xref: /linux/kernel/events/core.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 static void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 	rcu_read_lock();
493 
494 	list_for_each_entry_rcu(pmu, &pmus, entry) {
495 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 		if (cpuctx->unique_pmu != pmu)
497 			continue; /* ensure we process each cpuctx once */
498 
499 		/*
500 		 * perf_cgroup_events says at least one
501 		 * context on this CPU has cgroup events.
502 		 *
503 		 * ctx->nr_cgroups reports the number of cgroup
504 		 * events for a context.
505 		 */
506 		if (cpuctx->ctx.nr_cgroups > 0) {
507 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 			perf_pmu_disable(cpuctx->ctx.pmu);
509 
510 			if (mode & PERF_CGROUP_SWOUT) {
511 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 				/*
513 				 * must not be done before ctxswout due
514 				 * to event_filter_match() in event_sched_out()
515 				 */
516 				cpuctx->cgrp = NULL;
517 			}
518 
519 			if (mode & PERF_CGROUP_SWIN) {
520 				WARN_ON_ONCE(cpuctx->cgrp);
521 				/*
522 				 * set cgrp before ctxsw in to allow
523 				 * event_filter_match() to not have to pass
524 				 * task around
525 				 */
526 				cpuctx->cgrp = perf_cgroup_from_task(task);
527 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 			}
529 			perf_pmu_enable(cpuctx->ctx.pmu);
530 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 		}
532 	}
533 
534 	rcu_read_unlock();
535 
536 	local_irq_restore(flags);
537 }
538 
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 					 struct task_struct *next)
541 {
542 	struct perf_cgroup *cgrp1;
543 	struct perf_cgroup *cgrp2 = NULL;
544 
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 */
548 	cgrp1 = perf_cgroup_from_task(task);
549 
550 	/*
551 	 * next is NULL when called from perf_event_enable_on_exec()
552 	 * that will systematically cause a cgroup_switch()
553 	 */
554 	if (next)
555 		cgrp2 = perf_cgroup_from_task(next);
556 
557 	/*
558 	 * only schedule out current cgroup events if we know
559 	 * that we are switching to a different cgroup. Otherwise,
560 	 * do no touch the cgroup events.
561 	 */
562 	if (cgrp1 != cgrp2)
563 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 	struct perf_cgroup *cgrp1;
570 	struct perf_cgroup *cgrp2 = NULL;
571 
572 	/*
573 	 * we come here when we know perf_cgroup_events > 0
574 	 */
575 	cgrp1 = perf_cgroup_from_task(task);
576 
577 	/* prev can never be NULL */
578 	cgrp2 = perf_cgroup_from_task(prev);
579 
580 	/*
581 	 * only need to schedule in cgroup events if we are changing
582 	 * cgroup during ctxsw. Cgroup events were not scheduled
583 	 * out of ctxsw out if that was not the case.
584 	 */
585 	if (cgrp1 != cgrp2)
586 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588 
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 				      struct perf_event_attr *attr,
591 				      struct perf_event *group_leader)
592 {
593 	struct perf_cgroup *cgrp;
594 	struct cgroup_subsys_state *css;
595 	struct fd f = fdget(fd);
596 	int ret = 0;
597 
598 	if (!f.file)
599 		return -EBADF;
600 
601 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 					 &perf_event_cgrp_subsys);
603 	if (IS_ERR(css)) {
604 		ret = PTR_ERR(css);
605 		goto out;
606 	}
607 
608 	cgrp = container_of(css, struct perf_cgroup, css);
609 	event->cgrp = cgrp;
610 
611 	/*
612 	 * all events in a group must monitor
613 	 * the same cgroup because a task belongs
614 	 * to only one perf cgroup at a time
615 	 */
616 	if (group_leader && group_leader->cgrp != cgrp) {
617 		perf_detach_cgroup(event);
618 		ret = -EINVAL;
619 	}
620 out:
621 	fdput(f);
622 	return ret;
623 }
624 
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 	struct perf_cgroup_info *t;
629 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 	event->shadow_ctx_time = now - t->timestamp;
631 }
632 
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 	/*
637 	 * when the current task's perf cgroup does not match
638 	 * the event's, we need to remember to call the
639 	 * perf_mark_enable() function the first time a task with
640 	 * a matching perf cgroup is scheduled in.
641 	 */
642 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 		event->cgrp_defer_enabled = 1;
644 }
645 
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 			 struct perf_event_context *ctx)
649 {
650 	struct perf_event *sub;
651 	u64 tstamp = perf_event_time(event);
652 
653 	if (!event->cgrp_defer_enabled)
654 		return;
655 
656 	event->cgrp_defer_enabled = 0;
657 
658 	event->tstamp_enabled = tstamp - event->total_time_enabled;
659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 			sub->cgrp_defer_enabled = 0;
663 		}
664 	}
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667 
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 	return true;
672 }
673 
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676 
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 	return 0;
680 }
681 
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 	return 0;
685 }
686 
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690 
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694 
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 					 struct task_struct *next)
697 {
698 }
699 
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 					struct task_struct *task)
702 {
703 }
704 
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 				      struct perf_event_attr *attr,
707 				      struct perf_event *group_leader)
708 {
709 	return -EINVAL;
710 }
711 
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 			  struct perf_event_context *ctx)
715 {
716 }
717 
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722 
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727 
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 	return 0;
731 }
732 
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737 
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 			 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744 
745 /*
746  * set default to be dependent on timer tick just
747  * like original code
748  */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751  * function must be called with interrupts disbled
752  */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 	struct perf_cpu_context *cpuctx;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 	rotations = perf_rotate_context(cpuctx);
762 
763 	raw_spin_lock(&cpuctx->hrtimer_lock);
764 	if (rotations)
765 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 	else
767 		cpuctx->hrtimer_active = 0;
768 	raw_spin_unlock(&cpuctx->hrtimer_lock);
769 
770 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772 
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 	struct hrtimer *timer = &cpuctx->hrtimer;
776 	struct pmu *pmu = cpuctx->ctx.pmu;
777 	u64 interval;
778 
779 	/* no multiplexing needed for SW PMU */
780 	if (pmu->task_ctx_nr == perf_sw_context)
781 		return;
782 
783 	/*
784 	 * check default is sane, if not set then force to
785 	 * default interval (1/tick)
786 	 */
787 	interval = pmu->hrtimer_interval_ms;
788 	if (interval < 1)
789 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790 
791 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792 
793 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 	timer->function = perf_mux_hrtimer_handler;
796 }
797 
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 	struct hrtimer *timer = &cpuctx->hrtimer;
801 	struct pmu *pmu = cpuctx->ctx.pmu;
802 	unsigned long flags;
803 
804 	/* not for SW PMU */
805 	if (pmu->task_ctx_nr == perf_sw_context)
806 		return 0;
807 
808 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 	if (!cpuctx->hrtimer_active) {
810 		cpuctx->hrtimer_active = 1;
811 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 	}
814 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815 
816 	return 0;
817 }
818 
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 	if (!(*count)++)
823 		pmu->pmu_disable(pmu);
824 }
825 
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 	if (!--(*count))
830 		pmu->pmu_enable(pmu);
831 }
832 
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 
835 /*
836  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837  * perf_event_task_tick() are fully serialized because they're strictly cpu
838  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839  * disabled, while perf_event_task_tick is called from IRQ context.
840  */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844 
845 	WARN_ON(!irqs_disabled());
846 
847 	WARN_ON(!list_empty(&ctx->active_ctx_list));
848 
849 	list_add(&ctx->active_ctx_list, head);
850 }
851 
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(list_empty(&ctx->active_ctx_list));
857 
858 	list_del_init(&ctx->active_ctx_list);
859 }
860 
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865 
866 static void free_ctx(struct rcu_head *head)
867 {
868 	struct perf_event_context *ctx;
869 
870 	ctx = container_of(head, struct perf_event_context, rcu_head);
871 	kfree(ctx->task_ctx_data);
872 	kfree(ctx);
873 }
874 
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 	if (atomic_dec_and_test(&ctx->refcount)) {
878 		if (ctx->parent_ctx)
879 			put_ctx(ctx->parent_ctx);
880 		if (ctx->task)
881 			put_task_struct(ctx->task);
882 		call_rcu(&ctx->rcu_head, free_ctx);
883 	}
884 }
885 
886 /*
887  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888  * perf_pmu_migrate_context() we need some magic.
889  *
890  * Those places that change perf_event::ctx will hold both
891  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892  *
893  * Lock ordering is by mutex address. There are two other sites where
894  * perf_event_context::mutex nests and those are:
895  *
896  *  - perf_event_exit_task_context()	[ child , 0 ]
897  *      __perf_event_exit_task()
898  *        sync_child_event()
899  *          put_event()			[ parent, 1 ]
900  *
901  *  - perf_event_init_context()		[ parent, 0 ]
902  *      inherit_task_group()
903  *        inherit_group()
904  *          inherit_event()
905  *            perf_event_alloc()
906  *              perf_init_event()
907  *                perf_try_init_event()	[ child , 1 ]
908  *
909  * While it appears there is an obvious deadlock here -- the parent and child
910  * nesting levels are inverted between the two. This is in fact safe because
911  * life-time rules separate them. That is an exiting task cannot fork, and a
912  * spawning task cannot (yet) exit.
913  *
914  * But remember that that these are parent<->child context relations, and
915  * migration does not affect children, therefore these two orderings should not
916  * interact.
917  *
918  * The change in perf_event::ctx does not affect children (as claimed above)
919  * because the sys_perf_event_open() case will install a new event and break
920  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921  * concerned with cpuctx and that doesn't have children.
922  *
923  * The places that change perf_event::ctx will issue:
924  *
925  *   perf_remove_from_context();
926  *   synchronize_rcu();
927  *   perf_install_in_context();
928  *
929  * to affect the change. The remove_from_context() + synchronize_rcu() should
930  * quiesce the event, after which we can install it in the new location. This
931  * means that only external vectors (perf_fops, prctl) can perturb the event
932  * while in transit. Therefore all such accessors should also acquire
933  * perf_event_context::mutex to serialize against this.
934  *
935  * However; because event->ctx can change while we're waiting to acquire
936  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937  * function.
938  *
939  * Lock order:
940  *	task_struct::perf_event_mutex
941  *	  perf_event_context::mutex
942  *	    perf_event_context::lock
943  *	    perf_event::child_mutex;
944  *	    perf_event::mmap_mutex
945  *	    mmap_sem
946  */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 	struct perf_event_context *ctx;
951 
952 again:
953 	rcu_read_lock();
954 	ctx = ACCESS_ONCE(event->ctx);
955 	if (!atomic_inc_not_zero(&ctx->refcount)) {
956 		rcu_read_unlock();
957 		goto again;
958 	}
959 	rcu_read_unlock();
960 
961 	mutex_lock_nested(&ctx->mutex, nesting);
962 	if (event->ctx != ctx) {
963 		mutex_unlock(&ctx->mutex);
964 		put_ctx(ctx);
965 		goto again;
966 	}
967 
968 	return ctx;
969 }
970 
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 	return perf_event_ctx_lock_nested(event, 0);
975 }
976 
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 				  struct perf_event_context *ctx)
979 {
980 	mutex_unlock(&ctx->mutex);
981 	put_ctx(ctx);
982 }
983 
984 /*
985  * This must be done under the ctx->lock, such as to serialize against
986  * context_equiv(), therefore we cannot call put_ctx() since that might end up
987  * calling scheduler related locks and ctx->lock nests inside those.
988  */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
993 
994 	lockdep_assert_held(&ctx->lock);
995 
996 	if (parent_ctx)
997 		ctx->parent_ctx = NULL;
998 	ctx->generation++;
999 
1000 	return parent_ctx;
1001 }
1002 
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 	/*
1006 	 * only top level events have the pid namespace they were created in
1007 	 */
1008 	if (event->parent)
1009 		event = event->parent;
1010 
1011 	return task_tgid_nr_ns(p, event->ns);
1012 }
1013 
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 	/*
1017 	 * only top level events have the pid namespace they were created in
1018 	 */
1019 	if (event->parent)
1020 		event = event->parent;
1021 
1022 	return task_pid_nr_ns(p, event->ns);
1023 }
1024 
1025 /*
1026  * If we inherit events we want to return the parent event id
1027  * to userspace.
1028  */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 	u64 id = event->id;
1032 
1033 	if (event->parent)
1034 		id = event->parent->id;
1035 
1036 	return id;
1037 }
1038 
1039 /*
1040  * Get the perf_event_context for a task and lock it.
1041  * This has to cope with with the fact that until it is locked,
1042  * the context could get moved to another task.
1043  */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 	struct perf_event_context *ctx;
1048 
1049 retry:
1050 	/*
1051 	 * One of the few rules of preemptible RCU is that one cannot do
1052 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 	 * part of the read side critical section was preemptible -- see
1054 	 * rcu_read_unlock_special().
1055 	 *
1056 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 	 * side critical section is non-preemptible.
1058 	 */
1059 	preempt_disable();
1060 	rcu_read_lock();
1061 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 	if (ctx) {
1063 		/*
1064 		 * If this context is a clone of another, it might
1065 		 * get swapped for another underneath us by
1066 		 * perf_event_task_sched_out, though the
1067 		 * rcu_read_lock() protects us from any context
1068 		 * getting freed.  Lock the context and check if it
1069 		 * got swapped before we could get the lock, and retry
1070 		 * if so.  If we locked the right context, then it
1071 		 * can't get swapped on us any more.
1072 		 */
1073 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 			rcu_read_unlock();
1077 			preempt_enable();
1078 			goto retry;
1079 		}
1080 
1081 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 			ctx = NULL;
1084 		}
1085 	}
1086 	rcu_read_unlock();
1087 	preempt_enable();
1088 	return ctx;
1089 }
1090 
1091 /*
1092  * Get the context for a task and increment its pin_count so it
1093  * can't get swapped to another task.  This also increments its
1094  * reference count so that the context can't get freed.
1095  */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 	struct perf_event_context *ctx;
1100 	unsigned long flags;
1101 
1102 	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 	if (ctx) {
1104 		++ctx->pin_count;
1105 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 	}
1107 	return ctx;
1108 }
1109 
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&ctx->lock, flags);
1115 	--ctx->pin_count;
1116 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118 
1119 /*
1120  * Update the record of the current time in a context.
1121  */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 	u64 now = perf_clock();
1125 
1126 	ctx->time += now - ctx->timestamp;
1127 	ctx->timestamp = now;
1128 }
1129 
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 	struct perf_event_context *ctx = event->ctx;
1133 
1134 	if (is_cgroup_event(event))
1135 		return perf_cgroup_event_time(event);
1136 
1137 	return ctx ? ctx->time : 0;
1138 }
1139 
1140 /*
1141  * Update the total_time_enabled and total_time_running fields for a event.
1142  * The caller of this function needs to hold the ctx->lock.
1143  */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 	struct perf_event_context *ctx = event->ctx;
1147 	u64 run_end;
1148 
1149 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 		return;
1152 	/*
1153 	 * in cgroup mode, time_enabled represents
1154 	 * the time the event was enabled AND active
1155 	 * tasks were in the monitored cgroup. This is
1156 	 * independent of the activity of the context as
1157 	 * there may be a mix of cgroup and non-cgroup events.
1158 	 *
1159 	 * That is why we treat cgroup events differently
1160 	 * here.
1161 	 */
1162 	if (is_cgroup_event(event))
1163 		run_end = perf_cgroup_event_time(event);
1164 	else if (ctx->is_active)
1165 		run_end = ctx->time;
1166 	else
1167 		run_end = event->tstamp_stopped;
1168 
1169 	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 
1171 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 		run_end = event->tstamp_stopped;
1173 	else
1174 		run_end = perf_event_time(event);
1175 
1176 	event->total_time_running = run_end - event->tstamp_running;
1177 
1178 }
1179 
1180 /*
1181  * Update total_time_enabled and total_time_running for all events in a group.
1182  */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 	struct perf_event *event;
1186 
1187 	update_event_times(leader);
1188 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 		update_event_times(event);
1190 }
1191 
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 	if (event->attr.pinned)
1196 		return &ctx->pinned_groups;
1197 	else
1198 		return &ctx->flexible_groups;
1199 }
1200 
1201 /*
1202  * Add a event from the lists for its context.
1203  * Must be called with ctx->mutex and ctx->lock held.
1204  */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 
1211 	/*
1212 	 * If we're a stand alone event or group leader, we go to the context
1213 	 * list, group events are kept attached to the group so that
1214 	 * perf_group_detach can, at all times, locate all siblings.
1215 	 */
1216 	if (event->group_leader == event) {
1217 		struct list_head *list;
1218 
1219 		if (is_software_event(event))
1220 			event->group_flags |= PERF_GROUP_SOFTWARE;
1221 
1222 		list = ctx_group_list(event, ctx);
1223 		list_add_tail(&event->group_entry, list);
1224 	}
1225 
1226 	if (is_cgroup_event(event))
1227 		ctx->nr_cgroups++;
1228 
1229 	list_add_rcu(&event->event_entry, &ctx->event_list);
1230 	ctx->nr_events++;
1231 	if (event->attr.inherit_stat)
1232 		ctx->nr_stat++;
1233 
1234 	ctx->generation++;
1235 }
1236 
1237 /*
1238  * Initialize event state based on the perf_event_attr::disabled.
1239  */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 					      PERF_EVENT_STATE_INACTIVE;
1244 }
1245 
1246 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 {
1248 	int entry = sizeof(u64); /* value */
1249 	int size = 0;
1250 	int nr = 1;
1251 
1252 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 		size += sizeof(u64);
1254 
1255 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 		size += sizeof(u64);
1257 
1258 	if (event->attr.read_format & PERF_FORMAT_ID)
1259 		entry += sizeof(u64);
1260 
1261 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 		nr += nr_siblings;
1263 		size += sizeof(u64);
1264 	}
1265 
1266 	size += entry * nr;
1267 	event->read_size = size;
1268 }
1269 
1270 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 {
1272 	struct perf_sample_data *data;
1273 	u16 size = 0;
1274 
1275 	if (sample_type & PERF_SAMPLE_IP)
1276 		size += sizeof(data->ip);
1277 
1278 	if (sample_type & PERF_SAMPLE_ADDR)
1279 		size += sizeof(data->addr);
1280 
1281 	if (sample_type & PERF_SAMPLE_PERIOD)
1282 		size += sizeof(data->period);
1283 
1284 	if (sample_type & PERF_SAMPLE_WEIGHT)
1285 		size += sizeof(data->weight);
1286 
1287 	if (sample_type & PERF_SAMPLE_READ)
1288 		size += event->read_size;
1289 
1290 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1291 		size += sizeof(data->data_src.val);
1292 
1293 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1294 		size += sizeof(data->txn);
1295 
1296 	event->header_size = size;
1297 }
1298 
1299 /*
1300  * Called at perf_event creation and when events are attached/detached from a
1301  * group.
1302  */
1303 static void perf_event__header_size(struct perf_event *event)
1304 {
1305 	__perf_event_read_size(event,
1306 			       event->group_leader->nr_siblings);
1307 	__perf_event_header_size(event, event->attr.sample_type);
1308 }
1309 
1310 static void perf_event__id_header_size(struct perf_event *event)
1311 {
1312 	struct perf_sample_data *data;
1313 	u64 sample_type = event->attr.sample_type;
1314 	u16 size = 0;
1315 
1316 	if (sample_type & PERF_SAMPLE_TID)
1317 		size += sizeof(data->tid_entry);
1318 
1319 	if (sample_type & PERF_SAMPLE_TIME)
1320 		size += sizeof(data->time);
1321 
1322 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1323 		size += sizeof(data->id);
1324 
1325 	if (sample_type & PERF_SAMPLE_ID)
1326 		size += sizeof(data->id);
1327 
1328 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1329 		size += sizeof(data->stream_id);
1330 
1331 	if (sample_type & PERF_SAMPLE_CPU)
1332 		size += sizeof(data->cpu_entry);
1333 
1334 	event->id_header_size = size;
1335 }
1336 
1337 static bool perf_event_validate_size(struct perf_event *event)
1338 {
1339 	/*
1340 	 * The values computed here will be over-written when we actually
1341 	 * attach the event.
1342 	 */
1343 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1344 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1345 	perf_event__id_header_size(event);
1346 
1347 	/*
1348 	 * Sum the lot; should not exceed the 64k limit we have on records.
1349 	 * Conservative limit to allow for callchains and other variable fields.
1350 	 */
1351 	if (event->read_size + event->header_size +
1352 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1353 		return false;
1354 
1355 	return true;
1356 }
1357 
1358 static void perf_group_attach(struct perf_event *event)
1359 {
1360 	struct perf_event *group_leader = event->group_leader, *pos;
1361 
1362 	/*
1363 	 * We can have double attach due to group movement in perf_event_open.
1364 	 */
1365 	if (event->attach_state & PERF_ATTACH_GROUP)
1366 		return;
1367 
1368 	event->attach_state |= PERF_ATTACH_GROUP;
1369 
1370 	if (group_leader == event)
1371 		return;
1372 
1373 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1374 
1375 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1376 			!is_software_event(event))
1377 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1378 
1379 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1380 	group_leader->nr_siblings++;
1381 
1382 	perf_event__header_size(group_leader);
1383 
1384 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1385 		perf_event__header_size(pos);
1386 }
1387 
1388 /*
1389  * Remove a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 	struct perf_cpu_context *cpuctx;
1396 
1397 	WARN_ON_ONCE(event->ctx != ctx);
1398 	lockdep_assert_held(&ctx->lock);
1399 
1400 	/*
1401 	 * We can have double detach due to exit/hot-unplug + close.
1402 	 */
1403 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404 		return;
1405 
1406 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1407 
1408 	if (is_cgroup_event(event)) {
1409 		ctx->nr_cgroups--;
1410 		cpuctx = __get_cpu_context(ctx);
1411 		/*
1412 		 * if there are no more cgroup events
1413 		 * then cler cgrp to avoid stale pointer
1414 		 * in update_cgrp_time_from_cpuctx()
1415 		 */
1416 		if (!ctx->nr_cgroups)
1417 			cpuctx->cgrp = NULL;
1418 	}
1419 
1420 	ctx->nr_events--;
1421 	if (event->attr.inherit_stat)
1422 		ctx->nr_stat--;
1423 
1424 	list_del_rcu(&event->event_entry);
1425 
1426 	if (event->group_leader == event)
1427 		list_del_init(&event->group_entry);
1428 
1429 	update_group_times(event);
1430 
1431 	/*
1432 	 * If event was in error state, then keep it
1433 	 * that way, otherwise bogus counts will be
1434 	 * returned on read(). The only way to get out
1435 	 * of error state is by explicit re-enabling
1436 	 * of the event
1437 	 */
1438 	if (event->state > PERF_EVENT_STATE_OFF)
1439 		event->state = PERF_EVENT_STATE_OFF;
1440 
1441 	ctx->generation++;
1442 }
1443 
1444 static void perf_group_detach(struct perf_event *event)
1445 {
1446 	struct perf_event *sibling, *tmp;
1447 	struct list_head *list = NULL;
1448 
1449 	/*
1450 	 * We can have double detach due to exit/hot-unplug + close.
1451 	 */
1452 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1453 		return;
1454 
1455 	event->attach_state &= ~PERF_ATTACH_GROUP;
1456 
1457 	/*
1458 	 * If this is a sibling, remove it from its group.
1459 	 */
1460 	if (event->group_leader != event) {
1461 		list_del_init(&event->group_entry);
1462 		event->group_leader->nr_siblings--;
1463 		goto out;
1464 	}
1465 
1466 	if (!list_empty(&event->group_entry))
1467 		list = &event->group_entry;
1468 
1469 	/*
1470 	 * If this was a group event with sibling events then
1471 	 * upgrade the siblings to singleton events by adding them
1472 	 * to whatever list we are on.
1473 	 */
1474 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 		if (list)
1476 			list_move_tail(&sibling->group_entry, list);
1477 		sibling->group_leader = sibling;
1478 
1479 		/* Inherit group flags from the previous leader */
1480 		sibling->group_flags = event->group_flags;
1481 
1482 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 	}
1484 
1485 out:
1486 	perf_event__header_size(event->group_leader);
1487 
1488 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1489 		perf_event__header_size(tmp);
1490 }
1491 
1492 /*
1493  * User event without the task.
1494  */
1495 static bool is_orphaned_event(struct perf_event *event)
1496 {
1497 	return event && !is_kernel_event(event) && !event->owner;
1498 }
1499 
1500 /*
1501  * Event has a parent but parent's task finished and it's
1502  * alive only because of children holding refference.
1503  */
1504 static bool is_orphaned_child(struct perf_event *event)
1505 {
1506 	return is_orphaned_event(event->parent);
1507 }
1508 
1509 static void orphans_remove_work(struct work_struct *work);
1510 
1511 static void schedule_orphans_remove(struct perf_event_context *ctx)
1512 {
1513 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1514 		return;
1515 
1516 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1517 		get_ctx(ctx);
1518 		ctx->orphans_remove_sched = true;
1519 	}
1520 }
1521 
1522 static int __init perf_workqueue_init(void)
1523 {
1524 	perf_wq = create_singlethread_workqueue("perf");
1525 	WARN(!perf_wq, "failed to create perf workqueue\n");
1526 	return perf_wq ? 0 : -1;
1527 }
1528 
1529 core_initcall(perf_workqueue_init);
1530 
1531 static inline int pmu_filter_match(struct perf_event *event)
1532 {
1533 	struct pmu *pmu = event->pmu;
1534 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1535 }
1536 
1537 static inline int
1538 event_filter_match(struct perf_event *event)
1539 {
1540 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1541 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1542 }
1543 
1544 static void
1545 event_sched_out(struct perf_event *event,
1546 		  struct perf_cpu_context *cpuctx,
1547 		  struct perf_event_context *ctx)
1548 {
1549 	u64 tstamp = perf_event_time(event);
1550 	u64 delta;
1551 
1552 	WARN_ON_ONCE(event->ctx != ctx);
1553 	lockdep_assert_held(&ctx->lock);
1554 
1555 	/*
1556 	 * An event which could not be activated because of
1557 	 * filter mismatch still needs to have its timings
1558 	 * maintained, otherwise bogus information is return
1559 	 * via read() for time_enabled, time_running:
1560 	 */
1561 	if (event->state == PERF_EVENT_STATE_INACTIVE
1562 	    && !event_filter_match(event)) {
1563 		delta = tstamp - event->tstamp_stopped;
1564 		event->tstamp_running += delta;
1565 		event->tstamp_stopped = tstamp;
1566 	}
1567 
1568 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1569 		return;
1570 
1571 	perf_pmu_disable(event->pmu);
1572 
1573 	event->state = PERF_EVENT_STATE_INACTIVE;
1574 	if (event->pending_disable) {
1575 		event->pending_disable = 0;
1576 		event->state = PERF_EVENT_STATE_OFF;
1577 	}
1578 	event->tstamp_stopped = tstamp;
1579 	event->pmu->del(event, 0);
1580 	event->oncpu = -1;
1581 
1582 	if (!is_software_event(event))
1583 		cpuctx->active_oncpu--;
1584 	if (!--ctx->nr_active)
1585 		perf_event_ctx_deactivate(ctx);
1586 	if (event->attr.freq && event->attr.sample_freq)
1587 		ctx->nr_freq--;
1588 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1589 		cpuctx->exclusive = 0;
1590 
1591 	if (is_orphaned_child(event))
1592 		schedule_orphans_remove(ctx);
1593 
1594 	perf_pmu_enable(event->pmu);
1595 }
1596 
1597 static void
1598 group_sched_out(struct perf_event *group_event,
1599 		struct perf_cpu_context *cpuctx,
1600 		struct perf_event_context *ctx)
1601 {
1602 	struct perf_event *event;
1603 	int state = group_event->state;
1604 
1605 	event_sched_out(group_event, cpuctx, ctx);
1606 
1607 	/*
1608 	 * Schedule out siblings (if any):
1609 	 */
1610 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1611 		event_sched_out(event, cpuctx, ctx);
1612 
1613 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 		cpuctx->exclusive = 0;
1615 }
1616 
1617 struct remove_event {
1618 	struct perf_event *event;
1619 	bool detach_group;
1620 };
1621 
1622 /*
1623  * Cross CPU call to remove a performance event
1624  *
1625  * We disable the event on the hardware level first. After that we
1626  * remove it from the context list.
1627  */
1628 static int __perf_remove_from_context(void *info)
1629 {
1630 	struct remove_event *re = info;
1631 	struct perf_event *event = re->event;
1632 	struct perf_event_context *ctx = event->ctx;
1633 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1634 
1635 	raw_spin_lock(&ctx->lock);
1636 	event_sched_out(event, cpuctx, ctx);
1637 	if (re->detach_group)
1638 		perf_group_detach(event);
1639 	list_del_event(event, ctx);
1640 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1641 		ctx->is_active = 0;
1642 		cpuctx->task_ctx = NULL;
1643 	}
1644 	raw_spin_unlock(&ctx->lock);
1645 
1646 	return 0;
1647 }
1648 
1649 
1650 /*
1651  * Remove the event from a task's (or a CPU's) list of events.
1652  *
1653  * CPU events are removed with a smp call. For task events we only
1654  * call when the task is on a CPU.
1655  *
1656  * If event->ctx is a cloned context, callers must make sure that
1657  * every task struct that event->ctx->task could possibly point to
1658  * remains valid.  This is OK when called from perf_release since
1659  * that only calls us on the top-level context, which can't be a clone.
1660  * When called from perf_event_exit_task, it's OK because the
1661  * context has been detached from its task.
1662  */
1663 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1664 {
1665 	struct perf_event_context *ctx = event->ctx;
1666 	struct task_struct *task = ctx->task;
1667 	struct remove_event re = {
1668 		.event = event,
1669 		.detach_group = detach_group,
1670 	};
1671 
1672 	lockdep_assert_held(&ctx->mutex);
1673 
1674 	if (!task) {
1675 		/*
1676 		 * Per cpu events are removed via an smp call. The removal can
1677 		 * fail if the CPU is currently offline, but in that case we
1678 		 * already called __perf_remove_from_context from
1679 		 * perf_event_exit_cpu.
1680 		 */
1681 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1682 		return;
1683 	}
1684 
1685 retry:
1686 	if (!task_function_call(task, __perf_remove_from_context, &re))
1687 		return;
1688 
1689 	raw_spin_lock_irq(&ctx->lock);
1690 	/*
1691 	 * If we failed to find a running task, but find the context active now
1692 	 * that we've acquired the ctx->lock, retry.
1693 	 */
1694 	if (ctx->is_active) {
1695 		raw_spin_unlock_irq(&ctx->lock);
1696 		/*
1697 		 * Reload the task pointer, it might have been changed by
1698 		 * a concurrent perf_event_context_sched_out().
1699 		 */
1700 		task = ctx->task;
1701 		goto retry;
1702 	}
1703 
1704 	/*
1705 	 * Since the task isn't running, its safe to remove the event, us
1706 	 * holding the ctx->lock ensures the task won't get scheduled in.
1707 	 */
1708 	if (detach_group)
1709 		perf_group_detach(event);
1710 	list_del_event(event, ctx);
1711 	raw_spin_unlock_irq(&ctx->lock);
1712 }
1713 
1714 /*
1715  * Cross CPU call to disable a performance event
1716  */
1717 int __perf_event_disable(void *info)
1718 {
1719 	struct perf_event *event = info;
1720 	struct perf_event_context *ctx = event->ctx;
1721 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722 
1723 	/*
1724 	 * If this is a per-task event, need to check whether this
1725 	 * event's task is the current task on this cpu.
1726 	 *
1727 	 * Can trigger due to concurrent perf_event_context_sched_out()
1728 	 * flipping contexts around.
1729 	 */
1730 	if (ctx->task && cpuctx->task_ctx != ctx)
1731 		return -EINVAL;
1732 
1733 	raw_spin_lock(&ctx->lock);
1734 
1735 	/*
1736 	 * If the event is on, turn it off.
1737 	 * If it is in error state, leave it in error state.
1738 	 */
1739 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740 		update_context_time(ctx);
1741 		update_cgrp_time_from_event(event);
1742 		update_group_times(event);
1743 		if (event == event->group_leader)
1744 			group_sched_out(event, cpuctx, ctx);
1745 		else
1746 			event_sched_out(event, cpuctx, ctx);
1747 		event->state = PERF_EVENT_STATE_OFF;
1748 	}
1749 
1750 	raw_spin_unlock(&ctx->lock);
1751 
1752 	return 0;
1753 }
1754 
1755 /*
1756  * Disable a event.
1757  *
1758  * If event->ctx is a cloned context, callers must make sure that
1759  * every task struct that event->ctx->task could possibly point to
1760  * remains valid.  This condition is satisifed when called through
1761  * perf_event_for_each_child or perf_event_for_each because they
1762  * hold the top-level event's child_mutex, so any descendant that
1763  * goes to exit will block in sync_child_event.
1764  * When called from perf_pending_event it's OK because event->ctx
1765  * is the current context on this CPU and preemption is disabled,
1766  * hence we can't get into perf_event_task_sched_out for this context.
