 6865 (is_software_event(event) != is_software_event(group_leader))) { 6866 if (is_software_event(event)) { 6867 /* 6868 * If event and group_leader are not both a software 6869 * event, and event is, then group leader is not. 6870 * 6871 * Allow the addition of software events to !software 6872 * groups, this is safe because software events never 6873 * fail to schedule. 6874 */ 6875 pmu = group_leader->pmu; 6876 } else if (is_software_event(group_leader) && 6877 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6878 /* 6879 * In case the group is a pure software group, and we 6880 * try to add a hardware event, move the whole group to 6881 * the hardware context. 6882 */ 6883 move_group = 1; 6884 } 6885 } 6886 6887 /* 6888 * Get the target context (task or percpu): 6889 */ 6890 ctx = find_get_context(pmu, task, event->cpu); 6891 if (IS_ERR(ctx)) { 6892 err = PTR_ERR(ctx); 6893 goto err_alloc; 6894 } 6895 6896 if (task) { 6897 put_task_struct(task); 6898 task = NULL; 6899 } 6900 6901 /* 6902 * Look up the group leader (we will attach this event to it): 6903 */ 6904 if (group_leader) { 6905 err = -EINVAL; 6906 6907 /* 6908 * Do not allow a recursive hierarchy (this new sibling 6909 * becoming part of another group-sibling): 6910 */ 6911 if (group_leader->group_leader != group_leader) 6912 goto err_context; 6913 /* 6914 * Do not allow to attach to a group in a different 6915 * task or CPU context: 6916 */ 6917 if (move_group) { 6918 if (group_leader->ctx->type != ctx->type) 6919 goto err_context; 6920 } else { 6921 if (group_leader->ctx != ctx) 6922 goto err_context; 6923 } 6924 6925 /* 6926 * Only a group leader can be exclusive or pinned 6927 */ 6928 if (attr.exclusive || attr.pinned) 6929 goto err_context; 6930 } 6931 6932 if (output_event) { 6933 err = perf_event_set_output(event, output_event); 6934 if (err) 6935 goto err_context; 6936 } 6937 6938 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6939 if (IS_ERR(event_file)) { 6940 err = PTR_ERR(event_file); 6941 goto err_context; 6942 } 6943 6944 if (move_group) { 6945 struct perf_event_context *gctx = group_leader->ctx; 6946 6947 mutex_lock(&gctx->mutex); 6948 perf_remove_from_context(group_leader); 6949 6950 /* 6951 * Removing from the context ends up with disabled 6952 * event. What we want here is event in the initial 6953 * startup state, ready to be add into new context. 6954 */ 6955 perf_event__state_init(group_leader); 6956 list_for_each_entry(sibling, &group_leader->sibling_list, 6957 group_entry) { 6958 perf_remove_from_context(sibling); 6959 perf_event__state_init(sibling); 6960 put_ctx(gctx); 6961 } 6962 mutex_unlock(&gctx->mutex); 6963 put_ctx(gctx); 6964 } 6965 6966 WARN_ON_ONCE(ctx->parent_ctx); 6967 mutex_lock(&ctx->mutex); 6968 6969 if (move_group) { 6970 synchronize_rcu(); 6971 perf_install_in_context(ctx, group_leader, event->cpu); 6972 get_ctx(ctx); 6973 list_for_each_entry(sibling, &group_leader->sibling_list, 6974 group_entry) { 6975 perf_install_in_context(ctx, sibling, event->cpu); 6976 get_ctx(ctx); 6977 } 6978 } 6979 6980 perf_install_in_context(ctx, event, event->cpu); 6981 ++ctx->generation; 6982 perf_unpin_context(ctx); 6983 mutex_unlock(&ctx->mutex); 6984 6985 put_online_cpus(); 6986 6987 event->owner = current; 6988 6989 mutex_lock(¤t->perf_event_mutex); 6990 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6991 mutex_unlock(¤t->perf_event_mutex); 6992 6993 /* 6994 * Precalculate sample_data sizes 6995 */ 6996 perf_event__header_size(event); 6997 perf_event__id_header_size(event); 6998 6999 /* 7000 * Drop the reference on the group_event after placing the 7001 * new event on the sibling_list. This ensures destruction 7002 * of the group leader will find the pointer to itself in 7003 * perf_group_detach(). 