1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 379 }; 380 381 /* 382 * perf_sched_events : >0 events exist 383 */ 384 385 static void perf_sched_delayed(struct work_struct *work); 386 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 387 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 388 static DEFINE_MUTEX(perf_sched_mutex); 389 static atomic_t perf_sched_count; 390 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void update_context_time(struct perf_event_context *ctx); 574 static u64 perf_event_time(struct perf_event *event); 575 576 void __weak perf_event_print_debug(void) { } 577 578 static inline u64 perf_clock(void) 579 { 580 return local_clock(); 581 } 582 583 static inline u64 perf_event_clock(struct perf_event *event) 584 { 585 return event->clock(); 586 } 587 588 /* 589 * State based event timekeeping... 590 * 591 * The basic idea is to use event->state to determine which (if any) time 592 * fields to increment with the current delta. This means we only need to 593 * update timestamps when we change state or when they are explicitly requested 594 * (read). 595 * 596 * Event groups make things a little more complicated, but not terribly so. The 597 * rules for a group are that if the group leader is OFF the entire group is 598 * OFF, irrespecive of what the group member states are. This results in 599 * __perf_effective_state(). 600 * 601 * A futher ramification is that when a group leader flips between OFF and 602 * !OFF, we need to update all group member times. 603 * 604 * 605 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 606 * need to make sure the relevant context time is updated before we try and 607 * update our timestamps. 608 */ 609 610 static __always_inline enum perf_event_state 611 __perf_effective_state(struct perf_event *event) 612 { 613 struct perf_event *leader = event->group_leader; 614 615 if (leader->state <= PERF_EVENT_STATE_OFF) 616 return leader->state; 617 618 return event->state; 619 } 620 621 static __always_inline void 622 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 623 { 624 enum perf_event_state state = __perf_effective_state(event); 625 u64 delta = now - event->tstamp; 626 627 *enabled = event->total_time_enabled; 628 if (state >= PERF_EVENT_STATE_INACTIVE) 629 *enabled += delta; 630 631 *running = event->total_time_running; 632 if (state >= PERF_EVENT_STATE_ACTIVE) 633 *running += delta; 634 } 635 636 static void perf_event_update_time(struct perf_event *event) 637 { 638 u64 now = perf_event_time(event); 639 640 __perf_update_times(event, now, &event->total_time_enabled, 641 &event->total_time_running); 642 event->tstamp = now; 643 } 644 645 static void perf_event_update_sibling_time(struct perf_event *leader) 646 { 647 struct perf_event *sibling; 648 649 for_each_sibling_event(sibling, leader) 650 perf_event_update_time(sibling); 651 } 652 653 static void 654 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 655 { 656 if (event->state == state) 657 return; 658 659 perf_event_update_time(event); 660 /* 661 * If a group leader gets enabled/disabled all its siblings 662 * are affected too. 663 */ 664 if ((event->state < 0) ^ (state < 0)) 665 perf_event_update_sibling_time(event); 666 667 WRITE_ONCE(event->state, state); 668 } 669 670 /* 671 * UP store-release, load-acquire 672 */ 673 674 #define __store_release(ptr, val) \ 675 do { \ 676 barrier(); \ 677 WRITE_ONCE(*(ptr), (val)); \ 678 } while (0) 679 680 #define __load_acquire(ptr) \ 681 ({ \ 682 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 683 barrier(); \ 684 ___p; \ 685 }) 686 687 static void perf_ctx_disable(struct perf_event_context *ctx) 688 { 689 struct perf_event_pmu_context *pmu_ctx; 690 691 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 692 perf_pmu_disable(pmu_ctx->pmu); 693 } 694 695 static void perf_ctx_enable(struct perf_event_context *ctx) 696 { 697 struct perf_event_pmu_context *pmu_ctx; 698 699 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 700 perf_pmu_enable(pmu_ctx->pmu); 701 } 702 703 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 704 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 705 706 #ifdef CONFIG_CGROUP_PERF 707 708 static inline bool 709 perf_cgroup_match(struct perf_event *event) 710 { 711 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 712 713 /* @event doesn't care about cgroup */ 714 if (!event->cgrp) 715 return true; 716 717 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 718 if (!cpuctx->cgrp) 719 return false; 720 721 /* 722 * Cgroup scoping is recursive. An event enabled for a cgroup is 723 * also enabled for all its descendant cgroups. If @cpuctx's 724 * cgroup is a descendant of @event's (the test covers identity 725 * case), it's a match. 726 */ 727 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 728 event->cgrp->css.cgroup); 729 } 730 731 static inline void perf_detach_cgroup(struct perf_event *event) 732 { 733 css_put(&event->cgrp->css); 734 event->cgrp = NULL; 735 } 736 737 static inline int is_cgroup_event(struct perf_event *event) 738 { 739 return event->cgrp != NULL; 740 } 741 742 static inline u64 perf_cgroup_event_time(struct perf_event *event) 743 { 744 struct perf_cgroup_info *t; 745 746 t = per_cpu_ptr(event->cgrp->info, event->cpu); 747 return t->time; 748 } 749 750 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 751 { 752 struct perf_cgroup_info *t; 753 754 t = per_cpu_ptr(event->cgrp->info, event->cpu); 755 if (!__load_acquire(&t->active)) 756 return t->time; 757 now += READ_ONCE(t->timeoffset); 758 return now; 759 } 760 761 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 762 { 763 if (adv) 764 info->time += now - info->timestamp; 765 info->timestamp = now; 766 /* 767 * see update_context_time() 768 */ 769 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 770 } 771 772 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 773 { 774 struct perf_cgroup *cgrp = cpuctx->cgrp; 775 struct cgroup_subsys_state *css; 776 struct perf_cgroup_info *info; 777 778 if (cgrp) { 779 u64 now = perf_clock(); 780 781 for (css = &cgrp->css; css; css = css->parent) { 782 cgrp = container_of(css, struct perf_cgroup, css); 783 info = this_cpu_ptr(cgrp->info); 784 785 __update_cgrp_time(info, now, true); 786 if (final) 787 __store_release(&info->active, 0); 788 } 789 } 790 } 791 792 static inline void update_cgrp_time_from_event(struct perf_event *event) 793 { 794 struct perf_cgroup_info *info; 795 796 /* 797 * ensure we access cgroup data only when needed and 798 * when we know the cgroup is pinned (css_get) 799 */ 800 if (!is_cgroup_event(event)) 801 return; 802 803 info = this_cpu_ptr(event->cgrp->info); 804 /* 805 * Do not update time when cgroup is not active 806 */ 807 if (info->active) 808 __update_cgrp_time(info, perf_clock(), true); 809 } 810 811 static inline void 812 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 813 { 814 struct perf_event_context *ctx = &cpuctx->ctx; 815 struct perf_cgroup *cgrp = cpuctx->cgrp; 816 struct perf_cgroup_info *info; 817 struct cgroup_subsys_state *css; 818 819 /* 820 * ctx->lock held by caller 821 * ensure we do not access cgroup data 822 * unless we have the cgroup pinned (css_get) 823 */ 824 if (!cgrp) 825 return; 826 827 WARN_ON_ONCE(!ctx->nr_cgroups); 828 829 for (css = &cgrp->css; css; css = css->parent) { 830 cgrp = container_of(css, struct perf_cgroup, css); 831 info = this_cpu_ptr(cgrp->info); 832 __update_cgrp_time(info, ctx->timestamp, false); 833 __store_release(&info->active, 1); 834 } 835 } 836 837 /* 838 * reschedule events based on the cgroup constraint of task. 839 */ 840 static void perf_cgroup_switch(struct task_struct *task) 841 { 842 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 843 struct perf_cgroup *cgrp; 844 845 /* 846 * cpuctx->cgrp is set when the first cgroup event enabled, 847 * and is cleared when the last cgroup event disabled. 848 */ 849 if (READ_ONCE(cpuctx->cgrp) == NULL) 850 return; 851 852 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 853 854 cgrp = perf_cgroup_from_task(task, NULL); 855 if (READ_ONCE(cpuctx->cgrp) == cgrp) 856 return; 857 858 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 859 perf_ctx_disable(&cpuctx->ctx); 860 861 ctx_sched_out(&cpuctx->ctx, EVENT_ALL); 862 /* 863 * must not be done before ctxswout due 864 * to update_cgrp_time_from_cpuctx() in 865 * ctx_sched_out() 866 */ 867 cpuctx->cgrp = cgrp; 868 /* 869 * set cgrp before ctxsw in to allow 870 * perf_cgroup_set_timestamp() in ctx_sched_in() 871 * to not have to pass task around 872 */ 873 ctx_sched_in(&cpuctx->ctx, EVENT_ALL); 874 875 perf_ctx_enable(&cpuctx->ctx); 876 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 877 } 878 879 static int perf_cgroup_ensure_storage(struct perf_event *event, 880 struct cgroup_subsys_state *css) 881 { 882 struct perf_cpu_context *cpuctx; 883 struct perf_event **storage; 884 int cpu, heap_size, ret = 0; 885 886 /* 887 * Allow storage to have sufficent space for an iterator for each 888 * possibly nested cgroup plus an iterator for events with no cgroup. 