xref: /linux/kernel/events/core.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 enum event_type_t {
159 	EVENT_FLEXIBLE	= 0x01,
160 	EVENT_PINNED	= 0x02,
161 	EVENT_TIME	= 0x04,
162 	EVENT_FROZEN	= 0x08,
163 	/* see ctx_resched() for details */
164 	EVENT_CPU	= 0x10,
165 	EVENT_CGROUP	= 0x20,
166 
167 	/* compound helpers */
168 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
169 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
170 };
171 
172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
173 {
174 	raw_spin_lock(&ctx->lock);
175 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
176 }
177 
178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 			  struct perf_event_context *ctx)
180 {
181 	__perf_ctx_lock(&cpuctx->ctx);
182 	if (ctx)
183 		__perf_ctx_lock(ctx);
184 }
185 
186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
187 {
188 	/*
189 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 	 * after ctx_sched_out() by clearing is_active.
191 	 */
192 	if (ctx->is_active & EVENT_FROZEN) {
193 		if (!(ctx->is_active & EVENT_ALL))
194 			ctx->is_active = 0;
195 		else
196 			ctx->is_active &= ~EVENT_FROZEN;
197 	}
198 	raw_spin_unlock(&ctx->lock);
199 }
200 
201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 			    struct perf_event_context *ctx)
203 {
204 	if (ctx)
205 		__perf_ctx_unlock(ctx);
206 	__perf_ctx_unlock(&cpuctx->ctx);
207 }
208 
209 #define TASK_TOMBSTONE ((void *)-1L)
210 
211 static bool is_kernel_event(struct perf_event *event)
212 {
213 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
214 }
215 
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
217 
218 struct perf_event_context *perf_cpu_task_ctx(void)
219 {
220 	lockdep_assert_irqs_disabled();
221 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
222 }
223 
224 /*
225  * On task ctx scheduling...
226  *
227  * When !ctx->nr_events a task context will not be scheduled. This means
228  * we can disable the scheduler hooks (for performance) without leaving
229  * pending task ctx state.
230  *
231  * This however results in two special cases:
232  *
233  *  - removing the last event from a task ctx; this is relatively straight
234  *    forward and is done in __perf_remove_from_context.
235  *
236  *  - adding the first event to a task ctx; this is tricky because we cannot
237  *    rely on ctx->is_active and therefore cannot use event_function_call().
238  *    See perf_install_in_context().
239  *
240  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
241  */
242 
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 			struct perf_event_context *, void *);
245 
246 struct event_function_struct {
247 	struct perf_event *event;
248 	event_f func;
249 	void *data;
250 };
251 
252 static int event_function(void *info)
253 {
254 	struct event_function_struct *efs = info;
255 	struct perf_event *event = efs->event;
256 	struct perf_event_context *ctx = event->ctx;
257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 	int ret = 0;
260 
261 	lockdep_assert_irqs_disabled();
262 
263 	perf_ctx_lock(cpuctx, task_ctx);
264 	/*
265 	 * Since we do the IPI call without holding ctx->lock things can have
266 	 * changed, double check we hit the task we set out to hit.
267 	 */
268 	if (ctx->task) {
269 		if (ctx->task != current) {
270 			ret = -ESRCH;
271 			goto unlock;
272 		}
273 
274 		/*
275 		 * We only use event_function_call() on established contexts,
276 		 * and event_function() is only ever called when active (or
277 		 * rather, we'll have bailed in task_function_call() or the
278 		 * above ctx->task != current test), therefore we must have
279 		 * ctx->is_active here.
280 		 */
281 		WARN_ON_ONCE(!ctx->is_active);
282 		/*
283 		 * And since we have ctx->is_active, cpuctx->task_ctx must
284 		 * match.
285 		 */
286 		WARN_ON_ONCE(task_ctx != ctx);
287 	} else {
288 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
289 	}
290 
291 	efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 	perf_ctx_unlock(cpuctx, task_ctx);
294 
295 	return ret;
296 }
297 
298 static void event_function_call(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 	struct perf_cpu_context *cpuctx;
303 	struct event_function_struct efs = {
304 		.event = event,
305 		.func = func,
306 		.data = data,
307 	};
308 
309 	if (!event->parent) {
310 		/*
311 		 * If this is a !child event, we must hold ctx::mutex to
312 		 * stabilize the event->ctx relation. See
313 		 * perf_event_ctx_lock().
314 		 */
315 		lockdep_assert_held(&ctx->mutex);
316 	}
317 
318 	if (!task) {
319 		cpu_function_call(event->cpu, event_function, &efs);
320 		return;
321 	}
322 
323 	if (task == TASK_TOMBSTONE)
324 		return;
325 
326 again:
327 	if (!task_function_call(task, event_function, &efs))
328 		return;
329 
330 	local_irq_disable();
331 	cpuctx = this_cpu_ptr(&perf_cpu_context);
332 	perf_ctx_lock(cpuctx, ctx);
333 	/*
334 	 * Reload the task pointer, it might have been changed by
335 	 * a concurrent perf_event_context_sched_out().
336 	 */
337 	task = ctx->task;
338 	if (task == TASK_TOMBSTONE)
339 		goto unlock;
340 	if (ctx->is_active) {
341 		perf_ctx_unlock(cpuctx, ctx);
342 		local_irq_enable();
343 		goto again;
344 	}
345 	func(event, NULL, ctx, data);
346 unlock:
347 	perf_ctx_unlock(cpuctx, ctx);
348 	local_irq_enable();
349 }
350 
351 /*
352  * Similar to event_function_call() + event_function(), but hard assumes IRQs
353  * are already disabled and we're on the right CPU.
354  */
355 static void event_function_local(struct perf_event *event, event_f func, void *data)
356 {
357 	struct perf_event_context *ctx = event->ctx;
358 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 	struct task_struct *task = READ_ONCE(ctx->task);
360 	struct perf_event_context *task_ctx = NULL;
361 
362 	lockdep_assert_irqs_disabled();
363 
364 	if (task) {
365 		if (task == TASK_TOMBSTONE)
366 			return;
367 
368 		task_ctx = ctx;
369 	}
370 
371 	perf_ctx_lock(cpuctx, task_ctx);
372 
373 	task = ctx->task;
374 	if (task == TASK_TOMBSTONE)
375 		goto unlock;
376 
377 	if (task) {
378 		/*
379 		 * We must be either inactive or active and the right task,
380 		 * otherwise we're screwed, since we cannot IPI to somewhere
381 		 * else.
382 		 */
383 		if (ctx->is_active) {
384 			if (WARN_ON_ONCE(task != current))
385 				goto unlock;
386 
387 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 				goto unlock;
389 		}
390 	} else {
391 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
392 	}
393 
394 	func(event, cpuctx, ctx, data);
395 unlock:
396 	perf_ctx_unlock(cpuctx, task_ctx);
397 }
398 
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 		       PERF_FLAG_FD_OUTPUT  |\
401 		       PERF_FLAG_PID_CGROUP |\
402 		       PERF_FLAG_FD_CLOEXEC)
403 
404 /*
405  * branch priv levels that need permission checks
406  */
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 	(PERF_SAMPLE_BRANCH_KERNEL |\
409 	 PERF_SAMPLE_BRANCH_HV)
410 
411 /*
412  * perf_sched_events : >0 events exist
413  */
414 
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
420 
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
422 
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
434 
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
445 
446 /*
447  * perf event paranoia level:
448  *  -1 - not paranoid at all
449  *   0 - disallow raw tracepoint access for unpriv
450  *   1 - disallow cpu events for unpriv
451  *   2 - disallow kernel profiling for unpriv
452  */
453 int sysctl_perf_event_paranoid __read_mostly = 2;
454 
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
457 
458 /*
459  * max perf event sample rate
460  */
461 #define DEFAULT_MAX_SAMPLE_RATE		100000
462 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
464 
465 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
466 
467 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
469 
470 static int perf_sample_allowed_ns __read_mostly =
471 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
472 
473 static void update_perf_cpu_limits(void)
474 {
475 	u64 tmp = perf_sample_period_ns;
476 
477 	tmp *= sysctl_perf_cpu_time_max_percent;
478 	tmp = div_u64(tmp, 100);
479 	if (!tmp)
480 		tmp = 1;
481 
482 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
483 }
484 
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
486 
487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 				       void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
492 	/*
493 	 * If throttling is disabled don't allow the write:
494 	 */
495 	if (write && (perf_cpu == 100 || perf_cpu == 0))
496 		return -EINVAL;
497 
498 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 	if (ret || !write)
500 		return ret;
501 
502 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 	update_perf_cpu_limits();
505 
506 	return 0;
507 }
508 
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
510 
511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 /*
532  * perf samples are done in some very critical code paths (NMIs).
533  * If they take too much CPU time, the system can lock up and not
534  * get any real work done.  This will drop the sample rate when
535  * we detect that events are taking too long.
536  */
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
539 
540 static u64 __report_avg;
541 static u64 __report_allowed;
542 
543 static void perf_duration_warn(struct irq_work *w)
544 {
545 	printk_ratelimited(KERN_INFO
546 		"perf: interrupt took too long (%lld > %lld), lowering "
547 		"kernel.perf_event_max_sample_rate to %d\n",
548 		__report_avg, __report_allowed,
549 		sysctl_perf_event_sample_rate);
550 }
551 
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
553 
554 void perf_sample_event_took(u64 sample_len_ns)
555 {
556 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 	u64 running_len;
558 	u64 avg_len;
559 	u32 max;
560 
561 	if (max_len == 0)
562 		return;
563 
564 	/* Decay the counter by 1 average sample. */
565 	running_len = __this_cpu_read(running_sample_length);
566 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 	running_len += sample_len_ns;
568 	__this_cpu_write(running_sample_length, running_len);
569 
570 	/*
571 	 * Note: this will be biased artificially low until we have
572 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 	 * from having to maintain a count.
574 	 */
575 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 	if (avg_len <= max_len)
577 		return;
578 
579 	__report_avg = avg_len;
580 	__report_allowed = max_len;
581 
582 	/*
583 	 * Compute a throttle threshold 25% below the current duration.
584 	 */
585 	avg_len += avg_len / 4;
586 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 	if (avg_len < max)
588 		max /= (u32)avg_len;
589 	else
590 		max = 1;
591 
592 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 	WRITE_ONCE(max_samples_per_tick, max);
594 
595 	sysctl_perf_event_sample_rate = max * HZ;
596 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
597 
598 	if (!irq_work_queue(&perf_duration_work)) {
599 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 			     "kernel.perf_event_max_sample_rate to %d\n",
601 			     __report_avg, __report_allowed,
602 			     sysctl_perf_event_sample_rate);
603 	}
604 }
605 
606 static atomic64_t perf_event_id;
607 
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
610 
611 void __weak perf_event_print_debug(void)	{ }
612 
613 static inline u64 perf_clock(void)
614 {
615 	return local_clock();
616 }
617 
618 static inline u64 perf_event_clock(struct perf_event *event)
619 {
620 	return event->clock();
621 }
622 
623 /*
624  * State based event timekeeping...
625  *
626  * The basic idea is to use event->state to determine which (if any) time
627  * fields to increment with the current delta. This means we only need to
628  * update timestamps when we change state or when they are explicitly requested
629  * (read).
630  *
631  * Event groups make things a little more complicated, but not terribly so. The
632  * rules for a group are that if the group leader is OFF the entire group is
633  * OFF, irrespective of what the group member states are. This results in
634  * __perf_effective_state().
635  *
636  * A further ramification is that when a group leader flips between OFF and
637  * !OFF, we need to update all group member times.
638  *
639  *
640  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641  * need to make sure the relevant context time is updated before we try and
642  * update our timestamps.
643  */
644 
645 static __always_inline enum perf_event_state
646 __perf_effective_state(struct perf_event *event)
647 {
648 	struct perf_event *leader = event->group_leader;
649 
650 	if (leader->state <= PERF_EVENT_STATE_OFF)
651 		return leader->state;
652 
653 	return event->state;
654 }
655 
656 static __always_inline void
657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
658 {
659 	enum perf_event_state state = __perf_effective_state(event);
660 	u64 delta = now - event->tstamp;
661 
662 	*enabled = event->total_time_enabled;
663 	if (state >= PERF_EVENT_STATE_INACTIVE)
664 		*enabled += delta;
665 
666 	*running = event->total_time_running;
667 	if (state >= PERF_EVENT_STATE_ACTIVE)
668 		*running += delta;
669 }
670 
671 static void perf_event_update_time(struct perf_event *event)
672 {
673 	u64 now = perf_event_time(event);
674 
675 	__perf_update_times(event, now, &event->total_time_enabled,
676 					&event->total_time_running);
677 	event->tstamp = now;
678 }
679 
680 static void perf_event_update_sibling_time(struct perf_event *leader)
681 {
682 	struct perf_event *sibling;
683 
684 	for_each_sibling_event(sibling, leader)
685 		perf_event_update_time(sibling);
686 }
687 
688 static void
689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
690 {
691 	if (event->state == state)
692 		return;
693 
694 	perf_event_update_time(event);
695 	/*
696 	 * If a group leader gets enabled/disabled all its siblings
697 	 * are affected too.
698 	 */
699 	if ((event->state < 0) ^ (state < 0))
700 		perf_event_update_sibling_time(event);
701 
702 	WRITE_ONCE(event->state, state);
703 }
704 
705 /*
706  * UP store-release, load-acquire
707  */
708 
709 #define __store_release(ptr, val)					\
710 do {									\
711 	barrier();							\
712 	WRITE_ONCE(*(ptr), (val));					\
713 } while (0)
714 
715 #define __load_acquire(ptr)						\
716 ({									\
717 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
718 	barrier();							\
719 	___p;								\
720 })
721 
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
723 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 		if (_cgroup && !_epc->nr_cgroups)			\
725 			continue;					\
726 		else if (_pmu && _epc->pmu != _pmu)			\
727 			continue;					\
728 		else
729 
730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
731 {
732 	struct perf_event_pmu_context *pmu_ctx;
733 
734 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 		perf_pmu_disable(pmu_ctx->pmu);
736 }
737 
738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
739 {
740 	struct perf_event_pmu_context *pmu_ctx;
741 
742 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 		perf_pmu_enable(pmu_ctx->pmu);
744 }
745 
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
748 
749 #ifdef CONFIG_CGROUP_PERF
750 
751 static inline bool
752 perf_cgroup_match(struct perf_event *event)
753 {
754 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
755 
756 	/* @event doesn't care about cgroup */
757 	if (!event->cgrp)
758 		return true;
759 
760 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
761 	if (!cpuctx->cgrp)
762 		return false;
763 
764 	/*
765 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
766 	 * also enabled for all its descendant cgroups.  If @cpuctx's
767 	 * cgroup is a descendant of @event's (the test covers identity
768 	 * case), it's a match.
769 	 */
770 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 				    event->cgrp->css.cgroup);
772 }
773 
774 static inline void perf_detach_cgroup(struct perf_event *event)
775 {
776 	css_put(&event->cgrp->css);
777 	event->cgrp = NULL;
778 }
779 
780 static inline int is_cgroup_event(struct perf_event *event)
781 {
782 	return event->cgrp != NULL;
783 }
784 
785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
786 {
787 	struct perf_cgroup_info *t;
788 
789 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 	return t->time;
791 }
792 
793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
794 {
795 	struct perf_cgroup_info *t;
796 
797 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 	if (!__load_acquire(&t->active))
799 		return t->time;
800 	now += READ_ONCE(t->timeoffset);
801 	return now;
802 }
803 
804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
805 {
806 	if (adv)
807 		info->time += now - info->timestamp;
808 	info->timestamp = now;
809 	/*
810 	 * see update_context_time()
811 	 */
812 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
813 }
814 
815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
816 {
817 	struct perf_cgroup *cgrp = cpuctx->cgrp;
818 	struct cgroup_subsys_state *css;
819 	struct perf_cgroup_info *info;
820 
821 	if (cgrp) {
822 		u64 now = perf_clock();
823 
824 		for (css = &cgrp->css; css; css = css->parent) {
825 			cgrp = container_of(css, struct perf_cgroup, css);
826 			info = this_cpu_ptr(cgrp->info);
827 
828 			__update_cgrp_time(info, now, true);
829 			if (final)
830 				__store_release(&info->active, 0);
831 		}
832 	}
833 }
834 
835 static inline void update_cgrp_time_from_event(struct perf_event *event)
836 {
837 	struct perf_cgroup_info *info;
838 
839 	/*
840 	 * ensure we access cgroup data only when needed and
841 	 * when we know the cgroup is pinned (css_get)
842 	 */
843 	if (!is_cgroup_event(event))
844 		return;
845 
846 	info = this_cpu_ptr(event->cgrp->info);
847 	/*
848 	 * Do not update time when cgroup is not active
849 	 */
850 	if (info->active)
851 		__update_cgrp_time(info, perf_clock(), true);
852 }
853 
854 static inline void
855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
856 {
857 	struct perf_event_context *ctx = &cpuctx->ctx;
858 	struct perf_cgroup *cgrp = cpuctx->cgrp;
859 	struct perf_cgroup_info *info;
860 	struct cgroup_subsys_state *css;
861 
862 	/*
863 	 * ctx->lock held by caller
864 	 * ensure we do not access cgroup data
865 	 * unless we have the cgroup pinned (css_get)
866 	 */
867 	if (!cgrp)
868 		return;
869 
870 	WARN_ON_ONCE(!ctx->nr_cgroups);
871 
872 	for (css = &cgrp->css; css; css = css->parent) {
873 		cgrp = container_of(css, struct perf_cgroup, css);
874 		info = this_cpu_ptr(cgrp->info);
875 		__update_cgrp_time(info, ctx->timestamp, false);
876 		__store_release(&info->active, 1);
877 	}
878 }
879 
880 /*
881  * reschedule events based on the cgroup constraint of task.
882  */
883 static void perf_cgroup_switch(struct task_struct *task)
884 {
885 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 	struct perf_cgroup *cgrp;
887 
888 	/*
889 	 * cpuctx->cgrp is set when the first cgroup event enabled,
890 	 * and is cleared when the last cgroup event disabled.
891 	 */
892 	if (READ_ONCE(cpuctx->cgrp) == NULL)
893 		return;
894 
895 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
896 
897 	cgrp = perf_cgroup_from_task(task, NULL);
898 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 		return;
900 
901 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 	perf_ctx_disable(&cpuctx->ctx, true);
903 
904 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
905 	/*
906 	 * must not be done before ctxswout due
907 	 * to update_cgrp_time_from_cpuctx() in
908 	 * ctx_sched_out()
909 	 */
910 	cpuctx->cgrp = cgrp;
911 	/*
912 	 * set cgrp before ctxsw in to allow
913 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 	 * to not have to pass task around
915 	 */
916 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
917 
918 	perf_ctx_enable(&cpuctx->ctx, true);
919 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
920 }
921 
922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 				struct cgroup_subsys_state *css)
924 {
925 	struct perf_cpu_context *cpuctx;
926 	struct perf_event **storage;
927 	int cpu, heap_size, ret = 0;
928 
929 	/*
930 	 * Allow storage to have sufficient space for an iterator for each
931 	 * possibly nested cgroup plus an iterator for events with no cgroup.
932 	 */
933 	for (heap_size = 1; css; css = css->parent)
934 		heap_size++;
935 
936 	for_each_possible_cpu(cpu) {
937 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 		if (heap_size <= cpuctx->heap_size)
939 			continue;
940 
941 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 				       GFP_KERNEL, cpu_to_node(cpu));
943 		if (!storage) {
944 			ret = -ENOMEM;
945 			break;
946 		}
947 
948 		raw_spin_lock_irq(&cpuctx->ctx.lock);
949 		if (cpuctx->heap_size < heap_size) {
950 			swap(cpuctx->heap, storage);
951 			if (storage == cpuctx->heap_default)
952 				storage = NULL;
953 			cpuctx->heap_size = heap_size;
954 		}
955 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
956 
957 		kfree(storage);
958 	}
959 
960 	return ret;
961 }
962 
963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 				      struct perf_event_attr *attr,
965 				      struct perf_event *group_leader)
966 {
967 	struct perf_cgroup *cgrp;
968 	struct cgroup_subsys_state *css;
969 	CLASS(fd, f)(fd);
970 	int ret = 0;
971 
972 	if (fd_empty(f))
973 		return -EBADF;
974 
975 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 					 &perf_event_cgrp_subsys);
977 	if (IS_ERR(css))
978 		return PTR_ERR(css);
979 
980 	ret = perf_cgroup_ensure_storage(event, css);
981 	if (ret)
982 		return ret;
983 
984 	cgrp = container_of(css, struct perf_cgroup, css);
985 	event->cgrp = cgrp;
986 
987 	/*
988 	 * all events in a group must monitor
989 	 * the same cgroup because a task belongs
990 	 * to only one perf cgroup at a time
991 	 */
992 	if (group_leader && group_leader->cgrp != cgrp) {
993 		perf_detach_cgroup(event);
994 		ret = -EINVAL;
995 	}
996 	return ret;
997 }
998 
999 static inline void
1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 
1004 	if (!is_cgroup_event(event))
1005 		return;
1006 
1007 	event->pmu_ctx->nr_cgroups++;
1008 
1009 	/*
1010 	 * Because cgroup events are always per-cpu events,
1011 	 * @ctx == &cpuctx->ctx.
1012 	 */
1013 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1014 
1015 	if (ctx->nr_cgroups++)
1016 		return;
1017 
1018 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1019 }
1020 
1021 static inline void
1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024 	struct perf_cpu_context *cpuctx;
1025 
1026 	if (!is_cgroup_event(event))
1027 		return;
1028 
1029 	event->pmu_ctx->nr_cgroups--;
1030 
1031 	/*
1032 	 * Because cgroup events are always per-cpu events,
1033 	 * @ctx == &cpuctx->ctx.
1034 	 */
1035 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1036 
1037 	if (--ctx->nr_cgroups)
1038 		return;
1039 
1040 	cpuctx->cgrp = NULL;
1041 }
1042 
1043 #else /* !CONFIG_CGROUP_PERF */
1044 
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1047 {
1048 	return true;
1049 }
1050 
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1052 {}
1053 
1054 static inline int is_cgroup_event(struct perf_event *event)
1055 {
1056 	return 0;
1057 }
1058 
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1060 {
1061 }
1062 
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064 						bool final)
1065 {
1066 }
1067 
1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 				      struct perf_event_attr *attr,
1070 				      struct perf_event *group_leader)
1071 {
1072 	return -EINVAL;
1073 }
1074 
1075 static inline void
1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1077 {
1078 }
1079 
1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1081 {
1082 	return 0;
1083 }
1084 
1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1086 {
1087 	return 0;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 }
1094 
1095 static inline void
1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1097 {
1098 }
1099 
1100 static void perf_cgroup_switch(struct task_struct *task)
1101 {
1102 }
1103 #endif
1104 
1105 /*
1106  * set default to be dependent on timer tick just
1107  * like original code
1108  */
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1110 /*
1111  * function must be called with interrupts disabled
1112  */
1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1114 {
1115 	struct perf_cpu_pmu_context *cpc;
1116 	bool rotations;
1117 
1118 	lockdep_assert_irqs_disabled();
1119 
1120 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121 	rotations = perf_rotate_context(cpc);
1122 
1123 	raw_spin_lock(&cpc->hrtimer_lock);
1124 	if (rotations)
1125 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126 	else
1127 		cpc->hrtimer_active = 0;
1128 	raw_spin_unlock(&cpc->hrtimer_lock);
1129 
1130 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1131 }
1132 
1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1134 {
1135 	struct hrtimer *timer = &cpc->hrtimer;
1136 	struct pmu *pmu = cpc->epc.pmu;
1137 	u64 interval;
1138 
1139 	/*
1140 	 * check default is sane, if not set then force to
1141 	 * default interval (1/tick)
1142 	 */
1143 	interval = pmu->hrtimer_interval_ms;
1144 	if (interval < 1)
1145 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1146 
1147 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1148 
1149 	raw_spin_lock_init(&cpc->hrtimer_lock);
1150 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151 	timer->function = perf_mux_hrtimer_handler;
1152 }
1153 
1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1155 {
1156 	struct hrtimer *timer = &cpc->hrtimer;
1157 	unsigned long flags;
1158 
1159 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160 	if (!cpc->hrtimer_active) {
1161 		cpc->hrtimer_active = 1;
1162 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1164 	}
1165 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1166 
1167 	return 0;
1168 }
1169 
1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1171 {
1172 	return perf_mux_hrtimer_restart(arg);
1173 }
1174 
1175 void perf_pmu_disable(struct pmu *pmu)
1176 {
1177 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178 	if (!(*count)++)
1179 		pmu->pmu_disable(pmu);
1180 }
1181 
1182 void perf_pmu_enable(struct pmu *pmu)
1183 {
1184 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185 	if (!--(*count))
1186 		pmu->pmu_enable(pmu);
1187 }
1188 
1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1190 {
1191 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1192 }
1193 
1194 static void get_ctx(struct perf_event_context *ctx)
1195 {
1196 	refcount_inc(&ctx->refcount);
1197 }
1198 
1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1200 {
1201 	if (pmu->task_ctx_cache)
1202 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1203 
1204 	return NULL;
1205 }
1206 
1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1208 {
1209 	if (pmu->task_ctx_cache && task_ctx_data)
1210 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1211 }
1212 
1213 static void free_ctx(struct rcu_head *head)
1214 {
1215 	struct perf_event_context *ctx;
1216 
1217 	ctx = container_of(head, struct perf_event_context, rcu_head);
1218 	kfree(ctx);
1219 }
1220 
1221 static void put_ctx(struct perf_event_context *ctx)
1222 {
1223 	if (refcount_dec_and_test(&ctx->refcount)) {
1224 		if (ctx->parent_ctx)
1225 			put_ctx(ctx->parent_ctx);
1226 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227 			put_task_struct(ctx->task);
1228 		call_rcu(&ctx->rcu_head, free_ctx);
1229 	}
1230 }
1231 
1232 /*
1233  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234  * perf_pmu_migrate_context() we need some magic.
1235  *
1236  * Those places that change perf_event::ctx will hold both
1237  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1238  *
1239  * Lock ordering is by mutex address. There are two other sites where
1240  * perf_event_context::mutex nests and those are:
1241  *
1242  *  - perf_event_exit_task_context()	[ child , 0 ]
1243  *      perf_event_exit_event()
1244  *        put_event()			[ parent, 1 ]
1245  *
1246  *  - perf_event_init_context()		[ parent, 0 ]
1247  *      inherit_task_group()
1248  *        inherit_group()
1249  *          inherit_event()
1250  *            perf_event_alloc()
1251  *              perf_init_event()
1252  *                perf_try_init_event()	[ child , 1 ]
1253  *
1254  * While it appears there is an obvious deadlock here -- the parent and child
1255  * nesting levels are inverted between the two. This is in fact safe because
1256  * life-time rules separate them. That is an exiting task cannot fork, and a
1257  * spawning task cannot (yet) exit.
1258  *
1259  * But remember that these are parent<->child context relations, and
1260  * migration does not affect children, therefore these two orderings should not
1261  * interact.
1262  *
1263  * The change in perf_event::ctx does not affect children (as claimed above)
1264  * because the sys_perf_event_open() case will install a new event and break
1265  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266  * concerned with cpuctx and that doesn't have children.
1267  *
1268  * The places that change perf_event::ctx will issue:
1269  *
1270  *   perf_remove_from_context();
1271  *   synchronize_rcu();
1272  *   perf_install_in_context();
1273  *
1274  * to affect the change. The remove_from_context() + synchronize_rcu() should
1275  * quiesce the event, after which we can install it in the new location. This
1276  * means that only external vectors (perf_fops, prctl) can perturb the event
1277  * while in transit. Therefore all such accessors should also acquire
1278  * perf_event_context::mutex to serialize against this.
1279  *
1280  * However; because event->ctx can change while we're waiting to acquire
1281  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282  * function.
1283  *
1284  * Lock order:
1285  *    exec_update_lock
1286  *	task_struct::perf_event_mutex
1287  *	  perf_event_context::mutex
1288  *	    perf_event::child_mutex;
1289  *	      perf_event_context::lock
1290  *	    mmap_lock
1291  *	      perf_event::mmap_mutex
1292  *	        perf_buffer::aux_mutex
1293  *	      perf_addr_filters_head::lock
1294  *
1295  *    cpu_hotplug_lock
1296  *      pmus_lock
1297  *	  cpuctx->mutex / perf_event_context::mutex
1298  */
1299 static struct perf_event_context *
1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1301 {
1302 	struct perf_event_context *ctx;
1303 
1304 again:
1305 	rcu_read_lock();
1306 	ctx = READ_ONCE(event->ctx);
1307 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1308 		rcu_read_unlock();
1309 		goto again;
1310 	}
1311 	rcu_read_unlock();
1312 
1313 	mutex_lock_nested(&ctx->mutex, nesting);
1314 	if (event->ctx != ctx) {
1315 		mutex_unlock(&ctx->mutex);
1316 		put_ctx(ctx);
1317 		goto again;
1318 	}
1319 
1320 	return ctx;
1321 }
1322 
1323 static inline struct perf_event_context *
1324 perf_event_ctx_lock(struct perf_event *event)
1325 {
1326 	return perf_event_ctx_lock_nested(event, 0);
1327 }
1328 
1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330 				  struct perf_event_context *ctx)
1331 {
1332 	mutex_unlock(&ctx->mutex);
1333 	put_ctx(ctx);
1334 }
1335 
1336 /*
1337  * This must be done under the ctx->lock, such as to serialize against
1338  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339  * calling scheduler related locks and ctx->lock nests inside those.
1340  */
1341 static __must_check struct perf_event_context *
1342 unclone_ctx(struct perf_event_context *ctx)
1343 {
1344 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1345 
1346 	lockdep_assert_held(&ctx->lock);
1347 
1348 	if (parent_ctx)
1349 		ctx->parent_ctx = NULL;
1350 	ctx->generation++;
1351 
1352 	return parent_ctx;
1353 }
1354 
1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356 				enum pid_type type)
1357 {
1358 	u32 nr;
1359 	/*
1360 	 * only top level events have the pid namespace they were created in
1361 	 */
1362 	if (event->parent)
1363 		event = event->parent;
1364 
1365 	nr = __task_pid_nr_ns(p, type, event->ns);
1366 	/* avoid -1 if it is idle thread or runs in another ns */
1367 	if (!nr && !pid_alive(p))
1368 		nr = -1;
1369 	return nr;
1370 }
1371 
1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1373 {
1374 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1375 }
1376 
1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1378 {
1379 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1380 }
1381 
1382 /*
1383  * If we inherit events we want to return the parent event id
1384  * to userspace.
1385  */
1386 static u64 primary_event_id(struct perf_event *event)
1387 {
1388 	u64 id = event->id;
1389 
1390 	if (event->parent)
1391 		id = event->parent->id;
1392 
1393 	return id;
1394 }
1395 
1396 /*
1397  * Get the perf_event_context for a task and lock it.
1398  *
1399  * This has to cope with the fact that until it is locked,
1400  * the context could get moved to another task.
1401  */
1402 static struct perf_event_context *
1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1404 {
1405 	struct perf_event_context *ctx;
1406 
1407 retry:
1408 	/*
1409 	 * One of the few rules of preemptible RCU is that one cannot do
1410 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 	 * part of the read side critical section was irqs-enabled -- see
1412 	 * rcu_read_unlock_special().
1413 	 *
1414 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 	 * side critical section has interrupts disabled.
1416 	 */
1417 	local_irq_save(*flags);
1418 	rcu_read_lock();
1419 	ctx = rcu_dereference(task->perf_event_ctxp);
1420 	if (ctx) {
1421 		/*
1422 		 * If this context is a clone of another, it might
1423 		 * get swapped for another underneath us by
1424 		 * perf_event_task_sched_out, though the
1425 		 * rcu_read_lock() protects us from any context
1426 		 * getting freed.  Lock the context and check if it
1427 		 * got swapped before we could get the lock, and retry
1428 		 * if so.  If we locked the right context, then it
1429 		 * can't get swapped on us any more.
1430 		 */
1431 		raw_spin_lock(&ctx->lock);
1432 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433 			raw_spin_unlock(&ctx->lock);
1434 			rcu_read_unlock();
1435 			local_irq_restore(*flags);
1436 			goto retry;
1437 		}
1438 
1439 		if (ctx->task == TASK_TOMBSTONE ||
1440 		    !refcount_inc_not_zero(&ctx->refcount)) {
1441 			raw_spin_unlock(&ctx->lock);
1442 			ctx = NULL;
1443 		} else {
1444 			WARN_ON_ONCE(ctx->task != task);
1445 		}
1446 	}
1447 	rcu_read_unlock();
1448 	if (!ctx)
1449 		local_irq_restore(*flags);
1450 	return ctx;
1451 }
1452 
1453 /*
1454  * Get the context for a task and increment its pin_count so it
1455  * can't get swapped to another task.  This also increments its
1456  * reference count so that the context can't get freed.
1457  */
1458 static struct perf_event_context *
1459 perf_pin_task_context(struct task_struct *task)
1460 {
1461 	struct perf_event_context *ctx;
1462 	unsigned long flags;
1463 
1464 	ctx = perf_lock_task_context(task, &flags);
1465 	if (ctx) {
1466 		++ctx->pin_count;
1467 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1468 	}
1469 	return ctx;
1470 }
1471 
1472 static void perf_unpin_context(struct perf_event_context *ctx)
1473 {
1474 	unsigned long flags;
1475 
1476 	raw_spin_lock_irqsave(&ctx->lock, flags);
1477 	--ctx->pin_count;
1478 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1479 }
1480 
1481 /*
1482  * Update the record of the current time in a context.
1483  */
1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1485 {
1486 	u64 now = perf_clock();
1487 
1488 	lockdep_assert_held(&ctx->lock);
1489 
1490 	if (adv)
1491 		ctx->time += now - ctx->timestamp;
1492 	ctx->timestamp = now;
1493 
1494 	/*
1495 	 * The above: time' = time + (now - timestamp), can be re-arranged
1496 	 * into: time` = now + (time - timestamp), which gives a single value
1497 	 * offset to compute future time without locks on.
1498 	 *
1499 	 * See perf_event_time_now(), which can be used from NMI context where
1500 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 	 * both the above values in a consistent manner.
1502 	 */
1503 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1504 }
1505 
1506 static void update_context_time(struct perf_event_context *ctx)
1507 {
1508 	__update_context_time(ctx, true);
1509 }
1510 
1511 static u64 perf_event_time(struct perf_event *event)
1512 {
1513 	struct perf_event_context *ctx = event->ctx;
1514 
1515 	if (unlikely(!ctx))
1516 		return 0;
1517 
1518 	if (is_cgroup_event(event))
1519 		return perf_cgroup_event_time(event);
1520 
1521 	return ctx->time;
1522 }
1523 
1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1525 {
1526 	struct perf_event_context *ctx = event->ctx;
1527 
1528 	if (unlikely(!ctx))
1529 		return 0;
1530 
1531 	if (is_cgroup_event(event))
1532 		return perf_cgroup_event_time_now(event, now);
1533 
1534 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535 		return ctx->time;
1536 
1537 	now += READ_ONCE(ctx->timeoffset);
1538 	return now;
1539 }
1540 
1541 static enum event_type_t get_event_type(struct perf_event *event)
1542 {
1543 	struct perf_event_context *ctx = event->ctx;
1544 	enum event_type_t event_type;
1545 
1546 	lockdep_assert_held(&ctx->lock);
1547 
1548 	/*
1549 	 * It's 'group type', really, because if our group leader is
1550 	 * pinned, so are we.
1551 	 */
1552 	if (event->group_leader != event)
1553 		event = event->group_leader;
1554 
1555 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556 	if (!ctx->task)
1557 		event_type |= EVENT_CPU;
1558 
1559 	return event_type;
1560 }
1561 
1562 /*
1563  * Helper function to initialize event group nodes.
1564  */
1565 static void init_event_group(struct perf_event *event)
1566 {
1567 	RB_CLEAR_NODE(&event->group_node);
1568 	event->group_index = 0;
1569 }
1570 
1571 /*
1572  * Extract pinned or flexible groups from the context
1573  * based on event attrs bits.
1574  */
1575 static struct perf_event_groups *
1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 {
1578 	if (event->attr.pinned)
1579 		return &ctx->pinned_groups;
1580 	else
1581 		return &ctx->flexible_groups;
1582 }
1583 
1584 /*
1585  * Helper function to initializes perf_event_group trees.
1586  */
1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1588 {
1589 	groups->tree = RB_ROOT;
1590 	groups->index = 0;
1591 }
1592 
1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1594 {
1595 	struct cgroup *cgroup = NULL;
1596 
1597 #ifdef CONFIG_CGROUP_PERF
1598 	if (event->cgrp)
1599 		cgroup = event->cgrp->css.cgroup;
1600 #endif
1601 
1602 	return cgroup;
1603 }
1604 
1605 /*
1606  * Compare function for event groups;
1607  *
1608  * Implements complex key that first sorts by CPU and then by virtual index
1609  * which provides ordering when rotating groups for the same CPU.
1610  */
1611 static __always_inline int
1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1614 		      const struct perf_event *right)
1615 {
1616 	if (left_cpu < right->cpu)
1617 		return -1;
1618 	if (left_cpu > right->cpu)
1619 		return 1;
1620 
1621 	if (left_pmu) {
1622 		if (left_pmu < right->pmu_ctx->pmu)
1623 			return -1;
1624 		if (left_pmu > right->pmu_ctx->pmu)
1625 			return 1;
1626 	}
1627 
1628 #ifdef CONFIG_CGROUP_PERF
1629 	{
1630 		const struct cgroup *right_cgroup = event_cgroup(right);
1631 
1632 		if (left_cgroup != right_cgroup) {
1633 			if (!left_cgroup) {
1634 				/*
1635 				 * Left has no cgroup but right does, no
1636 				 * cgroups come first.
1637 				 */
1638 				return -1;
1639 			}
1640 			if (!right_cgroup) {
1641 				/*
1642 				 * Right has no cgroup but left does, no
1643 				 * cgroups come first.
1644 				 */
1645 				return 1;
1646 			}
1647 			/* Two dissimilar cgroups, order by id. */
1648 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649 				return -1;
1650 
1651 			return 1;
1652 		}
1653 	}
1654 #endif
1655 
1656 	if (left_group_index < right->group_index)
1657 		return -1;
1658 	if (left_group_index > right->group_index)
1659 		return 1;
1660 
1661 	return 0;
1662 }
1663 
1664 #define __node_2_pe(node) \
1665 	rb_entry((node), struct perf_event, group_node)
1666 
1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669 	struct perf_event *e = __node_2_pe(a);
1670 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671 				     e->group_index, __node_2_pe(b)) < 0;
1672 }
1673 
1674 struct __group_key {
1675 	int cpu;
1676 	struct pmu *pmu;
1677 	struct cgroup *cgroup;
1678 };
1679 
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682 	const struct __group_key *a = key;
1683 	const struct perf_event *b = __node_2_pe(node);
1684 
1685 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1687 }
1688 
1689 static inline int
1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1691 {
1692 	const struct __group_key *a = key;
1693 	const struct perf_event *b = __node_2_pe(node);
1694 
1695 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697 				     b->group_index, b);
1698 }
1699 
1700 /*
1701  * Insert @event into @groups' tree; using
1702  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1704  */
1705 static void
1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707 			 struct perf_event *event)
1708 {
1709 	event->group_index = ++groups->index;
1710 
1711 	rb_add(&event->group_node, &groups->tree, __group_less);
1712 }
1713 
1714 /*
1715  * Helper function to insert event into the pinned or flexible groups.
1716  */
1717 static void
1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1719 {
1720 	struct perf_event_groups *groups;
1721 
1722 	groups = get_event_groups(event, ctx);
1723 	perf_event_groups_insert(groups, event);
1724 }
1725 
1726 /*
1727  * Delete a group from a tree.
1728  */
1729 static void
1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731 			 struct perf_event *event)
1732 {
1733 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734 		     RB_EMPTY_ROOT(&groups->tree));
1735 
1736 	rb_erase(&event->group_node, &groups->tree);
1737 	init_event_group(event);
1738 }
1739 
1740 /*
1741  * Helper function to delete event from its groups.
1742  */
1743 static void
1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1745 {
1746 	struct perf_event_groups *groups;
1747 
1748 	groups = get_event_groups(event, ctx);
1749 	perf_event_groups_delete(groups, event);
1750 }
1751 
1752 /*
1753  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1754  */
1755 static struct perf_event *
1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757 			struct pmu *pmu, struct cgroup *cgrp)
1758 {
1759 	struct __group_key key = {
1760 		.cpu = cpu,
1761 		.pmu = pmu,
1762 		.cgroup = cgrp,
1763 	};
1764 	struct rb_node *node;
1765 
1766 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1767 	if (node)
1768 		return __node_2_pe(node);
1769 
1770 	return NULL;
1771 }
1772 
1773 static struct perf_event *
1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1775 {
1776 	struct __group_key key = {
1777 		.cpu = event->cpu,
1778 		.pmu = pmu,
1779 		.cgroup = event_cgroup(event),
1780 	};
1781 	struct rb_node *next;
1782 
1783 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1784 	if (next)
1785 		return __node_2_pe(next);
1786 
1787 	return NULL;
1788 }
1789 
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1791 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1792 	     event; event = perf_event_groups_next(event, pmu))
1793 
1794 /*
1795  * Iterate through the whole groups tree.
1796  */
1797 #define perf_event_groups_for_each(event, groups)			\
1798 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1799 				typeof(*event), group_node); event;	\
1800 		event = rb_entry_safe(rb_next(&event->group_node),	\
1801 				typeof(*event), group_node))
1802 
1803 /*
1804  * Does the event attribute request inherit with PERF_SAMPLE_READ
1805  */
1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1807 {
1808 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1809 }
1810 
1811 /*
1812  * Add an event from the lists for its context.
1813  * Must be called with ctx->mutex and ctx->lock held.
1814  */
1815 static void
1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1817 {
1818 	lockdep_assert_held(&ctx->lock);
1819 
1820 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821 	event->attach_state |= PERF_ATTACH_CONTEXT;
1822 
1823 	event->tstamp = perf_event_time(event);
1824 
1825 	/*
1826 	 * If we're a stand alone event or group leader, we go to the context
1827 	 * list, group events are kept attached to the group so that
1828 	 * perf_group_detach can, at all times, locate all siblings.
1829 	 */
1830 	if (event->group_leader == event) {
1831 		event->group_caps = event->event_caps;
1832 		add_event_to_groups(event, ctx);
1833 	}
1834 
1835 	list_add_rcu(&event->event_entry, &ctx->event_list);
1836 	ctx->nr_events++;
1837 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838 		ctx->nr_user++;
1839 	if (event->attr.inherit_stat)
1840 		ctx->nr_stat++;
1841 	if (has_inherit_and_sample_read(&event->attr))
1842 		local_inc(&ctx->nr_no_switch_fast);
1843 
1844 	if (event->state > PERF_EVENT_STATE_OFF)
1845 		perf_cgroup_event_enable(event, ctx);
1846 
1847 	ctx->generation++;
1848 	event->pmu_ctx->nr_events++;
1849 }
1850 
1851 /*
1852  * Initialize event state based on the perf_event_attr::disabled.
1853  */
1854 static inline void perf_event__state_init(struct perf_event *event)
1855 {
1856 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857 					      PERF_EVENT_STATE_INACTIVE;
1858 }
1859 
1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1861 {
1862 	int entry = sizeof(u64); /* value */
1863 	int size = 0;
1864 	int nr = 1;
1865 
1866 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 		size += sizeof(u64);
1868 
1869 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870 		size += sizeof(u64);
1871 
1872 	if (read_format & PERF_FORMAT_ID)
1873 		entry += sizeof(u64);
1874 
1875 	if (read_format & PERF_FORMAT_LOST)
1876 		entry += sizeof(u64);
1877 
1878 	if (read_format & PERF_FORMAT_GROUP) {
1879 		nr += nr_siblings;
1880 		size += sizeof(u64);
1881 	}
1882 
1883 	/*
1884 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 	 * adding more siblings, this will never overflow.
1886 	 */
1887 	return size + nr * entry;
1888 }
1889 
1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1891 {
1892 	struct perf_sample_data *data;
1893 	u16 size = 0;
1894 
1895 	if (sample_type & PERF_SAMPLE_IP)
1896 		size += sizeof(data->ip);
1897 
1898 	if (sample_type & PERF_SAMPLE_ADDR)
1899 		size += sizeof(data->addr);
1900 
1901 	if (sample_type & PERF_SAMPLE_PERIOD)
1902 		size += sizeof(data->period);
1903 
1904 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905 		size += sizeof(data->weight.full);
1906 
1907 	if (sample_type & PERF_SAMPLE_READ)
1908 		size += event->read_size;
1909 
1910 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1911 		size += sizeof(data->data_src.val);
1912 
1913 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1914 		size += sizeof(data->txn);
1915 
1916 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917 		size += sizeof(data->phys_addr);
1918 
1919 	if (sample_type & PERF_SAMPLE_CGROUP)
1920 		size += sizeof(data->cgroup);
1921 
1922 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923 		size += sizeof(data->data_page_size);
1924 
1925 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926 		size += sizeof(data->code_page_size);
1927 
1928 	event->header_size = size;
1929 }
1930 
1931 /*
1932  * Called at perf_event creation and when events are attached/detached from a
1933  * group.
1934  */
1935 static void perf_event__header_size(struct perf_event *event)
1936 {
1937 	event->read_size =
1938 		__perf_event_read_size(event->attr.read_format,
1939 				       event->group_leader->nr_siblings);
1940 	__perf_event_header_size(event, event->attr.sample_type);
1941 }
1942 
1943 static void perf_event__id_header_size(struct perf_event *event)
1944 {
1945 	struct perf_sample_data *data;
1946 	u64 sample_type = event->attr.sample_type;
1947 	u16 size = 0;
1948 
1949 	if (sample_type & PERF_SAMPLE_TID)
1950 		size += sizeof(data->tid_entry);
1951 
1952 	if (sample_type & PERF_SAMPLE_TIME)
1953 		size += sizeof(data->time);
1954 
1955 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956 		size += sizeof(data->id);
1957 
1958 	if (sample_type & PERF_SAMPLE_ID)
1959 		size += sizeof(data->id);
1960 
1961 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1962 		size += sizeof(data->stream_id);
1963 
1964 	if (sample_type & PERF_SAMPLE_CPU)
1965 		size += sizeof(data->cpu_entry);
1966 
1967 	event->id_header_size = size;
1968 }
1969 
1970 /*
1971  * Check that adding an event to the group does not result in anybody
1972  * overflowing the 64k event limit imposed by the output buffer.
1973  *
1974  * Specifically, check that the read_size for the event does not exceed 16k,
1975  * read_size being the one term that grows with groups size. Since read_size
1976  * depends on per-event read_format, also (re)check the existing events.
1977  *
1978  * This leaves 48k for the constant size fields and things like callchains,
1979  * branch stacks and register sets.
1980  */
1981 static bool perf_event_validate_size(struct perf_event *event)
1982 {
1983 	struct perf_event *sibling, *group_leader = event->group_leader;
1984 
1985 	if (__perf_event_read_size(event->attr.read_format,
1986 				   group_leader->nr_siblings + 1) > 16*1024)
1987 		return false;
1988 
1989 	if (__perf_event_read_size(group_leader->attr.read_format,
1990 				   group_leader->nr_siblings + 1) > 16*1024)
1991 		return false;
1992 
1993 	/*
1994 	 * When creating a new group leader, group_leader->ctx is initialized
1995 	 * after the size has been validated, but we cannot safely use
1996 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 	 * leader cannot have any siblings yet, so we can safely skip checking
1998 	 * the non-existent siblings.
1999 	 */
2000 	if (event == group_leader)
2001 		return true;
2002 
2003 	for_each_sibling_event(sibling, group_leader) {
2004 		if (__perf_event_read_size(sibling->attr.read_format,
2005 					   group_leader->nr_siblings + 1) > 16*1024)
2006 			return false;
2007 	}
2008 
2009 	return true;
2010 }
2011 
2012 static void perf_group_attach(struct perf_event *event)
2013 {
2014 	struct perf_event *group_leader = event->group_leader, *pos;
2015 
2016 	lockdep_assert_held(&event->ctx->lock);
2017 
2018 	/*
2019 	 * We can have double attach due to group movement (move_group) in
2020 	 * perf_event_open().
2021 	 */
2022 	if (event->attach_state & PERF_ATTACH_GROUP)
2023 		return;
2024 
2025 	event->attach_state |= PERF_ATTACH_GROUP;
2026 
2027 	if (group_leader == event)
2028 		return;
2029 
2030 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2031 
2032 	group_leader->group_caps &= event->event_caps;
2033 
2034 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035 	group_leader->nr_siblings++;
2036 	group_leader->group_generation++;
2037 
2038 	perf_event__header_size(group_leader);
2039 
2040 	for_each_sibling_event(pos, group_leader)
2041 		perf_event__header_size(pos);
2042 }
2043 
2044 /*
2045  * Remove an event from the lists for its context.
2046  * Must be called with ctx->mutex and ctx->lock held.
2047  */
2048 static void
2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2050 {
2051 	WARN_ON_ONCE(event->ctx != ctx);
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	/*
2055 	 * We can have double detach due to exit/hot-unplug + close.
2056 	 */
2057 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058 		return;
2059 
2060 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2061 
2062 	ctx->nr_events--;
2063 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064 		ctx->nr_user--;
2065 	if (event->attr.inherit_stat)
2066 		ctx->nr_stat--;
2067 	if (has_inherit_and_sample_read(&event->attr))
2068 		local_dec(&ctx->nr_no_switch_fast);
2069 
2070 	list_del_rcu(&event->event_entry);
2071 
2072 	if (event->group_leader == event)
2073 		del_event_from_groups(event, ctx);
2074 
2075 	/*
2076 	 * If event was in error state, then keep it
2077 	 * that way, otherwise bogus counts will be
2078 	 * returned on read(). The only way to get out
2079 	 * of error state is by explicit re-enabling
2080 	 * of the event
2081 	 */
2082 	if (event->state > PERF_EVENT_STATE_OFF) {
2083 		perf_cgroup_event_disable(event, ctx);
2084 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2085 	}
2086 
2087 	ctx->generation++;
2088 	event->pmu_ctx->nr_events--;
2089 }
2090 
2091 static int
2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2093 {
2094 	if (!has_aux(aux_event))
2095 		return 0;
2096 
2097 	if (!event->pmu->aux_output_match)
2098 		return 0;
2099 
2100 	return event->pmu->aux_output_match(aux_event);
2101 }
2102 
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105 			    struct perf_event_context *ctx);
2106 
2107 static void perf_put_aux_event(struct perf_event *event)
2108 {
2109 	struct perf_event_context *ctx = event->ctx;
2110 	struct perf_event *iter;
2111 
2112 	/*
2113 	 * If event uses aux_event tear down the link
2114 	 */
2115 	if (event->aux_event) {
2116 		iter = event->aux_event;
2117 		event->aux_event = NULL;
2118 		put_event(iter);
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * If the event is an aux_event, tear down all links to
2124 	 * it from other events.
2125 	 */
2126 	for_each_sibling_event(iter, event->group_leader) {
2127 		if (iter->aux_event != event)
2128 			continue;
2129 
2130 		iter->aux_event = NULL;
2131 		put_event(event);
2132 
2133 		/*
2134 		 * If it's ACTIVE, schedule it out and put it into ERROR
2135 		 * state so that we don't try to schedule it again. Note
2136 		 * that perf_event_enable() will clear the ERROR status.
2137 		 */
2138 		event_sched_out(iter, ctx);
2139 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2140 	}
2141 }
2142 
2143 static bool perf_need_aux_event(struct perf_event *event)
2144 {
2145 	return event->attr.aux_output || has_aux_action(event);
2146 }
2147 
2148 static int perf_get_aux_event(struct perf_event *event,
2149 			      struct perf_event *group_leader)
2150 {
2151 	/*
2152 	 * Our group leader must be an aux event if we want to be
2153 	 * an aux_output. This way, the aux event will precede its
2154 	 * aux_output events in the group, and therefore will always
2155 	 * schedule first.