7004 */ 7005 fdput(group); 7006 fd_install(event_fd, event_file); 7007 return event_fd; 7008 7009 err_context: 7010 perf_unpin_context(ctx); 7011 put_ctx(ctx); 7012 err_alloc: 7013 free_event(event); 7014 err_task: 7015 put_online_cpus(); 7016 if (task) 7017 put_task_struct(task); 7018 err_group_fd: 7019 fdput(group); 7020 err_fd: 7021 put_unused_fd(event_fd); 7022 return err; 7023 } 7024 7025 /** 7026 * perf_event_create_kernel_counter 7027 * 7028 * @attr: attributes of the counter to create 7029 * @cpu: cpu in which the counter is bound 7030 * @task: task to profile (NULL for percpu) 7031 */ 7032 struct perf_event * 7033 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7034 struct task_struct *task, 7035 perf_overflow_handler_t overflow_handler, 7036 void *context) 7037 { 7038 struct perf_event_context *ctx; 7039 struct perf_event *event; 7040 int err; 7041 7042 /* 7043 * Get the target context (task or percpu): 7044 */ 7045 7046 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7047 overflow_handler, context); 7048 if (IS_ERR(event)) { 7049 err = PTR_ERR(event); 7050 goto err; 7051 } 7052 7053 ctx = find_get_context(event->pmu, task, cpu); 7054 if (IS_ERR(ctx)) { 7055 err = PTR_ERR(ctx); 7056 goto err_free; 7057 } 7058 7059 WARN_ON_ONCE(ctx->parent_ctx); 7060 mutex_lock(&ctx->mutex); 7061 perf_install_in_context(ctx, event, cpu); 7062 ++ctx->generation; 7063 perf_unpin_context(ctx); 7064 mutex_unlock(&ctx->mutex); 7065 7066 return event; 7067 7068 err_free: 7069 free_event(event); 7070 err: 7071 return ERR_PTR(err); 7072 } 7073 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7074 7075 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7076 { 7077 struct perf_event_context *src_ctx; 7078 struct perf_event_context *dst_ctx; 7079 struct perf_event *event, *tmp; 7080 LIST_HEAD(events); 7081 7082 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7083 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7084 7085 mutex_lock(&src_ctx->mutex); 7086 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7087 event_entry) { 7088 perf_remove_from_context(event); 7089 put_ctx(src_ctx); 7090 list_add(&event->event_entry, &events); 7091 } 7092 mutex_unlock(&src_ctx->mutex); 7093 7094 synchronize_rcu(); 7095 7096 mutex_lock(&dst_ctx->mutex); 7097 list_for_each_entry_safe(event, tmp, &events, event_entry) { 7098 list_del(&event->event_entry); 7099 if (event->state >= PERF_EVENT_STATE_OFF) 7100 event->state = PERF_EVENT_STATE_INACTIVE; 7101 perf_install_in_context(dst_ctx, event, dst_cpu); 7102 get_ctx(dst_ctx); 7103 } 7104 mutex_unlock(&dst_ctx->mutex); 7105 } 7106 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7107 7108 static void sync_child_event(struct perf_event *child_event, 7109 struct task_struct *child) 7110 { 7111 struct perf_event *parent_event = child_event->parent; 7112 u64 child_val; 7113 7114 if (child_event->attr.inherit_stat) 7115 perf_event_read_event(child_event, child); 7116 7117 child_val = perf_event_count(child_event); 7118 7119 /* 7120 * Add back the child's count to the parent's count: 7121 */ 7122 atomic64_add(child_val, &parent_event->child_count); 7123 atomic64_add(child_event->total_time_enabled, 7124 &parent_event->child_total_time_enabled); 7125 atomic64_add(child_event->total_time_running, 7126 &parent_event->child_total_time_running); 7127 7128 /* 7129 * Remove this event from the parent's list 7130 */ 7131 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7132 mutex_lock(&parent_event->child_mutex); 7133 list_del_init(&child_event->child_list); 7134 mutex_unlock(&parent_event->child_mutex); 7135 7136 /* 7137 * Release the parent event, if this was the last 7138 * reference to it. 7139 */ 7140 put_event(parent_event); 7141 } 7142 7143 static void 7144 __perf_event_exit_task(struct perf_event *child_event, 7145 struct perf_event_context *child_ctx, 7146 struct task_struct *child) 7147 { 7148 if (child_event->parent) { 7149 raw_spin_lock_irq(&child_ctx->lock); 7150 perf_group_detach(child_event); 7151 raw_spin_unlock_irq(&child_ctx->lock); 7152 } 7153 7154 perf_remove_from_context(child_event); 7155 7156 /* 7157 * It can happen that the parent exits first, and has events 7158 * that are still around due to the child reference. These 7159 * events need to be zapped. 