1767  */
1768 static void _perf_event_disable(struct perf_event *event)
1769 {
1770 	struct perf_event_context *ctx = event->ctx;
1771 	struct task_struct *task = ctx->task;
1772 
1773 	if (!task) {
1774 		/*
1775 		 * Disable the event on the cpu that it's on
1776 		 */
1777 		cpu_function_call(event->cpu, __perf_event_disable, event);
1778 		return;
1779 	}
1780 
1781 retry:
1782 	if (!task_function_call(task, __perf_event_disable, event))
1783 		return;
1784 
1785 	raw_spin_lock_irq(&ctx->lock);
1786 	/*
1787 	 * If the event is still active, we need to retry the cross-call.
1788 	 */
1789 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790 		raw_spin_unlock_irq(&ctx->lock);
1791 		/*
1792 		 * Reload the task pointer, it might have been changed by
1793 		 * a concurrent perf_event_context_sched_out().
1794 		 */
1795 		task = ctx->task;
1796 		goto retry;
1797 	}
1798 
1799 	/*
1800 	 * Since we have the lock this context can't be scheduled
1801 	 * in, so we can change the state safely.
1802 	 */
1803 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1804 		update_group_times(event);
1805 		event->state = PERF_EVENT_STATE_OFF;
1806 	}
1807 	raw_spin_unlock_irq(&ctx->lock);
1808 }
1809 
1810 /*
1811  * Strictly speaking kernel users cannot create groups and therefore this
1812  * interface does not need the perf_event_ctx_lock() magic.
1813  */
1814 void perf_event_disable(struct perf_event *event)
1815 {
1816 	struct perf_event_context *ctx;
1817 
1818 	ctx = perf_event_ctx_lock(event);
1819 	_perf_event_disable(event);
1820 	perf_event_ctx_unlock(event, ctx);
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_disable);
1823 
1824 static void perf_set_shadow_time(struct perf_event *event,
1825 				 struct perf_event_context *ctx,
1826 				 u64 tstamp)
1827 {
1828 	/*
1829 	 * use the correct time source for the time snapshot
1830 	 *
1831 	 * We could get by without this by leveraging the
1832 	 * fact that to get to this function, the caller
1833 	 * has most likely already called update_context_time()
1834 	 * and update_cgrp_time_xx() and thus both timestamp
1835 	 * are identical (or very close). Given that tstamp is,
1836 	 * already adjusted for cgroup, we could say that:
1837 	 *    tstamp - ctx->timestamp
1838 	 * is equivalent to
1839 	 *    tstamp - cgrp->timestamp.
1840 	 *
1841 	 * Then, in perf_output_read(), the calculation would
1842 	 * work with no changes because:
1843 	 * - event is guaranteed scheduled in
1844 	 * - no scheduled out in between
1845 	 * - thus the timestamp would be the same
1846 	 *
1847 	 * But this is a bit hairy.
1848 	 *
1849 	 * So instead, we have an explicit cgroup call to remain
1850 	 * within the time time source all along. We believe it
1851 	 * is cleaner and simpler to understand.
1852 	 */
1853 	if (is_cgroup_event(event))
1854 		perf_cgroup_set_shadow_time(event, tstamp);
1855 	else
1856 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1857 }
1858 
1859 #define MAX_INTERRUPTS (~0ULL)
1860 
1861 static void perf_log_throttle(struct perf_event *event, int enable);
1862 static void perf_log_itrace_start(struct perf_event *event);
1863 
1864 static int
1865 event_sched_in(struct perf_event *event,
1866 		 struct perf_cpu_context *cpuctx,
1867 		 struct perf_event_context *ctx)
1868 {
1869 	u64 tstamp = perf_event_time(event);
1870 	int ret = 0;
1871 
1872 	lockdep_assert_held(&ctx->lock);
1873 
1874 	if (event->state <= PERF_EVENT_STATE_OFF)
1875 		return 0;
1876 
1877 	event->state = PERF_EVENT_STATE_ACTIVE;
1878 	event->oncpu = smp_processor_id();
1879 
1880 	/*
1881 	 * Unthrottle events, since we scheduled we might have missed several
1882 	 * ticks already, also for a heavily scheduling task there is little
1883 	 * guarantee it'll get a tick in a timely manner.
1884 	 */
1885 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1886 		perf_log_throttle(event, 1);
1887 		event->hw.interrupts = 0;
1888 	}
1889 
1890 	/*
1891 	 * The new state must be visible before we turn it on in the hardware:
1892 	 */
1893 	smp_wmb();
1894 
1895 	perf_pmu_disable(event->pmu);
1896 
1897 	perf_set_shadow_time(event, ctx, tstamp);
1898 
1899 	perf_log_itrace_start(event);
1900 
1901 	if (event->pmu->add(event, PERF_EF_START)) {
1902 		event->state = PERF_EVENT_STATE_INACTIVE;
1903 		event->oncpu = -1;
1904 		ret = -EAGAIN;
1905 		goto out;
1906 	}
1907 
1908 	event->tstamp_running += tstamp - event->tstamp_stopped;
1909 
1910 	if (!is_software_event(event))
1911 		cpuctx->active_oncpu++;
1912 	if (!ctx->nr_active++)
1913 		perf_event_ctx_activate(ctx);
1914 	if (event->attr.freq && event->attr.sample_freq)
1915 		ctx->nr_freq++;
1916 
1917 	if (event->attr.exclusive)
1918 		cpuctx->exclusive = 1;
1919 
1920 	if (is_orphaned_child(event))
1921 		schedule_orphans_remove(ctx);
1922 
1923 out:
1924 	perf_pmu_enable(event->pmu);
1925 
1926 	return ret;
1927 }
1928 
1929 static int
1930 group_sched_in(struct perf_event *group_event,
1931 	       struct perf_cpu_context *cpuctx,
1932 	       struct perf_event_context *ctx)
1933 {
1934 	struct perf_event *event, *partial_group = NULL;
1935 	struct pmu *pmu = ctx->pmu;
1936 	u64 now = ctx->time;
1937 	bool simulate = false;
1938 
1939 	if (group_event->state == PERF_EVENT_STATE_OFF)
1940 		return 0;
1941 
1942 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1943 
1944 	if (event_sched_in(group_event, cpuctx, ctx)) {
1945 		pmu->cancel_txn(pmu);
1946 		perf_mux_hrtimer_restart(cpuctx);
1947 		return -EAGAIN;
1948 	}
1949 
1950 	/*
1951 	 * Schedule in siblings as one group (if any):
1952 	 */
1953 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 		if (event_sched_in(event, cpuctx, ctx)) {
1955 			partial_group = event;
1956 			goto group_error;
1957 		}
1958 	}
1959 
1960 	if (!pmu->commit_txn(pmu))
1961 		return 0;
1962 
1963 group_error:
1964 	/*
1965 	 * Groups can be scheduled in as one unit only, so undo any
1966 	 * partial group before returning:
1967 	 * The events up to the failed event are scheduled out normally,
1968 	 * tstamp_stopped will be updated.
1969 	 *
1970 	 * The failed events and the remaining siblings need to have
1971 	 * their timings updated as if they had gone thru event_sched_in()
1972 	 * and event_sched_out(). This is required to get consistent timings
1973 	 * across the group. This also takes care of the case where the group
1974 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1975 	 * the time the event was actually stopped, such that time delta
1976 	 * calculation in update_event_times() is correct.
1977 	 */
1978 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 		if (event == partial_group)
1980 			simulate = true;
1981 
1982 		if (simulate) {
1983 			event->tstamp_running += now - event->tstamp_stopped;
1984 			event->tstamp_stopped = now;
1985 		} else {
1986 			event_sched_out(event, cpuctx, ctx);
1987 		}
1988 	}
1989 	event_sched_out(group_event, cpuctx, ctx);
1990 
1991 	pmu->cancel_txn(pmu);
1992 
1993 	perf_mux_hrtimer_restart(cpuctx);
1994 
1995 	return -EAGAIN;
1996 }
1997 
1998 /*
1999  * Work out whether we can put this event group on the CPU now.
2000  */
2001 static int group_can_go_on(struct perf_event *event,
2002 			   struct perf_cpu_context *cpuctx,
2003 			   int can_add_hw)
2004 {
2005 	/*
2006 	 * Groups consisting entirely of software events can always go on.
2007 	 */
2008 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 		return 1;
2010 	/*
2011 	 * If an exclusive group is already on, no other hardware
2012 	 * events can go on.
2013 	 */
2014 	if (cpuctx->exclusive)
2015 		return 0;
2016 	/*
2017 	 * If this group is exclusive and there are already
2018 	 * events on the CPU, it can't go on.
2019 	 */
2020 	if (event->attr.exclusive && cpuctx->active_oncpu)
2021 		return 0;
2022 	/*
2023 	 * Otherwise, try to add it if all previous groups were able
2024 	 * to go on.
2025 	 */
2026 	return can_add_hw;
2027 }
2028 
2029 static void add_event_to_ctx(struct perf_event *event,
2030 			       struct perf_event_context *ctx)
2031 {
2032 	u64 tstamp = perf_event_time(event);
2033 
2034 	list_add_event(event, ctx);
2035 	perf_group_attach(event);
2036 	event->tstamp_enabled = tstamp;
2037 	event->tstamp_running = tstamp;
2038 	event->tstamp_stopped = tstamp;
2039 }
2040 
2041 static void task_ctx_sched_out(struct perf_event_context *ctx);
2042 static void
2043 ctx_sched_in(struct perf_event_context *ctx,
2044 	     struct perf_cpu_context *cpuctx,
2045 	     enum event_type_t event_type,
2046 	     struct task_struct *task);
2047 
2048 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2049 				struct perf_event_context *ctx,
2050 				struct task_struct *task)
2051 {
2052 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2053 	if (ctx)
2054 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2055 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2056 	if (ctx)
2057 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2058 }
2059 
2060 /*
2061  * Cross CPU call to install and enable a performance event
2062  *
2063  * Must be called with ctx->mutex held
2064  */
2065 static int  __perf_install_in_context(void *info)
2066 {
2067 	struct perf_event *event = info;
2068 	struct perf_event_context *ctx = event->ctx;
2069 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2071 	struct task_struct *task = current;
2072 
2073 	perf_ctx_lock(cpuctx, task_ctx);
2074 	perf_pmu_disable(cpuctx->ctx.pmu);
2075 
2076 	/*
2077 	 * If there was an active task_ctx schedule it out.
2078 	 */
2079 	if (task_ctx)
2080 		task_ctx_sched_out(task_ctx);
2081 
2082 	/*
2083 	 * If the context we're installing events in is not the
2084 	 * active task_ctx, flip them.
2085 	 */
2086 	if (ctx->task && task_ctx != ctx) {
2087 		if (task_ctx)
2088 			raw_spin_unlock(&task_ctx->lock);
2089 		raw_spin_lock(&ctx->lock);
2090 		task_ctx = ctx;
2091 	}
2092 
2093 	if (task_ctx) {
2094 		cpuctx->task_ctx = task_ctx;
2095 		task = task_ctx->task;
2096 	}
2097 
2098 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2099 
2100 	update_context_time(ctx);
2101 	/*
2102 	 * update cgrp time only if current cgrp
2103 	 * matches event->cgrp. Must be done before
2104 	 * calling add_event_to_ctx()
2105 	 */
2106 	update_cgrp_time_from_event(event);
2107 
2108 	add_event_to_ctx(event, ctx);
2109 
2110 	/*
2111 	 * Schedule everything back in
2112 	 */
2113 	perf_event_sched_in(cpuctx, task_ctx, task);
2114 
2115 	perf_pmu_enable(cpuctx->ctx.pmu);
2116 	perf_ctx_unlock(cpuctx, task_ctx);
2117 
2118 	return 0;
2119 }
2120 
2121 /*
2122  * Attach a performance event to a context
2123  *
2124  * First we add the event to the list with the hardware enable bit
2125  * in event->hw_config cleared.
2126  *
2127  * If the event is attached to a task which is on a CPU we use a smp
2128  * call to enable it in the task context. The task might have been
2129  * scheduled away, but we check this in the smp call again.
2130  */
2131 static void
2132 perf_install_in_context(struct perf_event_context *ctx,
2133 			struct perf_event *event,
2134 			int cpu)
2135 {
2136 	struct task_struct *task = ctx->task;
2137 
2138 	lockdep_assert_held(&ctx->mutex);
2139 
2140 	event->ctx = ctx;
2141 	if (event->cpu != -1)
2142 		event->cpu = cpu;
2143 
2144 	if (!task) {
2145 		/*
2146 		 * Per cpu events are installed via an smp call and
2147 		 * the install is always successful.
2148 		 */
2149 		cpu_function_call(cpu, __perf_install_in_context, event);
2150 		return;
2151 	}
2152 
2153 retry:
2154 	if (!task_function_call(task, __perf_install_in_context, event))
2155 		return;
2156 
2157 	raw_spin_lock_irq(&ctx->lock);
2158 	/*
2159 	 * If we failed to find a running task, but find the context active now
2160 	 * that we've acquired the ctx->lock, retry.
2161 	 */
2162 	if (ctx->is_active) {
2163 		raw_spin_unlock_irq(&ctx->lock);
2164 		/*
2165 		 * Reload the task pointer, it might have been changed by
2166 		 * a concurrent perf_event_context_sched_out().
2167 		 */
2168 		task = ctx->task;
2169 		goto retry;
2170 	}
2171 
2172 	/*
2173 	 * Since the task isn't running, its safe to add the event, us holding
2174 	 * the ctx->lock ensures the task won't get scheduled in.
2175 	 */
2176 	add_event_to_ctx(event, ctx);
2177 	raw_spin_unlock_irq(&ctx->lock);
2178 }
2179 
2180 /*
2181  * Put a event into inactive state and update time fields.
2182  * Enabling the leader of a group effectively enables all
2183  * the group members that aren't explicitly disabled, so we
2184  * have to update their ->tstamp_enabled also.
2185  * Note: this works for group members as well as group leaders
2186  * since the non-leader members' sibling_lists will be empty.
2187  */
2188 static void __perf_event_mark_enabled(struct perf_event *event)
2189 {
2190 	struct perf_event *sub;
2191 	u64 tstamp = perf_event_time(event);
2192 
2193 	event->state = PERF_EVENT_STATE_INACTIVE;
2194 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2195 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2197 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2198 	}
2199 }
2200 
2201 /*
2202  * Cross CPU call to enable a performance event
2203  */
2204 static int __perf_event_enable(void *info)
2205 {
2206 	struct perf_event *event = info;
2207 	struct perf_event_context *ctx = event->ctx;
2208 	struct perf_event *leader = event->group_leader;
2209 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 	int err;
2211 
2212 	/*
2213 	 * There's a time window between 'ctx->is_active' check
2214 	 * in perf_event_enable function and this place having:
2215 	 *   - IRQs on
2216 	 *   - ctx->lock unlocked
2217 	 *
2218 	 * where the task could be killed and 'ctx' deactivated
2219 	 * by perf_event_exit_task.
2220 	 */
2221 	if (!ctx->is_active)
2222 		return -EINVAL;
2223 
2224 	raw_spin_lock(&ctx->lock);
2225 	update_context_time(ctx);
2226 
2227 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228 		goto unlock;
2229 
2230 	/*
2231 	 * set current task's cgroup time reference point
2232 	 */
2233 	perf_cgroup_set_timestamp(current, ctx);
2234 
2235 	__perf_event_mark_enabled(event);
2236 
2237 	if (!event_filter_match(event)) {
2238 		if (is_cgroup_event(event))
2239 			perf_cgroup_defer_enabled(event);
2240 		goto unlock;
2241 	}
2242 
2243 	/*
2244 	 * If the event is in a group and isn't the group leader,
2245 	 * then don't put it on unless the group is on.
2246 	 */
2247 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248 		goto unlock;
2249 
2250 	if (!group_can_go_on(event, cpuctx, 1)) {
2251 		err = -EEXIST;
2252 	} else {
2253 		if (event == leader)
2254 			err = group_sched_in(event, cpuctx, ctx);
2255 		else
2256 			err = event_sched_in(event, cpuctx, ctx);
2257 	}
2258 
2259 	if (err) {
2260 		/*
2261 		 * If this event can't go on and it's part of a
2262 		 * group, then the whole group has to come off.
2263 		 */
2264 		if (leader != event) {
2265 			group_sched_out(leader, cpuctx, ctx);
2266 			perf_mux_hrtimer_restart(cpuctx);
2267 		}
2268 		if (leader->attr.pinned) {
2269 			update_group_times(leader);
2270 			leader->state = PERF_EVENT_STATE_ERROR;
2271 		}
2272 	}
2273 
2274 unlock:
2275 	raw_spin_unlock(&ctx->lock);
2276 
2277 	return 0;
2278 }
2279 
2280 /*
2281  * Enable a event.
2282  *
2283  * If event->ctx is a cloned context, callers must make sure that
2284  * every task struct that event->ctx->task could possibly point to
2285  * remains valid.  This condition is satisfied when called through
2286  * perf_event_for_each_child or perf_event_for_each as described
2287  * for perf_event_disable.
2288  */
2289 static void _perf_event_enable(struct perf_event *event)
2290 {
2291 	struct perf_event_context *ctx = event->ctx;
2292 	struct task_struct *task = ctx->task;
2293 
2294 	if (!task) {
2295 		/*
2296 		 * Enable the event on the cpu that it's on
2297 		 */
2298 		cpu_function_call(event->cpu, __perf_event_enable, event);
2299 		return;
2300 	}
2301 
2302 	raw_spin_lock_irq(&ctx->lock);
2303 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 		goto out;
2305 
2306 	/*
2307 	 * If the event is in error state, clear that first.
2308 	 * That way, if we see the event in error state below, we
2309 	 * know that it has gone back into error state, as distinct
2310 	 * from the task having been scheduled away before the
2311 	 * cross-call arrived.
2312 	 */
2313 	if (event->state == PERF_EVENT_STATE_ERROR)
2314 		event->state = PERF_EVENT_STATE_OFF;
2315 
2316 retry:
2317 	if (!ctx->is_active) {
2318 		__perf_event_mark_enabled(event);
2319 		goto out;
2320 	}
2321 
2322 	raw_spin_unlock_irq(&ctx->lock);
2323 
2324 	if (!task_function_call(task, __perf_event_enable, event))
2325 		return;
2326 
2327 	raw_spin_lock_irq(&ctx->lock);
2328 
2329 	/*
2330 	 * If the context is active and the event is still off,
2331 	 * we need to retry the cross-call.
2332 	 */
2333 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2334 		/*
2335 		 * task could have been flipped by a concurrent
2336 		 * perf_event_context_sched_out()
2337 		 */
2338 		task = ctx->task;
2339 		goto retry;
2340 	}
2341 
2342 out:
2343 	raw_spin_unlock_irq(&ctx->lock);
2344 }
2345 
2346 /*
2347  * See perf_event_disable();
2348  */
2349 void perf_event_enable(struct perf_event *event)
2350 {
2351 	struct perf_event_context *ctx;
2352 
2353 	ctx = perf_event_ctx_lock(event);
2354 	_perf_event_enable(event);
2355 	perf_event_ctx_unlock(event, ctx);
2356 }
2357 EXPORT_SYMBOL_GPL(perf_event_enable);
2358 
2359 static int _perf_event_refresh(struct perf_event *event, int refresh)
2360 {
2361 	/*
2362 	 * not supported on inherited events
2363 	 */
2364 	if (event->attr.inherit || !is_sampling_event(event))
2365 		return -EINVAL;
2366 
2367 	atomic_add(refresh, &event->event_limit);
2368 	_perf_event_enable(event);
2369 
2370 	return 0;
2371 }
2372 
2373 /*
2374  * See perf_event_disable()
2375  */
2376 int perf_event_refresh(struct perf_event *event, int refresh)
2377 {
2378 	struct perf_event_context *ctx;
2379 	int ret;
2380 
2381 	ctx = perf_event_ctx_lock(event);
2382 	ret = _perf_event_refresh(event, refresh);
2383 	perf_event_ctx_unlock(event, ctx);
2384 
2385 	return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(perf_event_refresh);
2388 
2389 static void ctx_sched_out(struct perf_event_context *ctx,
2390 			  struct perf_cpu_context *cpuctx,
2391 			  enum event_type_t event_type)
2392 {
2393 	struct perf_event *event;
2394 	int is_active = ctx->is_active;
2395 
2396 	ctx->is_active &= ~event_type;
2397 	if (likely(!ctx->nr_events))
2398 		return;
2399 
2400 	update_context_time(ctx);
2401 	update_cgrp_time_from_cpuctx(cpuctx);
2402 	if (!ctx->nr_active)
2403 		return;
2404 
2405 	perf_pmu_disable(ctx->pmu);
2406 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2408 			group_sched_out(event, cpuctx, ctx);
2409 	}
2410 
2411 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413 			group_sched_out(event, cpuctx, ctx);
2414 	}
2415 	perf_pmu_enable(ctx->pmu);
2416 }
2417 
2418 /*
2419  * Test whether two contexts are equivalent, i.e. whether they have both been
2420  * cloned from the same version of the same context.
2421  *
2422  * Equivalence is measured using a generation number in the context that is
2423  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2424  * and list_del_event().
2425  */
2426 static int context_equiv(struct perf_event_context *ctx1,
2427 			 struct perf_event_context *ctx2)
2428 {
2429 	lockdep_assert_held(&ctx1->lock);
2430 	lockdep_assert_held(&ctx2->lock);
2431 
2432 	/* Pinning disables the swap optimization */
2433 	if (ctx1->pin_count || ctx2->pin_count)
2434 		return 0;
2435 
2436 	/* If ctx1 is the parent of ctx2 */
2437 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2438 		return 1;
2439 
2440 	/* If ctx2 is the parent of ctx1 */
2441 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2442 		return 1;
2443 
2444 	/*
2445 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2446 	 * hierarchy, see perf_event_init_context().
2447 	 */
2448 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2449 			ctx1->parent_gen == ctx2->parent_gen)
2450 		return 1;
2451 
2452 	/* Unmatched */
2453 	return 0;
2454 }
2455 
2456 static void __perf_event_sync_stat(struct perf_event *event,
2457 				     struct perf_event *next_event)
2458 {
2459 	u64 value;
2460 
2461 	if (!event->attr.inherit_stat)
2462 		return;
2463 
2464 	/*
2465 	 * Update the event value, we cannot use perf_event_read()
2466 	 * because we're in the middle of a context switch and have IRQs
2467 	 * disabled, which upsets smp_call_function_single(), however
2468 	 * we know the event must be on the current CPU, therefore we
2469 	 * don't need to use it.
2470 	 */
2471 	switch (event->state) {
2472 	case PERF_EVENT_STATE_ACTIVE:
2473 		event->pmu->read(event);
2474 		/* fall-through */
2475 
2476 	case PERF_EVENT_STATE_INACTIVE:
2477 		update_event_times(event);
2478 		break;
2479 
2480 	default:
2481 		break;
2482 	}
2483 
2484 	/*
2485 	 * In order to keep per-task stats reliable we need to flip the event
2486 	 * values when we flip the contexts.
2487 	 */
2488 	value = local64_read(&next_event->count);
2489 	value = local64_xchg(&event->count, value);
2490 	local64_set(&next_event->count, value);
2491 
2492 	swap(event->total_time_enabled, next_event->total_time_enabled);
2493 	swap(event->total_time_running, next_event->total_time_running);
2494 
2495 	/*
2496 	 * Since we swizzled the values, update the user visible data too.
2497 	 */
2498 	perf_event_update_userpage(event);
2499 	perf_event_update_userpage(next_event);
2500 }
2501 
2502 static void perf_event_sync_stat(struct perf_event_context *ctx,
2503 				   struct perf_event_context *next_ctx)
2504 {
2505 	struct perf_event *event, *next_event;
2506 
2507 	if (!ctx->nr_stat)
2508 		return;
2509 
2510 	update_context_time(ctx);
2511 
2512 	event = list_first_entry(&ctx->event_list,
2513 				   struct perf_event, event_entry);
2514 
2515 	next_event = list_first_entry(&next_ctx->event_list,
2516 					struct perf_event, event_entry);
2517 
2518 	while (&event->event_entry != &ctx->event_list &&
2519 	       &next_event->event_entry != &next_ctx->event_list) {
2520 
2521 		__perf_event_sync_stat(event, next_event);
2522 
2523 		event = list_next_entry(event, event_entry);
2524 		next_event = list_next_entry(next_event, event_entry);
2525 	}
2526 }
2527 
2528 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2529 					 struct task_struct *next)
2530 {
2531 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532 	struct perf_event_context *next_ctx;
2533 	struct perf_event_context *parent, *next_parent;
2534 	struct perf_cpu_context *cpuctx;
2535 	int do_switch = 1;
2536 
2537 	if (likely(!ctx))
2538 		return;
2539 
2540 	cpuctx = __get_cpu_context(ctx);
2541 	if (!cpuctx->task_ctx)
2542 		return;
2543 
2544 	rcu_read_lock();
2545 	next_ctx = next->perf_event_ctxp[ctxn];
2546 	if (!next_ctx)
2547 		goto unlock;
2548 
2549 	parent = rcu_dereference(ctx->parent_ctx);
2550 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2551 
2552 	/* If neither context have a parent context; they cannot be clones. */
2553 	if (!parent && !next_parent)
2554 		goto unlock;
2555 
2556 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 		/*
2558 		 * Looks like the two contexts are clones, so we might be
2559 		 * able to optimize the context switch.  We lock both
2560 		 * contexts and check that they are clones under the
2561 		 * lock (including re-checking that neither has been
2562 		 * uncloned in the meantime).  It doesn't matter which
2563 		 * order we take the locks because no other cpu could
2564 		 * be trying to lock both of these tasks.
2565 		 */
2566 		raw_spin_lock(&ctx->lock);
2567 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568 		if (context_equiv(ctx, next_ctx)) {
2569 			/*
2570 			 * XXX do we need a memory barrier of sorts
2571 			 * wrt to rcu_dereference() of perf_event_ctxp
2572 			 */
2573 			task->perf_event_ctxp[ctxn] = next_ctx;
2574 			next->perf_event_ctxp[ctxn] = ctx;
2575 			ctx->task = next;
2576 			next_ctx->task = task;
2577 
2578 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2579 
2580 			do_switch = 0;
2581 
2582 			perf_event_sync_stat(ctx, next_ctx);
2583 		}
2584 		raw_spin_unlock(&next_ctx->lock);
2585 		raw_spin_unlock(&ctx->lock);
2586 	}
2587 unlock:
2588 	rcu_read_unlock();
2589 
2590 	if (do_switch) {
2591 		raw_spin_lock(&ctx->lock);
2592 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593 		cpuctx->task_ctx = NULL;
2594 		raw_spin_unlock(&ctx->lock);
2595 	}
2596 }
2597 
2598 void perf_sched_cb_dec(struct pmu *pmu)
2599 {
2600 	this_cpu_dec(perf_sched_cb_usages);
2601 }
2602 
2603 void perf_sched_cb_inc(struct pmu *pmu)
2604 {
2605 	this_cpu_inc(perf_sched_cb_usages);
2606 }
2607 
2608 /*
2609  * This function provides the context switch callback to the lower code
2610  * layer. It is invoked ONLY when the context switch callback is enabled.
2611  */
2612 static void perf_pmu_sched_task(struct task_struct *prev,
2613 				struct task_struct *next,
2614 				bool sched_in)
2615 {
2616 	struct perf_cpu_context *cpuctx;
2617 	struct pmu *pmu;
2618 	unsigned long flags;
2619 
2620 	if (prev == next)
2621 		return;
2622 
2623 	local_irq_save(flags);
2624 
2625 	rcu_read_lock();
2626 
2627 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2628 		if (pmu->sched_task) {
2629 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2630 
2631 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2632 
2633 			perf_pmu_disable(pmu);
2634 
2635 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2636 
2637 			perf_pmu_enable(pmu);
2638 
2639 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2640 		}
2641 	}
2642 
2643 	rcu_read_unlock();
2644 
2645 	local_irq_restore(flags);
2646 }
2647 
2648 static void perf_event_switch(struct task_struct *task,
2649 			      struct task_struct *next_prev, bool sched_in);
2650 
2651 #define for_each_task_context_nr(ctxn)					\
2652 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2653 
2654 /*
2655  * Called from scheduler to remove the events of the current task,
2656  * with interrupts disabled.
2657  *
2658  * We stop each event and update the event value in event->count.
2659  *
2660  * This does not protect us against NMI, but disable()
2661  * sets the disabled bit in the control field of event _before_
2662  * accessing the event control register. If a NMI hits, then it will
2663  * not restart the event.
2664  */
2665 void __perf_event_task_sched_out(struct task_struct *task,
2666 				 struct task_struct *next)
2667 {
2668 	int ctxn;
2669 
2670 	if (__this_cpu_read(perf_sched_cb_usages))
2671 		perf_pmu_sched_task(task, next, false);
2672 
2673 	if (atomic_read(&nr_switch_events))
2674 		perf_event_switch(task, next, false);
2675 
2676 	for_each_task_context_nr(ctxn)
2677 		perf_event_context_sched_out(task, ctxn, next);
2678 
2679 	/*
2680 	 * if cgroup events exist on this CPU, then we need
2681 	 * to check if we have to switch out PMU state.
2682 	 * cgroup event are system-wide mode only
2683 	 */
2684 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685 		perf_cgroup_sched_out(task, next);
2686 }
2687 
2688 static void task_ctx_sched_out(struct perf_event_context *ctx)
2689 {
2690 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691 
2692 	if (!cpuctx->task_ctx)
2693 		return;
2694 
2695 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 		return;
2697 
2698 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 	cpuctx->task_ctx = NULL;
2700 }
2701 
2702 /*
2703  * Called with IRQs disabled
2704  */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 			      enum event_type_t event_type)
2707 {
2708 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710 
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 		    struct perf_cpu_context *cpuctx)
2714 {
2715 	struct perf_event *event;
2716 
2717 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		if (!event_filter_match(event))
2721 			continue;
2722 
2723 		/* may need to reset tstamp_enabled */
2724 		if (is_cgroup_event(event))
2725 			perf_cgroup_mark_enabled(event, ctx);
2726 
2727 		if (group_can_go_on(event, cpuctx, 1))
2728 			group_sched_in(event, cpuctx, ctx);
2729 
2730 		/*
2731 		 * If this pinned group hasn't been scheduled,
2732 		 * put it in error state.
2733 		 */
2734 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 			update_group_times(event);
2736 			event->state = PERF_EVENT_STATE_ERROR;
2737 		}
2738 	}
2739 }
2740 
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 		      struct perf_cpu_context *cpuctx)
2744 {
2745 	struct perf_event *event;
2746 	int can_add_hw = 1;
2747 
2748 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 		/* Ignore events in OFF or ERROR state */
2750 		if (event->state <= PERF_EVENT_STATE_OFF)
2751 			continue;
2752 		/*
2753 		 * Listen to the 'cpu' scheduling filter constraint
2754 		 * of events:
2755 		 */
2756 		if (!event_filter_match(event))
2757 			continue;
2758 
2759 		/* may need to reset tstamp_enabled */
2760 		if (is_cgroup_event(event))
2761 			perf_cgroup_mark_enabled(event, ctx);
2762 
2763 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 			if (group_sched_in(event, cpuctx, ctx))
2765 				can_add_hw = 0;
2766 		}
2767 	}
2768 }
2769 
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 	     struct perf_cpu_context *cpuctx,
2773 	     enum event_type_t event_type,
2774 	     struct task_struct *task)
2775 {
2776 	u64 now;
2777 	int is_active = ctx->is_active;
2778 
2779 	ctx->is_active |= event_type;
2780 	if (likely(!ctx->nr_events))
2781 		return;
2782 
2783 	now = perf_clock();
2784 	ctx->timestamp = now;
2785 	perf_cgroup_set_timestamp(task, ctx);
2786 	/*
2787 	 * First go through the list and put on any pinned groups
2788 	 * in order to give them the best chance of going on.
2789 	 */
2790 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791 		ctx_pinned_sched_in(ctx, cpuctx);
2792 
2793 	/* Then walk through the lower prio flexible groups */
2794 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795 		ctx_flexible_sched_in(ctx, cpuctx);
2796 }
2797 
2798 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2799 			     enum event_type_t event_type,
2800 			     struct task_struct *task)
2801 {
2802 	struct perf_event_context *ctx = &cpuctx->ctx;
2803 
2804 	ctx_sched_in(ctx, cpuctx, event_type, task);
2805 }
2806 
2807 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2808 					struct task_struct *task)
2809 {
2810 	struct perf_cpu_context *cpuctx;
2811 
2812 	cpuctx = __get_cpu_context(ctx);
2813 	if (cpuctx->task_ctx == ctx)
2814 		return;
2815 
2816 	perf_ctx_lock(cpuctx, ctx);
2817 	perf_pmu_disable(ctx->pmu);
2818 	/*
2819 	 * We want to keep the following priority order:
2820 	 * cpu pinned (that don't need to move), task pinned,
2821 	 * cpu flexible, task flexible.
2822 	 */
2823 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2824 
2825 	if (ctx->nr_events)
2826 		cpuctx->task_ctx = ctx;
2827 
2828 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2829 
2830 	perf_pmu_enable(ctx->pmu);
2831 	perf_ctx_unlock(cpuctx, ctx);
2832 }
2833 
2834 /*
2835  * Called from scheduler to add the events of the current task
2836  * with interrupts disabled.