889 */ 890 for (heap_size = 1; css; css = css->parent) 891 heap_size++; 892 893 for_each_possible_cpu(cpu) { 894 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 895 if (heap_size <= cpuctx->heap_size) 896 continue; 897 898 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 899 GFP_KERNEL, cpu_to_node(cpu)); 900 if (!storage) { 901 ret = -ENOMEM; 902 break; 903 } 904 905 raw_spin_lock_irq(&cpuctx->ctx.lock); 906 if (cpuctx->heap_size < heap_size) { 907 swap(cpuctx->heap, storage); 908 if (storage == cpuctx->heap_default) 909 storage = NULL; 910 cpuctx->heap_size = heap_size; 911 } 912 raw_spin_unlock_irq(&cpuctx->ctx.lock); 913 914 kfree(storage); 915 } 916 917 return ret; 918 } 919 920 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 921 struct perf_event_attr *attr, 922 struct perf_event *group_leader) 923 { 924 struct perf_cgroup *cgrp; 925 struct cgroup_subsys_state *css; 926 struct fd f = fdget(fd); 927 int ret = 0; 928 929 if (!f.file) 930 return -EBADF; 931 932 css = css_tryget_online_from_dir(f.file->f_path.dentry, 933 &perf_event_cgrp_subsys); 934 if (IS_ERR(css)) { 935 ret = PTR_ERR(css); 936 goto out; 937 } 938 939 ret = perf_cgroup_ensure_storage(event, css); 940 if (ret) 941 goto out; 942 943 cgrp = container_of(css, struct perf_cgroup, css); 944 event->cgrp = cgrp; 945 946 /* 947 * all events in a group must monitor 948 * the same cgroup because a task belongs 949 * to only one perf cgroup at a time 950 */ 951 if (group_leader && group_leader->cgrp != cgrp) { 952 perf_detach_cgroup(event); 953 ret = -EINVAL; 954 } 955 out: 956 fdput(f); 957 return ret; 958 } 959 960 static inline void 961 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 962 { 963 struct perf_cpu_context *cpuctx; 964 965 if (!is_cgroup_event(event)) 966 return; 967 968 /* 969 * Because cgroup events are always per-cpu events, 970 * @ctx == &cpuctx->ctx. 971 */ 972 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 973 974 if (ctx->nr_cgroups++) 975 return; 976 977 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 978 } 979 980 static inline void 981 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 982 { 983 struct perf_cpu_context *cpuctx; 984 985 if (!is_cgroup_event(event)) 986 return; 987 988 /* 989 * Because cgroup events are always per-cpu events, 990 * @ctx == &cpuctx->ctx. 991 */ 992 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 993 994 if (--ctx->nr_cgroups) 995 return; 996 997 cpuctx->cgrp = NULL; 998 } 999 1000 #else /* !CONFIG_CGROUP_PERF */ 1001 1002 static inline bool 1003 perf_cgroup_match(struct perf_event *event) 1004 { 1005 return true; 1006 } 1007 1008 static inline void perf_detach_cgroup(struct perf_event *event) 1009 {} 1010 1011 static inline int is_cgroup_event(struct perf_event *event) 1012 { 1013 return 0; 1014 } 1015 1016 static inline void update_cgrp_time_from_event(struct perf_event *event) 1017 { 1018 } 1019 1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1021 bool final) 1022 { 1023 } 1024 1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1026 struct perf_event_attr *attr, 1027 struct perf_event *group_leader) 1028 { 1029 return -EINVAL; 1030 } 1031 1032 static inline void 1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1034 { 1035 } 1036 1037 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1038 { 1039 return 0; 1040 } 1041 1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1043 { 1044 return 0; 1045 } 1046 1047 static inline void 1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1049 { 1050 } 1051 1052 static inline void 1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1054 { 1055 } 1056 1057 static void perf_cgroup_switch(struct task_struct *task) 1058 { 1059 } 1060 #endif 1061 1062 /* 1063 * set default to be dependent on timer tick just 1064 * like original code 1065 */ 1066 #define PERF_CPU_HRTIMER (1000 / HZ) 1067 /* 1068 * function must be called with interrupts disabled 1069 */ 1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1071 { 1072 struct perf_cpu_pmu_context *cpc; 1073 bool rotations; 1074 1075 lockdep_assert_irqs_disabled(); 1076 1077 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1078 rotations = perf_rotate_context(cpc); 1079 1080 raw_spin_lock(&cpc->hrtimer_lock); 1081 if (rotations) 1082 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1083 else 1084 cpc->hrtimer_active = 0; 1085 raw_spin_unlock(&cpc->hrtimer_lock); 1086 1087 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1088 } 1089 1090 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1091 { 1092 struct hrtimer *timer = &cpc->hrtimer; 1093 struct pmu *pmu = cpc->epc.pmu; 1094 u64 interval; 1095 1096 /* 1097 * check default is sane, if not set then force to 1098 * default interval (1/tick) 1099 */ 1100 interval = pmu->hrtimer_interval_ms; 1101 if (interval < 1) 1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1103 1104 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1105 1106 raw_spin_lock_init(&cpc->hrtimer_lock); 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1108 timer->function = perf_mux_hrtimer_handler; 1109 } 1110 1111 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1112 { 1113 struct hrtimer *timer = &cpc->hrtimer; 1114 unsigned long flags; 1115 1116 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1117 if (!cpc->hrtimer_active) { 1118 cpc->hrtimer_active = 1; 1119 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1120 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1121 } 1122 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1123 1124 return 0; 1125 } 1126 1127 static int perf_mux_hrtimer_restart_ipi(void *arg) 1128 { 1129 return perf_mux_hrtimer_restart(arg); 1130 } 1131 1132 void perf_pmu_disable(struct pmu *pmu) 1133 { 1134 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1135 if (!(*count)++) 1136 pmu->pmu_disable(pmu); 1137 } 1138 1139 void perf_pmu_enable(struct pmu *pmu) 1140 { 1141 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1142 if (!--(*count)) 1143 pmu->pmu_enable(pmu); 1144 } 1145 1146 static void perf_assert_pmu_disabled(struct pmu *pmu) 1147 { 1148 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1149 } 1150 1151 static void get_ctx(struct perf_event_context *ctx) 1152 { 1153 refcount_inc(&ctx->refcount); 1154 } 1155 1156 static void *alloc_task_ctx_data(struct pmu *pmu) 1157 { 1158 if (pmu->task_ctx_cache) 1159 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1160 1161 return NULL; 1162 } 1163 1164 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1165 { 1166 if (pmu->task_ctx_cache && task_ctx_data) 1167 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1168 } 1169 1170 static void free_ctx(struct rcu_head *head) 1171 { 1172 struct perf_event_context *ctx; 1173 1174 ctx = container_of(head, struct perf_event_context, rcu_head); 1175 kfree(ctx); 1176 } 1177 1178 static void put_ctx(struct perf_event_context *ctx) 1179 { 1180 if (refcount_dec_and_test(&ctx->refcount)) { 1181 if (ctx->parent_ctx) 1182 put_ctx(ctx->parent_ctx); 1183 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1184 put_task_struct(ctx->task); 1185 call_rcu(&ctx->rcu_head, free_ctx); 1186 } 1187 } 1188 1189 /* 1190 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1191 * perf_pmu_migrate_context() we need some magic. 1192 * 1193 * Those places that change perf_event::ctx will hold both 1194 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1195 * 1196 * Lock ordering is by mutex address. There are two other sites where 1197 * perf_event_context::mutex nests and those are: 1198 * 1199 * - perf_event_exit_task_context() [ child , 0 ] 1200 * perf_event_exit_event() 1201 * put_event() [ parent, 1 ] 1202 * 1203 * - perf_event_init_context() [ parent, 0 ] 1204 * inherit_task_group() 1205 * inherit_group() 1206 * inherit_event() 1207 * perf_event_alloc() 1208 * perf_init_event() 1209 * perf_try_init_event() [ child , 1 ] 1210 * 1211 * While it appears there is an obvious deadlock here -- the parent and child 1212 * nesting levels are inverted between the two. This is in fact safe because 1213 * life-time rules separate them. That is an exiting task cannot fork, and a 1214 * spawning task cannot (yet) exit. 1215 * 1216 * But remember that these are parent<->child context relations, and 1217 * migration does not affect children, therefore these two orderings should not 1218 * interact. 