7160 */ 7161 if (child_event->parent) { 7162 sync_child_event(child_event, child); 7163 free_event(child_event); 7164 } 7165 } 7166 7167 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7168 { 7169 struct perf_event *child_event, *tmp; 7170 struct perf_event_context *child_ctx; 7171 unsigned long flags; 7172 7173 if (likely(!child->perf_event_ctxp[ctxn])) { 7174 perf_event_task(child, NULL, 0); 7175 return; 7176 } 7177 7178 local_irq_save(flags); 7179 /* 7180 * We can't reschedule here because interrupts are disabled, 7181 * and either child is current or it is a task that can't be 7182 * scheduled, so we are now safe from rescheduling changing 7183 * our context. 7184 */ 7185 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7186 7187 /* 7188 * Take the context lock here so that if find_get_context is 7189 * reading child->perf_event_ctxp, we wait until it has 7190 * incremented the context's refcount before we do put_ctx below. 7191 */ 7192 raw_spin_lock(&child_ctx->lock); 7193 task_ctx_sched_out(child_ctx); 7194 child->perf_event_ctxp[ctxn] = NULL; 7195 /* 7196 * If this context is a clone; unclone it so it can't get 7197 * swapped to another process while we're removing all 7198 * the events from it. 7199 */ 7200 unclone_ctx(child_ctx); 7201 update_context_time(child_ctx); 7202 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7203 7204 /* 7205 * Report the task dead after unscheduling the events so that we 7206 * won't get any samples after PERF_RECORD_EXIT. We can however still 7207 * get a few PERF_RECORD_READ events. 7208 */ 7209 perf_event_task(child, child_ctx, 0); 7210 7211 /* 7212 * We can recurse on the same lock type through: 7213 * 7214 * __perf_event_exit_task() 7215 * sync_child_event() 7216 * put_event() 7217 * mutex_lock(&ctx->mutex) 7218 * 7219 * But since its the parent context it won't be the same instance. 7220 */ 7221 mutex_lock(&child_ctx->mutex); 7222 7223 again: 7224 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 7225 group_entry) 7226 __perf_event_exit_task(child_event, child_ctx, child); 7227 7228 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 7229 group_entry) 7230 __perf_event_exit_task(child_event, child_ctx, child); 7231 7232 /* 7233 * If the last event was a group event, it will have appended all 7234 * its siblings to the list, but we obtained 'tmp' before that which 7235 * will still point to the list head terminating the iteration. 7236 */ 7237 if (!list_empty(&child_ctx->pinned_groups) || 7238 !list_empty(&child_ctx->flexible_groups)) 7239 goto again; 7240 7241 mutex_unlock(&child_ctx->mutex); 7242 7243 put_ctx(child_ctx); 7244 } 7245 7246 /* 7247 * When a child task exits, feed back event values to parent events. 7248 */ 7249 void perf_event_exit_task(struct task_struct *child) 7250 { 7251 struct perf_event *event, *tmp; 7252 int ctxn; 7253 7254 mutex_lock(&child->perf_event_mutex); 7255 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7256 owner_entry) { 7257 list_del_init(&event->owner_entry); 7258 7259 /* 7260 * Ensure the list deletion is visible before we clear 7261 * the owner, closes a race against perf_release() where 7262 * we need to serialize on the owner->perf_event_mutex. 