2837  *
2838  * We restore the event value and then enable it.
2839  *
2840  * This does not protect us against NMI, but enable()
2841  * sets the enabled bit in the control field of event _before_
2842  * accessing the event control register. If a NMI hits, then it will
2843  * keep the event running.
2844  */
2845 void __perf_event_task_sched_in(struct task_struct *prev,
2846 				struct task_struct *task)
2847 {
2848 	struct perf_event_context *ctx;
2849 	int ctxn;
2850 
2851 	for_each_task_context_nr(ctxn) {
2852 		ctx = task->perf_event_ctxp[ctxn];
2853 		if (likely(!ctx))
2854 			continue;
2855 
2856 		perf_event_context_sched_in(ctx, task);
2857 	}
2858 	/*
2859 	 * if cgroup events exist on this CPU, then we need
2860 	 * to check if we have to switch in PMU state.
2861 	 * cgroup event are system-wide mode only
2862 	 */
2863 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864 		perf_cgroup_sched_in(prev, task);
2865 
2866 	if (atomic_read(&nr_switch_events))
2867 		perf_event_switch(task, prev, true);
2868 
2869 	if (__this_cpu_read(perf_sched_cb_usages))
2870 		perf_pmu_sched_task(prev, task, true);
2871 }
2872 
2873 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2874 {
2875 	u64 frequency = event->attr.sample_freq;
2876 	u64 sec = NSEC_PER_SEC;
2877 	u64 divisor, dividend;
2878 
2879 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2880 
2881 	count_fls = fls64(count);
2882 	nsec_fls = fls64(nsec);
2883 	frequency_fls = fls64(frequency);
2884 	sec_fls = 30;
2885 
2886 	/*
2887 	 * We got @count in @nsec, with a target of sample_freq HZ
2888 	 * the target period becomes:
2889 	 *
2890 	 *             @count * 10^9
2891 	 * period = -------------------
2892 	 *          @nsec * sample_freq
2893 	 *
2894 	 */
2895 
2896 	/*
2897 	 * Reduce accuracy by one bit such that @a and @b converge
2898 	 * to a similar magnitude.
2899 	 */
2900 #define REDUCE_FLS(a, b)		\
2901 do {					\
2902 	if (a##_fls > b##_fls) {	\
2903 		a >>= 1;		\
2904 		a##_fls--;		\
2905 	} else {			\
2906 		b >>= 1;		\
2907 		b##_fls--;		\
2908 	}				\
2909 } while (0)
2910 
2911 	/*
2912 	 * Reduce accuracy until either term fits in a u64, then proceed with
2913 	 * the other, so that finally we can do a u64/u64 division.
2914 	 */
2915 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2916 		REDUCE_FLS(nsec, frequency);
2917 		REDUCE_FLS(sec, count);
2918 	}
2919 
2920 	if (count_fls + sec_fls > 64) {
2921 		divisor = nsec * frequency;
2922 
2923 		while (count_fls + sec_fls > 64) {
2924 			REDUCE_FLS(count, sec);
2925 			divisor >>= 1;
2926 		}
2927 
2928 		dividend = count * sec;
2929 	} else {
2930 		dividend = count * sec;
2931 
2932 		while (nsec_fls + frequency_fls > 64) {
2933 			REDUCE_FLS(nsec, frequency);
2934 			dividend >>= 1;
2935 		}
2936 
2937 		divisor = nsec * frequency;
2938 	}
2939 
2940 	if (!divisor)
2941 		return dividend;
2942 
2943 	return div64_u64(dividend, divisor);
2944 }
2945 
2946 static DEFINE_PER_CPU(int, perf_throttled_count);
2947 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2948 
2949 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950 {
2951 	struct hw_perf_event *hwc = &event->hw;
2952 	s64 period, sample_period;
2953 	s64 delta;
2954 
2955 	period = perf_calculate_period(event, nsec, count);
2956 
2957 	delta = (s64)(period - hwc->sample_period);
2958 	delta = (delta + 7) / 8; /* low pass filter */
2959 
2960 	sample_period = hwc->sample_period + delta;
2961 
2962 	if (!sample_period)
2963 		sample_period = 1;
2964 
2965 	hwc->sample_period = sample_period;
2966 
2967 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 		if (disable)
2969 			event->pmu->stop(event, PERF_EF_UPDATE);
2970 
2971 		local64_set(&hwc->period_left, 0);
2972 
2973 		if (disable)
2974 			event->pmu->start(event, PERF_EF_RELOAD);
2975 	}
2976 }
2977 
2978 /*
2979  * combine freq adjustment with unthrottling to avoid two passes over the
2980  * events. At the same time, make sure, having freq events does not change
2981  * the rate of unthrottling as that would introduce bias.
2982  */
2983 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2984 					   int needs_unthr)
2985 {
2986 	struct perf_event *event;
2987 	struct hw_perf_event *hwc;
2988 	u64 now, period = TICK_NSEC;
2989 	s64 delta;
2990 
2991 	/*
2992 	 * only need to iterate over all events iff:
2993 	 * - context have events in frequency mode (needs freq adjust)
2994 	 * - there are events to unthrottle on this cpu
2995 	 */
2996 	if (!(ctx->nr_freq || needs_unthr))
2997 		return;
2998 
2999 	raw_spin_lock(&ctx->lock);
3000 	perf_pmu_disable(ctx->pmu);
3001 
3002 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 			continue;
3005 
3006 		if (!event_filter_match(event))
3007 			continue;
3008 
3009 		perf_pmu_disable(event->pmu);
3010 
3011 		hwc = &event->hw;
3012 
3013 		if (hwc->interrupts == MAX_INTERRUPTS) {
3014 			hwc->interrupts = 0;
3015 			perf_log_throttle(event, 1);
3016 			event->pmu->start(event, 0);
3017 		}
3018 
3019 		if (!event->attr.freq || !event->attr.sample_freq)
3020 			goto next;
3021 
3022 		/*
3023 		 * stop the event and update event->count
3024 		 */
3025 		event->pmu->stop(event, PERF_EF_UPDATE);
3026 
3027 		now = local64_read(&event->count);
3028 		delta = now - hwc->freq_count_stamp;
3029 		hwc->freq_count_stamp = now;
3030 
3031 		/*
3032 		 * restart the event
3033 		 * reload only if value has changed
3034 		 * we have stopped the event so tell that
3035 		 * to perf_adjust_period() to avoid stopping it
3036 		 * twice.
3037 		 */
3038 		if (delta > 0)
3039 			perf_adjust_period(event, period, delta, false);
3040 
3041 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 	next:
3043 		perf_pmu_enable(event->pmu);
3044 	}
3045 
3046 	perf_pmu_enable(ctx->pmu);
3047 	raw_spin_unlock(&ctx->lock);
3048 }
3049 
3050 /*
3051  * Round-robin a context's events:
3052  */
3053 static void rotate_ctx(struct perf_event_context *ctx)
3054 {
3055 	/*
3056 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3057 	 * disabled by the inheritance code.
3058 	 */
3059 	if (!ctx->rotate_disable)
3060 		list_rotate_left(&ctx->flexible_groups);
3061 }
3062 
3063 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064 {
3065 	struct perf_event_context *ctx = NULL;
3066 	int rotate = 0;
3067 
3068 	if (cpuctx->ctx.nr_events) {
3069 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3070 			rotate = 1;
3071 	}
3072 
3073 	ctx = cpuctx->task_ctx;
3074 	if (ctx && ctx->nr_events) {
3075 		if (ctx->nr_events != ctx->nr_active)
3076 			rotate = 1;
3077 	}
3078 
3079 	if (!rotate)
3080 		goto done;
3081 
3082 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3083 	perf_pmu_disable(cpuctx->ctx.pmu);
3084 
3085 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3086 	if (ctx)
3087 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3088 
3089 	rotate_ctx(&cpuctx->ctx);
3090 	if (ctx)
3091 		rotate_ctx(ctx);
3092 
3093 	perf_event_sched_in(cpuctx, ctx, current);
3094 
3095 	perf_pmu_enable(cpuctx->ctx.pmu);
3096 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097 done:
3098 
3099 	return rotate;
3100 }
3101 
3102 #ifdef CONFIG_NO_HZ_FULL
3103 bool perf_event_can_stop_tick(void)
3104 {
3105 	if (atomic_read(&nr_freq_events) ||
3106 	    __this_cpu_read(perf_throttled_count))
3107 		return false;
3108 	else
3109 		return true;
3110 }
3111 #endif
3112 
3113 void perf_event_task_tick(void)
3114 {
3115 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3116 	struct perf_event_context *ctx, *tmp;
3117 	int throttled;
3118 
3119 	WARN_ON(!irqs_disabled());
3120 
3121 	__this_cpu_inc(perf_throttled_seq);
3122 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3123 
3124 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125 		perf_adjust_freq_unthr_context(ctx, throttled);
3126 }
3127 
3128 static int event_enable_on_exec(struct perf_event *event,
3129 				struct perf_event_context *ctx)
3130 {
3131 	if (!event->attr.enable_on_exec)
3132 		return 0;
3133 
3134 	event->attr.enable_on_exec = 0;
3135 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3136 		return 0;
3137 
3138 	__perf_event_mark_enabled(event);
3139 
3140 	return 1;
3141 }
3142 
3143 /*
3144  * Enable all of a task's events that have been marked enable-on-exec.
3145  * This expects task == current.
3146  */
3147 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148 {
3149 	struct perf_event_context *clone_ctx = NULL;
3150 	struct perf_event *event;
3151 	unsigned long flags;
3152 	int enabled = 0;
3153 	int ret;
3154 
3155 	local_irq_save(flags);
3156 	if (!ctx || !ctx->nr_events)
3157 		goto out;
3158 
3159 	/*
3160 	 * We must ctxsw out cgroup events to avoid conflict
3161 	 * when invoking perf_task_event_sched_in() later on
3162 	 * in this function. Otherwise we end up trying to
3163 	 * ctxswin cgroup events which are already scheduled
3164 	 * in.
3165 	 */
3166 	perf_cgroup_sched_out(current, NULL);
3167 
3168 	raw_spin_lock(&ctx->lock);
3169 	task_ctx_sched_out(ctx);
3170 
3171 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 		ret = event_enable_on_exec(event, ctx);
3173 		if (ret)
3174 			enabled = 1;
3175 	}
3176 
3177 	/*
3178 	 * Unclone this context if we enabled any event.
3179 	 */
3180 	if (enabled)
3181 		clone_ctx = unclone_ctx(ctx);
3182 
3183 	raw_spin_unlock(&ctx->lock);
3184 
3185 	/*
3186 	 * Also calls ctxswin for cgroup events, if any:
3187 	 */
3188 	perf_event_context_sched_in(ctx, ctx->task);
3189 out:
3190 	local_irq_restore(flags);
3191 
3192 	if (clone_ctx)
3193 		put_ctx(clone_ctx);
3194 }
3195 
3196 void perf_event_exec(void)
3197 {
3198 	struct perf_event_context *ctx;
3199 	int ctxn;
3200 
3201 	rcu_read_lock();
3202 	for_each_task_context_nr(ctxn) {
3203 		ctx = current->perf_event_ctxp[ctxn];
3204 		if (!ctx)
3205 			continue;
3206 
3207 		perf_event_enable_on_exec(ctx);
3208 	}
3209 	rcu_read_unlock();
3210 }
3211 
3212 struct perf_read_data {
3213 	struct perf_event *event;
3214 	bool group;
3215 	int ret;
3216 };
3217 
3218 /*
3219  * Cross CPU call to read the hardware event
3220  */
3221 static void __perf_event_read(void *info)
3222 {
3223 	struct perf_read_data *data = info;
3224 	struct perf_event *sub, *event = data->event;
3225 	struct perf_event_context *ctx = event->ctx;
3226 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3227 	struct pmu *pmu = event->pmu;
3228 
3229 	/*
3230 	 * If this is a task context, we need to check whether it is
3231 	 * the current task context of this cpu.  If not it has been
3232 	 * scheduled out before the smp call arrived.  In that case
3233 	 * event->count would have been updated to a recent sample
3234 	 * when the event was scheduled out.
3235 	 */
3236 	if (ctx->task && cpuctx->task_ctx != ctx)
3237 		return;
3238 
3239 	raw_spin_lock(&ctx->lock);
3240 	if (ctx->is_active) {
3241 		update_context_time(ctx);
3242 		update_cgrp_time_from_event(event);
3243 	}
3244 
3245 	update_event_times(event);
3246 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3247 		goto unlock;
3248 
3249 	if (!data->group) {
3250 		pmu->read(event);
3251 		data->ret = 0;
3252 		goto unlock;
3253 	}
3254 
3255 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3256 
3257 	pmu->read(event);
3258 
3259 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3260 		update_event_times(sub);
3261 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3262 			/*
3263 			 * Use sibling's PMU rather than @event's since
3264 			 * sibling could be on different (eg: software) PMU.
3265 			 */
3266 			sub->pmu->read(sub);
3267 		}
3268 	}
3269 
3270 	data->ret = pmu->commit_txn(pmu);
3271 
3272 unlock:
3273 	raw_spin_unlock(&ctx->lock);
3274 }
3275 
3276 static inline u64 perf_event_count(struct perf_event *event)
3277 {
3278 	if (event->pmu->count)
3279 		return event->pmu->count(event);
3280 
3281 	return __perf_event_count(event);
3282 }
3283 
3284 /*
3285  * NMI-safe method to read a local event, that is an event that
3286  * is:
3287  *   - either for the current task, or for this CPU
3288  *   - does not have inherit set, for inherited task events
3289  *     will not be local and we cannot read them atomically
3290  *   - must not have a pmu::count method
3291  */
3292 u64 perf_event_read_local(struct perf_event *event)
3293 {
3294 	unsigned long flags;
3295 	u64 val;
3296 
3297 	/*
3298 	 * Disabling interrupts avoids all counter scheduling (context
3299 	 * switches, timer based rotation and IPIs).
3300 	 */
3301 	local_irq_save(flags);
3302 
3303 	/* If this is a per-task event, it must be for current */
3304 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3305 		     event->hw.target != current);
3306 
3307 	/* If this is a per-CPU event, it must be for this CPU */
3308 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3309 		     event->cpu != smp_processor_id());
3310 
3311 	/*
3312 	 * It must not be an event with inherit set, we cannot read
3313 	 * all child counters from atomic context.
3314 	 */
3315 	WARN_ON_ONCE(event->attr.inherit);
3316 
3317 	/*
3318 	 * It must not have a pmu::count method, those are not
3319 	 * NMI safe.
3320 	 */
3321 	WARN_ON_ONCE(event->pmu->count);
3322 
3323 	/*
3324 	 * If the event is currently on this CPU, its either a per-task event,
3325 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3326 	 * oncpu == -1).
3327 	 */
3328 	if (event->oncpu == smp_processor_id())
3329 		event->pmu->read(event);
3330 
3331 	val = local64_read(&event->count);
3332 	local_irq_restore(flags);
3333 
3334 	return val;
3335 }
3336 
3337 static int perf_event_read(struct perf_event *event, bool group)
3338 {
3339 	int ret = 0;
3340 
3341 	/*
3342 	 * If event is enabled and currently active on a CPU, update the
3343 	 * value in the event structure:
3344 	 */
3345 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3346 		struct perf_read_data data = {
3347 			.event = event,
3348 			.group = group,
3349 			.ret = 0,
3350 		};
3351 		smp_call_function_single(event->oncpu,
3352 					 __perf_event_read, &data, 1);
3353 		ret = data.ret;
3354 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3355 		struct perf_event_context *ctx = event->ctx;
3356 		unsigned long flags;
3357 
3358 		raw_spin_lock_irqsave(&ctx->lock, flags);
3359 		/*
3360 		 * may read while context is not active
3361 		 * (e.g., thread is blocked), in that case
3362 		 * we cannot update context time
3363 		 */
3364 		if (ctx->is_active) {
3365 			update_context_time(ctx);
3366 			update_cgrp_time_from_event(event);
3367 		}
3368 		if (group)
3369 			update_group_times(event);
3370 		else
3371 			update_event_times(event);
3372 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3373 	}
3374 
3375 	return ret;
3376 }
3377 
3378 /*
3379  * Initialize the perf_event context in a task_struct:
3380  */
3381 static void __perf_event_init_context(struct perf_event_context *ctx)
3382 {
3383 	raw_spin_lock_init(&ctx->lock);
3384 	mutex_init(&ctx->mutex);
3385 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3386 	INIT_LIST_HEAD(&ctx->pinned_groups);
3387 	INIT_LIST_HEAD(&ctx->flexible_groups);
3388 	INIT_LIST_HEAD(&ctx->event_list);
3389 	atomic_set(&ctx->refcount, 1);
3390 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3391 }
3392 
3393 static struct perf_event_context *
3394 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3395 {
3396 	struct perf_event_context *ctx;
3397 
3398 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3399 	if (!ctx)
3400 		return NULL;
3401 
3402 	__perf_event_init_context(ctx);
3403 	if (task) {
3404 		ctx->task = task;
3405 		get_task_struct(task);
3406 	}
3407 	ctx->pmu = pmu;
3408 
3409 	return ctx;
3410 }
3411 
3412 static struct task_struct *
3413 find_lively_task_by_vpid(pid_t vpid)
3414 {
3415 	struct task_struct *task;
3416 	int err;
3417 
3418 	rcu_read_lock();
3419 	if (!vpid)
3420 		task = current;
3421 	else
3422 		task = find_task_by_vpid(vpid);
3423 	if (task)
3424 		get_task_struct(task);
3425 	rcu_read_unlock();
3426 
3427 	if (!task)
3428 		return ERR_PTR(-ESRCH);
3429 
3430 	/* Reuse ptrace permission checks for now. */
3431 	err = -EACCES;
3432 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3433 		goto errout;
3434 
3435 	return task;
3436 errout:
3437 	put_task_struct(task);
3438 	return ERR_PTR(err);
3439 
3440 }
3441 
3442 /*
3443  * Returns a matching context with refcount and pincount.
3444  */
3445 static struct perf_event_context *
3446 find_get_context(struct pmu *pmu, struct task_struct *task,
3447 		struct perf_event *event)
3448 {
3449 	struct perf_event_context *ctx, *clone_ctx = NULL;
3450 	struct perf_cpu_context *cpuctx;
3451 	void *task_ctx_data = NULL;
3452 	unsigned long flags;
3453 	int ctxn, err;
3454 	int cpu = event->cpu;
3455 
3456 	if (!task) {
3457 		/* Must be root to operate on a CPU event: */
3458 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3459 			return ERR_PTR(-EACCES);
3460 
3461 		/*
3462 		 * We could be clever and allow to attach a event to an
3463 		 * offline CPU and activate it when the CPU comes up, but
3464 		 * that's for later.
3465 		 */
3466 		if (!cpu_online(cpu))
3467 			return ERR_PTR(-ENODEV);
3468 
3469 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3470 		ctx = &cpuctx->ctx;
3471 		get_ctx(ctx);
3472 		++ctx->pin_count;
3473 
3474 		return ctx;
3475 	}
3476 
3477 	err = -EINVAL;
3478 	ctxn = pmu->task_ctx_nr;
3479 	if (ctxn < 0)
3480 		goto errout;
3481 
3482 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3483 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3484 		if (!task_ctx_data) {
3485 			err = -ENOMEM;
3486 			goto errout;
3487 		}
3488 	}
3489 
3490 retry:
3491 	ctx = perf_lock_task_context(task, ctxn, &flags);
3492 	if (ctx) {
3493 		clone_ctx = unclone_ctx(ctx);
3494 		++ctx->pin_count;
3495 
3496 		if (task_ctx_data && !ctx->task_ctx_data) {
3497 			ctx->task_ctx_data = task_ctx_data;
3498 			task_ctx_data = NULL;
3499 		}
3500 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3501 
3502 		if (clone_ctx)
3503 			put_ctx(clone_ctx);
3504 	} else {
3505 		ctx = alloc_perf_context(pmu, task);
3506 		err = -ENOMEM;
3507 		if (!ctx)
3508 			goto errout;
3509 
3510 		if (task_ctx_data) {
3511 			ctx->task_ctx_data = task_ctx_data;
3512 			task_ctx_data = NULL;
3513 		}
3514 
3515 		err = 0;
3516 		mutex_lock(&task->perf_event_mutex);
3517 		/*
3518 		 * If it has already passed perf_event_exit_task().
3519 		 * we must see PF_EXITING, it takes this mutex too.
3520 		 */
3521 		if (task->flags & PF_EXITING)
3522 			err = -ESRCH;
3523 		else if (task->perf_event_ctxp[ctxn])
3524 			err = -EAGAIN;
3525 		else {
3526 			get_ctx(ctx);
3527 			++ctx->pin_count;
3528 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3529 		}
3530 		mutex_unlock(&task->perf_event_mutex);
3531 
3532 		if (unlikely(err)) {
3533 			put_ctx(ctx);
3534 
3535 			if (err == -EAGAIN)
3536 				goto retry;
3537 			goto errout;
3538 		}
3539 	}
3540 
3541 	kfree(task_ctx_data);
3542 	return ctx;
3543 
3544 errout:
3545 	kfree(task_ctx_data);
3546 	return ERR_PTR(err);
3547 }
3548 
3549 static void perf_event_free_filter(struct perf_event *event);
3550 static void perf_event_free_bpf_prog(struct perf_event *event);
3551 
3552 static void free_event_rcu(struct rcu_head *head)
3553 {
3554 	struct perf_event *event;
3555 
3556 	event = container_of(head, struct perf_event, rcu_head);
3557 	if (event->ns)
3558 		put_pid_ns(event->ns);
3559 	perf_event_free_filter(event);
3560 	kfree(event);
3561 }
3562 
3563 static void ring_buffer_attach(struct perf_event *event,
3564 			       struct ring_buffer *rb);
3565 
3566 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3567 {
3568 	if (event->parent)
3569 		return;
3570 
3571 	if (is_cgroup_event(event))
3572 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3573 }
3574 
3575 static void unaccount_event(struct perf_event *event)
3576 {
3577 	if (event->parent)
3578 		return;
3579 
3580 	if (event->attach_state & PERF_ATTACH_TASK)
3581 		static_key_slow_dec_deferred(&perf_sched_events);
3582 	if (event->attr.mmap || event->attr.mmap_data)
3583 		atomic_dec(&nr_mmap_events);
3584 	if (event->attr.comm)
3585 		atomic_dec(&nr_comm_events);
3586 	if (event->attr.task)
3587 		atomic_dec(&nr_task_events);
3588 	if (event->attr.freq)
3589 		atomic_dec(&nr_freq_events);
3590 	if (event->attr.context_switch) {
3591 		static_key_slow_dec_deferred(&perf_sched_events);
3592 		atomic_dec(&nr_switch_events);
3593 	}
3594 	if (is_cgroup_event(event))
3595 		static_key_slow_dec_deferred(&perf_sched_events);
3596 	if (has_branch_stack(event))
3597 		static_key_slow_dec_deferred(&perf_sched_events);
3598 
3599 	unaccount_event_cpu(event, event->cpu);
3600 }
3601 
3602 /*
3603  * The following implement mutual exclusion of events on "exclusive" pmus
3604  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3605  * at a time, so we disallow creating events that might conflict, namely:
3606  *
3607  *  1) cpu-wide events in the presence of per-task events,
3608  *  2) per-task events in the presence of cpu-wide events,
3609  *  3) two matching events on the same context.
3610  *
3611  * The former two cases are handled in the allocation path (perf_event_alloc(),
3612  * __free_event()), the latter -- before the first perf_install_in_context().
3613  */
3614 static int exclusive_event_init(struct perf_event *event)
3615 {
3616 	struct pmu *pmu = event->pmu;
3617 
3618 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3619 		return 0;
3620 
3621 	/*
3622 	 * Prevent co-existence of per-task and cpu-wide events on the
3623 	 * same exclusive pmu.
3624 	 *
3625 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3626 	 * events on this "exclusive" pmu, positive means there are
3627 	 * per-task events.
3628 	 *
3629 	 * Since this is called in perf_event_alloc() path, event::ctx
3630 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3631 	 * to mean "per-task event", because unlike other attach states it
3632 	 * never gets cleared.
3633 	 */
3634 	if (event->attach_state & PERF_ATTACH_TASK) {
3635 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3636 			return -EBUSY;
3637 	} else {
3638 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3639 			return -EBUSY;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 static void exclusive_event_destroy(struct perf_event *event)
3646 {
3647 	struct pmu *pmu = event->pmu;
3648 
3649 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3650 		return;
3651 
3652 	/* see comment in exclusive_event_init() */
3653 	if (event->attach_state & PERF_ATTACH_TASK)
3654 		atomic_dec(&pmu->exclusive_cnt);
3655 	else
3656 		atomic_inc(&pmu->exclusive_cnt);
3657 }
3658 
3659 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3660 {
3661 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3662 	    (e1->cpu == e2->cpu ||
3663 	     e1->cpu == -1 ||
3664 	     e2->cpu == -1))
3665 		return true;
3666 	return false;
3667 }
3668 
3669 /* Called under the same ctx::mutex as perf_install_in_context() */
3670 static bool exclusive_event_installable(struct perf_event *event,
3671 					struct perf_event_context *ctx)
3672 {
3673 	struct perf_event *iter_event;
3674 	struct pmu *pmu = event->pmu;
3675 
3676 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3677 		return true;
3678 
3679 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3680 		if (exclusive_event_match(iter_event, event))
3681 			return false;
3682 	}
3683 
3684 	return true;
3685 }
3686 
3687 static void __free_event(struct perf_event *event)
3688 {
3689 	if (!event->parent) {
3690 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3691 			put_callchain_buffers();
3692 	}
3693 
3694 	perf_event_free_bpf_prog(event);
3695 
3696 	if (event->destroy)
3697 		event->destroy(event);
3698 
3699 	if (event->ctx)
3700 		put_ctx(event->ctx);
3701 
3702 	if (event->pmu) {
3703 		exclusive_event_destroy(event);
3704 		module_put(event->pmu->module);
3705 	}
3706 
3707 	call_rcu(&event->rcu_head, free_event_rcu);
3708 }
3709 
3710 static void _free_event(struct perf_event *event)
3711 {
3712 	irq_work_sync(&event->pending);
3713 
3714 	unaccount_event(event);
3715 
3716 	if (event->rb) {
3717 		/*
3718 		 * Can happen when we close an event with re-directed output.
3719 		 *
3720 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3721 		 * over us; possibly making our ring_buffer_put() the last.
3722 		 */
3723 		mutex_lock(&event->mmap_mutex);
3724 		ring_buffer_attach(event, NULL);
3725 		mutex_unlock(&event->mmap_mutex);
3726 	}
3727 
3728 	if (is_cgroup_event(event))
3729 		perf_detach_cgroup(event);
3730 
3731 	__free_event(event);
3732 }
3733 
3734 /*
3735  * Used to free events which have a known refcount of 1, such as in error paths
3736  * where the event isn't exposed yet and inherited events.
3737  */
3738 static void free_event(struct perf_event *event)
3739 {
3740 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3741 				"unexpected event refcount: %ld; ptr=%p\n",
3742 				atomic_long_read(&event->refcount), event)) {
3743 		/* leak to avoid use-after-free */
3744 		return;
3745 	}
3746 
3747 	_free_event(event);
3748 }
3749 
3750 /*
3751  * Remove user event from the owner task.
3752  */
3753 static void perf_remove_from_owner(struct perf_event *event)
3754 {
3755 	struct task_struct *owner;
3756 
3757 	rcu_read_lock();
3758 	owner = ACCESS_ONCE(event->owner);
3759 	/*
3760 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3761 	 * !owner it means the list deletion is complete and we can indeed
3762 	 * free this event, otherwise we need to serialize on
3763 	 * owner->perf_event_mutex.
3764 	 */
3765 	smp_read_barrier_depends();
3766 	if (owner) {
3767 		/*
3768 		 * Since delayed_put_task_struct() also drops the last
3769 		 * task reference we can safely take a new reference
3770 		 * while holding the rcu_read_lock().
3771 		 */
3772 		get_task_struct(owner);
3773 	}
3774 	rcu_read_unlock();
3775 
3776 	if (owner) {
3777 		/*
3778 		 * If we're here through perf_event_exit_task() we're already
3779 		 * holding ctx->mutex which would be an inversion wrt. the
3780 		 * normal lock order.
3781 		 *
3782 		 * However we can safely take this lock because its the child
3783 		 * ctx->mutex.
3784 		 */
3785 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3786 
3787 		/*
3788 		 * We have to re-check the event->owner field, if it is cleared
3789 		 * we raced with perf_event_exit_task(), acquiring the mutex
3790 		 * ensured they're done, and we can proceed with freeing the
3791 		 * event.
3792 		 */
3793 		if (event->owner)
3794 			list_del_init(&event->owner_entry);
3795 		mutex_unlock(&owner->perf_event_mutex);
3796 		put_task_struct(owner);
3797 	}
3798 }
3799 
3800 static void put_event(struct perf_event *event)
3801 {
3802 	struct perf_event_context *ctx;
3803 
3804 	if (!atomic_long_dec_and_test(&event->refcount))
3805 		return;
3806 
3807 	if (!is_kernel_event(event))
3808 		perf_remove_from_owner(event);
3809 
3810 	/*
3811 	 * There are two ways this annotation is useful:
3812 	 *
3813 	 *  1) there is a lock recursion from perf_event_exit_task
3814 	 *     see the comment there.
3815 	 *
3816 	 *  2) there is a lock-inversion with mmap_sem through
3817 	 *     perf_read_group(), which takes faults while
3818 	 *     holding ctx->mutex, however this is called after
3819 	 *     the last filedesc died, so there is no possibility
3820 	 *     to trigger the AB-BA case.
3821 	 */
3822 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3823 	WARN_ON_ONCE(ctx->parent_ctx);
3824 	perf_remove_from_context(event, true);
3825 	perf_event_ctx_unlock(event, ctx);
3826 
3827 	_free_event(event);
3828 }
3829 
3830 int perf_event_release_kernel(struct perf_event *event)
3831 {
3832 	put_event(event);
3833 	return 0;
3834 }
3835 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3836 
3837 /*
3838  * Called when the last reference to the file is gone.
3839  */
3840 static int perf_release(struct inode *inode, struct file *file)
3841 {
3842 	put_event(file->private_data);
3843 	return 0;
3844 }
3845 
3846 /*
3847  * Remove all orphanes events from the context.
3848  */
3849 static void orphans_remove_work(struct work_struct *work)
3850 {
3851 	struct perf_event_context *ctx;
3852 	struct perf_event *event, *tmp;
3853 
3854 	ctx = container_of(work, struct perf_event_context,
3855 			   orphans_remove.work);
3856 
3857 	mutex_lock(&ctx->mutex);
3858 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3859 		struct perf_event *parent_event = event->parent;
3860 
3861 		if (!is_orphaned_child(event))
3862 			continue;
3863 
3864 		perf_remove_from_context(event, true);
3865 
3866 		mutex_lock(&parent_event->child_mutex);
3867 		list_del_init(&event->child_list);
3868 		mutex_unlock(&parent_event->child_mutex);
3869 
3870 		free_event(event);
3871 		put_event(parent_event);
3872 	}
3873 
3874 	raw_spin_lock_irq(&ctx->lock);
3875 	ctx->orphans_remove_sched = false;
3876 	raw_spin_unlock_irq(&ctx->lock);
3877 	mutex_unlock(&ctx->mutex);
3878 
3879 	put_ctx(ctx);
3880 }
3881 
3882 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3883 {
3884 	struct perf_event *child;
3885 	u64 total = 0;
3886 
3887 	*enabled = 0;
3888 	*running = 0;
3889 
3890 	mutex_lock(&event->child_mutex);
3891 
3892 	(void)perf_event_read(event, false);
3893 	total += perf_event_count(event);
3894 
3895 	*enabled += event->total_time_enabled +
3896 			atomic64_read(&event->child_total_time_enabled);
3897 	*running += event->total_time_running +
3898 			atomic64_read(&event->child_total_time_running);
3899 
3900 	list_for_each_entry(child, &event->child_list, child_list) {
3901 		(void)perf_event_read(child, false);
3902 		total += perf_event_count(child);
3903 		*enabled += child->total_time_enabled;
3904 		*running += child->total_time_running;
3905 	}
3906 	mutex_unlock(&event->child_mutex);
3907 
3908 	return total;
3909 }
3910 EXPORT_SYMBOL_GPL(perf_event_read_value);
3911 
3912 static int __perf_read_group_add(struct perf_event *leader,
3913 					u64 read_format, u64 *values)
3914 {
3915 	struct perf_event *sub;
3916 	int n = 1; /* skip @nr */
3917 	int ret;
3918 
3919 	ret = perf_event_read(leader, true);
3920 	if (ret)
3921 		return ret;
3922 
3923 	/*
3924 	 * Since we co-schedule groups, {enabled,running} times of siblings
3925 	 * will be identical to those of the leader, so we only publish one
3926 	 * set.
3927 	 */
3928 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3929 		values[n++] += leader->total_time_enabled +
3930 			atomic64_read(&leader->child_total_time_enabled);
3931 	}
3932 
3933 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3934 		values[n++] += leader->total_time_running +
3935 			atomic64_read(&leader->child_total_time_running);
3936 	}
3937 
3938 	/*
3939 	 * Write {count,id} tuples for every sibling.