2156 	 */
2157 	if (!group_leader)
2158 		return 0;
2159 
2160 	/*
2161 	 * aux_output and aux_sample_size are mutually exclusive.
2162 	 */
2163 	if (event->attr.aux_output && event->attr.aux_sample_size)
2164 		return 0;
2165 
2166 	if (event->attr.aux_output &&
2167 	    !perf_aux_output_match(event, group_leader))
2168 		return 0;
2169 
2170 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172 		return 0;
2173 
2174 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 		return 0;
2176 
2177 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 		return 0;
2179 
2180 	/*
2181 	 * Link aux_outputs to their aux event; this is undone in
2182 	 * perf_group_detach() by perf_put_aux_event(). When the
2183 	 * group in torn down, the aux_output events loose their
2184 	 * link to the aux_event and can't schedule any more.
2185 	 */
2186 	event->aux_event = group_leader;
2187 
2188 	return 1;
2189 }
2190 
2191 static inline struct list_head *get_event_list(struct perf_event *event)
2192 {
2193 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 				    &event->pmu_ctx->flexible_active;
2195 }
2196 
2197 /*
2198  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199  * cannot exist on their own, schedule them out and move them into the ERROR
2200  * state. Also see _perf_event_enable(), it will not be able to recover
2201  * this ERROR state.
2202  */
2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2204 {
2205 	event_sched_out(event, event->ctx);
2206 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2207 }
2208 
2209 static void perf_group_detach(struct perf_event *event)
2210 {
2211 	struct perf_event *leader = event->group_leader;
2212 	struct perf_event *sibling, *tmp;
2213 	struct perf_event_context *ctx = event->ctx;
2214 
2215 	lockdep_assert_held(&ctx->lock);
2216 
2217 	/*
2218 	 * We can have double detach due to exit/hot-unplug + close.
2219 	 */
2220 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 		return;
2222 
2223 	event->attach_state &= ~PERF_ATTACH_GROUP;
2224 
2225 	perf_put_aux_event(event);
2226 
2227 	/*
2228 	 * If this is a sibling, remove it from its group.
2229 	 */
2230 	if (leader != event) {
2231 		list_del_init(&event->sibling_list);
2232 		event->group_leader->nr_siblings--;
2233 		event->group_leader->group_generation++;
2234 		goto out;
2235 	}
2236 
2237 	/*
2238 	 * If this was a group event with sibling events then
2239 	 * upgrade the siblings to singleton events by adding them
2240 	 * to whatever list we are on.
2241 	 */
2242 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2243 
2244 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 			perf_remove_sibling_event(sibling);
2246 
2247 		sibling->group_leader = sibling;
2248 		list_del_init(&sibling->sibling_list);
2249 
2250 		/* Inherit group flags from the previous leader */
2251 		sibling->group_caps = event->group_caps;
2252 
2253 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 			add_event_to_groups(sibling, event->ctx);
2255 
2256 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2258 		}
2259 
2260 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2261 	}
2262 
2263 out:
2264 	for_each_sibling_event(tmp, leader)
2265 		perf_event__header_size(tmp);
2266 
2267 	perf_event__header_size(leader);
2268 }
2269 
2270 static void sync_child_event(struct perf_event *child_event);
2271 
2272 static void perf_child_detach(struct perf_event *event)
2273 {
2274 	struct perf_event *parent_event = event->parent;
2275 
2276 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 		return;
2278 
2279 	event->attach_state &= ~PERF_ATTACH_CHILD;
2280 
2281 	if (WARN_ON_ONCE(!parent_event))
2282 		return;
2283 
2284 	lockdep_assert_held(&parent_event->child_mutex);
2285 
2286 	sync_child_event(event);
2287 	list_del_init(&event->child_list);
2288 }
2289 
2290 static bool is_orphaned_event(struct perf_event *event)
2291 {
2292 	return event->state == PERF_EVENT_STATE_DEAD;
2293 }
2294 
2295 static inline int
2296 event_filter_match(struct perf_event *event)
2297 {
2298 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 	       perf_cgroup_match(event);
2300 }
2301 
2302 static void
2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2304 {
2305 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2308 
2309 	// XXX cpc serialization, probably per-cpu IRQ disabled
2310 
2311 	WARN_ON_ONCE(event->ctx != ctx);
2312 	lockdep_assert_held(&ctx->lock);
2313 
2314 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	/*
2318 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 	 * we can schedule events _OUT_ individually through things like
2320 	 * __perf_remove_from_context().
2321 	 */
2322 	list_del_init(&event->active_list);
2323 
2324 	perf_pmu_disable(event->pmu);
2325 
2326 	event->pmu->del(event, 0);
2327 	event->oncpu = -1;
2328 
2329 	if (event->pending_disable) {
2330 		event->pending_disable = 0;
2331 		perf_cgroup_event_disable(event, ctx);
2332 		state = PERF_EVENT_STATE_OFF;
2333 	}
2334 
2335 	perf_event_set_state(event, state);
2336 
2337 	if (!is_software_event(event))
2338 		cpc->active_oncpu--;
2339 	if (event->attr.freq && event->attr.sample_freq) {
2340 		ctx->nr_freq--;
2341 		epc->nr_freq--;
2342 	}
2343 	if (event->attr.exclusive || !cpc->active_oncpu)
2344 		cpc->exclusive = 0;
2345 
2346 	perf_pmu_enable(event->pmu);
2347 }
2348 
2349 static void
2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2351 {
2352 	struct perf_event *event;
2353 
2354 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 		return;
2356 
2357 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2358 
2359 	event_sched_out(group_event, ctx);
2360 
2361 	/*
2362 	 * Schedule out siblings (if any):
2363 	 */
2364 	for_each_sibling_event(event, group_event)
2365 		event_sched_out(event, ctx);
2366 }
2367 
2368 static inline void
2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2370 {
2371 	if (ctx->is_active & EVENT_TIME) {
2372 		if (ctx->is_active & EVENT_FROZEN)
2373 			return;
2374 		update_context_time(ctx);
2375 		update_cgrp_time_from_cpuctx(cpuctx, final);
2376 	}
2377 }
2378 
2379 static inline void
2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2381 {
2382 	__ctx_time_update(cpuctx, ctx, false);
2383 }
2384 
2385 /*
2386  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2387  */
2388 static inline void
2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2390 {
2391 	ctx_time_update(cpuctx, ctx);
2392 	if (ctx->is_active & EVENT_TIME)
2393 		ctx->is_active |= EVENT_FROZEN;
2394 }
2395 
2396 static inline void
2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2398 {
2399 	if (ctx->is_active & EVENT_TIME) {
2400 		if (ctx->is_active & EVENT_FROZEN)
2401 			return;
2402 		update_context_time(ctx);
2403 		update_cgrp_time_from_event(event);
2404 	}
2405 }
2406 
2407 #define DETACH_GROUP	0x01UL
2408 #define DETACH_CHILD	0x02UL
2409 #define DETACH_DEAD	0x04UL
2410 
2411 /*
2412  * Cross CPU call to remove a performance event
2413  *
2414  * We disable the event on the hardware level first. After that we
2415  * remove it from the context list.
2416  */
2417 static void
2418 __perf_remove_from_context(struct perf_event *event,
2419 			   struct perf_cpu_context *cpuctx,
2420 			   struct perf_event_context *ctx,
2421 			   void *info)
2422 {
2423 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 	unsigned long flags = (unsigned long)info;
2425 
2426 	ctx_time_update(cpuctx, ctx);
2427 
2428 	/*
2429 	 * Ensure event_sched_out() switches to OFF, at the very least
2430 	 * this avoids raising perf_pending_task() at this time.
2431 	 */
2432 	if (flags & DETACH_DEAD)
2433 		event->pending_disable = 1;
2434 	event_sched_out(event, ctx);
2435 	if (flags & DETACH_GROUP)
2436 		perf_group_detach(event);
2437 	if (flags & DETACH_CHILD)
2438 		perf_child_detach(event);
2439 	list_del_event(event, ctx);
2440 	if (flags & DETACH_DEAD)
2441 		event->state = PERF_EVENT_STATE_DEAD;
2442 
2443 	if (!pmu_ctx->nr_events) {
2444 		pmu_ctx->rotate_necessary = 0;
2445 
2446 		if (ctx->task && ctx->is_active) {
2447 			struct perf_cpu_pmu_context *cpc;
2448 
2449 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 			cpc->task_epc = NULL;
2452 		}
2453 	}
2454 
2455 	if (!ctx->nr_events && ctx->is_active) {
2456 		if (ctx == &cpuctx->ctx)
2457 			update_cgrp_time_from_cpuctx(cpuctx, true);
2458 
2459 		ctx->is_active = 0;
2460 		if (ctx->task) {
2461 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 			cpuctx->task_ctx = NULL;
2463 		}
2464 	}
2465 }
2466 
2467 /*
2468  * Remove the event from a task's (or a CPU's) list of events.
2469  *
2470  * If event->ctx is a cloned context, callers must make sure that
2471  * every task struct that event->ctx->task could possibly point to
2472  * remains valid.  This is OK when called from perf_release since
2473  * that only calls us on the top-level context, which can't be a clone.
2474  * When called from perf_event_exit_task, it's OK because the
2475  * context has been detached from its task.
2476  */
2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2478 {
2479 	struct perf_event_context *ctx = event->ctx;
2480 
2481 	lockdep_assert_held(&ctx->mutex);
2482 
2483 	/*
2484 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 	 * event_function_call() user.
2487 	 */
2488 	raw_spin_lock_irq(&ctx->lock);
2489 	if (!ctx->is_active) {
2490 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 					   ctx, (void *)flags);
2492 		raw_spin_unlock_irq(&ctx->lock);
2493 		return;
2494 	}
2495 	raw_spin_unlock_irq(&ctx->lock);
2496 
2497 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2498 }
2499 
2500 /*
2501  * Cross CPU call to disable a performance event
2502  */
2503 static void __perf_event_disable(struct perf_event *event,
2504 				 struct perf_cpu_context *cpuctx,
2505 				 struct perf_event_context *ctx,
2506 				 void *info)
2507 {
2508 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 		return;
2510 
2511 	perf_pmu_disable(event->pmu_ctx->pmu);
2512 	ctx_time_update_event(ctx, event);
2513 
2514 	if (event == event->group_leader)
2515 		group_sched_out(event, ctx);
2516 	else
2517 		event_sched_out(event, ctx);
2518 
2519 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 	perf_cgroup_event_disable(event, ctx);
2521 
2522 	perf_pmu_enable(event->pmu_ctx->pmu);
2523 }
2524 
2525 /*
2526  * Disable an event.
2527  *
2528  * If event->ctx is a cloned context, callers must make sure that
2529  * every task struct that event->ctx->task could possibly point to
2530  * remains valid.  This condition is satisfied when called through
2531  * perf_event_for_each_child or perf_event_for_each because they
2532  * hold the top-level event's child_mutex, so any descendant that
2533  * goes to exit will block in perf_event_exit_event().
2534  *
2535  * When called from perf_pending_disable it's OK because event->ctx
2536  * is the current context on this CPU and preemption is disabled,
2537  * hence we can't get into perf_event_task_sched_out for this context.
2538  */
2539 static void _perf_event_disable(struct perf_event *event)
2540 {
2541 	struct perf_event_context *ctx = event->ctx;
2542 
2543 	raw_spin_lock_irq(&ctx->lock);
2544 	if (event->state <= PERF_EVENT_STATE_OFF) {
2545 		raw_spin_unlock_irq(&ctx->lock);
2546 		return;
2547 	}
2548 	raw_spin_unlock_irq(&ctx->lock);
2549 
2550 	event_function_call(event, __perf_event_disable, NULL);
2551 }
2552 
2553 void perf_event_disable_local(struct perf_event *event)
2554 {
2555 	event_function_local(event, __perf_event_disable, NULL);
2556 }
2557 
2558 /*
2559  * Strictly speaking kernel users cannot create groups and therefore this
2560  * interface does not need the perf_event_ctx_lock() magic.
2561  */
2562 void perf_event_disable(struct perf_event *event)
2563 {
2564 	struct perf_event_context *ctx;
2565 
2566 	ctx = perf_event_ctx_lock(event);
2567 	_perf_event_disable(event);
2568 	perf_event_ctx_unlock(event, ctx);
2569 }
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2571 
2572 void perf_event_disable_inatomic(struct perf_event *event)
2573 {
2574 	event->pending_disable = 1;
2575 	irq_work_queue(&event->pending_disable_irq);
2576 }
2577 
2578 #define MAX_INTERRUPTS (~0ULL)
2579 
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2582 
2583 static int
2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2585 {
2586 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 	int ret = 0;
2589 
2590 	WARN_ON_ONCE(event->ctx != ctx);
2591 
2592 	lockdep_assert_held(&ctx->lock);
2593 
2594 	if (event->state <= PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	WRITE_ONCE(event->oncpu, smp_processor_id());
2598 	/*
2599 	 * Order event::oncpu write to happen before the ACTIVE state is
2600 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 	 * ->oncpu if it sees ACTIVE.
2602 	 */
2603 	smp_wmb();
2604 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2605 
2606 	/*
2607 	 * Unthrottle events, since we scheduled we might have missed several
2608 	 * ticks already, also for a heavily scheduling task there is little
2609 	 * guarantee it'll get a tick in a timely manner.
2610 	 */
2611 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 		perf_log_throttle(event, 1);
2613 		event->hw.interrupts = 0;
2614 	}
2615 
2616 	perf_pmu_disable(event->pmu);
2617 
2618 	perf_log_itrace_start(event);
2619 
2620 	if (event->pmu->add(event, PERF_EF_START)) {
2621 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 		event->oncpu = -1;
2623 		ret = -EAGAIN;
2624 		goto out;
2625 	}
2626 
2627 	if (!is_software_event(event))
2628 		cpc->active_oncpu++;
2629 	if (event->attr.freq && event->attr.sample_freq) {
2630 		ctx->nr_freq++;
2631 		epc->nr_freq++;
2632 	}
2633 	if (event->attr.exclusive)
2634 		cpc->exclusive = 1;
2635 
2636 out:
2637 	perf_pmu_enable(event->pmu);
2638 
2639 	return ret;
2640 }
2641 
2642 static int
2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2644 {
2645 	struct perf_event *event, *partial_group = NULL;
2646 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2647 
2648 	if (group_event->state == PERF_EVENT_STATE_OFF)
2649 		return 0;
2650 
2651 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2652 
2653 	if (event_sched_in(group_event, ctx))
2654 		goto error;
2655 
2656 	/*
2657 	 * Schedule in siblings as one group (if any):
2658 	 */
2659 	for_each_sibling_event(event, group_event) {
2660 		if (event_sched_in(event, ctx)) {
2661 			partial_group = event;
2662 			goto group_error;
2663 		}
2664 	}
2665 
2666 	if (!pmu->commit_txn(pmu))
2667 		return 0;
2668 
2669 group_error:
2670 	/*
2671 	 * Groups can be scheduled in as one unit only, so undo any
2672 	 * partial group before returning:
2673 	 * The events up to the failed event are scheduled out normally.
2674 	 */
2675 	for_each_sibling_event(event, group_event) {
2676 		if (event == partial_group)
2677 			break;
2678 
2679 		event_sched_out(event, ctx);
2680 	}
2681 	event_sched_out(group_event, ctx);
2682 
2683 error:
2684 	pmu->cancel_txn(pmu);
2685 	return -EAGAIN;
2686 }
2687 
2688 /*
2689  * Work out whether we can put this event group on the CPU now.
2690  */
2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2692 {
2693 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2695 
2696 	/*
2697 	 * Groups consisting entirely of software events can always go on.
2698 	 */
2699 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 		return 1;
2701 	/*
2702 	 * If an exclusive group is already on, no other hardware
2703 	 * events can go on.
2704 	 */
2705 	if (cpc->exclusive)
2706 		return 0;
2707 	/*
2708 	 * If this group is exclusive and there are already
2709 	 * events on the CPU, it can't go on.
2710 	 */
2711 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 		return 0;
2713 	/*
2714 	 * Otherwise, try to add it if all previous groups were able
2715 	 * to go on.
2716 	 */
2717 	return can_add_hw;
2718 }
2719 
2720 static void add_event_to_ctx(struct perf_event *event,
2721 			       struct perf_event_context *ctx)
2722 {
2723 	list_add_event(event, ctx);
2724 	perf_group_attach(event);
2725 }
2726 
2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 			       struct pmu *pmu,
2729 			       enum event_type_t event_type)
2730 {
2731 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2732 
2733 	if (!cpuctx->task_ctx)
2734 		return;
2735 
2736 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 		return;
2738 
2739 	ctx_sched_out(ctx, pmu, event_type);
2740 }
2741 
2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				struct pmu *pmu)
2745 {
2746 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 	if (ctx)
2748 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 	if (ctx)
2751 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2752 }
2753 
2754 /*
2755  * We want to maintain the following priority of scheduling:
2756  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757  *  - task pinned (EVENT_PINNED)
2758  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759  *  - task flexible (EVENT_FLEXIBLE).
2760  *
2761  * In order to avoid unscheduling and scheduling back in everything every
2762  * time an event is added, only do it for the groups of equal priority and
2763  * below.
2764  *
2765  * This can be called after a batch operation on task events, in which case
2766  * event_type is a bit mask of the types of events involved. For CPU events,
2767  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2768  */
2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 			struct perf_event_context *task_ctx,
2771 			struct pmu *pmu, enum event_type_t event_type)
2772 {
2773 	bool cpu_event = !!(event_type & EVENT_CPU);
2774 	struct perf_event_pmu_context *epc;
2775 
2776 	/*
2777 	 * If pinned groups are involved, flexible groups also need to be
2778 	 * scheduled out.
2779 	 */
2780 	if (event_type & EVENT_PINNED)
2781 		event_type |= EVENT_FLEXIBLE;
2782 
2783 	event_type &= EVENT_ALL;
2784 
2785 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 		perf_pmu_disable(epc->pmu);
2787 
2788 	if (task_ctx) {
2789 		for_each_epc(epc, task_ctx, pmu, false)
2790 			perf_pmu_disable(epc->pmu);
2791 
2792 		task_ctx_sched_out(task_ctx, pmu, event_type);
2793 	}
2794 
2795 	/*
2796 	 * Decide which cpu ctx groups to schedule out based on the types
2797 	 * of events that caused rescheduling:
2798 	 *  - EVENT_CPU: schedule out corresponding groups;
2799 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 	 *  - otherwise, do nothing more.
2801 	 */
2802 	if (cpu_event)
2803 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 	else if (event_type & EVENT_PINNED)
2805 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2806 
2807 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2808 
2809 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 		perf_pmu_enable(epc->pmu);
2811 
2812 	if (task_ctx) {
2813 		for_each_epc(epc, task_ctx, pmu, false)
2814 			perf_pmu_enable(epc->pmu);
2815 	}
2816 }
2817 
2818 void perf_pmu_resched(struct pmu *pmu)
2819 {
2820 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2822 
2823 	perf_ctx_lock(cpuctx, task_ctx);
2824 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 	perf_ctx_unlock(cpuctx, task_ctx);
2826 }
2827 
2828 /*
2829  * Cross CPU call to install and enable a performance event
2830  *
2831  * Very similar to remote_function() + event_function() but cannot assume that
2832  * things like ctx->is_active and cpuctx->task_ctx are set.
2833  */
2834 static int  __perf_install_in_context(void *info)
2835 {
2836 	struct perf_event *event = info;
2837 	struct perf_event_context *ctx = event->ctx;
2838 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 	bool reprogram = true;
2841 	int ret = 0;
2842 
2843 	raw_spin_lock(&cpuctx->ctx.lock);
2844 	if (ctx->task) {
2845 		raw_spin_lock(&ctx->lock);
2846 		task_ctx = ctx;
2847 
2848 		reprogram = (ctx->task == current);
2849 
2850 		/*
2851 		 * If the task is running, it must be running on this CPU,
2852 		 * otherwise we cannot reprogram things.
2853 		 *
2854 		 * If its not running, we don't care, ctx->lock will
2855 		 * serialize against it becoming runnable.
2856 		 */
2857 		if (task_curr(ctx->task) && !reprogram) {
2858 			ret = -ESRCH;
2859 			goto unlock;
2860 		}
2861 
2862 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 	} else if (task_ctx) {
2864 		raw_spin_lock(&task_ctx->lock);
2865 	}
2866 
2867 #ifdef CONFIG_CGROUP_PERF
2868 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2869 		/*
2870 		 * If the current cgroup doesn't match the event's
2871 		 * cgroup, we should not try to schedule it.
2872 		 */
2873 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 					event->cgrp->css.cgroup);
2876 	}
2877 #endif
2878 
2879 	if (reprogram) {
2880 		ctx_time_freeze(cpuctx, ctx);
2881 		add_event_to_ctx(event, ctx);
2882 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 			    get_event_type(event));
2884 	} else {
2885 		add_event_to_ctx(event, ctx);
2886 	}
2887 
2888 unlock:
2889 	perf_ctx_unlock(cpuctx, task_ctx);
2890 
2891 	return ret;
2892 }
2893 
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 					struct perf_event_context *ctx);
2896 
2897 /*
2898  * Attach a performance event to a context.
2899  *
2900  * Very similar to event_function_call, see comment there.
2901  */
2902 static void
2903 perf_install_in_context(struct perf_event_context *ctx,
2904 			struct perf_event *event,
2905 			int cpu)
2906 {
2907 	struct task_struct *task = READ_ONCE(ctx->task);
2908 
2909 	lockdep_assert_held(&ctx->mutex);
2910 
2911 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2912 
2913 	if (event->cpu != -1)
2914 		WARN_ON_ONCE(event->cpu != cpu);
2915 
2916 	/*
2917 	 * Ensures that if we can observe event->ctx, both the event and ctx
2918 	 * will be 'complete'. See perf_iterate_sb_cpu().
2919 	 */
2920 	smp_store_release(&event->ctx, ctx);
2921 
2922 	/*
2923 	 * perf_event_attr::disabled events will not run and can be initialized
2924 	 * without IPI. Except when this is the first event for the context, in
2925 	 * that case we need the magic of the IPI to set ctx->is_active.
2926 	 *
2927 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 	 * event will issue the IPI and reprogram the hardware.
2929 	 */
2930 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 	    ctx->nr_events && !is_cgroup_event(event)) {
2932 		raw_spin_lock_irq(&ctx->lock);
2933 		if (ctx->task == TASK_TOMBSTONE) {
2934 			raw_spin_unlock_irq(&ctx->lock);
2935 			return;
2936 		}
2937 		add_event_to_ctx(event, ctx);
2938 		raw_spin_unlock_irq(&ctx->lock);
2939 		return;
2940 	}
2941 
2942 	if (!task) {
2943 		cpu_function_call(cpu, __perf_install_in_context, event);
2944 		return;
2945 	}
2946 
2947 	/*
2948 	 * Should not happen, we validate the ctx is still alive before calling.
2949 	 */
2950 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 		return;
2952 
2953 	/*
2954 	 * Installing events is tricky because we cannot rely on ctx->is_active
2955 	 * to be set in case this is the nr_events 0 -> 1 transition.
2956 	 *
2957 	 * Instead we use task_curr(), which tells us if the task is running.
2958 	 * However, since we use task_curr() outside of rq::lock, we can race
2959 	 * against the actual state. This means the result can be wrong.
2960 	 *
2961 	 * If we get a false positive, we retry, this is harmless.
2962 	 *
2963 	 * If we get a false negative, things are complicated. If we are after
2964 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 	 * value must be correct. If we're before, it doesn't matter since
2966 	 * perf_event_context_sched_in() will program the counter.
2967 	 *
2968 	 * However, this hinges on the remote context switch having observed
2969 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 	 * ctx::lock in perf_event_context_sched_in().
2971 	 *
2972 	 * We do this by task_function_call(), if the IPI fails to hit the task
2973 	 * we know any future context switch of task must see the
2974 	 * perf_event_ctpx[] store.
2975 	 */
2976 
2977 	/*
2978 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 	 * task_cpu() load, such that if the IPI then does not find the task
2980 	 * running, a future context switch of that task must observe the
2981 	 * store.
2982 	 */
2983 	smp_mb();
2984 again:
2985 	if (!task_function_call(task, __perf_install_in_context, event))
2986 		return;
2987 
2988 	raw_spin_lock_irq(&ctx->lock);
2989 	task = ctx->task;
2990 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2991 		/*
2992 		 * Cannot happen because we already checked above (which also
2993 		 * cannot happen), and we hold ctx->mutex, which serializes us
2994 		 * against perf_event_exit_task_context().
2995 		 */
2996 		raw_spin_unlock_irq(&ctx->lock);
2997 		return;
2998 	}
2999 	/*
3000 	 * If the task is not running, ctx->lock will avoid it becoming so,
3001 	 * thus we can safely install the event.
3002 	 */
3003 	if (task_curr(task)) {
3004 		raw_spin_unlock_irq(&ctx->lock);
3005 		goto again;
3006 	}
3007 	add_event_to_ctx(event, ctx);
3008 	raw_spin_unlock_irq(&ctx->lock);
3009 }
3010 
3011 /*
3012  * Cross CPU call to enable a performance event
3013  */
3014 static void __perf_event_enable(struct perf_event *event,
3015 				struct perf_cpu_context *cpuctx,
3016 				struct perf_event_context *ctx,
3017 				void *info)
3018 {
3019 	struct perf_event *leader = event->group_leader;
3020 	struct perf_event_context *task_ctx;
3021 
3022 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 	    event->state <= PERF_EVENT_STATE_ERROR)
3024 		return;
3025 
3026 	ctx_time_freeze(cpuctx, ctx);
3027 
3028 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 	perf_cgroup_event_enable(event, ctx);
3030 
3031 	if (!ctx->is_active)
3032 		return;
3033 
3034 	if (!event_filter_match(event))
3035 		return;
3036 
3037 	/*
3038 	 * If the event is in a group and isn't the group leader,
3039 	 * then don't put it on unless the group is on.
3040 	 */
3041 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 		return;
3043 
3044 	task_ctx = cpuctx->task_ctx;
3045 	if (ctx->task)
3046 		WARN_ON_ONCE(task_ctx != ctx);
3047 
3048 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3049 }
3050 
3051 /*
3052  * Enable an event.
3053  *
3054  * If event->ctx is a cloned context, callers must make sure that
3055  * every task struct that event->ctx->task could possibly point to
3056  * remains valid.  This condition is satisfied when called through
3057  * perf_event_for_each_child or perf_event_for_each as described
3058  * for perf_event_disable.
3059  */
3060 static void _perf_event_enable(struct perf_event *event)
3061 {
3062 	struct perf_event_context *ctx = event->ctx;
3063 
3064 	raw_spin_lock_irq(&ctx->lock);
3065 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 	    event->state <  PERF_EVENT_STATE_ERROR) {
3067 out:
3068 		raw_spin_unlock_irq(&ctx->lock);
3069 		return;
3070 	}
3071 
3072 	/*
3073 	 * If the event is in error state, clear that first.
3074 	 *
3075 	 * That way, if we see the event in error state below, we know that it
3076 	 * has gone back into error state, as distinct from the task having
3077 	 * been scheduled away before the cross-call arrived.
3078 	 */
3079 	if (event->state == PERF_EVENT_STATE_ERROR) {
3080 		/*
3081 		 * Detached SIBLING events cannot leave ERROR state.
3082 		 */
3083 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 		    event->group_leader == event)
3085 			goto out;
3086 
3087 		event->state = PERF_EVENT_STATE_OFF;
3088 	}
3089 	raw_spin_unlock_irq(&ctx->lock);
3090 
3091 	event_function_call(event, __perf_event_enable, NULL);
3092 }
3093 
3094 /*
3095  * See perf_event_disable();
3096  */
3097 void perf_event_enable(struct perf_event *event)
3098 {
3099 	struct perf_event_context *ctx;
3100 
3101 	ctx = perf_event_ctx_lock(event);
3102 	_perf_event_enable(event);
3103 	perf_event_ctx_unlock(event, ctx);
3104 }
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3106 
3107 struct stop_event_data {
3108 	struct perf_event	*event;
3109 	unsigned int		restart;
3110 };
3111 
3112 static int __perf_event_stop(void *info)
3113 {
3114 	struct stop_event_data *sd = info;
3115 	struct perf_event *event = sd->event;
3116 
3117 	/* if it's already INACTIVE, do nothing */
3118 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 		return 0;
3120 
3121 	/* matches smp_wmb() in event_sched_in() */
3122 	smp_rmb();
3123 
3124 	/*
3125 	 * There is a window with interrupts enabled before we get here,
3126 	 * so we need to check again lest we try to stop another CPU's event.
3127 	 */
3128 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 		return -EAGAIN;
3130 
3131 	event->pmu->stop(event, PERF_EF_UPDATE);
3132 
3133 	/*
3134 	 * May race with the actual stop (through perf_pmu_output_stop()),
3135 	 * but it is only used for events with AUX ring buffer, and such
3136 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 	 * see comments in perf_aux_output_begin().
3138 	 *
3139 	 * Since this is happening on an event-local CPU, no trace is lost
3140 	 * while restarting.
3141 	 */
3142 	if (sd->restart)
3143 		event->pmu->start(event, 0);
3144 
3145 	return 0;
3146 }
3147 
3148 static int perf_event_stop(struct perf_event *event, int restart)
3149 {
3150 	struct stop_event_data sd = {
3151 		.event		= event,
3152 		.restart	= restart,
3153 	};
3154 	int ret = 0;
3155 
3156 	do {
3157 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 			return 0;
3159 
3160 		/* matches smp_wmb() in event_sched_in() */
3161 		smp_rmb();
3162 
3163 		/*
3164 		 * We only want to restart ACTIVE events, so if the event goes
3165 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 		 * fall through with ret==-ENXIO.
3167 		 */
3168 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 					__perf_event_stop, &sd);
3170 	} while (ret == -EAGAIN);
3171 
3172 	return ret;
3173 }
3174 
3175 /*
3176  * In order to contain the amount of racy and tricky in the address filter
3177  * configuration management, it is a two part process:
3178  *
3179  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180  *      we update the addresses of corresponding vmas in
3181  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182  * (p2) when an event is scheduled in (pmu::add), it calls
3183  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184  *      if the generation has changed since the previous call.
3185  *
3186  * If (p1) happens while the event is active, we restart it to force (p2).
3187  *
3188  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3190  *     ioctl;
3191  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3193  *     for reading;
3194  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195  *     of exec.
3196  */
3197 void perf_event_addr_filters_sync(struct perf_event *event)
3198 {
3199 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3200 
3201 	if (!has_addr_filter(event))
3202 		return;
3203 
3204 	raw_spin_lock(&ifh->lock);
3205 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 		event->pmu->addr_filters_sync(event);
3207 		event->hw.addr_filters_gen = event->addr_filters_gen;
3208 	}
3209 	raw_spin_unlock(&ifh->lock);
3210 }
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3212 
3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215 	/*
3216 	 * not supported on inherited events
3217 	 */
3218 	if (event->attr.inherit || !is_sampling_event(event))
3219 		return -EINVAL;
3220 
3221 	atomic_add(refresh, &event->event_limit);
3222 	_perf_event_enable(event);
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * See perf_event_disable()
3229  */
3230 int perf_event_refresh(struct perf_event *event, int refresh)
3231 {
3232 	struct perf_event_context *ctx;
3233 	int ret;
3234 
3235 	ctx = perf_event_ctx_lock(event);
3236 	ret = _perf_event_refresh(event, refresh);
3237 	perf_event_ctx_unlock(event, ctx);
3238 
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3242 
3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 					 struct perf_event_attr *attr)
3245 {
3246 	int err;
3247 
3248 	_perf_event_disable(bp);
3249 
3250 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3251 
3252 	if (!bp->attr.disabled)
3253 		_perf_event_enable(bp);
3254 
3255 	return err;
3256 }
3257 
3258 /*
3259  * Copy event-type-independent attributes that may be modified.
3260  */
3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 					const struct perf_event_attr *from)
3263 {
3264 	to->sig_data = from->sig_data;
3265 }
3266 
3267 static int perf_event_modify_attr(struct perf_event *event,
3268 				  struct perf_event_attr *attr)
3269 {
3270 	int (*func)(struct perf_event *, struct perf_event_attr *);
3271 	struct perf_event *child;
3272 	int err;
3273 
3274 	if (event->attr.type != attr->type)
3275 		return -EINVAL;
3276 
3277 	switch (event->attr.type) {
3278 	case PERF_TYPE_BREAKPOINT:
3279 		func = perf_event_modify_breakpoint;
3280 		break;
3281 	default:
3282 		/* Place holder for future additions. */
3283 		return -EOPNOTSUPP;
3284 	}
3285 
3286 	WARN_ON_ONCE(event->ctx->parent_ctx);
3287 
3288 	mutex_lock(&event->child_mutex);
3289 	/*
3290 	 * Event-type-independent attributes must be copied before event-type
3291 	 * modification, which will validate that final attributes match the
3292 	 * source attributes after all relevant attributes have been copied.
3293 	 */
3294 	perf_event_modify_copy_attr(&event->attr, attr);
3295 	err = func(event, attr);
3296 	if (err)
3297 		goto out;
3298 	list_for_each_entry(child, &event->child_list, child_list) {
3299 		perf_event_modify_copy_attr(&child->attr, attr);
3300 		err = func(child, attr);
3301 		if (err)
3302 			goto out;
3303 	}
3304 out:
3305 	mutex_unlock(&event->child_mutex);
3306 	return err;
3307 }
3308 
3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 				enum event_type_t event_type)
3311 {
3312 	struct perf_event_context *ctx = pmu_ctx->ctx;
3313 	struct perf_event *event, *tmp;
3314 	struct pmu *pmu = pmu_ctx->pmu;
3315 
3316 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 		struct perf_cpu_pmu_context *cpc;
3318 
3319 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 		cpc->task_epc = NULL;
3322 	}
3323 
3324 	if (!(event_type & EVENT_ALL))
3325 		return;
3326 
3327 	perf_pmu_disable(pmu);
3328 	if (event_type & EVENT_PINNED) {
3329 		list_for_each_entry_safe(event, tmp,
3330 					 &pmu_ctx->pinned_active,
3331 					 active_list)
3332 			group_sched_out(event, ctx);
3333 	}
3334 
3335 	if (event_type & EVENT_FLEXIBLE) {
3336 		list_for_each_entry_safe(event, tmp,
3337 					 &pmu_ctx->flexible_active,
3338 					 active_list)
3339 			group_sched_out(event, ctx);
3340 		/*
3341 		 * Since we cleared EVENT_FLEXIBLE, also clear
3342 		 * rotate_necessary, is will be reset by
3343 		 * ctx_flexible_sched_in() when needed.
3344 		 */
3345 		pmu_ctx->rotate_necessary = 0;
3346 	}
3347 	perf_pmu_enable(pmu);
3348 }
3349 
3350 /*
3351  * Be very careful with the @pmu argument since this will change ctx state.
3352  * The @pmu argument works for ctx_resched(), because that is symmetric in
3353  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3354  *
3355  * However, if you were to be asymmetrical, you could end up with messed up
3356  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357  * be active.
3358  */
3359 static void
3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3361 {
3362 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 	struct perf_event_pmu_context *pmu_ctx;
3364 	int is_active = ctx->is_active;
3365 	bool cgroup = event_type & EVENT_CGROUP;
3366 
3367 	event_type &= ~EVENT_CGROUP;
3368 
3369 	lockdep_assert_held(&ctx->lock);
3370 
3371 	if (likely(!ctx->nr_events)) {
3372 		/*
3373 		 * See __perf_remove_from_context().
3374 		 */
3375 		WARN_ON_ONCE(ctx->is_active);
3376 		if (ctx->task)
3377 			WARN_ON_ONCE(cpuctx->task_ctx);
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * Always update time if it was set; not only when it changes.
3383 	 * Otherwise we can 'forget' to update time for any but the last
3384 	 * context we sched out. For example:
3385 	 *
3386 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3388 	 *
3389 	 * would only update time for the pinned events.
3390 	 */
3391 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3392 
3393 	/*
3394 	 * CPU-release for the below ->is_active store,
3395 	 * see __load_acquire() in perf_event_time_now()
3396 	 */
3397 	barrier();
3398 	ctx->is_active &= ~event_type;
3399 
3400 	if (!(ctx->is_active & EVENT_ALL)) {
3401 		/*
3402 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3404 		 */
3405 		if (ctx->is_active & EVENT_FROZEN)
3406 			ctx->is_active &= EVENT_TIME_FROZEN;
3407 		else
3408 			ctx->is_active = 0;
3409 	}
3410 
3411 	if (ctx->task) {
3412 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 		if (!(ctx->is_active & EVENT_ALL))
3414 			cpuctx->task_ctx = NULL;
3415 	}
3416 
3417 	is_active ^= ctx->is_active; /* changed bits */
3418 
3419 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3421 }
3422 
3423 /*
3424  * Test whether two contexts are equivalent, i.e. whether they have both been
3425  * cloned from the same version of the same context.
3426  *
3427  * Equivalence is measured using a generation number in the context that is
3428  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429  * and list_del_event().
3430  */
3431 static int context_equiv(struct perf_event_context *ctx1,
3432 			 struct perf_event_context *ctx2)
3433 {
3434 	lockdep_assert_held(&ctx1->lock);
3435 	lockdep_assert_held(&ctx2->lock);
3436 
3437 	/* Pinning disables the swap optimization */
3438 	if (ctx1->pin_count || ctx2->pin_count)
3439 		return 0;
3440 
3441 	/* If ctx1 is the parent of ctx2 */
3442 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 		return 1;
3444 
3445 	/* If ctx2 is the parent of ctx1 */
3446 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 		return 1;
3448 
3449 	/*
3450 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 	 * hierarchy, see perf_event_init_context().
3452 	 */
3453 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 			ctx1->parent_gen == ctx2->parent_gen)
3455 		return 1;
3456 
3457 	/* Unmatched */
3458 	return 0;
3459 }
3460 
3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 				     struct perf_event *next_event)
3463 {
3464 	u64 value;
3465 
3466 	if (!event->attr.inherit_stat)
3467 		return;
3468 
3469 	/*
3470 	 * Update the event value, we cannot use perf_event_read()
3471 	 * because we're in the middle of a context switch and have IRQs
3472 	 * disabled, which upsets smp_call_function_single(), however
3473 	 * we know the event must be on the current CPU, therefore we
3474 	 * don't need to use it.
3475 	 */
3476 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 		event->pmu->read(event);
3478 
3479 	perf_event_update_time(event);
3480 
3481 	/*
3482 	 * In order to keep per-task stats reliable we need to flip the event
3483 	 * values when we flip the contexts.
3484 	 */
3485 	value = local64_read(&next_event->count);
3486 	value = local64_xchg(&event->count, value);
3487 	local64_set(&next_event->count, value);
3488 
3489 	swap(event->total_time_enabled, next_event->total_time_enabled);
3490 	swap(event->total_time_running, next_event->total_time_running);
3491 
3492 	/*
3493 	 * Since we swizzled the values, update the user visible data too.
3494 	 */
3495 	perf_event_update_userpage(event);
3496 	perf_event_update_userpage(next_event);
3497 }
3498 
3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 				   struct perf_event_context *next_ctx)
3501 {
3502 	struct perf_event *event, *next_event;
3503 
3504 	if (!ctx->nr_stat)
3505 		return;
3506 
3507 	update_context_time(ctx);
3508 
3509 	event = list_first_entry(&ctx->event_list,
3510 				   struct perf_event, event_entry);
3511 
3512 	next_event = list_first_entry(&next_ctx->event_list,
3513 					struct perf_event, event_entry);
3514 
3515 	while (&event->event_entry != &ctx->event_list &&
3516 	       &next_event->event_entry != &next_ctx->event_list) {
3517 
3518 		__perf_event_sync_stat(event, next_event);
3519 
3520 		event = list_next_entry(event, event_entry);
3521 		next_event = list_next_entry(next_event, event_entry);
3522 	}
3523 }
3524 
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3526 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3527 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3528 	     !list_entry_is_head(pos1, head1, member) &&		\
3529 	     !list_entry_is_head(pos2, head2, member);			\
3530 	     pos1 = list_next_entry(pos1, member),			\
3531 	     pos2 = list_next_entry(pos2, member))
3532 
3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 					  struct perf_event_context *next_ctx)
3535 {
3536 	struct perf_event_pmu_context *prev_epc, *next_epc;
3537 
3538 	if (!prev_ctx->nr_task_data)
3539 		return;
3540 
3541 	double_list_for_each_entry(prev_epc, next_epc,
3542 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 				   pmu_ctx_entry) {
3544 
3545 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 			continue;
3547 
3548 		/*
3549 		 * PMU specific parts of task perf context can require
3550 		 * additional synchronization. As an example of such
3551 		 * synchronization see implementation details of Intel
3552 		 * LBR call stack data profiling;
3553 		 */
3554 		if (prev_epc->pmu->swap_task_ctx)
3555 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 		else
3557 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3558 	}
3559 }
3560 
3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3562 {
3563 	struct perf_event_pmu_context *pmu_ctx;
3564 	struct perf_cpu_pmu_context *cpc;
3565 
3566 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3568 
3569 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3571 	}
3572 }
3573 
3574 static void
3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3576 {
3577 	struct perf_event_context *ctx = task->perf_event_ctxp;
3578 	struct perf_event_context *next_ctx;
3579 	struct perf_event_context *parent, *next_parent;
3580 	int do_switch = 1;
3581 
3582 	if (likely(!ctx))
3583 		return;
3584 
3585 	rcu_read_lock();
3586 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 	if (!next_ctx)
3588 		goto unlock;
3589 
3590 	parent = rcu_dereference(ctx->parent_ctx);
3591 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3592 
3593 	/* If neither context have a parent context; they cannot be clones. */
3594 	if (!parent && !next_parent)
3595 		goto unlock;
3596 
3597 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3598 		/*
3599 		 * Looks like the two contexts are clones, so we might be
3600 		 * able to optimize the context switch.  We lock both
3601 		 * contexts and check that they are clones under the
3602 		 * lock (including re-checking that neither has been
3603 		 * uncloned in the meantime).  It doesn't matter which
3604 		 * order we take the locks because no other cpu could
3605 		 * be trying to lock both of these tasks.
3606 		 */
3607 		raw_spin_lock(&ctx->lock);
3608 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 		if (context_equiv(ctx, next_ctx)) {
3610 
3611 			perf_ctx_disable(ctx, false);
3612 
3613 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 			if (local_read(&ctx->nr_no_switch_fast) ||
3615 			    local_read(&next_ctx->nr_no_switch_fast)) {
3616 				/*
3617 				 * Must not swap out ctx when there's pending
3618 				 * events that rely on the ctx->task relation.
3619 				 *
3620 				 * Likewise, when a context contains inherit +
3621 				 * SAMPLE_READ events they should be switched
3622 				 * out using the slow path so that they are
3623 				 * treated as if they were distinct contexts.
3624 				 */
3625 				raw_spin_unlock(&next_ctx->lock);
3626 				rcu_read_unlock();
3627 				goto inside_switch;
3628 			}
3629 
3630 			WRITE_ONCE(ctx->task, next);
3631 			WRITE_ONCE(next_ctx->task, task);
3632 
3633 			perf_ctx_sched_task_cb(ctx, false);
3634 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3635 
3636 			perf_ctx_enable(ctx, false);
3637 
3638 			/*
3639 			 * RCU_INIT_POINTER here is safe because we've not
3640 			 * modified the ctx and the above modification of
3641 			 * ctx->task and ctx->task_ctx_data are immaterial
3642 			 * since those values are always verified under
3643 			 * ctx->lock which we're now holding.
3644 			 */
3645 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3647 
3648 			do_switch = 0;
3649 
3650 			perf_event_sync_stat(ctx, next_ctx);
3651 		}
3652 		raw_spin_unlock(&next_ctx->lock);
3653 		raw_spin_unlock(&ctx->lock);
3654 	}
3655 unlock:
3656 	rcu_read_unlock();
3657 
3658 	if (do_switch) {
3659 		raw_spin_lock(&ctx->lock);
3660 		perf_ctx_disable(ctx, false);
3661 
3662 inside_switch:
3663 		perf_ctx_sched_task_cb(ctx, false);
3664 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3665 
3666 		perf_ctx_enable(ctx, false);
3667 		raw_spin_unlock(&ctx->lock);
3668 	}
3669 }
3670 
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3673 
3674 void perf_sched_cb_dec(struct pmu *pmu)
3675 {
3676 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3677 
3678 	this_cpu_dec(perf_sched_cb_usages);
3679 	barrier();
3680 
3681 	if (!--cpc->sched_cb_usage)
3682 		list_del(&cpc->sched_cb_entry);
3683 }
3684 
3685 
3686 void perf_sched_cb_inc(struct pmu *pmu)
3687 {
3688 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3689 
3690 	if (!cpc->sched_cb_usage++)
3691 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3692 
3693 	barrier();
3694 	this_cpu_inc(perf_sched_cb_usages);
3695 }
3696 
3697 /*
3698  * This function provides the context switch callback to the lower code
3699  * layer. It is invoked ONLY when the context switch callback is enabled.
3700  *
3701  * This callback is relevant even to per-cpu events; for example multi event
3702  * PEBS requires this to provide PID/TID information. This requires we flush
3703  * all queued PEBS records before we context switch to a new task.
3704  */
3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3706 {
3707 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 	struct pmu *pmu;
3709 
3710 	pmu = cpc->epc.pmu;
3711 
3712 	/* software PMUs will not have sched_task */
3713 	if (WARN_ON_ONCE(!pmu->sched_task))
3714 		return;
3715 
3716 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 	perf_pmu_disable(pmu);
3718 
3719 	pmu->sched_task(cpc->task_epc, sched_in);
3720 
3721 	perf_pmu_enable(pmu);
3722 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3723 }
3724 
3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 				struct task_struct *next,
3727 				bool sched_in)
3728 {
3729 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 	struct perf_cpu_pmu_context *cpc;
3731 
3732 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 	if (prev == next || cpuctx->task_ctx)
3734 		return;
3735 
3736 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 		__perf_pmu_sched_task(cpc, sched_in);
3738 }
3739 
3740 static void perf_event_switch(struct task_struct *task,
3741 			      struct task_struct *next_prev, bool sched_in);
3742 
3743 /*
3744  * Called from scheduler to remove the events of the current task,
3745  * with interrupts disabled.
3746  *
3747  * We stop each event and update the event value in event->count.
3748  *
3749  * This does not protect us against NMI, but disable()
3750  * sets the disabled bit in the control field of event _before_
3751  * accessing the event control register. If a NMI hits, then it will
3752  * not restart the event.
3753  */
3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 				 struct task_struct *next)
3756 {
3757 	if (__this_cpu_read(perf_sched_cb_usages))
3758 		perf_pmu_sched_task(task, next, false);
3759 
3760 	if (atomic_read(&nr_switch_events))
3761 		perf_event_switch(task, next, false);
3762 
3763 	perf_event_context_sched_out(task, next);
3764 
3765 	/*
3766 	 * if cgroup events exist on this CPU, then we need
3767 	 * to check if we have to switch out PMU state.
3768 	 * cgroup event are system-wide mode only
3769 	 */
3770 	perf_cgroup_switch(next);
3771 }
3772 
3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3774 {
3775 	const struct perf_event *le = *(const struct perf_event **)l;
3776 	const struct perf_event *re = *(const struct perf_event **)r;
3777 
3778 	return le->group_index < re->group_index;
3779 }
3780 
3781 static void swap_ptr(void *l, void *r, void __always_unused *args)
3782 {
3783 	void **lp = l, **rp = r;
3784 
3785 	swap(*lp, *rp);
3786 }
3787 
3788 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3789 
3790 static const struct min_heap_callbacks perf_min_heap = {
3791 	.less = perf_less_group_idx,
3792 	.swp = swap_ptr,
3793 };
3794 
3795 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3796 {
3797 	struct perf_event **itrs = heap->data;
3798 
3799 	if (event) {
3800 		itrs[heap->nr] = event;
3801 		heap->nr++;
3802 	}
3803 }
3804 
3805 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3806 {
3807 	struct perf_cpu_pmu_context *cpc;
3808 
3809 	if (!pmu_ctx->ctx->task)
3810 		return;
3811 
3812 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3813 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3814 	cpc->task_epc = pmu_ctx;
3815 }
3816 
3817 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3818 				struct perf_event_groups *groups, int cpu,
3819 				struct pmu *pmu,
3820 				int (*func)(struct perf_event *, void *),
3821 				void *data)
3822 {
3823 #ifdef CONFIG_CGROUP_PERF
3824 	struct cgroup_subsys_state *css = NULL;
3825 #endif
3826 	struct perf_cpu_context *cpuctx = NULL;
3827 	/* Space for per CPU and/or any CPU event iterators. */
3828 	struct perf_event *itrs[2];
3829 	struct perf_event_min_heap event_heap;
3830 	struct perf_event **evt;
3831 	int ret;
3832 
3833 	if (pmu->filter && pmu->filter(pmu, cpu))
3834 		return 0;
3835 
3836 	if (!ctx->task) {
3837 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3838 		event_heap = (struct perf_event_min_heap){
3839 			.data = cpuctx->heap,
3840 			.nr = 0,
3841 			.size = cpuctx->heap_size,
3842 		};
3843 
3844 		lockdep_assert_held(&cpuctx->ctx.lock);
3845 
3846 #ifdef CONFIG_CGROUP_PERF
3847 		if (cpuctx->cgrp)
3848 			css = &cpuctx->cgrp->css;
3849 #endif
3850 	} else {
3851 		event_heap = (struct perf_event_min_heap){
3852 			.data = itrs,
3853 			.nr = 0,
3854 			.size = ARRAY_SIZE(itrs),
3855 		};
3856 		/* Events not within a CPU context may be on any CPU. */
3857 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3858 	}
3859 	evt = event_heap.data;
3860 
3861 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3862 
3863 #ifdef CONFIG_CGROUP_PERF
3864 	for (; css; css = css->parent)
3865 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3866 #endif
3867 
3868 	if (event_heap.nr) {
3869 		__link_epc((*evt)->pmu_ctx);
3870 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3871 	}
3872 
3873 	min_heapify_all(&event_heap, &perf_min_heap, NULL);
3874 
3875 	while (event_heap.nr) {
3876 		ret = func(*evt, data);
3877 		if (ret)
3878 			return ret;
3879 
3880 		*evt = perf_event_groups_next(*evt, pmu);
3881 		if (*evt)
3882 			min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
3883 		else
3884 			min_heap_pop(&event_heap, &perf_min_heap, NULL);
3885 	}
3886 
3887 	return 0;
3888 }
3889 
3890 /*
3891  * Because the userpage is strictly per-event (there is no concept of context,
3892  * so there cannot be a context indirection), every userpage must be updated
3893  * when context time starts :-(
3894  *
3895  * IOW, we must not miss EVENT_TIME edges.