7263 */ 7264 smp_wmb(); 7265 event->owner = NULL; 7266 } 7267 mutex_unlock(&child->perf_event_mutex); 7268 7269 for_each_task_context_nr(ctxn) 7270 perf_event_exit_task_context(child, ctxn); 7271 } 7272 7273 static void perf_free_event(struct perf_event *event, 7274 struct perf_event_context *ctx) 7275 { 7276 struct perf_event *parent = event->parent; 7277 7278 if (WARN_ON_ONCE(!parent)) 7279 return; 7280 7281 mutex_lock(&parent->child_mutex); 7282 list_del_init(&event->child_list); 7283 mutex_unlock(&parent->child_mutex); 7284 7285 put_event(parent); 7286 7287 perf_group_detach(event); 7288 list_del_event(event, ctx); 7289 free_event(event); 7290 } 7291 7292 /* 7293 * free an unexposed, unused context as created by inheritance by 7294 * perf_event_init_task below, used by fork() in case of fail. 7295 */ 7296 void perf_event_free_task(struct task_struct *task) 7297 { 7298 struct perf_event_context *ctx; 7299 struct perf_event *event, *tmp; 7300 int ctxn; 7301 7302 for_each_task_context_nr(ctxn) { 7303 ctx = task->perf_event_ctxp[ctxn]; 7304 if (!ctx) 7305 continue; 7306 7307 mutex_lock(&ctx->mutex); 7308 again: 7309 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7310 group_entry) 7311 perf_free_event(event, ctx); 7312 7313 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7314 group_entry) 7315 perf_free_event(event, ctx); 7316 7317 if (!list_empty(&ctx->pinned_groups) || 7318 !list_empty(&ctx->flexible_groups)) 7319 goto again; 7320 7321 mutex_unlock(&ctx->mutex); 7322 7323 put_ctx(ctx); 7324 } 7325 } 7326 7327 void perf_event_delayed_put(struct task_struct *task) 7328 { 7329 int ctxn; 7330 7331 for_each_task_context_nr(ctxn) 7332 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7333 } 7334 7335 /* 7336 * inherit a event from parent task to child task: 7337 */ 7338 static struct perf_event * 7339 inherit_event(struct perf_event *parent_event, 7340 struct task_struct *parent, 7341 struct perf_event_context *parent_ctx, 7342 struct task_struct *child, 7343 struct perf_event *group_leader, 7344 struct perf_event_context *child_ctx) 7345 { 7346 struct perf_event *child_event; 7347 unsigned long flags; 7348 7349 /* 7350 * Instead of creating recursive hierarchies of events, 7351 * we link inherited events back to the original parent, 7352 * which has a filp for sure, which we use as the reference 7353 * count: 7354 */ 7355 if (parent_event->parent) 7356 parent_event = parent_event->parent; 7357 7358 child_event = perf_event_alloc(&parent_event->attr, 7359 parent_event->cpu, 7360 child, 7361 group_leader, parent_event, 7362 NULL, NULL); 7363 if (IS_ERR(child_event)) 7364 return child_event; 7365 7366 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7367 free_event(child_event); 7368 return NULL; 7369 } 7370 7371 get_ctx(child_ctx); 7372 7373 /* 7374 * Make the child state follow the state of the parent event, 7375 * not its attr.disabled bit. We hold the parent's mutex, 7376 * so we won't race with perf_event_{en, dis}able_family. 7377 */ 7378 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7379 child_event->state = PERF_EVENT_STATE_INACTIVE; 7380 else 7381 child_event->state = PERF_EVENT_STATE_OFF; 7382 7383 if (parent_event->attr.freq) { 7384 u64 sample_period = parent_event->hw.sample_period; 7385 struct hw_perf_event *hwc = &child_event->hw; 7386 7387 hwc->sample_period = sample_period; 7388 hwc->last_period = sample_period; 7389 7390 local64_set(&hwc->period_left, sample_period); 7391 } 7392 7393 child_event->ctx = child_ctx; 7394 child_event->overflow_handler = parent_event->overflow_handler; 7395 child_event->overflow_handler_context 7396 = parent_event->overflow_handler_context; 7397 7398 /* 7399 * Precalculate sample_data sizes 7400 */ 7401 perf_event__header_size(child_event); 7402 perf_event__id_header_size(child_event); 7403 7404 /* 7405 * Link it up in the child's context: 7406 */ 7407 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7408 add_event_to_ctx(child_event, child_ctx); 7409 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7410 7411 /* 7412 * Link this into the parent event's child list 7413 */ 7414 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7415 mutex_lock(&parent_event->child_mutex); 7416 