3940 	 */
3941 	values[n++] += perf_event_count(leader);
3942 	if (read_format & PERF_FORMAT_ID)
3943 		values[n++] = primary_event_id(leader);
3944 
3945 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3946 		values[n++] += perf_event_count(sub);
3947 		if (read_format & PERF_FORMAT_ID)
3948 			values[n++] = primary_event_id(sub);
3949 	}
3950 
3951 	return 0;
3952 }
3953 
3954 static int perf_read_group(struct perf_event *event,
3955 				   u64 read_format, char __user *buf)
3956 {
3957 	struct perf_event *leader = event->group_leader, *child;
3958 	struct perf_event_context *ctx = leader->ctx;
3959 	int ret;
3960 	u64 *values;
3961 
3962 	lockdep_assert_held(&ctx->mutex);
3963 
3964 	values = kzalloc(event->read_size, GFP_KERNEL);
3965 	if (!values)
3966 		return -ENOMEM;
3967 
3968 	values[0] = 1 + leader->nr_siblings;
3969 
3970 	/*
3971 	 * By locking the child_mutex of the leader we effectively
3972 	 * lock the child list of all siblings.. XXX explain how.
3973 	 */
3974 	mutex_lock(&leader->child_mutex);
3975 
3976 	ret = __perf_read_group_add(leader, read_format, values);
3977 	if (ret)
3978 		goto unlock;
3979 
3980 	list_for_each_entry(child, &leader->child_list, child_list) {
3981 		ret = __perf_read_group_add(child, read_format, values);
3982 		if (ret)
3983 			goto unlock;
3984 	}
3985 
3986 	mutex_unlock(&leader->child_mutex);
3987 
3988 	ret = event->read_size;
3989 	if (copy_to_user(buf, values, event->read_size))
3990 		ret = -EFAULT;
3991 	goto out;
3992 
3993 unlock:
3994 	mutex_unlock(&leader->child_mutex);
3995 out:
3996 	kfree(values);
3997 	return ret;
3998 }
3999 
4000 static int perf_read_one(struct perf_event *event,
4001 				 u64 read_format, char __user *buf)
4002 {
4003 	u64 enabled, running;
4004 	u64 values[4];
4005 	int n = 0;
4006 
4007 	values[n++] = perf_event_read_value(event, &enabled, &running);
4008 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4009 		values[n++] = enabled;
4010 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4011 		values[n++] = running;
4012 	if (read_format & PERF_FORMAT_ID)
4013 		values[n++] = primary_event_id(event);
4014 
4015 	if (copy_to_user(buf, values, n * sizeof(u64)))
4016 		return -EFAULT;
4017 
4018 	return n * sizeof(u64);
4019 }
4020 
4021 static bool is_event_hup(struct perf_event *event)
4022 {
4023 	bool no_children;
4024 
4025 	if (event->state != PERF_EVENT_STATE_EXIT)
4026 		return false;
4027 
4028 	mutex_lock(&event->child_mutex);
4029 	no_children = list_empty(&event->child_list);
4030 	mutex_unlock(&event->child_mutex);
4031 	return no_children;
4032 }
4033 
4034 /*
4035  * Read the performance event - simple non blocking version for now
4036  */
4037 static ssize_t
4038 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4039 {
4040 	u64 read_format = event->attr.read_format;
4041 	int ret;
4042 
4043 	/*
4044 	 * Return end-of-file for a read on a event that is in
4045 	 * error state (i.e. because it was pinned but it couldn't be
4046 	 * scheduled on to the CPU at some point).
4047 	 */
4048 	if (event->state == PERF_EVENT_STATE_ERROR)
4049 		return 0;
4050 
4051 	if (count < event->read_size)
4052 		return -ENOSPC;
4053 
4054 	WARN_ON_ONCE(event->ctx->parent_ctx);
4055 	if (read_format & PERF_FORMAT_GROUP)
4056 		ret = perf_read_group(event, read_format, buf);
4057 	else
4058 		ret = perf_read_one(event, read_format, buf);
4059 
4060 	return ret;
4061 }
4062 
4063 static ssize_t
4064 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4065 {
4066 	struct perf_event *event = file->private_data;
4067 	struct perf_event_context *ctx;
4068 	int ret;
4069 
4070 	ctx = perf_event_ctx_lock(event);
4071 	ret = __perf_read(event, buf, count);
4072 	perf_event_ctx_unlock(event, ctx);
4073 
4074 	return ret;
4075 }
4076 
4077 static unsigned int perf_poll(struct file *file, poll_table *wait)
4078 {
4079 	struct perf_event *event = file->private_data;
4080 	struct ring_buffer *rb;
4081 	unsigned int events = POLLHUP;
4082 
4083 	poll_wait(file, &event->waitq, wait);
4084 
4085 	if (is_event_hup(event))
4086 		return events;
4087 
4088 	/*
4089 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4090 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4091 	 */
4092 	mutex_lock(&event->mmap_mutex);
4093 	rb = event->rb;
4094 	if (rb)
4095 		events = atomic_xchg(&rb->poll, 0);
4096 	mutex_unlock(&event->mmap_mutex);
4097 	return events;
4098 }
4099 
4100 static void _perf_event_reset(struct perf_event *event)
4101 {
4102 	(void)perf_event_read(event, false);
4103 	local64_set(&event->count, 0);
4104 	perf_event_update_userpage(event);
4105 }
4106 
4107 /*
4108  * Holding the top-level event's child_mutex means that any
4109  * descendant process that has inherited this event will block
4110  * in sync_child_event if it goes to exit, thus satisfying the
4111  * task existence requirements of perf_event_enable/disable.
4112  */
4113 static void perf_event_for_each_child(struct perf_event *event,
4114 					void (*func)(struct perf_event *))
4115 {
4116 	struct perf_event *child;
4117 
4118 	WARN_ON_ONCE(event->ctx->parent_ctx);
4119 
4120 	mutex_lock(&event->child_mutex);
4121 	func(event);
4122 	list_for_each_entry(child, &event->child_list, child_list)
4123 		func(child);
4124 	mutex_unlock(&event->child_mutex);
4125 }
4126 
4127 static void perf_event_for_each(struct perf_event *event,
4128 				  void (*func)(struct perf_event *))
4129 {
4130 	struct perf_event_context *ctx = event->ctx;
4131 	struct perf_event *sibling;
4132 
4133 	lockdep_assert_held(&ctx->mutex);
4134 
4135 	event = event->group_leader;
4136 
4137 	perf_event_for_each_child(event, func);
4138 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4139 		perf_event_for_each_child(sibling, func);
4140 }
4141 
4142 struct period_event {
4143 	struct perf_event *event;
4144 	u64 value;
4145 };
4146 
4147 static int __perf_event_period(void *info)
4148 {
4149 	struct period_event *pe = info;
4150 	struct perf_event *event = pe->event;
4151 	struct perf_event_context *ctx = event->ctx;
4152 	u64 value = pe->value;
4153 	bool active;
4154 
4155 	raw_spin_lock(&ctx->lock);
4156 	if (event->attr.freq) {
4157 		event->attr.sample_freq = value;
4158 	} else {
4159 		event->attr.sample_period = value;
4160 		event->hw.sample_period = value;
4161 	}
4162 
4163 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4164 	if (active) {
4165 		perf_pmu_disable(ctx->pmu);
4166 		event->pmu->stop(event, PERF_EF_UPDATE);
4167 	}
4168 
4169 	local64_set(&event->hw.period_left, 0);
4170 
4171 	if (active) {
4172 		event->pmu->start(event, PERF_EF_RELOAD);
4173 		perf_pmu_enable(ctx->pmu);
4174 	}
4175 	raw_spin_unlock(&ctx->lock);
4176 
4177 	return 0;
4178 }
4179 
4180 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4181 {
4182 	struct period_event pe = { .event = event, };
4183 	struct perf_event_context *ctx = event->ctx;
4184 	struct task_struct *task;
4185 	u64 value;
4186 
4187 	if (!is_sampling_event(event))
4188 		return -EINVAL;
4189 
4190 	if (copy_from_user(&value, arg, sizeof(value)))
4191 		return -EFAULT;
4192 
4193 	if (!value)
4194 		return -EINVAL;
4195 
4196 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4197 		return -EINVAL;
4198 
4199 	task = ctx->task;
4200 	pe.value = value;
4201 
4202 	if (!task) {
4203 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4204 		return 0;
4205 	}
4206 
4207 retry:
4208 	if (!task_function_call(task, __perf_event_period, &pe))
4209 		return 0;
4210 
4211 	raw_spin_lock_irq(&ctx->lock);
4212 	if (ctx->is_active) {
4213 		raw_spin_unlock_irq(&ctx->lock);
4214 		task = ctx->task;
4215 		goto retry;
4216 	}
4217 
4218 	__perf_event_period(&pe);
4219 	raw_spin_unlock_irq(&ctx->lock);
4220 
4221 	return 0;
4222 }
4223 
4224 static const struct file_operations perf_fops;
4225 
4226 static inline int perf_fget_light(int fd, struct fd *p)
4227 {
4228 	struct fd f = fdget(fd);
4229 	if (!f.file)
4230 		return -EBADF;
4231 
4232 	if (f.file->f_op != &perf_fops) {
4233 		fdput(f);
4234 		return -EBADF;
4235 	}
4236 	*p = f;
4237 	return 0;
4238 }
4239 
4240 static int perf_event_set_output(struct perf_event *event,
4241 				 struct perf_event *output_event);
4242 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4243 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4244 
4245 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4246 {
4247 	void (*func)(struct perf_event *);
4248 	u32 flags = arg;
4249 
4250 	switch (cmd) {
4251 	case PERF_EVENT_IOC_ENABLE:
4252 		func = _perf_event_enable;
4253 		break;
4254 	case PERF_EVENT_IOC_DISABLE:
4255 		func = _perf_event_disable;
4256 		break;
4257 	case PERF_EVENT_IOC_RESET:
4258 		func = _perf_event_reset;
4259 		break;
4260 
4261 	case PERF_EVENT_IOC_REFRESH:
4262 		return _perf_event_refresh(event, arg);
4263 
4264 	case PERF_EVENT_IOC_PERIOD:
4265 		return perf_event_period(event, (u64 __user *)arg);
4266 
4267 	case PERF_EVENT_IOC_ID:
4268 	{
4269 		u64 id = primary_event_id(event);
4270 
4271 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4272 			return -EFAULT;
4273 		return 0;
4274 	}
4275 
4276 	case PERF_EVENT_IOC_SET_OUTPUT:
4277 	{
4278 		int ret;
4279 		if (arg != -1) {
4280 			struct perf_event *output_event;
4281 			struct fd output;
4282 			ret = perf_fget_light(arg, &output);
4283 			if (ret)
4284 				return ret;
4285 			output_event = output.file->private_data;
4286 			ret = perf_event_set_output(event, output_event);
4287 			fdput(output);
4288 		} else {
4289 			ret = perf_event_set_output(event, NULL);
4290 		}
4291 		return ret;
4292 	}
4293 
4294 	case PERF_EVENT_IOC_SET_FILTER:
4295 		return perf_event_set_filter(event, (void __user *)arg);
4296 
4297 	case PERF_EVENT_IOC_SET_BPF:
4298 		return perf_event_set_bpf_prog(event, arg);
4299 
4300 	default:
4301 		return -ENOTTY;
4302 	}
4303 
4304 	if (flags & PERF_IOC_FLAG_GROUP)
4305 		perf_event_for_each(event, func);
4306 	else
4307 		perf_event_for_each_child(event, func);
4308 
4309 	return 0;
4310 }
4311 
4312 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4313 {
4314 	struct perf_event *event = file->private_data;
4315 	struct perf_event_context *ctx;
4316 	long ret;
4317 
4318 	ctx = perf_event_ctx_lock(event);
4319 	ret = _perf_ioctl(event, cmd, arg);
4320 	perf_event_ctx_unlock(event, ctx);
4321 
4322 	return ret;
4323 }
4324 
4325 #ifdef CONFIG_COMPAT
4326 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4327 				unsigned long arg)
4328 {
4329 	switch (_IOC_NR(cmd)) {
4330 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4331 	case _IOC_NR(PERF_EVENT_IOC_ID):
4332 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4333 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4334 			cmd &= ~IOCSIZE_MASK;
4335 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4336 		}
4337 		break;
4338 	}
4339 	return perf_ioctl(file, cmd, arg);
4340 }
4341 #else
4342 # define perf_compat_ioctl NULL
4343 #endif
4344 
4345 int perf_event_task_enable(void)
4346 {
4347 	struct perf_event_context *ctx;
4348 	struct perf_event *event;
4349 
4350 	mutex_lock(&current->perf_event_mutex);
4351 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4352 		ctx = perf_event_ctx_lock(event);
4353 		perf_event_for_each_child(event, _perf_event_enable);
4354 		perf_event_ctx_unlock(event, ctx);
4355 	}
4356 	mutex_unlock(&current->perf_event_mutex);
4357 
4358 	return 0;
4359 }
4360 
4361 int perf_event_task_disable(void)
4362 {
4363 	struct perf_event_context *ctx;
4364 	struct perf_event *event;
4365 
4366 	mutex_lock(&current->perf_event_mutex);
4367 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4368 		ctx = perf_event_ctx_lock(event);
4369 		perf_event_for_each_child(event, _perf_event_disable);
4370 		perf_event_ctx_unlock(event, ctx);
4371 	}
4372 	mutex_unlock(&current->perf_event_mutex);
4373 
4374 	return 0;
4375 }
4376 
4377 static int perf_event_index(struct perf_event *event)
4378 {
4379 	if (event->hw.state & PERF_HES_STOPPED)
4380 		return 0;
4381 
4382 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4383 		return 0;
4384 
4385 	return event->pmu->event_idx(event);
4386 }
4387 
4388 static void calc_timer_values(struct perf_event *event,
4389 				u64 *now,
4390 				u64 *enabled,
4391 				u64 *running)
4392 {
4393 	u64 ctx_time;
4394 
4395 	*now = perf_clock();
4396 	ctx_time = event->shadow_ctx_time + *now;
4397 	*enabled = ctx_time - event->tstamp_enabled;
4398 	*running = ctx_time - event->tstamp_running;
4399 }
4400 
4401 static void perf_event_init_userpage(struct perf_event *event)
4402 {
4403 	struct perf_event_mmap_page *userpg;
4404 	struct ring_buffer *rb;
4405 
4406 	rcu_read_lock();
4407 	rb = rcu_dereference(event->rb);
4408 	if (!rb)
4409 		goto unlock;
4410 
4411 	userpg = rb->user_page;
4412 
4413 	/* Allow new userspace to detect that bit 0 is deprecated */
4414 	userpg->cap_bit0_is_deprecated = 1;
4415 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4416 	userpg->data_offset = PAGE_SIZE;
4417 	userpg->data_size = perf_data_size(rb);
4418 
4419 unlock:
4420 	rcu_read_unlock();
4421 }
4422 
4423 void __weak arch_perf_update_userpage(
4424 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4425 {
4426 }
4427 
4428 /*
4429  * Callers need to ensure there can be no nesting of this function, otherwise
4430  * the seqlock logic goes bad. We can not serialize this because the arch
4431  * code calls this from NMI context.
4432  */
4433 void perf_event_update_userpage(struct perf_event *event)
4434 {
4435 	struct perf_event_mmap_page *userpg;
4436 	struct ring_buffer *rb;
4437 	u64 enabled, running, now;
4438 
4439 	rcu_read_lock();
4440 	rb = rcu_dereference(event->rb);
4441 	if (!rb)
4442 		goto unlock;
4443 
4444 	/*
4445 	 * compute total_time_enabled, total_time_running
4446 	 * based on snapshot values taken when the event
4447 	 * was last scheduled in.
4448 	 *
4449 	 * we cannot simply called update_context_time()
4450 	 * because of locking issue as we can be called in
4451 	 * NMI context
4452 	 */
4453 	calc_timer_values(event, &now, &enabled, &running);
4454 
4455 	userpg = rb->user_page;
4456 	/*
4457 	 * Disable preemption so as to not let the corresponding user-space
4458 	 * spin too long if we get preempted.
4459 	 */
4460 	preempt_disable();
4461 	++userpg->lock;
4462 	barrier();
4463 	userpg->index = perf_event_index(event);
4464 	userpg->offset = perf_event_count(event);
4465 	if (userpg->index)
4466 		userpg->offset -= local64_read(&event->hw.prev_count);
4467 
4468 	userpg->time_enabled = enabled +
4469 			atomic64_read(&event->child_total_time_enabled);
4470 
4471 	userpg->time_running = running +
4472 			atomic64_read(&event->child_total_time_running);
4473 
4474 	arch_perf_update_userpage(event, userpg, now);
4475 
4476 	barrier();
4477 	++userpg->lock;
4478 	preempt_enable();
4479 unlock:
4480 	rcu_read_unlock();
4481 }
4482 
4483 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4484 {
4485 	struct perf_event *event = vma->vm_file->private_data;
4486 	struct ring_buffer *rb;
4487 	int ret = VM_FAULT_SIGBUS;
4488 
4489 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4490 		if (vmf->pgoff == 0)
4491 			ret = 0;
4492 		return ret;
4493 	}
4494 
4495 	rcu_read_lock();
4496 	rb = rcu_dereference(event->rb);
4497 	if (!rb)
4498 		goto unlock;
4499 
4500 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4501 		goto unlock;
4502 
4503 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4504 	if (!vmf->page)
4505 		goto unlock;
4506 
4507 	get_page(vmf->page);
4508 	vmf->page->mapping = vma->vm_file->f_mapping;
4509 	vmf->page->index   = vmf->pgoff;
4510 
4511 	ret = 0;
4512 unlock:
4513 	rcu_read_unlock();
4514 
4515 	return ret;
4516 }
4517 
4518 static void ring_buffer_attach(struct perf_event *event,
4519 			       struct ring_buffer *rb)
4520 {
4521 	struct ring_buffer *old_rb = NULL;
4522 	unsigned long flags;
4523 
4524 	if (event->rb) {
4525 		/*
4526 		 * Should be impossible, we set this when removing
4527 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4528 		 */
4529 		WARN_ON_ONCE(event->rcu_pending);
4530 
4531 		old_rb = event->rb;
4532 		spin_lock_irqsave(&old_rb->event_lock, flags);
4533 		list_del_rcu(&event->rb_entry);
4534 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4535 
4536 		event->rcu_batches = get_state_synchronize_rcu();
4537 		event->rcu_pending = 1;
4538 	}
4539 
4540 	if (rb) {
4541 		if (event->rcu_pending) {
4542 			cond_synchronize_rcu(event->rcu_batches);
4543 			event->rcu_pending = 0;
4544 		}
4545 
4546 		spin_lock_irqsave(&rb->event_lock, flags);
4547 		list_add_rcu(&event->rb_entry, &rb->event_list);
4548 		spin_unlock_irqrestore(&rb->event_lock, flags);
4549 	}
4550 
4551 	rcu_assign_pointer(event->rb, rb);
4552 
4553 	if (old_rb) {
4554 		ring_buffer_put(old_rb);
4555 		/*
4556 		 * Since we detached before setting the new rb, so that we
4557 		 * could attach the new rb, we could have missed a wakeup.
4558 		 * Provide it now.
4559 		 */
4560 		wake_up_all(&event->waitq);
4561 	}
4562 }
4563 
4564 static void ring_buffer_wakeup(struct perf_event *event)
4565 {
4566 	struct ring_buffer *rb;
4567 
4568 	rcu_read_lock();
4569 	rb = rcu_dereference(event->rb);
4570 	if (rb) {
4571 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4572 			wake_up_all(&event->waitq);
4573 	}
4574 	rcu_read_unlock();
4575 }
4576 
4577 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4578 {
4579 	struct ring_buffer *rb;
4580 
4581 	rcu_read_lock();
4582 	rb = rcu_dereference(event->rb);
4583 	if (rb) {
4584 		if (!atomic_inc_not_zero(&rb->refcount))
4585 			rb = NULL;
4586 	}
4587 	rcu_read_unlock();
4588 
4589 	return rb;
4590 }
4591 
4592 void ring_buffer_put(struct ring_buffer *rb)
4593 {
4594 	if (!atomic_dec_and_test(&rb->refcount))
4595 		return;
4596 
4597 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4598 
4599 	call_rcu(&rb->rcu_head, rb_free_rcu);
4600 }
4601 
4602 static void perf_mmap_open(struct vm_area_struct *vma)
4603 {
4604 	struct perf_event *event = vma->vm_file->private_data;
4605 
4606 	atomic_inc(&event->mmap_count);
4607 	atomic_inc(&event->rb->mmap_count);
4608 
4609 	if (vma->vm_pgoff)
4610 		atomic_inc(&event->rb->aux_mmap_count);
4611 
4612 	if (event->pmu->event_mapped)
4613 		event->pmu->event_mapped(event);
4614 }
4615 
4616 /*
4617  * A buffer can be mmap()ed multiple times; either directly through the same
4618  * event, or through other events by use of perf_event_set_output().
4619  *
4620  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4621  * the buffer here, where we still have a VM context. This means we need
4622  * to detach all events redirecting to us.
4623  */
4624 static void perf_mmap_close(struct vm_area_struct *vma)
4625 {
4626 	struct perf_event *event = vma->vm_file->private_data;
4627 
4628 	struct ring_buffer *rb = ring_buffer_get(event);
4629 	struct user_struct *mmap_user = rb->mmap_user;
4630 	int mmap_locked = rb->mmap_locked;
4631 	unsigned long size = perf_data_size(rb);
4632 
4633 	if (event->pmu->event_unmapped)
4634 		event->pmu->event_unmapped(event);
4635 
4636 	/*
4637 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4638 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4639 	 * serialize with perf_mmap here.
4640 	 */
4641 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4642 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4643 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4644 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4645 
4646 		rb_free_aux(rb);
4647 		mutex_unlock(&event->mmap_mutex);
4648 	}
4649 
4650 	atomic_dec(&rb->mmap_count);
4651 
4652 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4653 		goto out_put;
4654 
4655 	ring_buffer_attach(event, NULL);
4656 	mutex_unlock(&event->mmap_mutex);
4657 
4658 	/* If there's still other mmap()s of this buffer, we're done. */
4659 	if (atomic_read(&rb->mmap_count))
4660 		goto out_put;
4661 
4662 	/*
4663 	 * No other mmap()s, detach from all other events that might redirect
4664 	 * into the now unreachable buffer. Somewhat complicated by the
4665 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4666 	 */
4667 again:
4668 	rcu_read_lock();
4669 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4670 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4671 			/*
4672 			 * This event is en-route to free_event() which will
4673 			 * detach it and remove it from the list.
4674 			 */
4675 			continue;
4676 		}
4677 		rcu_read_unlock();
4678 
4679 		mutex_lock(&event->mmap_mutex);
4680 		/*
4681 		 * Check we didn't race with perf_event_set_output() which can
4682 		 * swizzle the rb from under us while we were waiting to
4683 		 * acquire mmap_mutex.
4684 		 *
4685 		 * If we find a different rb; ignore this event, a next
4686 		 * iteration will no longer find it on the list. We have to
4687 		 * still restart the iteration to make sure we're not now
4688 		 * iterating the wrong list.
4689 		 */
4690 		if (event->rb == rb)
4691 			ring_buffer_attach(event, NULL);
4692 
4693 		mutex_unlock(&event->mmap_mutex);
4694 		put_event(event);
4695 
4696 		/*
4697 		 * Restart the iteration; either we're on the wrong list or
4698 		 * destroyed its integrity by doing a deletion.
4699 		 */
4700 		goto again;
4701 	}
4702 	rcu_read_unlock();
4703 
4704 	/*
4705 	 * It could be there's still a few 0-ref events on the list; they'll
4706 	 * get cleaned up by free_event() -- they'll also still have their
4707 	 * ref on the rb and will free it whenever they are done with it.
4708 	 *
4709 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4710 	 * undo the VM accounting.
4711 	 */
4712 
4713 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4714 	vma->vm_mm->pinned_vm -= mmap_locked;
4715 	free_uid(mmap_user);
4716 
4717 out_put:
4718 	ring_buffer_put(rb); /* could be last */
4719 }
4720 
4721 static const struct vm_operations_struct perf_mmap_vmops = {
4722 	.open		= perf_mmap_open,
4723 	.close		= perf_mmap_close, /* non mergable */
4724 	.fault		= perf_mmap_fault,
4725 	.page_mkwrite	= perf_mmap_fault,
4726 };
4727 
4728 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4729 {
4730 	struct perf_event *event = file->private_data;
4731 	unsigned long user_locked, user_lock_limit;
4732 	struct user_struct *user = current_user();
4733 	unsigned long locked, lock_limit;
4734 	struct ring_buffer *rb = NULL;
4735 	unsigned long vma_size;
4736 	unsigned long nr_pages;
4737 	long user_extra = 0, extra = 0;
4738 	int ret = 0, flags = 0;
4739 
4740 	/*
4741 	 * Don't allow mmap() of inherited per-task counters. This would
4742 	 * create a performance issue due to all children writing to the
4743 	 * same rb.
4744 	 */
4745 	if (event->cpu == -1 && event->attr.inherit)
4746 		return -EINVAL;
4747 
4748 	if (!(vma->vm_flags & VM_SHARED))
4749 		return -EINVAL;
4750 
4751 	vma_size = vma->vm_end - vma->vm_start;
4752 
4753 	if (vma->vm_pgoff == 0) {
4754 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4755 	} else {
4756 		/*
4757 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4758 		 * mapped, all subsequent mappings should have the same size
4759 		 * and offset. Must be above the normal perf buffer.
4760 		 */
4761 		u64 aux_offset, aux_size;
4762 
4763 		if (!event->rb)
4764 			return -EINVAL;
4765 
4766 		nr_pages = vma_size / PAGE_SIZE;
4767 
4768 		mutex_lock(&event->mmap_mutex);
4769 		ret = -EINVAL;
4770 
4771 		rb = event->rb;
4772 		if (!rb)
4773 			goto aux_unlock;
4774 
4775 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4776 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4777 
4778 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4779 			goto aux_unlock;
4780 
4781 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4782 			goto aux_unlock;
4783 
4784 		/* already mapped with a different offset */
4785 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4786 			goto aux_unlock;
4787 
4788 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4789 			goto aux_unlock;
4790 
4791 		/* already mapped with a different size */
4792 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4793 			goto aux_unlock;
4794 
4795 		if (!is_power_of_2(nr_pages))
4796 			goto aux_unlock;
4797 
4798 		if (!atomic_inc_not_zero(&rb->mmap_count))
4799 			goto aux_unlock;
4800 
4801 		if (rb_has_aux(rb)) {
4802 			atomic_inc(&rb->aux_mmap_count);
4803 			ret = 0;
4804 			goto unlock;
4805 		}
4806 
4807 		atomic_set(&rb->aux_mmap_count, 1);
4808 		user_extra = nr_pages;
4809 
4810 		goto accounting;
4811 	}
4812 
4813 	/*
4814 	 * If we have rb pages ensure they're a power-of-two number, so we
4815 	 * can do bitmasks instead of modulo.
4816 	 */
4817 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4818 		return -EINVAL;
4819 
4820 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4821 		return -EINVAL;
4822 
4823 	WARN_ON_ONCE(event->ctx->parent_ctx);
4824 again:
4825 	mutex_lock(&event->mmap_mutex);
4826 	if (event->rb) {
4827 		if (event->rb->nr_pages != nr_pages) {
4828 			ret = -EINVAL;
4829 			goto unlock;
4830 		}
4831 
4832 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4833 			/*
4834 			 * Raced against perf_mmap_close() through
4835 			 * perf_event_set_output(). Try again, hope for better
4836 			 * luck.
4837 			 */
4838 			mutex_unlock(&event->mmap_mutex);
4839 			goto again;
4840 		}
4841 
4842 		goto unlock;
4843 	}
4844 
4845 	user_extra = nr_pages + 1;
4846 
4847 accounting:
4848 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4849 
4850 	/*
4851 	 * Increase the limit linearly with more CPUs:
4852 	 */
4853 	user_lock_limit *= num_online_cpus();
4854 
4855 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4856 
4857 	if (user_locked > user_lock_limit)
4858 		extra = user_locked - user_lock_limit;
4859 
4860 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4861 	lock_limit >>= PAGE_SHIFT;
4862 	locked = vma->vm_mm->pinned_vm + extra;
4863 
4864 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4865 		!capable(CAP_IPC_LOCK)) {
4866 		ret = -EPERM;
4867 		goto unlock;
4868 	}
4869 
4870 	WARN_ON(!rb && event->rb);
4871 
4872 	if (vma->vm_flags & VM_WRITE)
4873 		flags |= RING_BUFFER_WRITABLE;
4874 
4875 	if (!rb) {
4876 		rb = rb_alloc(nr_pages,
4877 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4878 			      event->cpu, flags);
4879 
4880 		if (!rb) {
4881 			ret = -ENOMEM;
4882 			goto unlock;
4883 		}
4884 
4885 		atomic_set(&rb->mmap_count, 1);
4886 		rb->mmap_user = get_current_user();
4887 		rb->mmap_locked = extra;
4888 
4889 		ring_buffer_attach(event, rb);
4890 
4891 		perf_event_init_userpage(event);
4892 		perf_event_update_userpage(event);
4893 	} else {
4894 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4895 				   event->attr.aux_watermark, flags);
4896 		if (!ret)
4897 			rb->aux_mmap_locked = extra;
4898 	}
4899 
4900 unlock:
4901 	if (!ret) {
4902 		atomic_long_add(user_extra, &user->locked_vm);
4903 		vma->vm_mm->pinned_vm += extra;
4904 
4905 		atomic_inc(&event->mmap_count);
4906 	} else if (rb) {
4907 		atomic_dec(&rb->mmap_count);
4908 	}
4909 aux_unlock:
4910 	mutex_unlock(&event->mmap_mutex);
4911 
4912 	/*
4913 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4914 	 * vma.
4915 	 */
4916 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4917 	vma->vm_ops = &perf_mmap_vmops;
4918 
4919 	if (event->pmu->event_mapped)
4920 		event->pmu->event_mapped(event);
4921 
4922 	return ret;
4923 }
4924 
4925 static int perf_fasync(int fd, struct file *filp, int on)
4926 {
4927 	struct inode *inode = file_inode(filp);
4928 	struct perf_event *event = filp->private_data;
4929 	int retval;
4930 
4931 	mutex_lock(&inode->i_mutex);
4932 	retval = fasync_helper(fd, filp, on, &event->fasync);
4933 	mutex_unlock(&inode->i_mutex);
4934 
4935 	if (retval < 0)
4936 		return retval;
4937 
4938 	return 0;
4939 }
4940 
4941 static const struct file_operations perf_fops = {
4942 	.llseek			= no_llseek,
4943 	.release		= perf_release,
4944 	.read			= perf_read,
4945 	.poll			= perf_poll,
4946 	.unlocked_ioctl		= perf_ioctl,
4947 	.compat_ioctl		= perf_compat_ioctl,
4948 	.mmap			= perf_mmap,
4949 	.fasync			= perf_fasync,
4950 };
4951 
4952 /*
4953  * Perf event wakeup
4954  *
4955  * If there's data, ensure we set the poll() state and publish everything
4956  * to user-space before waking everybody up.
4957  */
4958 
4959 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4960 {
4961 	/* only the parent has fasync state */
4962 	if (event->parent)
4963 		event = event->parent;
4964 	return &event->fasync;
4965 }
4966 
4967 void perf_event_wakeup(struct perf_event *event)
4968 {
4969 	ring_buffer_wakeup(event);
4970 
4971 	if (event->pending_kill) {
4972 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4973 		event->pending_kill = 0;
4974 	}
4975 }
4976 
4977 static void perf_pending_event(struct irq_work *entry)
4978 {
4979 	struct perf_event *event = container_of(entry,
4980 			struct perf_event, pending);
4981 	int rctx;
4982 
4983 	rctx = perf_swevent_get_recursion_context();
4984 	/*
4985 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4986 	 * and we won't recurse 'further'.
4987 	 */
4988 
4989 	if (event->pending_disable) {
4990 		event->pending_disable = 0;
4991 		__perf_event_disable(event);
4992 	}
4993 
4994 	if (event->pending_wakeup) {
4995 		event->pending_wakeup = 0;
4996 		perf_event_wakeup(event);
4997 	}
4998 
4999 	if (rctx >= 0)
5000 		perf_swevent_put_recursion_context(rctx);
5001 }
5002 
5003 /*
5004  * We assume there is only KVM supporting the callbacks.
5005  * Later on, we might change it to a list if there is
5006  * another virtualization implementation supporting the callbacks.