1219 * 1220 * The change in perf_event::ctx does not affect children (as claimed above) 1221 * because the sys_perf_event_open() case will install a new event and break 1222 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1223 * concerned with cpuctx and that doesn't have children. 1224 * 1225 * The places that change perf_event::ctx will issue: 1226 * 1227 * perf_remove_from_context(); 1228 * synchronize_rcu(); 1229 * perf_install_in_context(); 1230 * 1231 * to affect the change. The remove_from_context() + synchronize_rcu() should 1232 * quiesce the event, after which we can install it in the new location. This 1233 * means that only external vectors (perf_fops, prctl) can perturb the event 1234 * while in transit. Therefore all such accessors should also acquire 1235 * perf_event_context::mutex to serialize against this. 1236 * 1237 * However; because event->ctx can change while we're waiting to acquire 1238 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1239 * function. 1240 * 1241 * Lock order: 1242 * exec_update_lock 1243 * task_struct::perf_event_mutex 1244 * perf_event_context::mutex 1245 * perf_event::child_mutex; 1246 * perf_event_context::lock 1247 * perf_event::mmap_mutex 1248 * mmap_lock 1249 * perf_addr_filters_head::lock 1250 * 1251 * cpu_hotplug_lock 1252 * pmus_lock 1253 * cpuctx->mutex / perf_event_context::mutex 1254 */ 1255 static struct perf_event_context * 1256 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1257 { 1258 struct perf_event_context *ctx; 1259 1260 again: 1261 rcu_read_lock(); 1262 ctx = READ_ONCE(event->ctx); 1263 if (!refcount_inc_not_zero(&ctx->refcount)) { 1264 rcu_read_unlock(); 1265 goto again; 1266 } 1267 rcu_read_unlock(); 1268 1269 mutex_lock_nested(&ctx->mutex, nesting); 1270 if (event->ctx != ctx) { 1271 mutex_unlock(&ctx->mutex); 1272 put_ctx(ctx); 1273 goto again; 1274 } 1275 1276 return ctx; 1277 } 1278 1279 static inline struct perf_event_context * 1280 perf_event_ctx_lock(struct perf_event *event) 1281 { 1282 return perf_event_ctx_lock_nested(event, 0); 1283 } 1284 1285 static void perf_event_ctx_unlock(struct perf_event *event, 1286 struct perf_event_context *ctx) 1287 { 1288 mutex_unlock(&ctx->mutex); 1289 put_ctx(ctx); 1290 } 1291 1292 /* 1293 * This must be done under the ctx->lock, such as to serialize against 1294 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1295 * calling scheduler related locks and ctx->lock nests inside those. 1296 */ 1297 static __must_check struct perf_event_context * 1298 unclone_ctx(struct perf_event_context *ctx) 1299 { 1300 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1301 1302 lockdep_assert_held(&ctx->lock); 1303 1304 if (parent_ctx) 1305 ctx->parent_ctx = NULL; 1306 ctx->generation++; 1307 1308 return parent_ctx; 1309 } 1310 1311 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1312 enum pid_type type) 1313 { 1314 u32 nr; 1315 /* 1316 * only top level events have the pid namespace they were created in 1317 */ 1318 if (event->parent) 1319 event = event->parent; 1320 1321 nr = __task_pid_nr_ns(p, type, event->ns); 1322 /* avoid -1 if it is idle thread or runs in another ns */ 1323 if (!nr && !pid_alive(p)) 1324 nr = -1; 1325 return nr; 1326 } 1327 1328 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1329 { 1330 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1331 } 1332 1333 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1334 { 1335 return perf_event_pid_type(event, p, PIDTYPE_PID); 1336 } 1337 1338 /* 1339 * If we inherit events we want to return the parent event id 1340 * to userspace. 1341 */ 1342 static u64 primary_event_id(struct perf_event *event) 1343 { 1344 u64 id = event->id; 1345 1346 if (event->parent) 1347 id = event->parent->id; 1348 1349 return id; 1350 } 1351 1352 /* 1353 * Get the perf_event_context for a task and lock it. 1354 * 1355 * This has to cope with the fact that until it is locked, 1356 * the context could get moved to another task. 1357 */ 1358 static struct perf_event_context * 1359 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1360 { 1361 struct perf_event_context *ctx; 1362 1363 retry: 1364 /* 1365 * One of the few rules of preemptible RCU is that one cannot do 1366 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1367 * part of the read side critical section was irqs-enabled -- see 1368 * rcu_read_unlock_special(). 1369 * 1370 * Since ctx->lock nests under rq->lock we must ensure the entire read 1371 * side critical section has interrupts disabled. 1372 */ 1373 local_irq_save(*flags); 1374 rcu_read_lock(); 1375 ctx = rcu_dereference(task->perf_event_ctxp); 1376 if (ctx) { 1377 /* 1378 * If this context is a clone of another, it might 1379 * get swapped for another underneath us by 1380 * perf_event_task_sched_out, though the 1381 * rcu_read_lock() protects us from any context 1382 * getting freed. Lock the context and check if it 1383 * got swapped before we could get the lock, and retry 1384 * if so. If we locked the right context, then it 1385 * can't get swapped on us any more. 1386 */ 1387 raw_spin_lock(&ctx->lock); 1388 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1389 raw_spin_unlock(&ctx->lock); 1390 rcu_read_unlock(); 1391 local_irq_restore(*flags); 1392 goto retry; 1393 } 1394 1395 if (ctx->task == TASK_TOMBSTONE || 1396 !refcount_inc_not_zero(&ctx->refcount)) { 1397 raw_spin_unlock(&ctx->lock); 1398 ctx = NULL; 1399 } else { 1400 WARN_ON_ONCE(ctx->task != task); 1401 } 1402 } 1403 rcu_read_unlock(); 1404 if (!ctx) 1405 local_irq_restore(*flags); 1406 return ctx; 1407 } 1408 1409 /* 1410 * Get the context for a task and increment its pin_count so it 1411 * can't get swapped to another task. This also increments its 1412 * reference count so that the context can't get freed. 1413 */ 1414 static struct perf_event_context * 1415 perf_pin_task_context(struct task_struct *task) 1416 { 1417 struct perf_event_context *ctx; 1418 unsigned long flags; 1419 1420 ctx = perf_lock_task_context(task, &flags); 1421 if (ctx) { 1422 ++ctx->pin_count; 1423 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1424 } 1425 return ctx; 1426 } 1427 1428 static void perf_unpin_context(struct perf_event_context *ctx) 1429 { 1430 unsigned long flags; 1431 1432 raw_spin_lock_irqsave(&ctx->lock, flags); 1433 --ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 1437 /* 1438 * Update the record of the current time in a context. 1439 */ 1440 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1441 { 1442 u64 now = perf_clock(); 1443 1444 lockdep_assert_held(&ctx->lock); 1445 1446 if (adv) 1447 ctx->time += now - ctx->timestamp; 1448 ctx->timestamp = now; 1449 1450 /* 1451 * The above: time' = time + (now - timestamp), can be re-arranged 1452 * into: time` = now + (time - timestamp), which gives a single value 1453 * offset to compute future time without locks on. 1454 * 1455 * See perf_event_time_now(), which can be used from NMI context where 1456 * it's (obviously) not possible to acquire ctx->lock in order to read 1457 * both the above values in a consistent manner. 1458 */ 1459 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1460 } 1461 1462 static void update_context_time(struct perf_event_context *ctx) 1463 { 1464 __update_context_time(ctx, true); 1465 } 1466 1467 static u64 perf_event_time(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 1471 if (unlikely(!ctx)) 1472 return 0; 1473 1474 if (is_cgroup_event(event)) 1475 return perf_cgroup_event_time(event); 1476 1477 return ctx->time; 1478 } 1479 1480 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1481 { 1482 struct perf_event_context *ctx = event->ctx; 1483 1484 if (unlikely(!ctx)) 1485 return 0; 1486 1487 if (is_cgroup_event(event)) 1488 return perf_cgroup_event_time_now(event, now); 1489 1490 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1491 return ctx->time; 1492 1493 now += READ_ONCE(ctx->timeoffset); 1494 return now; 1495 } 1496 1497 static enum event_type_t get_event_type(struct perf_event *event) 1498 { 1499 struct perf_event_context *ctx = event->ctx; 1500 enum event_type_t event_type; 1501 1502 lockdep_assert_held(&ctx->lock); 1503 1504 /* 1505 * It's 'group type', really, because if our group leader is 1506 * pinned, so are we. 1507 */ 1508 if (event->group_leader != event) 1509 event = event->group_leader; 1510 1511 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1512 if (!ctx->task) 1513 event_type |= EVENT_CPU; 1514 1515 return event_type; 1516 } 1517 1518 /* 1519 * Helper function to initialize event group nodes. 1520 */ 1521 static void init_event_group(struct perf_event *event) 1522 { 1523 RB_CLEAR_NODE(&event->group_node); 1524 event->group_index = 0; 1525 } 1526 1527 /* 1528 * Extract pinned or flexible groups from the context 1529 * based on event attrs bits. 1530 */ 1531 static struct perf_event_groups * 1532 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1533 { 1534 if (event->attr.pinned) 1535 return &ctx->pinned_groups; 1536 else 1537 return &ctx->flexible_groups; 1538 } 1539 1540 /* 1541 * Helper function to initializes perf_event_group trees. 