3896  */
3897 static inline bool event_update_userpage(struct perf_event *event)
3898 {
3899 	if (likely(!atomic_read(&event->mmap_count)))
3900 		return false;
3901 
3902 	perf_event_update_time(event);
3903 	perf_event_update_userpage(event);
3904 
3905 	return true;
3906 }
3907 
3908 static inline void group_update_userpage(struct perf_event *group_event)
3909 {
3910 	struct perf_event *event;
3911 
3912 	if (!event_update_userpage(group_event))
3913 		return;
3914 
3915 	for_each_sibling_event(event, group_event)
3916 		event_update_userpage(event);
3917 }
3918 
3919 static int merge_sched_in(struct perf_event *event, void *data)
3920 {
3921 	struct perf_event_context *ctx = event->ctx;
3922 	int *can_add_hw = data;
3923 
3924 	if (event->state <= PERF_EVENT_STATE_OFF)
3925 		return 0;
3926 
3927 	if (!event_filter_match(event))
3928 		return 0;
3929 
3930 	if (group_can_go_on(event, *can_add_hw)) {
3931 		if (!group_sched_in(event, ctx))
3932 			list_add_tail(&event->active_list, get_event_list(event));
3933 	}
3934 
3935 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3936 		*can_add_hw = 0;
3937 		if (event->attr.pinned) {
3938 			perf_cgroup_event_disable(event, ctx);
3939 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3940 		} else {
3941 			struct perf_cpu_pmu_context *cpc;
3942 
3943 			event->pmu_ctx->rotate_necessary = 1;
3944 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3945 			perf_mux_hrtimer_restart(cpc);
3946 			group_update_userpage(event);
3947 		}
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3954 				struct perf_event_groups *groups,
3955 				struct pmu *pmu)
3956 {
3957 	int can_add_hw = 1;
3958 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3959 			   merge_sched_in, &can_add_hw);
3960 }
3961 
3962 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3963 			       enum event_type_t event_type)
3964 {
3965 	struct perf_event_context *ctx = pmu_ctx->ctx;
3966 
3967 	if (event_type & EVENT_PINNED)
3968 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3969 	if (event_type & EVENT_FLEXIBLE)
3970 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3971 }
3972 
3973 static void
3974 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3975 {
3976 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3977 	struct perf_event_pmu_context *pmu_ctx;
3978 	int is_active = ctx->is_active;
3979 	bool cgroup = event_type & EVENT_CGROUP;
3980 
3981 	event_type &= ~EVENT_CGROUP;
3982 
3983 	lockdep_assert_held(&ctx->lock);
3984 
3985 	if (likely(!ctx->nr_events))
3986 		return;
3987 
3988 	if (!(is_active & EVENT_TIME)) {
3989 		/* start ctx time */
3990 		__update_context_time(ctx, false);
3991 		perf_cgroup_set_timestamp(cpuctx);
3992 		/*
3993 		 * CPU-release for the below ->is_active store,
3994 		 * see __load_acquire() in perf_event_time_now()
3995 		 */
3996 		barrier();
3997 	}
3998 
3999 	ctx->is_active |= (event_type | EVENT_TIME);
4000 	if (ctx->task) {
4001 		if (!(is_active & EVENT_ALL))
4002 			cpuctx->task_ctx = ctx;
4003 		else
4004 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4005 	}
4006 
4007 	is_active ^= ctx->is_active; /* changed bits */
4008 
4009 	/*
4010 	 * First go through the list and put on any pinned groups
4011 	 * in order to give them the best chance of going on.
4012 	 */
4013 	if (is_active & EVENT_PINNED) {
4014 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4015 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4016 	}
4017 
4018 	/* Then walk through the lower prio flexible groups */
4019 	if (is_active & EVENT_FLEXIBLE) {
4020 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4021 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4022 	}
4023 }
4024 
4025 static void perf_event_context_sched_in(struct task_struct *task)
4026 {
4027 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4028 	struct perf_event_context *ctx;
4029 
4030 	rcu_read_lock();
4031 	ctx = rcu_dereference(task->perf_event_ctxp);
4032 	if (!ctx)
4033 		goto rcu_unlock;
4034 
4035 	if (cpuctx->task_ctx == ctx) {
4036 		perf_ctx_lock(cpuctx, ctx);
4037 		perf_ctx_disable(ctx, false);
4038 
4039 		perf_ctx_sched_task_cb(ctx, true);
4040 
4041 		perf_ctx_enable(ctx, false);
4042 		perf_ctx_unlock(cpuctx, ctx);
4043 		goto rcu_unlock;
4044 	}
4045 
4046 	perf_ctx_lock(cpuctx, ctx);
4047 	/*
4048 	 * We must check ctx->nr_events while holding ctx->lock, such
4049 	 * that we serialize against perf_install_in_context().
4050 	 */
4051 	if (!ctx->nr_events)
4052 		goto unlock;
4053 
4054 	perf_ctx_disable(ctx, false);
4055 	/*
4056 	 * We want to keep the following priority order:
4057 	 * cpu pinned (that don't need to move), task pinned,
4058 	 * cpu flexible, task flexible.
4059 	 *
4060 	 * However, if task's ctx is not carrying any pinned
4061 	 * events, no need to flip the cpuctx's events around.
4062 	 */
4063 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4064 		perf_ctx_disable(&cpuctx->ctx, false);
4065 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4066 	}
4067 
4068 	perf_event_sched_in(cpuctx, ctx, NULL);
4069 
4070 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4071 
4072 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4073 		perf_ctx_enable(&cpuctx->ctx, false);
4074 
4075 	perf_ctx_enable(ctx, false);
4076 
4077 unlock:
4078 	perf_ctx_unlock(cpuctx, ctx);
4079 rcu_unlock:
4080 	rcu_read_unlock();
4081 }
4082 
4083 /*
4084  * Called from scheduler to add the events of the current task
4085  * with interrupts disabled.
4086  *
4087  * We restore the event value and then enable it.
4088  *
4089  * This does not protect us against NMI, but enable()
4090  * sets the enabled bit in the control field of event _before_
4091  * accessing the event control register. If a NMI hits, then it will
4092  * keep the event running.
4093  */
4094 void __perf_event_task_sched_in(struct task_struct *prev,
4095 				struct task_struct *task)
4096 {
4097 	perf_event_context_sched_in(task);
4098 
4099 	if (atomic_read(&nr_switch_events))
4100 		perf_event_switch(task, prev, true);
4101 
4102 	if (__this_cpu_read(perf_sched_cb_usages))
4103 		perf_pmu_sched_task(prev, task, true);
4104 }
4105 
4106 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4107 {
4108 	u64 frequency = event->attr.sample_freq;
4109 	u64 sec = NSEC_PER_SEC;
4110 	u64 divisor, dividend;
4111 
4112 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4113 
4114 	count_fls = fls64(count);
4115 	nsec_fls = fls64(nsec);
4116 	frequency_fls = fls64(frequency);
4117 	sec_fls = 30;
4118 
4119 	/*
4120 	 * We got @count in @nsec, with a target of sample_freq HZ
4121 	 * the target period becomes:
4122 	 *
4123 	 *             @count * 10^9
4124 	 * period = -------------------
4125 	 *          @nsec * sample_freq
4126 	 *
4127 	 */
4128 
4129 	/*
4130 	 * Reduce accuracy by one bit such that @a and @b converge
4131 	 * to a similar magnitude.
4132 	 */
4133 #define REDUCE_FLS(a, b)		\
4134 do {					\
4135 	if (a##_fls > b##_fls) {	\
4136 		a >>= 1;		\
4137 		a##_fls--;		\
4138 	} else {			\
4139 		b >>= 1;		\
4140 		b##_fls--;		\
4141 	}				\
4142 } while (0)
4143 
4144 	/*
4145 	 * Reduce accuracy until either term fits in a u64, then proceed with
4146 	 * the other, so that finally we can do a u64/u64 division.
4147 	 */
4148 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4149 		REDUCE_FLS(nsec, frequency);
4150 		REDUCE_FLS(sec, count);
4151 	}
4152 
4153 	if (count_fls + sec_fls > 64) {
4154 		divisor = nsec * frequency;
4155 
4156 		while (count_fls + sec_fls > 64) {
4157 			REDUCE_FLS(count, sec);
4158 			divisor >>= 1;
4159 		}
4160 
4161 		dividend = count * sec;
4162 	} else {
4163 		dividend = count * sec;
4164 
4165 		while (nsec_fls + frequency_fls > 64) {
4166 			REDUCE_FLS(nsec, frequency);
4167 			dividend >>= 1;
4168 		}
4169 
4170 		divisor = nsec * frequency;
4171 	}
4172 
4173 	if (!divisor)
4174 		return dividend;
4175 
4176 	return div64_u64(dividend, divisor);
4177 }
4178 
4179 static DEFINE_PER_CPU(int, perf_throttled_count);
4180 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4181 
4182 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4183 {
4184 	struct hw_perf_event *hwc = &event->hw;
4185 	s64 period, sample_period;
4186 	s64 delta;
4187 
4188 	period = perf_calculate_period(event, nsec, count);
4189 
4190 	delta = (s64)(period - hwc->sample_period);
4191 	if (delta >= 0)
4192 		delta += 7;
4193 	else
4194 		delta -= 7;
4195 	delta /= 8; /* low pass filter */
4196 
4197 	sample_period = hwc->sample_period + delta;
4198 
4199 	if (!sample_period)
4200 		sample_period = 1;
4201 
4202 	hwc->sample_period = sample_period;
4203 
4204 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4205 		if (disable)
4206 			event->pmu->stop(event, PERF_EF_UPDATE);
4207 
4208 		local64_set(&hwc->period_left, 0);
4209 
4210 		if (disable)
4211 			event->pmu->start(event, PERF_EF_RELOAD);
4212 	}
4213 }
4214 
4215 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4216 {
4217 	struct perf_event *event;
4218 	struct hw_perf_event *hwc;
4219 	u64 now, period = TICK_NSEC;
4220 	s64 delta;
4221 
4222 	list_for_each_entry(event, event_list, active_list) {
4223 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4224 			continue;
4225 
4226 		// XXX use visit thingy to avoid the -1,cpu match
4227 		if (!event_filter_match(event))
4228 			continue;
4229 
4230 		hwc = &event->hw;
4231 
4232 		if (hwc->interrupts == MAX_INTERRUPTS) {
4233 			hwc->interrupts = 0;
4234 			perf_log_throttle(event, 1);
4235 			if (!event->attr.freq || !event->attr.sample_freq)
4236 				event->pmu->start(event, 0);
4237 		}
4238 
4239 		if (!event->attr.freq || !event->attr.sample_freq)
4240 			continue;
4241 
4242 		/*
4243 		 * stop the event and update event->count
4244 		 */
4245 		event->pmu->stop(event, PERF_EF_UPDATE);
4246 
4247 		now = local64_read(&event->count);
4248 		delta = now - hwc->freq_count_stamp;
4249 		hwc->freq_count_stamp = now;
4250 
4251 		/*
4252 		 * restart the event
4253 		 * reload only if value has changed
4254 		 * we have stopped the event so tell that
4255 		 * to perf_adjust_period() to avoid stopping it
4256 		 * twice.
4257 		 */
4258 		if (delta > 0)
4259 			perf_adjust_period(event, period, delta, false);
4260 
4261 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4262 	}
4263 }
4264 
4265 /*
4266  * combine freq adjustment with unthrottling to avoid two passes over the
4267  * events. At the same time, make sure, having freq events does not change
4268  * the rate of unthrottling as that would introduce bias.
4269  */
4270 static void
4271 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4272 {
4273 	struct perf_event_pmu_context *pmu_ctx;
4274 
4275 	/*
4276 	 * only need to iterate over all events iff:
4277 	 * - context have events in frequency mode (needs freq adjust)
4278 	 * - there are events to unthrottle on this cpu
4279 	 */
4280 	if (!(ctx->nr_freq || unthrottle))
4281 		return;
4282 
4283 	raw_spin_lock(&ctx->lock);
4284 
4285 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4286 		if (!(pmu_ctx->nr_freq || unthrottle))
4287 			continue;
4288 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4289 			continue;
4290 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4291 			continue;
4292 
4293 		perf_pmu_disable(pmu_ctx->pmu);
4294 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4295 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4296 		perf_pmu_enable(pmu_ctx->pmu);
4297 	}
4298 
4299 	raw_spin_unlock(&ctx->lock);
4300 }
4301 
4302 /*
4303  * Move @event to the tail of the @ctx's elegible events.
4304  */
4305 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4306 {
4307 	/*
4308 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4309 	 * disabled by the inheritance code.
4310 	 */
4311 	if (ctx->rotate_disable)
4312 		return;
4313 
4314 	perf_event_groups_delete(&ctx->flexible_groups, event);
4315 	perf_event_groups_insert(&ctx->flexible_groups, event);
4316 }
4317 
4318 /* pick an event from the flexible_groups to rotate */
4319 static inline struct perf_event *
4320 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4321 {
4322 	struct perf_event *event;
4323 	struct rb_node *node;
4324 	struct rb_root *tree;
4325 	struct __group_key key = {
4326 		.pmu = pmu_ctx->pmu,
4327 	};
4328 
4329 	/* pick the first active flexible event */
4330 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4331 					 struct perf_event, active_list);
4332 	if (event)
4333 		goto out;
4334 
4335 	/* if no active flexible event, pick the first event */
4336 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4337 
4338 	if (!pmu_ctx->ctx->task) {
4339 		key.cpu = smp_processor_id();
4340 
4341 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 		if (node)
4343 			event = __node_2_pe(node);
4344 		goto out;
4345 	}
4346 
4347 	key.cpu = -1;
4348 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 	if (node) {
4350 		event = __node_2_pe(node);
4351 		goto out;
4352 	}
4353 
4354 	key.cpu = smp_processor_id();
4355 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4356 	if (node)
4357 		event = __node_2_pe(node);
4358 
4359 out:
4360 	/*
4361 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4362 	 * finds there are unschedulable events, it will set it again.
4363 	 */
4364 	pmu_ctx->rotate_necessary = 0;
4365 
4366 	return event;
4367 }
4368 
4369 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4370 {
4371 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4372 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4373 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4374 	int cpu_rotate, task_rotate;
4375 	struct pmu *pmu;
4376 
4377 	/*
4378 	 * Since we run this from IRQ context, nobody can install new
4379 	 * events, thus the event count values are stable.
4380 	 */
4381 
4382 	cpu_epc = &cpc->epc;
4383 	pmu = cpu_epc->pmu;
4384 	task_epc = cpc->task_epc;
4385 
4386 	cpu_rotate = cpu_epc->rotate_necessary;
4387 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4388 
4389 	if (!(cpu_rotate || task_rotate))
4390 		return false;
4391 
4392 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4393 	perf_pmu_disable(pmu);
4394 
4395 	if (task_rotate)
4396 		task_event = ctx_event_to_rotate(task_epc);
4397 	if (cpu_rotate)
4398 		cpu_event = ctx_event_to_rotate(cpu_epc);
4399 
4400 	/*
4401 	 * As per the order given at ctx_resched() first 'pop' task flexible
4402 	 * and then, if needed CPU flexible.
4403 	 */
4404 	if (task_event || (task_epc && cpu_event)) {
4405 		update_context_time(task_epc->ctx);
4406 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4407 	}
4408 
4409 	if (cpu_event) {
4410 		update_context_time(&cpuctx->ctx);
4411 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4412 		rotate_ctx(&cpuctx->ctx, cpu_event);
4413 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4414 	}
4415 
4416 	if (task_event)
4417 		rotate_ctx(task_epc->ctx, task_event);
4418 
4419 	if (task_event || (task_epc && cpu_event))
4420 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4421 
4422 	perf_pmu_enable(pmu);
4423 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4424 
4425 	return true;
4426 }
4427 
4428 void perf_event_task_tick(void)
4429 {
4430 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4431 	struct perf_event_context *ctx;
4432 	int throttled;
4433 
4434 	lockdep_assert_irqs_disabled();
4435 
4436 	__this_cpu_inc(perf_throttled_seq);
4437 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4438 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4439 
4440 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4441 
4442 	rcu_read_lock();
4443 	ctx = rcu_dereference(current->perf_event_ctxp);
4444 	if (ctx)
4445 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4446 	rcu_read_unlock();
4447 }
4448 
4449 static int event_enable_on_exec(struct perf_event *event,
4450 				struct perf_event_context *ctx)
4451 {
4452 	if (!event->attr.enable_on_exec)
4453 		return 0;
4454 
4455 	event->attr.enable_on_exec = 0;
4456 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4457 		return 0;
4458 
4459 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4460 
4461 	return 1;
4462 }
4463 
4464 /*
4465  * Enable all of a task's events that have been marked enable-on-exec.
4466  * This expects task == current.
4467  */
4468 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4469 {
4470 	struct perf_event_context *clone_ctx = NULL;
4471 	enum event_type_t event_type = 0;
4472 	struct perf_cpu_context *cpuctx;
4473 	struct perf_event *event;
4474 	unsigned long flags;
4475 	int enabled = 0;
4476 
4477 	local_irq_save(flags);
4478 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4479 		goto out;
4480 
4481 	if (!ctx->nr_events)
4482 		goto out;
4483 
4484 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4485 	perf_ctx_lock(cpuctx, ctx);
4486 	ctx_time_freeze(cpuctx, ctx);
4487 
4488 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4489 		enabled |= event_enable_on_exec(event, ctx);
4490 		event_type |= get_event_type(event);
4491 	}
4492 
4493 	/*
4494 	 * Unclone and reschedule this context if we enabled any event.
4495 	 */
4496 	if (enabled) {
4497 		clone_ctx = unclone_ctx(ctx);
4498 		ctx_resched(cpuctx, ctx, NULL, event_type);
4499 	}
4500 	perf_ctx_unlock(cpuctx, ctx);
4501 
4502 out:
4503 	local_irq_restore(flags);
4504 
4505 	if (clone_ctx)
4506 		put_ctx(clone_ctx);
4507 }
4508 
4509 static void perf_remove_from_owner(struct perf_event *event);
4510 static void perf_event_exit_event(struct perf_event *event,
4511 				  struct perf_event_context *ctx);
4512 
4513 /*
4514  * Removes all events from the current task that have been marked
4515  * remove-on-exec, and feeds their values back to parent events.
4516  */
4517 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4518 {
4519 	struct perf_event_context *clone_ctx = NULL;
4520 	struct perf_event *event, *next;
4521 	unsigned long flags;
4522 	bool modified = false;
4523 
4524 	mutex_lock(&ctx->mutex);
4525 
4526 	if (WARN_ON_ONCE(ctx->task != current))
4527 		goto unlock;
4528 
4529 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4530 		if (!event->attr.remove_on_exec)
4531 			continue;
4532 
4533 		if (!is_kernel_event(event))
4534 			perf_remove_from_owner(event);
4535 
4536 		modified = true;
4537 
4538 		perf_event_exit_event(event, ctx);
4539 	}
4540 
4541 	raw_spin_lock_irqsave(&ctx->lock, flags);
4542 	if (modified)
4543 		clone_ctx = unclone_ctx(ctx);
4544 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4545 
4546 unlock:
4547 	mutex_unlock(&ctx->mutex);
4548 
4549 	if (clone_ctx)
4550 		put_ctx(clone_ctx);
4551 }
4552 
4553 struct perf_read_data {
4554 	struct perf_event *event;
4555 	bool group;
4556 	int ret;
4557 };
4558 
4559 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4560 
4561 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4562 {
4563 	int local_cpu = smp_processor_id();
4564 	u16 local_pkg, event_pkg;
4565 
4566 	if ((unsigned)event_cpu >= nr_cpu_ids)
4567 		return event_cpu;
4568 
4569 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4570 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4571 
4572 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4573 			return local_cpu;
4574 	}
4575 
4576 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4577 		event_pkg = topology_physical_package_id(event_cpu);
4578 		local_pkg = topology_physical_package_id(local_cpu);
4579 
4580 		if (event_pkg == local_pkg)
4581 			return local_cpu;
4582 	}
4583 
4584 	return event_cpu;
4585 }
4586 
4587 /*
4588  * Cross CPU call to read the hardware event
4589  */
4590 static void __perf_event_read(void *info)
4591 {
4592 	struct perf_read_data *data = info;
4593 	struct perf_event *sub, *event = data->event;
4594 	struct perf_event_context *ctx = event->ctx;
4595 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4596 	struct pmu *pmu = event->pmu;
4597 
4598 	/*
4599 	 * If this is a task context, we need to check whether it is
4600 	 * the current task context of this cpu.  If not it has been
4601 	 * scheduled out before the smp call arrived.  In that case
4602 	 * event->count would have been updated to a recent sample
4603 	 * when the event was scheduled out.
4604 	 */
4605 	if (ctx->task && cpuctx->task_ctx != ctx)
4606 		return;
4607 
4608 	raw_spin_lock(&ctx->lock);
4609 	ctx_time_update_event(ctx, event);
4610 
4611 	perf_event_update_time(event);
4612 	if (data->group)
4613 		perf_event_update_sibling_time(event);
4614 
4615 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4616 		goto unlock;
4617 
4618 	if (!data->group) {
4619 		pmu->read(event);
4620 		data->ret = 0;
4621 		goto unlock;
4622 	}
4623 
4624 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4625 
4626 	pmu->read(event);
4627 
4628 	for_each_sibling_event(sub, event) {
4629 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4630 			/*
4631 			 * Use sibling's PMU rather than @event's since
4632 			 * sibling could be on different (eg: software) PMU.
4633 			 */
4634 			sub->pmu->read(sub);
4635 		}
4636 	}
4637 
4638 	data->ret = pmu->commit_txn(pmu);
4639 
4640 unlock:
4641 	raw_spin_unlock(&ctx->lock);
4642 }
4643 
4644 static inline u64 perf_event_count(struct perf_event *event, bool self)
4645 {
4646 	if (self)
4647 		return local64_read(&event->count);
4648 
4649 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4650 }
4651 
4652 static void calc_timer_values(struct perf_event *event,
4653 				u64 *now,
4654 				u64 *enabled,
4655 				u64 *running)
4656 {
4657 	u64 ctx_time;
4658 
4659 	*now = perf_clock();
4660 	ctx_time = perf_event_time_now(event, *now);
4661 	__perf_update_times(event, ctx_time, enabled, running);
4662 }
4663 
4664 /*
4665  * NMI-safe method to read a local event, that is an event that
4666  * is:
4667  *   - either for the current task, or for this CPU
4668  *   - does not have inherit set, for inherited task events
4669  *     will not be local and we cannot read them atomically
4670  *   - must not have a pmu::count method
4671  */
4672 int perf_event_read_local(struct perf_event *event, u64 *value,
4673 			  u64 *enabled, u64 *running)
4674 {
4675 	unsigned long flags;
4676 	int event_oncpu;
4677 	int event_cpu;
4678 	int ret = 0;
4679 
4680 	/*
4681 	 * Disabling interrupts avoids all counter scheduling (context
4682 	 * switches, timer based rotation and IPIs).
4683 	 */
4684 	local_irq_save(flags);
4685 
4686 	/*
4687 	 * It must not be an event with inherit set, we cannot read
4688 	 * all child counters from atomic context.
4689 	 */
4690 	if (event->attr.inherit) {
4691 		ret = -EOPNOTSUPP;
4692 		goto out;
4693 	}
4694 
4695 	/* If this is a per-task event, it must be for current */
4696 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4697 	    event->hw.target != current) {
4698 		ret = -EINVAL;
4699 		goto out;
4700 	}
4701 
4702 	/*
4703 	 * Get the event CPU numbers, and adjust them to local if the event is
4704 	 * a per-package event that can be read locally
4705 	 */
4706 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4707 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4708 
4709 	/* If this is a per-CPU event, it must be for this CPU */
4710 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4711 	    event_cpu != smp_processor_id()) {
4712 		ret = -EINVAL;
4713 		goto out;
4714 	}
4715 
4716 	/* If this is a pinned event it must be running on this CPU */
4717 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4718 		ret = -EBUSY;
4719 		goto out;
4720 	}
4721 
4722 	/*
4723 	 * If the event is currently on this CPU, its either a per-task event,
4724 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4725 	 * oncpu == -1).
4726 	 */
4727 	if (event_oncpu == smp_processor_id())
4728 		event->pmu->read(event);
4729 
4730 	*value = local64_read(&event->count);
4731 	if (enabled || running) {
4732 		u64 __enabled, __running, __now;
4733 
4734 		calc_timer_values(event, &__now, &__enabled, &__running);
4735 		if (enabled)
4736 			*enabled = __enabled;
4737 		if (running)
4738 			*running = __running;
4739 	}
4740 out:
4741 	local_irq_restore(flags);
4742 
4743 	return ret;
4744 }
4745 
4746 static int perf_event_read(struct perf_event *event, bool group)
4747 {
4748 	enum perf_event_state state = READ_ONCE(event->state);
4749 	int event_cpu, ret = 0;
4750 
4751 	/*
4752 	 * If event is enabled and currently active on a CPU, update the
4753 	 * value in the event structure:
4754 	 */
4755 again:
4756 	if (state == PERF_EVENT_STATE_ACTIVE) {
4757 		struct perf_read_data data;
4758 
4759 		/*
4760 		 * Orders the ->state and ->oncpu loads such that if we see
4761 		 * ACTIVE we must also see the right ->oncpu.
4762 		 *
4763 		 * Matches the smp_wmb() from event_sched_in().
4764 		 */
4765 		smp_rmb();
4766 
4767 		event_cpu = READ_ONCE(event->oncpu);
4768 		if ((unsigned)event_cpu >= nr_cpu_ids)
4769 			return 0;
4770 
4771 		data = (struct perf_read_data){
4772 			.event = event,
4773 			.group = group,
4774 			.ret = 0,
4775 		};
4776 
4777 		preempt_disable();
4778 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4779 
4780 		/*
4781 		 * Purposely ignore the smp_call_function_single() return
4782 		 * value.
4783 		 *
4784 		 * If event_cpu isn't a valid CPU it means the event got
4785 		 * scheduled out and that will have updated the event count.
4786 		 *
4787 		 * Therefore, either way, we'll have an up-to-date event count
4788 		 * after this.
4789 		 */
4790 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4791 		preempt_enable();
4792 		ret = data.ret;
4793 
4794 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4795 		struct perf_event_context *ctx = event->ctx;
4796 		unsigned long flags;
4797 
4798 		raw_spin_lock_irqsave(&ctx->lock, flags);
4799 		state = event->state;
4800 		if (state != PERF_EVENT_STATE_INACTIVE) {
4801 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4802 			goto again;
4803 		}
4804 
4805 		/*
4806 		 * May read while context is not active (e.g., thread is
4807 		 * blocked), in that case we cannot update context time
4808 		 */
4809 		ctx_time_update_event(ctx, event);
4810 
4811 		perf_event_update_time(event);
4812 		if (group)
4813 			perf_event_update_sibling_time(event);
4814 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4815 	}
4816 
4817 	return ret;
4818 }
4819 
4820 /*
4821  * Initialize the perf_event context in a task_struct:
4822  */
4823 static void __perf_event_init_context(struct perf_event_context *ctx)
4824 {
4825 	raw_spin_lock_init(&ctx->lock);
4826 	mutex_init(&ctx->mutex);
4827 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4828 	perf_event_groups_init(&ctx->pinned_groups);
4829 	perf_event_groups_init(&ctx->flexible_groups);
4830 	INIT_LIST_HEAD(&ctx->event_list);
4831 	refcount_set(&ctx->refcount, 1);
4832 }
4833 
4834 static void
4835 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4836 {
4837 	epc->pmu = pmu;
4838 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4839 	INIT_LIST_HEAD(&epc->pinned_active);
4840 	INIT_LIST_HEAD(&epc->flexible_active);
4841 	atomic_set(&epc->refcount, 1);
4842 }
4843 
4844 static struct perf_event_context *
4845 alloc_perf_context(struct task_struct *task)
4846 {
4847 	struct perf_event_context *ctx;
4848 
4849 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4850 	if (!ctx)
4851 		return NULL;
4852 
4853 	__perf_event_init_context(ctx);
4854 	if (task)
4855 		ctx->task = get_task_struct(task);
4856 
4857 	return ctx;
4858 }
4859 
4860 static struct task_struct *
4861 find_lively_task_by_vpid(pid_t vpid)
4862 {
4863 	struct task_struct *task;
4864 
4865 	rcu_read_lock();
4866 	if (!vpid)
4867 		task = current;
4868 	else
4869 		task = find_task_by_vpid(vpid);
4870 	if (task)
4871 		get_task_struct(task);
4872 	rcu_read_unlock();
4873 
4874 	if (!task)
4875 		return ERR_PTR(-ESRCH);
4876 
4877 	return task;
4878 }
4879 
4880 /*
4881  * Returns a matching context with refcount and pincount.
4882  */
4883 static struct perf_event_context *
4884 find_get_context(struct task_struct *task, struct perf_event *event)
4885 {
4886 	struct perf_event_context *ctx, *clone_ctx = NULL;
4887 	struct perf_cpu_context *cpuctx;
4888 	unsigned long flags;
4889 	int err;
4890 
4891 	if (!task) {
4892 		/* Must be root to operate on a CPU event: */
4893 		err = perf_allow_cpu(&event->attr);
4894 		if (err)
4895 			return ERR_PTR(err);
4896 
4897 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4898 		ctx = &cpuctx->ctx;
4899 		get_ctx(ctx);
4900 		raw_spin_lock_irqsave(&ctx->lock, flags);
4901 		++ctx->pin_count;
4902 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4903 
4904 		return ctx;
4905 	}
4906 
4907 	err = -EINVAL;
4908 retry:
4909 	ctx = perf_lock_task_context(task, &flags);
4910 	if (ctx) {
4911 		clone_ctx = unclone_ctx(ctx);
4912 		++ctx->pin_count;
4913 
4914 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4915 
4916 		if (clone_ctx)
4917 			put_ctx(clone_ctx);
4918 	} else {
4919 		ctx = alloc_perf_context(task);
4920 		err = -ENOMEM;
4921 		if (!ctx)
4922 			goto errout;
4923 
4924 		err = 0;
4925 		mutex_lock(&task->perf_event_mutex);
4926 		/*
4927 		 * If it has already passed perf_event_exit_task().
4928 		 * we must see PF_EXITING, it takes this mutex too.
4929 		 */
4930 		if (task->flags & PF_EXITING)
4931 			err = -ESRCH;
4932 		else if (task->perf_event_ctxp)
4933 			err = -EAGAIN;
4934 		else {
4935 			get_ctx(ctx);
4936 			++ctx->pin_count;
4937 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4938 		}
4939 		mutex_unlock(&task->perf_event_mutex);
4940 
4941 		if (unlikely(err)) {
4942 			put_ctx(ctx);
4943 
4944 			if (err == -EAGAIN)
4945 				goto retry;
4946 			goto errout;
4947 		}
4948 	}
4949 
4950 	return ctx;
4951 
4952 errout:
4953 	return ERR_PTR(err);
4954 }
4955 
4956 static struct perf_event_pmu_context *
4957 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4958 		     struct perf_event *event)
4959 {
4960 	struct perf_event_pmu_context *new = NULL, *epc;
4961 	void *task_ctx_data = NULL;
4962 
4963 	if (!ctx->task) {
4964 		/*
4965 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4966 		 * relies on the fact that find_get_pmu_context() cannot fail
4967 		 * for CPU contexts.
4968 		 */
4969 		struct perf_cpu_pmu_context *cpc;
4970 
4971 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4972 		epc = &cpc->epc;
4973 		raw_spin_lock_irq(&ctx->lock);
4974 		if (!epc->ctx) {
4975 			atomic_set(&epc->refcount, 1);
4976 			epc->embedded = 1;
4977 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4978 			epc->ctx = ctx;
4979 		} else {
4980 			WARN_ON_ONCE(epc->ctx != ctx);
4981 			atomic_inc(&epc->refcount);
4982 		}
4983 		raw_spin_unlock_irq(&ctx->lock);
4984 		return epc;
4985 	}
4986 
4987 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4988 	if (!new)
4989 		return ERR_PTR(-ENOMEM);
4990 
4991 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4992 		task_ctx_data = alloc_task_ctx_data(pmu);
4993 		if (!task_ctx_data) {
4994 			kfree(new);
4995 			return ERR_PTR(-ENOMEM);
4996 		}
4997 	}
4998 
4999 	__perf_init_event_pmu_context(new, pmu);
5000 
5001 	/*
5002 	 * XXX
5003 	 *
5004 	 * lockdep_assert_held(&ctx->mutex);
5005 	 *
5006 	 * can't because perf_event_init_task() doesn't actually hold the
5007 	 * child_ctx->mutex.
5008 	 */
5009 
5010 	raw_spin_lock_irq(&ctx->lock);
5011 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5012 		if (epc->pmu == pmu) {
5013 			WARN_ON_ONCE(epc->ctx != ctx);
5014 			atomic_inc(&epc->refcount);
5015 			goto found_epc;
5016 		}
5017 	}
5018 
5019 	epc = new;
5020 	new = NULL;
5021 
5022 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5023 	epc->ctx = ctx;
5024 
5025 found_epc:
5026 	if (task_ctx_data && !epc->task_ctx_data) {
5027 		epc->task_ctx_data = task_ctx_data;
5028 		task_ctx_data = NULL;
5029 		ctx->nr_task_data++;
5030 	}
5031 	raw_spin_unlock_irq(&ctx->lock);
5032 
5033 	free_task_ctx_data(pmu, task_ctx_data);
5034 	kfree(new);
5035 
5036 	return epc;
5037 }
5038 
5039 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5040 {
5041 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5042 }
5043 
5044 static void free_epc_rcu(struct rcu_head *head)
5045 {
5046 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5047 
5048 	kfree(epc->task_ctx_data);
5049 	kfree(epc);
5050 }
5051 
5052 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5053 {
5054 	struct perf_event_context *ctx = epc->ctx;
5055 	unsigned long flags;
5056 
5057 	/*
5058 	 * XXX
5059 	 *
5060 	 * lockdep_assert_held(&ctx->mutex);
5061 	 *
5062 	 * can't because of the call-site in _free_event()/put_event()
5063 	 * which isn't always called under ctx->mutex.
5064 	 */
5065 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5066 		return;
5067 
5068 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5069 
5070 	list_del_init(&epc->pmu_ctx_entry);
5071 	epc->ctx = NULL;
5072 
5073 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5074 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5075 
5076 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077 
5078 	if (epc->embedded)
5079 		return;
5080 
5081 	call_rcu(&epc->rcu_head, free_epc_rcu);
5082 }
5083 
5084 static void perf_event_free_filter(struct perf_event *event);
5085 
5086 static void free_event_rcu(struct rcu_head *head)
5087 {
5088 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5089 
5090 	if (event->ns)
5091 		put_pid_ns(event->ns);
5092 	perf_event_free_filter(event);
5093 	kmem_cache_free(perf_event_cache, event);
5094 }
5095 
5096 static void ring_buffer_attach(struct perf_event *event,
5097 			       struct perf_buffer *rb);
5098 
5099 static void detach_sb_event(struct perf_event *event)
5100 {
5101 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5102 
5103 	raw_spin_lock(&pel->lock);
5104 	list_del_rcu(&event->sb_list);
5105 	raw_spin_unlock(&pel->lock);
5106 }
5107 
5108 static bool is_sb_event(struct perf_event *event)
5109 {
5110 	struct perf_event_attr *attr = &event->attr;
5111 
5112 	if (event->parent)
5113 		return false;
5114 
5115 	if (event->attach_state & PERF_ATTACH_TASK)
5116 		return false;
5117 
5118 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5119 	    attr->comm || attr->comm_exec ||
5120 	    attr->task || attr->ksymbol ||
5121 	    attr->context_switch || attr->text_poke ||
5122 	    attr->bpf_event)
5123 		return true;
5124 	return false;
5125 }
5126 
5127 static void unaccount_pmu_sb_event(struct perf_event *event)
5128 {
5129 	if (is_sb_event(event))
5130 		detach_sb_event(event);
5131 }
5132 
5133 #ifdef CONFIG_NO_HZ_FULL
5134 static DEFINE_SPINLOCK(nr_freq_lock);
5135 #endif
5136 
5137 static void unaccount_freq_event_nohz(void)
5138 {
5139 #ifdef CONFIG_NO_HZ_FULL
5140 	spin_lock(&nr_freq_lock);
5141 	if (atomic_dec_and_test(&nr_freq_events))
5142 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5143 	spin_unlock(&nr_freq_lock);
5144 #endif
5145 }
5146 
5147 static void unaccount_freq_event(void)
5148 {
5149 	if (tick_nohz_full_enabled())
5150 		unaccount_freq_event_nohz();
5151 	else
5152 		atomic_dec(&nr_freq_events);
5153 }
5154 
5155 static void unaccount_event(struct perf_event *event)
5156 {
5157 	bool dec = false;
5158 
5159 	if (event->parent)
5160 		return;
5161 
5162 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5163 		dec = true;
5164 	if (event->attr.mmap || event->attr.mmap_data)
5165 		atomic_dec(&nr_mmap_events);
5166 	if (event->attr.build_id)
5167 		atomic_dec(&nr_build_id_events);
5168 	if (event->attr.comm)
5169 		atomic_dec(&nr_comm_events);
5170 	if (event->attr.namespaces)
5171 		atomic_dec(&nr_namespaces_events);
5172 	if (event->attr.cgroup)
5173 		atomic_dec(&nr_cgroup_events);
5174 	if (event->attr.task)
5175 		atomic_dec(&nr_task_events);
5176 	if (event->attr.freq)
5177 		unaccount_freq_event();
5178 	if (event->attr.context_switch) {
5179 		dec = true;
5180 		atomic_dec(&nr_switch_events);
5181 	}
5182 	if (is_cgroup_event(event))
5183 		dec = true;
5184 	if (has_branch_stack(event))
5185 		dec = true;
5186 	if (event->attr.ksymbol)
5187 		atomic_dec(&nr_ksymbol_events);
5188 	if (event->attr.bpf_event)
5189 		atomic_dec(&nr_bpf_events);
5190 	if (event->attr.text_poke)
5191 		atomic_dec(&nr_text_poke_events);
5192 
5193 	if (dec) {
5194 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5195 			schedule_delayed_work(&perf_sched_work, HZ);
5196 	}
5197 
5198 	unaccount_pmu_sb_event(event);
5199 }
5200 
5201 static void perf_sched_delayed(struct work_struct *work)
5202 {
5203 	mutex_lock(&perf_sched_mutex);
5204 	if (atomic_dec_and_test(&perf_sched_count))
5205 		static_branch_disable(&perf_sched_events);
5206 	mutex_unlock(&perf_sched_mutex);
5207 }
5208 
5209 /*
5210  * The following implement mutual exclusion of events on "exclusive" pmus
5211  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5212  * at a time, so we disallow creating events that might conflict, namely:
5213  *
5214  *  1) cpu-wide events in the presence of per-task events,
5215  *  2) per-task events in the presence of cpu-wide events,
5216  *  3) two matching events on the same perf_event_context.
5217  *
5218  * The former two cases are handled in the allocation path (perf_event_alloc(),
5219  * _free_event()), the latter -- before the first perf_install_in_context().
5220  */
5221 static int exclusive_event_init(struct perf_event *event)
5222 {
5223 	struct pmu *pmu = event->pmu;
5224 
5225 	if (!is_exclusive_pmu(pmu))
5226 		return 0;
5227 
5228 	/*
5229 	 * Prevent co-existence of per-task and cpu-wide events on the
5230 	 * same exclusive pmu.
5231 	 *
5232 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5233 	 * events on this "exclusive" pmu, positive means there are
5234 	 * per-task events.
5235 	 *
5236 	 * Since this is called in perf_event_alloc() path, event::ctx
5237 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5238 	 * to mean "per-task event", because unlike other attach states it
5239 	 * never gets cleared.
5240 	 */
5241 	if (event->attach_state & PERF_ATTACH_TASK) {
5242 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5243 			return -EBUSY;
5244 	} else {
5245 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5246 			return -EBUSY;
5247 	}
5248 
5249 	return 0;
5250 }
5251 
5252 static void exclusive_event_destroy(struct perf_event *event)
5253 {
5254 	struct pmu *pmu = event->pmu;
5255 
5256 	if (!is_exclusive_pmu(pmu))
5257 		return;
5258 
5259 	/* see comment in exclusive_event_init() */
5260 	if (event->attach_state & PERF_ATTACH_TASK)
5261 		atomic_dec(&pmu->exclusive_cnt);
5262 	else
5263 		atomic_inc(&pmu->exclusive_cnt);
5264 }
5265 
5266 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5267 {
5268 	if ((e1->pmu == e2->pmu) &&
5269 	    (e1->cpu == e2->cpu ||
5270 	     e1->cpu == -1 ||
5271 	     e2->cpu == -1))
5272 		return true;
5273 	return false;
5274 }
5275 
5276 static bool exclusive_event_installable(struct perf_event *event,
5277 					struct perf_event_context *ctx)
5278 {
5279 	struct perf_event *iter_event;
5280 	struct pmu *pmu = event->pmu;
5281 
5282 	lockdep_assert_held(&ctx->mutex);
5283 
5284 	if (!is_exclusive_pmu(pmu))
5285 		return true;
5286 
5287 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5288 		if (exclusive_event_match(iter_event, event))
5289 			return false;
5290 	}
5291 
5292 	return true;
5293 }
5294 
5295 static void perf_addr_filters_splice(struct perf_event *event,
5296 				       struct list_head *head);
5297 
5298 static void perf_pending_task_sync(struct perf_event *event)
5299 {
5300 	struct callback_head *head = &event->pending_task;
5301 
5302 	if (!event->pending_work)
5303 		return;
5304 	/*
5305 	 * If the task is queued to the current task's queue, we
5306 	 * obviously can't wait for it to complete. Simply cancel it.
5307 	 */
5308 	if (task_work_cancel(current, head)) {
5309 		event->pending_work = 0;
5310 		local_dec(&event->ctx->nr_no_switch_fast);
5311 		return;
5312 	}
5313 
5314 	/*
5315 	 * All accesses related to the event are within the same RCU section in
5316 	 * perf_pending_task(). The RCU grace period before the event is freed
5317 	 * will make sure all those accesses are complete by then.
5318 	 */
5319 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5320 }
5321 
5322 static void _free_event(struct perf_event *event)
5323 {
5324 	irq_work_sync(&event->pending_irq);
5325 	irq_work_sync(&event->pending_disable_irq);
5326 	perf_pending_task_sync(event);
5327 
5328 	unaccount_event(event);
5329 
5330 	security_perf_event_free(event);
5331 
5332 	if (event->rb) {
5333 		/*
5334 		 * Can happen when we close an event with re-directed output.
5335 		 *
5336 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5337 		 * over us; possibly making our ring_buffer_put() the last.
5338 		 */
5339 		mutex_lock(&event->mmap_mutex);
5340 		ring_buffer_attach(event, NULL);
5341 		mutex_unlock(&event->mmap_mutex);
5342 	}
5343 
5344 	if (is_cgroup_event(event))
5345 		perf_detach_cgroup(event);
5346 
5347 	if (!event->parent) {
5348 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5349 			put_callchain_buffers();
5350 	}
5351 
5352 	perf_event_free_bpf_prog(event);
5353 	perf_addr_filters_splice(event, NULL);
5354 	kfree(event->addr_filter_ranges);
5355 
5356 	if (event->destroy)
5357 		event->destroy(event);
5358 
5359 	/*
5360 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5361 	 * hw.target.
5362 	 */
5363 	if (event->hw.target)
5364 		put_task_struct(event->hw.target);
5365 
5366 	if (event->pmu_ctx)
5367 		put_pmu_ctx(event->pmu_ctx);
5368 
5369 	/*
5370 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5371 	 * all task references must be cleaned up.
5372 	 */
5373 	if (event->ctx)
5374 		put_ctx(event->ctx);
5375 
5376 	exclusive_event_destroy(event);
5377 	module_put(event->pmu->module);
5378 
5379 	call_rcu(&event->rcu_head, free_event_rcu);
5380 }
5381 
5382 /*
5383  * Used to free events which have a known refcount of 1, such as in error paths
5384  * where the event isn't exposed yet and inherited events.
5385  */
5386 static void free_event(struct perf_event *event)
5387 {
5388 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5389 				"unexpected event refcount: %ld; ptr=%p\n",
5390 				atomic_long_read(&event->refcount), event)) {
5391 		/* leak to avoid use-after-free */
5392 		return;
5393 	}
5394 
5395 	_free_event(event);
5396 }
5397 
5398 /*
5399  * Remove user event from the owner task.
5400  */
5401 static void perf_remove_from_owner(struct perf_event *event)
5402 {
5403 	struct task_struct *owner;
5404 
5405 	rcu_read_lock();
5406 	/*
5407 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5408 	 * observe !owner it means the list deletion is complete and we can
5409 	 * indeed free this event, otherwise we need to serialize on
5410 	 * owner->perf_event_mutex.
5411 	 */
5412 	owner = READ_ONCE(event->owner);
5413 	if (owner) {
5414 		/*
5415 		 * Since delayed_put_task_struct() also drops the last
5416 		 * task reference we can safely take a new reference
5417 		 * while holding the rcu_read_lock().
5418 		 */
5419 		get_task_struct(owner);
5420 	}
5421 	rcu_read_unlock();
5422 
5423 	if (owner) {
5424 		/*
5425 		 * If we're here through perf_event_exit_task() we're already
5426 		 * holding ctx->mutex which would be an inversion wrt. the
5427 		 * normal lock order.
5428 		 *
5429 		 * However we can safely take this lock because its the child
5430 		 * ctx->mutex.
5431 		 */
5432 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5433 
5434 		/*
5435 		 * We have to re-check the event->owner field, if it is cleared
5436 		 * we raced with perf_event_exit_task(), acquiring the mutex
5437 		 * ensured they're done, and we can proceed with freeing the
5438 		 * event.
5439 		 */
5440 		if (event->owner) {
5441 			list_del_init(&event->owner_entry);
5442 			smp_store_release(&event->owner, NULL);
5443 		}
5444 		mutex_unlock(&owner->perf_event_mutex);
5445 		put_task_struct(owner);
5446 	}
5447 }
5448 
5449 static void put_event(struct perf_event *event)
5450 {
5451 	if (!atomic_long_dec_and_test(&event->refcount))
5452 		return;
5453 
5454 	_free_event(event);
5455 }
5456 
5457 /*
5458  * Kill an event dead; while event:refcount will preserve the event
5459  * object, it will not preserve its functionality. Once the last 'user'
5460  * gives up the object, we'll destroy the thing.
5461  */
5462 int perf_event_release_kernel(struct perf_event *event)
5463 {
5464 	struct perf_event_context *ctx = event->ctx;
5465 	struct perf_event *child, *tmp;
5466 	LIST_HEAD(free_list);
5467 
5468 	/*
5469 	 * If we got here through err_alloc: free_event(event); we will not
5470 	 * have attached to a context yet.
5471 	 */
5472 	if (!ctx) {
5473 		WARN_ON_ONCE(event->attach_state &
5474 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5475 		goto no_ctx;
5476 	}
5477 
5478 	if (!is_kernel_event(event))
5479 		perf_remove_from_owner(event);
5480 
5481 	ctx = perf_event_ctx_lock(event);
5482 	WARN_ON_ONCE(ctx->parent_ctx);
5483 
5484 	/*
5485 	 * Mark this event as STATE_DEAD, there is no external reference to it
5486 	 * anymore.
5487 	 *
5488 	 * Anybody acquiring event->child_mutex after the below loop _must_
5489 	 * also see this, most importantly inherit_event() which will avoid
5490 	 * placing more children on the list.
5491 	 *
5492 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5493 	 * child events.
5494 	 */
5495 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5496 
5497 	perf_event_ctx_unlock(event, ctx);
5498 
5499 again:
5500 	mutex_lock(&event->child_mutex);
5501 	list_for_each_entry(child, &event->child_list, child_list) {
5502 		void *var = NULL;
5503 
5504 		/*
5505 		 * Cannot change, child events are not migrated, see the
5506 		 * comment with perf_event_ctx_lock_nested().
5507 		 */
5508 		ctx = READ_ONCE(child->ctx);
5509 		/*
5510 		 * Since child_mutex nests inside ctx::mutex, we must jump
5511 		 * through hoops. We start by grabbing a reference on the ctx.
5512 		 *
5513 		 * Since the event cannot get freed while we hold the
5514 		 * child_mutex, the context must also exist and have a !0
5515 		 * reference count.
5516 		 */
5517 		get_ctx(ctx);
5518 
5519 		/*
5520 		 * Now that we have a ctx ref, we can drop child_mutex, and
5521 		 * acquire ctx::mutex without fear of it going away. Then we
5522 		 * can re-acquire child_mutex.
5523 		 */
5524 		mutex_unlock(&event->child_mutex);
5525 		mutex_lock(&ctx->mutex);
5526 		mutex_lock(&event->child_mutex);
5527 
5528 		/*
5529 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5530 		 * state, if child is still the first entry, it didn't get freed
5531 		 * and we can continue doing so.
5532 		 */
5533 		tmp = list_first_entry_or_null(&event->child_list,
5534 					       struct perf_event, child_list);
5535 		if (tmp == child) {
5536 			perf_remove_from_context(child, DETACH_GROUP);
5537 			list_move(&child->child_list, &free_list);
5538 			/*
5539 			 * This matches the refcount bump in inherit_event();
5540 			 * this can't be the last reference.
5541 			 */
5542 			put_event(event);
5543 		} else {
5544 			var = &ctx->refcount;
5545 		}
5546 
5547 		mutex_unlock(&event->child_mutex);
5548 		mutex_unlock(&ctx->mutex);
5549 		put_ctx(ctx);
5550 
5551 		if (var) {
5552 			/*
5553 			 * If perf_event_free_task() has deleted all events from the
5554 			 * ctx while the child_mutex got released above, make sure to
5555 			 * notify about the preceding put_ctx().
5556 			 */
5557 			smp_mb(); /* pairs with wait_var_event() */
5558 			wake_up_var(var);
5559 		}
5560 		goto again;
5561 	}
5562 	mutex_unlock(&event->child_mutex);
5563 
5564 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5565 		void *var = &child->ctx->refcount;
5566 
5567 		list_del(&child->child_list);
5568 		free_event(child);
5569 
5570 		/*
5571 		 * Wake any perf_event_free_task() waiting for this event to be
5572 		 * freed.
5573 		 */
5574 		smp_mb(); /* pairs with wait_var_event() */
5575 		wake_up_var(var);
5576 	}
5577 
5578 no_ctx:
5579 	put_event(event); /* Must be the 'last' reference */
5580 	return 0;
5581 }
5582 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5583 
5584 /*
5585  * Called when the last reference to the file is gone.
5586  */
5587 static int perf_release(struct inode *inode, struct file *file)
5588 {
5589 	perf_event_release_kernel(file->private_data);
5590 	return 0;
5591 }
5592 
5593 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5594 {
5595 	struct perf_event *child;
5596 	u64 total = 0;
5597 
5598 	*enabled = 0;
5599 	*running = 0;
5600 
5601 	mutex_lock(&event->child_mutex);
5602 
5603 	(void)perf_event_read(event, false);
5604 	total += perf_event_count(event, false);
5605 
5606 	*enabled += event->total_time_enabled +
5607 			atomic64_read(&event->child_total_time_enabled);
5608 	*running += event->total_time_running +
5609 			atomic64_read(&event->child_total_time_running);
5610 
5611 	list_for_each_entry(child, &event->child_list, child_list) {
5612 		(void)perf_event_read(child, false);
5613 		total += perf_event_count(child, false);
5614 		*enabled += child->total_time_enabled;
5615 		*running += child->total_time_running;
5616 	}
5617 	mutex_unlock(&event->child_mutex);
5618 
5619 	return total;
5620 }
5621 
5622 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5623 {
5624 	struct perf_event_context *ctx;
5625 	u64 count;
5626 
5627 	ctx = perf_event_ctx_lock(event);
5628 	count = __perf_event_read_value(event, enabled, running);
5629 	perf_event_ctx_unlock(event, ctx);
5630 
5631 	return count;
5632 }
5633 EXPORT_SYMBOL_GPL(perf_event_read_value);
5634 
5635 static int __perf_read_group_add(struct perf_event *leader,
5636 					u64 read_format, u64 *values)
5637 {
5638 	struct perf_event_context *ctx = leader->ctx;
5639 	struct perf_event *sub, *parent;
5640 	unsigned long flags;
5641 	int n = 1; /* skip @nr */
5642 	int ret;
5643 
5644 	ret = perf_event_read(leader, true);
5645 	if (ret)
5646 		return ret;
5647 
5648 	raw_spin_lock_irqsave(&ctx->lock, flags);
5649 	/*
5650 	 * Verify the grouping between the parent and child (inherited)
5651 	 * events is still in tact.