5007  */
5008 struct perf_guest_info_callbacks *perf_guest_cbs;
5009 
5010 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5011 {
5012 	perf_guest_cbs = cbs;
5013 	return 0;
5014 }
5015 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5016 
5017 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5018 {
5019 	perf_guest_cbs = NULL;
5020 	return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5023 
5024 static void
5025 perf_output_sample_regs(struct perf_output_handle *handle,
5026 			struct pt_regs *regs, u64 mask)
5027 {
5028 	int bit;
5029 
5030 	for_each_set_bit(bit, (const unsigned long *) &mask,
5031 			 sizeof(mask) * BITS_PER_BYTE) {
5032 		u64 val;
5033 
5034 		val = perf_reg_value(regs, bit);
5035 		perf_output_put(handle, val);
5036 	}
5037 }
5038 
5039 static void perf_sample_regs_user(struct perf_regs *regs_user,
5040 				  struct pt_regs *regs,
5041 				  struct pt_regs *regs_user_copy)
5042 {
5043 	if (user_mode(regs)) {
5044 		regs_user->abi = perf_reg_abi(current);
5045 		regs_user->regs = regs;
5046 	} else if (current->mm) {
5047 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5048 	} else {
5049 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5050 		regs_user->regs = NULL;
5051 	}
5052 }
5053 
5054 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5055 				  struct pt_regs *regs)
5056 {
5057 	regs_intr->regs = regs;
5058 	regs_intr->abi  = perf_reg_abi(current);
5059 }
5060 
5061 
5062 /*
5063  * Get remaining task size from user stack pointer.
5064  *
5065  * It'd be better to take stack vma map and limit this more
5066  * precisly, but there's no way to get it safely under interrupt,
5067  * so using TASK_SIZE as limit.
5068  */
5069 static u64 perf_ustack_task_size(struct pt_regs *regs)
5070 {
5071 	unsigned long addr = perf_user_stack_pointer(regs);
5072 
5073 	if (!addr || addr >= TASK_SIZE)
5074 		return 0;
5075 
5076 	return TASK_SIZE - addr;
5077 }
5078 
5079 static u16
5080 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5081 			struct pt_regs *regs)
5082 {
5083 	u64 task_size;
5084 
5085 	/* No regs, no stack pointer, no dump. */
5086 	if (!regs)
5087 		return 0;
5088 
5089 	/*
5090 	 * Check if we fit in with the requested stack size into the:
5091 	 * - TASK_SIZE
5092 	 *   If we don't, we limit the size to the TASK_SIZE.
5093 	 *
5094 	 * - remaining sample size
5095 	 *   If we don't, we customize the stack size to
5096 	 *   fit in to the remaining sample size.
5097 	 */
5098 
5099 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5100 	stack_size = min(stack_size, (u16) task_size);
5101 
5102 	/* Current header size plus static size and dynamic size. */
5103 	header_size += 2 * sizeof(u64);
5104 
5105 	/* Do we fit in with the current stack dump size? */
5106 	if ((u16) (header_size + stack_size) < header_size) {
5107 		/*
5108 		 * If we overflow the maximum size for the sample,
5109 		 * we customize the stack dump size to fit in.
5110 		 */
5111 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5112 		stack_size = round_up(stack_size, sizeof(u64));
5113 	}
5114 
5115 	return stack_size;
5116 }
5117 
5118 static void
5119 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5120 			  struct pt_regs *regs)
5121 {
5122 	/* Case of a kernel thread, nothing to dump */
5123 	if (!regs) {
5124 		u64 size = 0;
5125 		perf_output_put(handle, size);
5126 	} else {
5127 		unsigned long sp;
5128 		unsigned int rem;
5129 		u64 dyn_size;
5130 
5131 		/*
5132 		 * We dump:
5133 		 * static size
5134 		 *   - the size requested by user or the best one we can fit
5135 		 *     in to the sample max size
5136 		 * data
5137 		 *   - user stack dump data
5138 		 * dynamic size
5139 		 *   - the actual dumped size
5140 		 */
5141 
5142 		/* Static size. */
5143 		perf_output_put(handle, dump_size);
5144 
5145 		/* Data. */
5146 		sp = perf_user_stack_pointer(regs);
5147 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5148 		dyn_size = dump_size - rem;
5149 
5150 		perf_output_skip(handle, rem);
5151 
5152 		/* Dynamic size. */
5153 		perf_output_put(handle, dyn_size);
5154 	}
5155 }
5156 
5157 static void __perf_event_header__init_id(struct perf_event_header *header,
5158 					 struct perf_sample_data *data,
5159 					 struct perf_event *event)
5160 {
5161 	u64 sample_type = event->attr.sample_type;
5162 
5163 	data->type = sample_type;
5164 	header->size += event->id_header_size;
5165 
5166 	if (sample_type & PERF_SAMPLE_TID) {
5167 		/* namespace issues */
5168 		data->tid_entry.pid = perf_event_pid(event, current);
5169 		data->tid_entry.tid = perf_event_tid(event, current);
5170 	}
5171 
5172 	if (sample_type & PERF_SAMPLE_TIME)
5173 		data->time = perf_event_clock(event);
5174 
5175 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5176 		data->id = primary_event_id(event);
5177 
5178 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5179 		data->stream_id = event->id;
5180 
5181 	if (sample_type & PERF_SAMPLE_CPU) {
5182 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5183 		data->cpu_entry.reserved = 0;
5184 	}
5185 }
5186 
5187 void perf_event_header__init_id(struct perf_event_header *header,
5188 				struct perf_sample_data *data,
5189 				struct perf_event *event)
5190 {
5191 	if (event->attr.sample_id_all)
5192 		__perf_event_header__init_id(header, data, event);
5193 }
5194 
5195 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5196 					   struct perf_sample_data *data)
5197 {
5198 	u64 sample_type = data->type;
5199 
5200 	if (sample_type & PERF_SAMPLE_TID)
5201 		perf_output_put(handle, data->tid_entry);
5202 
5203 	if (sample_type & PERF_SAMPLE_TIME)
5204 		perf_output_put(handle, data->time);
5205 
5206 	if (sample_type & PERF_SAMPLE_ID)
5207 		perf_output_put(handle, data->id);
5208 
5209 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5210 		perf_output_put(handle, data->stream_id);
5211 
5212 	if (sample_type & PERF_SAMPLE_CPU)
5213 		perf_output_put(handle, data->cpu_entry);
5214 
5215 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5216 		perf_output_put(handle, data->id);
5217 }
5218 
5219 void perf_event__output_id_sample(struct perf_event *event,
5220 				  struct perf_output_handle *handle,
5221 				  struct perf_sample_data *sample)
5222 {
5223 	if (event->attr.sample_id_all)
5224 		__perf_event__output_id_sample(handle, sample);
5225 }
5226 
5227 static void perf_output_read_one(struct perf_output_handle *handle,
5228 				 struct perf_event *event,
5229 				 u64 enabled, u64 running)
5230 {
5231 	u64 read_format = event->attr.read_format;
5232 	u64 values[4];
5233 	int n = 0;
5234 
5235 	values[n++] = perf_event_count(event);
5236 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5237 		values[n++] = enabled +
5238 			atomic64_read(&event->child_total_time_enabled);
5239 	}
5240 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5241 		values[n++] = running +
5242 			atomic64_read(&event->child_total_time_running);
5243 	}
5244 	if (read_format & PERF_FORMAT_ID)
5245 		values[n++] = primary_event_id(event);
5246 
5247 	__output_copy(handle, values, n * sizeof(u64));
5248 }
5249 
5250 /*
5251  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5252  */
5253 static void perf_output_read_group(struct perf_output_handle *handle,
5254 			    struct perf_event *event,
5255 			    u64 enabled, u64 running)
5256 {
5257 	struct perf_event *leader = event->group_leader, *sub;
5258 	u64 read_format = event->attr.read_format;
5259 	u64 values[5];
5260 	int n = 0;
5261 
5262 	values[n++] = 1 + leader->nr_siblings;
5263 
5264 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5265 		values[n++] = enabled;
5266 
5267 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5268 		values[n++] = running;
5269 
5270 	if (leader != event)
5271 		leader->pmu->read(leader);
5272 
5273 	values[n++] = perf_event_count(leader);
5274 	if (read_format & PERF_FORMAT_ID)
5275 		values[n++] = primary_event_id(leader);
5276 
5277 	__output_copy(handle, values, n * sizeof(u64));
5278 
5279 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5280 		n = 0;
5281 
5282 		if ((sub != event) &&
5283 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5284 			sub->pmu->read(sub);
5285 
5286 		values[n++] = perf_event_count(sub);
5287 		if (read_format & PERF_FORMAT_ID)
5288 			values[n++] = primary_event_id(sub);
5289 
5290 		__output_copy(handle, values, n * sizeof(u64));
5291 	}
5292 }
5293 
5294 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5295 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5296 
5297 static void perf_output_read(struct perf_output_handle *handle,
5298 			     struct perf_event *event)
5299 {
5300 	u64 enabled = 0, running = 0, now;
5301 	u64 read_format = event->attr.read_format;
5302 
5303 	/*
5304 	 * compute total_time_enabled, total_time_running
5305 	 * based on snapshot values taken when the event
5306 	 * was last scheduled in.
5307 	 *
5308 	 * we cannot simply called update_context_time()
5309 	 * because of locking issue as we are called in
5310 	 * NMI context
5311 	 */
5312 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5313 		calc_timer_values(event, &now, &enabled, &running);
5314 
5315 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5316 		perf_output_read_group(handle, event, enabled, running);
5317 	else
5318 		perf_output_read_one(handle, event, enabled, running);
5319 }
5320 
5321 void perf_output_sample(struct perf_output_handle *handle,
5322 			struct perf_event_header *header,
5323 			struct perf_sample_data *data,
5324 			struct perf_event *event)
5325 {
5326 	u64 sample_type = data->type;
5327 
5328 	perf_output_put(handle, *header);
5329 
5330 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5331 		perf_output_put(handle, data->id);
5332 
5333 	if (sample_type & PERF_SAMPLE_IP)
5334 		perf_output_put(handle, data->ip);
5335 
5336 	if (sample_type & PERF_SAMPLE_TID)
5337 		perf_output_put(handle, data->tid_entry);
5338 
5339 	if (sample_type & PERF_SAMPLE_TIME)
5340 		perf_output_put(handle, data->time);
5341 
5342 	if (sample_type & PERF_SAMPLE_ADDR)
5343 		perf_output_put(handle, data->addr);
5344 
5345 	if (sample_type & PERF_SAMPLE_ID)
5346 		perf_output_put(handle, data->id);
5347 
5348 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5349 		perf_output_put(handle, data->stream_id);
5350 
5351 	if (sample_type & PERF_SAMPLE_CPU)
5352 		perf_output_put(handle, data->cpu_entry);
5353 
5354 	if (sample_type & PERF_SAMPLE_PERIOD)
5355 		perf_output_put(handle, data->period);
5356 
5357 	if (sample_type & PERF_SAMPLE_READ)
5358 		perf_output_read(handle, event);
5359 
5360 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5361 		if (data->callchain) {
5362 			int size = 1;
5363 
5364 			if (data->callchain)
5365 				size += data->callchain->nr;
5366 
5367 			size *= sizeof(u64);
5368 
5369 			__output_copy(handle, data->callchain, size);
5370 		} else {
5371 			u64 nr = 0;
5372 			perf_output_put(handle, nr);
5373 		}
5374 	}
5375 
5376 	if (sample_type & PERF_SAMPLE_RAW) {
5377 		if (data->raw) {
5378 			u32 raw_size = data->raw->size;
5379 			u32 real_size = round_up(raw_size + sizeof(u32),
5380 						 sizeof(u64)) - sizeof(u32);
5381 			u64 zero = 0;
5382 
5383 			perf_output_put(handle, real_size);
5384 			__output_copy(handle, data->raw->data, raw_size);
5385 			if (real_size - raw_size)
5386 				__output_copy(handle, &zero, real_size - raw_size);
5387 		} else {
5388 			struct {
5389 				u32	size;
5390 				u32	data;
5391 			} raw = {
5392 				.size = sizeof(u32),
5393 				.data = 0,
5394 			};
5395 			perf_output_put(handle, raw);
5396 		}
5397 	}
5398 
5399 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5400 		if (data->br_stack) {
5401 			size_t size;
5402 
5403 			size = data->br_stack->nr
5404 			     * sizeof(struct perf_branch_entry);
5405 
5406 			perf_output_put(handle, data->br_stack->nr);
5407 			perf_output_copy(handle, data->br_stack->entries, size);
5408 		} else {
5409 			/*
5410 			 * we always store at least the value of nr
5411 			 */
5412 			u64 nr = 0;
5413 			perf_output_put(handle, nr);
5414 		}
5415 	}
5416 
5417 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5418 		u64 abi = data->regs_user.abi;
5419 
5420 		/*
5421 		 * If there are no regs to dump, notice it through
5422 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5423 		 */
5424 		perf_output_put(handle, abi);
5425 
5426 		if (abi) {
5427 			u64 mask = event->attr.sample_regs_user;
5428 			perf_output_sample_regs(handle,
5429 						data->regs_user.regs,
5430 						mask);
5431 		}
5432 	}
5433 
5434 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5435 		perf_output_sample_ustack(handle,
5436 					  data->stack_user_size,
5437 					  data->regs_user.regs);
5438 	}
5439 
5440 	if (sample_type & PERF_SAMPLE_WEIGHT)
5441 		perf_output_put(handle, data->weight);
5442 
5443 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5444 		perf_output_put(handle, data->data_src.val);
5445 
5446 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5447 		perf_output_put(handle, data->txn);
5448 
5449 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5450 		u64 abi = data->regs_intr.abi;
5451 		/*
5452 		 * If there are no regs to dump, notice it through
5453 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5454 		 */
5455 		perf_output_put(handle, abi);
5456 
5457 		if (abi) {
5458 			u64 mask = event->attr.sample_regs_intr;
5459 
5460 			perf_output_sample_regs(handle,
5461 						data->regs_intr.regs,
5462 						mask);
5463 		}
5464 	}
5465 
5466 	if (!event->attr.watermark) {
5467 		int wakeup_events = event->attr.wakeup_events;
5468 
5469 		if (wakeup_events) {
5470 			struct ring_buffer *rb = handle->rb;
5471 			int events = local_inc_return(&rb->events);
5472 
5473 			if (events >= wakeup_events) {
5474 				local_sub(wakeup_events, &rb->events);
5475 				local_inc(&rb->wakeup);
5476 			}
5477 		}
5478 	}
5479 }
5480 
5481 void perf_prepare_sample(struct perf_event_header *header,
5482 			 struct perf_sample_data *data,
5483 			 struct perf_event *event,
5484 			 struct pt_regs *regs)
5485 {
5486 	u64 sample_type = event->attr.sample_type;
5487 
5488 	header->type = PERF_RECORD_SAMPLE;
5489 	header->size = sizeof(*header) + event->header_size;
5490 
5491 	header->misc = 0;
5492 	header->misc |= perf_misc_flags(regs);
5493 
5494 	__perf_event_header__init_id(header, data, event);
5495 
5496 	if (sample_type & PERF_SAMPLE_IP)
5497 		data->ip = perf_instruction_pointer(regs);
5498 
5499 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5500 		int size = 1;
5501 
5502 		data->callchain = perf_callchain(event, regs);
5503 
5504 		if (data->callchain)
5505 			size += data->callchain->nr;
5506 
5507 		header->size += size * sizeof(u64);
5508 	}
5509 
5510 	if (sample_type & PERF_SAMPLE_RAW) {
5511 		int size = sizeof(u32);
5512 
5513 		if (data->raw)
5514 			size += data->raw->size;
5515 		else
5516 			size += sizeof(u32);
5517 
5518 		header->size += round_up(size, sizeof(u64));
5519 	}
5520 
5521 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5522 		int size = sizeof(u64); /* nr */
5523 		if (data->br_stack) {
5524 			size += data->br_stack->nr
5525 			      * sizeof(struct perf_branch_entry);
5526 		}
5527 		header->size += size;
5528 	}
5529 
5530 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5531 		perf_sample_regs_user(&data->regs_user, regs,
5532 				      &data->regs_user_copy);
5533 
5534 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5535 		/* regs dump ABI info */
5536 		int size = sizeof(u64);
5537 
5538 		if (data->regs_user.regs) {
5539 			u64 mask = event->attr.sample_regs_user;
5540 			size += hweight64(mask) * sizeof(u64);
5541 		}
5542 
5543 		header->size += size;
5544 	}
5545 
5546 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5547 		/*
5548 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5549 		 * processed as the last one or have additional check added
5550 		 * in case new sample type is added, because we could eat
5551 		 * up the rest of the sample size.
5552 		 */
5553 		u16 stack_size = event->attr.sample_stack_user;
5554 		u16 size = sizeof(u64);
5555 
5556 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5557 						     data->regs_user.regs);
5558 
5559 		/*
5560 		 * If there is something to dump, add space for the dump
5561 		 * itself and for the field that tells the dynamic size,
5562 		 * which is how many have been actually dumped.
5563 		 */
5564 		if (stack_size)
5565 			size += sizeof(u64) + stack_size;
5566 
5567 		data->stack_user_size = stack_size;
5568 		header->size += size;
5569 	}
5570 
5571 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5572 		/* regs dump ABI info */
5573 		int size = sizeof(u64);
5574 
5575 		perf_sample_regs_intr(&data->regs_intr, regs);
5576 
5577 		if (data->regs_intr.regs) {
5578 			u64 mask = event->attr.sample_regs_intr;
5579 
5580 			size += hweight64(mask) * sizeof(u64);
5581 		}
5582 
5583 		header->size += size;
5584 	}
5585 }
5586 
5587 void perf_event_output(struct perf_event *event,
5588 			struct perf_sample_data *data,
5589 			struct pt_regs *regs)
5590 {
5591 	struct perf_output_handle handle;
5592 	struct perf_event_header header;
5593 
5594 	/* protect the callchain buffers */
5595 	rcu_read_lock();
5596 
5597 	perf_prepare_sample(&header, data, event, regs);
5598 
5599 	if (perf_output_begin(&handle, event, header.size))
5600 		goto exit;
5601 
5602 	perf_output_sample(&handle, &header, data, event);
5603 
5604 	perf_output_end(&handle);
5605 
5606 exit:
5607 	rcu_read_unlock();
5608 }
5609 
5610 /*
5611  * read event_id
5612  */
5613 
5614 struct perf_read_event {
5615 	struct perf_event_header	header;
5616 
5617 	u32				pid;
5618 	u32				tid;
5619 };
5620 
5621 static void
5622 perf_event_read_event(struct perf_event *event,
5623 			struct task_struct *task)
5624 {
5625 	struct perf_output_handle handle;
5626 	struct perf_sample_data sample;
5627 	struct perf_read_event read_event = {
5628 		.header = {
5629 			.type = PERF_RECORD_READ,
5630 			.misc = 0,
5631 			.size = sizeof(read_event) + event->read_size,
5632 		},
5633 		.pid = perf_event_pid(event, task),
5634 		.tid = perf_event_tid(event, task),
5635 	};
5636 	int ret;
5637 
5638 	perf_event_header__init_id(&read_event.header, &sample, event);
5639 	ret = perf_output_begin(&handle, event, read_event.header.size);
5640 	if (ret)
5641 		return;
5642 
5643 	perf_output_put(&handle, read_event);
5644 	perf_output_read(&handle, event);
5645 	perf_event__output_id_sample(event, &handle, &sample);
5646 
5647 	perf_output_end(&handle);
5648 }
5649 
5650 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5651 
5652 static void
5653 perf_event_aux_ctx(struct perf_event_context *ctx,
5654 		   perf_event_aux_output_cb output,
5655 		   void *data)
5656 {
5657 	struct perf_event *event;
5658 
5659 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5660 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5661 			continue;
5662 		if (!event_filter_match(event))
5663 			continue;
5664 		output(event, data);
5665 	}
5666 }
5667 
5668 static void
5669 perf_event_aux(perf_event_aux_output_cb output, void *data,
5670 	       struct perf_event_context *task_ctx)
5671 {
5672 	struct perf_cpu_context *cpuctx;
5673 	struct perf_event_context *ctx;
5674 	struct pmu *pmu;
5675 	int ctxn;
5676 
5677 	rcu_read_lock();
5678 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5679 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5680 		if (cpuctx->unique_pmu != pmu)
5681 			goto next;
5682 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5683 		if (task_ctx)
5684 			goto next;
5685 		ctxn = pmu->task_ctx_nr;
5686 		if (ctxn < 0)
5687 			goto next;
5688 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5689 		if (ctx)
5690 			perf_event_aux_ctx(ctx, output, data);
5691 next:
5692 		put_cpu_ptr(pmu->pmu_cpu_context);
5693 	}
5694 
5695 	if (task_ctx) {
5696 		preempt_disable();
5697 		perf_event_aux_ctx(task_ctx, output, data);
5698 		preempt_enable();
5699 	}
5700 	rcu_read_unlock();
5701 }
5702 
5703 /*
5704  * task tracking -- fork/exit
5705  *
5706  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5707  */
5708 
5709 struct perf_task_event {
5710 	struct task_struct		*task;
5711 	struct perf_event_context	*task_ctx;
5712 
5713 	struct {
5714 		struct perf_event_header	header;
5715 
5716 		u32				pid;
5717 		u32				ppid;
5718 		u32				tid;
5719 		u32				ptid;
5720 		u64				time;
5721 	} event_id;
5722 };
5723 
5724 static int perf_event_task_match(struct perf_event *event)
5725 {
5726 	return event->attr.comm  || event->attr.mmap ||
5727 	       event->attr.mmap2 || event->attr.mmap_data ||
5728 	       event->attr.task;
5729 }
5730 
5731 static void perf_event_task_output(struct perf_event *event,
5732 				   void *data)
5733 {
5734 	struct perf_task_event *task_event = data;
5735 	struct perf_output_handle handle;
5736 	struct perf_sample_data	sample;
5737 	struct task_struct *task = task_event->task;
5738 	int ret, size = task_event->event_id.header.size;
5739 
5740 	if (!perf_event_task_match(event))
5741 		return;
5742 
5743 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5744 
5745 	ret = perf_output_begin(&handle, event,
5746 				task_event->event_id.header.size);
5747 	if (ret)
5748 		goto out;
5749 
5750 	task_event->event_id.pid = perf_event_pid(event, task);
5751 	task_event->event_id.ppid = perf_event_pid(event, current);
5752 
5753 	task_event->event_id.tid = perf_event_tid(event, task);
5754 	task_event->event_id.ptid = perf_event_tid(event, current);
5755 
5756 	task_event->event_id.time = perf_event_clock(event);
5757 
5758 	perf_output_put(&handle, task_event->event_id);
5759 
5760 	perf_event__output_id_sample(event, &handle, &sample);
5761 
5762 	perf_output_end(&handle);
5763 out:
5764 	task_event->event_id.header.size = size;
5765 }
5766 
5767 static void perf_event_task(struct task_struct *task,
5768 			      struct perf_event_context *task_ctx,
5769 			      int new)
5770 {
5771 	struct perf_task_event task_event;
5772 
5773 	if (!atomic_read(&nr_comm_events) &&
5774 	    !atomic_read(&nr_mmap_events) &&
5775 	    !atomic_read(&nr_task_events))
5776 		return;
5777 
5778 	task_event = (struct perf_task_event){
5779 		.task	  = task,
5780 		.task_ctx = task_ctx,
5781 		.event_id    = {
5782 			.header = {
5783 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5784 				.misc = 0,
5785 				.size = sizeof(task_event.event_id),
5786 			},
5787 			/* .pid  */
5788 			/* .ppid */
5789 			/* .tid  */
5790 			/* .ptid */
5791 			/* .time */
5792 		},
5793 	};
5794 
5795 	perf_event_aux(perf_event_task_output,
5796 		       &task_event,
5797 		       task_ctx);
5798 }
5799 
5800 void perf_event_fork(struct task_struct *task)
5801 {
5802 	perf_event_task(task, NULL, 1);
5803 }
5804 
5805 /*
5806  * comm tracking
5807  */
5808 
5809 struct perf_comm_event {
5810 	struct task_struct	*task;
5811 	char			*comm;
5812 	int			comm_size;
5813 
5814 	struct {
5815 		struct perf_event_header	header;
5816 
5817 		u32				pid;
5818 		u32				tid;
5819 	} event_id;
5820 };
5821 
5822 static int perf_event_comm_match(struct perf_event *event)
5823 {
5824 	return event->attr.comm;
5825 }
5826 
5827 static void perf_event_comm_output(struct perf_event *event,
5828 				   void *data)
5829 {
5830 	struct perf_comm_event *comm_event = data;
5831 	struct perf_output_handle handle;
5832 	struct perf_sample_data sample;
5833 	int size = comm_event->event_id.header.size;
5834 	int ret;
5835 
5836 	if (!perf_event_comm_match(event))
5837 		return;
5838 
5839 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5840 	ret = perf_output_begin(&handle, event,
5841 				comm_event->event_id.header.size);
5842 
5843 	if (ret)
5844 		goto out;
5845 
5846 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5847 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5848 
5849 	perf_output_put(&handle, comm_event->event_id);
5850 	__output_copy(&handle, comm_event->comm,
5851 				   comm_event->comm_size);
5852 
5853 	perf_event__output_id_sample(event, &handle, &sample);
5854 
5855 	perf_output_end(&handle);
5856 out:
5857 	comm_event->event_id.header.size = size;
5858 }
5859 
5860 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5861 {
5862 	char comm[TASK_COMM_LEN];
5863 	unsigned int size;
5864 
5865 	memset(comm, 0, sizeof(comm));
5866 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5867 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5868 
5869 	comm_event->comm = comm;
5870 	comm_event->comm_size = size;
5871 
5872 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5873 
5874 	perf_event_aux(perf_event_comm_output,
5875 		       comm_event,
5876 		       NULL);
5877 }
5878 
5879 void perf_event_comm(struct task_struct *task, bool exec)
5880 {
5881 	struct perf_comm_event comm_event;
5882 
5883 	if (!atomic_read(&nr_comm_events))
5884 		return;
5885 
5886 	comm_event = (struct perf_comm_event){
5887 		.task	= task,
5888 		/* .comm      */
5889 		/* .comm_size */
5890 		.event_id  = {
5891 			.header = {
5892 				.type = PERF_RECORD_COMM,
5893 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5894 				/* .size */
5895 			},
5896 			/* .pid */
5897 			/* .tid */
5898 		},
5899 	};
5900 
5901 	perf_event_comm_event(&comm_event);
5902 }
5903 
5904 /*
5905  * mmap tracking
5906  */
5907 
5908 struct perf_mmap_event {
5909 	struct vm_area_struct	*vma;
5910 
5911 	const char		*file_name;
5912 	int			file_size;
5913 	int			maj, min;
5914 	u64			ino;
5915 	u64			ino_generation;
5916 	u32			prot, flags;
5917 
5918 	struct {
5919 		struct perf_event_header	header;
5920 
5921 		u32				pid;
5922 		u32				tid;
5923 		u64				start;
5924 		u64				len;
5925 		u64				pgoff;
5926 	} event_id;
5927 };
5928 
5929 static int perf_event_mmap_match(struct perf_event *event,
5930 				 void *data)
5931 {
5932 	struct perf_mmap_event *mmap_event = data;
5933 	struct vm_area_struct *vma = mmap_event->vma;
5934 	int executable = vma->vm_flags & VM_EXEC;
5935 
5936 	return (!executable && event->attr.mmap_data) ||
5937 	       (executable && (event->attr.mmap || event->attr.mmap2));
5938 }
5939 
5940 static void perf_event_mmap_output(struct perf_event *event,
5941 				   void *data)
5942 {
5943 	struct perf_mmap_event *mmap_event = data;
5944 	struct perf_output_handle handle;
5945 	struct perf_sample_data sample;
5946 	int size = mmap_event->event_id.header.size;
5947 	int ret;
5948 
5949 	if (!perf_event_mmap_match(event, data))
5950 		return;
5951 
5952 	if (event->attr.mmap2) {
5953 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5954 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5955 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5956 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5957 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5958 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5959 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5960 	}
5961 
5962 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5963 	ret = perf_output_begin(&handle, event,
5964 				mmap_event->event_id.header.size);
5965 	if (ret)
5966 		goto out;
5967 
5968 	mmap_event->event_id.pid = perf_event_pid(event, current);
5969 	mmap_event->event_id.tid = perf_event_tid(event, current);
5970 
5971 	perf_output_put(&handle, mmap_event->event_id);
5972 
5973 	if (event->attr.mmap2) {
5974 		perf_output_put(&handle, mmap_event->maj);
5975 		perf_output_put(&handle, mmap_event->min);
5976 		perf_output_put(&handle, mmap_event->ino);
5977 		perf_output_put(&handle, mmap_event->ino_generation);
5978 		perf_output_put(&handle, mmap_event->prot);
5979 		perf_output_put(&handle, mmap_event->flags);
5980 	}
5981 
5982 	__output_copy(&handle, mmap_event->file_name,
5983 				   mmap_event->file_size);
5984 
5985 	perf_event__output_id_sample(event, &handle, &sample);
5986 
5987 	perf_output_end(&handle);
5988 out:
5989 	mmap_event->event_id.header.size = size;
5990 }
5991 
5992 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5993 {
5994 	struct vm_area_struct *vma = mmap_event->vma;
5995 	struct file *file = vma->vm_file;
5996 	int maj = 0, min = 0;
5997 	u64 ino = 0, gen = 0;
5998 	u32 prot = 0, flags = 0;
5999 	unsigned int size;
6000 	char tmp[16];
6001 	char *buf = NULL;
6002 	char *name;
6003 
6004 	if (file) {
6005 		struct inode *inode;
6006 		dev_t dev;
6007 
6008 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6009 		if (!buf) {
6010 			name = "//enomem";
6011 			goto cpy_name;
6012 		}
6013 		/*
6014 		 * d_path() works from the end of the rb backwards, so we
6015 		 * need to add enough zero bytes after the string to handle
6016 		 * the 64bit alignment we do later.
6017 		 */
6018 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6019 		if (IS_ERR(name)) {
6020 			name = "//toolong";
6021 			goto cpy_name;
6022 		}
6023 		inode = file_inode(vma->vm_file);
6024 		dev = inode->i_sb->s_dev;
6025 		ino = inode->i_ino;
6026 		gen = inode->i_generation;
6027 		maj = MAJOR(dev);
6028 		min = MINOR(dev);
6029 
6030 		if (vma->vm_flags & VM_READ)
6031 			prot |= PROT_READ;
6032 		if (vma->vm_flags & VM_WRITE)
6033 			prot |= PROT_WRITE;
6034 		if (vma->vm_flags & VM_EXEC)
6035 			prot |= PROT_EXEC;
6036 
6037 		if (vma->vm_flags & VM_MAYSHARE)
6038 			flags = MAP_SHARED;
6039 		else
6040 			flags = MAP_PRIVATE;
6041 
6042 		if (vma->vm_flags & VM_DENYWRITE)
6043 			flags |= MAP_DENYWRITE;
6044 		if (vma->vm_flags & VM_MAYEXEC)
6045 			flags |= MAP_EXECUTABLE;
6046 		if (vma->vm_flags & VM_LOCKED)
6047 			flags |= MAP_LOCKED;
6048 		if (vma->vm_flags & VM_HUGETLB)
6049 			flags |= MAP_HUGETLB;
6050 
6051 		goto got_name;
6052 	} else {
6053 		if (vma->vm_ops && vma->vm_ops->name) {
6054 			name = (char *) vma->vm_ops->name(vma);
6055 			if (name)
6056 				goto cpy_name;
6057 		}
6058 
6059 		name = (char *)arch_vma_name(vma);
6060 		if (name)
6061 			goto cpy_name;
6062 
6063 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6064 				vma->vm_end >= vma->vm_mm->brk) {
6065 			name = "[heap]";
6066 			goto cpy_name;
6067 		}
6068 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6069 				vma->vm_end >= vma->vm_mm->start_stack) {
6070 			name = "[stack]";
6071 			goto cpy_name;
6072 		}
6073 
6074 		name = "//anon";
6075 		goto cpy_name;
6076 	}
6077 
6078 cpy_name:
6079 	strlcpy(tmp, name, sizeof(tmp));
6080 	name = tmp;
6081 got_name:
6082 	/*
6083 	 * Since our buffer works in 8 byte units we need to align our string
6084 	 * size to a multiple of 8. However, we must guarantee the tail end is
6085 	 * zero'd out to avoid leaking random bits to userspace.