1542 */ 1543 static void perf_event_groups_init(struct perf_event_groups *groups) 1544 { 1545 groups->tree = RB_ROOT; 1546 groups->index = 0; 1547 } 1548 1549 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1550 { 1551 struct cgroup *cgroup = NULL; 1552 1553 #ifdef CONFIG_CGROUP_PERF 1554 if (event->cgrp) 1555 cgroup = event->cgrp->css.cgroup; 1556 #endif 1557 1558 return cgroup; 1559 } 1560 1561 /* 1562 * Compare function for event groups; 1563 * 1564 * Implements complex key that first sorts by CPU and then by virtual index 1565 * which provides ordering when rotating groups for the same CPU. 1566 */ 1567 static __always_inline int 1568 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1569 const struct cgroup *left_cgroup, const u64 left_group_index, 1570 const struct perf_event *right) 1571 { 1572 if (left_cpu < right->cpu) 1573 return -1; 1574 if (left_cpu > right->cpu) 1575 return 1; 1576 1577 if (left_pmu) { 1578 if (left_pmu < right->pmu_ctx->pmu) 1579 return -1; 1580 if (left_pmu > right->pmu_ctx->pmu) 1581 return 1; 1582 } 1583 1584 #ifdef CONFIG_CGROUP_PERF 1585 { 1586 const struct cgroup *right_cgroup = event_cgroup(right); 1587 1588 if (left_cgroup != right_cgroup) { 1589 if (!left_cgroup) { 1590 /* 1591 * Left has no cgroup but right does, no 1592 * cgroups come first. 1593 */ 1594 return -1; 1595 } 1596 if (!right_cgroup) { 1597 /* 1598 * Right has no cgroup but left does, no 1599 * cgroups come first. 1600 */ 1601 return 1; 1602 } 1603 /* Two dissimilar cgroups, order by id. */ 1604 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1605 return -1; 1606 1607 return 1; 1608 } 1609 } 1610 #endif 1611 1612 if (left_group_index < right->group_index) 1613 return -1; 1614 if (left_group_index > right->group_index) 1615 return 1; 1616 1617 return 0; 1618 } 1619 1620 #define __node_2_pe(node) \ 1621 rb_entry((node), struct perf_event, group_node) 1622 1623 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1624 { 1625 struct perf_event *e = __node_2_pe(a); 1626 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1627 e->group_index, __node_2_pe(b)) < 0; 1628 } 1629 1630 struct __group_key { 1631 int cpu; 1632 struct pmu *pmu; 1633 struct cgroup *cgroup; 1634 }; 1635 1636 static inline int __group_cmp(const void *key, const struct rb_node *node) 1637 { 1638 const struct __group_key *a = key; 1639 const struct perf_event *b = __node_2_pe(node); 1640 1641 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1642 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1643 } 1644 1645 static inline int 1646 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1647 { 1648 const struct __group_key *a = key; 1649 const struct perf_event *b = __node_2_pe(node); 1650 1651 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1652 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1653 b->group_index, b); 1654 } 1655 1656 /* 1657 * Insert @event into @groups' tree; using 1658 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1659 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1660 */ 1661 static void 1662 perf_event_groups_insert(struct perf_event_groups *groups, 1663 struct perf_event *event) 1664 { 1665 event->group_index = ++groups->index; 1666 1667 rb_add(&event->group_node, &groups->tree, __group_less); 1668 } 1669 1670 /* 1671 * Helper function to insert event into the pinned or flexible groups. 1672 */ 1673 static void 1674 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1675 { 1676 struct perf_event_groups *groups; 1677 1678 groups = get_event_groups(event, ctx); 1679 perf_event_groups_insert(groups, event); 1680 } 1681 1682 /* 1683 * Delete a group from a tree. 1684 */ 1685 static void 1686 perf_event_groups_delete(struct perf_event_groups *groups, 1687 struct perf_event *event) 1688 { 1689 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1690 RB_EMPTY_ROOT(&groups->tree)); 1691 1692 rb_erase(&event->group_node, &groups->tree); 1693 init_event_group(event); 1694 } 1695 1696 /* 1697 * Helper function to delete event from its groups. 1698 */ 1699 static void 1700 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1701 { 1702 struct perf_event_groups *groups; 1703 1704 groups = get_event_groups(event, ctx); 1705 perf_event_groups_delete(groups, event); 1706 } 1707 1708 /* 1709 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1710 */ 1711 static struct perf_event * 1712 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1713 struct pmu *pmu, struct cgroup *cgrp) 1714 { 1715 struct __group_key key = { 1716 .cpu = cpu, 1717 .pmu = pmu, 1718 .cgroup = cgrp, 1719 }; 1720 struct rb_node *node; 1721 1722 node = rb_find_first(&key, &groups->tree, __group_cmp); 1723 if (node) 1724 return __node_2_pe(node); 1725 1726 return NULL; 1727 } 1728 1729 static struct perf_event * 1730 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1731 { 1732 struct __group_key key = { 1733 .cpu = event->cpu, 1734 .pmu = pmu, 1735 .cgroup = event_cgroup(event), 1736 }; 1737 struct rb_node *next; 1738 1739 next = rb_next_match(&key, &event->group_node, __group_cmp); 1740 if (next) 1741 return __node_2_pe(next); 1742 1743 return NULL; 1744 } 1745 1746 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1747 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1748 event; event = perf_event_groups_next(event, pmu)) 1749 1750 /* 1751 * Iterate through the whole groups tree. 1752 */ 1753 #define perf_event_groups_for_each(event, groups) \ 1754 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1755 typeof(*event), group_node); event; \ 1756 event = rb_entry_safe(rb_next(&event->group_node), \ 1757 typeof(*event), group_node)) 1758 1759 /* 1760 * Add an event from the lists for its context. 1761 * Must be called with ctx->mutex and ctx->lock held. 1762 */ 1763 static void 1764 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1765 { 1766 lockdep_assert_held(&ctx->lock); 1767 1768 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1769 event->attach_state |= PERF_ATTACH_CONTEXT; 1770 1771 event->tstamp = perf_event_time(event); 1772 1773 /* 1774 * If we're a stand alone event or group leader, we go to the context 1775 * list, group events are kept attached to the group so that 1776 * perf_group_detach can, at all times, locate all siblings. 1777 */ 1778 if (event->group_leader == event) { 1779 event->group_caps = event->event_caps; 1780 add_event_to_groups(event, ctx); 1781 } 1782 1783 list_add_rcu(&event->event_entry, &ctx->event_list); 1784 ctx->nr_events++; 1785 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1786 ctx->nr_user++; 1787 if (event->attr.inherit_stat) 1788 ctx->nr_stat++; 1789 1790 if (event->state > PERF_EVENT_STATE_OFF) 1791 perf_cgroup_event_enable(event, ctx); 1792 1793 ctx->generation++; 1794 event->pmu_ctx->nr_events++; 1795 } 1796 1797 /* 1798 * Initialize event state based on the perf_event_attr::disabled. 1799 */ 1800 static inline void perf_event__state_init(struct perf_event *event) 1801 { 1802 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1803 PERF_EVENT_STATE_INACTIVE; 1804 } 1805 1806 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1807 { 1808 int entry = sizeof(u64); /* value */ 1809 int size = 0; 1810 int nr = 1; 1811 1812 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1813 size += sizeof(u64); 1814 1815 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1816 size += sizeof(u64); 1817 1818 if (event->attr.read_format & PERF_FORMAT_ID) 1819 entry += sizeof(u64); 1820 1821 if (event->attr.read_format & PERF_FORMAT_LOST) 1822 entry += sizeof(u64); 1823 1824 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1825 nr += nr_siblings; 1826 size += sizeof(u64); 1827 } 1828 1829 size += entry * nr; 1830 event->read_size = size; 1831 } 1832 1833 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1834 { 1835 struct perf_sample_data *data; 1836 u16 size = 0; 1837 1838 if (sample_type & PERF_SAMPLE_IP) 1839 size += sizeof(data->ip); 1840 1841 if (sample_type & PERF_SAMPLE_ADDR) 1842 size += sizeof(data->addr); 1843 1844 if (sample_type & PERF_SAMPLE_PERIOD) 1845 size += sizeof(data->period); 1846 1847 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1848 size += sizeof(data->weight.full); 1849 1850 if (sample_type & PERF_SAMPLE_READ) 1851 size += event->read_size; 1852 1853 if (sample_type & PERF_SAMPLE_DATA_SRC) 1854 size += sizeof(data->data_src.val); 1855 1856 if (sample_type & PERF_SAMPLE_TRANSACTION) 1857 size += sizeof(data->txn); 1858 1859 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1860 size += sizeof(data->phys_addr); 1861 1862 if (sample_type & PERF_SAMPLE_CGROUP) 1863 size += sizeof(data->cgroup); 1864 1865 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1866 size += sizeof(data->data_page_size); 1867 1868 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1869 size += sizeof(data->code_page_size); 1870 1871 event->header_size = size; 1872 } 1873 1874 /* 1875 * Called at perf_event creation and when events are attached/detached from a 1876 * group. 