5652 	 *
5653 	 * Specifically:
5654 	 *  - leader->ctx->lock pins leader->sibling_list
5655 	 *  - parent->child_mutex pins parent->child_list
5656 	 *  - parent->ctx->mutex pins parent->sibling_list
5657 	 *
5658 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5659 	 * ctx->mutex), group destruction is not atomic between children, also
5660 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5661 	 * group.
5662 	 *
5663 	 * Therefore it is possible to have parent and child groups in a
5664 	 * different configuration and summing over such a beast makes no sense
5665 	 * what so ever.
5666 	 *
5667 	 * Reject this.
5668 	 */
5669 	parent = leader->parent;
5670 	if (parent &&
5671 	    (parent->group_generation != leader->group_generation ||
5672 	     parent->nr_siblings != leader->nr_siblings)) {
5673 		ret = -ECHILD;
5674 		goto unlock;
5675 	}
5676 
5677 	/*
5678 	 * Since we co-schedule groups, {enabled,running} times of siblings
5679 	 * will be identical to those of the leader, so we only publish one
5680 	 * set.
5681 	 */
5682 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5683 		values[n++] += leader->total_time_enabled +
5684 			atomic64_read(&leader->child_total_time_enabled);
5685 	}
5686 
5687 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5688 		values[n++] += leader->total_time_running +
5689 			atomic64_read(&leader->child_total_time_running);
5690 	}
5691 
5692 	/*
5693 	 * Write {count,id} tuples for every sibling.
5694 	 */
5695 	values[n++] += perf_event_count(leader, false);
5696 	if (read_format & PERF_FORMAT_ID)
5697 		values[n++] = primary_event_id(leader);
5698 	if (read_format & PERF_FORMAT_LOST)
5699 		values[n++] = atomic64_read(&leader->lost_samples);
5700 
5701 	for_each_sibling_event(sub, leader) {
5702 		values[n++] += perf_event_count(sub, false);
5703 		if (read_format & PERF_FORMAT_ID)
5704 			values[n++] = primary_event_id(sub);
5705 		if (read_format & PERF_FORMAT_LOST)
5706 			values[n++] = atomic64_read(&sub->lost_samples);
5707 	}
5708 
5709 unlock:
5710 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5711 	return ret;
5712 }
5713 
5714 static int perf_read_group(struct perf_event *event,
5715 				   u64 read_format, char __user *buf)
5716 {
5717 	struct perf_event *leader = event->group_leader, *child;
5718 	struct perf_event_context *ctx = leader->ctx;
5719 	int ret;
5720 	u64 *values;
5721 
5722 	lockdep_assert_held(&ctx->mutex);
5723 
5724 	values = kzalloc(event->read_size, GFP_KERNEL);
5725 	if (!values)
5726 		return -ENOMEM;
5727 
5728 	values[0] = 1 + leader->nr_siblings;
5729 
5730 	mutex_lock(&leader->child_mutex);
5731 
5732 	ret = __perf_read_group_add(leader, read_format, values);
5733 	if (ret)
5734 		goto unlock;
5735 
5736 	list_for_each_entry(child, &leader->child_list, child_list) {
5737 		ret = __perf_read_group_add(child, read_format, values);
5738 		if (ret)
5739 			goto unlock;
5740 	}
5741 
5742 	mutex_unlock(&leader->child_mutex);
5743 
5744 	ret = event->read_size;
5745 	if (copy_to_user(buf, values, event->read_size))
5746 		ret = -EFAULT;
5747 	goto out;
5748 
5749 unlock:
5750 	mutex_unlock(&leader->child_mutex);
5751 out:
5752 	kfree(values);
5753 	return ret;
5754 }
5755 
5756 static int perf_read_one(struct perf_event *event,
5757 				 u64 read_format, char __user *buf)
5758 {
5759 	u64 enabled, running;
5760 	u64 values[5];
5761 	int n = 0;
5762 
5763 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5764 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5765 		values[n++] = enabled;
5766 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5767 		values[n++] = running;
5768 	if (read_format & PERF_FORMAT_ID)
5769 		values[n++] = primary_event_id(event);
5770 	if (read_format & PERF_FORMAT_LOST)
5771 		values[n++] = atomic64_read(&event->lost_samples);
5772 
5773 	if (copy_to_user(buf, values, n * sizeof(u64)))
5774 		return -EFAULT;
5775 
5776 	return n * sizeof(u64);
5777 }
5778 
5779 static bool is_event_hup(struct perf_event *event)
5780 {
5781 	bool no_children;
5782 
5783 	if (event->state > PERF_EVENT_STATE_EXIT)
5784 		return false;
5785 
5786 	mutex_lock(&event->child_mutex);
5787 	no_children = list_empty(&event->child_list);
5788 	mutex_unlock(&event->child_mutex);
5789 	return no_children;
5790 }
5791 
5792 /*
5793  * Read the performance event - simple non blocking version for now
5794  */
5795 static ssize_t
5796 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5797 {
5798 	u64 read_format = event->attr.read_format;
5799 	int ret;
5800 
5801 	/*
5802 	 * Return end-of-file for a read on an event that is in
5803 	 * error state (i.e. because it was pinned but it couldn't be
5804 	 * scheduled on to the CPU at some point).
5805 	 */
5806 	if (event->state == PERF_EVENT_STATE_ERROR)
5807 		return 0;
5808 
5809 	if (count < event->read_size)
5810 		return -ENOSPC;
5811 
5812 	WARN_ON_ONCE(event->ctx->parent_ctx);
5813 	if (read_format & PERF_FORMAT_GROUP)
5814 		ret = perf_read_group(event, read_format, buf);
5815 	else
5816 		ret = perf_read_one(event, read_format, buf);
5817 
5818 	return ret;
5819 }
5820 
5821 static ssize_t
5822 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5823 {
5824 	struct perf_event *event = file->private_data;
5825 	struct perf_event_context *ctx;
5826 	int ret;
5827 
5828 	ret = security_perf_event_read(event);
5829 	if (ret)
5830 		return ret;
5831 
5832 	ctx = perf_event_ctx_lock(event);
5833 	ret = __perf_read(event, buf, count);
5834 	perf_event_ctx_unlock(event, ctx);
5835 
5836 	return ret;
5837 }
5838 
5839 static __poll_t perf_poll(struct file *file, poll_table *wait)
5840 {
5841 	struct perf_event *event = file->private_data;
5842 	struct perf_buffer *rb;
5843 	__poll_t events = EPOLLHUP;
5844 
5845 	poll_wait(file, &event->waitq, wait);
5846 
5847 	if (is_event_hup(event))
5848 		return events;
5849 
5850 	/*
5851 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5852 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5853 	 */
5854 	mutex_lock(&event->mmap_mutex);
5855 	rb = event->rb;
5856 	if (rb)
5857 		events = atomic_xchg(&rb->poll, 0);
5858 	mutex_unlock(&event->mmap_mutex);
5859 	return events;
5860 }
5861 
5862 static void _perf_event_reset(struct perf_event *event)
5863 {
5864 	(void)perf_event_read(event, false);
5865 	local64_set(&event->count, 0);
5866 	perf_event_update_userpage(event);
5867 }
5868 
5869 /* Assume it's not an event with inherit set. */
5870 u64 perf_event_pause(struct perf_event *event, bool reset)
5871 {
5872 	struct perf_event_context *ctx;
5873 	u64 count;
5874 
5875 	ctx = perf_event_ctx_lock(event);
5876 	WARN_ON_ONCE(event->attr.inherit);
5877 	_perf_event_disable(event);
5878 	count = local64_read(&event->count);
5879 	if (reset)
5880 		local64_set(&event->count, 0);
5881 	perf_event_ctx_unlock(event, ctx);
5882 
5883 	return count;
5884 }
5885 EXPORT_SYMBOL_GPL(perf_event_pause);
5886 
5887 /*
5888  * Holding the top-level event's child_mutex means that any
5889  * descendant process that has inherited this event will block
5890  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5891  * task existence requirements of perf_event_enable/disable.
5892  */
5893 static void perf_event_for_each_child(struct perf_event *event,
5894 					void (*func)(struct perf_event *))
5895 {
5896 	struct perf_event *child;
5897 
5898 	WARN_ON_ONCE(event->ctx->parent_ctx);
5899 
5900 	mutex_lock(&event->child_mutex);
5901 	func(event);
5902 	list_for_each_entry(child, &event->child_list, child_list)
5903 		func(child);
5904 	mutex_unlock(&event->child_mutex);
5905 }
5906 
5907 static void perf_event_for_each(struct perf_event *event,
5908 				  void (*func)(struct perf_event *))
5909 {
5910 	struct perf_event_context *ctx = event->ctx;
5911 	struct perf_event *sibling;
5912 
5913 	lockdep_assert_held(&ctx->mutex);
5914 
5915 	event = event->group_leader;
5916 
5917 	perf_event_for_each_child(event, func);
5918 	for_each_sibling_event(sibling, event)
5919 		perf_event_for_each_child(sibling, func);
5920 }
5921 
5922 static void __perf_event_period(struct perf_event *event,
5923 				struct perf_cpu_context *cpuctx,
5924 				struct perf_event_context *ctx,
5925 				void *info)
5926 {
5927 	u64 value = *((u64 *)info);
5928 	bool active;
5929 
5930 	if (event->attr.freq) {
5931 		event->attr.sample_freq = value;
5932 	} else {
5933 		event->attr.sample_period = value;
5934 		event->hw.sample_period = value;
5935 	}
5936 
5937 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5938 	if (active) {
5939 		perf_pmu_disable(event->pmu);
5940 		/*
5941 		 * We could be throttled; unthrottle now to avoid the tick
5942 		 * trying to unthrottle while we already re-started the event.
5943 		 */
5944 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5945 			event->hw.interrupts = 0;
5946 			perf_log_throttle(event, 1);
5947 		}
5948 		event->pmu->stop(event, PERF_EF_UPDATE);
5949 	}
5950 
5951 	local64_set(&event->hw.period_left, 0);
5952 
5953 	if (active) {
5954 		event->pmu->start(event, PERF_EF_RELOAD);
5955 		perf_pmu_enable(event->pmu);
5956 	}
5957 }
5958 
5959 static int perf_event_check_period(struct perf_event *event, u64 value)
5960 {
5961 	return event->pmu->check_period(event, value);
5962 }
5963 
5964 static int _perf_event_period(struct perf_event *event, u64 value)
5965 {
5966 	if (!is_sampling_event(event))
5967 		return -EINVAL;
5968 
5969 	if (!value)
5970 		return -EINVAL;
5971 
5972 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5973 		return -EINVAL;
5974 
5975 	if (perf_event_check_period(event, value))
5976 		return -EINVAL;
5977 
5978 	if (!event->attr.freq && (value & (1ULL << 63)))
5979 		return -EINVAL;
5980 
5981 	event_function_call(event, __perf_event_period, &value);
5982 
5983 	return 0;
5984 }
5985 
5986 int perf_event_period(struct perf_event *event, u64 value)
5987 {
5988 	struct perf_event_context *ctx;
5989 	int ret;
5990 
5991 	ctx = perf_event_ctx_lock(event);
5992 	ret = _perf_event_period(event, value);
5993 	perf_event_ctx_unlock(event, ctx);
5994 
5995 	return ret;
5996 }
5997 EXPORT_SYMBOL_GPL(perf_event_period);
5998 
5999 static const struct file_operations perf_fops;
6000 
6001 static inline bool is_perf_file(struct fd f)
6002 {
6003 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6004 }
6005 
6006 static int perf_event_set_output(struct perf_event *event,
6007 				 struct perf_event *output_event);
6008 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6009 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6010 			  struct perf_event_attr *attr);
6011 
6012 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6013 {
6014 	void (*func)(struct perf_event *);
6015 	u32 flags = arg;
6016 
6017 	switch (cmd) {
6018 	case PERF_EVENT_IOC_ENABLE:
6019 		func = _perf_event_enable;
6020 		break;
6021 	case PERF_EVENT_IOC_DISABLE:
6022 		func = _perf_event_disable;
6023 		break;
6024 	case PERF_EVENT_IOC_RESET:
6025 		func = _perf_event_reset;
6026 		break;
6027 
6028 	case PERF_EVENT_IOC_REFRESH:
6029 		return _perf_event_refresh(event, arg);
6030 
6031 	case PERF_EVENT_IOC_PERIOD:
6032 	{
6033 		u64 value;
6034 
6035 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6036 			return -EFAULT;
6037 
6038 		return _perf_event_period(event, value);
6039 	}
6040 	case PERF_EVENT_IOC_ID:
6041 	{
6042 		u64 id = primary_event_id(event);
6043 
6044 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6045 			return -EFAULT;
6046 		return 0;
6047 	}
6048 
6049 	case PERF_EVENT_IOC_SET_OUTPUT:
6050 	{
6051 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6052 		struct perf_event *output_event = NULL;
6053 		if (arg != -1) {
6054 			if (!is_perf_file(output))
6055 				return -EBADF;
6056 			output_event = fd_file(output)->private_data;
6057 		}
6058 		return perf_event_set_output(event, output_event);
6059 	}
6060 
6061 	case PERF_EVENT_IOC_SET_FILTER:
6062 		return perf_event_set_filter(event, (void __user *)arg);
6063 
6064 	case PERF_EVENT_IOC_SET_BPF:
6065 	{
6066 		struct bpf_prog *prog;
6067 		int err;
6068 
6069 		prog = bpf_prog_get(arg);
6070 		if (IS_ERR(prog))
6071 			return PTR_ERR(prog);
6072 
6073 		err = perf_event_set_bpf_prog(event, prog, 0);
6074 		if (err) {
6075 			bpf_prog_put(prog);
6076 			return err;
6077 		}
6078 
6079 		return 0;
6080 	}
6081 
6082 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6083 		struct perf_buffer *rb;
6084 
6085 		rcu_read_lock();
6086 		rb = rcu_dereference(event->rb);
6087 		if (!rb || !rb->nr_pages) {
6088 			rcu_read_unlock();
6089 			return -EINVAL;
6090 		}
6091 		rb_toggle_paused(rb, !!arg);
6092 		rcu_read_unlock();
6093 		return 0;
6094 	}
6095 
6096 	case PERF_EVENT_IOC_QUERY_BPF:
6097 		return perf_event_query_prog_array(event, (void __user *)arg);
6098 
6099 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6100 		struct perf_event_attr new_attr;
6101 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6102 					 &new_attr);
6103 
6104 		if (err)
6105 			return err;
6106 
6107 		return perf_event_modify_attr(event,  &new_attr);
6108 	}
6109 	default:
6110 		return -ENOTTY;
6111 	}
6112 
6113 	if (flags & PERF_IOC_FLAG_GROUP)
6114 		perf_event_for_each(event, func);
6115 	else
6116 		perf_event_for_each_child(event, func);
6117 
6118 	return 0;
6119 }
6120 
6121 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6122 {
6123 	struct perf_event *event = file->private_data;
6124 	struct perf_event_context *ctx;
6125 	long ret;
6126 
6127 	/* Treat ioctl like writes as it is likely a mutating operation. */
6128 	ret = security_perf_event_write(event);
6129 	if (ret)
6130 		return ret;
6131 
6132 	ctx = perf_event_ctx_lock(event);
6133 	ret = _perf_ioctl(event, cmd, arg);
6134 	perf_event_ctx_unlock(event, ctx);
6135 
6136 	return ret;
6137 }
6138 
6139 #ifdef CONFIG_COMPAT
6140 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6141 				unsigned long arg)
6142 {
6143 	switch (_IOC_NR(cmd)) {
6144 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6145 	case _IOC_NR(PERF_EVENT_IOC_ID):
6146 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6147 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6148 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6149 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6150 			cmd &= ~IOCSIZE_MASK;
6151 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6152 		}
6153 		break;
6154 	}
6155 	return perf_ioctl(file, cmd, arg);
6156 }
6157 #else
6158 # define perf_compat_ioctl NULL
6159 #endif
6160 
6161 int perf_event_task_enable(void)
6162 {
6163 	struct perf_event_context *ctx;
6164 	struct perf_event *event;
6165 
6166 	mutex_lock(&current->perf_event_mutex);
6167 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6168 		ctx = perf_event_ctx_lock(event);
6169 		perf_event_for_each_child(event, _perf_event_enable);
6170 		perf_event_ctx_unlock(event, ctx);
6171 	}
6172 	mutex_unlock(&current->perf_event_mutex);
6173 
6174 	return 0;
6175 }
6176 
6177 int perf_event_task_disable(void)
6178 {
6179 	struct perf_event_context *ctx;
6180 	struct perf_event *event;
6181 
6182 	mutex_lock(&current->perf_event_mutex);
6183 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6184 		ctx = perf_event_ctx_lock(event);
6185 		perf_event_for_each_child(event, _perf_event_disable);
6186 		perf_event_ctx_unlock(event, ctx);
6187 	}
6188 	mutex_unlock(&current->perf_event_mutex);
6189 
6190 	return 0;
6191 }
6192 
6193 static int perf_event_index(struct perf_event *event)
6194 {
6195 	if (event->hw.state & PERF_HES_STOPPED)
6196 		return 0;
6197 
6198 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6199 		return 0;
6200 
6201 	return event->pmu->event_idx(event);
6202 }
6203 
6204 static void perf_event_init_userpage(struct perf_event *event)
6205 {
6206 	struct perf_event_mmap_page *userpg;
6207 	struct perf_buffer *rb;
6208 
6209 	rcu_read_lock();
6210 	rb = rcu_dereference(event->rb);
6211 	if (!rb)
6212 		goto unlock;
6213 
6214 	userpg = rb->user_page;
6215 
6216 	/* Allow new userspace to detect that bit 0 is deprecated */
6217 	userpg->cap_bit0_is_deprecated = 1;
6218 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6219 	userpg->data_offset = PAGE_SIZE;
6220 	userpg->data_size = perf_data_size(rb);
6221 
6222 unlock:
6223 	rcu_read_unlock();
6224 }
6225 
6226 void __weak arch_perf_update_userpage(
6227 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6228 {
6229 }
6230 
6231 /*
6232  * Callers need to ensure there can be no nesting of this function, otherwise
6233  * the seqlock logic goes bad. We can not serialize this because the arch
6234  * code calls this from NMI context.
6235  */
6236 void perf_event_update_userpage(struct perf_event *event)
6237 {
6238 	struct perf_event_mmap_page *userpg;
6239 	struct perf_buffer *rb;
6240 	u64 enabled, running, now;
6241 
6242 	rcu_read_lock();
6243 	rb = rcu_dereference(event->rb);
6244 	if (!rb)
6245 		goto unlock;
6246 
6247 	/*
6248 	 * compute total_time_enabled, total_time_running
6249 	 * based on snapshot values taken when the event
6250 	 * was last scheduled in.
6251 	 *
6252 	 * we cannot simply called update_context_time()
6253 	 * because of locking issue as we can be called in
6254 	 * NMI context
6255 	 */
6256 	calc_timer_values(event, &now, &enabled, &running);
6257 
6258 	userpg = rb->user_page;
6259 	/*
6260 	 * Disable preemption to guarantee consistent time stamps are stored to
6261 	 * the user page.
6262 	 */
6263 	preempt_disable();
6264 	++userpg->lock;
6265 	barrier();
6266 	userpg->index = perf_event_index(event);
6267 	userpg->offset = perf_event_count(event, false);
6268 	if (userpg->index)
6269 		userpg->offset -= local64_read(&event->hw.prev_count);
6270 
6271 	userpg->time_enabled = enabled +
6272 			atomic64_read(&event->child_total_time_enabled);
6273 
6274 	userpg->time_running = running +
6275 			atomic64_read(&event->child_total_time_running);
6276 
6277 	arch_perf_update_userpage(event, userpg, now);
6278 
6279 	barrier();
6280 	++userpg->lock;
6281 	preempt_enable();
6282 unlock:
6283 	rcu_read_unlock();
6284 }
6285 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6286 
6287 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6288 {
6289 	struct perf_event *event = vmf->vma->vm_file->private_data;
6290 	struct perf_buffer *rb;
6291 	vm_fault_t ret = VM_FAULT_SIGBUS;
6292 
6293 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6294 		if (vmf->pgoff == 0)
6295 			ret = 0;
6296 		return ret;
6297 	}
6298 
6299 	rcu_read_lock();
6300 	rb = rcu_dereference(event->rb);
6301 	if (!rb)
6302 		goto unlock;
6303 
6304 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6305 		goto unlock;
6306 
6307 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6308 	if (!vmf->page)
6309 		goto unlock;
6310 
6311 	get_page(vmf->page);
6312 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6313 	vmf->page->index   = vmf->pgoff;
6314 
6315 	ret = 0;
6316 unlock:
6317 	rcu_read_unlock();
6318 
6319 	return ret;
6320 }
6321 
6322 static void ring_buffer_attach(struct perf_event *event,
6323 			       struct perf_buffer *rb)
6324 {
6325 	struct perf_buffer *old_rb = NULL;
6326 	unsigned long flags;
6327 
6328 	WARN_ON_ONCE(event->parent);
6329 
6330 	if (event->rb) {
6331 		/*
6332 		 * Should be impossible, we set this when removing
6333 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6334 		 */
6335 		WARN_ON_ONCE(event->rcu_pending);
6336 
6337 		old_rb = event->rb;
6338 		spin_lock_irqsave(&old_rb->event_lock, flags);
6339 		list_del_rcu(&event->rb_entry);
6340 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6341 
6342 		event->rcu_batches = get_state_synchronize_rcu();
6343 		event->rcu_pending = 1;
6344 	}
6345 
6346 	if (rb) {
6347 		if (event->rcu_pending) {
6348 			cond_synchronize_rcu(event->rcu_batches);
6349 			event->rcu_pending = 0;
6350 		}
6351 
6352 		spin_lock_irqsave(&rb->event_lock, flags);
6353 		list_add_rcu(&event->rb_entry, &rb->event_list);
6354 		spin_unlock_irqrestore(&rb->event_lock, flags);
6355 	}
6356 
6357 	/*
6358 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6359 	 * before swizzling the event::rb pointer; if it's getting
6360 	 * unmapped, its aux_mmap_count will be 0 and it won't
6361 	 * restart. See the comment in __perf_pmu_output_stop().
6362 	 *
6363 	 * Data will inevitably be lost when set_output is done in
6364 	 * mid-air, but then again, whoever does it like this is
6365 	 * not in for the data anyway.
6366 	 */
6367 	if (has_aux(event))
6368 		perf_event_stop(event, 0);
6369 
6370 	rcu_assign_pointer(event->rb, rb);
6371 
6372 	if (old_rb) {
6373 		ring_buffer_put(old_rb);
6374 		/*
6375 		 * Since we detached before setting the new rb, so that we
6376 		 * could attach the new rb, we could have missed a wakeup.
6377 		 * Provide it now.
6378 		 */
6379 		wake_up_all(&event->waitq);
6380 	}
6381 }
6382 
6383 static void ring_buffer_wakeup(struct perf_event *event)
6384 {
6385 	struct perf_buffer *rb;
6386 
6387 	if (event->parent)
6388 		event = event->parent;
6389 
6390 	rcu_read_lock();
6391 	rb = rcu_dereference(event->rb);
6392 	if (rb) {
6393 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6394 			wake_up_all(&event->waitq);
6395 	}
6396 	rcu_read_unlock();
6397 }
6398 
6399 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6400 {
6401 	struct perf_buffer *rb;
6402 
6403 	if (event->parent)
6404 		event = event->parent;
6405 
6406 	rcu_read_lock();
6407 	rb = rcu_dereference(event->rb);
6408 	if (rb) {
6409 		if (!refcount_inc_not_zero(&rb->refcount))
6410 			rb = NULL;
6411 	}
6412 	rcu_read_unlock();
6413 
6414 	return rb;
6415 }
6416 
6417 void ring_buffer_put(struct perf_buffer *rb)
6418 {
6419 	if (!refcount_dec_and_test(&rb->refcount))
6420 		return;
6421 
6422 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6423 
6424 	call_rcu(&rb->rcu_head, rb_free_rcu);
6425 }
6426 
6427 static void perf_mmap_open(struct vm_area_struct *vma)
6428 {
6429 	struct perf_event *event = vma->vm_file->private_data;
6430 
6431 	atomic_inc(&event->mmap_count);
6432 	atomic_inc(&event->rb->mmap_count);
6433 
6434 	if (vma->vm_pgoff)
6435 		atomic_inc(&event->rb->aux_mmap_count);
6436 
6437 	if (event->pmu->event_mapped)
6438 		event->pmu->event_mapped(event, vma->vm_mm);
6439 }
6440 
6441 static void perf_pmu_output_stop(struct perf_event *event);
6442 
6443 /*
6444  * A buffer can be mmap()ed multiple times; either directly through the same
6445  * event, or through other events by use of perf_event_set_output().
6446  *
6447  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6448  * the buffer here, where we still have a VM context. This means we need
6449  * to detach all events redirecting to us.
6450  */
6451 static void perf_mmap_close(struct vm_area_struct *vma)
6452 {
6453 	struct perf_event *event = vma->vm_file->private_data;
6454 	struct perf_buffer *rb = ring_buffer_get(event);
6455 	struct user_struct *mmap_user = rb->mmap_user;
6456 	int mmap_locked = rb->mmap_locked;
6457 	unsigned long size = perf_data_size(rb);
6458 	bool detach_rest = false;
6459 
6460 	if (event->pmu->event_unmapped)
6461 		event->pmu->event_unmapped(event, vma->vm_mm);
6462 
6463 	/*
6464 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6465 	 * to avoid complications.
6466 	 */
6467 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6468 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6469 		/*
6470 		 * Stop all AUX events that are writing to this buffer,
6471 		 * so that we can free its AUX pages and corresponding PMU
6472 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6473 		 * they won't start any more (see perf_aux_output_begin()).
6474 		 */
6475 		perf_pmu_output_stop(event);
6476 
6477 		/* now it's safe to free the pages */
6478 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6479 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6480 
6481 		/* this has to be the last one */
6482 		rb_free_aux(rb);
6483 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6484 
6485 		mutex_unlock(&rb->aux_mutex);
6486 	}
6487 
6488 	if (atomic_dec_and_test(&rb->mmap_count))
6489 		detach_rest = true;
6490 
6491 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6492 		goto out_put;
6493 
6494 	ring_buffer_attach(event, NULL);
6495 	mutex_unlock(&event->mmap_mutex);
6496 
6497 	/* If there's still other mmap()s of this buffer, we're done. */
6498 	if (!detach_rest)
6499 		goto out_put;
6500 
6501 	/*
6502 	 * No other mmap()s, detach from all other events that might redirect
6503 	 * into the now unreachable buffer. Somewhat complicated by the
6504 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6505 	 */
6506 again:
6507 	rcu_read_lock();
6508 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6509 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6510 			/*
6511 			 * This event is en-route to free_event() which will
6512 			 * detach it and remove it from the list.
6513 			 */
6514 			continue;
6515 		}
6516 		rcu_read_unlock();
6517 
6518 		mutex_lock(&event->mmap_mutex);
6519 		/*
6520 		 * Check we didn't race with perf_event_set_output() which can
6521 		 * swizzle the rb from under us while we were waiting to
6522 		 * acquire mmap_mutex.
6523 		 *
6524 		 * If we find a different rb; ignore this event, a next
6525 		 * iteration will no longer find it on the list. We have to
6526 		 * still restart the iteration to make sure we're not now
6527 		 * iterating the wrong list.
6528 		 */
6529 		if (event->rb == rb)
6530 			ring_buffer_attach(event, NULL);
6531 
6532 		mutex_unlock(&event->mmap_mutex);
6533 		put_event(event);
6534 
6535 		/*
6536 		 * Restart the iteration; either we're on the wrong list or
6537 		 * destroyed its integrity by doing a deletion.
6538 		 */
6539 		goto again;
6540 	}
6541 	rcu_read_unlock();
6542 
6543 	/*
6544 	 * It could be there's still a few 0-ref events on the list; they'll
6545 	 * get cleaned up by free_event() -- they'll also still have their
6546 	 * ref on the rb and will free it whenever they are done with it.
6547 	 *
6548 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6549 	 * undo the VM accounting.
6550 	 */
6551 
6552 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6553 			&mmap_user->locked_vm);
6554 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6555 	free_uid(mmap_user);
6556 
6557 out_put:
6558 	ring_buffer_put(rb); /* could be last */
6559 }
6560 
6561 static const struct vm_operations_struct perf_mmap_vmops = {
6562 	.open		= perf_mmap_open,
6563 	.close		= perf_mmap_close, /* non mergeable */
6564 	.fault		= perf_mmap_fault,
6565 	.page_mkwrite	= perf_mmap_fault,
6566 };
6567 
6568 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6569 {
6570 	struct perf_event *event = file->private_data;
6571 	unsigned long user_locked, user_lock_limit;
6572 	struct user_struct *user = current_user();
6573 	struct mutex *aux_mutex = NULL;
6574 	struct perf_buffer *rb = NULL;
6575 	unsigned long locked, lock_limit;
6576 	unsigned long vma_size;
6577 	unsigned long nr_pages;
6578 	long user_extra = 0, extra = 0;
6579 	int ret = 0, flags = 0;
6580 
6581 	/*
6582 	 * Don't allow mmap() of inherited per-task counters. This would
6583 	 * create a performance issue due to all children writing to the
6584 	 * same rb.
6585 	 */
6586 	if (event->cpu == -1 && event->attr.inherit)
6587 		return -EINVAL;
6588 
6589 	if (!(vma->vm_flags & VM_SHARED))
6590 		return -EINVAL;
6591 
6592 	ret = security_perf_event_read(event);
6593 	if (ret)
6594 		return ret;
6595 
6596 	vma_size = vma->vm_end - vma->vm_start;
6597 
6598 	if (vma->vm_pgoff == 0) {
6599 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6600 	} else {
6601 		/*
6602 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6603 		 * mapped, all subsequent mappings should have the same size
6604 		 * and offset. Must be above the normal perf buffer.
6605 		 */
6606 		u64 aux_offset, aux_size;
6607 
6608 		if (!event->rb)
6609 			return -EINVAL;
6610 
6611 		nr_pages = vma_size / PAGE_SIZE;
6612 		if (nr_pages > INT_MAX)
6613 			return -ENOMEM;
6614 
6615 		mutex_lock(&event->mmap_mutex);
6616 		ret = -EINVAL;
6617 
6618 		rb = event->rb;
6619 		if (!rb)
6620 			goto aux_unlock;
6621 
6622 		aux_mutex = &rb->aux_mutex;
6623 		mutex_lock(aux_mutex);
6624 
6625 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6626 		aux_size = READ_ONCE(rb->user_page->aux_size);
6627 
6628 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6629 			goto aux_unlock;
6630 
6631 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6632 			goto aux_unlock;
6633 
6634 		/* already mapped with a different offset */
6635 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6636 			goto aux_unlock;
6637 
6638 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6639 			goto aux_unlock;
6640 
6641 		/* already mapped with a different size */
6642 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6643 			goto aux_unlock;
6644 
6645 		if (!is_power_of_2(nr_pages))
6646 			goto aux_unlock;
6647 
6648 		if (!atomic_inc_not_zero(&rb->mmap_count))
6649 			goto aux_unlock;
6650 
6651 		if (rb_has_aux(rb)) {
6652 			atomic_inc(&rb->aux_mmap_count);
6653 			ret = 0;
6654 			goto unlock;
6655 		}
6656 
6657 		atomic_set(&rb->aux_mmap_count, 1);
6658 		user_extra = nr_pages;
6659 
6660 		goto accounting;
6661 	}
6662 
6663 	/*
6664 	 * If we have rb pages ensure they're a power-of-two number, so we
6665 	 * can do bitmasks instead of modulo.
6666 	 */
6667 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6668 		return -EINVAL;
6669 
6670 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6671 		return -EINVAL;
6672 
6673 	WARN_ON_ONCE(event->ctx->parent_ctx);
6674 again:
6675 	mutex_lock(&event->mmap_mutex);
6676 	if (event->rb) {
6677 		if (data_page_nr(event->rb) != nr_pages) {
6678 			ret = -EINVAL;
6679 			goto unlock;
6680 		}
6681 
6682 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6683 			/*
6684 			 * Raced against perf_mmap_close(); remove the
6685 			 * event and try again.
6686 			 */
6687 			ring_buffer_attach(event, NULL);
6688 			mutex_unlock(&event->mmap_mutex);
6689 			goto again;
6690 		}
6691 
6692 		goto unlock;
6693 	}
6694 
6695 	user_extra = nr_pages + 1;
6696 
6697 accounting:
6698 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6699 
6700 	/*
6701 	 * Increase the limit linearly with more CPUs:
6702 	 */
6703 	user_lock_limit *= num_online_cpus();
6704 
6705 	user_locked = atomic_long_read(&user->locked_vm);
6706 
6707 	/*
6708 	 * sysctl_perf_event_mlock may have changed, so that
6709 	 *     user->locked_vm > user_lock_limit
6710 	 */
6711 	if (user_locked > user_lock_limit)
6712 		user_locked = user_lock_limit;
6713 	user_locked += user_extra;
6714 
6715 	if (user_locked > user_lock_limit) {
6716 		/*
6717 		 * charge locked_vm until it hits user_lock_limit;
6718 		 * charge the rest from pinned_vm
6719 		 */
6720 		extra = user_locked - user_lock_limit;
6721 		user_extra -= extra;
6722 	}
6723 
6724 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6725 	lock_limit >>= PAGE_SHIFT;
6726 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6727 
6728 	if ((locked > lock_limit) && perf_is_paranoid() &&
6729 		!capable(CAP_IPC_LOCK)) {
6730 		ret = -EPERM;
6731 		goto unlock;
6732 	}
6733 
6734 	WARN_ON(!rb && event->rb);
6735 
6736 	if (vma->vm_flags & VM_WRITE)
6737 		flags |= RING_BUFFER_WRITABLE;
6738 
6739 	if (!rb) {
6740 		rb = rb_alloc(nr_pages,
6741 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6742 			      event->cpu, flags);
6743 
6744 		if (!rb) {
6745 			ret = -ENOMEM;
6746 			goto unlock;
6747 		}
6748 
6749 		atomic_set(&rb->mmap_count, 1);
6750 		rb->mmap_user = get_current_user();
6751 		rb->mmap_locked = extra;
6752 
6753 		ring_buffer_attach(event, rb);
6754 
6755 		perf_event_update_time(event);
6756 		perf_event_init_userpage(event);
6757 		perf_event_update_userpage(event);
6758 	} else {
6759 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6760 				   event->attr.aux_watermark, flags);
6761 		if (!ret)
6762 			rb->aux_mmap_locked = extra;
6763 	}
6764 
6765 unlock:
6766 	if (!ret) {
6767 		atomic_long_add(user_extra, &user->locked_vm);
6768 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6769 
6770 		atomic_inc(&event->mmap_count);
6771 	} else if (rb) {
6772 		atomic_dec(&rb->mmap_count);
6773 	}
6774 aux_unlock:
6775 	if (aux_mutex)
6776 		mutex_unlock(aux_mutex);
6777 	mutex_unlock(&event->mmap_mutex);
6778 
6779 	/*
6780 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6781 	 * vma.
6782 	 */
6783 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6784 	vma->vm_ops = &perf_mmap_vmops;
6785 
6786 	if (event->pmu->event_mapped)
6787 		event->pmu->event_mapped(event, vma->vm_mm);
6788 
6789 	return ret;
6790 }
6791 
6792 static int perf_fasync(int fd, struct file *filp, int on)
6793 {
6794 	struct inode *inode = file_inode(filp);
6795 	struct perf_event *event = filp->private_data;
6796 	int retval;
6797 
6798 	inode_lock(inode);
6799 	retval = fasync_helper(fd, filp, on, &event->fasync);
6800 	inode_unlock(inode);
6801 
6802 	if (retval < 0)
6803 		return retval;
6804 
6805 	return 0;
6806 }
6807 
6808 static const struct file_operations perf_fops = {
6809 	.release		= perf_release,
6810 	.read			= perf_read,
6811 	.poll			= perf_poll,
6812 	.unlocked_ioctl		= perf_ioctl,
6813 	.compat_ioctl		= perf_compat_ioctl,
6814 	.mmap			= perf_mmap,
6815 	.fasync			= perf_fasync,
6816 };
6817 
6818 /*
6819  * Perf event wakeup
6820  *
6821  * If there's data, ensure we set the poll() state and publish everything
6822  * to user-space before waking everybody up.
6823  */
6824 
6825 void perf_event_wakeup(struct perf_event *event)
6826 {
6827 	ring_buffer_wakeup(event);
6828 
6829 	if (event->pending_kill) {
6830 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6831 		event->pending_kill = 0;
6832 	}
6833 }
6834 
6835 static void perf_sigtrap(struct perf_event *event)
6836 {
6837 	/*
6838 	 * We'd expect this to only occur if the irq_work is delayed and either
6839 	 * ctx->task or current has changed in the meantime. This can be the
6840 	 * case on architectures that do not implement arch_irq_work_raise().
6841 	 */
6842 	if (WARN_ON_ONCE(event->ctx->task != current))
6843 		return;
6844 
6845 	/*
6846 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6847 	 * task exiting.
6848 	 */
6849 	if (current->flags & PF_EXITING)
6850 		return;
6851 
6852 	send_sig_perf((void __user *)event->pending_addr,
6853 		      event->orig_type, event->attr.sig_data);
6854 }
6855 
6856 /*
6857  * Deliver the pending work in-event-context or follow the context.
6858  */
6859 static void __perf_pending_disable(struct perf_event *event)
6860 {
6861 	int cpu = READ_ONCE(event->oncpu);
6862 
6863 	/*
6864 	 * If the event isn't running; we done. event_sched_out() will have
6865 	 * taken care of things.
6866 	 */
6867 	if (cpu < 0)
6868 		return;
6869 
6870 	/*
6871 	 * Yay, we hit home and are in the context of the event.
6872 	 */
6873 	if (cpu == smp_processor_id()) {
6874 		if (event->pending_disable) {
6875 			event->pending_disable = 0;
6876 			perf_event_disable_local(event);
6877 		}
6878 		return;
6879 	}
6880 
6881 	/*
6882 	 *  CPU-A			CPU-B
6883 	 *
6884 	 *  perf_event_disable_inatomic()
6885 	 *    @pending_disable = CPU-A;
6886 	 *    irq_work_queue();
6887 	 *
6888 	 *  sched-out
6889 	 *    @pending_disable = -1;
6890 	 *
6891 	 *				sched-in
6892 	 *				perf_event_disable_inatomic()
6893 	 *				  @pending_disable = CPU-B;
6894 	 *				  irq_work_queue(); // FAILS
6895 	 *
6896 	 *  irq_work_run()
6897 	 *    perf_pending_disable()
6898 	 *
6899 	 * But the event runs on CPU-B and wants disabling there.
6900 	 */
6901 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6902 }
6903 
6904 static void perf_pending_disable(struct irq_work *entry)
6905 {
6906 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6907 	int rctx;
6908 
6909 	/*
6910 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6911 	 * and we won't recurse 'further'.
6912 	 */
6913 	rctx = perf_swevent_get_recursion_context();
6914 	__perf_pending_disable(event);
6915 	if (rctx >= 0)
6916 		perf_swevent_put_recursion_context(rctx);
6917 }
6918 
6919 static void perf_pending_irq(struct irq_work *entry)
6920 {
6921 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6922 	int rctx;
6923 
6924 	/*
6925 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6926 	 * and we won't recurse 'further'.
6927 	 */
6928 	rctx = perf_swevent_get_recursion_context();
6929 
6930 	/*
6931 	 * The wakeup isn't bound to the context of the event -- it can happen
6932 	 * irrespective of where the event is.
6933 	 */
6934 	if (event->pending_wakeup) {
6935 		event->pending_wakeup = 0;
6936 		perf_event_wakeup(event);
6937 	}
6938 
6939 	if (rctx >= 0)
6940 		perf_swevent_put_recursion_context(rctx);
6941 }
6942 
6943 static void perf_pending_task(struct callback_head *head)
6944 {
6945 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6946 	int rctx;
6947 
6948 	/*
6949 	 * All accesses to the event must belong to the same implicit RCU read-side
6950 	 * critical section as the ->pending_work reset. See comment in
6951 	 * perf_pending_task_sync().
6952 	 */
6953 	rcu_read_lock();
6954 	/*
6955 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6956 	 * and we won't recurse 'further'.
6957 	 */
6958 	rctx = perf_swevent_get_recursion_context();
6959 
6960 	if (event->pending_work) {
6961 		event->pending_work = 0;
6962 		perf_sigtrap(event);
6963 		local_dec(&event->ctx->nr_no_switch_fast);
6964 		rcuwait_wake_up(&event->pending_work_wait);
6965 	}
6966 	rcu_read_unlock();
6967 
6968 	if (rctx >= 0)
6969 		perf_swevent_put_recursion_context(rctx);
6970 }
6971 
6972 #ifdef CONFIG_GUEST_PERF_EVENTS
6973 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6974 
6975 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6976 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6977 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6978 
6979 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6980 {
6981 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6982 		return;
6983 
6984 	rcu_assign_pointer(perf_guest_cbs, cbs);
6985 	static_call_update(__perf_guest_state, cbs->state);
6986 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6987 
6988 	/* Implementing ->handle_intel_pt_intr is optional. */
6989 	if (cbs->handle_intel_pt_intr)
6990 		static_call_update(__perf_guest_handle_intel_pt_intr,
6991 				   cbs->handle_intel_pt_intr);
6992 }
6993 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6994 
6995 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6996 {
6997 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6998 		return;
6999 
7000 	rcu_assign_pointer(perf_guest_cbs, NULL);
7001 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7002 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7003 	static_call_update(__perf_guest_handle_intel_pt_intr,
7004 			   (void *)&__static_call_return0);
7005 	synchronize_rcu();
7006 }
7007 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7008 #endif
7009 
7010 static bool should_sample_guest(struct perf_event *event)
7011 {
7012 	return !event->attr.exclude_guest && perf_guest_state();
7013 }
7014 
7015 unsigned long perf_misc_flags(struct perf_event *event,
7016 			      struct pt_regs *regs)
7017 {
7018 	if (should_sample_guest(event))
7019 		return perf_arch_guest_misc_flags(regs);
7020 
7021 	return perf_arch_misc_flags(regs);
7022 }
7023 
7024 unsigned long perf_instruction_pointer(struct perf_event *event,
7025 				       struct pt_regs *regs)
7026 {
7027 	if (should_sample_guest(event))
7028 		return perf_guest_get_ip();
7029 
7030 	return perf_arch_instruction_pointer(regs);
7031 }
7032 
7033 static void
7034 perf_output_sample_regs(struct perf_output_handle *handle,
7035 			struct pt_regs *regs, u64 mask)
7036 {
7037 	int bit;
7038 	DECLARE_BITMAP(_mask, 64);
7039 
7040 	bitmap_from_u64(_mask, mask);
7041 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7042 		u64 val;
7043 
7044 		val = perf_reg_value(regs, bit);
7045 		perf_output_put(handle, val);
7046 	}
7047 }
7048 
7049 static void perf_sample_regs_user(struct perf_regs *regs_user,
7050 				  struct pt_regs *regs)
7051 {
7052 	if (user_mode(regs)) {
7053 		regs_user->abi = perf_reg_abi(current);
7054 		regs_user->regs = regs;
7055 	} else if (!(current->flags & PF_KTHREAD)) {
7056 		perf_get_regs_user(regs_user, regs);
7057 	} else {
7058 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7059 		regs_user->regs = NULL;
7060 	}
7061 }
7062 
7063 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7064 				  struct pt_regs *regs)
7065 {
7066 	regs_intr->regs = regs;
7067 	regs_intr->abi  = perf_reg_abi(current);
7068 }
7069 
7070 
7071 /*
7072  * Get remaining task size from user stack pointer.
7073  *
7074  * It'd be better to take stack vma map and limit this more
7075  * precisely, but there's no way to get it safely under interrupt,
7076  * so using TASK_SIZE as limit.
7077  */
7078 static u64 perf_ustack_task_size(struct pt_regs *regs)
7079 {
7080 	unsigned long addr = perf_user_stack_pointer(regs);
7081 
7082 	if (!addr || addr >= TASK_SIZE)
7083 		return 0;
7084 
7085 	return TASK_SIZE - addr;
7086 }
7087 
7088 static u16
7089 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7090 			struct pt_regs *regs)
7091 {
7092 	u64 task_size;
7093 
7094 	/* No regs, no stack pointer, no dump. */
7095 	if (!regs)
7096 		return 0;
7097 
7098 	/*
7099 	 * Check if we fit in with the requested stack size into the:
7100 	 * - TASK_SIZE
7101 	 *   If we don't, we limit the size to the TASK_SIZE.
7102 	 *
7103 	 * - remaining sample size
7104 	 *   If we don't, we customize the stack size to
7105 	 *   fit in to the remaining sample size.
7106 	 */
7107 
7108 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7109 	stack_size = min(stack_size, (u16) task_size);
7110 
7111 	/* Current header size plus static size and dynamic size. */
7112 	header_size += 2 * sizeof(u64);
7113 
7114 	/* Do we fit in with the current stack dump size? */
7115 	if ((u16) (header_size + stack_size) < header_size) {
7116 		/*
7117 		 * If we overflow the maximum size for the sample,
7118 		 * we customize the stack dump size to fit in.
7119 		 */
7120 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7121 		stack_size = round_up(stack_size, sizeof(u64));
7122 	}
7123 
7124 	return stack_size;
7125 }
7126 
7127 static void
7128 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7129 			  struct pt_regs *regs)
7130 {
7131 	/* Case of a kernel thread, nothing to dump */
7132 	if (!regs) {
7133 		u64 size = 0;
7134 		perf_output_put(handle, size);
7135 	} else {
7136 		unsigned long sp;
7137 		unsigned int rem;
7138 		u64 dyn_size;
7139 
7140 		/*
7141 		 * We dump:
7142 		 * static size
7143 		 *   - the size requested by user or the best one we can fit
7144 		 *     in to the sample max size
7145 		 * data
7146 		 *   - user stack dump data
7147 		 * dynamic size
7148 		 *   - the actual dumped size
7149 		 */
7150 
7151 		/* Static size. */
7152 		perf_output_put(handle, dump_size);
7153 
7154 		/* Data. */
7155 		sp = perf_user_stack_pointer(regs);
7156 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7157 		dyn_size = dump_size - rem;
7158 
7159 		perf_output_skip(handle, rem);
7160 
7161 		/* Dynamic size. */
7162 		perf_output_put(handle, dyn_size);
7163 	}
7164 }
7165 
7166 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7167 					  struct perf_sample_data *data,
7168 					  size_t size)
7169 {
7170 	struct perf_event *sampler = event->aux_event;
7171 	struct perf_buffer *rb;
7172 
7173 	data->aux_size = 0;
7174 
7175 	if (!sampler)
7176 		goto out;
7177 
7178 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7179 		goto out;
7180 
7181 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7182 		goto out;
7183 
7184 	rb = ring_buffer_get(sampler);
7185 	if (!rb)
7186 		goto out;
7187 
7188 	/*
7189 	 * If this is an NMI hit inside sampling code, don't take
7190 	 * the sample. See also perf_aux_sample_output().
7191 	 */
7192 	if (READ_ONCE(rb->aux_in_sampling)) {
7193 		data->aux_size = 0;
7194 	} else {
7195 		size = min_t(size_t, size, perf_aux_size(rb));
7196 		data->aux_size = ALIGN(size, sizeof(u64));
7197 	}
7198 	ring_buffer_put(rb);
7199 
7200 out:
7201 	return data->aux_size;
7202 }
7203 
7204 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7205                                  struct perf_event *event,
7206                                  struct perf_output_handle *handle,
7207                                  unsigned long size)
7208 {
7209 	unsigned long flags;
7210 	long ret;
7211 
7212 	/*
7213 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7214 	 * paths. If we start calling them in NMI context, they may race with
7215 	 * the IRQ ones, that is, for example, re-starting an event that's just
7216 	 * been stopped, which is why we're using a separate callback that
7217 	 * doesn't change the event state.
7218 	 *
7219 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7220 	 */
7221 	local_irq_save(flags);
7222 	/*
7223 	 * Guard against NMI hits inside the critical section;
7224 	 * see also perf_prepare_sample_aux().
7225 	 */
7226 	WRITE_ONCE(rb->aux_in_sampling, 1);
7227 	barrier();
7228 
7229 	ret = event->pmu->snapshot_aux(event, handle, size);
7230 
7231 	barrier();
7232 	WRITE_ONCE(rb->aux_in_sampling, 0);
7233 	local_irq_restore(flags);
7234 
7235 	return ret;
7236 }
7237 
7238 static void perf_aux_sample_output(struct perf_event *event,
7239 				   struct perf_output_handle *handle,
7240 				   struct perf_sample_data *data)
7241 {
7242 	struct perf_event *sampler = event->aux_event;
7243 	struct perf_buffer *rb;
7244 	unsigned long pad;
7245 	long size;
7246 
7247 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7248 		return;
7249 
7250 	rb = ring_buffer_get(sampler);
7251 	if (!rb)
7252 		return;
7253 
7254 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7255 
7256 	/*
7257 	 * An error here means that perf_output_copy() failed (returned a
7258 	 * non-zero surplus that it didn't copy), which in its current
7259 	 * enlightened implementation is not possible. If that changes, we'd
7260 	 * like to know.
7261 	 */
7262 	if (WARN_ON_ONCE(size < 0))
7263 		goto out_put;
7264 
7265 	/*
7266 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7267 	 * perf_prepare_sample_aux(), so should not be more than that.
7268 	 */
7269 	pad = data->aux_size - size;
7270 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7271 		pad = 8;
7272 
7273 	if (pad) {
7274 		u64 zero = 0;
7275 		perf_output_copy(handle, &zero, pad);
7276 	}
7277 
7278 out_put:
7279 	ring_buffer_put(rb);
7280 }
7281 
7282 /*
7283  * A set of common sample data types saved even for non-sample records
7284  * when event->attr.sample_id_all is set.