6086 	 */
6087 	size = strlen(name)+1;
6088 	while (!IS_ALIGNED(size, sizeof(u64)))
6089 		name[size++] = '\0';
6090 
6091 	mmap_event->file_name = name;
6092 	mmap_event->file_size = size;
6093 	mmap_event->maj = maj;
6094 	mmap_event->min = min;
6095 	mmap_event->ino = ino;
6096 	mmap_event->ino_generation = gen;
6097 	mmap_event->prot = prot;
6098 	mmap_event->flags = flags;
6099 
6100 	if (!(vma->vm_flags & VM_EXEC))
6101 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6102 
6103 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6104 
6105 	perf_event_aux(perf_event_mmap_output,
6106 		       mmap_event,
6107 		       NULL);
6108 
6109 	kfree(buf);
6110 }
6111 
6112 void perf_event_mmap(struct vm_area_struct *vma)
6113 {
6114 	struct perf_mmap_event mmap_event;
6115 
6116 	if (!atomic_read(&nr_mmap_events))
6117 		return;
6118 
6119 	mmap_event = (struct perf_mmap_event){
6120 		.vma	= vma,
6121 		/* .file_name */
6122 		/* .file_size */
6123 		.event_id  = {
6124 			.header = {
6125 				.type = PERF_RECORD_MMAP,
6126 				.misc = PERF_RECORD_MISC_USER,
6127 				/* .size */
6128 			},
6129 			/* .pid */
6130 			/* .tid */
6131 			.start  = vma->vm_start,
6132 			.len    = vma->vm_end - vma->vm_start,
6133 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6134 		},
6135 		/* .maj (attr_mmap2 only) */
6136 		/* .min (attr_mmap2 only) */
6137 		/* .ino (attr_mmap2 only) */
6138 		/* .ino_generation (attr_mmap2 only) */
6139 		/* .prot (attr_mmap2 only) */
6140 		/* .flags (attr_mmap2 only) */
6141 	};
6142 
6143 	perf_event_mmap_event(&mmap_event);
6144 }
6145 
6146 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6147 			  unsigned long size, u64 flags)
6148 {
6149 	struct perf_output_handle handle;
6150 	struct perf_sample_data sample;
6151 	struct perf_aux_event {
6152 		struct perf_event_header	header;
6153 		u64				offset;
6154 		u64				size;
6155 		u64				flags;
6156 	} rec = {
6157 		.header = {
6158 			.type = PERF_RECORD_AUX,
6159 			.misc = 0,
6160 			.size = sizeof(rec),
6161 		},
6162 		.offset		= head,
6163 		.size		= size,
6164 		.flags		= flags,
6165 	};
6166 	int ret;
6167 
6168 	perf_event_header__init_id(&rec.header, &sample, event);
6169 	ret = perf_output_begin(&handle, event, rec.header.size);
6170 
6171 	if (ret)
6172 		return;
6173 
6174 	perf_output_put(&handle, rec);
6175 	perf_event__output_id_sample(event, &handle, &sample);
6176 
6177 	perf_output_end(&handle);
6178 }
6179 
6180 /*
6181  * Lost/dropped samples logging
6182  */
6183 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6184 {
6185 	struct perf_output_handle handle;
6186 	struct perf_sample_data sample;
6187 	int ret;
6188 
6189 	struct {
6190 		struct perf_event_header	header;
6191 		u64				lost;
6192 	} lost_samples_event = {
6193 		.header = {
6194 			.type = PERF_RECORD_LOST_SAMPLES,
6195 			.misc = 0,
6196 			.size = sizeof(lost_samples_event),
6197 		},
6198 		.lost		= lost,
6199 	};
6200 
6201 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6202 
6203 	ret = perf_output_begin(&handle, event,
6204 				lost_samples_event.header.size);
6205 	if (ret)
6206 		return;
6207 
6208 	perf_output_put(&handle, lost_samples_event);
6209 	perf_event__output_id_sample(event, &handle, &sample);
6210 	perf_output_end(&handle);
6211 }
6212 
6213 /*
6214  * context_switch tracking
6215  */
6216 
6217 struct perf_switch_event {
6218 	struct task_struct	*task;
6219 	struct task_struct	*next_prev;
6220 
6221 	struct {
6222 		struct perf_event_header	header;
6223 		u32				next_prev_pid;
6224 		u32				next_prev_tid;
6225 	} event_id;
6226 };
6227 
6228 static int perf_event_switch_match(struct perf_event *event)
6229 {
6230 	return event->attr.context_switch;
6231 }
6232 
6233 static void perf_event_switch_output(struct perf_event *event, void *data)
6234 {
6235 	struct perf_switch_event *se = data;
6236 	struct perf_output_handle handle;
6237 	struct perf_sample_data sample;
6238 	int ret;
6239 
6240 	if (!perf_event_switch_match(event))
6241 		return;
6242 
6243 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6244 	if (event->ctx->task) {
6245 		se->event_id.header.type = PERF_RECORD_SWITCH;
6246 		se->event_id.header.size = sizeof(se->event_id.header);
6247 	} else {
6248 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6249 		se->event_id.header.size = sizeof(se->event_id);
6250 		se->event_id.next_prev_pid =
6251 					perf_event_pid(event, se->next_prev);
6252 		se->event_id.next_prev_tid =
6253 					perf_event_tid(event, se->next_prev);
6254 	}
6255 
6256 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6257 
6258 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6259 	if (ret)
6260 		return;
6261 
6262 	if (event->ctx->task)
6263 		perf_output_put(&handle, se->event_id.header);
6264 	else
6265 		perf_output_put(&handle, se->event_id);
6266 
6267 	perf_event__output_id_sample(event, &handle, &sample);
6268 
6269 	perf_output_end(&handle);
6270 }
6271 
6272 static void perf_event_switch(struct task_struct *task,
6273 			      struct task_struct *next_prev, bool sched_in)
6274 {
6275 	struct perf_switch_event switch_event;
6276 
6277 	/* N.B. caller checks nr_switch_events != 0 */
6278 
6279 	switch_event = (struct perf_switch_event){
6280 		.task		= task,
6281 		.next_prev	= next_prev,
6282 		.event_id	= {
6283 			.header = {
6284 				/* .type */
6285 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6286 				/* .size */
6287 			},
6288 			/* .next_prev_pid */
6289 			/* .next_prev_tid */
6290 		},
6291 	};
6292 
6293 	perf_event_aux(perf_event_switch_output,
6294 		       &switch_event,
6295 		       NULL);
6296 }
6297 
6298 /*
6299  * IRQ throttle logging
6300  */
6301 
6302 static void perf_log_throttle(struct perf_event *event, int enable)
6303 {
6304 	struct perf_output_handle handle;
6305 	struct perf_sample_data sample;
6306 	int ret;
6307 
6308 	struct {
6309 		struct perf_event_header	header;
6310 		u64				time;
6311 		u64				id;
6312 		u64				stream_id;
6313 	} throttle_event = {
6314 		.header = {
6315 			.type = PERF_RECORD_THROTTLE,
6316 			.misc = 0,
6317 			.size = sizeof(throttle_event),
6318 		},
6319 		.time		= perf_event_clock(event),
6320 		.id		= primary_event_id(event),
6321 		.stream_id	= event->id,
6322 	};
6323 
6324 	if (enable)
6325 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6326 
6327 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6328 
6329 	ret = perf_output_begin(&handle, event,
6330 				throttle_event.header.size);
6331 	if (ret)
6332 		return;
6333 
6334 	perf_output_put(&handle, throttle_event);
6335 	perf_event__output_id_sample(event, &handle, &sample);
6336 	perf_output_end(&handle);
6337 }
6338 
6339 static void perf_log_itrace_start(struct perf_event *event)
6340 {
6341 	struct perf_output_handle handle;
6342 	struct perf_sample_data sample;
6343 	struct perf_aux_event {
6344 		struct perf_event_header        header;
6345 		u32				pid;
6346 		u32				tid;
6347 	} rec;
6348 	int ret;
6349 
6350 	if (event->parent)
6351 		event = event->parent;
6352 
6353 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6354 	    event->hw.itrace_started)
6355 		return;
6356 
6357 	rec.header.type	= PERF_RECORD_ITRACE_START;
6358 	rec.header.misc	= 0;
6359 	rec.header.size	= sizeof(rec);
6360 	rec.pid	= perf_event_pid(event, current);
6361 	rec.tid	= perf_event_tid(event, current);
6362 
6363 	perf_event_header__init_id(&rec.header, &sample, event);
6364 	ret = perf_output_begin(&handle, event, rec.header.size);
6365 
6366 	if (ret)
6367 		return;
6368 
6369 	perf_output_put(&handle, rec);
6370 	perf_event__output_id_sample(event, &handle, &sample);
6371 
6372 	perf_output_end(&handle);
6373 }
6374 
6375 /*
6376  * Generic event overflow handling, sampling.
6377  */
6378 
6379 static int __perf_event_overflow(struct perf_event *event,
6380 				   int throttle, struct perf_sample_data *data,
6381 				   struct pt_regs *regs)
6382 {
6383 	int events = atomic_read(&event->event_limit);
6384 	struct hw_perf_event *hwc = &event->hw;
6385 	u64 seq;
6386 	int ret = 0;
6387 
6388 	/*
6389 	 * Non-sampling counters might still use the PMI to fold short
6390 	 * hardware counters, ignore those.
6391 	 */
6392 	if (unlikely(!is_sampling_event(event)))
6393 		return 0;
6394 
6395 	seq = __this_cpu_read(perf_throttled_seq);
6396 	if (seq != hwc->interrupts_seq) {
6397 		hwc->interrupts_seq = seq;
6398 		hwc->interrupts = 1;
6399 	} else {
6400 		hwc->interrupts++;
6401 		if (unlikely(throttle
6402 			     && hwc->interrupts >= max_samples_per_tick)) {
6403 			__this_cpu_inc(perf_throttled_count);
6404 			hwc->interrupts = MAX_INTERRUPTS;
6405 			perf_log_throttle(event, 0);
6406 			tick_nohz_full_kick();
6407 			ret = 1;
6408 		}
6409 	}
6410 
6411 	if (event->attr.freq) {
6412 		u64 now = perf_clock();
6413 		s64 delta = now - hwc->freq_time_stamp;
6414 
6415 		hwc->freq_time_stamp = now;
6416 
6417 		if (delta > 0 && delta < 2*TICK_NSEC)
6418 			perf_adjust_period(event, delta, hwc->last_period, true);
6419 	}
6420 
6421 	/*
6422 	 * XXX event_limit might not quite work as expected on inherited
6423 	 * events
6424 	 */
6425 
6426 	event->pending_kill = POLL_IN;
6427 	if (events && atomic_dec_and_test(&event->event_limit)) {
6428 		ret = 1;
6429 		event->pending_kill = POLL_HUP;
6430 		event->pending_disable = 1;
6431 		irq_work_queue(&event->pending);
6432 	}
6433 
6434 	if (event->overflow_handler)
6435 		event->overflow_handler(event, data, regs);
6436 	else
6437 		perf_event_output(event, data, regs);
6438 
6439 	if (*perf_event_fasync(event) && event->pending_kill) {
6440 		event->pending_wakeup = 1;
6441 		irq_work_queue(&event->pending);
6442 	}
6443 
6444 	return ret;
6445 }
6446 
6447 int perf_event_overflow(struct perf_event *event,
6448 			  struct perf_sample_data *data,
6449 			  struct pt_regs *regs)
6450 {
6451 	return __perf_event_overflow(event, 1, data, regs);
6452 }
6453 
6454 /*
6455  * Generic software event infrastructure
6456  */
6457 
6458 struct swevent_htable {
6459 	struct swevent_hlist		*swevent_hlist;
6460 	struct mutex			hlist_mutex;
6461 	int				hlist_refcount;
6462 
6463 	/* Recursion avoidance in each contexts */
6464 	int				recursion[PERF_NR_CONTEXTS];
6465 
6466 	/* Keeps track of cpu being initialized/exited */
6467 	bool				online;
6468 };
6469 
6470 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6471 
6472 /*
6473  * We directly increment event->count and keep a second value in
6474  * event->hw.period_left to count intervals. This period event
6475  * is kept in the range [-sample_period, 0] so that we can use the
6476  * sign as trigger.
6477  */
6478 
6479 u64 perf_swevent_set_period(struct perf_event *event)
6480 {
6481 	struct hw_perf_event *hwc = &event->hw;
6482 	u64 period = hwc->last_period;
6483 	u64 nr, offset;
6484 	s64 old, val;
6485 
6486 	hwc->last_period = hwc->sample_period;
6487 
6488 again:
6489 	old = val = local64_read(&hwc->period_left);
6490 	if (val < 0)
6491 		return 0;
6492 
6493 	nr = div64_u64(period + val, period);
6494 	offset = nr * period;
6495 	val -= offset;
6496 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6497 		goto again;
6498 
6499 	return nr;
6500 }
6501 
6502 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6503 				    struct perf_sample_data *data,
6504 				    struct pt_regs *regs)
6505 {
6506 	struct hw_perf_event *hwc = &event->hw;
6507 	int throttle = 0;
6508 
6509 	if (!overflow)
6510 		overflow = perf_swevent_set_period(event);
6511 
6512 	if (hwc->interrupts == MAX_INTERRUPTS)
6513 		return;
6514 
6515 	for (; overflow; overflow--) {
6516 		if (__perf_event_overflow(event, throttle,
6517 					    data, regs)) {
6518 			/*
6519 			 * We inhibit the overflow from happening when
6520 			 * hwc->interrupts == MAX_INTERRUPTS.
6521 			 */
6522 			break;
6523 		}
6524 		throttle = 1;
6525 	}
6526 }
6527 
6528 static void perf_swevent_event(struct perf_event *event, u64 nr,
6529 			       struct perf_sample_data *data,
6530 			       struct pt_regs *regs)
6531 {
6532 	struct hw_perf_event *hwc = &event->hw;
6533 
6534 	local64_add(nr, &event->count);
6535 
6536 	if (!regs)
6537 		return;
6538 
6539 	if (!is_sampling_event(event))
6540 		return;
6541 
6542 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6543 		data->period = nr;
6544 		return perf_swevent_overflow(event, 1, data, regs);
6545 	} else
6546 		data->period = event->hw.last_period;
6547 
6548 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6549 		return perf_swevent_overflow(event, 1, data, regs);
6550 
6551 	if (local64_add_negative(nr, &hwc->period_left))
6552 		return;
6553 
6554 	perf_swevent_overflow(event, 0, data, regs);
6555 }
6556 
6557 static int perf_exclude_event(struct perf_event *event,
6558 			      struct pt_regs *regs)
6559 {
6560 	if (event->hw.state & PERF_HES_STOPPED)
6561 		return 1;
6562 
6563 	if (regs) {
6564 		if (event->attr.exclude_user && user_mode(regs))
6565 			return 1;
6566 
6567 		if (event->attr.exclude_kernel && !user_mode(regs))
6568 			return 1;
6569 	}
6570 
6571 	return 0;
6572 }
6573 
6574 static int perf_swevent_match(struct perf_event *event,
6575 				enum perf_type_id type,
6576 				u32 event_id,
6577 				struct perf_sample_data *data,
6578 				struct pt_regs *regs)
6579 {
6580 	if (event->attr.type != type)
6581 		return 0;
6582 
6583 	if (event->attr.config != event_id)
6584 		return 0;
6585 
6586 	if (perf_exclude_event(event, regs))
6587 		return 0;
6588 
6589 	return 1;
6590 }
6591 
6592 static inline u64 swevent_hash(u64 type, u32 event_id)
6593 {
6594 	u64 val = event_id | (type << 32);
6595 
6596 	return hash_64(val, SWEVENT_HLIST_BITS);
6597 }
6598 
6599 static inline struct hlist_head *
6600 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6601 {
6602 	u64 hash = swevent_hash(type, event_id);
6603 
6604 	return &hlist->heads[hash];
6605 }
6606 
6607 /* For the read side: events when they trigger */
6608 static inline struct hlist_head *
6609 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6610 {
6611 	struct swevent_hlist *hlist;
6612 
6613 	hlist = rcu_dereference(swhash->swevent_hlist);
6614 	if (!hlist)
6615 		return NULL;
6616 
6617 	return __find_swevent_head(hlist, type, event_id);
6618 }
6619 
6620 /* For the event head insertion and removal in the hlist */
6621 static inline struct hlist_head *
6622 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6623 {
6624 	struct swevent_hlist *hlist;
6625 	u32 event_id = event->attr.config;
6626 	u64 type = event->attr.type;
6627 
6628 	/*
6629 	 * Event scheduling is always serialized against hlist allocation
6630 	 * and release. Which makes the protected version suitable here.
6631 	 * The context lock guarantees that.
6632 	 */
6633 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6634 					  lockdep_is_held(&event->ctx->lock));
6635 	if (!hlist)
6636 		return NULL;
6637 
6638 	return __find_swevent_head(hlist, type, event_id);
6639 }
6640 
6641 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6642 				    u64 nr,
6643 				    struct perf_sample_data *data,
6644 				    struct pt_regs *regs)
6645 {
6646 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6647 	struct perf_event *event;
6648 	struct hlist_head *head;
6649 
6650 	rcu_read_lock();
6651 	head = find_swevent_head_rcu(swhash, type, event_id);
6652 	if (!head)
6653 		goto end;
6654 
6655 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6656 		if (perf_swevent_match(event, type, event_id, data, regs))
6657 			perf_swevent_event(event, nr, data, regs);
6658 	}
6659 end:
6660 	rcu_read_unlock();
6661 }
6662 
6663 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6664 
6665 int perf_swevent_get_recursion_context(void)
6666 {
6667 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6668 
6669 	return get_recursion_context(swhash->recursion);
6670 }
6671 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6672 
6673 inline void perf_swevent_put_recursion_context(int rctx)
6674 {
6675 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6676 
6677 	put_recursion_context(swhash->recursion, rctx);
6678 }
6679 
6680 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6681 {
6682 	struct perf_sample_data data;
6683 
6684 	if (WARN_ON_ONCE(!regs))
6685 		return;
6686 
6687 	perf_sample_data_init(&data, addr, 0);
6688 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6689 }
6690 
6691 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6692 {
6693 	int rctx;
6694 
6695 	preempt_disable_notrace();
6696 	rctx = perf_swevent_get_recursion_context();
6697 	if (unlikely(rctx < 0))
6698 		goto fail;
6699 
6700 	___perf_sw_event(event_id, nr, regs, addr);
6701 
6702 	perf_swevent_put_recursion_context(rctx);
6703 fail:
6704 	preempt_enable_notrace();
6705 }
6706 
6707 static void perf_swevent_read(struct perf_event *event)
6708 {
6709 }
6710 
6711 static int perf_swevent_add(struct perf_event *event, int flags)
6712 {
6713 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6714 	struct hw_perf_event *hwc = &event->hw;
6715 	struct hlist_head *head;
6716 
6717 	if (is_sampling_event(event)) {
6718 		hwc->last_period = hwc->sample_period;
6719 		perf_swevent_set_period(event);
6720 	}
6721 
6722 	hwc->state = !(flags & PERF_EF_START);
6723 
6724 	head = find_swevent_head(swhash, event);
6725 	if (!head) {
6726 		/*
6727 		 * We can race with cpu hotplug code. Do not
6728 		 * WARN if the cpu just got unplugged.
6729 		 */
6730 		WARN_ON_ONCE(swhash->online);
6731 		return -EINVAL;
6732 	}
6733 
6734 	hlist_add_head_rcu(&event->hlist_entry, head);
6735 	perf_event_update_userpage(event);
6736 
6737 	return 0;
6738 }
6739 
6740 static void perf_swevent_del(struct perf_event *event, int flags)
6741 {
6742 	hlist_del_rcu(&event->hlist_entry);
6743 }
6744 
6745 static void perf_swevent_start(struct perf_event *event, int flags)
6746 {
6747 	event->hw.state = 0;
6748 }
6749 
6750 static void perf_swevent_stop(struct perf_event *event, int flags)
6751 {
6752 	event->hw.state = PERF_HES_STOPPED;
6753 }
6754 
6755 /* Deref the hlist from the update side */
6756 static inline struct swevent_hlist *
6757 swevent_hlist_deref(struct swevent_htable *swhash)
6758 {
6759 	return rcu_dereference_protected(swhash->swevent_hlist,
6760 					 lockdep_is_held(&swhash->hlist_mutex));
6761 }
6762 
6763 static void swevent_hlist_release(struct swevent_htable *swhash)
6764 {
6765 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6766 
6767 	if (!hlist)
6768 		return;
6769 
6770 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6771 	kfree_rcu(hlist, rcu_head);
6772 }
6773 
6774 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6775 {
6776 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6777 
6778 	mutex_lock(&swhash->hlist_mutex);
6779 
6780 	if (!--swhash->hlist_refcount)
6781 		swevent_hlist_release(swhash);
6782 
6783 	mutex_unlock(&swhash->hlist_mutex);
6784 }
6785 
6786 static void swevent_hlist_put(struct perf_event *event)
6787 {
6788 	int cpu;
6789 
6790 	for_each_possible_cpu(cpu)
6791 		swevent_hlist_put_cpu(event, cpu);
6792 }
6793 
6794 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6795 {
6796 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6797 	int err = 0;
6798 
6799 	mutex_lock(&swhash->hlist_mutex);
6800 
6801 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6802 		struct swevent_hlist *hlist;
6803 
6804 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6805 		if (!hlist) {
6806 			err = -ENOMEM;
6807 			goto exit;
6808 		}
6809 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6810 	}
6811 	swhash->hlist_refcount++;
6812 exit:
6813 	mutex_unlock(&swhash->hlist_mutex);
6814 
6815 	return err;
6816 }
6817 
6818 static int swevent_hlist_get(struct perf_event *event)
6819 {
6820 	int err;
6821 	int cpu, failed_cpu;
6822 
6823 	get_online_cpus();
6824 	for_each_possible_cpu(cpu) {
6825 		err = swevent_hlist_get_cpu(event, cpu);
6826 		if (err) {
6827 			failed_cpu = cpu;
6828 			goto fail;
6829 		}
6830 	}
6831 	put_online_cpus();
6832 
6833 	return 0;
6834 fail:
6835 	for_each_possible_cpu(cpu) {
6836 		if (cpu == failed_cpu)
6837 			break;
6838 		swevent_hlist_put_cpu(event, cpu);
6839 	}
6840 
6841 	put_online_cpus();
6842 	return err;
6843 }
6844 
6845 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6846 
6847 static void sw_perf_event_destroy(struct perf_event *event)
6848 {
6849 	u64 event_id = event->attr.config;
6850 
6851 	WARN_ON(event->parent);
6852 
6853 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6854 	swevent_hlist_put(event);
6855 }
6856 
6857 static int perf_swevent_init(struct perf_event *event)
6858 {
6859 	u64 event_id = event->attr.config;
6860 
6861 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6862 		return -ENOENT;
6863 
6864 	/*
6865 	 * no branch sampling for software events
6866 	 */
6867 	if (has_branch_stack(event))
6868 		return -EOPNOTSUPP;
6869 
6870 	switch (event_id) {
6871 	case PERF_COUNT_SW_CPU_CLOCK:
6872 	case PERF_COUNT_SW_TASK_CLOCK:
6873 		return -ENOENT;
6874 
6875 	default:
6876 		break;
6877 	}
6878 
6879 	if (event_id >= PERF_COUNT_SW_MAX)
6880 		return -ENOENT;
6881 
6882 	if (!event->parent) {
6883 		int err;
6884 
6885 		err = swevent_hlist_get(event);
6886 		if (err)
6887 			return err;
6888 
6889 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6890 		event->destroy = sw_perf_event_destroy;
6891 	}
6892 
6893 	return 0;
6894 }
6895 
6896 static struct pmu perf_swevent = {
6897 	.task_ctx_nr	= perf_sw_context,
6898 
6899 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6900 
6901 	.event_init	= perf_swevent_init,
6902 	.add		= perf_swevent_add,
6903 	.del		= perf_swevent_del,
6904 	.start		= perf_swevent_start,
6905 	.stop		= perf_swevent_stop,
6906 	.read		= perf_swevent_read,
6907 };
6908 
6909 #ifdef CONFIG_EVENT_TRACING
6910 
6911 static int perf_tp_filter_match(struct perf_event *event,
6912 				struct perf_sample_data *data)
6913 {
6914 	void *record = data->raw->data;
6915 
6916 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6917 		return 1;
6918 	return 0;
6919 }
6920 
6921 static int perf_tp_event_match(struct perf_event *event,
6922 				struct perf_sample_data *data,
6923 				struct pt_regs *regs)
6924 {
6925 	if (event->hw.state & PERF_HES_STOPPED)
6926 		return 0;
6927 	/*
6928 	 * All tracepoints are from kernel-space.
6929 	 */
6930 	if (event->attr.exclude_kernel)
6931 		return 0;
6932 
6933 	if (!perf_tp_filter_match(event, data))
6934 		return 0;
6935 
6936 	return 1;
6937 }
6938 
6939 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6940 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6941 		   struct task_struct *task)
6942 {
6943 	struct perf_sample_data data;
6944 	struct perf_event *event;
6945 
6946 	struct perf_raw_record raw = {
6947 		.size = entry_size,
6948 		.data = record,
6949 	};
6950 
6951 	perf_sample_data_init(&data, addr, 0);
6952 	data.raw = &raw;
6953 
6954 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6955 		if (perf_tp_event_match(event, &data, regs))
6956 			perf_swevent_event(event, count, &data, regs);
6957 	}
6958 
6959 	/*
6960 	 * If we got specified a target task, also iterate its context and
6961 	 * deliver this event there too.
6962 	 */
6963 	if (task && task != current) {
6964 		struct perf_event_context *ctx;
6965 		struct trace_entry *entry = record;
6966 
6967 		rcu_read_lock();
6968 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6969 		if (!ctx)
6970 			goto unlock;
6971 
6972 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6973 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6974 				continue;
6975 			if (event->attr.config != entry->type)
6976 				continue;
6977 			if (perf_tp_event_match(event, &data, regs))
6978 				perf_swevent_event(event, count, &data, regs);
6979 		}
6980 unlock:
6981 		rcu_read_unlock();
6982 	}
6983 
6984 	perf_swevent_put_recursion_context(rctx);
6985 }
6986 EXPORT_SYMBOL_GPL(perf_tp_event);
6987 
6988 static void tp_perf_event_destroy(struct perf_event *event)
6989 {
6990 	perf_trace_destroy(event);
6991 }
6992 
6993 static int perf_tp_event_init(struct perf_event *event)
6994 {
6995 	int err;
6996 
6997 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6998 		return -ENOENT;
6999 
7000 	/*
7001 	 * no branch sampling for tracepoint events
7002 	 */
7003 	if (has_branch_stack(event))
7004 		return -EOPNOTSUPP;
7005 
7006 	err = perf_trace_init(event);
7007 	if (err)
7008 		return err;
7009 
7010 	event->destroy = tp_perf_event_destroy;
7011 
7012 	return 0;
7013 }
7014 
7015 static struct pmu perf_tracepoint = {
7016 	.task_ctx_nr	= perf_sw_context,
7017 
7018 	.event_init	= perf_tp_event_init,
7019 	.add		= perf_trace_add,
7020 	.del		= perf_trace_del,
7021 	.start		= perf_swevent_start,
7022 	.stop		= perf_swevent_stop,
7023 	.read		= perf_swevent_read,
7024 };
7025 
7026 static inline void perf_tp_register(void)
7027 {
7028 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7029 }
7030 
7031 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7032 {
7033 	char *filter_str;
7034 	int ret;
7035 
7036 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7037 		return -EINVAL;
7038 
7039 	filter_str = strndup_user(arg, PAGE_SIZE);
7040 	if (IS_ERR(filter_str))
7041 		return PTR_ERR(filter_str);
7042 
7043 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7044 
7045 	kfree(filter_str);
7046 	return ret;
7047 }
7048 
7049 static void perf_event_free_filter(struct perf_event *event)
7050 {
7051 	ftrace_profile_free_filter(event);
7052 }
7053 
7054 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7055 {
7056 	struct bpf_prog *prog;
7057 
7058 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7059 		return -EINVAL;
7060 
7061 	if (event->tp_event->prog)
7062 		return -EEXIST;
7063 
7064 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7065 		/* bpf programs can only be attached to u/kprobes */
7066 		return -EINVAL;
7067 
7068 	prog = bpf_prog_get(prog_fd);
7069 	if (IS_ERR(prog))
7070 		return PTR_ERR(prog);
7071 
7072 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7073 		/* valid fd, but invalid bpf program type */
7074 		bpf_prog_put(prog);
7075 		return -EINVAL;
7076 	}
7077 
7078 	event->tp_event->prog = prog;
7079 
7080 	return 0;
7081 }
7082 
7083 static void perf_event_free_bpf_prog(struct perf_event *event)
7084 {
7085 	struct bpf_prog *prog;
7086 
7087 	if (!event->tp_event)
7088 		return;
7089 
7090 	prog = event->tp_event->prog;
7091 	if (prog) {
7092 		event->tp_event->prog = NULL;
7093 		bpf_prog_put(prog);
7094 	}
7095 }
7096 
7097 #else
7098 
7099 static inline void perf_tp_register(void)
7100 {
7101 }
7102 
7103 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7104 {
7105 	return -ENOENT;
7106 }
7107 
7108 static void perf_event_free_filter(struct perf_event *event)
7109 {
7110 }
7111 
7112 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7113 {
7114 	return -ENOENT;
7115 }
7116 
7117 static void perf_event_free_bpf_prog(struct perf_event *event)
7118 {
7119 }
7120 #endif /* CONFIG_EVENT_TRACING */
7121 
7122 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7123 void perf_bp_event(struct perf_event *bp, void *data)
7124 {
7125 	struct perf_sample_data sample;
7126 	struct pt_regs *regs = data;
7127 
7128 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7129 
7130 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7131 		perf_swevent_event(bp, 1, &sample, regs);
7132 }
7133 #endif
7134 
7135 /*
7136  * hrtimer based swevent callback
7137  */
7138 
7139 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7140 {
7141 	enum hrtimer_restart ret = HRTIMER_RESTART;
7142 	struct perf_sample_data data;
7143 	struct pt_regs *regs;
7144 	struct perf_event *event;
7145 	u64 period;
7146 
7147 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7148 
7149 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7150 		return HRTIMER_NORESTART;
7151 
7152 	event->pmu->read(event);
7153 
7154 	perf_sample_data_init(&data, 0, event->hw.last_period);
7155 	regs = get_irq_regs();
7156 
7157 	if (regs && !perf_exclude_event(event, regs)) {
7158 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7159 			if (__perf_event_overflow(event, 1, &data, regs))
7160 				ret = HRTIMER_NORESTART;
7161 	}
7162 
7163 	period = max_t(u64, 10000, event->hw.sample_period);
7164 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7165 
7166 	return ret;
7167 }
7168 
7169 static void perf_swevent_start_hrtimer(struct perf_event *event)
7170 {
7171 	struct hw_perf_event *hwc = &event->hw;
7172 	s64 period;
7173 
7174 	if (!is_sampling_event(event))
7175 		return;
7176 
7177 	period = local64_read(&hwc->period_left);
7178 	if (period) {
7179 		if (period < 0)
7180 			period = 10000;
7181 
7182 		local64_set(&hwc->period_left, 0);
7183 	} else {
7184 		period = max_t(u64, 10000, hwc->sample_period);
7185 	}
7186 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7187 		      HRTIMER_MODE_REL_PINNED);
7188 }
7189 
7190 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7191 {
7192 	struct hw_perf_event *hwc = &event->hw;
7193 
7194 	if (is_sampling_event(event)) {
7195 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7196 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7197 
7198 		hrtimer_cancel(&hwc->hrtimer);
7199 	}
7200 }
7201 
7202 static void perf_swevent_init_hrtimer(struct perf_event *event)
7203 {
7204 	struct hw_perf_event *hwc = &event->hw;
7205 
7206 	if (!is_sampling_event(event))
7207 		return;
7208 
7209 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7210 	hwc->hrtimer.function = perf_swevent_hrtimer;
7211 
7212 	/*
7213 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7214 	 * mapping and avoid the whole period adjust feedback stuff.