1877 */ 1878 static void perf_event__header_size(struct perf_event *event) 1879 { 1880 __perf_event_read_size(event, 1881 event->group_leader->nr_siblings); 1882 __perf_event_header_size(event, event->attr.sample_type); 1883 } 1884 1885 static void perf_event__id_header_size(struct perf_event *event) 1886 { 1887 struct perf_sample_data *data; 1888 u64 sample_type = event->attr.sample_type; 1889 u16 size = 0; 1890 1891 if (sample_type & PERF_SAMPLE_TID) 1892 size += sizeof(data->tid_entry); 1893 1894 if (sample_type & PERF_SAMPLE_TIME) 1895 size += sizeof(data->time); 1896 1897 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1898 size += sizeof(data->id); 1899 1900 if (sample_type & PERF_SAMPLE_ID) 1901 size += sizeof(data->id); 1902 1903 if (sample_type & PERF_SAMPLE_STREAM_ID) 1904 size += sizeof(data->stream_id); 1905 1906 if (sample_type & PERF_SAMPLE_CPU) 1907 size += sizeof(data->cpu_entry); 1908 1909 event->id_header_size = size; 1910 } 1911 1912 static bool perf_event_validate_size(struct perf_event *event) 1913 { 1914 /* 1915 * The values computed here will be over-written when we actually 1916 * attach the event. 1917 */ 1918 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1919 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1920 perf_event__id_header_size(event); 1921 1922 /* 1923 * Sum the lot; should not exceed the 64k limit we have on records. 1924 * Conservative limit to allow for callchains and other variable fields. 1925 */ 1926 if (event->read_size + event->header_size + 1927 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1928 return false; 1929 1930 return true; 1931 } 1932 1933 static void perf_group_attach(struct perf_event *event) 1934 { 1935 struct perf_event *group_leader = event->group_leader, *pos; 1936 1937 lockdep_assert_held(&event->ctx->lock); 1938 1939 /* 1940 * We can have double attach due to group movement (move_group) in 1941 * perf_event_open(). 1942 */ 1943 if (event->attach_state & PERF_ATTACH_GROUP) 1944 return; 1945 1946 event->attach_state |= PERF_ATTACH_GROUP; 1947 1948 if (group_leader == event) 1949 return; 1950 1951 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1952 1953 group_leader->group_caps &= event->event_caps; 1954 1955 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1956 group_leader->nr_siblings++; 1957 1958 perf_event__header_size(group_leader); 1959 1960 for_each_sibling_event(pos, group_leader) 1961 perf_event__header_size(pos); 1962 } 1963 1964 /* 1965 * Remove an event from the lists for its context. 1966 * Must be called with ctx->mutex and ctx->lock held. 1967 */ 1968 static void 1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1970 { 1971 WARN_ON_ONCE(event->ctx != ctx); 1972 lockdep_assert_held(&ctx->lock); 1973 1974 /* 1975 * We can have double detach due to exit/hot-unplug + close. 1976 */ 1977 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1978 return; 1979 1980 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1981 1982 ctx->nr_events--; 1983 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1984 ctx->nr_user--; 1985 if (event->attr.inherit_stat) 1986 ctx->nr_stat--; 1987 1988 list_del_rcu(&event->event_entry); 1989 1990 if (event->group_leader == event) 1991 del_event_from_groups(event, ctx); 1992 1993 /* 1994 * If event was in error state, then keep it 1995 * that way, otherwise bogus counts will be 1996 * returned on read(). The only way to get out 1997 * of error state is by explicit re-enabling 1998 * of the event 1999 */ 2000 if (event->state > PERF_EVENT_STATE_OFF) { 2001 perf_cgroup_event_disable(event, ctx); 2002 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2003 } 2004 2005 ctx->generation++; 2006 event->pmu_ctx->nr_events--; 2007 } 2008 2009 static int 2010 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2011 { 2012 if (!has_aux(aux_event)) 2013 return 0; 2014 2015 if (!event->pmu->aux_output_match) 2016 return 0; 2017 2018 return event->pmu->aux_output_match(aux_event); 2019 } 2020 2021 static void put_event(struct perf_event *event); 2022 static void event_sched_out(struct perf_event *event, 2023 struct perf_event_context *ctx); 2024 2025 static void perf_put_aux_event(struct perf_event *event) 2026 { 2027 struct perf_event_context *ctx = event->ctx; 2028 struct perf_event *iter; 2029 2030 /* 2031 * If event uses aux_event tear down the link 2032 */ 2033 if (event->aux_event) { 2034 iter = event->aux_event; 2035 event->aux_event = NULL; 2036 put_event(iter); 2037 return; 2038 } 2039 2040 /* 2041 * If the event is an aux_event, tear down all links to 2042 * it from other events. 2043 */ 2044 for_each_sibling_event(iter, event->group_leader) { 2045 if (iter->aux_event != event) 2046 continue; 2047 2048 iter->aux_event = NULL; 2049 put_event(event); 2050 2051 /* 2052 * If it's ACTIVE, schedule it out and put it into ERROR 2053 * state so that we don't try to schedule it again. Note 2054 * that perf_event_enable() will clear the ERROR status. 2055 */ 2056 event_sched_out(iter, ctx); 2057 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2058 } 2059 } 2060 2061 static bool perf_need_aux_event(struct perf_event *event) 2062 { 2063 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2064 } 2065 2066 static int perf_get_aux_event(struct perf_event *event, 2067 struct perf_event *group_leader) 2068 { 2069 /* 2070 * Our group leader must be an aux event if we want to be 2071 * an aux_output. This way, the aux event will precede its 2072 * aux_output events in the group, and therefore will always 2073 * schedule first. 2074 */ 2075 if (!group_leader) 2076 return 0; 2077 2078 /* 2079 * aux_output and aux_sample_size are mutually exclusive. 2080 */ 2081 if (event->attr.aux_output && event->attr.aux_sample_size) 2082 return 0; 2083 2084 if (event->attr.aux_output && 2085 !perf_aux_output_match(event, group_leader)) 2086 return 0; 2087 2088 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2089 return 0; 2090 2091 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2092 return 0; 2093 2094 /* 2095 * Link aux_outputs to their aux event; this is undone in 2096 * perf_group_detach() by perf_put_aux_event(). When the 2097 * group in torn down, the aux_output events loose their 2098 * link to the aux_event and can't schedule any more. 2099 */ 2100 event->aux_event = group_leader; 2101 2102 return 1; 2103 } 2104 2105 static inline struct list_head *get_event_list(struct perf_event *event) 2106 { 2107 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2108 &event->pmu_ctx->flexible_active; 2109 } 2110 2111 /* 2112 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2113 * cannot exist on their own, schedule them out and move them into the ERROR 2114 * state. Also see _perf_event_enable(), it will not be able to recover 2115 * this ERROR state. 2116 */ 2117 static inline void perf_remove_sibling_event(struct perf_event *event) 2118 { 2119 event_sched_out(event, event->ctx); 2120 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2121 } 2122 2123 static void perf_group_detach(struct perf_event *event) 2124 { 2125 struct perf_event *leader = event->group_leader; 2126 struct perf_event *sibling, *tmp; 2127 struct perf_event_context *ctx = event->ctx; 2128 2129 lockdep_assert_held(&ctx->lock); 2130 2131 /* 2132 * We can have double detach due to exit/hot-unplug + close. 2133 */ 2134 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2135 return; 2136 2137 event->attach_state &= ~PERF_ATTACH_GROUP; 2138 2139 perf_put_aux_event(event); 2140 2141 /* 2142 * If this is a sibling, remove it from its group. 