7285  */
7286 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7287 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7288 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7289 
7290 static void __perf_event_header__init_id(struct perf_sample_data *data,
7291 					 struct perf_event *event,
7292 					 u64 sample_type)
7293 {
7294 	data->type = event->attr.sample_type;
7295 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7296 
7297 	if (sample_type & PERF_SAMPLE_TID) {
7298 		/* namespace issues */
7299 		data->tid_entry.pid = perf_event_pid(event, current);
7300 		data->tid_entry.tid = perf_event_tid(event, current);
7301 	}
7302 
7303 	if (sample_type & PERF_SAMPLE_TIME)
7304 		data->time = perf_event_clock(event);
7305 
7306 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7307 		data->id = primary_event_id(event);
7308 
7309 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7310 		data->stream_id = event->id;
7311 
7312 	if (sample_type & PERF_SAMPLE_CPU) {
7313 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7314 		data->cpu_entry.reserved = 0;
7315 	}
7316 }
7317 
7318 void perf_event_header__init_id(struct perf_event_header *header,
7319 				struct perf_sample_data *data,
7320 				struct perf_event *event)
7321 {
7322 	if (event->attr.sample_id_all) {
7323 		header->size += event->id_header_size;
7324 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7325 	}
7326 }
7327 
7328 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7329 					   struct perf_sample_data *data)
7330 {
7331 	u64 sample_type = data->type;
7332 
7333 	if (sample_type & PERF_SAMPLE_TID)
7334 		perf_output_put(handle, data->tid_entry);
7335 
7336 	if (sample_type & PERF_SAMPLE_TIME)
7337 		perf_output_put(handle, data->time);
7338 
7339 	if (sample_type & PERF_SAMPLE_ID)
7340 		perf_output_put(handle, data->id);
7341 
7342 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7343 		perf_output_put(handle, data->stream_id);
7344 
7345 	if (sample_type & PERF_SAMPLE_CPU)
7346 		perf_output_put(handle, data->cpu_entry);
7347 
7348 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7349 		perf_output_put(handle, data->id);
7350 }
7351 
7352 void perf_event__output_id_sample(struct perf_event *event,
7353 				  struct perf_output_handle *handle,
7354 				  struct perf_sample_data *sample)
7355 {
7356 	if (event->attr.sample_id_all)
7357 		__perf_event__output_id_sample(handle, sample);
7358 }
7359 
7360 static void perf_output_read_one(struct perf_output_handle *handle,
7361 				 struct perf_event *event,
7362 				 u64 enabled, u64 running)
7363 {
7364 	u64 read_format = event->attr.read_format;
7365 	u64 values[5];
7366 	int n = 0;
7367 
7368 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7369 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7370 		values[n++] = enabled +
7371 			atomic64_read(&event->child_total_time_enabled);
7372 	}
7373 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7374 		values[n++] = running +
7375 			atomic64_read(&event->child_total_time_running);
7376 	}
7377 	if (read_format & PERF_FORMAT_ID)
7378 		values[n++] = primary_event_id(event);
7379 	if (read_format & PERF_FORMAT_LOST)
7380 		values[n++] = atomic64_read(&event->lost_samples);
7381 
7382 	__output_copy(handle, values, n * sizeof(u64));
7383 }
7384 
7385 static void perf_output_read_group(struct perf_output_handle *handle,
7386 				   struct perf_event *event,
7387 				   u64 enabled, u64 running)
7388 {
7389 	struct perf_event *leader = event->group_leader, *sub;
7390 	u64 read_format = event->attr.read_format;
7391 	unsigned long flags;
7392 	u64 values[6];
7393 	int n = 0;
7394 	bool self = has_inherit_and_sample_read(&event->attr);
7395 
7396 	/*
7397 	 * Disabling interrupts avoids all counter scheduling
7398 	 * (context switches, timer based rotation and IPIs).
7399 	 */
7400 	local_irq_save(flags);
7401 
7402 	values[n++] = 1 + leader->nr_siblings;
7403 
7404 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7405 		values[n++] = enabled;
7406 
7407 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7408 		values[n++] = running;
7409 
7410 	if ((leader != event) &&
7411 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7412 		leader->pmu->read(leader);
7413 
7414 	values[n++] = perf_event_count(leader, self);
7415 	if (read_format & PERF_FORMAT_ID)
7416 		values[n++] = primary_event_id(leader);
7417 	if (read_format & PERF_FORMAT_LOST)
7418 		values[n++] = atomic64_read(&leader->lost_samples);
7419 
7420 	__output_copy(handle, values, n * sizeof(u64));
7421 
7422 	for_each_sibling_event(sub, leader) {
7423 		n = 0;
7424 
7425 		if ((sub != event) &&
7426 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7427 			sub->pmu->read(sub);
7428 
7429 		values[n++] = perf_event_count(sub, self);
7430 		if (read_format & PERF_FORMAT_ID)
7431 			values[n++] = primary_event_id(sub);
7432 		if (read_format & PERF_FORMAT_LOST)
7433 			values[n++] = atomic64_read(&sub->lost_samples);
7434 
7435 		__output_copy(handle, values, n * sizeof(u64));
7436 	}
7437 
7438 	local_irq_restore(flags);
7439 }
7440 
7441 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7442 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7443 
7444 /*
7445  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7446  *
7447  * The problem is that its both hard and excessively expensive to iterate the
7448  * child list, not to mention that its impossible to IPI the children running
7449  * on another CPU, from interrupt/NMI context.
7450  *
7451  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7452  * counts rather than attempting to accumulate some value across all children on
7453  * all cores.
7454  */
7455 static void perf_output_read(struct perf_output_handle *handle,
7456 			     struct perf_event *event)
7457 {
7458 	u64 enabled = 0, running = 0, now;
7459 	u64 read_format = event->attr.read_format;
7460 
7461 	/*
7462 	 * compute total_time_enabled, total_time_running
7463 	 * based on snapshot values taken when the event
7464 	 * was last scheduled in.
7465 	 *
7466 	 * we cannot simply called update_context_time()
7467 	 * because of locking issue as we are called in
7468 	 * NMI context
7469 	 */
7470 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7471 		calc_timer_values(event, &now, &enabled, &running);
7472 
7473 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7474 		perf_output_read_group(handle, event, enabled, running);
7475 	else
7476 		perf_output_read_one(handle, event, enabled, running);
7477 }
7478 
7479 void perf_output_sample(struct perf_output_handle *handle,
7480 			struct perf_event_header *header,
7481 			struct perf_sample_data *data,
7482 			struct perf_event *event)
7483 {
7484 	u64 sample_type = data->type;
7485 
7486 	perf_output_put(handle, *header);
7487 
7488 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7489 		perf_output_put(handle, data->id);
7490 
7491 	if (sample_type & PERF_SAMPLE_IP)
7492 		perf_output_put(handle, data->ip);
7493 
7494 	if (sample_type & PERF_SAMPLE_TID)
7495 		perf_output_put(handle, data->tid_entry);
7496 
7497 	if (sample_type & PERF_SAMPLE_TIME)
7498 		perf_output_put(handle, data->time);
7499 
7500 	if (sample_type & PERF_SAMPLE_ADDR)
7501 		perf_output_put(handle, data->addr);
7502 
7503 	if (sample_type & PERF_SAMPLE_ID)
7504 		perf_output_put(handle, data->id);
7505 
7506 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7507 		perf_output_put(handle, data->stream_id);
7508 
7509 	if (sample_type & PERF_SAMPLE_CPU)
7510 		perf_output_put(handle, data->cpu_entry);
7511 
7512 	if (sample_type & PERF_SAMPLE_PERIOD)
7513 		perf_output_put(handle, data->period);
7514 
7515 	if (sample_type & PERF_SAMPLE_READ)
7516 		perf_output_read(handle, event);
7517 
7518 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7519 		int size = 1;
7520 
7521 		size += data->callchain->nr;
7522 		size *= sizeof(u64);
7523 		__output_copy(handle, data->callchain, size);
7524 	}
7525 
7526 	if (sample_type & PERF_SAMPLE_RAW) {
7527 		struct perf_raw_record *raw = data->raw;
7528 
7529 		if (raw) {
7530 			struct perf_raw_frag *frag = &raw->frag;
7531 
7532 			perf_output_put(handle, raw->size);
7533 			do {
7534 				if (frag->copy) {
7535 					__output_custom(handle, frag->copy,
7536 							frag->data, frag->size);
7537 				} else {
7538 					__output_copy(handle, frag->data,
7539 						      frag->size);
7540 				}
7541 				if (perf_raw_frag_last(frag))
7542 					break;
7543 				frag = frag->next;
7544 			} while (1);
7545 			if (frag->pad)
7546 				__output_skip(handle, NULL, frag->pad);
7547 		} else {
7548 			struct {
7549 				u32	size;
7550 				u32	data;
7551 			} raw = {
7552 				.size = sizeof(u32),
7553 				.data = 0,
7554 			};
7555 			perf_output_put(handle, raw);
7556 		}
7557 	}
7558 
7559 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7560 		if (data->br_stack) {
7561 			size_t size;
7562 
7563 			size = data->br_stack->nr
7564 			     * sizeof(struct perf_branch_entry);
7565 
7566 			perf_output_put(handle, data->br_stack->nr);
7567 			if (branch_sample_hw_index(event))
7568 				perf_output_put(handle, data->br_stack->hw_idx);
7569 			perf_output_copy(handle, data->br_stack->entries, size);
7570 			/*
7571 			 * Add the extension space which is appended
7572 			 * right after the struct perf_branch_stack.
7573 			 */
7574 			if (data->br_stack_cntr) {
7575 				size = data->br_stack->nr * sizeof(u64);
7576 				perf_output_copy(handle, data->br_stack_cntr, size);
7577 			}
7578 		} else {
7579 			/*
7580 			 * we always store at least the value of nr
7581 			 */
7582 			u64 nr = 0;
7583 			perf_output_put(handle, nr);
7584 		}
7585 	}
7586 
7587 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7588 		u64 abi = data->regs_user.abi;
7589 
7590 		/*
7591 		 * If there are no regs to dump, notice it through
7592 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7593 		 */
7594 		perf_output_put(handle, abi);
7595 
7596 		if (abi) {
7597 			u64 mask = event->attr.sample_regs_user;
7598 			perf_output_sample_regs(handle,
7599 						data->regs_user.regs,
7600 						mask);
7601 		}
7602 	}
7603 
7604 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7605 		perf_output_sample_ustack(handle,
7606 					  data->stack_user_size,
7607 					  data->regs_user.regs);
7608 	}
7609 
7610 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7611 		perf_output_put(handle, data->weight.full);
7612 
7613 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7614 		perf_output_put(handle, data->data_src.val);
7615 
7616 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7617 		perf_output_put(handle, data->txn);
7618 
7619 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7620 		u64 abi = data->regs_intr.abi;
7621 		/*
7622 		 * If there are no regs to dump, notice it through
7623 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7624 		 */
7625 		perf_output_put(handle, abi);
7626 
7627 		if (abi) {
7628 			u64 mask = event->attr.sample_regs_intr;
7629 
7630 			perf_output_sample_regs(handle,
7631 						data->regs_intr.regs,
7632 						mask);
7633 		}
7634 	}
7635 
7636 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7637 		perf_output_put(handle, data->phys_addr);
7638 
7639 	if (sample_type & PERF_SAMPLE_CGROUP)
7640 		perf_output_put(handle, data->cgroup);
7641 
7642 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7643 		perf_output_put(handle, data->data_page_size);
7644 
7645 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7646 		perf_output_put(handle, data->code_page_size);
7647 
7648 	if (sample_type & PERF_SAMPLE_AUX) {
7649 		perf_output_put(handle, data->aux_size);
7650 
7651 		if (data->aux_size)
7652 			perf_aux_sample_output(event, handle, data);
7653 	}
7654 
7655 	if (!event->attr.watermark) {
7656 		int wakeup_events = event->attr.wakeup_events;
7657 
7658 		if (wakeup_events) {
7659 			struct perf_buffer *rb = handle->rb;
7660 			int events = local_inc_return(&rb->events);
7661 
7662 			if (events >= wakeup_events) {
7663 				local_sub(wakeup_events, &rb->events);
7664 				local_inc(&rb->wakeup);
7665 			}
7666 		}
7667 	}
7668 }
7669 
7670 static u64 perf_virt_to_phys(u64 virt)
7671 {
7672 	u64 phys_addr = 0;
7673 
7674 	if (!virt)
7675 		return 0;
7676 
7677 	if (virt >= TASK_SIZE) {
7678 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7679 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7680 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7681 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7682 	} else {
7683 		/*
7684 		 * Walking the pages tables for user address.
7685 		 * Interrupts are disabled, so it prevents any tear down
7686 		 * of the page tables.
7687 		 * Try IRQ-safe get_user_page_fast_only first.
7688 		 * If failed, leave phys_addr as 0.
7689 		 */
7690 		if (current->mm != NULL) {
7691 			struct page *p;
7692 
7693 			pagefault_disable();
7694 			if (get_user_page_fast_only(virt, 0, &p)) {
7695 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7696 				put_page(p);
7697 			}
7698 			pagefault_enable();
7699 		}
7700 	}
7701 
7702 	return phys_addr;
7703 }
7704 
7705 /*
7706  * Return the pagetable size of a given virtual address.
7707  */
7708 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7709 {
7710 	u64 size = 0;
7711 
7712 #ifdef CONFIG_HAVE_GUP_FAST
7713 	pgd_t *pgdp, pgd;
7714 	p4d_t *p4dp, p4d;
7715 	pud_t *pudp, pud;
7716 	pmd_t *pmdp, pmd;
7717 	pte_t *ptep, pte;
7718 
7719 	pgdp = pgd_offset(mm, addr);
7720 	pgd = READ_ONCE(*pgdp);
7721 	if (pgd_none(pgd))
7722 		return 0;
7723 
7724 	if (pgd_leaf(pgd))
7725 		return pgd_leaf_size(pgd);
7726 
7727 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7728 	p4d = READ_ONCE(*p4dp);
7729 	if (!p4d_present(p4d))
7730 		return 0;
7731 
7732 	if (p4d_leaf(p4d))
7733 		return p4d_leaf_size(p4d);
7734 
7735 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7736 	pud = READ_ONCE(*pudp);
7737 	if (!pud_present(pud))
7738 		return 0;
7739 
7740 	if (pud_leaf(pud))
7741 		return pud_leaf_size(pud);
7742 
7743 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7744 again:
7745 	pmd = pmdp_get_lockless(pmdp);
7746 	if (!pmd_present(pmd))
7747 		return 0;
7748 
7749 	if (pmd_leaf(pmd))
7750 		return pmd_leaf_size(pmd);
7751 
7752 	ptep = pte_offset_map(&pmd, addr);
7753 	if (!ptep)
7754 		goto again;
7755 
7756 	pte = ptep_get_lockless(ptep);
7757 	if (pte_present(pte))
7758 		size = __pte_leaf_size(pmd, pte);
7759 	pte_unmap(ptep);
7760 #endif /* CONFIG_HAVE_GUP_FAST */
7761 
7762 	return size;
7763 }
7764 
7765 static u64 perf_get_page_size(unsigned long addr)
7766 {
7767 	struct mm_struct *mm;
7768 	unsigned long flags;
7769 	u64 size;
7770 
7771 	if (!addr)
7772 		return 0;
7773 
7774 	/*
7775 	 * Software page-table walkers must disable IRQs,
7776 	 * which prevents any tear down of the page tables.
7777 	 */
7778 	local_irq_save(flags);
7779 
7780 	mm = current->mm;
7781 	if (!mm) {
7782 		/*
7783 		 * For kernel threads and the like, use init_mm so that
7784 		 * we can find kernel memory.
7785 		 */
7786 		mm = &init_mm;
7787 	}
7788 
7789 	size = perf_get_pgtable_size(mm, addr);
7790 
7791 	local_irq_restore(flags);
7792 
7793 	return size;
7794 }
7795 
7796 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7797 
7798 struct perf_callchain_entry *
7799 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7800 {
7801 	bool kernel = !event->attr.exclude_callchain_kernel;
7802 	bool user   = !event->attr.exclude_callchain_user;
7803 	/* Disallow cross-task user callchains. */
7804 	bool crosstask = event->ctx->task && event->ctx->task != current;
7805 	const u32 max_stack = event->attr.sample_max_stack;
7806 	struct perf_callchain_entry *callchain;
7807 
7808 	if (!kernel && !user)
7809 		return &__empty_callchain;
7810 
7811 	callchain = get_perf_callchain(regs, 0, kernel, user,
7812 				       max_stack, crosstask, true);
7813 	return callchain ?: &__empty_callchain;
7814 }
7815 
7816 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7817 {
7818 	return d * !!(flags & s);
7819 }
7820 
7821 void perf_prepare_sample(struct perf_sample_data *data,
7822 			 struct perf_event *event,
7823 			 struct pt_regs *regs)
7824 {
7825 	u64 sample_type = event->attr.sample_type;
7826 	u64 filtered_sample_type;
7827 
7828 	/*
7829 	 * Add the sample flags that are dependent to others.  And clear the
7830 	 * sample flags that have already been done by the PMU driver.
7831 	 */
7832 	filtered_sample_type = sample_type;
7833 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7834 					   PERF_SAMPLE_IP);
7835 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7836 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7837 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7838 					   PERF_SAMPLE_REGS_USER);
7839 	filtered_sample_type &= ~data->sample_flags;
7840 
7841 	if (filtered_sample_type == 0) {
7842 		/* Make sure it has the correct data->type for output */
7843 		data->type = event->attr.sample_type;
7844 		return;
7845 	}
7846 
7847 	__perf_event_header__init_id(data, event, filtered_sample_type);
7848 
7849 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7850 		data->ip = perf_instruction_pointer(event, regs);
7851 		data->sample_flags |= PERF_SAMPLE_IP;
7852 	}
7853 
7854 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7855 		perf_sample_save_callchain(data, event, regs);
7856 
7857 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7858 		data->raw = NULL;
7859 		data->dyn_size += sizeof(u64);
7860 		data->sample_flags |= PERF_SAMPLE_RAW;
7861 	}
7862 
7863 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7864 		data->br_stack = NULL;
7865 		data->dyn_size += sizeof(u64);
7866 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7867 	}
7868 
7869 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7870 		perf_sample_regs_user(&data->regs_user, regs);
7871 
7872 	/*
7873 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7874 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7875 	 * the dyn_size if it's not requested by users.
7876 	 */
7877 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7878 		/* regs dump ABI info */
7879 		int size = sizeof(u64);
7880 
7881 		if (data->regs_user.regs) {
7882 			u64 mask = event->attr.sample_regs_user;
7883 			size += hweight64(mask) * sizeof(u64);
7884 		}
7885 
7886 		data->dyn_size += size;
7887 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7888 	}
7889 
7890 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7891 		/*
7892 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7893 		 * processed as the last one or have additional check added
7894 		 * in case new sample type is added, because we could eat
7895 		 * up the rest of the sample size.
7896 		 */
7897 		u16 stack_size = event->attr.sample_stack_user;
7898 		u16 header_size = perf_sample_data_size(data, event);
7899 		u16 size = sizeof(u64);
7900 
7901 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7902 						     data->regs_user.regs);
7903 
7904 		/*
7905 		 * If there is something to dump, add space for the dump
7906 		 * itself and for the field that tells the dynamic size,
7907 		 * which is how many have been actually dumped.
7908 		 */
7909 		if (stack_size)
7910 			size += sizeof(u64) + stack_size;
7911 
7912 		data->stack_user_size = stack_size;
7913 		data->dyn_size += size;
7914 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7915 	}
7916 
7917 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7918 		data->weight.full = 0;
7919 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7920 	}
7921 
7922 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7923 		data->data_src.val = PERF_MEM_NA;
7924 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7925 	}
7926 
7927 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7928 		data->txn = 0;
7929 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7930 	}
7931 
7932 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7933 		data->addr = 0;
7934 		data->sample_flags |= PERF_SAMPLE_ADDR;
7935 	}
7936 
7937 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7938 		/* regs dump ABI info */
7939 		int size = sizeof(u64);
7940 
7941 		perf_sample_regs_intr(&data->regs_intr, regs);
7942 
7943 		if (data->regs_intr.regs) {
7944 			u64 mask = event->attr.sample_regs_intr;
7945 
7946 			size += hweight64(mask) * sizeof(u64);
7947 		}
7948 
7949 		data->dyn_size += size;
7950 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7951 	}
7952 
7953 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7954 		data->phys_addr = perf_virt_to_phys(data->addr);
7955 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7956 	}
7957 
7958 #ifdef CONFIG_CGROUP_PERF
7959 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7960 		struct cgroup *cgrp;
7961 
7962 		/* protected by RCU */
7963 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7964 		data->cgroup = cgroup_id(cgrp);
7965 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7966 	}
7967 #endif
7968 
7969 	/*
7970 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7971 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7972 	 * but the value will not dump to the userspace.
7973 	 */
7974 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7975 		data->data_page_size = perf_get_page_size(data->addr);
7976 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7977 	}
7978 
7979 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7980 		data->code_page_size = perf_get_page_size(data->ip);
7981 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7982 	}
7983 
7984 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7985 		u64 size;
7986 		u16 header_size = perf_sample_data_size(data, event);
7987 
7988 		header_size += sizeof(u64); /* size */
7989 
7990 		/*
7991 		 * Given the 16bit nature of header::size, an AUX sample can
7992 		 * easily overflow it, what with all the preceding sample bits.
7993 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7994 		 * per sample in total (rounded down to 8 byte boundary).
7995 		 */
7996 		size = min_t(size_t, U16_MAX - header_size,
7997 			     event->attr.aux_sample_size);
7998 		size = rounddown(size, 8);
7999 		size = perf_prepare_sample_aux(event, data, size);
8000 
8001 		WARN_ON_ONCE(size + header_size > U16_MAX);
8002 		data->dyn_size += size + sizeof(u64); /* size above */
8003 		data->sample_flags |= PERF_SAMPLE_AUX;
8004 	}
8005 }
8006 
8007 void perf_prepare_header(struct perf_event_header *header,
8008 			 struct perf_sample_data *data,
8009 			 struct perf_event *event,
8010 			 struct pt_regs *regs)
8011 {
8012 	header->type = PERF_RECORD_SAMPLE;
8013 	header->size = perf_sample_data_size(data, event);
8014 	header->misc = perf_misc_flags(event, regs);
8015 
8016 	/*
8017 	 * If you're adding more sample types here, you likely need to do
8018 	 * something about the overflowing header::size, like repurpose the
8019 	 * lowest 3 bits of size, which should be always zero at the moment.
8020 	 * This raises a more important question, do we really need 512k sized
8021 	 * samples and why, so good argumentation is in order for whatever you
8022 	 * do here next.
8023 	 */
8024 	WARN_ON_ONCE(header->size & 7);
8025 }
8026 
8027 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8028 {
8029 	if (pause) {
8030 		if (!event->hw.aux_paused) {
8031 			event->hw.aux_paused = 1;
8032 			event->pmu->stop(event, PERF_EF_PAUSE);
8033 		}
8034 	} else {
8035 		if (event->hw.aux_paused) {
8036 			event->hw.aux_paused = 0;
8037 			event->pmu->start(event, PERF_EF_RESUME);
8038 		}
8039 	}
8040 }
8041 
8042 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8043 {
8044 	struct perf_buffer *rb;
8045 
8046 	if (WARN_ON_ONCE(!event))
8047 		return;
8048 
8049 	rb = ring_buffer_get(event);
8050 	if (!rb)
8051 		return;
8052 
8053 	scoped_guard (irqsave) {
8054 		/*
8055 		 * Guard against self-recursion here. Another event could trip
8056 		 * this same from NMI context.
8057 		 */
8058 		if (READ_ONCE(rb->aux_in_pause_resume))
8059 			break;
8060 
8061 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8062 		barrier();
8063 		__perf_event_aux_pause(event, pause);
8064 		barrier();
8065 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8066 	}
8067 	ring_buffer_put(rb);
8068 }
8069 
8070 static __always_inline int
8071 __perf_event_output(struct perf_event *event,
8072 		    struct perf_sample_data *data,
8073 		    struct pt_regs *regs,
8074 		    int (*output_begin)(struct perf_output_handle *,
8075 					struct perf_sample_data *,
8076 					struct perf_event *,
8077 					unsigned int))
8078 {
8079 	struct perf_output_handle handle;
8080 	struct perf_event_header header;
8081 	int err;
8082 
8083 	/* protect the callchain buffers */
8084 	rcu_read_lock();
8085 
8086 	perf_prepare_sample(data, event, regs);
8087 	perf_prepare_header(&header, data, event, regs);
8088 
8089 	err = output_begin(&handle, data, event, header.size);
8090 	if (err)
8091 		goto exit;
8092 
8093 	perf_output_sample(&handle, &header, data, event);
8094 
8095 	perf_output_end(&handle);
8096 
8097 exit:
8098 	rcu_read_unlock();
8099 	return err;
8100 }
8101 
8102 void
8103 perf_event_output_forward(struct perf_event *event,
8104 			 struct perf_sample_data *data,
8105 			 struct pt_regs *regs)
8106 {
8107 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8108 }
8109 
8110 void
8111 perf_event_output_backward(struct perf_event *event,
8112 			   struct perf_sample_data *data,
8113 			   struct pt_regs *regs)
8114 {
8115 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8116 }
8117 
8118 int
8119 perf_event_output(struct perf_event *event,
8120 		  struct perf_sample_data *data,
8121 		  struct pt_regs *regs)
8122 {
8123 	return __perf_event_output(event, data, regs, perf_output_begin);
8124 }
8125 
8126 /*
8127  * read event_id
8128  */
8129 
8130 struct perf_read_event {
8131 	struct perf_event_header	header;
8132 
8133 	u32				pid;
8134 	u32				tid;
8135 };
8136 
8137 static void
8138 perf_event_read_event(struct perf_event *event,
8139 			struct task_struct *task)
8140 {
8141 	struct perf_output_handle handle;
8142 	struct perf_sample_data sample;
8143 	struct perf_read_event read_event = {
8144 		.header = {
8145 			.type = PERF_RECORD_READ,
8146 			.misc = 0,
8147 			.size = sizeof(read_event) + event->read_size,
8148 		},
8149 		.pid = perf_event_pid(event, task),
8150 		.tid = perf_event_tid(event, task),
8151 	};
8152 	int ret;
8153 
8154 	perf_event_header__init_id(&read_event.header, &sample, event);
8155 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8156 	if (ret)
8157 		return;
8158 
8159 	perf_output_put(&handle, read_event);
8160 	perf_output_read(&handle, event);
8161 	perf_event__output_id_sample(event, &handle, &sample);
8162 
8163 	perf_output_end(&handle);
8164 }
8165 
8166 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8167 
8168 static void
8169 perf_iterate_ctx(struct perf_event_context *ctx,
8170 		   perf_iterate_f output,
8171 		   void *data, bool all)
8172 {
8173 	struct perf_event *event;
8174 
8175 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8176 		if (!all) {
8177 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8178 				continue;
8179 			if (!event_filter_match(event))
8180 				continue;
8181 		}
8182 
8183 		output(event, data);
8184 	}
8185 }
8186 
8187 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8188 {
8189 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8190 	struct perf_event *event;
8191 
8192 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8193 		/*
8194 		 * Skip events that are not fully formed yet; ensure that
8195 		 * if we observe event->ctx, both event and ctx will be
8196 		 * complete enough. See perf_install_in_context().
8197 		 */
8198 		if (!smp_load_acquire(&event->ctx))
8199 			continue;
8200 
8201 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8202 			continue;
8203 		if (!event_filter_match(event))
8204 			continue;
8205 		output(event, data);
8206 	}
8207 }
8208 
8209 /*
8210  * Iterate all events that need to receive side-band events.
8211  *
8212  * For new callers; ensure that account_pmu_sb_event() includes
8213  * your event, otherwise it might not get delivered.
8214  */
8215 static void
8216 perf_iterate_sb(perf_iterate_f output, void *data,
8217 	       struct perf_event_context *task_ctx)
8218 {
8219 	struct perf_event_context *ctx;
8220 
8221 	rcu_read_lock();
8222 	preempt_disable();
8223 
8224 	/*
8225 	 * If we have task_ctx != NULL we only notify the task context itself.
8226 	 * The task_ctx is set only for EXIT events before releasing task
8227 	 * context.
8228 	 */
8229 	if (task_ctx) {
8230 		perf_iterate_ctx(task_ctx, output, data, false);
8231 		goto done;
8232 	}
8233 
8234 	perf_iterate_sb_cpu(output, data);
8235 
8236 	ctx = rcu_dereference(current->perf_event_ctxp);
8237 	if (ctx)
8238 		perf_iterate_ctx(ctx, output, data, false);
8239 done:
8240 	preempt_enable();
8241 	rcu_read_unlock();
8242 }
8243 
8244 /*
8245  * Clear all file-based filters at exec, they'll have to be
8246  * re-instated when/if these objects are mmapped again.
8247  */
8248 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8249 {
8250 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8251 	struct perf_addr_filter *filter;
8252 	unsigned int restart = 0, count = 0;
8253 	unsigned long flags;
8254 
8255 	if (!has_addr_filter(event))
8256 		return;
8257 
8258 	raw_spin_lock_irqsave(&ifh->lock, flags);
8259 	list_for_each_entry(filter, &ifh->list, entry) {
8260 		if (filter->path.dentry) {
8261 			event->addr_filter_ranges[count].start = 0;
8262 			event->addr_filter_ranges[count].size = 0;
8263 			restart++;
8264 		}
8265 
8266 		count++;
8267 	}
8268 
8269 	if (restart)
8270 		event->addr_filters_gen++;
8271 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8272 
8273 	if (restart)
8274 		perf_event_stop(event, 1);
8275 }
8276 
8277 void perf_event_exec(void)
8278 {
8279 	struct perf_event_context *ctx;
8280 
8281 	ctx = perf_pin_task_context(current);
8282 	if (!ctx)
8283 		return;
8284 
8285 	perf_event_enable_on_exec(ctx);
8286 	perf_event_remove_on_exec(ctx);
8287 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8288 
8289 	perf_unpin_context(ctx);
8290 	put_ctx(ctx);
8291 }
8292 
8293 struct remote_output {
8294 	struct perf_buffer	*rb;
8295 	int			err;
8296 };
8297 
8298 static void __perf_event_output_stop(struct perf_event *event, void *data)
8299 {
8300 	struct perf_event *parent = event->parent;
8301 	struct remote_output *ro = data;
8302 	struct perf_buffer *rb = ro->rb;
8303 	struct stop_event_data sd = {
8304 		.event	= event,
8305 	};
8306 
8307 	if (!has_aux(event))
8308 		return;
8309 
8310 	if (!parent)
8311 		parent = event;
8312 
8313 	/*
8314 	 * In case of inheritance, it will be the parent that links to the
8315 	 * ring-buffer, but it will be the child that's actually using it.
8316 	 *
8317 	 * We are using event::rb to determine if the event should be stopped,
8318 	 * however this may race with ring_buffer_attach() (through set_output),
8319 	 * which will make us skip the event that actually needs to be stopped.
8320 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8321 	 * its rb pointer.
8322 	 */
8323 	if (rcu_dereference(parent->rb) == rb)
8324 		ro->err = __perf_event_stop(&sd);
8325 }
8326 
8327 static int __perf_pmu_output_stop(void *info)
8328 {
8329 	struct perf_event *event = info;
8330 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8331 	struct remote_output ro = {
8332 		.rb	= event->rb,
8333 	};
8334 
8335 	rcu_read_lock();
8336 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8337 	if (cpuctx->task_ctx)
8338 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8339 				   &ro, false);
8340 	rcu_read_unlock();
8341 
8342 	return ro.err;
8343 }
8344 
8345 static void perf_pmu_output_stop(struct perf_event *event)
8346 {
8347 	struct perf_event *iter;
8348 	int err, cpu;
8349 
8350 restart:
8351 	rcu_read_lock();
8352 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8353 		/*
8354 		 * For per-CPU events, we need to make sure that neither they
8355 		 * nor their children are running; for cpu==-1 events it's
8356 		 * sufficient to stop the event itself if it's active, since
8357 		 * it can't have children.
8358 		 */
8359 		cpu = iter->cpu;
8360 		if (cpu == -1)
8361 			cpu = READ_ONCE(iter->oncpu);
8362 
8363 		if (cpu == -1)
8364 			continue;
8365 
8366 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8367 		if (err == -EAGAIN) {
8368 			rcu_read_unlock();
8369 			goto restart;
8370 		}
8371 	}
8372 	rcu_read_unlock();
8373 }
8374 
8375 /*
8376  * task tracking -- fork/exit
8377  *
8378  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8379  */
8380 
8381 struct perf_task_event {
8382 	struct task_struct		*task;
8383 	struct perf_event_context	*task_ctx;
8384 
8385 	struct {
8386 		struct perf_event_header	header;
8387 
8388 		u32				pid;
8389 		u32				ppid;
8390 		u32				tid;
8391 		u32				ptid;
8392 		u64				time;
8393 	} event_id;
8394 };
8395 
8396 static int perf_event_task_match(struct perf_event *event)
8397 {
8398 	return event->attr.comm  || event->attr.mmap ||
8399 	       event->attr.mmap2 || event->attr.mmap_data ||
8400 	       event->attr.task;
8401 }
8402 
8403 static void perf_event_task_output(struct perf_event *event,
8404 				   void *data)
8405 {
8406 	struct perf_task_event *task_event = data;
8407 	struct perf_output_handle handle;
8408 	struct perf_sample_data	sample;
8409 	struct task_struct *task = task_event->task;
8410 	int ret, size = task_event->event_id.header.size;
8411 
8412 	if (!perf_event_task_match(event))
8413 		return;
8414 
8415 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8416 
8417 	ret = perf_output_begin(&handle, &sample, event,
8418 				task_event->event_id.header.size);
8419 	if (ret)
8420 		goto out;
8421 
8422 	task_event->event_id.pid = perf_event_pid(event, task);
8423 	task_event->event_id.tid = perf_event_tid(event, task);
8424 
8425 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8426 		task_event->event_id.ppid = perf_event_pid(event,
8427 							task->real_parent);
8428 		task_event->event_id.ptid = perf_event_pid(event,
8429 							task->real_parent);
8430 	} else {  /* PERF_RECORD_FORK */
8431 		task_event->event_id.ppid = perf_event_pid(event, current);
8432 		task_event->event_id.ptid = perf_event_tid(event, current);
8433 	}
8434 
8435 	task_event->event_id.time = perf_event_clock(event);
8436 
8437 	perf_output_put(&handle, task_event->event_id);
8438 
8439 	perf_event__output_id_sample(event, &handle, &sample);
8440 
8441 	perf_output_end(&handle);
8442 out:
8443 	task_event->event_id.header.size = size;
8444 }
8445 
8446 static void perf_event_task(struct task_struct *task,
8447 			      struct perf_event_context *task_ctx,
8448 			      int new)
8449 {
8450 	struct perf_task_event task_event;
8451 
8452 	if (!atomic_read(&nr_comm_events) &&
8453 	    !atomic_read(&nr_mmap_events) &&
8454 	    !atomic_read(&nr_task_events))
8455 		return;
8456 
8457 	task_event = (struct perf_task_event){
8458 		.task	  = task,
8459 		.task_ctx = task_ctx,
8460 		.event_id    = {
8461 			.header = {
8462 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8463 				.misc = 0,
8464 				.size = sizeof(task_event.event_id),
8465 			},
8466 			/* .pid  */
8467 			/* .ppid */
8468 			/* .tid  */
8469 			/* .ptid */
8470 			/* .time */
8471 		},
8472 	};
8473 
8474 	perf_iterate_sb(perf_event_task_output,
8475 		       &task_event,
8476 		       task_ctx);
8477 }
8478 
8479 void perf_event_fork(struct task_struct *task)
8480 {
8481 	perf_event_task(task, NULL, 1);
8482 	perf_event_namespaces(task);
8483 }
8484 
8485 /*
8486  * comm tracking
8487  */
8488 
8489 struct perf_comm_event {
8490 	struct task_struct	*task;
8491 	char			*comm;
8492 	int			comm_size;
8493 
8494 	struct {
8495 		struct perf_event_header	header;
8496 
8497 		u32				pid;
8498 		u32				tid;
8499 	} event_id;
8500 };
8501 
8502 static int perf_event_comm_match(struct perf_event *event)
8503 {
8504 	return event->attr.comm;
8505 }
8506 
8507 static void perf_event_comm_output(struct perf_event *event,
8508 				   void *data)
8509 {
8510 	struct perf_comm_event *comm_event = data;
8511 	struct perf_output_handle handle;
8512 	struct perf_sample_data sample;
8513 	int size = comm_event->event_id.header.size;
8514 	int ret;
8515 
8516 	if (!perf_event_comm_match(event))
8517 		return;
8518 
8519 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8520 	ret = perf_output_begin(&handle, &sample, event,
8521 				comm_event->event_id.header.size);
8522 
8523 	if (ret)
8524 		goto out;
8525 
8526 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8527 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8528 
8529 	perf_output_put(&handle, comm_event->event_id);
8530 	__output_copy(&handle, comm_event->comm,
8531 				   comm_event->comm_size);
8532 
8533 	perf_event__output_id_sample(event, &handle, &sample);
8534 
8535 	perf_output_end(&handle);
8536 out:
8537 	comm_event->event_id.header.size = size;
8538 }
8539 
8540 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8541 {
8542 	char comm[TASK_COMM_LEN];
8543 	unsigned int size;
8544 
8545 	memset(comm, 0, sizeof(comm));
8546 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8547 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8548 
8549 	comm_event->comm = comm;
8550 	comm_event->comm_size = size;
8551 
8552 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8553 
8554 	perf_iterate_sb(perf_event_comm_output,
8555 		       comm_event,
8556 		       NULL);
8557 }
8558 
8559 void perf_event_comm(struct task_struct *task, bool exec)
8560 {
8561 	struct perf_comm_event comm_event;
8562 
8563 	if (!atomic_read(&nr_comm_events))
8564 		return;
8565 
8566 	comm_event = (struct perf_comm_event){
8567 		.task	= task,
8568 		/* .comm      */
8569 		/* .comm_size */
8570 		.event_id  = {
8571 			.header = {
8572 				.type = PERF_RECORD_COMM,
8573 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8574 				/* .size */
8575 			},
8576 			/* .pid */
8577 			/* .tid */
8578 		},
8579 	};
8580 
8581 	perf_event_comm_event(&comm_event);
8582 }
8583 
8584 /*
8585  * namespaces tracking
8586  */
8587 
8588 struct perf_namespaces_event {
8589 	struct task_struct		*task;
8590 
8591 	struct {
8592 		struct perf_event_header	header;
8593 
8594 		u32				pid;
8595 		u32				tid;
8596 		u64				nr_namespaces;
8597 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8598 	} event_id;
8599 };
8600 
8601 static int perf_event_namespaces_match(struct perf_event *event)
8602 {
8603 	return event->attr.namespaces;
8604 }
8605 
8606 static void perf_event_namespaces_output(struct perf_event *event,
8607 					 void *data)
8608 {
8609 	struct perf_namespaces_event *namespaces_event = data;
8610 	struct perf_output_handle handle;
8611 	struct perf_sample_data sample;
8612 	u16 header_size = namespaces_event->event_id.header.size;
8613 	int ret;
8614 
8615 	if (!perf_event_namespaces_match(event))
8616 		return;
8617 
8618 	perf_event_header__init_id(&namespaces_event->event_id.header,
8619 				   &sample, event);
8620 	ret = perf_output_begin(&handle, &sample, event,
8621 				namespaces_event->event_id.header.size);
8622 	if (ret)
8623 		goto out;
8624 
8625 	namespaces_event->event_id.pid = perf_event_pid(event,
8626 							namespaces_event->task);
8627 	namespaces_event->event_id.tid = perf_event_tid(event,
8628 							namespaces_event->task);
8629 
8630 	perf_output_put(&handle, namespaces_event->event_id);
8631 
8632 	perf_event__output_id_sample(event, &handle, &sample);
8633 
8634 	perf_output_end(&handle);
8635 out:
8636 	namespaces_event->event_id.header.size = header_size;
8637 }
8638 
8639 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8640 				   struct task_struct *task,
8641 				   const struct proc_ns_operations *ns_ops)
8642 {
8643 	struct path ns_path;
8644 	struct inode *ns_inode;
8645 	int error;
8646 
8647 	error = ns_get_path(&ns_path, task, ns_ops);
8648 	if (!error) {
8649 		ns_inode = ns_path.dentry->d_inode;
8650 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8651 		ns_link_info->ino = ns_inode->i_ino;
8652 		path_put(&ns_path);
8653 	}
8654 }
8655 
8656 void perf_event_namespaces(struct task_struct *task)
8657 {
8658 	struct perf_namespaces_event namespaces_event;
8659 	struct perf_ns_link_info *ns_link_info;
8660 
8661 	if (!atomic_read(&nr_namespaces_events))
8662 		return;
8663 
8664 	namespaces_event = (struct perf_namespaces_event){
8665 		.task	= task,
8666 		.event_id  = {
8667 			.header = {
8668 				.type = PERF_RECORD_NAMESPACES,
8669 				.misc = 0,
8670 				.size = sizeof(namespaces_event.event_id),
8671 			},
8672 			/* .pid */
8673 			/* .tid */
8674 			.nr_namespaces = NR_NAMESPACES,
8675 			/* .link_info[NR_NAMESPACES] */
8676 		},
8677 	};
8678 
8679 	ns_link_info = namespaces_event.event_id.link_info;
8680 
8681 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8682 			       task, &mntns_operations);
8683 
8684 #ifdef CONFIG_USER_NS
8685 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8686 			       task, &userns_operations);
8687 #endif
8688 #ifdef CONFIG_NET_NS
8689 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8690 			       task, &netns_operations);
8691 #endif
8692 #ifdef CONFIG_UTS_NS
8693 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8694 			       task, &utsns_operations);
8695 #endif
8696 #ifdef CONFIG_IPC_NS
8697 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8698 			       task, &ipcns_operations);
8699 #endif
8700 #ifdef CONFIG_PID_NS
8701 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8702 			       task, &pidns_operations);
8703 #endif
8704 #ifdef CONFIG_CGROUPS
8705 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8706 			       task, &cgroupns_operations);
8707 #endif
8708 
8709 	perf_iterate_sb(perf_event_namespaces_output,
8710 			&namespaces_event,
8711 			NULL);
8712 }
8713 
8714 /*
8715  * cgroup tracking
8716  */
8717 #ifdef CONFIG_CGROUP_PERF
8718 
8719 struct perf_cgroup_event {
8720 	char				*path;
8721 	int				path_size;
8722 	struct {
8723 		struct perf_event_header	header;
8724 		u64				id;
8725 		char				path[];
8726 	} event_id;
8727 };
8728 
8729 static int perf_event_cgroup_match(struct perf_event *event)
8730 {
8731 	return event->attr.cgroup;
8732 }
8733 
8734 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8735 {
8736 	struct perf_cgroup_event *cgroup_event = data;
8737 	struct perf_output_handle handle;
8738 	struct perf_sample_data sample;
8739 	u16 header_size = cgroup_event->event_id.header.size;
8740 	int ret;
8741 
8742 	if (!perf_event_cgroup_match(event))
8743 		return;
8744 
8745 	perf_event_header__init_id(&cgroup_event->event_id.header,
8746 				   &sample, event);
8747 	ret = perf_output_begin(&handle, &sample, event,
8748 				cgroup_event->event_id.header.size);
8749 	if (ret)
8750 		goto out;
8751 
8752 	perf_output_put(&handle, cgroup_event->event_id);
8753 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8754 
8755 	perf_event__output_id_sample(event, &handle, &sample);
8756 
8757 	perf_output_end(&handle);
8758 out:
8759 	cgroup_event->event_id.header.size = header_size;
8760 }
8761 
8762 static void perf_event_cgroup(struct cgroup *cgrp)
8763 {
8764 	struct perf_cgroup_event cgroup_event;
8765 	char path_enomem[16] = "//enomem";
8766 	char *pathname;
8767 	size_t size;
8768 
8769 	if (!atomic_read(&nr_cgroup_events))
8770 		return;
8771 
8772 	cgroup_event = (struct perf_cgroup_event){
8773 		.event_id  = {
8774 			.header = {
8775 				.type = PERF_RECORD_CGROUP,
8776 				.misc = 0,
8777 				.size = sizeof(cgroup_event.event_id),
8778 			},
8779 			.id = cgroup_id(cgrp),
8780 		},
8781 	};
8782 
8783 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8784 	if (pathname == NULL) {
8785 		cgroup_event.path = path_enomem;
8786 	} else {
8787 		/* just to be sure to have enough space for alignment */
8788 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8789 		cgroup_event.path = pathname;
8790 	}
8791 
8792 	/*
8793 	 * Since our buffer works in 8 byte units we need to align our string
8794 	 * size to a multiple of 8. However, we must guarantee the tail end is
8795 	 * zero'd out to avoid leaking random bits to userspace.
8796 	 */
8797 	size = strlen(cgroup_event.path) + 1;
8798 	while (!IS_ALIGNED(size, sizeof(u64)))
8799 		cgroup_event.path[size++] = '\0';
8800 
8801 	cgroup_event.event_id.header.size += size;
8802 	cgroup_event.path_size = size;
8803 
8804 	perf_iterate_sb(perf_event_cgroup_output,
8805 			&cgroup_event,
8806 			NULL);
8807 
8808 	kfree(pathname);
8809 }
8810 
8811 #endif
8812 
8813 /*
8814  * mmap tracking
8815  */
8816 
8817 struct perf_mmap_event {
8818 	struct vm_area_struct	*vma;
8819 
8820 	const char		*file_name;
8821 	int			file_size;
8822 	int			maj, min;
8823 	u64			ino;
8824 	u64			ino_generation;
8825 	u32			prot, flags;
8826 	u8			build_id[BUILD_ID_SIZE_MAX];
8827 	u32			build_id_size;
8828 
8829 	struct {
8830 		struct perf_event_header	header;
8831 
8832 		u32				pid;
8833 		u32				tid;
8834 		u64				start;
8835 		u64				len;
8836 		u64				pgoff;
8837 	} event_id;
8838 };
8839 
8840 static int perf_event_mmap_match(struct perf_event *event,
8841 				 void *data)
8842 {
8843 	struct perf_mmap_event *mmap_event = data;
8844 	struct vm_area_struct *vma = mmap_event->vma;
8845 	int executable = vma->vm_flags & VM_EXEC;
8846 
8847 	return (!executable && event->attr.mmap_data) ||
8848 	       (executable && (event->attr.mmap || event->attr.mmap2));
8849 }
8850 
8851 static void perf_event_mmap_output(struct perf_event *event,
8852 				   void *data)
8853 {
8854 	struct perf_mmap_event *mmap_event = data;
8855 	struct perf_output_handle handle;
8856 	struct perf_sample_data sample;
8857 	int size = mmap_event->event_id.header.size;
8858 	u32 type = mmap_event->event_id.header.type;
8859 	bool use_build_id;
8860 	int ret;
8861 
8862 	if (!perf_event_mmap_match(event, data))
8863 		return;
8864 
8865 	if (event->attr.mmap2) {
8866 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8867 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8868 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8869 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8870 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8871 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8872 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8873 	}
8874 
8875 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8876 	ret = perf_output_begin(&handle, &sample, event,
8877 				mmap_event->event_id.header.size);
8878 	if (ret)
8879 		goto out;
8880 
8881 	mmap_event->event_id.pid = perf_event_pid(event, current);
8882 	mmap_event->event_id.tid = perf_event_tid(event, current);
8883 
8884 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8885 
8886 	if (event->attr.mmap2 && use_build_id)
8887 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8888 
8889 	perf_output_put(&handle, mmap_event->event_id);
8890 
8891 	if (event->attr.mmap2) {
8892 		if (use_build_id) {
8893 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8894 
8895 			__output_copy(&handle, size, 4);
8896 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8897 		} else {
8898 			perf_output_put(&handle, mmap_event->maj);
8899 			perf_output_put(&handle, mmap_event->min);
8900 			perf_output_put(&handle, mmap_event->ino);
8901 			perf_output_put(&handle, mmap_event->ino_generation);
8902 		}
8903 		perf_output_put(&handle, mmap_event->prot);
8904 		perf_output_put(&handle, mmap_event->flags);
8905 	}
8906 
8907 	__output_copy(&handle, mmap_event->file_name,
8908 				   mmap_event->file_size);
8909 
8910 	perf_event__output_id_sample(event, &handle, &sample);
8911 
8912 	perf_output_end(&handle);
8913 out:
8914 	mmap_event->event_id.header.size = size;
8915 	mmap_event->event_id.header.type = type;
8916 }
8917 
8918 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8919 {
8920 	struct vm_area_struct *vma = mmap_event->vma;
8921 	struct file *file = vma->vm_file;
8922 	int maj = 0, min = 0;
8923 	u64 ino = 0, gen = 0;
8924 	u32 prot = 0, flags = 0;
8925 	unsigned int size;
8926 	char tmp[16];
8927 	char *buf = NULL;
8928 	char *name = NULL;
8929 
8930 	if (vma->vm_flags & VM_READ)
8931 		prot |= PROT_READ;
8932 	if (vma->vm_flags & VM_WRITE)
8933 		prot |= PROT_WRITE;
8934 	if (vma->vm_flags & VM_EXEC)
8935 		prot |= PROT_EXEC;
8936 
8937 	if (vma->vm_flags & VM_MAYSHARE)
8938 		flags = MAP_SHARED;
8939 	else
8940 		flags = MAP_PRIVATE;
8941 
8942 	if (vma->vm_flags & VM_LOCKED)
8943 		flags |= MAP_LOCKED;
8944 	if (is_vm_hugetlb_page(vma))
8945 		flags |= MAP_HUGETLB;
8946 
8947 	if (file) {
8948 		struct inode *inode;
8949 		dev_t dev;
8950 
8951 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8952 		if (!buf) {
8953 			name = "//enomem";
8954 			goto cpy_name;
8955 		}
8956 		/*
8957 		 * d_path() works from the end of the rb backwards, so we
8958 		 * need to add enough zero bytes after the string to handle
8959 		 * the 64bit alignment we do later.
8960 		 */
8961 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8962 		if (IS_ERR(name)) {
8963 			name = "//toolong";
8964 			goto cpy_name;
8965 		}
8966 		inode = file_inode(vma->vm_file);
8967 		dev = inode->i_sb->s_dev;
8968 		ino = inode->i_ino;
8969 		gen = inode->i_generation;
8970 		maj = MAJOR(dev);
8971 		min = MINOR(dev);
8972 
8973 		goto got_name;
8974 	} else {
8975 		if (vma->vm_ops && vma->vm_ops->name)
8976 			name = (char *) vma->vm_ops->name(vma);
8977 		if (!name)
8978 			name = (char *)arch_vma_name(vma);
8979 		if (!name) {
8980 			if (vma_is_initial_heap(vma))
8981 				name = "[heap]";
8982 			else if (vma_is_initial_stack(vma))
8983 				name = "[stack]";
8984 			else
8985 				name = "//anon";
8986 		}
8987 	}
8988 
8989 cpy_name:
8990 	strscpy(tmp, name, sizeof(tmp));
8991 	name = tmp;
8992 got_name:
8993 	/*
8994 	 * Since our buffer works in 8 byte units we need to align our string
8995 	 * size to a multiple of 8. However, we must guarantee the tail end is
8996 	 * zero'd out to avoid leaking random bits to userspace.
8997 	 */
8998 	size = strlen(name)+1;
8999 	while (!IS_ALIGNED(size, sizeof(u64)))
9000 		name[size++] = '\0';
9001 
9002 	mmap_event->file_name = name;
9003 	mmap_event->file_size = size;
9004 	mmap_event->maj = maj;
9005 	mmap_event->min = min;
9006 	mmap_event->ino = ino;
9007 	mmap_event->ino_generation = gen;
9008 	mmap_event->prot = prot;
9009 	mmap_event->flags = flags;
9010 
9011 	if (!(vma->vm_flags & VM_EXEC))
9012 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9013 
9014 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9015 
9016 	if (atomic_read(&nr_build_id_events))
9017 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9018 
9019 	perf_iterate_sb(perf_event_mmap_output,
9020 		       mmap_event,
9021 		       NULL);
9022 
9023 	kfree(buf);
9024 }
9025 
9026 /*
9027  * Check whether inode and address range match filter criteria.