list_add_tail(&child_event->child_list, &parent_event->child_list); 7417 mutex_unlock(&parent_event->child_mutex); 7418 7419 return child_event; 7420 } 7421 7422 static int inherit_group(struct perf_event *parent_event, 7423 struct task_struct *parent, 7424 struct perf_event_context *parent_ctx, 7425 struct task_struct *child, 7426 struct perf_event_context *child_ctx) 7427 { 7428 struct perf_event *leader; 7429 struct perf_event *sub; 7430 struct perf_event *child_ctr; 7431 7432 leader = inherit_event(parent_event, parent, parent_ctx, 7433 child, NULL, child_ctx); 7434 if (IS_ERR(leader)) 7435 return PTR_ERR(leader); 7436 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7437 child_ctr = inherit_event(sub, parent, parent_ctx, 7438 child, leader, child_ctx); 7439 if (IS_ERR(child_ctr)) 7440 return PTR_ERR(child_ctr); 7441 } 7442 return 0; 7443 } 7444 7445 static int 7446 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7447 struct perf_event_context *parent_ctx, 7448 struct task_struct *child, int ctxn, 7449 int *inherited_all) 7450 { 7451 int ret; 7452 struct perf_event_context *child_ctx; 7453 7454 if (!event->attr.inherit) { 7455 *inherited_all = 0; 7456 return 0; 7457 } 7458 7459 child_ctx = child->perf_event_ctxp[ctxn]; 7460 if (!child_ctx) { 7461 /* 7462 * This is executed from the parent task context, so 7463 * inherit events that have been marked for cloning. 7464 * First allocate and initialize a context for the 7465 * child. 7466 */ 7467 7468 child_ctx = alloc_perf_context(event->pmu, child); 7469 if (!child_ctx) 7470 return -ENOMEM; 7471 7472 child->perf_event_ctxp[ctxn] = child_ctx; 7473 } 7474 7475 ret = inherit_group(event, parent, parent_ctx, 7476 child, child_ctx); 7477 7478 if (ret) 7479 *inherited_all = 0; 7480 7481 return ret; 7482 } 7483 7484 /* 7485 * Initialize the perf_event context in task_struct 7486 */ 7487 int perf_event_init_context(struct task_struct *child, int ctxn) 7488 { 7489 struct perf_event_context *child_ctx, *parent_ctx; 7490 struct perf_event_context *cloned_ctx; 7491 struct perf_event *event; 7492 struct task_struct *parent = current; 7493 int inherited_all = 1; 7494 unsigned long flags; 7495 int ret = 0; 7496 7497 if (likely(!parent->perf_event_ctxp[ctxn])) 7498 return 0; 7499 7500 /* 7501 * If the parent's context is a clone, pin it so it won't get 7502 * swapped under us. 7503 */ 7504 parent_ctx = perf_pin_task_context(parent, ctxn); 7505 7506 /* 7507 * No need to check if parent_ctx != NULL here; since we saw 7508 * it non-NULL earlier, the only reason for it to become NULL 7509 * is if we exit, and since we're currently in the middle of 7510 * a fork we can't be exiting at the same time. 7511 */ 7512 7513 /* 7514 * Lock the parent list. No need to lock the child - not PID 7515 * hashed yet and not running, so nobody can access it. 7516 */ 7517 mutex_lock(&parent_ctx->mutex); 7518 7519 /* 7520 * We dont have to disable NMIs - we are only looking at 7521 * the list, not manipulating it: 7522 */ 7523 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7524 ret = inherit_task_group(event, parent, parent_ctx, 7525 child, ctxn, &inherited_all); 7526 if (ret) 7527 break; 7528 } 7529 7530 /* 7531 * We can't hold ctx->lock when iterating the ->flexible_group list due 7532 * to allocations, but we need to prevent rotation because 7533 * rotate_ctx() will change the list from interrupt context. 7534 */ 7535 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7536 parent_ctx->rotate_disable = 1; 7537 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7538 7539 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7540 ret = inherit_task_group(event, parent, parent_ctx, 7541 child, ctxn, &inherited_all); 7542 if (ret) 7543 break; 7544 } 7545 7546 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7547 parent_ctx->rotate_disable = 0; 7548 7549 child_ctx = child->perf_event_ctxp[ctxn]; 7550 7551 if (child_ctx && inherited_all) { 7552 /* 7553 * Mark the child context as a clone of the parent 7554 * context, or of whatever the parent is a clone of. 7555 * 7556 * Note that if the parent is a clone, the holding of 7557 * parent_ctx->lock avoids it from being uncloned. 