2143 */ 2144 if (leader != event) { 2145 list_del_init(&event->sibling_list); 2146 event->group_leader->nr_siblings--; 2147 goto out; 2148 } 2149 2150 /* 2151 * If this was a group event with sibling events then 2152 * upgrade the siblings to singleton events by adding them 2153 * to whatever list we are on. 2154 */ 2155 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2156 2157 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2158 perf_remove_sibling_event(sibling); 2159 2160 sibling->group_leader = sibling; 2161 list_del_init(&sibling->sibling_list); 2162 2163 /* Inherit group flags from the previous leader */ 2164 sibling->group_caps = event->group_caps; 2165 2166 if (!RB_EMPTY_NODE(&event->group_node)) { 2167 add_event_to_groups(sibling, event->ctx); 2168 2169 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2170 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2171 } 2172 2173 WARN_ON_ONCE(sibling->ctx != event->ctx); 2174 } 2175 2176 out: 2177 for_each_sibling_event(tmp, leader) 2178 perf_event__header_size(tmp); 2179 2180 perf_event__header_size(leader); 2181 } 2182 2183 static void sync_child_event(struct perf_event *child_event); 2184 2185 static void perf_child_detach(struct perf_event *event) 2186 { 2187 struct perf_event *parent_event = event->parent; 2188 2189 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2190 return; 2191 2192 event->attach_state &= ~PERF_ATTACH_CHILD; 2193 2194 if (WARN_ON_ONCE(!parent_event)) 2195 return; 2196 2197 lockdep_assert_held(&parent_event->child_mutex); 2198 2199 sync_child_event(event); 2200 list_del_init(&event->child_list); 2201 } 2202 2203 static bool is_orphaned_event(struct perf_event *event) 2204 { 2205 return event->state == PERF_EVENT_STATE_DEAD; 2206 } 2207 2208 static inline int 2209 event_filter_match(struct perf_event *event) 2210 { 2211 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2212 perf_cgroup_match(event); 2213 } 2214 2215 static void 2216 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2217 { 2218 struct perf_event_pmu_context *epc = event->pmu_ctx; 2219 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2220 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2221 2222 // XXX cpc serialization, probably per-cpu IRQ disabled 2223 2224 WARN_ON_ONCE(event->ctx != ctx); 2225 lockdep_assert_held(&ctx->lock); 2226 2227 if (event->state != PERF_EVENT_STATE_ACTIVE) 2228 return; 2229 2230 /* 2231 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2232 * we can schedule events _OUT_ individually through things like 2233 * __perf_remove_from_context(). 2234 */ 2235 list_del_init(&event->active_list); 2236 2237 perf_pmu_disable(event->pmu); 2238 2239 event->pmu->del(event, 0); 2240 event->oncpu = -1; 2241 2242 if (event->pending_disable) { 2243 event->pending_disable = 0; 2244 perf_cgroup_event_disable(event, ctx); 2245 state = PERF_EVENT_STATE_OFF; 2246 } 2247 2248 if (event->pending_sigtrap) { 2249 bool dec = true; 2250 2251 event->pending_sigtrap = 0; 2252 if (state != PERF_EVENT_STATE_OFF && 2253 !event->pending_work) { 2254 event->pending_work = 1; 2255 dec = false; 2256 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2257 task_work_add(current, &event->pending_task, TWA_RESUME); 2258 } 2259 if (dec) 2260 local_dec(&event->ctx->nr_pending); 2261 } 2262 2263 perf_event_set_state(event, state); 2264 2265 if (!is_software_event(event)) 2266 cpc->active_oncpu--; 2267 if (event->attr.freq && event->attr.sample_freq) 2268 ctx->nr_freq--; 2269 if (event->attr.exclusive || !cpc->active_oncpu) 2270 cpc->exclusive = 0; 2271 2272 perf_pmu_enable(event->pmu); 2273 } 2274 2275 static void 2276 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2277 { 2278 struct perf_event *event; 2279 2280 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2281 return; 2282 2283 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2284 2285 event_sched_out(group_event, ctx); 2286 2287 /* 2288 * Schedule out siblings (if any): 2289 */ 2290 for_each_sibling_event(event, group_event) 2291 event_sched_out(event, ctx); 2292 } 2293 2294 #define DETACH_GROUP 0x01UL 2295 #define DETACH_CHILD 0x02UL 2296 #define DETACH_DEAD 0x04UL 2297 2298 /* 2299 * Cross CPU call to remove a performance event 2300 * 2301 * We disable the event on the hardware level first. After that we 2302 * remove it from the context list. 2303 */ 2304 static void 2305 __perf_remove_from_context(struct perf_event *event, 2306 struct perf_cpu_context *cpuctx, 2307 struct perf_event_context *ctx, 2308 void *info) 2309 { 2310 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2311 unsigned long flags = (unsigned long)info; 2312 2313 if (ctx->is_active & EVENT_TIME) { 2314 update_context_time(ctx); 2315 update_cgrp_time_from_cpuctx(cpuctx, false); 2316 } 2317 2318 /* 2319 * Ensure event_sched_out() switches to OFF, at the very least 2320 * this avoids raising perf_pending_task() at this time. 2321 */ 2322 if (flags & DETACH_DEAD) 2323 event->pending_disable = 1; 2324 event_sched_out(event, ctx); 2325 if (flags & DETACH_GROUP) 2326 perf_group_detach(event); 2327 if (flags & DETACH_CHILD) 2328 perf_child_detach(event); 2329 list_del_event(event, ctx); 2330 if (flags & DETACH_DEAD) 2331 event->state = PERF_EVENT_STATE_DEAD; 2332 2333 if (!pmu_ctx->nr_events) { 2334 pmu_ctx->rotate_necessary = 0; 2335 2336 if (ctx->task && ctx->is_active) { 2337 struct perf_cpu_pmu_context *cpc; 2338 2339 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2340 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2341 cpc->task_epc = NULL; 2342 } 2343 } 2344 2345 if (!ctx->nr_events && ctx->is_active) { 2346 if (ctx == &cpuctx->ctx) 2347 update_cgrp_time_from_cpuctx(cpuctx, true); 2348 2349 ctx->is_active = 0; 2350 if (ctx->task) { 2351 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2352 cpuctx->task_ctx = NULL; 2353 } 2354 } 2355 } 2356 2357 /* 2358 * Remove the event from a task's (or a CPU's) list of events. 2359 * 2360 * If event->ctx is a cloned context, callers must make sure that 2361 * every task struct that event->ctx->task could possibly point to 2362 * remains valid. This is OK when called from perf_release since 2363 * that only calls us on the top-level context, which can't be a clone. 2364 * When called from perf_event_exit_task, it's OK because the 2365 * context has been detached from its task. 2366 */ 2367 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2368 { 2369 struct perf_event_context *ctx = event->ctx; 2370 2371 lockdep_assert_held(&ctx->mutex); 2372 2373 /* 2374 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2375 * to work in the face of TASK_TOMBSTONE, unlike every other 2376 * event_function_call() user. 2377 */ 2378 raw_spin_lock_irq(&ctx->lock); 2379 if (!ctx->is_active) { 2380 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2381 ctx, (void *)flags); 2382 raw_spin_unlock_irq(&ctx->lock); 2383 return; 2384 } 2385 raw_spin_unlock_irq(&ctx->lock); 2386 2387 event_function_call(event, __perf_remove_from_context, (void *)flags); 2388 } 2389 2390 /* 2391 * Cross CPU call to disable a performance event 2392 */ 2393 static void __perf_event_disable(struct perf_event *event, 2394 struct perf_cpu_context *cpuctx, 2395 struct perf_event_context *ctx, 2396 void *info) 2397 { 2398 if (event->state < PERF_EVENT_STATE_INACTIVE) 2399 return; 2400 2401 if (ctx->is_active & EVENT_TIME) { 2402 update_context_time(ctx); 2403 update_cgrp_time_from_event(event); 2404 } 2405 2406 perf_pmu_disable(event->pmu_ctx->pmu); 2407 2408 if (event == event->group_leader) 2409 group_sched_out(event, ctx); 2410 else 2411 event_sched_out(event, ctx); 2412 2413 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2414 perf_cgroup_event_disable(event, ctx); 2415 2416 perf_pmu_enable(event->pmu_ctx->pmu); 2417 } 2418 2419 /* 2420 * Disable an event. 2421 * 2422 * If event->ctx is a cloned context, callers must make sure that 2423 * every task struct that event->ctx->task could possibly point to 2424 * remains valid. This condition is satisfied when called through 2425 * perf_event_for_each_child or perf_event_for_each because they 2426 * hold the top-level event's child_mutex, so any descendant that 2427 * goes to exit will block in perf_event_exit_event(). 2428 * 2429 * When called from perf_pending_irq it's OK because event->ctx 2430 * is the current context on this CPU and preemption is disabled, 2431 * hence we can't get into perf_event_task_sched_out for this context. 2432 */ 2433 static void _perf_event_disable(struct perf_event *event) 2434 { 2435 struct perf_event_context *ctx = event->ctx; 2436 2437 raw_spin_lock_irq(&ctx->lock); 2438 if (event->state <= PERF_EVENT_STATE_OFF) { 2439 raw_spin_unlock_irq(&ctx->lock); 2440 return; 2441 } 2442 raw_spin_unlock_irq(&ctx->lock); 2443 2444 event_function_call(event, __perf_event_disable, NULL); 2445 } 2446 2447 void perf_event_disable_local(struct perf_event *event) 2448 { 2449 event_function_local(event, __perf_event_disable, NULL); 2450 } 2451 2452 /* 2453 * Strictly speaking kernel users cannot create groups and therefore this 2454 * interface does not need the perf_event_ctx_lock() magic. 