9028  */
9029 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9030 				     struct file *file, unsigned long offset,
9031 				     unsigned long size)
9032 {
9033 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9034 	if (!filter->path.dentry)
9035 		return false;
9036 
9037 	if (d_inode(filter->path.dentry) != file_inode(file))
9038 		return false;
9039 
9040 	if (filter->offset > offset + size)
9041 		return false;
9042 
9043 	if (filter->offset + filter->size < offset)
9044 		return false;
9045 
9046 	return true;
9047 }
9048 
9049 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9050 					struct vm_area_struct *vma,
9051 					struct perf_addr_filter_range *fr)
9052 {
9053 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9054 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9055 	struct file *file = vma->vm_file;
9056 
9057 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9058 		return false;
9059 
9060 	if (filter->offset < off) {
9061 		fr->start = vma->vm_start;
9062 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9063 	} else {
9064 		fr->start = vma->vm_start + filter->offset - off;
9065 		fr->size = min(vma->vm_end - fr->start, filter->size);
9066 	}
9067 
9068 	return true;
9069 }
9070 
9071 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9072 {
9073 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9074 	struct vm_area_struct *vma = data;
9075 	struct perf_addr_filter *filter;
9076 	unsigned int restart = 0, count = 0;
9077 	unsigned long flags;
9078 
9079 	if (!has_addr_filter(event))
9080 		return;
9081 
9082 	if (!vma->vm_file)
9083 		return;
9084 
9085 	raw_spin_lock_irqsave(&ifh->lock, flags);
9086 	list_for_each_entry(filter, &ifh->list, entry) {
9087 		if (perf_addr_filter_vma_adjust(filter, vma,
9088 						&event->addr_filter_ranges[count]))
9089 			restart++;
9090 
9091 		count++;
9092 	}
9093 
9094 	if (restart)
9095 		event->addr_filters_gen++;
9096 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9097 
9098 	if (restart)
9099 		perf_event_stop(event, 1);
9100 }
9101 
9102 /*
9103  * Adjust all task's events' filters to the new vma
9104  */
9105 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9106 {
9107 	struct perf_event_context *ctx;
9108 
9109 	/*
9110 	 * Data tracing isn't supported yet and as such there is no need
9111 	 * to keep track of anything that isn't related to executable code:
9112 	 */
9113 	if (!(vma->vm_flags & VM_EXEC))
9114 		return;
9115 
9116 	rcu_read_lock();
9117 	ctx = rcu_dereference(current->perf_event_ctxp);
9118 	if (ctx)
9119 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9120 	rcu_read_unlock();
9121 }
9122 
9123 void perf_event_mmap(struct vm_area_struct *vma)
9124 {
9125 	struct perf_mmap_event mmap_event;
9126 
9127 	if (!atomic_read(&nr_mmap_events))
9128 		return;
9129 
9130 	mmap_event = (struct perf_mmap_event){
9131 		.vma	= vma,
9132 		/* .file_name */
9133 		/* .file_size */
9134 		.event_id  = {
9135 			.header = {
9136 				.type = PERF_RECORD_MMAP,
9137 				.misc = PERF_RECORD_MISC_USER,
9138 				/* .size */
9139 			},
9140 			/* .pid */
9141 			/* .tid */
9142 			.start  = vma->vm_start,
9143 			.len    = vma->vm_end - vma->vm_start,
9144 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9145 		},
9146 		/* .maj (attr_mmap2 only) */
9147 		/* .min (attr_mmap2 only) */
9148 		/* .ino (attr_mmap2 only) */
9149 		/* .ino_generation (attr_mmap2 only) */
9150 		/* .prot (attr_mmap2 only) */
9151 		/* .flags (attr_mmap2 only) */
9152 	};
9153 
9154 	perf_addr_filters_adjust(vma);
9155 	perf_event_mmap_event(&mmap_event);
9156 }
9157 
9158 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9159 			  unsigned long size, u64 flags)
9160 {
9161 	struct perf_output_handle handle;
9162 	struct perf_sample_data sample;
9163 	struct perf_aux_event {
9164 		struct perf_event_header	header;
9165 		u64				offset;
9166 		u64				size;
9167 		u64				flags;
9168 	} rec = {
9169 		.header = {
9170 			.type = PERF_RECORD_AUX,
9171 			.misc = 0,
9172 			.size = sizeof(rec),
9173 		},
9174 		.offset		= head,
9175 		.size		= size,
9176 		.flags		= flags,
9177 	};
9178 	int ret;
9179 
9180 	perf_event_header__init_id(&rec.header, &sample, event);
9181 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9182 
9183 	if (ret)
9184 		return;
9185 
9186 	perf_output_put(&handle, rec);
9187 	perf_event__output_id_sample(event, &handle, &sample);
9188 
9189 	perf_output_end(&handle);
9190 }
9191 
9192 /*
9193  * Lost/dropped samples logging
9194  */
9195 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9196 {
9197 	struct perf_output_handle handle;
9198 	struct perf_sample_data sample;
9199 	int ret;
9200 
9201 	struct {
9202 		struct perf_event_header	header;
9203 		u64				lost;
9204 	} lost_samples_event = {
9205 		.header = {
9206 			.type = PERF_RECORD_LOST_SAMPLES,
9207 			.misc = 0,
9208 			.size = sizeof(lost_samples_event),
9209 		},
9210 		.lost		= lost,
9211 	};
9212 
9213 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9214 
9215 	ret = perf_output_begin(&handle, &sample, event,
9216 				lost_samples_event.header.size);
9217 	if (ret)
9218 		return;
9219 
9220 	perf_output_put(&handle, lost_samples_event);
9221 	perf_event__output_id_sample(event, &handle, &sample);
9222 	perf_output_end(&handle);
9223 }
9224 
9225 /*
9226  * context_switch tracking
9227  */
9228 
9229 struct perf_switch_event {
9230 	struct task_struct	*task;
9231 	struct task_struct	*next_prev;
9232 
9233 	struct {
9234 		struct perf_event_header	header;
9235 		u32				next_prev_pid;
9236 		u32				next_prev_tid;
9237 	} event_id;
9238 };
9239 
9240 static int perf_event_switch_match(struct perf_event *event)
9241 {
9242 	return event->attr.context_switch;
9243 }
9244 
9245 static void perf_event_switch_output(struct perf_event *event, void *data)
9246 {
9247 	struct perf_switch_event *se = data;
9248 	struct perf_output_handle handle;
9249 	struct perf_sample_data sample;
9250 	int ret;
9251 
9252 	if (!perf_event_switch_match(event))
9253 		return;
9254 
9255 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9256 	if (event->ctx->task) {
9257 		se->event_id.header.type = PERF_RECORD_SWITCH;
9258 		se->event_id.header.size = sizeof(se->event_id.header);
9259 	} else {
9260 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9261 		se->event_id.header.size = sizeof(se->event_id);
9262 		se->event_id.next_prev_pid =
9263 					perf_event_pid(event, se->next_prev);
9264 		se->event_id.next_prev_tid =
9265 					perf_event_tid(event, se->next_prev);
9266 	}
9267 
9268 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9269 
9270 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9271 	if (ret)
9272 		return;
9273 
9274 	if (event->ctx->task)
9275 		perf_output_put(&handle, se->event_id.header);
9276 	else
9277 		perf_output_put(&handle, se->event_id);
9278 
9279 	perf_event__output_id_sample(event, &handle, &sample);
9280 
9281 	perf_output_end(&handle);
9282 }
9283 
9284 static void perf_event_switch(struct task_struct *task,
9285 			      struct task_struct *next_prev, bool sched_in)
9286 {
9287 	struct perf_switch_event switch_event;
9288 
9289 	/* N.B. caller checks nr_switch_events != 0 */
9290 
9291 	switch_event = (struct perf_switch_event){
9292 		.task		= task,
9293 		.next_prev	= next_prev,
9294 		.event_id	= {
9295 			.header = {
9296 				/* .type */
9297 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9298 				/* .size */
9299 			},
9300 			/* .next_prev_pid */
9301 			/* .next_prev_tid */
9302 		},
9303 	};
9304 
9305 	if (!sched_in && task_is_runnable(task)) {
9306 		switch_event.event_id.header.misc |=
9307 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9308 	}
9309 
9310 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9311 }
9312 
9313 /*
9314  * IRQ throttle logging
9315  */
9316 
9317 static void perf_log_throttle(struct perf_event *event, int enable)
9318 {
9319 	struct perf_output_handle handle;
9320 	struct perf_sample_data sample;
9321 	int ret;
9322 
9323 	struct {
9324 		struct perf_event_header	header;
9325 		u64				time;
9326 		u64				id;
9327 		u64				stream_id;
9328 	} throttle_event = {
9329 		.header = {
9330 			.type = PERF_RECORD_THROTTLE,
9331 			.misc = 0,
9332 			.size = sizeof(throttle_event),
9333 		},
9334 		.time		= perf_event_clock(event),
9335 		.id		= primary_event_id(event),
9336 		.stream_id	= event->id,
9337 	};
9338 
9339 	if (enable)
9340 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9341 
9342 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9343 
9344 	ret = perf_output_begin(&handle, &sample, event,
9345 				throttle_event.header.size);
9346 	if (ret)
9347 		return;
9348 
9349 	perf_output_put(&handle, throttle_event);
9350 	perf_event__output_id_sample(event, &handle, &sample);
9351 	perf_output_end(&handle);
9352 }
9353 
9354 /*
9355  * ksymbol register/unregister tracking
9356  */
9357 
9358 struct perf_ksymbol_event {
9359 	const char	*name;
9360 	int		name_len;
9361 	struct {
9362 		struct perf_event_header        header;
9363 		u64				addr;
9364 		u32				len;
9365 		u16				ksym_type;
9366 		u16				flags;
9367 	} event_id;
9368 };
9369 
9370 static int perf_event_ksymbol_match(struct perf_event *event)
9371 {
9372 	return event->attr.ksymbol;
9373 }
9374 
9375 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9376 {
9377 	struct perf_ksymbol_event *ksymbol_event = data;
9378 	struct perf_output_handle handle;
9379 	struct perf_sample_data sample;
9380 	int ret;
9381 
9382 	if (!perf_event_ksymbol_match(event))
9383 		return;
9384 
9385 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9386 				   &sample, event);
9387 	ret = perf_output_begin(&handle, &sample, event,
9388 				ksymbol_event->event_id.header.size);
9389 	if (ret)
9390 		return;
9391 
9392 	perf_output_put(&handle, ksymbol_event->event_id);
9393 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9394 	perf_event__output_id_sample(event, &handle, &sample);
9395 
9396 	perf_output_end(&handle);
9397 }
9398 
9399 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9400 			const char *sym)
9401 {
9402 	struct perf_ksymbol_event ksymbol_event;
9403 	char name[KSYM_NAME_LEN];
9404 	u16 flags = 0;
9405 	int name_len;
9406 
9407 	if (!atomic_read(&nr_ksymbol_events))
9408 		return;
9409 
9410 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9411 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9412 		goto err;
9413 
9414 	strscpy(name, sym, KSYM_NAME_LEN);
9415 	name_len = strlen(name) + 1;
9416 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9417 		name[name_len++] = '\0';
9418 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9419 
9420 	if (unregister)
9421 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9422 
9423 	ksymbol_event = (struct perf_ksymbol_event){
9424 		.name = name,
9425 		.name_len = name_len,
9426 		.event_id = {
9427 			.header = {
9428 				.type = PERF_RECORD_KSYMBOL,
9429 				.size = sizeof(ksymbol_event.event_id) +
9430 					name_len,
9431 			},
9432 			.addr = addr,
9433 			.len = len,
9434 			.ksym_type = ksym_type,
9435 			.flags = flags,
9436 		},
9437 	};
9438 
9439 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9440 	return;
9441 err:
9442 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9443 }
9444 
9445 /*
9446  * bpf program load/unload tracking
9447  */
9448 
9449 struct perf_bpf_event {
9450 	struct bpf_prog	*prog;
9451 	struct {
9452 		struct perf_event_header        header;
9453 		u16				type;
9454 		u16				flags;
9455 		u32				id;
9456 		u8				tag[BPF_TAG_SIZE];
9457 	} event_id;
9458 };
9459 
9460 static int perf_event_bpf_match(struct perf_event *event)
9461 {
9462 	return event->attr.bpf_event;
9463 }
9464 
9465 static void perf_event_bpf_output(struct perf_event *event, void *data)
9466 {
9467 	struct perf_bpf_event *bpf_event = data;
9468 	struct perf_output_handle handle;
9469 	struct perf_sample_data sample;
9470 	int ret;
9471 
9472 	if (!perf_event_bpf_match(event))
9473 		return;
9474 
9475 	perf_event_header__init_id(&bpf_event->event_id.header,
9476 				   &sample, event);
9477 	ret = perf_output_begin(&handle, &sample, event,
9478 				bpf_event->event_id.header.size);
9479 	if (ret)
9480 		return;
9481 
9482 	perf_output_put(&handle, bpf_event->event_id);
9483 	perf_event__output_id_sample(event, &handle, &sample);
9484 
9485 	perf_output_end(&handle);
9486 }
9487 
9488 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9489 					 enum perf_bpf_event_type type)
9490 {
9491 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9492 	int i;
9493 
9494 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9495 			   (u64)(unsigned long)prog->bpf_func,
9496 			   prog->jited_len, unregister,
9497 			   prog->aux->ksym.name);
9498 
9499 	for (i = 1; i < prog->aux->func_cnt; i++) {
9500 		struct bpf_prog *subprog = prog->aux->func[i];
9501 
9502 		perf_event_ksymbol(
9503 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9504 			(u64)(unsigned long)subprog->bpf_func,
9505 			subprog->jited_len, unregister,
9506 			subprog->aux->ksym.name);
9507 	}
9508 }
9509 
9510 void perf_event_bpf_event(struct bpf_prog *prog,
9511 			  enum perf_bpf_event_type type,
9512 			  u16 flags)
9513 {
9514 	struct perf_bpf_event bpf_event;
9515 
9516 	switch (type) {
9517 	case PERF_BPF_EVENT_PROG_LOAD:
9518 	case PERF_BPF_EVENT_PROG_UNLOAD:
9519 		if (atomic_read(&nr_ksymbol_events))
9520 			perf_event_bpf_emit_ksymbols(prog, type);
9521 		break;
9522 	default:
9523 		return;
9524 	}
9525 
9526 	if (!atomic_read(&nr_bpf_events))
9527 		return;
9528 
9529 	bpf_event = (struct perf_bpf_event){
9530 		.prog = prog,
9531 		.event_id = {
9532 			.header = {
9533 				.type = PERF_RECORD_BPF_EVENT,
9534 				.size = sizeof(bpf_event.event_id),
9535 			},
9536 			.type = type,
9537 			.flags = flags,
9538 			.id = prog->aux->id,
9539 		},
9540 	};
9541 
9542 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9543 
9544 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9545 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9546 }
9547 
9548 struct perf_text_poke_event {
9549 	const void		*old_bytes;
9550 	const void		*new_bytes;
9551 	size_t			pad;
9552 	u16			old_len;
9553 	u16			new_len;
9554 
9555 	struct {
9556 		struct perf_event_header	header;
9557 
9558 		u64				addr;
9559 	} event_id;
9560 };
9561 
9562 static int perf_event_text_poke_match(struct perf_event *event)
9563 {
9564 	return event->attr.text_poke;
9565 }
9566 
9567 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9568 {
9569 	struct perf_text_poke_event *text_poke_event = data;
9570 	struct perf_output_handle handle;
9571 	struct perf_sample_data sample;
9572 	u64 padding = 0;
9573 	int ret;
9574 
9575 	if (!perf_event_text_poke_match(event))
9576 		return;
9577 
9578 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9579 
9580 	ret = perf_output_begin(&handle, &sample, event,
9581 				text_poke_event->event_id.header.size);
9582 	if (ret)
9583 		return;
9584 
9585 	perf_output_put(&handle, text_poke_event->event_id);
9586 	perf_output_put(&handle, text_poke_event->old_len);
9587 	perf_output_put(&handle, text_poke_event->new_len);
9588 
9589 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9590 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9591 
9592 	if (text_poke_event->pad)
9593 		__output_copy(&handle, &padding, text_poke_event->pad);
9594 
9595 	perf_event__output_id_sample(event, &handle, &sample);
9596 
9597 	perf_output_end(&handle);
9598 }
9599 
9600 void perf_event_text_poke(const void *addr, const void *old_bytes,
9601 			  size_t old_len, const void *new_bytes, size_t new_len)
9602 {
9603 	struct perf_text_poke_event text_poke_event;
9604 	size_t tot, pad;
9605 
9606 	if (!atomic_read(&nr_text_poke_events))
9607 		return;
9608 
9609 	tot  = sizeof(text_poke_event.old_len) + old_len;
9610 	tot += sizeof(text_poke_event.new_len) + new_len;
9611 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9612 
9613 	text_poke_event = (struct perf_text_poke_event){
9614 		.old_bytes    = old_bytes,
9615 		.new_bytes    = new_bytes,
9616 		.pad          = pad,
9617 		.old_len      = old_len,
9618 		.new_len      = new_len,
9619 		.event_id  = {
9620 			.header = {
9621 				.type = PERF_RECORD_TEXT_POKE,
9622 				.misc = PERF_RECORD_MISC_KERNEL,
9623 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9624 			},
9625 			.addr = (unsigned long)addr,
9626 		},
9627 	};
9628 
9629 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9630 }
9631 
9632 void perf_event_itrace_started(struct perf_event *event)
9633 {
9634 	event->attach_state |= PERF_ATTACH_ITRACE;
9635 }
9636 
9637 static void perf_log_itrace_start(struct perf_event *event)
9638 {
9639 	struct perf_output_handle handle;
9640 	struct perf_sample_data sample;
9641 	struct perf_aux_event {
9642 		struct perf_event_header        header;
9643 		u32				pid;
9644 		u32				tid;
9645 	} rec;
9646 	int ret;
9647 
9648 	if (event->parent)
9649 		event = event->parent;
9650 
9651 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9652 	    event->attach_state & PERF_ATTACH_ITRACE)
9653 		return;
9654 
9655 	rec.header.type	= PERF_RECORD_ITRACE_START;
9656 	rec.header.misc	= 0;
9657 	rec.header.size	= sizeof(rec);
9658 	rec.pid	= perf_event_pid(event, current);
9659 	rec.tid	= perf_event_tid(event, current);
9660 
9661 	perf_event_header__init_id(&rec.header, &sample, event);
9662 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9663 
9664 	if (ret)
9665 		return;
9666 
9667 	perf_output_put(&handle, rec);
9668 	perf_event__output_id_sample(event, &handle, &sample);
9669 
9670 	perf_output_end(&handle);
9671 }
9672 
9673 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9674 {
9675 	struct perf_output_handle handle;
9676 	struct perf_sample_data sample;
9677 	struct perf_aux_event {
9678 		struct perf_event_header        header;
9679 		u64				hw_id;
9680 	} rec;
9681 	int ret;
9682 
9683 	if (event->parent)
9684 		event = event->parent;
9685 
9686 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9687 	rec.header.misc	= 0;
9688 	rec.header.size	= sizeof(rec);
9689 	rec.hw_id	= hw_id;
9690 
9691 	perf_event_header__init_id(&rec.header, &sample, event);
9692 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9693 
9694 	if (ret)
9695 		return;
9696 
9697 	perf_output_put(&handle, rec);
9698 	perf_event__output_id_sample(event, &handle, &sample);
9699 
9700 	perf_output_end(&handle);
9701 }
9702 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9703 
9704 static int
9705 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9706 {
9707 	struct hw_perf_event *hwc = &event->hw;
9708 	int ret = 0;
9709 	u64 seq;
9710 
9711 	seq = __this_cpu_read(perf_throttled_seq);
9712 	if (seq != hwc->interrupts_seq) {
9713 		hwc->interrupts_seq = seq;
9714 		hwc->interrupts = 1;
9715 	} else {
9716 		hwc->interrupts++;
9717 		if (unlikely(throttle &&
9718 			     hwc->interrupts > max_samples_per_tick)) {
9719 			__this_cpu_inc(perf_throttled_count);
9720 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9721 			hwc->interrupts = MAX_INTERRUPTS;
9722 			perf_log_throttle(event, 0);
9723 			ret = 1;
9724 		}
9725 	}
9726 
9727 	if (event->attr.freq) {
9728 		u64 now = perf_clock();
9729 		s64 delta = now - hwc->freq_time_stamp;
9730 
9731 		hwc->freq_time_stamp = now;
9732 
9733 		if (delta > 0 && delta < 2*TICK_NSEC)
9734 			perf_adjust_period(event, delta, hwc->last_period, true);
9735 	}
9736 
9737 	return ret;
9738 }
9739 
9740 int perf_event_account_interrupt(struct perf_event *event)
9741 {
9742 	return __perf_event_account_interrupt(event, 1);
9743 }
9744 
9745 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9746 {
9747 	/*
9748 	 * Due to interrupt latency (AKA "skid"), we may enter the
9749 	 * kernel before taking an overflow, even if the PMU is only
9750 	 * counting user events.
9751 	 */
9752 	if (event->attr.exclude_kernel && !user_mode(regs))
9753 		return false;
9754 
9755 	return true;
9756 }
9757 
9758 #ifdef CONFIG_BPF_SYSCALL
9759 static int bpf_overflow_handler(struct perf_event *event,
9760 				struct perf_sample_data *data,
9761 				struct pt_regs *regs)
9762 {
9763 	struct bpf_perf_event_data_kern ctx = {
9764 		.data = data,
9765 		.event = event,
9766 	};
9767 	struct bpf_prog *prog;
9768 	int ret = 0;
9769 
9770 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9771 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9772 		goto out;
9773 	rcu_read_lock();
9774 	prog = READ_ONCE(event->prog);
9775 	if (prog) {
9776 		perf_prepare_sample(data, event, regs);
9777 		ret = bpf_prog_run(prog, &ctx);
9778 	}
9779 	rcu_read_unlock();
9780 out:
9781 	__this_cpu_dec(bpf_prog_active);
9782 
9783 	return ret;
9784 }
9785 
9786 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9787 					     struct bpf_prog *prog,
9788 					     u64 bpf_cookie)
9789 {
9790 	if (event->overflow_handler_context)
9791 		/* hw breakpoint or kernel counter */
9792 		return -EINVAL;
9793 
9794 	if (event->prog)
9795 		return -EEXIST;
9796 
9797 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9798 		return -EINVAL;
9799 
9800 	if (event->attr.precise_ip &&
9801 	    prog->call_get_stack &&
9802 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9803 	     event->attr.exclude_callchain_kernel ||
9804 	     event->attr.exclude_callchain_user)) {
9805 		/*
9806 		 * On perf_event with precise_ip, calling bpf_get_stack()
9807 		 * may trigger unwinder warnings and occasional crashes.
9808 		 * bpf_get_[stack|stackid] works around this issue by using
9809 		 * callchain attached to perf_sample_data. If the
9810 		 * perf_event does not full (kernel and user) callchain
9811 		 * attached to perf_sample_data, do not allow attaching BPF
9812 		 * program that calls bpf_get_[stack|stackid].
9813 		 */
9814 		return -EPROTO;
9815 	}
9816 
9817 	event->prog = prog;
9818 	event->bpf_cookie = bpf_cookie;
9819 	return 0;
9820 }
9821 
9822 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9823 {
9824 	struct bpf_prog *prog = event->prog;
9825 
9826 	if (!prog)
9827 		return;
9828 
9829 	event->prog = NULL;
9830 	bpf_prog_put(prog);
9831 }
9832 #else
9833 static inline int bpf_overflow_handler(struct perf_event *event,
9834 				       struct perf_sample_data *data,
9835 				       struct pt_regs *regs)
9836 {
9837 	return 1;
9838 }
9839 
9840 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9841 					     struct bpf_prog *prog,
9842 					     u64 bpf_cookie)
9843 {
9844 	return -EOPNOTSUPP;
9845 }
9846 
9847 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9848 {
9849 }
9850 #endif
9851 
9852 /*
9853  * Generic event overflow handling, sampling.
9854  */
9855 
9856 static int __perf_event_overflow(struct perf_event *event,
9857 				 int throttle, struct perf_sample_data *data,
9858 				 struct pt_regs *regs)
9859 {
9860 	int events = atomic_read(&event->event_limit);
9861 	int ret = 0;
9862 
9863 	/*
9864 	 * Non-sampling counters might still use the PMI to fold short
9865 	 * hardware counters, ignore those.
9866 	 */
9867 	if (unlikely(!is_sampling_event(event)))
9868 		return 0;
9869 
9870 	ret = __perf_event_account_interrupt(event, throttle);
9871 
9872 	if (event->attr.aux_pause)
9873 		perf_event_aux_pause(event->aux_event, true);
9874 
9875 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9876 	    !bpf_overflow_handler(event, data, regs))
9877 		goto out;
9878 
9879 	/*
9880 	 * XXX event_limit might not quite work as expected on inherited
9881 	 * events
9882 	 */
9883 
9884 	event->pending_kill = POLL_IN;
9885 	if (events && atomic_dec_and_test(&event->event_limit)) {
9886 		ret = 1;
9887 		event->pending_kill = POLL_HUP;
9888 		perf_event_disable_inatomic(event);
9889 	}
9890 
9891 	if (event->attr.sigtrap) {
9892 		/*
9893 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9894 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9895 		 * it is the first event, on the other hand, we should also not
9896 		 * trigger the WARN or override the data address.
9897 		 */
9898 		bool valid_sample = sample_is_allowed(event, regs);
9899 		unsigned int pending_id = 1;
9900 		enum task_work_notify_mode notify_mode;
9901 
9902 		if (regs)
9903 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9904 
9905 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9906 
9907 		if (!event->pending_work &&
9908 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9909 			event->pending_work = pending_id;
9910 			local_inc(&event->ctx->nr_no_switch_fast);
9911 
9912 			event->pending_addr = 0;
9913 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9914 				event->pending_addr = data->addr;
9915 
9916 		} else if (event->attr.exclude_kernel && valid_sample) {
9917 			/*
9918 			 * Should not be able to return to user space without
9919 			 * consuming pending_work; with exceptions:
9920 			 *
9921 			 *  1. Where !exclude_kernel, events can overflow again
9922 			 *     in the kernel without returning to user space.
9923 			 *
9924 			 *  2. Events that can overflow again before the IRQ-
9925 			 *     work without user space progress (e.g. hrtimer).
9926 			 *     To approximate progress (with false negatives),
9927 			 *     check 32-bit hash of the current IP.
9928 			 */
9929 			WARN_ON_ONCE(event->pending_work != pending_id);
9930 		}
9931 	}
9932 
9933 	READ_ONCE(event->overflow_handler)(event, data, regs);
9934 
9935 	if (*perf_event_fasync(event) && event->pending_kill) {
9936 		event->pending_wakeup = 1;
9937 		irq_work_queue(&event->pending_irq);
9938 	}
9939 out:
9940 	if (event->attr.aux_resume)
9941 		perf_event_aux_pause(event->aux_event, false);
9942 
9943 	return ret;
9944 }
9945 
9946 int perf_event_overflow(struct perf_event *event,
9947 			struct perf_sample_data *data,
9948 			struct pt_regs *regs)
9949 {
9950 	return __perf_event_overflow(event, 1, data, regs);
9951 }
9952 
9953 /*
9954  * Generic software event infrastructure
9955  */
9956 
9957 struct swevent_htable {
9958 	struct swevent_hlist		*swevent_hlist;
9959 	struct mutex			hlist_mutex;
9960 	int				hlist_refcount;
9961 };
9962 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9963 
9964 /*
9965  * We directly increment event->count and keep a second value in
9966  * event->hw.period_left to count intervals. This period event
9967  * is kept in the range [-sample_period, 0] so that we can use the
9968  * sign as trigger.
9969  */
9970 
9971 u64 perf_swevent_set_period(struct perf_event *event)
9972 {
9973 	struct hw_perf_event *hwc = &event->hw;
9974 	u64 period = hwc->last_period;
9975 	u64 nr, offset;
9976 	s64 old, val;
9977 
9978 	hwc->last_period = hwc->sample_period;
9979 
9980 	old = local64_read(&hwc->period_left);
9981 	do {
9982 		val = old;
9983 		if (val < 0)
9984 			return 0;
9985 
9986 		nr = div64_u64(period + val, period);
9987 		offset = nr * period;
9988 		val -= offset;
9989 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9990 
9991 	return nr;
9992 }
9993 
9994 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9995 				    struct perf_sample_data *data,
9996 				    struct pt_regs *regs)
9997 {
9998 	struct hw_perf_event *hwc = &event->hw;
9999 	int throttle = 0;
10000 
10001 	if (!overflow)
10002 		overflow = perf_swevent_set_period(event);
10003 
10004 	if (hwc->interrupts == MAX_INTERRUPTS)
10005 		return;
10006 
10007 	for (; overflow; overflow--) {
10008 		if (__perf_event_overflow(event, throttle,
10009 					    data, regs)) {
10010 			/*
10011 			 * We inhibit the overflow from happening when
10012 			 * hwc->interrupts == MAX_INTERRUPTS.
10013 			 */
10014 			break;
10015 		}
10016 		throttle = 1;
10017 	}
10018 }
10019 
10020 static void perf_swevent_event(struct perf_event *event, u64 nr,
10021 			       struct perf_sample_data *data,
10022 			       struct pt_regs *regs)
10023 {
10024 	struct hw_perf_event *hwc = &event->hw;
10025 
10026 	local64_add(nr, &event->count);
10027 
10028 	if (!regs)
10029 		return;
10030 
10031 	if (!is_sampling_event(event))
10032 		return;
10033 
10034 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10035 		data->period = nr;
10036 		return perf_swevent_overflow(event, 1, data, regs);
10037 	} else
10038 		data->period = event->hw.last_period;
10039 
10040 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10041 		return perf_swevent_overflow(event, 1, data, regs);
10042 
10043 	if (local64_add_negative(nr, &hwc->period_left))
10044 		return;
10045 
10046 	perf_swevent_overflow(event, 0, data, regs);
10047 }
10048 
10049 static int perf_exclude_event(struct perf_event *event,
10050 			      struct pt_regs *regs)
10051 {
10052 	if (event->hw.state & PERF_HES_STOPPED)
10053 		return 1;
10054 
10055 	if (regs) {
10056 		if (event->attr.exclude_user && user_mode(regs))
10057 			return 1;
10058 
10059 		if (event->attr.exclude_kernel && !user_mode(regs))
10060 			return 1;
10061 	}
10062 
10063 	return 0;
10064 }
10065 
10066 static int perf_swevent_match(struct perf_event *event,
10067 				enum perf_type_id type,
10068 				u32 event_id,
10069 				struct perf_sample_data *data,
10070 				struct pt_regs *regs)
10071 {
10072 	if (event->attr.type != type)
10073 		return 0;
10074 
10075 	if (event->attr.config != event_id)
10076 		return 0;
10077 
10078 	if (perf_exclude_event(event, regs))
10079 		return 0;
10080 
10081 	return 1;
10082 }
10083 
10084 static inline u64 swevent_hash(u64 type, u32 event_id)
10085 {
10086 	u64 val = event_id | (type << 32);
10087 
10088 	return hash_64(val, SWEVENT_HLIST_BITS);
10089 }
10090 
10091 static inline struct hlist_head *
10092 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10093 {
10094 	u64 hash = swevent_hash(type, event_id);
10095 
10096 	return &hlist->heads[hash];
10097 }
10098 
10099 /* For the read side: events when they trigger */
10100 static inline struct hlist_head *
10101 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10102 {
10103 	struct swevent_hlist *hlist;
10104 
10105 	hlist = rcu_dereference(swhash->swevent_hlist);
10106 	if (!hlist)
10107 		return NULL;
10108 
10109 	return __find_swevent_head(hlist, type, event_id);
10110 }
10111 
10112 /* For the event head insertion and removal in the hlist */
10113 static inline struct hlist_head *
10114 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10115 {
10116 	struct swevent_hlist *hlist;
10117 	u32 event_id = event->attr.config;
10118 	u64 type = event->attr.type;
10119 
10120 	/*
10121 	 * Event scheduling is always serialized against hlist allocation
10122 	 * and release. Which makes the protected version suitable here.
10123 	 * The context lock guarantees that.
10124 	 */
10125 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10126 					  lockdep_is_held(&event->ctx->lock));
10127 	if (!hlist)
10128 		return NULL;
10129 
10130 	return __find_swevent_head(hlist, type, event_id);
10131 }
10132 
10133 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10134 				    u64 nr,
10135 				    struct perf_sample_data *data,
10136 				    struct pt_regs *regs)
10137 {
10138 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10139 	struct perf_event *event;
10140 	struct hlist_head *head;
10141 
10142 	rcu_read_lock();
10143 	head = find_swevent_head_rcu(swhash, type, event_id);
10144 	if (!head)
10145 		goto end;
10146 
10147 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10148 		if (perf_swevent_match(event, type, event_id, data, regs))
10149 			perf_swevent_event(event, nr, data, regs);
10150 	}
10151 end:
10152 	rcu_read_unlock();
10153 }
10154 
10155 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10156 
10157 int perf_swevent_get_recursion_context(void)
10158 {
10159 	return get_recursion_context(current->perf_recursion);
10160 }
10161 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10162 
10163 void perf_swevent_put_recursion_context(int rctx)
10164 {
10165 	put_recursion_context(current->perf_recursion, rctx);
10166 }
10167 
10168 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10169 {
10170 	struct perf_sample_data data;
10171 
10172 	if (WARN_ON_ONCE(!regs))
10173 		return;
10174 
10175 	perf_sample_data_init(&data, addr, 0);
10176 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10177 }
10178 
10179 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10180 {
10181 	int rctx;
10182 
10183 	preempt_disable_notrace();
10184 	rctx = perf_swevent_get_recursion_context();
10185 	if (unlikely(rctx < 0))
10186 		goto fail;
10187 
10188 	___perf_sw_event(event_id, nr, regs, addr);
10189 
10190 	perf_swevent_put_recursion_context(rctx);
10191 fail:
10192 	preempt_enable_notrace();
10193 }
10194 
10195 static void perf_swevent_read(struct perf_event *event)
10196 {
10197 }
10198 
10199 static int perf_swevent_add(struct perf_event *event, int flags)
10200 {
10201 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10202 	struct hw_perf_event *hwc = &event->hw;
10203 	struct hlist_head *head;
10204 
10205 	if (is_sampling_event(event)) {
10206 		hwc->last_period = hwc->sample_period;
10207 		perf_swevent_set_period(event);
10208 	}
10209 
10210 	hwc->state = !(flags & PERF_EF_START);
10211 
10212 	head = find_swevent_head(swhash, event);
10213 	if (WARN_ON_ONCE(!head))
10214 		return -EINVAL;
10215 
10216 	hlist_add_head_rcu(&event->hlist_entry, head);
10217 	perf_event_update_userpage(event);
10218 
10219 	return 0;
10220 }
10221 
10222 static void perf_swevent_del(struct perf_event *event, int flags)
10223 {
10224 	hlist_del_rcu(&event->hlist_entry);
10225 }
10226 
10227 static void perf_swevent_start(struct perf_event *event, int flags)
10228 {
10229 	event->hw.state = 0;
10230 }
10231 
10232 static void perf_swevent_stop(struct perf_event *event, int flags)
10233 {
10234 	event->hw.state = PERF_HES_STOPPED;
10235 }
10236 
10237 /* Deref the hlist from the update side */
10238 static inline struct swevent_hlist *
10239 swevent_hlist_deref(struct swevent_htable *swhash)
10240 {
10241 	return rcu_dereference_protected(swhash->swevent_hlist,
10242 					 lockdep_is_held(&swhash->hlist_mutex));
10243 }
10244 
10245 static void swevent_hlist_release(struct swevent_htable *swhash)
10246 {
10247 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10248 
10249 	if (!hlist)
10250 		return;
10251 
10252 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10253 	kfree_rcu(hlist, rcu_head);
10254 }
10255 
10256 static void swevent_hlist_put_cpu(int cpu)
10257 {
10258 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10259 
10260 	mutex_lock(&swhash->hlist_mutex);
10261 
10262 	if (!--swhash->hlist_refcount)
10263 		swevent_hlist_release(swhash);
10264 
10265 	mutex_unlock(&swhash->hlist_mutex);
10266 }
10267 
10268 static void swevent_hlist_put(void)
10269 {
10270 	int cpu;
10271 
10272 	for_each_possible_cpu(cpu)
10273 		swevent_hlist_put_cpu(cpu);
10274 }
10275 
10276 static int swevent_hlist_get_cpu(int cpu)
10277 {
10278 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10279 	int err = 0;
10280 
10281 	mutex_lock(&swhash->hlist_mutex);
10282 	if (!swevent_hlist_deref(swhash) &&
10283 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10284 		struct swevent_hlist *hlist;
10285 
10286 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10287 		if (!hlist) {
10288 			err = -ENOMEM;
10289 			goto exit;
10290 		}
10291 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10292 	}
10293 	swhash->hlist_refcount++;
10294 exit:
10295 	mutex_unlock(&swhash->hlist_mutex);
10296 
10297 	return err;
10298 }
10299 
10300 static int swevent_hlist_get(void)
10301 {
10302 	int err, cpu, failed_cpu;
10303 
10304 	mutex_lock(&pmus_lock);
10305 	for_each_possible_cpu(cpu) {
10306 		err = swevent_hlist_get_cpu(cpu);
10307 		if (err) {
10308 			failed_cpu = cpu;
10309 			goto fail;
10310 		}
10311 	}
10312 	mutex_unlock(&pmus_lock);
10313 	return 0;
10314 fail:
10315 	for_each_possible_cpu(cpu) {
10316 		if (cpu == failed_cpu)
10317 			break;
10318 		swevent_hlist_put_cpu(cpu);
10319 	}
10320 	mutex_unlock(&pmus_lock);
10321 	return err;
10322 }
10323 
10324 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10325 
10326 static void sw_perf_event_destroy(struct perf_event *event)
10327 {
10328 	u64 event_id = event->attr.config;
10329 
10330 	WARN_ON(event->parent);
10331 
10332 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10333 	swevent_hlist_put();
10334 }
10335 
10336 static struct pmu perf_cpu_clock; /* fwd declaration */
10337 static struct pmu perf_task_clock;
10338 
10339 static int perf_swevent_init(struct perf_event *event)
10340 {
10341 	u64 event_id = event->attr.config;
10342 
10343 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10344 		return -ENOENT;
10345 
10346 	/*
10347 	 * no branch sampling for software events
10348 	 */
10349 	if (has_branch_stack(event))
10350 		return -EOPNOTSUPP;
10351 
10352 	switch (event_id) {
10353 	case PERF_COUNT_SW_CPU_CLOCK:
10354 		event->attr.type = perf_cpu_clock.type;
10355 		return -ENOENT;
10356 	case PERF_COUNT_SW_TASK_CLOCK:
10357 		event->attr.type = perf_task_clock.type;
10358 		return -ENOENT;
10359 
10360 	default:
10361 		break;
10362 	}
10363 
10364 	if (event_id >= PERF_COUNT_SW_MAX)
10365 		return -ENOENT;
10366 
10367 	if (!event->parent) {
10368 		int err;
10369 
10370 		err = swevent_hlist_get();
10371 		if (err)
10372 			return err;
10373 
10374 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10375 		event->destroy = sw_perf_event_destroy;
10376 	}
10377 
10378 	return 0;
10379 }
10380 
10381 static struct pmu perf_swevent = {
10382 	.task_ctx_nr	= perf_sw_context,
10383 
10384 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10385 
10386 	.event_init	= perf_swevent_init,
10387 	.add		= perf_swevent_add,
10388 	.del		= perf_swevent_del,
10389 	.start		= perf_swevent_start,
10390 	.stop		= perf_swevent_stop,
10391 	.read		= perf_swevent_read,
10392 };
10393 
10394 #ifdef CONFIG_EVENT_TRACING
10395 
10396 static void tp_perf_event_destroy(struct perf_event *event)
10397 {
10398 	perf_trace_destroy(event);
10399 }
10400 
10401 static int perf_tp_event_init(struct perf_event *event)
10402 {
10403 	int err;
10404 
10405 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10406 		return -ENOENT;
10407 
10408 	/*
10409 	 * no branch sampling for tracepoint events
10410 	 */
10411 	if (has_branch_stack(event))
10412 		return -EOPNOTSUPP;
10413 
10414 	err = perf_trace_init(event);
10415 	if (err)
10416 		return err;
10417 
10418 	event->destroy = tp_perf_event_destroy;
10419 
10420 	return 0;
10421 }
10422 
10423 static struct pmu perf_tracepoint = {
10424 	.task_ctx_nr	= perf_sw_context,
10425 
10426 	.event_init	= perf_tp_event_init,
10427 	.add		= perf_trace_add,
10428 	.del		= perf_trace_del,
10429 	.start		= perf_swevent_start,
10430 	.stop		= perf_swevent_stop,
10431 	.read		= perf_swevent_read,
10432 };
10433 
10434 static int perf_tp_filter_match(struct perf_event *event,
10435 				struct perf_sample_data *data)
10436 {
10437 	void *record = data->raw->frag.data;
10438 
10439 	/* only top level events have filters set */
10440 	if (event->parent)
10441 		event = event->parent;
10442 
10443 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10444 		return 1;
10445 	return 0;
10446 }
10447 
10448 static int perf_tp_event_match(struct perf_event *event,
10449 				struct perf_sample_data *data,
10450 				struct pt_regs *regs)
10451 {
10452 	if (event->hw.state & PERF_HES_STOPPED)
10453 		return 0;
10454 	/*
10455 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10456 	 */
10457 	if (event->attr.exclude_kernel && !user_mode(regs))
10458 		return 0;
10459 
10460 	if (!perf_tp_filter_match(event, data))
10461 		return 0;
10462 
10463 	return 1;
10464 }
10465 
10466 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10467 			       struct trace_event_call *call, u64 count,
10468 			       struct pt_regs *regs, struct hlist_head *head,
10469 			       struct task_struct *task)
10470 {
10471 	if (bpf_prog_array_valid(call)) {
10472 		*(struct pt_regs **)raw_data = regs;
10473 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10474 			perf_swevent_put_recursion_context(rctx);
10475 			return;
10476 		}
10477 	}
10478 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10479 		      rctx, task);
10480 }
10481 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10482 
10483 static void __perf_tp_event_target_task(u64 count, void *record,
10484 					struct pt_regs *regs,
10485 					struct perf_sample_data *data,
10486 					struct perf_event *event)
10487 {
10488 	struct trace_entry *entry = record;
10489 
10490 	if (event->attr.config != entry->type)
10491 		return;
10492 	/* Cannot deliver synchronous signal to other task. */
10493 	if (event->attr.sigtrap)
10494 		return;
10495 	if (perf_tp_event_match(event, data, regs))
10496 		perf_swevent_event(event, count, data, regs);
10497 }
10498 
10499 static void perf_tp_event_target_task(u64 count, void *record,
10500 				      struct pt_regs *regs,
10501 				      struct perf_sample_data *data,
10502 				      struct perf_event_context *ctx)
10503 {
10504 	unsigned int cpu = smp_processor_id();
10505 	struct pmu *pmu = &perf_tracepoint;
10506 	struct perf_event *event, *sibling;
10507 
10508 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10509 		__perf_tp_event_target_task(count, record, regs, data, event);
10510 		for_each_sibling_event(sibling, event)
10511 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10512 	}
10513 
10514 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10515 		__perf_tp_event_target_task(count, record, regs, data, event);
10516 		for_each_sibling_event(sibling, event)
10517 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10518 	}
10519 }
10520 
10521 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10522 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10523 		   struct task_struct *task)
10524 {
10525 	struct perf_sample_data data;
10526 	struct perf_event *event;
10527 
10528 	struct perf_raw_record raw = {
10529 		.frag = {
10530 			.size = entry_size,
10531 			.data = record,
10532 		},
10533 	};
10534 
10535 	perf_sample_data_init(&data, 0, 0);
10536 	perf_sample_save_raw_data(&data, &raw);
10537 
10538 	perf_trace_buf_update(record, event_type);
10539 
10540 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10541 		if (perf_tp_event_match(event, &data, regs)) {
10542 			perf_swevent_event(event, count, &data, regs);
10543 
10544 			/*
10545 			 * Here use the same on-stack perf_sample_data,
10546 			 * some members in data are event-specific and
10547 			 * need to be re-computed for different sweveents.
10548 			 * Re-initialize data->sample_flags safely to avoid
10549 			 * the problem that next event skips preparing data
10550 			 * because data->sample_flags is set.
10551 			 */
10552 			perf_sample_data_init(&data, 0, 0);
10553 			perf_sample_save_raw_data(&data, &raw);
10554 		}
10555 	}
10556 
10557 	/*
10558 	 * If we got specified a target task, also iterate its context and
10559 	 * deliver this event there too.
10560 	 */
10561 	if (task && task != current) {
10562 		struct perf_event_context *ctx;
10563 
10564 		rcu_read_lock();
10565 		ctx = rcu_dereference(task->perf_event_ctxp);
10566 		if (!ctx)
10567 			goto unlock;
10568 
10569 		raw_spin_lock(&ctx->lock);
10570 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10571 		raw_spin_unlock(&ctx->lock);
10572 unlock:
10573 		rcu_read_unlock();
10574 	}
10575 
10576 	perf_swevent_put_recursion_context(rctx);
10577 }
10578 EXPORT_SYMBOL_GPL(perf_tp_event);
10579 
10580 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10581 /*
10582  * Flags in config, used by dynamic PMU kprobe and uprobe
10583  * The flags should match following PMU_FORMAT_ATTR().
10584  *
10585  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10586  *                               if not set, create kprobe/uprobe
10587  *
10588  * The following values specify a reference counter (or semaphore in the
10589  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10590  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10591  *
10592  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10593  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10594  */
10595 enum perf_probe_config {
10596 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10597 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10598 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10599 };
10600 
10601 PMU_FORMAT_ATTR(retprobe, "config:0");
10602 #endif
10603 
10604 #ifdef CONFIG_KPROBE_EVENTS
10605 static struct attribute *kprobe_attrs[] = {
10606 	&format_attr_retprobe.attr,
10607 	NULL,
10608 };
10609 
10610 static struct attribute_group kprobe_format_group = {
10611 	.name = "format",
10612 	.attrs = kprobe_attrs,
10613 };
10614 
10615 static const struct attribute_group *kprobe_attr_groups[] = {
10616 	&kprobe_format_group,
10617 	NULL,
10618 };
10619 
10620 static int perf_kprobe_event_init(struct perf_event *event);
10621 static struct pmu perf_kprobe = {
10622 	.task_ctx_nr	= perf_sw_context,
10623 	.event_init	= perf_kprobe_event_init,
10624 	.add		= perf_trace_add,
10625 	.del		= perf_trace_del,
10626 	.start		= perf_swevent_start,
10627 	.stop		= perf_swevent_stop,
10628 	.read		= perf_swevent_read,
10629 	.attr_groups	= kprobe_attr_groups,
10630 };
10631 
10632 static int perf_kprobe_event_init(struct perf_event *event)
10633 {
10634 	int err;
10635 	bool is_retprobe;
10636 
10637 	if (event->attr.type != perf_kprobe.type)
10638 		return -ENOENT;
10639 
10640 	if (!perfmon_capable())
10641 		return -EACCES;
10642 
10643 	/*
10644 	 * no branch sampling for probe events
10645 	 */
10646 	if (has_branch_stack(event))
10647 		return -EOPNOTSUPP;
10648 
10649 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10650 	err = perf_kprobe_init(event, is_retprobe);
10651 	if (err)
10652 		return err;
10653 
10654 	event->destroy = perf_kprobe_destroy;
10655 
10656 	return 0;
10657 }
10658 #endif /* CONFIG_KPROBE_EVENTS */
10659 
10660 #ifdef CONFIG_UPROBE_EVENTS
10661 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10662 
10663 static struct attribute *uprobe_attrs[] = {
10664 	&format_attr_retprobe.attr,
10665 	&format_attr_ref_ctr_offset.attr,
10666 	NULL,
10667 };
10668 
10669 static struct attribute_group uprobe_format_group = {
10670 	.name = "format",
10671 	.attrs = uprobe_attrs,
10672 };
10673 
10674 static const struct attribute_group *uprobe_attr_groups[] = {
10675 	&uprobe_format_group,
10676 	NULL,
10677 };
10678 
10679 static int perf_uprobe_event_init(struct perf_event *event);
10680 static struct pmu perf_uprobe = {
10681 	.task_ctx_nr	= perf_sw_context,
10682 	.event_init	= perf_uprobe_event_init,
10683 	.add		= perf_trace_add,
10684 	.del		= perf_trace_del,
10685 	.start		= perf_swevent_start,
10686 	.stop		= perf_swevent_stop,
10687 	.read		= perf_swevent_read,
10688 	.attr_groups	= uprobe_attr_groups,
10689 };
10690 
10691 static int perf_uprobe_event_init(struct perf_event *event)
10692 {
10693 	int err;
10694 	unsigned long ref_ctr_offset;
10695 	bool is_retprobe;
10696 
10697 	if (event->attr.type != perf_uprobe.type)
10698 		return -ENOENT;
10699 
10700 	if (!perfmon_capable())
10701 		return -EACCES;
10702 
10703 	/*
10704 	 * no branch sampling for probe events
10705 	 */
10706 	if (has_branch_stack(event))
10707 		return -EOPNOTSUPP;
10708 
10709 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10710 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10711 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10712 	if (err)
10713 		return err;
10714 
10715 	event->destroy = perf_uprobe_destroy;
10716 
10717 	return 0;
10718 }
10719 #endif /* CONFIG_UPROBE_EVENTS */
10720 
10721 static inline void perf_tp_register(void)
10722 {
10723 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10724 #ifdef CONFIG_KPROBE_EVENTS
10725 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10726 #endif
10727 #ifdef CONFIG_UPROBE_EVENTS
10728 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10729 #endif
10730 }
10731 
10732 static void perf_event_free_filter(struct perf_event *event)
10733 {
10734 	ftrace_profile_free_filter(event);
10735 }
10736 
10737 /*
10738  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10739  * with perf_event_open()
10740  */
10741 static inline bool perf_event_is_tracing(struct perf_event *event)
10742 {
10743 	if (event->pmu == &perf_tracepoint)
10744 		return true;
10745 #ifdef CONFIG_KPROBE_EVENTS
10746 	if (event->pmu == &perf_kprobe)
10747 		return true;
10748 #endif
10749 #ifdef CONFIG_UPROBE_EVENTS
10750 	if (event->pmu == &perf_uprobe)
10751 		return true;
10752 #endif
10753 	return false;
10754 }
10755 
10756 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10757 			    u64 bpf_cookie)
10758 {
10759 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10760 
10761 	if (!perf_event_is_tracing(event))
10762 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10763 
10764 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10765 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10766 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10767 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10768 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10769 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10770 		return -EINVAL;
10771 
10772 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10773 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10774 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10775 		return -EINVAL;
10776 
10777 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10778 		/* only uprobe programs are allowed to be sleepable */
10779 		return -EINVAL;
10780 
10781 	/* Kprobe override only works for kprobes, not uprobes. */
10782 	if (prog->kprobe_override && !is_kprobe)
10783 		return -EINVAL;
10784 
10785 	if (is_tracepoint || is_syscall_tp) {
10786 		int off = trace_event_get_offsets(event->tp_event);
10787 
10788 		if (prog->aux->max_ctx_offset > off)
10789 			return -EACCES;
10790 	}
10791 
10792 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10793 }
10794 
10795 void perf_event_free_bpf_prog(struct perf_event *event)
10796 {
10797 	if (!perf_event_is_tracing(event)) {
10798 		perf_event_free_bpf_handler(event);
10799 		return;
10800 	}
10801 	perf_event_detach_bpf_prog(event);
10802 }
10803 
10804 #else
10805 
10806 static inline void perf_tp_register(void)
10807 {
10808 }
10809 
10810 static void perf_event_free_filter(struct perf_event *event)
10811 {
10812 }
10813 
10814 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10815 			    u64 bpf_cookie)
10816 {
10817 	return -ENOENT;
10818 }
10819 
10820 void perf_event_free_bpf_prog(struct perf_event *event)
10821 {
10822 }
10823 #endif /* CONFIG_EVENT_TRACING */
10824 
10825 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10826 void perf_bp_event(struct perf_event *bp, void *data)
10827 {
10828 	struct perf_sample_data sample;
10829 	struct pt_regs *regs = data;
10830 
10831 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10832 
10833 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10834 		perf_swevent_event(bp, 1, &sample, regs);
10835 }
10836 #endif
10837 
10838 /*
10839  * Allocate a new address filter
10840  */
10841 static struct perf_addr_filter *
10842 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10843 {
10844 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10845 	struct perf_addr_filter *filter;
10846 
10847 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10848 	if (!filter)
10849 		return NULL;
10850 
10851 	INIT_LIST_HEAD(&filter->entry);
10852 	list_add_tail(&filter->entry, filters);
10853 
10854 	return filter;
10855 }
10856 
10857 static void free_filters_list(struct list_head *filters)
10858 {
10859 	struct perf_addr_filter *filter, *iter;
10860 
10861 	list_for_each_entry_safe(filter, iter, filters, entry) {
10862 		path_put(&filter->path);
10863 		list_del(&filter->entry);
10864 		kfree(filter);
10865 	}
10866 }
10867 
10868 /*
10869  * Free existing address filters and optionally install new ones
10870  */
10871 static void perf_addr_filters_splice(struct perf_event *event,
10872 				     struct list_head *head)
10873 {
10874 	unsigned long flags;
10875 	LIST_HEAD(list);
10876 
10877 	if (!has_addr_filter(event))
10878 		return;
10879 
10880 	/* don't bother with children, they don't have their own filters */
10881 	if (event->parent)
10882 		return;
10883 
10884 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10885 
10886 	list_splice_init(&event->addr_filters.list, &list);
10887 	if (head)
10888 		list_splice(head, &event->addr_filters.list);
10889 
10890 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10891 
10892 	free_filters_list(&list);
10893 }
10894 
10895 /*
10896  * Scan through mm's vmas and see if one of them matches the
10897  * @filter; if so, adjust filter's address range.