7215 	 */
7216 	if (event->attr.freq) {
7217 		long freq = event->attr.sample_freq;
7218 
7219 		event->attr.sample_period = NSEC_PER_SEC / freq;
7220 		hwc->sample_period = event->attr.sample_period;
7221 		local64_set(&hwc->period_left, hwc->sample_period);
7222 		hwc->last_period = hwc->sample_period;
7223 		event->attr.freq = 0;
7224 	}
7225 }
7226 
7227 /*
7228  * Software event: cpu wall time clock
7229  */
7230 
7231 static void cpu_clock_event_update(struct perf_event *event)
7232 {
7233 	s64 prev;
7234 	u64 now;
7235 
7236 	now = local_clock();
7237 	prev = local64_xchg(&event->hw.prev_count, now);
7238 	local64_add(now - prev, &event->count);
7239 }
7240 
7241 static void cpu_clock_event_start(struct perf_event *event, int flags)
7242 {
7243 	local64_set(&event->hw.prev_count, local_clock());
7244 	perf_swevent_start_hrtimer(event);
7245 }
7246 
7247 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7248 {
7249 	perf_swevent_cancel_hrtimer(event);
7250 	cpu_clock_event_update(event);
7251 }
7252 
7253 static int cpu_clock_event_add(struct perf_event *event, int flags)
7254 {
7255 	if (flags & PERF_EF_START)
7256 		cpu_clock_event_start(event, flags);
7257 	perf_event_update_userpage(event);
7258 
7259 	return 0;
7260 }
7261 
7262 static void cpu_clock_event_del(struct perf_event *event, int flags)
7263 {
7264 	cpu_clock_event_stop(event, flags);
7265 }
7266 
7267 static void cpu_clock_event_read(struct perf_event *event)
7268 {
7269 	cpu_clock_event_update(event);
7270 }
7271 
7272 static int cpu_clock_event_init(struct perf_event *event)
7273 {
7274 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7275 		return -ENOENT;
7276 
7277 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7278 		return -ENOENT;
7279 
7280 	/*
7281 	 * no branch sampling for software events
7282 	 */
7283 	if (has_branch_stack(event))
7284 		return -EOPNOTSUPP;
7285 
7286 	perf_swevent_init_hrtimer(event);
7287 
7288 	return 0;
7289 }
7290 
7291 static struct pmu perf_cpu_clock = {
7292 	.task_ctx_nr	= perf_sw_context,
7293 
7294 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7295 
7296 	.event_init	= cpu_clock_event_init,
7297 	.add		= cpu_clock_event_add,
7298 	.del		= cpu_clock_event_del,
7299 	.start		= cpu_clock_event_start,
7300 	.stop		= cpu_clock_event_stop,
7301 	.read		= cpu_clock_event_read,
7302 };
7303 
7304 /*
7305  * Software event: task time clock
7306  */
7307 
7308 static void task_clock_event_update(struct perf_event *event, u64 now)
7309 {
7310 	u64 prev;
7311 	s64 delta;
7312 
7313 	prev = local64_xchg(&event->hw.prev_count, now);
7314 	delta = now - prev;
7315 	local64_add(delta, &event->count);
7316 }
7317 
7318 static void task_clock_event_start(struct perf_event *event, int flags)
7319 {
7320 	local64_set(&event->hw.prev_count, event->ctx->time);
7321 	perf_swevent_start_hrtimer(event);
7322 }
7323 
7324 static void task_clock_event_stop(struct perf_event *event, int flags)
7325 {
7326 	perf_swevent_cancel_hrtimer(event);
7327 	task_clock_event_update(event, event->ctx->time);
7328 }
7329 
7330 static int task_clock_event_add(struct perf_event *event, int flags)
7331 {
7332 	if (flags & PERF_EF_START)
7333 		task_clock_event_start(event, flags);
7334 	perf_event_update_userpage(event);
7335 
7336 	return 0;
7337 }
7338 
7339 static void task_clock_event_del(struct perf_event *event, int flags)
7340 {
7341 	task_clock_event_stop(event, PERF_EF_UPDATE);
7342 }
7343 
7344 static void task_clock_event_read(struct perf_event *event)
7345 {
7346 	u64 now = perf_clock();
7347 	u64 delta = now - event->ctx->timestamp;
7348 	u64 time = event->ctx->time + delta;
7349 
7350 	task_clock_event_update(event, time);
7351 }
7352 
7353 static int task_clock_event_init(struct perf_event *event)
7354 {
7355 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7356 		return -ENOENT;
7357 
7358 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7359 		return -ENOENT;
7360 
7361 	/*
7362 	 * no branch sampling for software events
7363 	 */
7364 	if (has_branch_stack(event))
7365 		return -EOPNOTSUPP;
7366 
7367 	perf_swevent_init_hrtimer(event);
7368 
7369 	return 0;
7370 }
7371 
7372 static struct pmu perf_task_clock = {
7373 	.task_ctx_nr	= perf_sw_context,
7374 
7375 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7376 
7377 	.event_init	= task_clock_event_init,
7378 	.add		= task_clock_event_add,
7379 	.del		= task_clock_event_del,
7380 	.start		= task_clock_event_start,
7381 	.stop		= task_clock_event_stop,
7382 	.read		= task_clock_event_read,
7383 };
7384 
7385 static void perf_pmu_nop_void(struct pmu *pmu)
7386 {
7387 }
7388 
7389 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7390 {
7391 }
7392 
7393 static int perf_pmu_nop_int(struct pmu *pmu)
7394 {
7395 	return 0;
7396 }
7397 
7398 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7399 
7400 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7401 {
7402 	__this_cpu_write(nop_txn_flags, flags);
7403 
7404 	if (flags & ~PERF_PMU_TXN_ADD)
7405 		return;
7406 
7407 	perf_pmu_disable(pmu);
7408 }
7409 
7410 static int perf_pmu_commit_txn(struct pmu *pmu)
7411 {
7412 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7413 
7414 	__this_cpu_write(nop_txn_flags, 0);
7415 
7416 	if (flags & ~PERF_PMU_TXN_ADD)
7417 		return 0;
7418 
7419 	perf_pmu_enable(pmu);
7420 	return 0;
7421 }
7422 
7423 static void perf_pmu_cancel_txn(struct pmu *pmu)
7424 {
7425 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7426 
7427 	__this_cpu_write(nop_txn_flags, 0);
7428 
7429 	if (flags & ~PERF_PMU_TXN_ADD)
7430 		return;
7431 
7432 	perf_pmu_enable(pmu);
7433 }
7434 
7435 static int perf_event_idx_default(struct perf_event *event)
7436 {
7437 	return 0;
7438 }
7439 
7440 /*
7441  * Ensures all contexts with the same task_ctx_nr have the same
7442  * pmu_cpu_context too.
7443  */
7444 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7445 {
7446 	struct pmu *pmu;
7447 
7448 	if (ctxn < 0)
7449 		return NULL;
7450 
7451 	list_for_each_entry(pmu, &pmus, entry) {
7452 		if (pmu->task_ctx_nr == ctxn)
7453 			return pmu->pmu_cpu_context;
7454 	}
7455 
7456 	return NULL;
7457 }
7458 
7459 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7460 {
7461 	int cpu;
7462 
7463 	for_each_possible_cpu(cpu) {
7464 		struct perf_cpu_context *cpuctx;
7465 
7466 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7467 
7468 		if (cpuctx->unique_pmu == old_pmu)
7469 			cpuctx->unique_pmu = pmu;
7470 	}
7471 }
7472 
7473 static void free_pmu_context(struct pmu *pmu)
7474 {
7475 	struct pmu *i;
7476 
7477 	mutex_lock(&pmus_lock);
7478 	/*
7479 	 * Like a real lame refcount.
7480 	 */
7481 	list_for_each_entry(i, &pmus, entry) {
7482 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7483 			update_pmu_context(i, pmu);
7484 			goto out;
7485 		}
7486 	}
7487 
7488 	free_percpu(pmu->pmu_cpu_context);
7489 out:
7490 	mutex_unlock(&pmus_lock);
7491 }
7492 static struct idr pmu_idr;
7493 
7494 static ssize_t
7495 type_show(struct device *dev, struct device_attribute *attr, char *page)
7496 {
7497 	struct pmu *pmu = dev_get_drvdata(dev);
7498 
7499 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7500 }
7501 static DEVICE_ATTR_RO(type);
7502 
7503 static ssize_t
7504 perf_event_mux_interval_ms_show(struct device *dev,
7505 				struct device_attribute *attr,
7506 				char *page)
7507 {
7508 	struct pmu *pmu = dev_get_drvdata(dev);
7509 
7510 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7511 }
7512 
7513 static DEFINE_MUTEX(mux_interval_mutex);
7514 
7515 static ssize_t
7516 perf_event_mux_interval_ms_store(struct device *dev,
7517 				 struct device_attribute *attr,
7518 				 const char *buf, size_t count)
7519 {
7520 	struct pmu *pmu = dev_get_drvdata(dev);
7521 	int timer, cpu, ret;
7522 
7523 	ret = kstrtoint(buf, 0, &timer);
7524 	if (ret)
7525 		return ret;
7526 
7527 	if (timer < 1)
7528 		return -EINVAL;
7529 
7530 	/* same value, noting to do */
7531 	if (timer == pmu->hrtimer_interval_ms)
7532 		return count;
7533 
7534 	mutex_lock(&mux_interval_mutex);
7535 	pmu->hrtimer_interval_ms = timer;
7536 
7537 	/* update all cpuctx for this PMU */
7538 	get_online_cpus();
7539 	for_each_online_cpu(cpu) {
7540 		struct perf_cpu_context *cpuctx;
7541 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7542 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7543 
7544 		cpu_function_call(cpu,
7545 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7546 	}
7547 	put_online_cpus();
7548 	mutex_unlock(&mux_interval_mutex);
7549 
7550 	return count;
7551 }
7552 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7553 
7554 static struct attribute *pmu_dev_attrs[] = {
7555 	&dev_attr_type.attr,
7556 	&dev_attr_perf_event_mux_interval_ms.attr,
7557 	NULL,
7558 };
7559 ATTRIBUTE_GROUPS(pmu_dev);
7560 
7561 static int pmu_bus_running;
7562 static struct bus_type pmu_bus = {
7563 	.name		= "event_source",
7564 	.dev_groups	= pmu_dev_groups,
7565 };
7566 
7567 static void pmu_dev_release(struct device *dev)
7568 {
7569 	kfree(dev);
7570 }
7571 
7572 static int pmu_dev_alloc(struct pmu *pmu)
7573 {
7574 	int ret = -ENOMEM;
7575 
7576 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7577 	if (!pmu->dev)
7578 		goto out;
7579 
7580 	pmu->dev->groups = pmu->attr_groups;
7581 	device_initialize(pmu->dev);
7582 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7583 	if (ret)
7584 		goto free_dev;
7585 
7586 	dev_set_drvdata(pmu->dev, pmu);
7587 	pmu->dev->bus = &pmu_bus;
7588 	pmu->dev->release = pmu_dev_release;
7589 	ret = device_add(pmu->dev);
7590 	if (ret)
7591 		goto free_dev;
7592 
7593 out:
7594 	return ret;
7595 
7596 free_dev:
7597 	put_device(pmu->dev);
7598 	goto out;
7599 }
7600 
7601 static struct lock_class_key cpuctx_mutex;
7602 static struct lock_class_key cpuctx_lock;
7603 
7604 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7605 {
7606 	int cpu, ret;
7607 
7608 	mutex_lock(&pmus_lock);
7609 	ret = -ENOMEM;
7610 	pmu->pmu_disable_count = alloc_percpu(int);
7611 	if (!pmu->pmu_disable_count)
7612 		goto unlock;
7613 
7614 	pmu->type = -1;
7615 	if (!name)
7616 		goto skip_type;
7617 	pmu->name = name;
7618 
7619 	if (type < 0) {
7620 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7621 		if (type < 0) {
7622 			ret = type;
7623 			goto free_pdc;
7624 		}
7625 	}
7626 	pmu->type = type;
7627 
7628 	if (pmu_bus_running) {
7629 		ret = pmu_dev_alloc(pmu);
7630 		if (ret)
7631 			goto free_idr;
7632 	}
7633 
7634 skip_type:
7635 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7636 	if (pmu->pmu_cpu_context)
7637 		goto got_cpu_context;
7638 
7639 	ret = -ENOMEM;
7640 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7641 	if (!pmu->pmu_cpu_context)
7642 		goto free_dev;
7643 
7644 	for_each_possible_cpu(cpu) {
7645 		struct perf_cpu_context *cpuctx;
7646 
7647 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7648 		__perf_event_init_context(&cpuctx->ctx);
7649 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7650 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7651 		cpuctx->ctx.pmu = pmu;
7652 
7653 		__perf_mux_hrtimer_init(cpuctx, cpu);
7654 
7655 		cpuctx->unique_pmu = pmu;
7656 	}
7657 
7658 got_cpu_context:
7659 	if (!pmu->start_txn) {
7660 		if (pmu->pmu_enable) {
7661 			/*
7662 			 * If we have pmu_enable/pmu_disable calls, install
7663 			 * transaction stubs that use that to try and batch
7664 			 * hardware accesses.
7665 			 */
7666 			pmu->start_txn  = perf_pmu_start_txn;
7667 			pmu->commit_txn = perf_pmu_commit_txn;
7668 			pmu->cancel_txn = perf_pmu_cancel_txn;
7669 		} else {
7670 			pmu->start_txn  = perf_pmu_nop_txn;
7671 			pmu->commit_txn = perf_pmu_nop_int;
7672 			pmu->cancel_txn = perf_pmu_nop_void;
7673 		}
7674 	}
7675 
7676 	if (!pmu->pmu_enable) {
7677 		pmu->pmu_enable  = perf_pmu_nop_void;
7678 		pmu->pmu_disable = perf_pmu_nop_void;
7679 	}
7680 
7681 	if (!pmu->event_idx)
7682 		pmu->event_idx = perf_event_idx_default;
7683 
7684 	list_add_rcu(&pmu->entry, &pmus);
7685 	atomic_set(&pmu->exclusive_cnt, 0);
7686 	ret = 0;
7687 unlock:
7688 	mutex_unlock(&pmus_lock);
7689 
7690 	return ret;
7691 
7692 free_dev:
7693 	device_del(pmu->dev);
7694 	put_device(pmu->dev);
7695 
7696 free_idr:
7697 	if (pmu->type >= PERF_TYPE_MAX)
7698 		idr_remove(&pmu_idr, pmu->type);
7699 
7700 free_pdc:
7701 	free_percpu(pmu->pmu_disable_count);
7702 	goto unlock;
7703 }
7704 EXPORT_SYMBOL_GPL(perf_pmu_register);
7705 
7706 void perf_pmu_unregister(struct pmu *pmu)
7707 {
7708 	mutex_lock(&pmus_lock);
7709 	list_del_rcu(&pmu->entry);
7710 	mutex_unlock(&pmus_lock);
7711 
7712 	/*
7713 	 * We dereference the pmu list under both SRCU and regular RCU, so
7714 	 * synchronize against both of those.
7715 	 */
7716 	synchronize_srcu(&pmus_srcu);
7717 	synchronize_rcu();
7718 
7719 	free_percpu(pmu->pmu_disable_count);
7720 	if (pmu->type >= PERF_TYPE_MAX)
7721 		idr_remove(&pmu_idr, pmu->type);
7722 	device_del(pmu->dev);
7723 	put_device(pmu->dev);
7724 	free_pmu_context(pmu);
7725 }
7726 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7727 
7728 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7729 {
7730 	struct perf_event_context *ctx = NULL;
7731 	int ret;
7732 
7733 	if (!try_module_get(pmu->module))
7734 		return -ENODEV;
7735 
7736 	if (event->group_leader != event) {
7737 		/*
7738 		 * This ctx->mutex can nest when we're called through
7739 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7740 		 */
7741 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7742 						 SINGLE_DEPTH_NESTING);
7743 		BUG_ON(!ctx);
7744 	}
7745 
7746 	event->pmu = pmu;
7747 	ret = pmu->event_init(event);
7748 
7749 	if (ctx)
7750 		perf_event_ctx_unlock(event->group_leader, ctx);
7751 
7752 	if (ret)
7753 		module_put(pmu->module);
7754 
7755 	return ret;
7756 }
7757 
7758 static struct pmu *perf_init_event(struct perf_event *event)
7759 {
7760 	struct pmu *pmu = NULL;
7761 	int idx;
7762 	int ret;
7763 
7764 	idx = srcu_read_lock(&pmus_srcu);
7765 
7766 	rcu_read_lock();
7767 	pmu = idr_find(&pmu_idr, event->attr.type);
7768 	rcu_read_unlock();
7769 	if (pmu) {
7770 		ret = perf_try_init_event(pmu, event);
7771 		if (ret)
7772 			pmu = ERR_PTR(ret);
7773 		goto unlock;
7774 	}
7775 
7776 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7777 		ret = perf_try_init_event(pmu, event);
7778 		if (!ret)
7779 			goto unlock;
7780 
7781 		if (ret != -ENOENT) {
7782 			pmu = ERR_PTR(ret);
7783 			goto unlock;
7784 		}
7785 	}
7786 	pmu = ERR_PTR(-ENOENT);
7787 unlock:
7788 	srcu_read_unlock(&pmus_srcu, idx);
7789 
7790 	return pmu;
7791 }
7792 
7793 static void account_event_cpu(struct perf_event *event, int cpu)
7794 {
7795 	if (event->parent)
7796 		return;
7797 
7798 	if (is_cgroup_event(event))
7799 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7800 }
7801 
7802 static void account_event(struct perf_event *event)
7803 {
7804 	if (event->parent)
7805 		return;
7806 
7807 	if (event->attach_state & PERF_ATTACH_TASK)
7808 		static_key_slow_inc(&perf_sched_events.key);
7809 	if (event->attr.mmap || event->attr.mmap_data)
7810 		atomic_inc(&nr_mmap_events);
7811 	if (event->attr.comm)
7812 		atomic_inc(&nr_comm_events);
7813 	if (event->attr.task)
7814 		atomic_inc(&nr_task_events);
7815 	if (event->attr.freq) {
7816 		if (atomic_inc_return(&nr_freq_events) == 1)
7817 			tick_nohz_full_kick_all();
7818 	}
7819 	if (event->attr.context_switch) {
7820 		atomic_inc(&nr_switch_events);
7821 		static_key_slow_inc(&perf_sched_events.key);
7822 	}
7823 	if (has_branch_stack(event))
7824 		static_key_slow_inc(&perf_sched_events.key);
7825 	if (is_cgroup_event(event))
7826 		static_key_slow_inc(&perf_sched_events.key);
7827 
7828 	account_event_cpu(event, event->cpu);
7829 }
7830 
7831 /*
7832  * Allocate and initialize a event structure
7833  */
7834 static struct perf_event *
7835 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7836 		 struct task_struct *task,
7837 		 struct perf_event *group_leader,
7838 		 struct perf_event *parent_event,
7839 		 perf_overflow_handler_t overflow_handler,
7840 		 void *context, int cgroup_fd)
7841 {
7842 	struct pmu *pmu;
7843 	struct perf_event *event;
7844 	struct hw_perf_event *hwc;
7845 	long err = -EINVAL;
7846 
7847 	if ((unsigned)cpu >= nr_cpu_ids) {
7848 		if (!task || cpu != -1)
7849 			return ERR_PTR(-EINVAL);
7850 	}
7851 
7852 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7853 	if (!event)
7854 		return ERR_PTR(-ENOMEM);
7855 
7856 	/*
7857 	 * Single events are their own group leaders, with an
7858 	 * empty sibling list:
7859 	 */
7860 	if (!group_leader)
7861 		group_leader = event;
7862 
7863 	mutex_init(&event->child_mutex);
7864 	INIT_LIST_HEAD(&event->child_list);
7865 
7866 	INIT_LIST_HEAD(&event->group_entry);
7867 	INIT_LIST_HEAD(&event->event_entry);
7868 	INIT_LIST_HEAD(&event->sibling_list);
7869 	INIT_LIST_HEAD(&event->rb_entry);
7870 	INIT_LIST_HEAD(&event->active_entry);
7871 	INIT_HLIST_NODE(&event->hlist_entry);
7872 
7873 
7874 	init_waitqueue_head(&event->waitq);
7875 	init_irq_work(&event->pending, perf_pending_event);
7876 
7877 	mutex_init(&event->mmap_mutex);
7878 
7879 	atomic_long_set(&event->refcount, 1);
7880 	event->cpu		= cpu;
7881 	event->attr		= *attr;
7882 	event->group_leader	= group_leader;
7883 	event->pmu		= NULL;
7884 	event->oncpu		= -1;
7885 
7886 	event->parent		= parent_event;
7887 
7888 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7889 	event->id		= atomic64_inc_return(&perf_event_id);
7890 
7891 	event->state		= PERF_EVENT_STATE_INACTIVE;
7892 
7893 	if (task) {
7894 		event->attach_state = PERF_ATTACH_TASK;
7895 		/*
7896 		 * XXX pmu::event_init needs to know what task to account to
7897 		 * and we cannot use the ctx information because we need the
7898 		 * pmu before we get a ctx.
7899 		 */
7900 		event->hw.target = task;
7901 	}
7902 
7903 	event->clock = &local_clock;
7904 	if (parent_event)
7905 		event->clock = parent_event->clock;
7906 
7907 	if (!overflow_handler && parent_event) {
7908 		overflow_handler = parent_event->overflow_handler;
7909 		context = parent_event->overflow_handler_context;
7910 	}
7911 
7912 	event->overflow_handler	= overflow_handler;
7913 	event->overflow_handler_context = context;
7914 
7915 	perf_event__state_init(event);
7916 
7917 	pmu = NULL;
7918 
7919 	hwc = &event->hw;
7920 	hwc->sample_period = attr->sample_period;
7921 	if (attr->freq && attr->sample_freq)
7922 		hwc->sample_period = 1;
7923 	hwc->last_period = hwc->sample_period;
7924 
7925 	local64_set(&hwc->period_left, hwc->sample_period);
7926 
7927 	/*
7928 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7929 	 */
7930 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7931 		goto err_ns;
7932 
7933 	if (!has_branch_stack(event))
7934 		event->attr.branch_sample_type = 0;
7935 
7936 	if (cgroup_fd != -1) {
7937 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7938 		if (err)
7939 			goto err_ns;
7940 	}
7941 
7942 	pmu = perf_init_event(event);
7943 	if (!pmu)
7944 		goto err_ns;
7945 	else if (IS_ERR(pmu)) {
7946 		err = PTR_ERR(pmu);
7947 		goto err_ns;
7948 	}
7949 
7950 	err = exclusive_event_init(event);
7951 	if (err)
7952 		goto err_pmu;
7953 
7954 	if (!event->parent) {
7955 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7956 			err = get_callchain_buffers();
7957 			if (err)
7958 				goto err_per_task;
7959 		}
7960 	}
7961 
7962 	return event;
7963 
7964 err_per_task:
7965 	exclusive_event_destroy(event);
7966 
7967 err_pmu:
7968 	if (event->destroy)
7969 		event->destroy(event);
7970 	module_put(pmu->module);
7971 err_ns:
7972 	if (is_cgroup_event(event))
7973 		perf_detach_cgroup(event);
7974 	if (event->ns)
7975 		put_pid_ns(event->ns);
7976 	kfree(event);
7977 
7978 	return ERR_PTR(err);
7979 }
7980 
7981 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7982 			  struct perf_event_attr *attr)
7983 {
7984 	u32 size;
7985 	int ret;
7986 
7987 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7988 		return -EFAULT;
7989 
7990 	/*
7991 	 * zero the full structure, so that a short copy will be nice.
7992 	 */
7993 	memset(attr, 0, sizeof(*attr));
7994 
7995 	ret = get_user(size, &uattr->size);
7996 	if (ret)
7997 		return ret;
7998 
7999 	if (size > PAGE_SIZE)	/* silly large */
8000 		goto err_size;
8001 
8002 	if (!size)		/* abi compat */
8003 		size = PERF_ATTR_SIZE_VER0;
8004 
8005 	if (size < PERF_ATTR_SIZE_VER0)
8006 		goto err_size;
8007 
8008 	/*
8009 	 * If we're handed a bigger struct than we know of,
8010 	 * ensure all the unknown bits are 0 - i.e. new
8011 	 * user-space does not rely on any kernel feature
8012 	 * extensions we dont know about yet.
8013 	 */
8014 	if (size > sizeof(*attr)) {
8015 		unsigned char __user *addr;
8016 		unsigned char __user *end;
8017 		unsigned char val;
8018 
8019 		addr = (void __user *)uattr + sizeof(*attr);
8020 		end  = (void __user *)uattr + size;
8021 
8022 		for (; addr < end; addr++) {
8023 			ret = get_user(val, addr);
8024 			if (ret)
8025 				return ret;
8026 			if (val)
8027 				goto err_size;
8028 		}
8029 		size = sizeof(*attr);
8030 	}
8031 
8032 	ret = copy_from_user(attr, uattr, size);
8033 	if (ret)
8034 		return -EFAULT;
8035 
8036 	if (attr->__reserved_1)
8037 		return -EINVAL;
8038 
8039 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8040 		return -EINVAL;
8041 
8042 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8043 		return -EINVAL;
8044 
8045 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8046 		u64 mask = attr->branch_sample_type;
8047 
8048 		/* only using defined bits */
8049 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8050 			return -EINVAL;
8051 
8052 		/* at least one branch bit must be set */
8053 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8054 			return -EINVAL;
8055 
8056 		/* propagate priv level, when not set for branch */
8057 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8058 
8059 			/* exclude_kernel checked on syscall entry */
8060 			if (!attr->exclude_kernel)
8061 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8062 
8063 			if (!attr->exclude_user)
8064 				mask |= PERF_SAMPLE_BRANCH_USER;
8065 
8066 			if (!attr->exclude_hv)
8067 				mask |= PERF_SAMPLE_BRANCH_HV;
8068 			/*
8069 			 * adjust user setting (for HW filter setup)
8070 			 */
8071 			attr->branch_sample_type = mask;
8072 		}
8073 		/* privileged levels capture (kernel, hv): check permissions */
8074 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8075 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8076 			return -EACCES;
8077 	}
8078 
8079 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8080 		ret = perf_reg_validate(attr->sample_regs_user);
8081 		if (ret)
8082 			return ret;
8083 	}
8084 
8085 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8086 		if (!arch_perf_have_user_stack_dump())
8087 			return -ENOSYS;
8088 
8089 		/*
8090 		 * We have __u32 type for the size, but so far
8091 		 * we can only use __u16 as maximum due to the
8092 		 * __u16 sample size limit.
8093 		 */
8094 		if (attr->sample_stack_user >= USHRT_MAX)
8095 			ret = -EINVAL;
8096 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8097 			ret = -EINVAL;
8098 	}
8099 
8100 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8101 		ret = perf_reg_validate(attr->sample_regs_intr);
8102 out:
8103 	return ret;
8104 
8105 err_size:
8106 	put_user(sizeof(*attr), &uattr->size);
8107 	ret = -E2BIG;
8108 	goto out;
8109 }
8110 
8111 static int
8112 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8113 {
8114 	struct ring_buffer *rb = NULL;
8115 	int ret = -EINVAL;
8116 
8117 	if (!output_event)
8118 		goto set;
8119 
8120 	/* don't allow circular references */
8121 	if (event == output_event)
8122 		goto out;
8123 
8124 	/*
8125 	 * Don't allow cross-cpu buffers
8126 	 */
8127 	if (output_event->cpu != event->cpu)
8128 		goto out;
8129 
8130 	/*
8131 	 * If its not a per-cpu rb, it must be the same task.
8132 	 */
8133 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8134 		goto out;
8135 
8136 	/*
8137 	 * Mixing clocks in the same buffer is trouble you don't need.
8138 	 */
8139 	if (output_event->clock != event->clock)
8140 		goto out;
8141 
8142 	/*
8143 	 * If both events generate aux data, they must be on the same PMU
8144 	 */
8145 	if (has_aux(event) && has_aux(output_event) &&
8146 	    event->pmu != output_event->pmu)
8147 		goto out;
8148 
8149 set:
8150 	mutex_lock(&event->mmap_mutex);
8151 	/* Can't redirect output if we've got an active mmap() */
8152 	if (atomic_read(&event->mmap_count))
8153 		goto unlock;
8154 
8155 	if (output_event) {
8156 		/* get the rb we want to redirect to */
8157 		rb = ring_buffer_get(output_event);
8158 		if (!rb)
8159 			goto unlock;
8160 	}
8161 
8162 	ring_buffer_attach(event, rb);
8163 
8164 	ret = 0;
8165 unlock:
8166 	mutex_unlock(&event->mmap_mutex);
8167 
8168 out:
8169 	return ret;
8170 }
8171 
8172 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8173 {
8174 	if (b < a)
8175 		swap(a, b);
8176 
8177 	mutex_lock(a);
8178 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8179 }
8180 
8181 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8182 {
8183 	bool nmi_safe = false;
8184 
8185 	switch (clk_id) {
8186 	case CLOCK_MONOTONIC:
8187 		event->clock = &ktime_get_mono_fast_ns;
8188 		nmi_safe = true;
8189 		break;
8190 
8191 	case CLOCK_MONOTONIC_RAW:
8192 		event->clock = &ktime_get_raw_fast_ns;
8193 		nmi_safe = true;
8194 		break;
8195 
8196 	case CLOCK_REALTIME:
8197 		event->clock = &ktime_get_real_ns;
8198 		break;
8199 
8200 	case CLOCK_BOOTTIME:
8201 		event->clock = &ktime_get_boot_ns;
8202 		break;
8203 
8204 	case CLOCK_TAI:
8205 		event->clock = &ktime_get_tai_ns;
8206 		break;
8207 
8208 	default:
8209 		return -EINVAL;
8210 	}
8211 
8212 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8213 		return -EINVAL;
8214 
8215 	return 0;
8216 }
8217 
8218 /**
8219  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8220  *
8221  * @attr_uptr:	event_id type attributes for monitoring/sampling
8222  * @pid:		target pid
8223  * @cpu:		target cpu
8224  * @group_fd:		group leader event fd
8225  */
8226 SYSCALL_DEFINE5(perf_event_open,
8227 		struct perf_event_attr __user *, attr_uptr,
8228 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8229 {
8230 	struct perf_event *group_leader = NULL, *output_event = NULL;
8231 	struct perf_event *event, *sibling;
8232 	struct perf_event_attr attr;
8233 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8234 	struct file *event_file = NULL;
8235 	struct fd group = {NULL, 0};
8236 	struct task_struct *task = NULL;
8237 	struct pmu *pmu;
8238 	int event_fd;
8239 	int move_group = 0;
8240 	int err;
8241 	int f_flags = O_RDWR;
8242 	int cgroup_fd = -1;
8243 
8244 	/* for future expandability... */
8245 	if (flags & ~PERF_FLAG_ALL)
8246 		return -EINVAL;
8247 
8248 	err = perf_copy_attr(attr_uptr, &attr);
8249 	if (err)
8250 		return err;
8251 
8252 	if (!attr.exclude_kernel) {
8253 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8254 			return -EACCES;
8255 	}
8256 
8257 	if (attr.freq) {
8258 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8259 			return -EINVAL;
8260 	} else {
8261 		if (attr.sample_period & (1ULL << 63))
8262 			return -EINVAL;
8263 	}
8264 
8265 	/*
8266 	 * In cgroup mode, the pid argument is used to pass the fd
8267 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8268 	 * designates the cpu on which to monitor threads from that
8269 	 * cgroup.
8270 	 */
8271 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8272 		return -EINVAL;
8273 
8274 	if (flags & PERF_FLAG_FD_CLOEXEC)
8275 		f_flags |= O_CLOEXEC;
8276 
8277 	event_fd = get_unused_fd_flags(f_flags);
8278 	if (event_fd < 0)
8279 		return event_fd;
8280 
8281 	if (group_fd != -1) {
8282 		err = perf_fget_light(group_fd, &group);
8283 		if (err)
8284 			goto err_fd;
8285 		group_leader = group.file->private_data;
8286 		if (flags & PERF_FLAG_FD_OUTPUT)
8287 			output_event = group_leader;
8288 		if (flags & PERF_FLAG_FD_NO_GROUP)
8289 			group_leader = NULL;
8290 	}
8291 
8292 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8293 		task = find_lively_task_by_vpid(pid);
8294 		if (IS_ERR(task)) {
8295 			err = PTR_ERR(task);
8296 			goto err_group_fd;
8297 		}
8298 	}
8299 
8300 	if (task && group_leader &&
8301 	    group_leader->attr.inherit != attr.inherit) {
8302 		err = -EINVAL;
8303 		goto err_task;
8304 	}
8305 
8306 	get_online_cpus();
8307 
8308 	if (flags & PERF_FLAG_PID_CGROUP)
8309 		cgroup_fd = pid;
8310 
8311 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8312 				 NULL, NULL, cgroup_fd);
8313 	if (IS_ERR(event)) {
8314 		err = PTR_ERR(event);
8315 		goto err_cpus;
8316 	}
8317 
8318 	if (is_sampling_event(event)) {
8319 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8320 			err = -ENOTSUPP;
8321 			goto err_alloc;
8322 		}
8323 	}
8324 
8325 	account_event(event);
8326 
8327 	/*
8328 	 * Special case software events and allow them to be part of
8329 	 * any hardware group.
8330 	 */
8331 	pmu = event->pmu;
8332 
8333 	if (attr.use_clockid) {
8334 		err = perf_event_set_clock(event, attr.clockid);
8335 		if (err)
8336 			goto err_alloc;
8337 	}
8338 
8339 	if (group_leader &&
8340 	    (is_software_event(event) != is_software_event(group_leader))) {
8341 		if (is_software_event(event)) {
8342 			/*
8343 			 * If event and group_leader are not both a software
8344 			 * event, and event is, then group leader is not.
8345 			 *
8346 			 * Allow the addition of software events to !software
8347 			 * groups, this is safe because software events never
8348 			 * fail to schedule.
8349 			 */
8350 			pmu = group_leader->pmu;
8351 		} else if (is_software_event(group_leader) &&
8352 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8353 			/*
8354 			 * In case the group is a pure software group, and we
8355 			 * try to add a hardware event, move the whole group to
8356 			 * the hardware context.
8357 			 */
8358 			move_group = 1;
8359 		}
8360 	}
8361 
8362 	/*
8363 	 * Get the target context (task or percpu):
8364 	 */
8365 	ctx = find_get_context(pmu, task, event);
8366 	if (IS_ERR(ctx)) {
8367 		err = PTR_ERR(ctx);
8368 		goto err_alloc;
8369 	}
8370 
8371 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8372 		err = -EBUSY;
8373 		goto err_context;
8374 	}
8375 
8376 	if (task) {
8377 		put_task_struct(task);
8378 		task = NULL;
8379 	}
8380 
8381 	/*
8382 	 * Look up the group leader (we will attach this event to it):
8383 	 */
8384 	if (group_leader) {
8385 		err = -EINVAL;
8386 
8387 		/*
8388 		 * Do not allow a recursive hierarchy (this new sibling
8389 		 * becoming part of another group-sibling):
8390 		 */
8391 		if (group_leader->group_leader != group_leader)
8392 			goto err_context;
8393 
8394 		/* All events in a group should have the same clock */
8395 		if (group_leader->clock != event->clock)
8396 			goto err_context;
8397 
8398 		/*
8399 		 * Do not allow to attach to a group in a different
8400 		 * task or CPU context:
8401 		 */
8402 		if (move_group) {
8403 			/*
8404 			 * Make sure we're both on the same task, or both
8405 			 * per-cpu events.