2455 */ 2456 void perf_event_disable(struct perf_event *event) 2457 { 2458 struct perf_event_context *ctx; 2459 2460 ctx = perf_event_ctx_lock(event); 2461 _perf_event_disable(event); 2462 perf_event_ctx_unlock(event, ctx); 2463 } 2464 EXPORT_SYMBOL_GPL(perf_event_disable); 2465 2466 void perf_event_disable_inatomic(struct perf_event *event) 2467 { 2468 event->pending_disable = 1; 2469 irq_work_queue(&event->pending_irq); 2470 } 2471 2472 #define MAX_INTERRUPTS (~0ULL) 2473 2474 static void perf_log_throttle(struct perf_event *event, int enable); 2475 static void perf_log_itrace_start(struct perf_event *event); 2476 2477 static int 2478 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2479 { 2480 struct perf_event_pmu_context *epc = event->pmu_ctx; 2481 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2482 int ret = 0; 2483 2484 WARN_ON_ONCE(event->ctx != ctx); 2485 2486 lockdep_assert_held(&ctx->lock); 2487 2488 if (event->state <= PERF_EVENT_STATE_OFF) 2489 return 0; 2490 2491 WRITE_ONCE(event->oncpu, smp_processor_id()); 2492 /* 2493 * Order event::oncpu write to happen before the ACTIVE state is 2494 * visible. This allows perf_event_{stop,read}() to observe the correct 2495 * ->oncpu if it sees ACTIVE. 2496 */ 2497 smp_wmb(); 2498 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2499 2500 /* 2501 * Unthrottle events, since we scheduled we might have missed several 2502 * ticks already, also for a heavily scheduling task there is little 2503 * guarantee it'll get a tick in a timely manner. 2504 */ 2505 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2506 perf_log_throttle(event, 1); 2507 event->hw.interrupts = 0; 2508 } 2509 2510 perf_pmu_disable(event->pmu); 2511 2512 perf_log_itrace_start(event); 2513 2514 if (event->pmu->add(event, PERF_EF_START)) { 2515 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2516 event->oncpu = -1; 2517 ret = -EAGAIN; 2518 goto out; 2519 } 2520 2521 if (!is_software_event(event)) 2522 cpc->active_oncpu++; 2523 if (event->attr.freq && event->attr.sample_freq) 2524 ctx->nr_freq++; 2525 2526 if (event->attr.exclusive) 2527 cpc->exclusive = 1; 2528 2529 out: 2530 perf_pmu_enable(event->pmu); 2531 2532 return ret; 2533 } 2534 2535 static int 2536 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2537 { 2538 struct perf_event *event, *partial_group = NULL; 2539 struct pmu *pmu = group_event->pmu_ctx->pmu; 2540 2541 if (group_event->state == PERF_EVENT_STATE_OFF) 2542 return 0; 2543 2544 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2545 2546 if (event_sched_in(group_event, ctx)) 2547 goto error; 2548 2549 /* 2550 * Schedule in siblings as one group (if any): 2551 */ 2552 for_each_sibling_event(event, group_event) { 2553 if (event_sched_in(event, ctx)) { 2554 partial_group = event; 2555 goto group_error; 2556 } 2557 } 2558 2559 if (!pmu->commit_txn(pmu)) 2560 return 0; 2561 2562 group_error: 2563 /* 2564 * Groups can be scheduled in as one unit only, so undo any 2565 * partial group before returning: 2566 * The events up to the failed event are scheduled out normally. 2567 */ 2568 for_each_sibling_event(event, group_event) { 2569 if (event == partial_group) 2570 break; 2571 2572 event_sched_out(event, ctx); 2573 } 2574 event_sched_out(group_event, ctx); 2575 2576 error: 2577 pmu->cancel_txn(pmu); 2578 return -EAGAIN; 2579 } 2580 2581 /* 2582 * Work out whether we can put this event group on the CPU now. 2583 */ 2584 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2585 { 2586 struct perf_event_pmu_context *epc = event->pmu_ctx; 2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2588 2589 /* 2590 * Groups consisting entirely of software events can always go on. 2591 */ 2592 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2593 return 1; 2594 /* 2595 * If an exclusive group is already on, no other hardware 2596 * events can go on. 2597 */ 2598 if (cpc->exclusive) 2599 return 0; 2600 /* 2601 * If this group is exclusive and there are already 2602 * events on the CPU, it can't go on. 2603 */ 2604 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2605 return 0; 2606 /* 2607 * Otherwise, try to add it if all previous groups were able 2608 * to go on. 2609 */ 2610 return can_add_hw; 2611 } 2612 2613 static void add_event_to_ctx(struct perf_event *event, 2614 struct perf_event_context *ctx) 2615 { 2616 list_add_event(event, ctx); 2617 perf_group_attach(event); 2618 } 2619 2620 static void task_ctx_sched_out(struct perf_event_context *ctx, 2621 enum event_type_t event_type) 2622 { 2623 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2624 2625 if (!cpuctx->task_ctx) 2626 return; 2627 2628 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2629 return; 2630 2631 ctx_sched_out(ctx, event_type); 2632 } 2633 2634 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2635 struct perf_event_context *ctx) 2636 { 2637 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2638 if (ctx) 2639 ctx_sched_in(ctx, EVENT_PINNED); 2640 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2641 if (ctx) 2642 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2643 } 2644 2645 /* 2646 * We want to maintain the following priority of scheduling: 2647 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2648 * - task pinned (EVENT_PINNED) 2649 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2650 * - task flexible (EVENT_FLEXIBLE). 2651 * 2652 * In order to avoid unscheduling and scheduling back in everything every 2653 * time an event is added, only do it for the groups of equal priority and 2654 * below. 2655 * 2656 * This can be called after a batch operation on task events, in which case 2657 * event_type is a bit mask of the types of events involved. For CPU events, 2658 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2659 */ 2660 /* 2661 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2662 * event to the context or enabling existing event in the context. We can 2663 * probably optimize it by rescheduling only affected pmu_ctx. 2664 */ 2665 static void ctx_resched(struct perf_cpu_context *cpuctx, 2666 struct perf_event_context *task_ctx, 2667 enum event_type_t event_type) 2668 { 2669 bool cpu_event = !!(event_type & EVENT_CPU); 2670 2671 /* 2672 * If pinned groups are involved, flexible groups also need to be 2673 * scheduled out. 2674 */ 2675 if (event_type & EVENT_PINNED) 2676 event_type |= EVENT_FLEXIBLE; 2677 2678 event_type &= EVENT_ALL; 2679 2680 perf_ctx_disable(&cpuctx->ctx); 2681 if (task_ctx) { 2682 perf_ctx_disable(task_ctx); 2683 task_ctx_sched_out(task_ctx, event_type); 2684 } 2685 2686 /* 2687 * Decide which cpu ctx groups to schedule out based on the types 2688 * of events that caused rescheduling: 2689 * - EVENT_CPU: schedule out corresponding groups; 2690 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2691 * - otherwise, do nothing more. 2692 */ 2693 if (cpu_event) 2694 ctx_sched_out(&cpuctx->ctx, event_type); 2695 else if (event_type & EVENT_PINNED) 2696 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2697 2698 perf_event_sched_in(cpuctx, task_ctx); 2699 2700 perf_ctx_enable(&cpuctx->ctx); 2701 if (task_ctx) 2702 perf_ctx_enable(task_ctx); 2703 } 2704 2705 void perf_pmu_resched(struct pmu *pmu) 2706 { 2707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2708 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2709 2710 perf_ctx_lock(cpuctx, task_ctx); 2711 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2712 perf_ctx_unlock(cpuctx, task_ctx); 2713 } 2714 2715 /* 2716 * Cross CPU call to install and enable a performance event 2717 * 2718 * Very similar to remote_function() + event_function() but cannot assume that 2719 * things like ctx->is_active and cpuctx->task_ctx are set. 2720 */ 2721 static int __perf_install_in_context(void *info) 2722 { 2723 struct perf_event *event = info; 2724 struct perf_event_context *ctx = event->ctx; 2725 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2726 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2727 bool reprogram = true; 2728 int ret = 0; 2729 2730 raw_spin_lock(&cpuctx->ctx.lock); 2731 if (ctx->task) { 2732 raw_spin_lock(&ctx->lock); 2733 task_ctx = ctx; 2734 2735 reprogram = (ctx->task == current); 2736 2737 /* 2738 * If the task is running, it must be running on this CPU, 2739 * otherwise we cannot reprogram things. 2740 * 2741 * If its not running, we don't care, ctx->lock will 2742 * serialize against it becoming runnable. 2743 */ 2744 if (task_curr(ctx->task) && !reprogram) { 2745 ret = -ESRCH; 2746 goto unlock; 2747 } 2748 2749 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2750 } else if (task_ctx) { 2751 raw_spin_lock(&task_ctx->lock); 2752 } 2753 2754 #ifdef CONFIG_CGROUP_PERF 2755 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2756 /* 2757 * If the current cgroup doesn't match the event's 2758 * cgroup, we should not try to schedule it. 2759 */ 2760 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2761 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2762 event->cgrp->css.cgroup); 2763 } 2764 #endif 2765 2766 if (reprogram) { 2767 ctx_sched_out(ctx, EVENT_TIME); 2768 add_event_to_ctx(event, ctx); 2769 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2770 } else { 2771 add_event_to_ctx(event, ctx); 2772 } 2773 2774 unlock: 2775 perf_ctx_unlock(cpuctx, task_ctx); 2776 2777 return ret; 2778 } 2779 2780 static bool exclusive_event_installable(struct perf_event *event, 2781 struct perf_event_context *ctx); 2782 2783 /* 2784 * Attach a performance event to a context. 