10898  * Called with mm::mmap_lock down for reading.
10899  */
10900 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10901 				   struct mm_struct *mm,
10902 				   struct perf_addr_filter_range *fr)
10903 {
10904 	struct vm_area_struct *vma;
10905 	VMA_ITERATOR(vmi, mm, 0);
10906 
10907 	for_each_vma(vmi, vma) {
10908 		if (!vma->vm_file)
10909 			continue;
10910 
10911 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10912 			return;
10913 	}
10914 }
10915 
10916 /*
10917  * Update event's address range filters based on the
10918  * task's existing mappings, if any.
10919  */
10920 static void perf_event_addr_filters_apply(struct perf_event *event)
10921 {
10922 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10923 	struct task_struct *task = READ_ONCE(event->ctx->task);
10924 	struct perf_addr_filter *filter;
10925 	struct mm_struct *mm = NULL;
10926 	unsigned int count = 0;
10927 	unsigned long flags;
10928 
10929 	/*
10930 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10931 	 * will stop on the parent's child_mutex that our caller is also holding
10932 	 */
10933 	if (task == TASK_TOMBSTONE)
10934 		return;
10935 
10936 	if (ifh->nr_file_filters) {
10937 		mm = get_task_mm(task);
10938 		if (!mm)
10939 			goto restart;
10940 
10941 		mmap_read_lock(mm);
10942 	}
10943 
10944 	raw_spin_lock_irqsave(&ifh->lock, flags);
10945 	list_for_each_entry(filter, &ifh->list, entry) {
10946 		if (filter->path.dentry) {
10947 			/*
10948 			 * Adjust base offset if the filter is associated to a
10949 			 * binary that needs to be mapped:
10950 			 */
10951 			event->addr_filter_ranges[count].start = 0;
10952 			event->addr_filter_ranges[count].size = 0;
10953 
10954 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10955 		} else {
10956 			event->addr_filter_ranges[count].start = filter->offset;
10957 			event->addr_filter_ranges[count].size  = filter->size;
10958 		}
10959 
10960 		count++;
10961 	}
10962 
10963 	event->addr_filters_gen++;
10964 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10965 
10966 	if (ifh->nr_file_filters) {
10967 		mmap_read_unlock(mm);
10968 
10969 		mmput(mm);
10970 	}
10971 
10972 restart:
10973 	perf_event_stop(event, 1);
10974 }
10975 
10976 /*
10977  * Address range filtering: limiting the data to certain
10978  * instruction address ranges. Filters are ioctl()ed to us from
10979  * userspace as ascii strings.
10980  *
10981  * Filter string format:
10982  *
10983  * ACTION RANGE_SPEC
10984  * where ACTION is one of the
10985  *  * "filter": limit the trace to this region
10986  *  * "start": start tracing from this address
10987  *  * "stop": stop tracing at this address/region;
10988  * RANGE_SPEC is
10989  *  * for kernel addresses: <start address>[/<size>]
10990  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10991  *
10992  * if <size> is not specified or is zero, the range is treated as a single
10993  * address; not valid for ACTION=="filter".
10994  */
10995 enum {
10996 	IF_ACT_NONE = -1,
10997 	IF_ACT_FILTER,
10998 	IF_ACT_START,
10999 	IF_ACT_STOP,
11000 	IF_SRC_FILE,
11001 	IF_SRC_KERNEL,
11002 	IF_SRC_FILEADDR,
11003 	IF_SRC_KERNELADDR,
11004 };
11005 
11006 enum {
11007 	IF_STATE_ACTION = 0,
11008 	IF_STATE_SOURCE,
11009 	IF_STATE_END,
11010 };
11011 
11012 static const match_table_t if_tokens = {
11013 	{ IF_ACT_FILTER,	"filter" },
11014 	{ IF_ACT_START,		"start" },
11015 	{ IF_ACT_STOP,		"stop" },
11016 	{ IF_SRC_FILE,		"%u/%u@%s" },
11017 	{ IF_SRC_KERNEL,	"%u/%u" },
11018 	{ IF_SRC_FILEADDR,	"%u@%s" },
11019 	{ IF_SRC_KERNELADDR,	"%u" },
11020 	{ IF_ACT_NONE,		NULL },
11021 };
11022 
11023 /*
11024  * Address filter string parser
11025  */
11026 static int
11027 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11028 			     struct list_head *filters)
11029 {
11030 	struct perf_addr_filter *filter = NULL;
11031 	char *start, *orig, *filename = NULL;
11032 	substring_t args[MAX_OPT_ARGS];
11033 	int state = IF_STATE_ACTION, token;
11034 	unsigned int kernel = 0;
11035 	int ret = -EINVAL;
11036 
11037 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11038 	if (!fstr)
11039 		return -ENOMEM;
11040 
11041 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11042 		static const enum perf_addr_filter_action_t actions[] = {
11043 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11044 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11045 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11046 		};
11047 		ret = -EINVAL;
11048 
11049 		if (!*start)
11050 			continue;
11051 
11052 		/* filter definition begins */
11053 		if (state == IF_STATE_ACTION) {
11054 			filter = perf_addr_filter_new(event, filters);
11055 			if (!filter)
11056 				goto fail;
11057 		}
11058 
11059 		token = match_token(start, if_tokens, args);
11060 		switch (token) {
11061 		case IF_ACT_FILTER:
11062 		case IF_ACT_START:
11063 		case IF_ACT_STOP:
11064 			if (state != IF_STATE_ACTION)
11065 				goto fail;
11066 
11067 			filter->action = actions[token];
11068 			state = IF_STATE_SOURCE;
11069 			break;
11070 
11071 		case IF_SRC_KERNELADDR:
11072 		case IF_SRC_KERNEL:
11073 			kernel = 1;
11074 			fallthrough;
11075 
11076 		case IF_SRC_FILEADDR:
11077 		case IF_SRC_FILE:
11078 			if (state != IF_STATE_SOURCE)
11079 				goto fail;
11080 
11081 			*args[0].to = 0;
11082 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11083 			if (ret)
11084 				goto fail;
11085 
11086 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11087 				*args[1].to = 0;
11088 				ret = kstrtoul(args[1].from, 0, &filter->size);
11089 				if (ret)
11090 					goto fail;
11091 			}
11092 
11093 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11094 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11095 
11096 				kfree(filename);
11097 				filename = match_strdup(&args[fpos]);
11098 				if (!filename) {
11099 					ret = -ENOMEM;
11100 					goto fail;
11101 				}
11102 			}
11103 
11104 			state = IF_STATE_END;
11105 			break;
11106 
11107 		default:
11108 			goto fail;
11109 		}
11110 
11111 		/*
11112 		 * Filter definition is fully parsed, validate and install it.
11113 		 * Make sure that it doesn't contradict itself or the event's
11114 		 * attribute.
11115 		 */
11116 		if (state == IF_STATE_END) {
11117 			ret = -EINVAL;
11118 
11119 			/*
11120 			 * ACTION "filter" must have a non-zero length region
11121 			 * specified.
11122 			 */
11123 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11124 			    !filter->size)
11125 				goto fail;
11126 
11127 			if (!kernel) {
11128 				if (!filename)
11129 					goto fail;
11130 
11131 				/*
11132 				 * For now, we only support file-based filters
11133 				 * in per-task events; doing so for CPU-wide
11134 				 * events requires additional context switching
11135 				 * trickery, since same object code will be
11136 				 * mapped at different virtual addresses in
11137 				 * different processes.
11138 				 */
11139 				ret = -EOPNOTSUPP;
11140 				if (!event->ctx->task)
11141 					goto fail;
11142 
11143 				/* look up the path and grab its inode */
11144 				ret = kern_path(filename, LOOKUP_FOLLOW,
11145 						&filter->path);
11146 				if (ret)
11147 					goto fail;
11148 
11149 				ret = -EINVAL;
11150 				if (!filter->path.dentry ||
11151 				    !S_ISREG(d_inode(filter->path.dentry)
11152 					     ->i_mode))
11153 					goto fail;
11154 
11155 				event->addr_filters.nr_file_filters++;
11156 			}
11157 
11158 			/* ready to consume more filters */
11159 			kfree(filename);
11160 			filename = NULL;
11161 			state = IF_STATE_ACTION;
11162 			filter = NULL;
11163 			kernel = 0;
11164 		}
11165 	}
11166 
11167 	if (state != IF_STATE_ACTION)
11168 		goto fail;
11169 
11170 	kfree(filename);
11171 	kfree(orig);
11172 
11173 	return 0;
11174 
11175 fail:
11176 	kfree(filename);
11177 	free_filters_list(filters);
11178 	kfree(orig);
11179 
11180 	return ret;
11181 }
11182 
11183 static int
11184 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11185 {
11186 	LIST_HEAD(filters);
11187 	int ret;
11188 
11189 	/*
11190 	 * Since this is called in perf_ioctl() path, we're already holding
11191 	 * ctx::mutex.
11192 	 */
11193 	lockdep_assert_held(&event->ctx->mutex);
11194 
11195 	if (WARN_ON_ONCE(event->parent))
11196 		return -EINVAL;
11197 
11198 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11199 	if (ret)
11200 		goto fail_clear_files;
11201 
11202 	ret = event->pmu->addr_filters_validate(&filters);
11203 	if (ret)
11204 		goto fail_free_filters;
11205 
11206 	/* remove existing filters, if any */
11207 	perf_addr_filters_splice(event, &filters);
11208 
11209 	/* install new filters */
11210 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11211 
11212 	return ret;
11213 
11214 fail_free_filters:
11215 	free_filters_list(&filters);
11216 
11217 fail_clear_files:
11218 	event->addr_filters.nr_file_filters = 0;
11219 
11220 	return ret;
11221 }
11222 
11223 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11224 {
11225 	int ret = -EINVAL;
11226 	char *filter_str;
11227 
11228 	filter_str = strndup_user(arg, PAGE_SIZE);
11229 	if (IS_ERR(filter_str))
11230 		return PTR_ERR(filter_str);
11231 
11232 #ifdef CONFIG_EVENT_TRACING
11233 	if (perf_event_is_tracing(event)) {
11234 		struct perf_event_context *ctx = event->ctx;
11235 
11236 		/*
11237 		 * Beware, here be dragons!!
11238 		 *
11239 		 * the tracepoint muck will deadlock against ctx->mutex, but
11240 		 * the tracepoint stuff does not actually need it. So
11241 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11242 		 * already have a reference on ctx.
11243 		 *
11244 		 * This can result in event getting moved to a different ctx,
11245 		 * but that does not affect the tracepoint state.
11246 		 */
11247 		mutex_unlock(&ctx->mutex);
11248 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11249 		mutex_lock(&ctx->mutex);
11250 	} else
11251 #endif
11252 	if (has_addr_filter(event))
11253 		ret = perf_event_set_addr_filter(event, filter_str);
11254 
11255 	kfree(filter_str);
11256 	return ret;
11257 }
11258 
11259 /*
11260  * hrtimer based swevent callback
11261  */
11262 
11263 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11264 {
11265 	enum hrtimer_restart ret = HRTIMER_RESTART;
11266 	struct perf_sample_data data;
11267 	struct pt_regs *regs;
11268 	struct perf_event *event;
11269 	u64 period;
11270 
11271 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11272 
11273 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11274 		return HRTIMER_NORESTART;
11275 
11276 	event->pmu->read(event);
11277 
11278 	perf_sample_data_init(&data, 0, event->hw.last_period);
11279 	regs = get_irq_regs();
11280 
11281 	if (regs && !perf_exclude_event(event, regs)) {
11282 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11283 			if (__perf_event_overflow(event, 1, &data, regs))
11284 				ret = HRTIMER_NORESTART;
11285 	}
11286 
11287 	period = max_t(u64, 10000, event->hw.sample_period);
11288 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11289 
11290 	return ret;
11291 }
11292 
11293 static void perf_swevent_start_hrtimer(struct perf_event *event)
11294 {
11295 	struct hw_perf_event *hwc = &event->hw;
11296 	s64 period;
11297 
11298 	if (!is_sampling_event(event))
11299 		return;
11300 
11301 	period = local64_read(&hwc->period_left);
11302 	if (period) {
11303 		if (period < 0)
11304 			period = 10000;
11305 
11306 		local64_set(&hwc->period_left, 0);
11307 	} else {
11308 		period = max_t(u64, 10000, hwc->sample_period);
11309 	}
11310 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11311 		      HRTIMER_MODE_REL_PINNED_HARD);
11312 }
11313 
11314 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11315 {
11316 	struct hw_perf_event *hwc = &event->hw;
11317 
11318 	if (is_sampling_event(event)) {
11319 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11320 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11321 
11322 		hrtimer_cancel(&hwc->hrtimer);
11323 	}
11324 }
11325 
11326 static void perf_swevent_init_hrtimer(struct perf_event *event)
11327 {
11328 	struct hw_perf_event *hwc = &event->hw;
11329 
11330 	if (!is_sampling_event(event))
11331 		return;
11332 
11333 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11334 	hwc->hrtimer.function = perf_swevent_hrtimer;
11335 
11336 	/*
11337 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11338 	 * mapping and avoid the whole period adjust feedback stuff.
11339 	 */
11340 	if (event->attr.freq) {
11341 		long freq = event->attr.sample_freq;
11342 
11343 		event->attr.sample_period = NSEC_PER_SEC / freq;
11344 		hwc->sample_period = event->attr.sample_period;
11345 		local64_set(&hwc->period_left, hwc->sample_period);
11346 		hwc->last_period = hwc->sample_period;
11347 		event->attr.freq = 0;
11348 	}
11349 }
11350 
11351 /*
11352  * Software event: cpu wall time clock
11353  */
11354 
11355 static void cpu_clock_event_update(struct perf_event *event)
11356 {
11357 	s64 prev;
11358 	u64 now;
11359 
11360 	now = local_clock();
11361 	prev = local64_xchg(&event->hw.prev_count, now);
11362 	local64_add(now - prev, &event->count);
11363 }
11364 
11365 static void cpu_clock_event_start(struct perf_event *event, int flags)
11366 {
11367 	local64_set(&event->hw.prev_count, local_clock());
11368 	perf_swevent_start_hrtimer(event);
11369 }
11370 
11371 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11372 {
11373 	perf_swevent_cancel_hrtimer(event);
11374 	cpu_clock_event_update(event);
11375 }
11376 
11377 static int cpu_clock_event_add(struct perf_event *event, int flags)
11378 {
11379 	if (flags & PERF_EF_START)
11380 		cpu_clock_event_start(event, flags);
11381 	perf_event_update_userpage(event);
11382 
11383 	return 0;
11384 }
11385 
11386 static void cpu_clock_event_del(struct perf_event *event, int flags)
11387 {
11388 	cpu_clock_event_stop(event, flags);
11389 }
11390 
11391 static void cpu_clock_event_read(struct perf_event *event)
11392 {
11393 	cpu_clock_event_update(event);
11394 }
11395 
11396 static int cpu_clock_event_init(struct perf_event *event)
11397 {
11398 	if (event->attr.type != perf_cpu_clock.type)
11399 		return -ENOENT;
11400 
11401 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11402 		return -ENOENT;
11403 
11404 	/*
11405 	 * no branch sampling for software events
11406 	 */
11407 	if (has_branch_stack(event))
11408 		return -EOPNOTSUPP;
11409 
11410 	perf_swevent_init_hrtimer(event);
11411 
11412 	return 0;
11413 }
11414 
11415 static struct pmu perf_cpu_clock = {
11416 	.task_ctx_nr	= perf_sw_context,
11417 
11418 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11419 	.dev		= PMU_NULL_DEV,
11420 
11421 	.event_init	= cpu_clock_event_init,
11422 	.add		= cpu_clock_event_add,
11423 	.del		= cpu_clock_event_del,
11424 	.start		= cpu_clock_event_start,
11425 	.stop		= cpu_clock_event_stop,
11426 	.read		= cpu_clock_event_read,
11427 };
11428 
11429 /*
11430  * Software event: task time clock
11431  */
11432 
11433 static void task_clock_event_update(struct perf_event *event, u64 now)
11434 {
11435 	u64 prev;
11436 	s64 delta;
11437 
11438 	prev = local64_xchg(&event->hw.prev_count, now);
11439 	delta = now - prev;
11440 	local64_add(delta, &event->count);
11441 }
11442 
11443 static void task_clock_event_start(struct perf_event *event, int flags)
11444 {
11445 	local64_set(&event->hw.prev_count, event->ctx->time);
11446 	perf_swevent_start_hrtimer(event);
11447 }
11448 
11449 static void task_clock_event_stop(struct perf_event *event, int flags)
11450 {
11451 	perf_swevent_cancel_hrtimer(event);
11452 	task_clock_event_update(event, event->ctx->time);
11453 }
11454 
11455 static int task_clock_event_add(struct perf_event *event, int flags)
11456 {
11457 	if (flags & PERF_EF_START)
11458 		task_clock_event_start(event, flags);
11459 	perf_event_update_userpage(event);
11460 
11461 	return 0;
11462 }
11463 
11464 static void task_clock_event_del(struct perf_event *event, int flags)
11465 {
11466 	task_clock_event_stop(event, PERF_EF_UPDATE);
11467 }
11468 
11469 static void task_clock_event_read(struct perf_event *event)
11470 {
11471 	u64 now = perf_clock();
11472 	u64 delta = now - event->ctx->timestamp;
11473 	u64 time = event->ctx->time + delta;
11474 
11475 	task_clock_event_update(event, time);
11476 }
11477 
11478 static int task_clock_event_init(struct perf_event *event)
11479 {
11480 	if (event->attr.type != perf_task_clock.type)
11481 		return -ENOENT;
11482 
11483 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11484 		return -ENOENT;
11485 
11486 	/*
11487 	 * no branch sampling for software events
11488 	 */
11489 	if (has_branch_stack(event))
11490 		return -EOPNOTSUPP;
11491 
11492 	perf_swevent_init_hrtimer(event);
11493 
11494 	return 0;
11495 }
11496 
11497 static struct pmu perf_task_clock = {
11498 	.task_ctx_nr	= perf_sw_context,
11499 
11500 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11501 	.dev		= PMU_NULL_DEV,
11502 
11503 	.event_init	= task_clock_event_init,
11504 	.add		= task_clock_event_add,
11505 	.del		= task_clock_event_del,
11506 	.start		= task_clock_event_start,
11507 	.stop		= task_clock_event_stop,
11508 	.read		= task_clock_event_read,
11509 };
11510 
11511 static void perf_pmu_nop_void(struct pmu *pmu)
11512 {
11513 }
11514 
11515 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11516 {
11517 }
11518 
11519 static int perf_pmu_nop_int(struct pmu *pmu)
11520 {
11521 	return 0;
11522 }
11523 
11524 static int perf_event_nop_int(struct perf_event *event, u64 value)
11525 {
11526 	return 0;
11527 }
11528 
11529 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11530 
11531 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11532 {
11533 	__this_cpu_write(nop_txn_flags, flags);
11534 
11535 	if (flags & ~PERF_PMU_TXN_ADD)
11536 		return;
11537 
11538 	perf_pmu_disable(pmu);
11539 }
11540 
11541 static int perf_pmu_commit_txn(struct pmu *pmu)
11542 {
11543 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11544 
11545 	__this_cpu_write(nop_txn_flags, 0);
11546 
11547 	if (flags & ~PERF_PMU_TXN_ADD)
11548 		return 0;
11549 
11550 	perf_pmu_enable(pmu);
11551 	return 0;
11552 }
11553 
11554 static void perf_pmu_cancel_txn(struct pmu *pmu)
11555 {
11556 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11557 
11558 	__this_cpu_write(nop_txn_flags, 0);
11559 
11560 	if (flags & ~PERF_PMU_TXN_ADD)
11561 		return;
11562 
11563 	perf_pmu_enable(pmu);
11564 }
11565 
11566 static int perf_event_idx_default(struct perf_event *event)
11567 {
11568 	return 0;
11569 }
11570 
11571 static void free_pmu_context(struct pmu *pmu)
11572 {
11573 	free_percpu(pmu->cpu_pmu_context);
11574 }
11575 
11576 /*
11577  * Let userspace know that this PMU supports address range filtering:
11578  */
11579 static ssize_t nr_addr_filters_show(struct device *dev,
11580 				    struct device_attribute *attr,
11581 				    char *page)
11582 {
11583 	struct pmu *pmu = dev_get_drvdata(dev);
11584 
11585 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11586 }
11587 DEVICE_ATTR_RO(nr_addr_filters);
11588 
11589 static struct idr pmu_idr;
11590 
11591 static ssize_t
11592 type_show(struct device *dev, struct device_attribute *attr, char *page)
11593 {
11594 	struct pmu *pmu = dev_get_drvdata(dev);
11595 
11596 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11597 }
11598 static DEVICE_ATTR_RO(type);
11599 
11600 static ssize_t
11601 perf_event_mux_interval_ms_show(struct device *dev,
11602 				struct device_attribute *attr,
11603 				char *page)
11604 {
11605 	struct pmu *pmu = dev_get_drvdata(dev);
11606 
11607 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11608 }
11609 
11610 static DEFINE_MUTEX(mux_interval_mutex);
11611 
11612 static ssize_t
11613 perf_event_mux_interval_ms_store(struct device *dev,
11614 				 struct device_attribute *attr,
11615 				 const char *buf, size_t count)
11616 {
11617 	struct pmu *pmu = dev_get_drvdata(dev);
11618 	int timer, cpu, ret;
11619 
11620 	ret = kstrtoint(buf, 0, &timer);
11621 	if (ret)
11622 		return ret;
11623 
11624 	if (timer < 1)
11625 		return -EINVAL;
11626 
11627 	/* same value, noting to do */
11628 	if (timer == pmu->hrtimer_interval_ms)
11629 		return count;
11630 
11631 	mutex_lock(&mux_interval_mutex);
11632 	pmu->hrtimer_interval_ms = timer;
11633 
11634 	/* update all cpuctx for this PMU */
11635 	cpus_read_lock();
11636 	for_each_online_cpu(cpu) {
11637 		struct perf_cpu_pmu_context *cpc;
11638 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11639 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11640 
11641 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11642 	}
11643 	cpus_read_unlock();
11644 	mutex_unlock(&mux_interval_mutex);
11645 
11646 	return count;
11647 }
11648 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11649 
11650 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11651 {
11652 	switch (scope) {
11653 	case PERF_PMU_SCOPE_CORE:
11654 		return topology_sibling_cpumask(cpu);
11655 	case PERF_PMU_SCOPE_DIE:
11656 		return topology_die_cpumask(cpu);
11657 	case PERF_PMU_SCOPE_CLUSTER:
11658 		return topology_cluster_cpumask(cpu);
11659 	case PERF_PMU_SCOPE_PKG:
11660 		return topology_core_cpumask(cpu);
11661 	case PERF_PMU_SCOPE_SYS_WIDE:
11662 		return cpu_online_mask;
11663 	}
11664 
11665 	return NULL;
11666 }
11667 
11668 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11669 {
11670 	switch (scope) {
11671 	case PERF_PMU_SCOPE_CORE:
11672 		return perf_online_core_mask;
11673 	case PERF_PMU_SCOPE_DIE:
11674 		return perf_online_die_mask;
11675 	case PERF_PMU_SCOPE_CLUSTER:
11676 		return perf_online_cluster_mask;
11677 	case PERF_PMU_SCOPE_PKG:
11678 		return perf_online_pkg_mask;
11679 	case PERF_PMU_SCOPE_SYS_WIDE:
11680 		return perf_online_sys_mask;
11681 	}
11682 
11683 	return NULL;
11684 }
11685 
11686 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11687 			    char *buf)
11688 {
11689 	struct pmu *pmu = dev_get_drvdata(dev);
11690 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11691 
11692 	if (mask)
11693 		return cpumap_print_to_pagebuf(true, buf, mask);
11694 	return 0;
11695 }
11696 
11697 static DEVICE_ATTR_RO(cpumask);
11698 
11699 static struct attribute *pmu_dev_attrs[] = {
11700 	&dev_attr_type.attr,
11701 	&dev_attr_perf_event_mux_interval_ms.attr,
11702 	&dev_attr_nr_addr_filters.attr,
11703 	&dev_attr_cpumask.attr,
11704 	NULL,
11705 };
11706 
11707 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11708 {
11709 	struct device *dev = kobj_to_dev(kobj);
11710 	struct pmu *pmu = dev_get_drvdata(dev);
11711 
11712 	if (n == 2 && !pmu->nr_addr_filters)
11713 		return 0;
11714 
11715 	/* cpumask */
11716 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11717 		return 0;
11718 
11719 	return a->mode;
11720 }
11721 
11722 static struct attribute_group pmu_dev_attr_group = {
11723 	.is_visible = pmu_dev_is_visible,
11724 	.attrs = pmu_dev_attrs,
11725 };
11726 
11727 static const struct attribute_group *pmu_dev_groups[] = {
11728 	&pmu_dev_attr_group,
11729 	NULL,
11730 };
11731 
11732 static int pmu_bus_running;
11733 static struct bus_type pmu_bus = {
11734 	.name		= "event_source",
11735 	.dev_groups	= pmu_dev_groups,
11736 };
11737 
11738 static void pmu_dev_release(struct device *dev)
11739 {
11740 	kfree(dev);
11741 }
11742 
11743 static int pmu_dev_alloc(struct pmu *pmu)
11744 {
11745 	int ret = -ENOMEM;
11746 
11747 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11748 	if (!pmu->dev)
11749 		goto out;
11750 
11751 	pmu->dev->groups = pmu->attr_groups;
11752 	device_initialize(pmu->dev);
11753 
11754 	dev_set_drvdata(pmu->dev, pmu);
11755 	pmu->dev->bus = &pmu_bus;
11756 	pmu->dev->parent = pmu->parent;
11757 	pmu->dev->release = pmu_dev_release;
11758 
11759 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11760 	if (ret)
11761 		goto free_dev;
11762 
11763 	ret = device_add(pmu->dev);
11764 	if (ret)
11765 		goto free_dev;
11766 
11767 	if (pmu->attr_update) {
11768 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11769 		if (ret)
11770 			goto del_dev;
11771 	}
11772 
11773 out:
11774 	return ret;
11775 
11776 del_dev:
11777 	device_del(pmu->dev);
11778 
11779 free_dev:
11780 	put_device(pmu->dev);
11781 	goto out;
11782 }
11783 
11784 static struct lock_class_key cpuctx_mutex;
11785 static struct lock_class_key cpuctx_lock;
11786 
11787 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11788 {
11789 	int cpu, ret, max = PERF_TYPE_MAX;
11790 
11791 	mutex_lock(&pmus_lock);
11792 	ret = -ENOMEM;
11793 	pmu->pmu_disable_count = alloc_percpu(int);
11794 	if (!pmu->pmu_disable_count)
11795 		goto unlock;
11796 
11797 	pmu->type = -1;
11798 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11799 		ret = -EINVAL;
11800 		goto free_pdc;
11801 	}
11802 
11803 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11804 		ret = -EINVAL;
11805 		goto free_pdc;
11806 	}
11807 
11808 	pmu->name = name;
11809 
11810 	if (type >= 0)
11811 		max = type;
11812 
11813 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11814 	if (ret < 0)
11815 		goto free_pdc;
11816 
11817 	WARN_ON(type >= 0 && ret != type);
11818 
11819 	type = ret;
11820 	pmu->type = type;
11821 
11822 	if (pmu_bus_running && !pmu->dev) {
11823 		ret = pmu_dev_alloc(pmu);
11824 		if (ret)
11825 			goto free_idr;
11826 	}
11827 
11828 	ret = -ENOMEM;
11829 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11830 	if (!pmu->cpu_pmu_context)
11831 		goto free_dev;
11832 
11833 	for_each_possible_cpu(cpu) {
11834 		struct perf_cpu_pmu_context *cpc;
11835 
11836 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11837 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11838 		__perf_mux_hrtimer_init(cpc, cpu);
11839 	}
11840 
11841 	if (!pmu->start_txn) {
11842 		if (pmu->pmu_enable) {
11843 			/*
11844 			 * If we have pmu_enable/pmu_disable calls, install
11845 			 * transaction stubs that use that to try and batch
11846 			 * hardware accesses.
11847 			 */
11848 			pmu->start_txn  = perf_pmu_start_txn;
11849 			pmu->commit_txn = perf_pmu_commit_txn;
11850 			pmu->cancel_txn = perf_pmu_cancel_txn;
11851 		} else {
11852 			pmu->start_txn  = perf_pmu_nop_txn;
11853 			pmu->commit_txn = perf_pmu_nop_int;
11854 			pmu->cancel_txn = perf_pmu_nop_void;
11855 		}
11856 	}
11857 
11858 	if (!pmu->pmu_enable) {
11859 		pmu->pmu_enable  = perf_pmu_nop_void;
11860 		pmu->pmu_disable = perf_pmu_nop_void;
11861 	}
11862 
11863 	if (!pmu->check_period)
11864 		pmu->check_period = perf_event_nop_int;
11865 
11866 	if (!pmu->event_idx)
11867 		pmu->event_idx = perf_event_idx_default;
11868 
11869 	list_add_rcu(&pmu->entry, &pmus);
11870 	atomic_set(&pmu->exclusive_cnt, 0);
11871 	ret = 0;
11872 unlock:
11873 	mutex_unlock(&pmus_lock);
11874 
11875 	return ret;
11876 
11877 free_dev:
11878 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11879 		device_del(pmu->dev);
11880 		put_device(pmu->dev);
11881 	}
11882 
11883 free_idr:
11884 	idr_remove(&pmu_idr, pmu->type);
11885 
11886 free_pdc:
11887 	free_percpu(pmu->pmu_disable_count);
11888 	goto unlock;
11889 }
11890 EXPORT_SYMBOL_GPL(perf_pmu_register);
11891 
11892 void perf_pmu_unregister(struct pmu *pmu)
11893 {
11894 	mutex_lock(&pmus_lock);
11895 	list_del_rcu(&pmu->entry);
11896 
11897 	/*
11898 	 * We dereference the pmu list under both SRCU and regular RCU, so
11899 	 * synchronize against both of those.
11900 	 */
11901 	synchronize_srcu(&pmus_srcu);
11902 	synchronize_rcu();
11903 
11904 	free_percpu(pmu->pmu_disable_count);
11905 	idr_remove(&pmu_idr, pmu->type);
11906 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11907 		if (pmu->nr_addr_filters)
11908 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11909 		device_del(pmu->dev);
11910 		put_device(pmu->dev);
11911 	}
11912 	free_pmu_context(pmu);
11913 	mutex_unlock(&pmus_lock);
11914 }
11915 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11916 
11917 static inline bool has_extended_regs(struct perf_event *event)
11918 {
11919 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11920 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11921 }
11922 
11923 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11924 {
11925 	struct perf_event_context *ctx = NULL;
11926 	int ret;
11927 
11928 	if (!try_module_get(pmu->module))
11929 		return -ENODEV;
11930 
11931 	/*
11932 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11933 	 * for example, validate if the group fits on the PMU. Therefore,
11934 	 * if this is a sibling event, acquire the ctx->mutex to protect
11935 	 * the sibling_list.
11936 	 */
11937 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11938 		/*
11939 		 * This ctx->mutex can nest when we're called through
11940 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11941 		 */
11942 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11943 						 SINGLE_DEPTH_NESTING);
11944 		BUG_ON(!ctx);
11945 	}
11946 
11947 	event->pmu = pmu;
11948 	ret = pmu->event_init(event);
11949 
11950 	if (ctx)
11951 		perf_event_ctx_unlock(event->group_leader, ctx);
11952 
11953 	if (!ret) {
11954 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11955 		    has_extended_regs(event))
11956 			ret = -EOPNOTSUPP;
11957 
11958 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11959 		    event_has_any_exclude_flag(event))
11960 			ret = -EINVAL;
11961 
11962 		if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
11963 			const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
11964 			struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
11965 			int cpu;
11966 
11967 			if (pmu_cpumask && cpumask) {
11968 				cpu = cpumask_any_and(pmu_cpumask, cpumask);
11969 				if (cpu >= nr_cpu_ids)
11970 					ret = -ENODEV;
11971 				else
11972 					event->event_caps |= PERF_EV_CAP_READ_SCOPE;
11973 			} else {
11974 				ret = -ENODEV;
11975 			}
11976 		}
11977 
11978 		if (ret && event->destroy)
11979 			event->destroy(event);
11980 	}
11981 
11982 	if (ret)
11983 		module_put(pmu->module);
11984 
11985 	return ret;
11986 }
11987 
11988 static struct pmu *perf_init_event(struct perf_event *event)
11989 {
11990 	bool extended_type = false;
11991 	int idx, type, ret;
11992 	struct pmu *pmu;
11993 
11994 	idx = srcu_read_lock(&pmus_srcu);
11995 
11996 	/*
11997 	 * Save original type before calling pmu->event_init() since certain
11998 	 * pmus overwrites event->attr.type to forward event to another pmu.
11999 	 */
12000 	event->orig_type = event->attr.type;
12001 
12002 	/* Try parent's PMU first: */
12003 	if (event->parent && event->parent->pmu) {
12004 		pmu = event->parent->pmu;
12005 		ret = perf_try_init_event(pmu, event);
12006 		if (!ret)
12007 			goto unlock;
12008 	}
12009 
12010 	/*
12011 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12012 	 * are often aliases for PERF_TYPE_RAW.
12013 	 */
12014 	type = event->attr.type;
12015 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12016 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12017 		if (!type) {
12018 			type = PERF_TYPE_RAW;
12019 		} else {
12020 			extended_type = true;
12021 			event->attr.config &= PERF_HW_EVENT_MASK;
12022 		}
12023 	}
12024 
12025 again:
12026 	rcu_read_lock();
12027 	pmu = idr_find(&pmu_idr, type);
12028 	rcu_read_unlock();
12029 	if (pmu) {
12030 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12031 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12032 			goto fail;
12033 
12034 		ret = perf_try_init_event(pmu, event);
12035 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12036 			type = event->attr.type;
12037 			goto again;
12038 		}
12039 
12040 		if (ret)
12041 			pmu = ERR_PTR(ret);
12042 
12043 		goto unlock;
12044 	}
12045 
12046 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12047 		ret = perf_try_init_event(pmu, event);
12048 		if (!ret)
12049 			goto unlock;
12050 
12051 		if (ret != -ENOENT) {
12052 			pmu = ERR_PTR(ret);
12053 			goto unlock;
12054 		}
12055 	}
12056 fail:
12057 	pmu = ERR_PTR(-ENOENT);
12058 unlock:
12059 	srcu_read_unlock(&pmus_srcu, idx);
12060 
12061 	return pmu;
12062 }
12063 
12064 static void attach_sb_event(struct perf_event *event)
12065 {
12066 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12067 
12068 	raw_spin_lock(&pel->lock);
12069 	list_add_rcu(&event->sb_list, &pel->list);
12070 	raw_spin_unlock(&pel->lock);
12071 }
12072 
12073 /*
12074  * We keep a list of all !task (and therefore per-cpu) events
12075  * that need to receive side-band records.
12076  *
12077  * This avoids having to scan all the various PMU per-cpu contexts
12078  * looking for them.
12079  */
12080 static void account_pmu_sb_event(struct perf_event *event)
12081 {
12082 	if (is_sb_event(event))
12083 		attach_sb_event(event);
12084 }
12085 
12086 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12087 static void account_freq_event_nohz(void)
12088 {
12089 #ifdef CONFIG_NO_HZ_FULL
12090 	/* Lock so we don't race with concurrent unaccount */
12091 	spin_lock(&nr_freq_lock);
12092 	if (atomic_inc_return(&nr_freq_events) == 1)
12093 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12094 	spin_unlock(&nr_freq_lock);
12095 #endif
12096 }
12097 
12098 static void account_freq_event(void)
12099 {
12100 	if (tick_nohz_full_enabled())
12101 		account_freq_event_nohz();
12102 	else
12103 		atomic_inc(&nr_freq_events);
12104 }
12105 
12106 
12107 static void account_event(struct perf_event *event)
12108 {
12109 	bool inc = false;
12110 
12111 	if (event->parent)
12112 		return;
12113 
12114 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12115 		inc = true;
12116 	if (event->attr.mmap || event->attr.mmap_data)
12117 		atomic_inc(&nr_mmap_events);
12118 	if (event->attr.build_id)
12119 		atomic_inc(&nr_build_id_events);
12120 	if (event->attr.comm)
12121 		atomic_inc(&nr_comm_events);
12122 	if (event->attr.namespaces)
12123 		atomic_inc(&nr_namespaces_events);
12124 	if (event->attr.cgroup)
12125 		atomic_inc(&nr_cgroup_events);
12126 	if (event->attr.task)
12127 		atomic_inc(&nr_task_events);
12128 	if (event->attr.freq)
12129 		account_freq_event();
12130 	if (event->attr.context_switch) {
12131 		atomic_inc(&nr_switch_events);
12132 		inc = true;
12133 	}
12134 	if (has_branch_stack(event))
12135 		inc = true;
12136 	if (is_cgroup_event(event))
12137 		inc = true;
12138 	if (event->attr.ksymbol)
12139 		atomic_inc(&nr_ksymbol_events);
12140 	if (event->attr.bpf_event)
12141 		atomic_inc(&nr_bpf_events);
12142 	if (event->attr.text_poke)
12143 		atomic_inc(&nr_text_poke_events);
12144 
12145 	if (inc) {
12146 		/*
12147 		 * We need the mutex here because static_branch_enable()
12148 		 * must complete *before* the perf_sched_count increment
12149 		 * becomes visible.
12150 		 */
12151 		if (atomic_inc_not_zero(&perf_sched_count))
12152 			goto enabled;
12153 
12154 		mutex_lock(&perf_sched_mutex);
12155 		if (!atomic_read(&perf_sched_count)) {
12156 			static_branch_enable(&perf_sched_events);
12157 			/*
12158 			 * Guarantee that all CPUs observe they key change and
12159 			 * call the perf scheduling hooks before proceeding to
12160 			 * install events that need them.
12161 			 */
12162 			synchronize_rcu();
12163 		}
12164 		/*
12165 		 * Now that we have waited for the sync_sched(), allow further
12166 		 * increments to by-pass the mutex.
12167 		 */
12168 		atomic_inc(&perf_sched_count);
12169 		mutex_unlock(&perf_sched_mutex);
12170 	}
12171 enabled:
12172 
12173 	account_pmu_sb_event(event);
12174 }
12175 
12176 /*
12177  * Allocate and initialize an event structure
12178  */
12179 static struct perf_event *
12180 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12181 		 struct task_struct *task,
12182 		 struct perf_event *group_leader,
12183 		 struct perf_event *parent_event,
12184 		 perf_overflow_handler_t overflow_handler,
12185 		 void *context, int cgroup_fd)
12186 {
12187 	struct pmu *pmu;
12188 	struct perf_event *event;
12189 	struct hw_perf_event *hwc;
12190 	long err = -EINVAL;
12191 	int node;
12192 
12193 	if ((unsigned)cpu >= nr_cpu_ids) {
12194 		if (!task || cpu != -1)
12195 			return ERR_PTR(-EINVAL);
12196 	}
12197 	if (attr->sigtrap && !task) {
12198 		/* Requires a task: avoid signalling random tasks. */
12199 		return ERR_PTR(-EINVAL);
12200 	}
12201 
12202 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12203 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12204 				      node);
12205 	if (!event)
12206 		return ERR_PTR(-ENOMEM);
12207 
12208 	/*
12209 	 * Single events are their own group leaders, with an
12210 	 * empty sibling list:
12211 	 */
12212 	if (!group_leader)
12213 		group_leader = event;
12214 
12215 	mutex_init(&event->child_mutex);
12216 	INIT_LIST_HEAD(&event->child_list);
12217 
12218 	INIT_LIST_HEAD(&event->event_entry);
12219 	INIT_LIST_HEAD(&event->sibling_list);
12220 	INIT_LIST_HEAD(&event->active_list);
12221 	init_event_group(event);
12222 	INIT_LIST_HEAD(&event->rb_entry);
12223 	INIT_LIST_HEAD(&event->active_entry);
12224 	INIT_LIST_HEAD(&event->addr_filters.list);
12225 	INIT_HLIST_NODE(&event->hlist_entry);
12226 
12227 
12228 	init_waitqueue_head(&event->waitq);
12229 	init_irq_work(&event->pending_irq, perf_pending_irq);
12230 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12231 	init_task_work(&event->pending_task, perf_pending_task);
12232 	rcuwait_init(&event->pending_work_wait);
12233 
12234 	mutex_init(&event->mmap_mutex);
12235 	raw_spin_lock_init(&event->addr_filters.lock);
12236 
12237 	atomic_long_set(&event->refcount, 1);
12238 	event->cpu		= cpu;
12239 	event->attr		= *attr;
12240 	event->group_leader	= group_leader;
12241 	event->pmu		= NULL;
12242 	event->oncpu		= -1;
12243 
12244 	event->parent		= parent_event;
12245 
12246 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12247 	event->id		= atomic64_inc_return(&perf_event_id);
12248 
12249 	event->state		= PERF_EVENT_STATE_INACTIVE;
12250 
12251 	if (parent_event)
12252 		event->event_caps = parent_event->event_caps;
12253 
12254 	if (task) {
12255 		event->attach_state = PERF_ATTACH_TASK;
12256 		/*
12257 		 * XXX pmu::event_init needs to know what task to account to
12258 		 * and we cannot use the ctx information because we need the
12259 		 * pmu before we get a ctx.
12260 		 */
12261 		event->hw.target = get_task_struct(task);
12262 	}
12263 
12264 	event->clock = &local_clock;
12265 	if (parent_event)
12266 		event->clock = parent_event->clock;
12267 
12268 	if (!overflow_handler && parent_event) {
12269 		overflow_handler = parent_event->overflow_handler;
12270 		context = parent_event->overflow_handler_context;
12271 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12272 		if (parent_event->prog) {
12273 			struct bpf_prog *prog = parent_event->prog;
12274 
12275 			bpf_prog_inc(prog);
12276 			event->prog = prog;
12277 		}
12278 #endif
12279 	}
12280 
12281 	if (overflow_handler) {
12282 		event->overflow_handler	= overflow_handler;
12283 		event->overflow_handler_context = context;
12284 	} else if (is_write_backward(event)){
12285 		event->overflow_handler = perf_event_output_backward;
12286 		event->overflow_handler_context = NULL;
12287 	} else {
12288 		event->overflow_handler = perf_event_output_forward;
12289 		event->overflow_handler_context = NULL;
12290 	}
12291 
12292 	perf_event__state_init(event);
12293 
12294 	pmu = NULL;
12295 
12296 	hwc = &event->hw;
12297 	hwc->sample_period = attr->sample_period;
12298 	if (attr->freq && attr->sample_freq)
12299 		hwc->sample_period = 1;
12300 	hwc->last_period = hwc->sample_period;
12301 
12302 	local64_set(&hwc->period_left, hwc->sample_period);
12303 
12304 	/*
12305 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12306 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12307 	 * collect per-thread samples.
12308 	 * See perf_output_read().
12309 	 */
12310 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12311 		goto err_ns;
12312 
12313 	if (!has_branch_stack(event))
12314 		event->attr.branch_sample_type = 0;
12315 
12316 	pmu = perf_init_event(event);
12317 	if (IS_ERR(pmu)) {
12318 		err = PTR_ERR(pmu);
12319 		goto err_ns;
12320 	}
12321 
12322 	/*
12323 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12324 	 * events (they don't make sense as the cgroup will be different
12325 	 * on other CPUs in the uncore mask).
12326 	 */
12327 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12328 		err = -EINVAL;
12329 		goto err_pmu;
12330 	}
12331 
12332 	if (event->attr.aux_output &&
12333 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12334 	     event->attr.aux_pause || event->attr.aux_resume)) {
12335 		err = -EOPNOTSUPP;
12336 		goto err_pmu;
12337 	}
12338 
12339 	if (event->attr.aux_pause && event->attr.aux_resume) {
12340 		err = -EINVAL;
12341 		goto err_pmu;
12342 	}
12343 
12344 	if (event->attr.aux_start_paused) {
12345 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12346 			err = -EOPNOTSUPP;
12347 			goto err_pmu;
12348 		}
12349 		event->hw.aux_paused = 1;
12350 	}
12351 
12352 	if (cgroup_fd != -1) {
12353 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12354 		if (err)
12355 			goto err_pmu;
12356 	}
12357 
12358 	err = exclusive_event_init(event);
12359 	if (err)
12360 		goto err_pmu;
12361 
12362 	if (has_addr_filter(event)) {
12363 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12364 						    sizeof(struct perf_addr_filter_range),
12365 						    GFP_KERNEL);
12366 		if (!event->addr_filter_ranges) {
12367 			err = -ENOMEM;
12368 			goto err_per_task;
12369 		}
12370 
12371 		/*
12372 		 * Clone the parent's vma offsets: they are valid until exec()
12373 		 * even if the mm is not shared with the parent.
12374 		 */
12375 		if (event->parent) {
12376 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12377 
12378 			raw_spin_lock_irq(&ifh->lock);
12379 			memcpy(event->addr_filter_ranges,
12380 			       event->parent->addr_filter_ranges,
12381 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12382 			raw_spin_unlock_irq(&ifh->lock);
12383 		}
12384 
12385 		/* force hw sync on the address filters */
12386 		event->addr_filters_gen = 1;
12387 	}
12388 
12389 	if (!event->parent) {
12390 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12391 			err = get_callchain_buffers(attr->sample_max_stack);
12392 			if (err)
12393 				goto err_addr_filters;
12394 		}
12395 	}
12396 
12397 	err = security_perf_event_alloc(event);
12398 	if (err)
12399 		goto err_callchain_buffer;
12400 
12401 	/* symmetric to unaccount_event() in _free_event() */
12402 	account_event(event);
12403 
12404 	return event;
12405 
12406 err_callchain_buffer:
12407 	if (!event->parent) {
12408 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12409 			put_callchain_buffers();
12410 	}
12411 err_addr_filters:
12412 	kfree(event->addr_filter_ranges);
12413 
12414 err_per_task:
12415 	exclusive_event_destroy(event);
12416 
12417 err_pmu:
12418 	if (is_cgroup_event(event))
12419 		perf_detach_cgroup(event);
12420 	if (event->destroy)
12421 		event->destroy(event);
12422 	module_put(pmu->module);
12423 err_ns:
12424 	if (event->hw.target)
12425 		put_task_struct(event->hw.target);
12426 	call_rcu(&event->rcu_head, free_event_rcu);
12427 
12428 	return ERR_PTR(err);
12429 }
12430 
12431 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12432 			  struct perf_event_attr *attr)
12433 {
12434 	u32 size;
12435 	int ret;
12436 
12437 	/* Zero the full structure, so that a short copy will be nice. */
12438 	memset(attr, 0, sizeof(*attr));
12439 
12440 	ret = get_user(size, &uattr->size);
12441 	if (ret)
12442 		return ret;
12443 
12444 	/* ABI compatibility quirk: */
12445 	if (!size)
12446 		size = PERF_ATTR_SIZE_VER0;
12447 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12448 		goto err_size;
12449 
12450 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12451 	if (ret) {
12452 		if (ret == -E2BIG)
12453 			goto err_size;
12454 		return ret;
12455 	}
12456 
12457 	attr->size = size;
12458 
12459 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12460 		return -EINVAL;
12461 
12462 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12463 		return -EINVAL;
12464 
12465 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12466 		return -EINVAL;
12467 
12468 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12469 		u64 mask = attr->branch_sample_type;
12470 
12471 		/* only using defined bits */
12472 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12473 			return -EINVAL;
12474 
12475 		/* at least one branch bit must be set */
12476 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12477 			return -EINVAL;
12478 
12479 		/* propagate priv level, when not set for branch */
12480 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12481 
12482 			/* exclude_kernel checked on syscall entry */
12483 			if (!attr->exclude_kernel)
12484 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12485 
12486 			if (!attr->exclude_user)
12487 				mask |= PERF_SAMPLE_BRANCH_USER;
12488 
12489 			if (!attr->exclude_hv)
12490 				mask |= PERF_SAMPLE_BRANCH_HV;
12491 			/*
12492 			 * adjust user setting (for HW filter setup)
12493 			 */
12494 			attr->branch_sample_type = mask;
12495 		}
12496 		/* privileged levels capture (kernel, hv): check permissions */
12497 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12498 			ret = perf_allow_kernel(attr);
12499 			if (ret)
12500 				return ret;
12501 		}
12502 	}
12503 
12504 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12505 		ret = perf_reg_validate(attr->sample_regs_user);
12506 		if (ret)
12507 			return ret;
12508 	}
12509 
12510 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12511 		if (!arch_perf_have_user_stack_dump())
12512 			return -ENOSYS;
12513 
12514 		/*
12515 		 * We have __u32 type for the size, but so far
12516 		 * we can only use __u16 as maximum due to the
12517 		 * __u16 sample size limit.
12518 		 */
12519 		if (attr->sample_stack_user >= USHRT_MAX)
12520 			return -EINVAL;
12521 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12522 			return -EINVAL;
12523 	}
12524 
12525 	if (!attr->sample_max_stack)
12526 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12527 
12528 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12529 		ret = perf_reg_validate(attr->sample_regs_intr);
12530 
12531 #ifndef CONFIG_CGROUP_PERF
12532 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12533 		return -EINVAL;
12534 #endif
12535 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12536 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12537 		return -EINVAL;
12538 
12539 	if (!attr->inherit && attr->inherit_thread)
12540 		return -EINVAL;
12541 
12542 	if (attr->remove_on_exec && attr->enable_on_exec)
12543 		return -EINVAL;
12544 
12545 	if (attr->sigtrap && !attr->remove_on_exec)
12546 		return -EINVAL;
12547 
12548 out:
12549 	return ret;
12550 
12551 err_size:
12552 	put_user(sizeof(*attr), &uattr->size);
12553 	ret = -E2BIG;
12554 	goto out;
12555 }
12556 
12557 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12558 {
12559 	if (b < a)
12560 		swap(a, b);
12561 
12562 	mutex_lock(a);
12563 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12564 }
12565 
12566 static int
12567 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12568 {
12569 	struct perf_buffer *rb = NULL;
12570 	int ret = -EINVAL;
12571 
12572 	if (!output_event) {
12573 		mutex_lock(&event->mmap_mutex);
12574 		goto set;
12575 	}
12576 
12577 	/* don't allow circular references */
12578 	if (event == output_event)
12579 		goto out;
12580 
12581 	/*
12582 	 * Don't allow cross-cpu buffers
12583 	 */
12584 	if (output_event->cpu != event->cpu)
12585 		goto out;
12586 
12587 	/*
12588 	 * If its not a per-cpu rb, it must be the same task.
12589 	 */
12590 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12591 		goto out;
12592 
12593 	/*
12594 	 * Mixing clocks in the same buffer is trouble you don't need.
12595 	 */
12596 	if (output_event->clock != event->clock)
12597 		goto out;
12598 
12599 	/*
12600 	 * Either writing ring buffer from beginning or from end.