8406 			 */
8407 			if (group_leader->ctx->task != ctx->task)
8408 				goto err_context;
8409 
8410 			/*
8411 			 * Make sure we're both events for the same CPU;
8412 			 * grouping events for different CPUs is broken; since
8413 			 * you can never concurrently schedule them anyhow.
8414 			 */
8415 			if (group_leader->cpu != event->cpu)
8416 				goto err_context;
8417 		} else {
8418 			if (group_leader->ctx != ctx)
8419 				goto err_context;
8420 		}
8421 
8422 		/*
8423 		 * Only a group leader can be exclusive or pinned
8424 		 */
8425 		if (attr.exclusive || attr.pinned)
8426 			goto err_context;
8427 	}
8428 
8429 	if (output_event) {
8430 		err = perf_event_set_output(event, output_event);
8431 		if (err)
8432 			goto err_context;
8433 	}
8434 
8435 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8436 					f_flags);
8437 	if (IS_ERR(event_file)) {
8438 		err = PTR_ERR(event_file);
8439 		goto err_context;
8440 	}
8441 
8442 	if (move_group) {
8443 		gctx = group_leader->ctx;
8444 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8445 	} else {
8446 		mutex_lock(&ctx->mutex);
8447 	}
8448 
8449 	if (!perf_event_validate_size(event)) {
8450 		err = -E2BIG;
8451 		goto err_locked;
8452 	}
8453 
8454 	/*
8455 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8456 	 * because we need to serialize with concurrent event creation.
8457 	 */
8458 	if (!exclusive_event_installable(event, ctx)) {
8459 		/* exclusive and group stuff are assumed mutually exclusive */
8460 		WARN_ON_ONCE(move_group);
8461 
8462 		err = -EBUSY;
8463 		goto err_locked;
8464 	}
8465 
8466 	WARN_ON_ONCE(ctx->parent_ctx);
8467 
8468 	if (move_group) {
8469 		/*
8470 		 * See perf_event_ctx_lock() for comments on the details
8471 		 * of swizzling perf_event::ctx.
8472 		 */
8473 		perf_remove_from_context(group_leader, false);
8474 
8475 		list_for_each_entry(sibling, &group_leader->sibling_list,
8476 				    group_entry) {
8477 			perf_remove_from_context(sibling, false);
8478 			put_ctx(gctx);
8479 		}
8480 
8481 		/*
8482 		 * Wait for everybody to stop referencing the events through
8483 		 * the old lists, before installing it on new lists.
8484 		 */
8485 		synchronize_rcu();
8486 
8487 		/*
8488 		 * Install the group siblings before the group leader.
8489 		 *
8490 		 * Because a group leader will try and install the entire group
8491 		 * (through the sibling list, which is still in-tact), we can
8492 		 * end up with siblings installed in the wrong context.
8493 		 *
8494 		 * By installing siblings first we NO-OP because they're not
8495 		 * reachable through the group lists.
8496 		 */
8497 		list_for_each_entry(sibling, &group_leader->sibling_list,
8498 				    group_entry) {
8499 			perf_event__state_init(sibling);
8500 			perf_install_in_context(ctx, sibling, sibling->cpu);
8501 			get_ctx(ctx);
8502 		}
8503 
8504 		/*
8505 		 * Removing from the context ends up with disabled
8506 		 * event. What we want here is event in the initial
8507 		 * startup state, ready to be add into new context.
8508 		 */
8509 		perf_event__state_init(group_leader);
8510 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8511 		get_ctx(ctx);
8512 
8513 		/*
8514 		 * Now that all events are installed in @ctx, nothing
8515 		 * references @gctx anymore, so drop the last reference we have
8516 		 * on it.
8517 		 */
8518 		put_ctx(gctx);
8519 	}
8520 
8521 	/*
8522 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8523 	 * that we're serialized against further additions and before
8524 	 * perf_install_in_context() which is the point the event is active and
8525 	 * can use these values.
8526 	 */
8527 	perf_event__header_size(event);
8528 	perf_event__id_header_size(event);
8529 
8530 	perf_install_in_context(ctx, event, event->cpu);
8531 	perf_unpin_context(ctx);
8532 
8533 	if (move_group)
8534 		mutex_unlock(&gctx->mutex);
8535 	mutex_unlock(&ctx->mutex);
8536 
8537 	put_online_cpus();
8538 
8539 	event->owner = current;
8540 
8541 	mutex_lock(&current->perf_event_mutex);
8542 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8543 	mutex_unlock(&current->perf_event_mutex);
8544 
8545 	/*
8546 	 * Drop the reference on the group_event after placing the
8547 	 * new event on the sibling_list. This ensures destruction
8548 	 * of the group leader will find the pointer to itself in
8549 	 * perf_group_detach().
8550 	 */
8551 	fdput(group);
8552 	fd_install(event_fd, event_file);
8553 	return event_fd;
8554 
8555 err_locked:
8556 	if (move_group)
8557 		mutex_unlock(&gctx->mutex);
8558 	mutex_unlock(&ctx->mutex);
8559 /* err_file: */
8560 	fput(event_file);
8561 err_context:
8562 	perf_unpin_context(ctx);
8563 	put_ctx(ctx);
8564 err_alloc:
8565 	free_event(event);
8566 err_cpus:
8567 	put_online_cpus();
8568 err_task:
8569 	if (task)
8570 		put_task_struct(task);
8571 err_group_fd:
8572 	fdput(group);
8573 err_fd:
8574 	put_unused_fd(event_fd);
8575 	return err;
8576 }
8577 
8578 /**
8579  * perf_event_create_kernel_counter
8580  *
8581  * @attr: attributes of the counter to create
8582  * @cpu: cpu in which the counter is bound
8583  * @task: task to profile (NULL for percpu)
8584  */
8585 struct perf_event *
8586 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8587 				 struct task_struct *task,
8588 				 perf_overflow_handler_t overflow_handler,
8589 				 void *context)
8590 {
8591 	struct perf_event_context *ctx;
8592 	struct perf_event *event;
8593 	int err;
8594 
8595 	/*
8596 	 * Get the target context (task or percpu):
8597 	 */
8598 
8599 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8600 				 overflow_handler, context, -1);
8601 	if (IS_ERR(event)) {
8602 		err = PTR_ERR(event);
8603 		goto err;
8604 	}
8605 
8606 	/* Mark owner so we could distinguish it from user events. */
8607 	event->owner = EVENT_OWNER_KERNEL;
8608 
8609 	account_event(event);
8610 
8611 	ctx = find_get_context(event->pmu, task, event);
8612 	if (IS_ERR(ctx)) {
8613 		err = PTR_ERR(ctx);
8614 		goto err_free;
8615 	}
8616 
8617 	WARN_ON_ONCE(ctx->parent_ctx);
8618 	mutex_lock(&ctx->mutex);
8619 	if (!exclusive_event_installable(event, ctx)) {
8620 		mutex_unlock(&ctx->mutex);
8621 		perf_unpin_context(ctx);
8622 		put_ctx(ctx);
8623 		err = -EBUSY;
8624 		goto err_free;
8625 	}
8626 
8627 	perf_install_in_context(ctx, event, cpu);
8628 	perf_unpin_context(ctx);
8629 	mutex_unlock(&ctx->mutex);
8630 
8631 	return event;
8632 
8633 err_free:
8634 	free_event(event);
8635 err:
8636 	return ERR_PTR(err);
8637 }
8638 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8639 
8640 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8641 {
8642 	struct perf_event_context *src_ctx;
8643 	struct perf_event_context *dst_ctx;
8644 	struct perf_event *event, *tmp;
8645 	LIST_HEAD(events);
8646 
8647 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8648 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8649 
8650 	/*
8651 	 * See perf_event_ctx_lock() for comments on the details
8652 	 * of swizzling perf_event::ctx.
8653 	 */
8654 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8655 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8656 				 event_entry) {
8657 		perf_remove_from_context(event, false);
8658 		unaccount_event_cpu(event, src_cpu);
8659 		put_ctx(src_ctx);
8660 		list_add(&event->migrate_entry, &events);
8661 	}
8662 
8663 	/*
8664 	 * Wait for the events to quiesce before re-instating them.
8665 	 */
8666 	synchronize_rcu();
8667 
8668 	/*
8669 	 * Re-instate events in 2 passes.
8670 	 *
8671 	 * Skip over group leaders and only install siblings on this first
8672 	 * pass, siblings will not get enabled without a leader, however a
8673 	 * leader will enable its siblings, even if those are still on the old
8674 	 * context.
8675 	 */
8676 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8677 		if (event->group_leader == event)
8678 			continue;
8679 
8680 		list_del(&event->migrate_entry);
8681 		if (event->state >= PERF_EVENT_STATE_OFF)
8682 			event->state = PERF_EVENT_STATE_INACTIVE;
8683 		account_event_cpu(event, dst_cpu);
8684 		perf_install_in_context(dst_ctx, event, dst_cpu);
8685 		get_ctx(dst_ctx);
8686 	}
8687 
8688 	/*
8689 	 * Once all the siblings are setup properly, install the group leaders
8690 	 * to make it go.
8691 	 */
8692 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8693 		list_del(&event->migrate_entry);
8694 		if (event->state >= PERF_EVENT_STATE_OFF)
8695 			event->state = PERF_EVENT_STATE_INACTIVE;
8696 		account_event_cpu(event, dst_cpu);
8697 		perf_install_in_context(dst_ctx, event, dst_cpu);
8698 		get_ctx(dst_ctx);
8699 	}
8700 	mutex_unlock(&dst_ctx->mutex);
8701 	mutex_unlock(&src_ctx->mutex);
8702 }
8703 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8704 
8705 static void sync_child_event(struct perf_event *child_event,
8706 			       struct task_struct *child)
8707 {
8708 	struct perf_event *parent_event = child_event->parent;
8709 	u64 child_val;
8710 
8711 	if (child_event->attr.inherit_stat)
8712 		perf_event_read_event(child_event, child);
8713 
8714 	child_val = perf_event_count(child_event);
8715 
8716 	/*
8717 	 * Add back the child's count to the parent's count:
8718 	 */
8719 	atomic64_add(child_val, &parent_event->child_count);
8720 	atomic64_add(child_event->total_time_enabled,
8721 		     &parent_event->child_total_time_enabled);
8722 	atomic64_add(child_event->total_time_running,
8723 		     &parent_event->child_total_time_running);
8724 
8725 	/*
8726 	 * Remove this event from the parent's list
8727 	 */
8728 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8729 	mutex_lock(&parent_event->child_mutex);
8730 	list_del_init(&child_event->child_list);
8731 	mutex_unlock(&parent_event->child_mutex);
8732 
8733 	/*
8734 	 * Make sure user/parent get notified, that we just
8735 	 * lost one event.
8736 	 */
8737 	perf_event_wakeup(parent_event);
8738 
8739 	/*
8740 	 * Release the parent event, if this was the last
8741 	 * reference to it.
8742 	 */
8743 	put_event(parent_event);
8744 }
8745 
8746 static void
8747 __perf_event_exit_task(struct perf_event *child_event,
8748 			 struct perf_event_context *child_ctx,
8749 			 struct task_struct *child)
8750 {
8751 	/*
8752 	 * Do not destroy the 'original' grouping; because of the context
8753 	 * switch optimization the original events could've ended up in a
8754 	 * random child task.
8755 	 *
8756 	 * If we were to destroy the original group, all group related
8757 	 * operations would cease to function properly after this random
8758 	 * child dies.
8759 	 *
8760 	 * Do destroy all inherited groups, we don't care about those
8761 	 * and being thorough is better.
8762 	 */
8763 	perf_remove_from_context(child_event, !!child_event->parent);
8764 
8765 	/*
8766 	 * It can happen that the parent exits first, and has events
8767 	 * that are still around due to the child reference. These
8768 	 * events need to be zapped.
8769 	 */
8770 	if (child_event->parent) {
8771 		sync_child_event(child_event, child);
8772 		free_event(child_event);
8773 	} else {
8774 		child_event->state = PERF_EVENT_STATE_EXIT;
8775 		perf_event_wakeup(child_event);
8776 	}
8777 }
8778 
8779 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8780 {
8781 	struct perf_event *child_event, *next;
8782 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8783 	unsigned long flags;
8784 
8785 	if (likely(!child->perf_event_ctxp[ctxn])) {
8786 		perf_event_task(child, NULL, 0);
8787 		return;
8788 	}
8789 
8790 	local_irq_save(flags);
8791 	/*
8792 	 * We can't reschedule here because interrupts are disabled,
8793 	 * and either child is current or it is a task that can't be
8794 	 * scheduled, so we are now safe from rescheduling changing
8795 	 * our context.
8796 	 */
8797 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8798 
8799 	/*
8800 	 * Take the context lock here so that if find_get_context is
8801 	 * reading child->perf_event_ctxp, we wait until it has
8802 	 * incremented the context's refcount before we do put_ctx below.
8803 	 */
8804 	raw_spin_lock(&child_ctx->lock);
8805 	task_ctx_sched_out(child_ctx);
8806 	child->perf_event_ctxp[ctxn] = NULL;
8807 
8808 	/*
8809 	 * If this context is a clone; unclone it so it can't get
8810 	 * swapped to another process while we're removing all
8811 	 * the events from it.
8812 	 */
8813 	clone_ctx = unclone_ctx(child_ctx);
8814 	update_context_time(child_ctx);
8815 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8816 
8817 	if (clone_ctx)
8818 		put_ctx(clone_ctx);
8819 
8820 	/*
8821 	 * Report the task dead after unscheduling the events so that we
8822 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8823 	 * get a few PERF_RECORD_READ events.
8824 	 */
8825 	perf_event_task(child, child_ctx, 0);
8826 
8827 	/*
8828 	 * We can recurse on the same lock type through:
8829 	 *
8830 	 *   __perf_event_exit_task()
8831 	 *     sync_child_event()
8832 	 *       put_event()
8833 	 *         mutex_lock(&ctx->mutex)
8834 	 *
8835 	 * But since its the parent context it won't be the same instance.
8836 	 */
8837 	mutex_lock(&child_ctx->mutex);
8838 
8839 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8840 		__perf_event_exit_task(child_event, child_ctx, child);
8841 
8842 	mutex_unlock(&child_ctx->mutex);
8843 
8844 	put_ctx(child_ctx);
8845 }
8846 
8847 /*
8848  * When a child task exits, feed back event values to parent events.
8849  */
8850 void perf_event_exit_task(struct task_struct *child)
8851 {
8852 	struct perf_event *event, *tmp;
8853 	int ctxn;
8854 
8855 	mutex_lock(&child->perf_event_mutex);
8856 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8857 				 owner_entry) {
8858 		list_del_init(&event->owner_entry);
8859 
8860 		/*
8861 		 * Ensure the list deletion is visible before we clear
8862 		 * the owner, closes a race against perf_release() where
8863 		 * we need to serialize on the owner->perf_event_mutex.
8864 		 */
8865 		smp_wmb();
8866 		event->owner = NULL;
8867 	}
8868 	mutex_unlock(&child->perf_event_mutex);
8869 
8870 	for_each_task_context_nr(ctxn)
8871 		perf_event_exit_task_context(child, ctxn);
8872 }
8873 
8874 static void perf_free_event(struct perf_event *event,
8875 			    struct perf_event_context *ctx)
8876 {
8877 	struct perf_event *parent = event->parent;
8878 
8879 	if (WARN_ON_ONCE(!parent))
8880 		return;
8881 
8882 	mutex_lock(&parent->child_mutex);
8883 	list_del_init(&event->child_list);
8884 	mutex_unlock(&parent->child_mutex);
8885 
8886 	put_event(parent);
8887 
8888 	raw_spin_lock_irq(&ctx->lock);
8889 	perf_group_detach(event);
8890 	list_del_event(event, ctx);
8891 	raw_spin_unlock_irq(&ctx->lock);
8892 	free_event(event);
8893 }
8894 
8895 /*
8896  * Free an unexposed, unused context as created by inheritance by
8897  * perf_event_init_task below, used by fork() in case of fail.
8898  *
8899  * Not all locks are strictly required, but take them anyway to be nice and
8900  * help out with the lockdep assertions.
8901  */
8902 void perf_event_free_task(struct task_struct *task)
8903 {
8904 	struct perf_event_context *ctx;
8905 	struct perf_event *event, *tmp;
8906 	int ctxn;
8907 
8908 	for_each_task_context_nr(ctxn) {
8909 		ctx = task->perf_event_ctxp[ctxn];
8910 		if (!ctx)
8911 			continue;
8912 
8913 		mutex_lock(&ctx->mutex);
8914 again:
8915 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8916 				group_entry)
8917 			perf_free_event(event, ctx);
8918 
8919 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8920 				group_entry)
8921 			perf_free_event(event, ctx);
8922 
8923 		if (!list_empty(&ctx->pinned_groups) ||
8924 				!list_empty(&ctx->flexible_groups))
8925 			goto again;
8926 
8927 		mutex_unlock(&ctx->mutex);
8928 
8929 		put_ctx(ctx);
8930 	}
8931 }
8932 
8933 void perf_event_delayed_put(struct task_struct *task)
8934 {
8935 	int ctxn;
8936 
8937 	for_each_task_context_nr(ctxn)
8938 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8939 }
8940 
8941 struct perf_event *perf_event_get(unsigned int fd)
8942 {
8943 	int err;
8944 	struct fd f;
8945 	struct perf_event *event;
8946 
8947 	err = perf_fget_light(fd, &f);
8948 	if (err)
8949 		return ERR_PTR(err);
8950 
8951 	event = f.file->private_data;
8952 	atomic_long_inc(&event->refcount);
8953 	fdput(f);
8954 
8955 	return event;
8956 }
8957 
8958 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8959 {
8960 	if (!event)
8961 		return ERR_PTR(-EINVAL);
8962 
8963 	return &event->attr;
8964 }
8965 
8966 /*
8967  * inherit a event from parent task to child task:
8968  */
8969 static struct perf_event *
8970 inherit_event(struct perf_event *parent_event,
8971 	      struct task_struct *parent,
8972 	      struct perf_event_context *parent_ctx,
8973 	      struct task_struct *child,
8974 	      struct perf_event *group_leader,
8975 	      struct perf_event_context *child_ctx)
8976 {
8977 	enum perf_event_active_state parent_state = parent_event->state;
8978 	struct perf_event *child_event;
8979 	unsigned long flags;
8980 
8981 	/*
8982 	 * Instead of creating recursive hierarchies of events,
8983 	 * we link inherited events back to the original parent,
8984 	 * which has a filp for sure, which we use as the reference
8985 	 * count:
8986 	 */
8987 	if (parent_event->parent)
8988 		parent_event = parent_event->parent;
8989 
8990 	child_event = perf_event_alloc(&parent_event->attr,
8991 					   parent_event->cpu,
8992 					   child,
8993 					   group_leader, parent_event,
8994 					   NULL, NULL, -1);
8995 	if (IS_ERR(child_event))
8996 		return child_event;
8997 
8998 	if (is_orphaned_event(parent_event) ||
8999 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9000 		free_event(child_event);
9001 		return NULL;
9002 	}
9003 
9004 	get_ctx(child_ctx);
9005 
9006 	/*
9007 	 * Make the child state follow the state of the parent event,
9008 	 * not its attr.disabled bit.  We hold the parent's mutex,
9009 	 * so we won't race with perf_event_{en, dis}able_family.
9010 	 */
9011 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9012 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9013 	else
9014 		child_event->state = PERF_EVENT_STATE_OFF;
9015 
9016 	if (parent_event->attr.freq) {
9017 		u64 sample_period = parent_event->hw.sample_period;
9018 		struct hw_perf_event *hwc = &child_event->hw;
9019 
9020 		hwc->sample_period = sample_period;
9021 		hwc->last_period   = sample_period;
9022 
9023 		local64_set(&hwc->period_left, sample_period);
9024 	}
9025 
9026 	child_event->ctx = child_ctx;
9027 	child_event->overflow_handler = parent_event->overflow_handler;
9028 	child_event->overflow_handler_context
9029 		= parent_event->overflow_handler_context;
9030 
9031 	/*
9032 	 * Precalculate sample_data sizes
9033 	 */
9034 	perf_event__header_size(child_event);
9035 	perf_event__id_header_size(child_event);
9036 
9037 	/*
9038 	 * Link it up in the child's context:
9039 	 */
9040 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9041 	add_event_to_ctx(child_event, child_ctx);
9042 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9043 
9044 	/*
9045 	 * Link this into the parent event's child list
9046 	 */
9047 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9048 	mutex_lock(&parent_event->child_mutex);
9049 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9050 	mutex_unlock(&parent_event->child_mutex);
9051 
9052 	return child_event;
9053 }
9054 
9055 static int inherit_group(struct perf_event *parent_event,
9056 	      struct task_struct *parent,
9057 	      struct perf_event_context *parent_ctx,
9058 	      struct task_struct *child,
9059 	      struct perf_event_context *child_ctx)
9060 {
9061 	struct perf_event *leader;
9062 	struct perf_event *sub;
9063 	struct perf_event *child_ctr;
9064 
9065 	leader = inherit_event(parent_event, parent, parent_ctx,
9066 				 child, NULL, child_ctx);
9067 	if (IS_ERR(leader))
9068 		return PTR_ERR(leader);
9069 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9070 		child_ctr = inherit_event(sub, parent, parent_ctx,
9071 					    child, leader, child_ctx);
9072 		if (IS_ERR(child_ctr))
9073 			return PTR_ERR(child_ctr);
9074 	}
9075 	return 0;
9076 }
9077 
9078 static int
9079 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9080 		   struct perf_event_context *parent_ctx,
9081 		   struct task_struct *child, int ctxn,
9082 		   int *inherited_all)
9083 {
9084 	int ret;
9085 	struct perf_event_context *child_ctx;
9086 
9087 	if (!event->attr.inherit) {
9088 		*inherited_all = 0;
9089 		return 0;
9090 	}
9091 
9092 	child_ctx = child->perf_event_ctxp[ctxn];
9093 	if (!child_ctx) {
9094 		/*
9095 		 * This is executed from the parent task context, so
9096 		 * inherit events that have been marked for cloning.
9097 		 * First allocate and initialize a context for the
9098 		 * child.
9099 		 */
9100 
9101 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9102 		if (!child_ctx)
9103 			return -ENOMEM;
9104 
9105 		child->perf_event_ctxp[ctxn] = child_ctx;
9106 	}
9107 
9108 	ret = inherit_group(event, parent, parent_ctx,
9109 			    child, child_ctx);
9110 
9111 	if (ret)
9112 		*inherited_all = 0;
9113 
9114 	return ret;
9115 }
9116 
9117 /*
9118  * Initialize the perf_event context in task_struct
9119  */
9120 static int perf_event_init_context(struct task_struct *child, int ctxn)
9121 {
9122 	struct perf_event_context *child_ctx, *parent_ctx;
9123 	struct perf_event_context *cloned_ctx;
9124 	struct perf_event *event;
9125 	struct task_struct *parent = current;
9126 	int inherited_all = 1;
9127 	unsigned long flags;
9128 	int ret = 0;
9129 
9130 	if (likely(!parent->perf_event_ctxp[ctxn]))
9131 		return 0;
9132 
9133 	/*
9134 	 * If the parent's context is a clone, pin it so it won't get
9135 	 * swapped under us.
9136 	 */
9137 	parent_ctx = perf_pin_task_context(parent, ctxn);
9138 	if (!parent_ctx)
9139 		return 0;
9140 
9141 	/*
9142 	 * No need to check if parent_ctx != NULL here; since we saw
9143 	 * it non-NULL earlier, the only reason for it to become NULL
9144 	 * is if we exit, and since we're currently in the middle of
9145 	 * a fork we can't be exiting at the same time.
9146 	 */
9147 
9148 	/*
9149 	 * Lock the parent list. No need to lock the child - not PID
9150 	 * hashed yet and not running, so nobody can access it.
9151 	 */
9152 	mutex_lock(&parent_ctx->mutex);
9153 
9154 	/*
9155 	 * We dont have to disable NMIs - we are only looking at
9156 	 * the list, not manipulating it:
9157 	 */
9158 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9159 		ret = inherit_task_group(event, parent, parent_ctx,
9160 					 child, ctxn, &inherited_all);
9161 		if (ret)
9162 			break;
9163 	}
9164 
9165 	/*
9166 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9167 	 * to allocations, but we need to prevent rotation because
9168 	 * rotate_ctx() will change the list from interrupt context.
9169 	 */
9170 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9171 	parent_ctx->rotate_disable = 1;
9172 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9173 
9174 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9175 		ret = inherit_task_group(event, parent, parent_ctx,
9176 					 child, ctxn, &inherited_all);
9177 		if (ret)
9178 			break;
9179 	}
9180 
9181 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9182 	parent_ctx->rotate_disable = 0;
9183 
9184 	child_ctx = child->perf_event_ctxp[ctxn];
9185 
9186 	if (child_ctx && inherited_all) {
9187 		/*
9188 		 * Mark the child context as a clone of the parent
9189 		 * context, or of whatever the parent is a clone of.
9190 		 *
9191 		 * Note that if the parent is a clone, the holding of
9192 		 * parent_ctx->lock avoids it from being uncloned.
9193 		 */
9194 		cloned_ctx = parent_ctx->parent_ctx;
9195 		if (cloned_ctx) {
9196 			child_ctx->parent_ctx = cloned_ctx;
9197 			child_ctx->parent_gen = parent_ctx->parent_gen;
9198 		} else {
9199 			child_ctx->parent_ctx = parent_ctx;
9200 			child_ctx->parent_gen = parent_ctx->generation;
9201 		}
9202 		get_ctx(child_ctx->parent_ctx);
9203 	}
9204 
9205 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9206 	mutex_unlock(&parent_ctx->mutex);
9207 
9208 	perf_unpin_context(parent_ctx);
9209 	put_ctx(parent_ctx);
9210 
9211 	return ret;
9212 }
9213 
9214 /*
9215  * Initialize the perf_event context in task_struct
9216  */
9217 int perf_event_init_task(struct task_struct *child)
9218 {
9219 	int ctxn, ret;
9220 
9221 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9222 	mutex_init(&child->perf_event_mutex);
9223 	INIT_LIST_HEAD(&child->perf_event_list);
9224 
9225 	for_each_task_context_nr(ctxn) {
9226 		ret = perf_event_init_context(child, ctxn);
9227 		if (ret) {
9228 			perf_event_free_task(child);
9229 			return ret;
9230 		}
9231 	}
9232 
9233 	return 0;
9234 }
9235 
9236 static void __init perf_event_init_all_cpus(void)
9237 {
9238 	struct swevent_htable *swhash;
9239 	int cpu;
9240 
9241 	for_each_possible_cpu(cpu) {
9242 		swhash = &per_cpu(swevent_htable, cpu);
9243 		mutex_init(&swhash->hlist_mutex);
9244 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9245 	}
9246 }
9247 
9248 static void perf_event_init_cpu(int cpu)
9249 {
9250 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9251 
9252 	mutex_lock(&swhash->hlist_mutex);
9253 	swhash->online = true;
9254 	if (swhash->hlist_refcount > 0) {
9255 		struct swevent_hlist *hlist;
9256 
9257 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9258 		WARN_ON(!hlist);
9259 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9260 	}
9261 	mutex_unlock(&swhash->hlist_mutex);
9262 }
9263 
9264 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9265 static void __perf_event_exit_context(void *__info)
9266 {
9267 	struct remove_event re = { .detach_group = true };
9268 	struct perf_event_context *ctx = __info;
9269 
9270 	rcu_read_lock();
9271 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9272 		__perf_remove_from_context(&re);
9273 	rcu_read_unlock();
9274 }
9275 
9276 static void perf_event_exit_cpu_context(int cpu)
9277 {
9278 	struct perf_event_context *ctx;
9279 	struct pmu *pmu;
9280 	int idx;
9281 
9282 	idx = srcu_read_lock(&pmus_srcu);
9283 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9284 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9285 
9286 		mutex_lock(&ctx->mutex);
9287 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9288 		mutex_unlock(&ctx->mutex);
9289 	}
9290 	srcu_read_unlock(&pmus_srcu, idx);
9291 }
9292 
9293 static void perf_event_exit_cpu(int cpu)
9294 {
9295 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9296 
9297 	perf_event_exit_cpu_context(cpu);
9298 
9299 	mutex_lock(&swhash->hlist_mutex);
9300 	swhash->online = false;
9301 	swevent_hlist_release(swhash);
9302 	mutex_unlock(&swhash->hlist_mutex);
9303 }
9304 #else
9305 static inline void perf_event_exit_cpu(int cpu) { }
9306 #endif
9307 
9308 static int
9309 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9310 {
9311 	int cpu;
9312 
9313 	for_each_online_cpu(cpu)
9314 		perf_event_exit_cpu(cpu);
9315 
9316 	return NOTIFY_OK;
9317 }
9318 
9319 /*
9320  * Run the perf reboot notifier at the very last possible moment so that
9321  * the generic watchdog code runs as long as possible.
9322  */
9323 static struct notifier_block perf_reboot_notifier = {
9324 	.notifier_call = perf_reboot,
9325 	.priority = INT_MIN,
9326 };
9327 
9328 static int
9329 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9330 {
9331 	unsigned int cpu = (long)hcpu;
9332 
9333 	switch (action & ~CPU_TASKS_FROZEN) {
9334 
9335 	case CPU_UP_PREPARE:
9336 	case CPU_DOWN_FAILED:
9337 		perf_event_init_cpu(cpu);
9338 		break;
9339 
9340 	case CPU_UP_CANCELED:
9341 	case CPU_DOWN_PREPARE:
9342 		perf_event_exit_cpu(cpu);
9343 		break;
9344 	default:
9345 		break;
9346 	}
9347 
9348 	return NOTIFY_OK;
9349 }
9350 
9351 void __init perf_event_init(void)
9352 {
9353 	int ret;
9354 
9355 	idr_init(&pmu_idr);
9356 
9357 	perf_event_init_all_cpus();
9358 	init_srcu_struct(&pmus_srcu);
9359 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9360 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9361 	perf_pmu_register(&perf_task_clock, NULL, -1);
9362 	perf_tp_register();
9363 	perf_cpu_notifier(perf_cpu_notify);
9364 	register_reboot_notifier(&perf_reboot_notifier);
9365 
9366 	ret = init_hw_breakpoint();
9367 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9368 
9369 	/* do not patch jump label more than once per second */
9370 	jump_label_rate_limit(&perf_sched_events, HZ);
9371 
9372 	/*
9373 	 * Build time assertion that we keep the data_head at the intended
9374 	 * location.  IOW, validation we got the __reserved[] size right.
9375 	 */
9376 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9377 		     != 1024);
9378 }
9379 
9380 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9381 			      char *page)
9382 {
9383 	struct perf_pmu_events_attr *pmu_attr =
9384 		container_of(attr, struct perf_pmu_events_attr, attr);
9385 
9386 	if (pmu_attr->event_str)
9387 		return sprintf(page, "%s\n", pmu_attr->event_str);
9388 
9389 	return 0;
9390 }
9391 
9392 static int __init perf_event_sysfs_init(void)
9393 {
9394 	struct pmu *pmu;
9395 	int ret;
9396 
9397 	mutex_lock(&pmus_lock);
9398 
9399 	ret = bus_register(&pmu_bus);
9400 	if (ret)
9401 		goto unlock;
9402 
9403 	list_for_each_entry(pmu, &pmus, entry) {
9404 		if (!pmu->name || pmu->type < 0)
9405 			continue;
9406 
9407 		ret = pmu_dev_alloc(pmu);
9408 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9409 	}
9410 	pmu_bus_running = 1;
9411 	ret = 0;
9412 
9413 unlock:
9414 	mutex_unlock(&pmus_lock);
9415 
9416 	return ret;
9417 }
9418 device_initcall(perf_event_sysfs_init);
9419 
9420 #ifdef CONFIG_CGROUP_PERF
9421 static struct cgroup_subsys_state *
9422 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9423 {
9424 	struct perf_cgroup *jc;
9425 
9426 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9427 	if (!jc)
9428 		return ERR_PTR(-ENOMEM);
9429 
9430 	jc->info = alloc_percpu(struct perf_cgroup_info);
9431 	if (!jc->info) {
9432 		kfree(jc);
9433 		return ERR_PTR(-ENOMEM);
9434 	}
9435 
9436 	return &jc->css;
9437 }
9438 
9439 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9440 {
9441 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9442 
9443 	free_percpu(jc->info);
9444 	kfree(jc);
9445 }
9446 
9447 static int __perf_cgroup_move(void *info)
9448 {
9449 	struct task_struct *task = info;
9450 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9451 	return 0;
9452 }
9453 
9454 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9455 			       struct cgroup_taskset *tset)
9456 {
9457 	struct task_struct *task;
9458 
9459 	cgroup_taskset_for_each(task, tset)
9460 		task_function_call(task, __perf_cgroup_move, task);
9461 }
9462 
9463 struct cgroup_subsys perf_event_cgrp_subsys = {
9464 	.css_alloc	= perf_cgroup_css_alloc,
9465 	.css_free	= perf_cgroup_css_free,
9466 	.attach		= perf_cgroup_attach,
9467 };
9468 #endif /* CONFIG_CGROUP_PERF */
9469