7558 */ 7559 cloned_ctx = parent_ctx->parent_ctx; 7560 if (cloned_ctx) { 7561 child_ctx->parent_ctx = cloned_ctx; 7562 child_ctx->parent_gen = parent_ctx->parent_gen; 7563 } else { 7564 child_ctx->parent_ctx = parent_ctx; 7565 child_ctx->parent_gen = parent_ctx->generation; 7566 } 7567 get_ctx(child_ctx->parent_ctx); 7568 } 7569 7570 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7571 mutex_unlock(&parent_ctx->mutex); 7572 7573 perf_unpin_context(parent_ctx); 7574 put_ctx(parent_ctx); 7575 7576 return ret; 7577 } 7578 7579 /* 7580 * Initialize the perf_event context in task_struct 7581 */ 7582 int perf_event_init_task(struct task_struct *child) 7583 { 7584 int ctxn, ret; 7585 7586 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7587 mutex_init(&child->perf_event_mutex); 7588 INIT_LIST_HEAD(&child->perf_event_list); 7589 7590 for_each_task_context_nr(ctxn) { 7591 ret = perf_event_init_context(child, ctxn); 7592 if (ret) 7593 return ret; 7594 } 7595 7596 return 0; 7597 } 7598 7599 static void __init perf_event_init_all_cpus(void) 7600 { 7601 struct swevent_htable *swhash; 7602 int cpu; 7603 7604 for_each_possible_cpu(cpu) { 7605 swhash = &per_cpu(swevent_htable, cpu); 7606 mutex_init(&swhash->hlist_mutex); 7607 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7608 } 7609 } 7610 7611 static void __cpuinit perf_event_init_cpu(int cpu) 7612 { 7613 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7614 7615 mutex_lock(&swhash->hlist_mutex); 7616 if (swhash->hlist_refcount > 0) { 7617 struct swevent_hlist *hlist; 7618 7619 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7620 WARN_ON(!hlist); 7621 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7622 } 7623 mutex_unlock(&swhash->hlist_mutex); 7624 } 7625 7626 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7627 static void perf_pmu_rotate_stop(struct pmu *pmu) 7628 { 7629 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7630 7631 WARN_ON(!irqs_disabled()); 7632 7633 list_del_init(&cpuctx->rotation_list); 7634 } 7635 7636 static void __perf_event_exit_context(void *__info) 7637 { 7638 struct perf_event_context *ctx = __info; 7639 struct perf_event *event, *tmp; 7640 7641 perf_pmu_rotate_stop(ctx->pmu); 7642 7643 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7644 __perf_remove_from_context(event); 7645 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7646 __perf_remove_from_context(event); 7647 } 7648 7649 static void perf_event_exit_cpu_context(int cpu) 7650 { 7651 struct perf_event_context *ctx; 7652 struct pmu *pmu; 7653 int idx; 7654 7655 idx = srcu_read_lock(&pmus_srcu); 7656 list_for_each_entry_rcu(pmu, &pmus, entry) { 7657 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7658 7659 mutex_lock(&ctx->mutex); 7660 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7661 mutex_unlock(&ctx->mutex); 7662 } 7663 srcu_read_unlock(&pmus_srcu, idx); 7664 } 7665 7666 static void perf_event_exit_cpu(int cpu) 7667 { 7668 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7669 7670 mutex_lock(&swhash->hlist_mutex); 7671 swevent_hlist_release(swhash); 7672 mutex_unlock(&swhash->hlist_mutex); 7673 7674 perf_event_exit_cpu_context(cpu); 7675 } 7676 #else 7677 static inline void perf_event_exit_cpu(int cpu) { } 7678 #endif 7679 7680 static int 7681 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7682 { 7683 int cpu; 7684 7685 for_each_online_cpu(cpu) 7686 perf_event_exit_cpu(cpu); 7687 7688 return NOTIFY_OK; 7689 } 7690 7691 /* 7692 * Run the perf reboot notifier at the very last possible moment so that 7693 * the generic watchdog code runs as long as possible. 