12601 	 * Mixing is not allowed.
12602 	 */
12603 	if (is_write_backward(output_event) != is_write_backward(event))
12604 		goto out;
12605 
12606 	/*
12607 	 * If both events generate aux data, they must be on the same PMU
12608 	 */
12609 	if (has_aux(event) && has_aux(output_event) &&
12610 	    event->pmu != output_event->pmu)
12611 		goto out;
12612 
12613 	/*
12614 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12615 	 * output_event is already on rb->event_list, and the list iteration
12616 	 * restarts after every removal, it is guaranteed this new event is
12617 	 * observed *OR* if output_event is already removed, it's guaranteed we
12618 	 * observe !rb->mmap_count.
12619 	 */
12620 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12621 set:
12622 	/* Can't redirect output if we've got an active mmap() */
12623 	if (atomic_read(&event->mmap_count))
12624 		goto unlock;
12625 
12626 	if (output_event) {
12627 		/* get the rb we want to redirect to */
12628 		rb = ring_buffer_get(output_event);
12629 		if (!rb)
12630 			goto unlock;
12631 
12632 		/* did we race against perf_mmap_close() */
12633 		if (!atomic_read(&rb->mmap_count)) {
12634 			ring_buffer_put(rb);
12635 			goto unlock;
12636 		}
12637 	}
12638 
12639 	ring_buffer_attach(event, rb);
12640 
12641 	ret = 0;
12642 unlock:
12643 	mutex_unlock(&event->mmap_mutex);
12644 	if (output_event)
12645 		mutex_unlock(&output_event->mmap_mutex);
12646 
12647 out:
12648 	return ret;
12649 }
12650 
12651 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12652 {
12653 	bool nmi_safe = false;
12654 
12655 	switch (clk_id) {
12656 	case CLOCK_MONOTONIC:
12657 		event->clock = &ktime_get_mono_fast_ns;
12658 		nmi_safe = true;
12659 		break;
12660 
12661 	case CLOCK_MONOTONIC_RAW:
12662 		event->clock = &ktime_get_raw_fast_ns;
12663 		nmi_safe = true;
12664 		break;
12665 
12666 	case CLOCK_REALTIME:
12667 		event->clock = &ktime_get_real_ns;
12668 		break;
12669 
12670 	case CLOCK_BOOTTIME:
12671 		event->clock = &ktime_get_boottime_ns;
12672 		break;
12673 
12674 	case CLOCK_TAI:
12675 		event->clock = &ktime_get_clocktai_ns;
12676 		break;
12677 
12678 	default:
12679 		return -EINVAL;
12680 	}
12681 
12682 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12683 		return -EINVAL;
12684 
12685 	return 0;
12686 }
12687 
12688 static bool
12689 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12690 {
12691 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12692 	bool is_capable = perfmon_capable();
12693 
12694 	if (attr->sigtrap) {
12695 		/*
12696 		 * perf_event_attr::sigtrap sends signals to the other task.
12697 		 * Require the current task to also have CAP_KILL.
12698 		 */
12699 		rcu_read_lock();
12700 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12701 		rcu_read_unlock();
12702 
12703 		/*
12704 		 * If the required capabilities aren't available, checks for
12705 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12706 		 * can effectively change the target task.
12707 		 */
12708 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12709 	}
12710 
12711 	/*
12712 	 * Preserve ptrace permission check for backwards compatibility. The
12713 	 * ptrace check also includes checks that the current task and other
12714 	 * task have matching uids, and is therefore not done here explicitly.
12715 	 */
12716 	return is_capable || ptrace_may_access(task, ptrace_mode);
12717 }
12718 
12719 /**
12720  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12721  *
12722  * @attr_uptr:	event_id type attributes for monitoring/sampling
12723  * @pid:		target pid
12724  * @cpu:		target cpu
12725  * @group_fd:		group leader event fd
12726  * @flags:		perf event open flags
12727  */
12728 SYSCALL_DEFINE5(perf_event_open,
12729 		struct perf_event_attr __user *, attr_uptr,
12730 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12731 {
12732 	struct perf_event *group_leader = NULL, *output_event = NULL;
12733 	struct perf_event_pmu_context *pmu_ctx;
12734 	struct perf_event *event, *sibling;
12735 	struct perf_event_attr attr;
12736 	struct perf_event_context *ctx;
12737 	struct file *event_file = NULL;
12738 	struct task_struct *task = NULL;
12739 	struct pmu *pmu;
12740 	int event_fd;
12741 	int move_group = 0;
12742 	int err;
12743 	int f_flags = O_RDWR;
12744 	int cgroup_fd = -1;
12745 
12746 	/* for future expandability... */
12747 	if (flags & ~PERF_FLAG_ALL)
12748 		return -EINVAL;
12749 
12750 	err = perf_copy_attr(attr_uptr, &attr);
12751 	if (err)
12752 		return err;
12753 
12754 	/* Do we allow access to perf_event_open(2) ? */
12755 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12756 	if (err)
12757 		return err;
12758 
12759 	if (!attr.exclude_kernel) {
12760 		err = perf_allow_kernel(&attr);
12761 		if (err)
12762 			return err;
12763 	}
12764 
12765 	if (attr.namespaces) {
12766 		if (!perfmon_capable())
12767 			return -EACCES;
12768 	}
12769 
12770 	if (attr.freq) {
12771 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12772 			return -EINVAL;
12773 	} else {
12774 		if (attr.sample_period & (1ULL << 63))
12775 			return -EINVAL;
12776 	}
12777 
12778 	/* Only privileged users can get physical addresses */
12779 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12780 		err = perf_allow_kernel(&attr);
12781 		if (err)
12782 			return err;
12783 	}
12784 
12785 	/* REGS_INTR can leak data, lockdown must prevent this */
12786 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12787 		err = security_locked_down(LOCKDOWN_PERF);
12788 		if (err)
12789 			return err;
12790 	}
12791 
12792 	/*
12793 	 * In cgroup mode, the pid argument is used to pass the fd
12794 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12795 	 * designates the cpu on which to monitor threads from that
12796 	 * cgroup.
12797 	 */
12798 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12799 		return -EINVAL;
12800 
12801 	if (flags & PERF_FLAG_FD_CLOEXEC)
12802 		f_flags |= O_CLOEXEC;
12803 
12804 	event_fd = get_unused_fd_flags(f_flags);
12805 	if (event_fd < 0)
12806 		return event_fd;
12807 
12808 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
12809 	if (group_fd != -1) {
12810 		if (!is_perf_file(group)) {
12811 			err = -EBADF;
12812 			goto err_fd;
12813 		}
12814 		group_leader = fd_file(group)->private_data;
12815 		if (flags & PERF_FLAG_FD_OUTPUT)
12816 			output_event = group_leader;
12817 		if (flags & PERF_FLAG_FD_NO_GROUP)
12818 			group_leader = NULL;
12819 	}
12820 
12821 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12822 		task = find_lively_task_by_vpid(pid);
12823 		if (IS_ERR(task)) {
12824 			err = PTR_ERR(task);
12825 			goto err_fd;
12826 		}
12827 	}
12828 
12829 	if (task && group_leader &&
12830 	    group_leader->attr.inherit != attr.inherit) {
12831 		err = -EINVAL;
12832 		goto err_task;
12833 	}
12834 
12835 	if (flags & PERF_FLAG_PID_CGROUP)
12836 		cgroup_fd = pid;
12837 
12838 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12839 				 NULL, NULL, cgroup_fd);
12840 	if (IS_ERR(event)) {
12841 		err = PTR_ERR(event);
12842 		goto err_task;
12843 	}
12844 
12845 	if (is_sampling_event(event)) {
12846 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12847 			err = -EOPNOTSUPP;
12848 			goto err_alloc;
12849 		}
12850 	}
12851 
12852 	/*
12853 	 * Special case software events and allow them to be part of
12854 	 * any hardware group.
12855 	 */
12856 	pmu = event->pmu;
12857 
12858 	if (attr.use_clockid) {
12859 		err = perf_event_set_clock(event, attr.clockid);
12860 		if (err)
12861 			goto err_alloc;
12862 	}
12863 
12864 	if (pmu->task_ctx_nr == perf_sw_context)
12865 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12866 
12867 	if (task) {
12868 		err = down_read_interruptible(&task->signal->exec_update_lock);
12869 		if (err)
12870 			goto err_alloc;
12871 
12872 		/*
12873 		 * We must hold exec_update_lock across this and any potential
12874 		 * perf_install_in_context() call for this new event to
12875 		 * serialize against exec() altering our credentials (and the
12876 		 * perf_event_exit_task() that could imply).
12877 		 */
12878 		err = -EACCES;
12879 		if (!perf_check_permission(&attr, task))
12880 			goto err_cred;
12881 	}
12882 
12883 	/*
12884 	 * Get the target context (task or percpu):
12885 	 */
12886 	ctx = find_get_context(task, event);
12887 	if (IS_ERR(ctx)) {
12888 		err = PTR_ERR(ctx);
12889 		goto err_cred;
12890 	}
12891 
12892 	mutex_lock(&ctx->mutex);
12893 
12894 	if (ctx->task == TASK_TOMBSTONE) {
12895 		err = -ESRCH;
12896 		goto err_locked;
12897 	}
12898 
12899 	if (!task) {
12900 		/*
12901 		 * Check if the @cpu we're creating an event for is online.
12902 		 *
12903 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12904 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12905 		 */
12906 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12907 
12908 		if (!cpuctx->online) {
12909 			err = -ENODEV;
12910 			goto err_locked;
12911 		}
12912 	}
12913 
12914 	if (group_leader) {
12915 		err = -EINVAL;
12916 
12917 		/*
12918 		 * Do not allow a recursive hierarchy (this new sibling
12919 		 * becoming part of another group-sibling):
12920 		 */
12921 		if (group_leader->group_leader != group_leader)
12922 			goto err_locked;
12923 
12924 		/* All events in a group should have the same clock */
12925 		if (group_leader->clock != event->clock)
12926 			goto err_locked;
12927 
12928 		/*
12929 		 * Make sure we're both events for the same CPU;
12930 		 * grouping events for different CPUs is broken; since
12931 		 * you can never concurrently schedule them anyhow.
12932 		 */
12933 		if (group_leader->cpu != event->cpu)
12934 			goto err_locked;
12935 
12936 		/*
12937 		 * Make sure we're both on the same context; either task or cpu.
12938 		 */
12939 		if (group_leader->ctx != ctx)
12940 			goto err_locked;
12941 
12942 		/*
12943 		 * Only a group leader can be exclusive or pinned
12944 		 */
12945 		if (attr.exclusive || attr.pinned)
12946 			goto err_locked;
12947 
12948 		if (is_software_event(event) &&
12949 		    !in_software_context(group_leader)) {
12950 			/*
12951 			 * If the event is a sw event, but the group_leader
12952 			 * is on hw context.
12953 			 *
12954 			 * Allow the addition of software events to hw
12955 			 * groups, this is safe because software events
12956 			 * never fail to schedule.
12957 			 *
12958 			 * Note the comment that goes with struct
12959 			 * perf_event_pmu_context.
12960 			 */
12961 			pmu = group_leader->pmu_ctx->pmu;
12962 		} else if (!is_software_event(event)) {
12963 			if (is_software_event(group_leader) &&
12964 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12965 				/*
12966 				 * In case the group is a pure software group, and we
12967 				 * try to add a hardware event, move the whole group to
12968 				 * the hardware context.
12969 				 */
12970 				move_group = 1;
12971 			}
12972 
12973 			/* Don't allow group of multiple hw events from different pmus */
12974 			if (!in_software_context(group_leader) &&
12975 			    group_leader->pmu_ctx->pmu != pmu)
12976 				goto err_locked;
12977 		}
12978 	}
12979 
12980 	/*
12981 	 * Now that we're certain of the pmu; find the pmu_ctx.
12982 	 */
12983 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12984 	if (IS_ERR(pmu_ctx)) {
12985 		err = PTR_ERR(pmu_ctx);
12986 		goto err_locked;
12987 	}
12988 	event->pmu_ctx = pmu_ctx;
12989 
12990 	if (output_event) {
12991 		err = perf_event_set_output(event, output_event);
12992 		if (err)
12993 			goto err_context;
12994 	}
12995 
12996 	if (!perf_event_validate_size(event)) {
12997 		err = -E2BIG;
12998 		goto err_context;
12999 	}
13000 
13001 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13002 		err = -EINVAL;
13003 		goto err_context;
13004 	}
13005 
13006 	/*
13007 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13008 	 * because we need to serialize with concurrent event creation.
13009 	 */
13010 	if (!exclusive_event_installable(event, ctx)) {
13011 		err = -EBUSY;
13012 		goto err_context;
13013 	}
13014 
13015 	WARN_ON_ONCE(ctx->parent_ctx);
13016 
13017 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13018 	if (IS_ERR(event_file)) {
13019 		err = PTR_ERR(event_file);
13020 		event_file = NULL;
13021 		goto err_context;
13022 	}
13023 
13024 	/*
13025 	 * This is the point on no return; we cannot fail hereafter. This is
13026 	 * where we start modifying current state.
13027 	 */
13028 
13029 	if (move_group) {
13030 		perf_remove_from_context(group_leader, 0);
13031 		put_pmu_ctx(group_leader->pmu_ctx);
13032 
13033 		for_each_sibling_event(sibling, group_leader) {
13034 			perf_remove_from_context(sibling, 0);
13035 			put_pmu_ctx(sibling->pmu_ctx);
13036 		}
13037 
13038 		/*
13039 		 * Install the group siblings before the group leader.
13040 		 *
13041 		 * Because a group leader will try and install the entire group
13042 		 * (through the sibling list, which is still in-tact), we can
13043 		 * end up with siblings installed in the wrong context.
13044 		 *
13045 		 * By installing siblings first we NO-OP because they're not
13046 		 * reachable through the group lists.
13047 		 */
13048 		for_each_sibling_event(sibling, group_leader) {
13049 			sibling->pmu_ctx = pmu_ctx;
13050 			get_pmu_ctx(pmu_ctx);
13051 			perf_event__state_init(sibling);
13052 			perf_install_in_context(ctx, sibling, sibling->cpu);
13053 		}
13054 
13055 		/*
13056 		 * Removing from the context ends up with disabled
13057 		 * event. What we want here is event in the initial
13058 		 * startup state, ready to be add into new context.
13059 		 */
13060 		group_leader->pmu_ctx = pmu_ctx;
13061 		get_pmu_ctx(pmu_ctx);
13062 		perf_event__state_init(group_leader);
13063 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13064 	}
13065 
13066 	/*
13067 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13068 	 * that we're serialized against further additions and before
13069 	 * perf_install_in_context() which is the point the event is active and
13070 	 * can use these values.
13071 	 */
13072 	perf_event__header_size(event);
13073 	perf_event__id_header_size(event);
13074 
13075 	event->owner = current;
13076 
13077 	perf_install_in_context(ctx, event, event->cpu);
13078 	perf_unpin_context(ctx);
13079 
13080 	mutex_unlock(&ctx->mutex);
13081 
13082 	if (task) {
13083 		up_read(&task->signal->exec_update_lock);
13084 		put_task_struct(task);
13085 	}
13086 
13087 	mutex_lock(&current->perf_event_mutex);
13088 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13089 	mutex_unlock(&current->perf_event_mutex);
13090 
13091 	/*
13092 	 * File reference in group guarantees that group_leader has been
13093 	 * kept alive until we place the new event on the sibling_list.
13094 	 * This ensures destruction of the group leader will find
13095 	 * the pointer to itself in perf_group_detach().
13096 	 */
13097 	fd_install(event_fd, event_file);
13098 	return event_fd;
13099 
13100 err_context:
13101 	put_pmu_ctx(event->pmu_ctx);
13102 	event->pmu_ctx = NULL; /* _free_event() */
13103 err_locked:
13104 	mutex_unlock(&ctx->mutex);
13105 	perf_unpin_context(ctx);
13106 	put_ctx(ctx);
13107 err_cred:
13108 	if (task)
13109 		up_read(&task->signal->exec_update_lock);
13110 err_alloc:
13111 	free_event(event);
13112 err_task:
13113 	if (task)
13114 		put_task_struct(task);
13115 err_fd:
13116 	put_unused_fd(event_fd);
13117 	return err;
13118 }
13119 
13120 /**
13121  * perf_event_create_kernel_counter
13122  *
13123  * @attr: attributes of the counter to create
13124  * @cpu: cpu in which the counter is bound
13125  * @task: task to profile (NULL for percpu)
13126  * @overflow_handler: callback to trigger when we hit the event
13127  * @context: context data could be used in overflow_handler callback
13128  */
13129 struct perf_event *
13130 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13131 				 struct task_struct *task,
13132 				 perf_overflow_handler_t overflow_handler,
13133 				 void *context)
13134 {
13135 	struct perf_event_pmu_context *pmu_ctx;
13136 	struct perf_event_context *ctx;
13137 	struct perf_event *event;
13138 	struct pmu *pmu;
13139 	int err;
13140 
13141 	/*
13142 	 * Grouping is not supported for kernel events, neither is 'AUX',
13143 	 * make sure the caller's intentions are adjusted.
13144 	 */
13145 	if (attr->aux_output || attr->aux_action)
13146 		return ERR_PTR(-EINVAL);
13147 
13148 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13149 				 overflow_handler, context, -1);
13150 	if (IS_ERR(event)) {
13151 		err = PTR_ERR(event);
13152 		goto err;
13153 	}
13154 
13155 	/* Mark owner so we could distinguish it from user events. */
13156 	event->owner = TASK_TOMBSTONE;
13157 	pmu = event->pmu;
13158 
13159 	if (pmu->task_ctx_nr == perf_sw_context)
13160 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13161 
13162 	/*
13163 	 * Get the target context (task or percpu):
13164 	 */
13165 	ctx = find_get_context(task, event);
13166 	if (IS_ERR(ctx)) {
13167 		err = PTR_ERR(ctx);
13168 		goto err_alloc;
13169 	}
13170 
13171 	WARN_ON_ONCE(ctx->parent_ctx);
13172 	mutex_lock(&ctx->mutex);
13173 	if (ctx->task == TASK_TOMBSTONE) {
13174 		err = -ESRCH;
13175 		goto err_unlock;
13176 	}
13177 
13178 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13179 	if (IS_ERR(pmu_ctx)) {
13180 		err = PTR_ERR(pmu_ctx);
13181 		goto err_unlock;
13182 	}
13183 	event->pmu_ctx = pmu_ctx;
13184 
13185 	if (!task) {
13186 		/*
13187 		 * Check if the @cpu we're creating an event for is online.
13188 		 *
13189 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13190 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13191 		 */
13192 		struct perf_cpu_context *cpuctx =
13193 			container_of(ctx, struct perf_cpu_context, ctx);
13194 		if (!cpuctx->online) {
13195 			err = -ENODEV;
13196 			goto err_pmu_ctx;
13197 		}
13198 	}
13199 
13200 	if (!exclusive_event_installable(event, ctx)) {
13201 		err = -EBUSY;
13202 		goto err_pmu_ctx;
13203 	}
13204 
13205 	perf_install_in_context(ctx, event, event->cpu);
13206 	perf_unpin_context(ctx);
13207 	mutex_unlock(&ctx->mutex);
13208 
13209 	return event;
13210 
13211 err_pmu_ctx:
13212 	put_pmu_ctx(pmu_ctx);
13213 	event->pmu_ctx = NULL; /* _free_event() */
13214 err_unlock:
13215 	mutex_unlock(&ctx->mutex);
13216 	perf_unpin_context(ctx);
13217 	put_ctx(ctx);
13218 err_alloc:
13219 	free_event(event);
13220 err:
13221 	return ERR_PTR(err);
13222 }
13223 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13224 
13225 static void __perf_pmu_remove(struct perf_event_context *ctx,
13226 			      int cpu, struct pmu *pmu,
13227 			      struct perf_event_groups *groups,
13228 			      struct list_head *events)
13229 {
13230 	struct perf_event *event, *sibling;
13231 
13232 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13233 		perf_remove_from_context(event, 0);
13234 		put_pmu_ctx(event->pmu_ctx);
13235 		list_add(&event->migrate_entry, events);
13236 
13237 		for_each_sibling_event(sibling, event) {
13238 			perf_remove_from_context(sibling, 0);
13239 			put_pmu_ctx(sibling->pmu_ctx);
13240 			list_add(&sibling->migrate_entry, events);
13241 		}
13242 	}
13243 }
13244 
13245 static void __perf_pmu_install_event(struct pmu *pmu,
13246 				     struct perf_event_context *ctx,
13247 				     int cpu, struct perf_event *event)
13248 {
13249 	struct perf_event_pmu_context *epc;
13250 	struct perf_event_context *old_ctx = event->ctx;
13251 
13252 	get_ctx(ctx); /* normally find_get_context() */
13253 
13254 	event->cpu = cpu;
13255 	epc = find_get_pmu_context(pmu, ctx, event);
13256 	event->pmu_ctx = epc;
13257 
13258 	if (event->state >= PERF_EVENT_STATE_OFF)
13259 		event->state = PERF_EVENT_STATE_INACTIVE;
13260 	perf_install_in_context(ctx, event, cpu);
13261 
13262 	/*
13263 	 * Now that event->ctx is updated and visible, put the old ctx.
13264 	 */
13265 	put_ctx(old_ctx);
13266 }
13267 
13268 static void __perf_pmu_install(struct perf_event_context *ctx,
13269 			       int cpu, struct pmu *pmu, struct list_head *events)
13270 {
13271 	struct perf_event *event, *tmp;
13272 
13273 	/*
13274 	 * Re-instate events in 2 passes.
13275 	 *
13276 	 * Skip over group leaders and only install siblings on this first
13277 	 * pass, siblings will not get enabled without a leader, however a
13278 	 * leader will enable its siblings, even if those are still on the old
13279 	 * context.
13280 	 */
13281 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13282 		if (event->group_leader == event)
13283 			continue;
13284 
13285 		list_del(&event->migrate_entry);
13286 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13287 	}
13288 
13289 	/*
13290 	 * Once all the siblings are setup properly, install the group leaders
13291 	 * to make it go.
13292 	 */
13293 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13294 		list_del(&event->migrate_entry);
13295 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13296 	}
13297 }
13298 
13299 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13300 {
13301 	struct perf_event_context *src_ctx, *dst_ctx;
13302 	LIST_HEAD(events);
13303 
13304 	/*
13305 	 * Since per-cpu context is persistent, no need to grab an extra
13306 	 * reference.
13307 	 */
13308 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13309 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13310 
13311 	/*
13312 	 * See perf_event_ctx_lock() for comments on the details
13313 	 * of swizzling perf_event::ctx.
13314 	 */
13315 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13316 
13317 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13318 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13319 
13320 	if (!list_empty(&events)) {
13321 		/*
13322 		 * Wait for the events to quiesce before re-instating them.
13323 		 */
13324 		synchronize_rcu();
13325 
13326 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13327 	}
13328 
13329 	mutex_unlock(&dst_ctx->mutex);
13330 	mutex_unlock(&src_ctx->mutex);
13331 }
13332 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13333 
13334 static void sync_child_event(struct perf_event *child_event)
13335 {
13336 	struct perf_event *parent_event = child_event->parent;
13337 	u64 child_val;
13338 
13339 	if (child_event->attr.inherit_stat) {
13340 		struct task_struct *task = child_event->ctx->task;
13341 
13342 		if (task && task != TASK_TOMBSTONE)
13343 			perf_event_read_event(child_event, task);
13344 	}
13345 
13346 	child_val = perf_event_count(child_event, false);
13347 
13348 	/*
13349 	 * Add back the child's count to the parent's count:
13350 	 */
13351 	atomic64_add(child_val, &parent_event->child_count);
13352 	atomic64_add(child_event->total_time_enabled,
13353 		     &parent_event->child_total_time_enabled);
13354 	atomic64_add(child_event->total_time_running,
13355 		     &parent_event->child_total_time_running);
13356 }
13357 
13358 static void
13359 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13360 {
13361 	struct perf_event *parent_event = event->parent;
13362 	unsigned long detach_flags = 0;
13363 
13364 	if (parent_event) {
13365 		/*
13366 		 * Do not destroy the 'original' grouping; because of the
13367 		 * context switch optimization the original events could've
13368 		 * ended up in a random child task.
13369 		 *
13370 		 * If we were to destroy the original group, all group related
13371 		 * operations would cease to function properly after this
13372 		 * random child dies.
13373 		 *
13374 		 * Do destroy all inherited groups, we don't care about those
13375 		 * and being thorough is better.
13376 		 */
13377 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13378 		mutex_lock(&parent_event->child_mutex);
13379 	}
13380 
13381 	perf_remove_from_context(event, detach_flags);
13382 
13383 	raw_spin_lock_irq(&ctx->lock);
13384 	if (event->state > PERF_EVENT_STATE_EXIT)
13385 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13386 	raw_spin_unlock_irq(&ctx->lock);
13387 
13388 	/*
13389 	 * Child events can be freed.
13390 	 */
13391 	if (parent_event) {
13392 		mutex_unlock(&parent_event->child_mutex);
13393 		/*
13394 		 * Kick perf_poll() for is_event_hup();
13395 		 */
13396 		perf_event_wakeup(parent_event);
13397 		free_event(event);
13398 		put_event(parent_event);
13399 		return;
13400 	}
13401 
13402 	/*
13403 	 * Parent events are governed by their filedesc, retain them.
13404 	 */
13405 	perf_event_wakeup(event);
13406 }
13407 
13408 static void perf_event_exit_task_context(struct task_struct *child)
13409 {
13410 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13411 	struct perf_event *child_event, *next;
13412 
13413 	WARN_ON_ONCE(child != current);
13414 
13415 	child_ctx = perf_pin_task_context(child);
13416 	if (!child_ctx)
13417 		return;
13418 
13419 	/*
13420 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13421 	 * ctx::mutex over the entire thing. This serializes against almost
13422 	 * everything that wants to access the ctx.
13423 	 *
13424 	 * The exception is sys_perf_event_open() /
13425 	 * perf_event_create_kernel_count() which does find_get_context()
13426 	 * without ctx::mutex (it cannot because of the move_group double mutex
13427 	 * lock thing). See the comments in perf_install_in_context().
13428 	 */
13429 	mutex_lock(&child_ctx->mutex);
13430 
13431 	/*
13432 	 * In a single ctx::lock section, de-schedule the events and detach the
13433 	 * context from the task such that we cannot ever get it scheduled back
13434 	 * in.
13435 	 */
13436 	raw_spin_lock_irq(&child_ctx->lock);
13437 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13438 
13439 	/*
13440 	 * Now that the context is inactive, destroy the task <-> ctx relation
13441 	 * and mark the context dead.
13442 	 */
13443 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13444 	put_ctx(child_ctx); /* cannot be last */
13445 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13446 	put_task_struct(current); /* cannot be last */
13447 
13448 	clone_ctx = unclone_ctx(child_ctx);
13449 	raw_spin_unlock_irq(&child_ctx->lock);
13450 
13451 	if (clone_ctx)
13452 		put_ctx(clone_ctx);
13453 
13454 	/*
13455 	 * Report the task dead after unscheduling the events so that we
13456 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13457 	 * get a few PERF_RECORD_READ events.
13458 	 */
13459 	perf_event_task(child, child_ctx, 0);
13460 
13461 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13462 		perf_event_exit_event(child_event, child_ctx);
13463 
13464 	mutex_unlock(&child_ctx->mutex);
13465 
13466 	put_ctx(child_ctx);
13467 }
13468 
13469 /*
13470  * When a child task exits, feed back event values to parent events.
13471  *
13472  * Can be called with exec_update_lock held when called from
13473  * setup_new_exec().
13474  */
13475 void perf_event_exit_task(struct task_struct *child)
13476 {
13477 	struct perf_event *event, *tmp;
13478 
13479 	mutex_lock(&child->perf_event_mutex);
13480 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13481 				 owner_entry) {
13482 		list_del_init(&event->owner_entry);
13483 
13484 		/*
13485 		 * Ensure the list deletion is visible before we clear
13486 		 * the owner, closes a race against perf_release() where
13487 		 * we need to serialize on the owner->perf_event_mutex.
13488 		 */
13489 		smp_store_release(&event->owner, NULL);
13490 	}
13491 	mutex_unlock(&child->perf_event_mutex);
13492 
13493 	perf_event_exit_task_context(child);
13494 
13495 	/*
13496 	 * The perf_event_exit_task_context calls perf_event_task
13497 	 * with child's task_ctx, which generates EXIT events for
13498 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13499 	 * At this point we need to send EXIT events to cpu contexts.
13500 	 */
13501 	perf_event_task(child, NULL, 0);
13502 }
13503 
13504 static void perf_free_event(struct perf_event *event,
13505 			    struct perf_event_context *ctx)
13506 {
13507 	struct perf_event *parent = event->parent;
13508 
13509 	if (WARN_ON_ONCE(!parent))
13510 		return;
13511 
13512 	mutex_lock(&parent->child_mutex);
13513 	list_del_init(&event->child_list);
13514 	mutex_unlock(&parent->child_mutex);
13515 
13516 	put_event(parent);
13517 
13518 	raw_spin_lock_irq(&ctx->lock);
13519 	perf_group_detach(event);
13520 	list_del_event(event, ctx);
13521 	raw_spin_unlock_irq(&ctx->lock);
13522 	free_event(event);
13523 }
13524 
13525 /*
13526  * Free a context as created by inheritance by perf_event_init_task() below,
13527  * used by fork() in case of fail.
13528  *
13529  * Even though the task has never lived, the context and events have been
13530  * exposed through the child_list, so we must take care tearing it all down.
13531  */
13532 void perf_event_free_task(struct task_struct *task)
13533 {
13534 	struct perf_event_context *ctx;
13535 	struct perf_event *event, *tmp;
13536 
13537 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13538 	if (!ctx)
13539 		return;
13540 
13541 	mutex_lock(&ctx->mutex);
13542 	raw_spin_lock_irq(&ctx->lock);
13543 	/*
13544 	 * Destroy the task <-> ctx relation and mark the context dead.
13545 	 *
13546 	 * This is important because even though the task hasn't been
13547 	 * exposed yet the context has been (through child_list).
13548 	 */
13549 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13550 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13551 	put_task_struct(task); /* cannot be last */
13552 	raw_spin_unlock_irq(&ctx->lock);
13553 
13554 
13555 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13556 		perf_free_event(event, ctx);
13557 
13558 	mutex_unlock(&ctx->mutex);
13559 
13560 	/*
13561 	 * perf_event_release_kernel() could've stolen some of our
13562 	 * child events and still have them on its free_list. In that
13563 	 * case we must wait for these events to have been freed (in
13564 	 * particular all their references to this task must've been
13565 	 * dropped).
13566 	 *
13567 	 * Without this copy_process() will unconditionally free this
13568 	 * task (irrespective of its reference count) and
13569 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13570 	 * use-after-free.
13571 	 *
13572 	 * Wait for all events to drop their context reference.
13573 	 */
13574 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13575 	put_ctx(ctx); /* must be last */
13576 }
13577 
13578 void perf_event_delayed_put(struct task_struct *task)
13579 {
13580 	WARN_ON_ONCE(task->perf_event_ctxp);
13581 }
13582 
13583 struct file *perf_event_get(unsigned int fd)
13584 {
13585 	struct file *file = fget(fd);
13586 	if (!file)
13587 		return ERR_PTR(-EBADF);
13588 
13589 	if (file->f_op != &perf_fops) {
13590 		fput(file);
13591 		return ERR_PTR(-EBADF);
13592 	}
13593 
13594 	return file;
13595 }
13596 
13597 const struct perf_event *perf_get_event(struct file *file)
13598 {
13599 	if (file->f_op != &perf_fops)
13600 		return ERR_PTR(-EINVAL);
13601 
13602 	return file->private_data;
13603 }
13604 
13605 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13606 {
13607 	if (!event)
13608 		return ERR_PTR(-EINVAL);
13609 
13610 	return &event->attr;
13611 }
13612 
13613 int perf_allow_kernel(struct perf_event_attr *attr)
13614 {
13615 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13616 		return -EACCES;
13617 
13618 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13619 }
13620 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13621 
13622 /*
13623  * Inherit an event from parent task to child task.
13624  *
13625  * Returns:
13626  *  - valid pointer on success
13627  *  - NULL for orphaned events
13628  *  - IS_ERR() on error
13629  */
13630 static struct perf_event *
13631 inherit_event(struct perf_event *parent_event,
13632 	      struct task_struct *parent,
13633 	      struct perf_event_context *parent_ctx,
13634 	      struct task_struct *child,
13635 	      struct perf_event *group_leader,
13636 	      struct perf_event_context *child_ctx)
13637 {
13638 	enum perf_event_state parent_state = parent_event->state;
13639 	struct perf_event_pmu_context *pmu_ctx;
13640 	struct perf_event *child_event;
13641 	unsigned long flags;
13642 
13643 	/*
13644 	 * Instead of creating recursive hierarchies of events,
13645 	 * we link inherited events back to the original parent,
13646 	 * which has a filp for sure, which we use as the reference
13647 	 * count:
13648 	 */
13649 	if (parent_event->parent)
13650 		parent_event = parent_event->parent;
13651 
13652 	child_event = perf_event_alloc(&parent_event->attr,
13653 					   parent_event->cpu,
13654 					   child,
13655 					   group_leader, parent_event,
13656 					   NULL, NULL, -1);
13657 	if (IS_ERR(child_event))
13658 		return child_event;
13659 
13660 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13661 	if (IS_ERR(pmu_ctx)) {
13662 		free_event(child_event);
13663 		return ERR_CAST(pmu_ctx);
13664 	}
13665 	child_event->pmu_ctx = pmu_ctx;
13666 
13667 	/*
13668 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13669 	 * must be under the same lock in order to serialize against
13670 	 * perf_event_release_kernel(), such that either we must observe
13671 	 * is_orphaned_event() or they will observe us on the child_list.
13672 	 */
13673 	mutex_lock(&parent_event->child_mutex);
13674 	if (is_orphaned_event(parent_event) ||
13675 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13676 		mutex_unlock(&parent_event->child_mutex);
13677 		/* task_ctx_data is freed with child_ctx */
13678 		free_event(child_event);
13679 		return NULL;
13680 	}
13681 
13682 	get_ctx(child_ctx);
13683 
13684 	/*
13685 	 * Make the child state follow the state of the parent event,
13686 	 * not its attr.disabled bit.  We hold the parent's mutex,
13687 	 * so we won't race with perf_event_{en, dis}able_family.
13688 	 */
13689 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13690 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13691 	else
13692 		child_event->state = PERF_EVENT_STATE_OFF;
13693 
13694 	if (parent_event->attr.freq) {
13695 		u64 sample_period = parent_event->hw.sample_period;
13696 		struct hw_perf_event *hwc = &child_event->hw;
13697 
13698 		hwc->sample_period = sample_period;
13699 		hwc->last_period   = sample_period;
13700 
13701 		local64_set(&hwc->period_left, sample_period);
13702 	}
13703 
13704 	child_event->ctx = child_ctx;
13705 	child_event->overflow_handler = parent_event->overflow_handler;
13706 	child_event->overflow_handler_context
13707 		= parent_event->overflow_handler_context;
13708 
13709 	/*
13710 	 * Precalculate sample_data sizes
13711 	 */
13712 	perf_event__header_size(child_event);
13713 	perf_event__id_header_size(child_event);
13714 
13715 	/*
13716 	 * Link it up in the child's context:
13717 	 */
13718 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13719 	add_event_to_ctx(child_event, child_ctx);
13720 	child_event->attach_state |= PERF_ATTACH_CHILD;
13721 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13722 
13723 	/*
13724 	 * Link this into the parent event's child list
13725 	 */
13726 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13727 	mutex_unlock(&parent_event->child_mutex);
13728 
13729 	return child_event;
13730 }
13731 
13732 /*
13733  * Inherits an event group.
13734  *
13735  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13736  * This matches with perf_event_release_kernel() removing all child events.
13737  *
13738  * Returns:
13739  *  - 0 on success
13740  *  - <0 on error
13741  */
13742 static int inherit_group(struct perf_event *parent_event,
13743 	      struct task_struct *parent,
13744 	      struct perf_event_context *parent_ctx,
13745 	      struct task_struct *child,
13746 	      struct perf_event_context *child_ctx)
13747 {
13748 	struct perf_event *leader;
13749 	struct perf_event *sub;
13750 	struct perf_event *child_ctr;
13751 
13752 	leader = inherit_event(parent_event, parent, parent_ctx,
13753 				 child, NULL, child_ctx);
13754 	if (IS_ERR(leader))
13755 		return PTR_ERR(leader);
13756 	/*
13757 	 * @leader can be NULL here because of is_orphaned_event(). In this
13758 	 * case inherit_event() will create individual events, similar to what
13759 	 * perf_group_detach() would do anyway.
13760 	 */
13761 	for_each_sibling_event(sub, parent_event) {
13762 		child_ctr = inherit_event(sub, parent, parent_ctx,
13763 					    child, leader, child_ctx);
13764 		if (IS_ERR(child_ctr))
13765 			return PTR_ERR(child_ctr);
13766 
13767 		if (sub->aux_event == parent_event && child_ctr &&
13768 		    !perf_get_aux_event(child_ctr, leader))
13769 			return -EINVAL;
13770 	}
13771 	if (leader)
13772 		leader->group_generation = parent_event->group_generation;
13773 	return 0;
13774 }
13775 
13776 /*
13777  * Creates the child task context and tries to inherit the event-group.
13778  *
13779  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13780  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13781  * consistent with perf_event_release_kernel() removing all child events.
13782  *
13783  * Returns:
13784  *  - 0 on success
13785  *  - <0 on error
13786  */
13787 static int
13788 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13789 		   struct perf_event_context *parent_ctx,
13790 		   struct task_struct *child,
13791 		   u64 clone_flags, int *inherited_all)
13792 {
13793 	struct perf_event_context *child_ctx;
13794 	int ret;
13795 
13796 	if (!event->attr.inherit ||
13797 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13798 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13799 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13800 		*inherited_all = 0;
13801 		return 0;
13802 	}
13803 
13804 	child_ctx = child->perf_event_ctxp;
13805 	if (!child_ctx) {
13806 		/*
13807 		 * This is executed from the parent task context, so
13808 		 * inherit events that have been marked for cloning.
13809 		 * First allocate and initialize a context for the
13810 		 * child.
13811 		 */
13812 		child_ctx = alloc_perf_context(child);
13813 		if (!child_ctx)
13814 			return -ENOMEM;
13815 
13816 		child->perf_event_ctxp = child_ctx;
13817 	}
13818 
13819 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13820 	if (ret)
13821 		*inherited_all = 0;
13822 
13823 	return ret;
13824 }
13825 
13826 /*
13827  * Initialize the perf_event context in task_struct
13828  */
13829 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13830 {
13831 	struct perf_event_context *child_ctx, *parent_ctx;
13832 	struct perf_event_context *cloned_ctx;
13833 	struct perf_event *event;
13834 	struct task_struct *parent = current;
13835 	int inherited_all = 1;
13836 	unsigned long flags;
13837 	int ret = 0;
13838 
13839 	if (likely(!parent->perf_event_ctxp))
13840 		return 0;
13841 
13842 	/*
13843 	 * If the parent's context is a clone, pin it so it won't get
13844 	 * swapped under us.
13845 	 */
13846 	parent_ctx = perf_pin_task_context(parent);
13847 	if (!parent_ctx)
13848 		return 0;
13849 
13850 	/*
13851 	 * No need to check if parent_ctx != NULL here; since we saw
13852 	 * it non-NULL earlier, the only reason for it to become NULL
13853 	 * is if we exit, and since we're currently in the middle of
13854 	 * a fork we can't be exiting at the same time.
13855 	 */
13856 
13857 	/*
13858 	 * Lock the parent list. No need to lock the child - not PID
13859 	 * hashed yet and not running, so nobody can access it.
13860 	 */
13861 	mutex_lock(&parent_ctx->mutex);
13862 
13863 	/*
13864 	 * We dont have to disable NMIs - we are only looking at
13865 	 * the list, not manipulating it:
13866 	 */
13867 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13868 		ret = inherit_task_group(event, parent, parent_ctx,
13869 					 child, clone_flags, &inherited_all);
13870 		if (ret)
13871 			goto out_unlock;
13872 	}
13873 
13874 	/*
13875 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13876 	 * to allocations, but we need to prevent rotation because
13877 	 * rotate_ctx() will change the list from interrupt context.
13878 	 */
13879 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13880 	parent_ctx->rotate_disable = 1;
13881 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13882 
13883 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13884 		ret = inherit_task_group(event, parent, parent_ctx,
13885 					 child, clone_flags, &inherited_all);
13886 		if (ret)
13887 			goto out_unlock;
13888 	}
13889 
13890 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13891 	parent_ctx->rotate_disable = 0;
13892 
13893 	child_ctx = child->perf_event_ctxp;
13894 
13895 	if (child_ctx && inherited_all) {
13896 		/*
13897 		 * Mark the child context as a clone of the parent
13898 		 * context, or of whatever the parent is a clone of.
13899 		 *
13900 		 * Note that if the parent is a clone, the holding of
13901 		 * parent_ctx->lock avoids it from being uncloned.
13902 		 */
13903 		cloned_ctx = parent_ctx->parent_ctx;
13904 		if (cloned_ctx) {
13905 			child_ctx->parent_ctx = cloned_ctx;
13906 			child_ctx->parent_gen = parent_ctx->parent_gen;
13907 		} else {
13908 			child_ctx->parent_ctx = parent_ctx;
13909 			child_ctx->parent_gen = parent_ctx->generation;
13910 		}
13911 		get_ctx(child_ctx->parent_ctx);
13912 	}
13913 
13914 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13915 out_unlock:
13916 	mutex_unlock(&parent_ctx->mutex);
13917 
13918 	perf_unpin_context(parent_ctx);
13919 	put_ctx(parent_ctx);
13920 
13921 	return ret;
13922 }
13923 
13924 /*
13925  * Initialize the perf_event context in task_struct
13926  */
13927 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13928 {
13929 	int ret;
13930 
13931 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13932 	child->perf_event_ctxp = NULL;
13933 	mutex_init(&child->perf_event_mutex);
13934 	INIT_LIST_HEAD(&child->perf_event_list);
13935 
13936 	ret = perf_event_init_context(child, clone_flags);
13937 	if (ret) {
13938 		perf_event_free_task(child);
13939 		return ret;
13940 	}
13941 
13942 	return 0;
13943 }
13944 
13945 static void __init perf_event_init_all_cpus(void)
13946 {
13947 	struct swevent_htable *swhash;
13948 	struct perf_cpu_context *cpuctx;
13949 	int cpu;
13950 
13951 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13952 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13953 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13954 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13955 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13956 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13957 
13958 
13959 	for_each_possible_cpu(cpu) {
13960 		swhash = &per_cpu(swevent_htable, cpu);
13961 		mutex_init(&swhash->hlist_mutex);
13962 
13963 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13964 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13965 
13966 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13967 
13968 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13969 		__perf_event_init_context(&cpuctx->ctx);
13970 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13971 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13972 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13973 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13974 		cpuctx->heap = cpuctx->heap_default;
13975 	}
13976 }
13977 
13978 static void perf_swevent_init_cpu(unsigned int cpu)
13979 {
13980 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13981 
13982 	mutex_lock(&swhash->hlist_mutex);
13983 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13984 		struct swevent_hlist *hlist;
13985 
13986 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13987 		WARN_ON(!hlist);
13988 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13989 	}
13990 	mutex_unlock(&swhash->hlist_mutex);
13991 }
13992 
13993 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13994 static void __perf_event_exit_context(void *__info)
13995 {
13996 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13997 	struct perf_event_context *ctx = __info;
13998 	struct perf_event *event;
13999 
14000 	raw_spin_lock(&ctx->lock);
14001 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14002 	list_for_each_entry(event, &ctx->event_list, event_entry)
14003 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14004 	raw_spin_unlock(&ctx->lock);
14005 }
14006 
14007 static void perf_event_clear_cpumask(unsigned int cpu)
14008 {
14009 	int target[PERF_PMU_MAX_SCOPE];
14010 	unsigned int scope;
14011 	struct pmu *pmu;
14012 
14013 	cpumask_clear_cpu(cpu, perf_online_mask);
14014 
14015 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14016 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14017 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14018 
14019 		target[scope] = -1;
14020 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14021 			continue;
14022 
14023 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14024 			continue;
14025 		target[scope] = cpumask_any_but(cpumask, cpu);
14026 		if (target[scope] < nr_cpu_ids)
14027 			cpumask_set_cpu(target[scope], pmu_cpumask);
14028 	}
14029 
14030 	/* migrate */
14031 	list_for_each_entry(pmu, &pmus, entry) {
14032 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14033 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14034 			continue;
14035 
14036 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14037 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14038 	}
14039 }
14040 
14041 static void perf_event_exit_cpu_context(int cpu)
14042 {
14043 	struct perf_cpu_context *cpuctx;
14044 	struct perf_event_context *ctx;
14045 
14046 	// XXX simplify cpuctx->online
14047 	mutex_lock(&pmus_lock);
14048 	/*
14049 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14050 	 * Must be invoked before the __perf_event_exit_context.
14051 	 */
14052 	perf_event_clear_cpumask(cpu);
14053 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14054 	ctx = &cpuctx->ctx;
14055 
14056 	mutex_lock(&ctx->mutex);
14057 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14058 	cpuctx->online = 0;
14059 	mutex_unlock(&ctx->mutex);
14060 	mutex_unlock(&pmus_lock);
14061 }
14062 #else
14063 
14064 static void perf_event_exit_cpu_context(int cpu) { }
14065 
14066 #endif
14067 
14068 static void perf_event_setup_cpumask(unsigned int cpu)
14069 {
14070 	struct cpumask *pmu_cpumask;
14071 	unsigned int scope;
14072 
14073 	/*
14074 	 * Early boot stage, the cpumask hasn't been set yet.
14075 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14076 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14077 	 */
14078 	if (cpumask_empty(perf_online_mask)) {
14079 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14080 			pmu_cpumask = perf_scope_cpumask(scope);
14081 			if (WARN_ON_ONCE(!pmu_cpumask))
14082 				continue;
14083 			cpumask_set_cpu(cpu, pmu_cpumask);
14084 		}
14085 		goto end;
14086 	}
14087 
14088 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14089 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14090 
14091 		pmu_cpumask = perf_scope_cpumask(scope);
14092 
14093 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14094 			continue;
14095 
14096 		if (!cpumask_empty(cpumask) &&
14097 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14098 			cpumask_set_cpu(cpu, pmu_cpumask);
14099 	}
14100 end:
14101 	cpumask_set_cpu(cpu, perf_online_mask);
14102 }
14103 
14104 int perf_event_init_cpu(unsigned int cpu)
14105 {
14106 	struct perf_cpu_context *cpuctx;
14107 	struct perf_event_context *ctx;
14108 
14109 	perf_swevent_init_cpu(cpu);
14110 
14111 	mutex_lock(&pmus_lock);
14112 	perf_event_setup_cpumask(cpu);
14113 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14114 	ctx = &cpuctx->ctx;
14115 
14116 	mutex_lock(&ctx->mutex);
14117 	cpuctx->online = 1;
14118 	mutex_unlock(&ctx->mutex);
14119 	mutex_unlock(&pmus_lock);
14120 
14121 	return 0;
14122 }
14123 
14124 int perf_event_exit_cpu(unsigned int cpu)
14125 {
14126 	perf_event_exit_cpu_context(cpu);
14127 	return 0;
14128 }
14129 
14130 static int
14131 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14132 {
14133 	int cpu;
14134 
14135 	for_each_online_cpu(cpu)
14136 		perf_event_exit_cpu(cpu);
14137 
14138 	return NOTIFY_OK;
14139 }
14140 
14141 /*
14142  * Run the perf reboot notifier at the very last possible moment so that
14143  * the generic watchdog code runs as long as possible.
14144  */
14145 static struct notifier_block perf_reboot_notifier = {
14146 	.notifier_call = perf_reboot,
14147 	.priority = INT_MIN,
14148 };
14149 
14150 void __init perf_event_init(void)
14151 {
14152 	int ret;
14153 
14154 	idr_init(&pmu_idr);
14155 
14156 	perf_event_init_all_cpus();
14157 	init_srcu_struct(&pmus_srcu);
14158 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14159 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14160 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14161 	perf_tp_register();
14162 	perf_event_init_cpu(smp_processor_id());
14163 	register_reboot_notifier(&perf_reboot_notifier);
14164 
14165 	ret = init_hw_breakpoint();
14166 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14167 
14168 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14169 
14170 	/*
14171 	 * Build time assertion that we keep the data_head at the intended
14172 	 * location.  IOW, validation we got the __reserved[] size right.
14173 	 */
14174 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14175 		     != 1024);
14176 }
14177 
14178 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14179 			      char *page)
14180 {
14181 	struct perf_pmu_events_attr *pmu_attr =
14182 		container_of(attr, struct perf_pmu_events_attr, attr);
14183 
14184 	if (pmu_attr->event_str)
14185 		return sprintf(page, "%s\n", pmu_attr->event_str);
14186 
14187 	return 0;
14188 }
14189 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14190 
14191 static int __init perf_event_sysfs_init(void)
14192 {
14193 	struct pmu *pmu;
14194 	int ret;
14195 
14196 	mutex_lock(&pmus_lock);
14197 
14198 	ret = bus_register(&pmu_bus);
14199 	if (ret)
14200 		goto unlock;
14201 
14202 	list_for_each_entry(pmu, &pmus, entry) {
14203 		if (pmu->dev)
14204 			continue;
14205 
14206 		ret = pmu_dev_alloc(pmu);
14207 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14208 	}
14209 	pmu_bus_running = 1;
14210 	ret = 0;
14211 
14212 unlock:
14213 	mutex_unlock(&pmus_lock);
14214 
14215 	return ret;
14216 }
14217 device_initcall(perf_event_sysfs_init);
14218 
14219 #ifdef CONFIG_CGROUP_PERF
14220 static struct cgroup_subsys_state *
14221 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14222 {
14223 	struct perf_cgroup *jc;
14224 
14225 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14226 	if (!jc)
14227 		return ERR_PTR(-ENOMEM);
14228 
14229 	jc->info = alloc_percpu(struct perf_cgroup_info);
14230 	if (!jc->info) {
14231 		kfree(jc);
14232 		return ERR_PTR(-ENOMEM);
14233 	}
14234 
14235 	return &jc->css;
14236 }
14237 
14238 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14239 {
14240 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14241 
14242 	free_percpu(jc->info);
14243 	kfree(jc);
14244 }
14245 
14246 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14247 {
14248 	perf_event_cgroup(css->cgroup);
14249 	return 0;
14250 }
14251 
14252 static int __perf_cgroup_move(void *info)
14253 {
14254 	struct task_struct *task = info;
14255 
14256 	preempt_disable();
14257 	perf_cgroup_switch(task);
14258 	preempt_enable();
14259 
14260 	return 0;
14261 }
14262 
14263 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14264 {
14265 	struct task_struct *task;
14266 	struct cgroup_subsys_state *css;
14267 
14268 	cgroup_taskset_for_each(task, css, tset)
14269 		task_function_call(task, __perf_cgroup_move, task);
14270 }
14271 
14272 struct cgroup_subsys perf_event_cgrp_subsys = {
14273 	.css_alloc	= perf_cgroup_css_alloc,
14274 	.css_free	= perf_cgroup_css_free,
14275 	.css_online	= perf_cgroup_css_online,
14276 	.attach		= perf_cgroup_attach,
14277 	/*
14278 	 * Implicitly enable on dfl hierarchy so that perf events can
14279 	 * always be filtered by cgroup2 path as long as perf_event
14280 	 * controller is not mounted on a legacy hierarchy.
14281 	 */
14282 	.implicit_on_dfl = true,
14283 	.threaded	= true,
14284 };
14285 #endif /* CONFIG_CGROUP_PERF */
14286 
14287 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14288