7694 */ 7695 static struct notifier_block perf_reboot_notifier = { 7696 .notifier_call = perf_reboot, 7697 .priority = INT_MIN, 7698 }; 7699 7700 static int __cpuinit 7701 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7702 { 7703 unsigned int cpu = (long)hcpu; 7704 7705 switch (action & ~CPU_TASKS_FROZEN) { 7706 7707 case CPU_UP_PREPARE: 7708 case CPU_DOWN_FAILED: 7709 perf_event_init_cpu(cpu); 7710 break; 7711 7712 case CPU_UP_CANCELED: 7713 case CPU_DOWN_PREPARE: 7714 perf_event_exit_cpu(cpu); 7715 break; 7716 default: 7717 break; 7718 } 7719 7720 return NOTIFY_OK; 7721 } 7722 7723 void __init perf_event_init(void) 7724 { 7725 int ret; 7726 7727 idr_init(&pmu_idr); 7728 7729 perf_event_init_all_cpus(); 7730 init_srcu_struct(&pmus_srcu); 7731 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7732 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7733 perf_pmu_register(&perf_task_clock, NULL, -1); 7734 perf_tp_register(); 7735 perf_cpu_notifier(perf_cpu_notify); 7736 register_reboot_notifier(&perf_reboot_notifier); 7737 7738 ret = init_hw_breakpoint(); 7739 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7740 7741 /* do not patch jump label more than once per second */ 7742 jump_label_rate_limit(&perf_sched_events, HZ); 7743 7744 /* 7745 * Build time assertion that we keep the data_head at the intended 7746 * location. IOW, validation we got the __reserved[] size right. 7747 */ 7748 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7749 != 1024); 7750 } 7751 7752 static int __init perf_event_sysfs_init(void) 7753 { 7754 struct pmu *pmu; 7755 int ret; 7756 7757 mutex_lock(&pmus_lock); 7758 7759 ret = bus_register(&pmu_bus); 7760 if (ret) 7761 goto unlock; 7762 7763 list_for_each_entry(pmu, &pmus, entry) { 7764 if (!pmu->name || pmu->type < 0) 7765 continue; 7766 7767 ret = pmu_dev_alloc(pmu); 7768 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7769 } 7770 pmu_bus_running = 1; 7771 ret = 0; 7772 7773 unlock: 7774 mutex_unlock(&pmus_lock); 7775 7776 return ret; 7777 } 7778 device_initcall(perf_event_sysfs_init); 7779 7780 #ifdef CONFIG_CGROUP_PERF 7781 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont) 7782 { 7783 struct perf_cgroup *jc; 7784 7785 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7786 if (!jc) 7787 return ERR_PTR(-ENOMEM); 7788 7789 jc->info = alloc_percpu(struct perf_cgroup_info); 7790 if (!jc->info) { 7791 kfree(jc); 7792 return ERR_PTR(-ENOMEM); 7793 } 7794 7795 return &jc->css; 7796 } 7797 7798 static void perf_cgroup_css_free(struct cgroup *cont) 7799 { 7800 struct perf_cgroup *jc; 7801 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7802 struct perf_cgroup, css); 7803 free_percpu(jc->info); 7804 kfree(jc); 7805 } 7806 7807 static int __perf_cgroup_move(void *info) 7808 { 7809 struct task_struct *task = info; 7810 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7811 return 0; 7812 } 7813 7814 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7815 { 7816 struct task_struct *task; 7817 7818 cgroup_taskset_for_each(task, cgrp, tset) 7819 task_function_call(task, __perf_cgroup_move, task); 7820 } 7821 7822 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7823 struct task_struct *task) 7824 { 7825 /* 7826 * cgroup_exit() is called in the copy_process() failure path. 7827 * Ignore this case since the task hasn't ran yet, this avoids 7828 * trying to poke a half freed task state from generic code. 7829 */ 7830 if (!(task->flags & PF_EXITING)) 7831 return; 7832 7833 task_function_call(task, __perf_cgroup_move, task); 7834 } 7835 7836 struct cgroup_subsys perf_subsys = { 7837 .name = "perf_event", 7838 .subsys_id = perf_subsys_id, 7839 .css_alloc = perf_cgroup_css_alloc, 7840 .css_free = perf_cgroup_css_free, 7841 .exit = perf_cgroup_exit, 7842 .attach = perf_cgroup_attach, 7843 }; 7844 #endif /* CONFIG_CGROUP_PERF */ 7845