2785 * 2786 * Very similar to event_function_call, see comment there. 2787 */ 2788 static void 2789 perf_install_in_context(struct perf_event_context *ctx, 2790 struct perf_event *event, 2791 int cpu) 2792 { 2793 struct task_struct *task = READ_ONCE(ctx->task); 2794 2795 lockdep_assert_held(&ctx->mutex); 2796 2797 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2798 2799 if (event->cpu != -1) 2800 WARN_ON_ONCE(event->cpu != cpu); 2801 2802 /* 2803 * Ensures that if we can observe event->ctx, both the event and ctx 2804 * will be 'complete'. See perf_iterate_sb_cpu(). 2805 */ 2806 smp_store_release(&event->ctx, ctx); 2807 2808 /* 2809 * perf_event_attr::disabled events will not run and can be initialized 2810 * without IPI. Except when this is the first event for the context, in 2811 * that case we need the magic of the IPI to set ctx->is_active. 2812 * 2813 * The IOC_ENABLE that is sure to follow the creation of a disabled 2814 * event will issue the IPI and reprogram the hardware. 2815 */ 2816 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2817 ctx->nr_events && !is_cgroup_event(event)) { 2818 raw_spin_lock_irq(&ctx->lock); 2819 if (ctx->task == TASK_TOMBSTONE) { 2820 raw_spin_unlock_irq(&ctx->lock); 2821 return; 2822 } 2823 add_event_to_ctx(event, ctx); 2824 raw_spin_unlock_irq(&ctx->lock); 2825 return; 2826 } 2827 2828 if (!task) { 2829 cpu_function_call(cpu, __perf_install_in_context, event); 2830 return; 2831 } 2832 2833 /* 2834 * Should not happen, we validate the ctx is still alive before calling. 2835 */ 2836 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2837 return; 2838 2839 /* 2840 * Installing events is tricky because we cannot rely on ctx->is_active 2841 * to be set in case this is the nr_events 0 -> 1 transition. 2842 * 2843 * Instead we use task_curr(), which tells us if the task is running. 2844 * However, since we use task_curr() outside of rq::lock, we can race 2845 * against the actual state. This means the result can be wrong. 2846 * 2847 * If we get a false positive, we retry, this is harmless. 2848 * 2849 * If we get a false negative, things are complicated. If we are after 2850 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2851 * value must be correct. If we're before, it doesn't matter since 2852 * perf_event_context_sched_in() will program the counter. 2853 * 2854 * However, this hinges on the remote context switch having observed 2855 * our task->perf_event_ctxp[] store, such that it will in fact take 2856 * ctx::lock in perf_event_context_sched_in(). 2857 * 2858 * We do this by task_function_call(), if the IPI fails to hit the task 2859 * we know any future context switch of task must see the 2860 * perf_event_ctpx[] store. 2861 */ 2862 2863 /* 2864 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2865 * task_cpu() load, such that if the IPI then does not find the task 2866 * running, a future context switch of that task must observe the 2867 * store. 2868 */ 2869 smp_mb(); 2870 again: 2871 if (!task_function_call(task, __perf_install_in_context, event)) 2872 return; 2873 2874 raw_spin_lock_irq(&ctx->lock); 2875 task = ctx->task; 2876 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2877 /* 2878 * Cannot happen because we already checked above (which also 2879 * cannot happen), and we hold ctx->mutex, which serializes us 2880 * against perf_event_exit_task_context(). 2881 */ 2882 raw_spin_unlock_irq(&ctx->lock); 2883 return; 2884 } 2885 /* 2886 * If the task is not running, ctx->lock will avoid it becoming so, 2887 * thus we can safely install the event. 2888 */ 2889 if (task_curr(task)) { 2890 raw_spin_unlock_irq(&ctx->lock); 2891 goto again; 2892 } 2893 add_event_to_ctx(event, ctx); 2894 raw_spin_unlock_irq(&ctx->lock); 2895 } 2896 2897 /* 2898 * Cross CPU call to enable a performance event 2899 */ 2900 static void __perf_event_enable(struct perf_event *event, 2901 struct perf_cpu_context *cpuctx, 2902 struct perf_event_context *ctx, 2903 void *info) 2904 { 2905 struct perf_event *leader = event->group_leader; 2906 struct perf_event_context *task_ctx; 2907 2908 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2909 event->state <= PERF_EVENT_STATE_ERROR) 2910 return; 2911 2912 if (ctx->is_active) 2913 ctx_sched_out(ctx, EVENT_TIME); 2914 2915 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2916 perf_cgroup_event_enable(event, ctx); 2917 2918 if (!ctx->is_active) 2919 return; 2920 2921 if (!event_filter_match(event)) { 2922 ctx_sched_in(ctx, EVENT_TIME); 2923 return; 2924 } 2925 2926 /* 2927 * If the event is in a group and isn't the group leader, 2928 * then don't put it on unless the group is on. 2929 */ 2930 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2931 ctx_sched_in(ctx, EVENT_TIME); 2932 return; 2933 } 2934 2935 task_ctx = cpuctx->task_ctx; 2936 if (ctx->task) 2937 WARN_ON_ONCE(task_ctx != ctx); 2938 2939 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2940 } 2941 2942 /* 2943 * Enable an event. 2944 * 2945 * If event->ctx is a cloned context, callers must make sure that 2946 * every task struct that event->ctx->task could possibly point to 2947 * remains valid. This condition is satisfied when called through 2948 * perf_event_for_each_child or perf_event_for_each as described 2949 * for perf_event_disable. 2950 */ 2951 static void _perf_event_enable(struct perf_event *event) 2952 { 2953 struct perf_event_context *ctx = event->ctx; 2954 2955 raw_spin_lock_irq(&ctx->lock); 2956 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2957 event->state < PERF_EVENT_STATE_ERROR) { 2958 out: 2959 raw_spin_unlock_irq(&ctx->lock); 2960 return; 2961 } 2962 2963 /* 2964 * If the event is in error state, clear that first. 2965 * 2966 * That way, if we see the event in error state below, we know that it 2967 * has gone back into error state, as distinct from the task having 2968 * been scheduled away before the cross-call arrived. 2969 */ 2970 if (event->state == PERF_EVENT_STATE_ERROR) { 2971 /* 2972 * Detached SIBLING events cannot leave ERROR state. 2973 */ 2974 if (event->event_caps & PERF_EV_CAP_SIBLING && 2975 event->group_leader == event) 2976 goto out; 2977 2978 event->state = PERF_EVENT_STATE_OFF; 2979 } 2980 raw_spin_unlock_irq(&ctx->lock); 2981 2982 event_function_call(event, __perf_event_enable, NULL); 2983 } 2984 2985 /* 2986 * See perf_event_disable(); 2987 */ 2988 void perf_event_enable(struct perf_event *event) 2989 { 2990 struct perf_event_context *ctx; 2991 2992 ctx = perf_event_ctx_lock(event); 2993 _perf_event_enable(event); 2994 perf_event_ctx_unlock(event, ctx); 2995 } 2996 EXPORT_SYMBOL_GPL(perf_event_enable); 2997 2998 struct stop_event_data { 2999 struct perf_event *event; 3000 unsigned int restart; 3001 }; 3002 3003 static int __perf_event_stop(void *info) 3004 { 3005 struct stop_event_data *sd = info; 3006 struct perf_event *event = sd->event; 3007 3008 /* if it's already INACTIVE, do nothing */ 3009 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3010 return 0; 3011 3012 /* matches smp_wmb() in event_sched_in() */ 3013 smp_rmb(); 3014 3015 /* 3016 * There is a window with interrupts enabled before we get here, 3017 * so we need to check again lest we try to stop another CPU's event. 3018 */ 3019 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3020 return -EAGAIN; 3021 3022 event->pmu->stop(event, PERF_EF_UPDATE); 3023 3024 /* 3025 * May race with the actual stop (through perf_pmu_output_stop()), 3026 * but it is only used for events with AUX ring buffer, and such 3027 * events will refuse to restart because of rb::aux_mmap_count==0, 3028 * see comments in perf_aux_output_begin(). 3029 * 3030 * Since this is happening on an event-local CPU, no trace is lost 3031 * while restarting. 3032 */ 3033 if (sd->restart) 3034 event->pmu->start(event, 0); 3035 3036 return 0; 3037 } 3038 3039 static int perf_event_stop(struct perf_event *event, int restart) 3040 { 3041 struct stop_event_data sd = { 3042 .event = event, 3043 .restart = restart, 3044 }; 3045 int ret = 0; 3046 3047 do { 3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3049 return 0; 3050 3051 /* matches smp_wmb() in event_sched_in() */ 3052 smp_rmb(); 3053 3054 /* 3055 * We only want to restart ACTIVE events, so if the event goes 3056 * inactive here (event->oncpu==-1), there's nothing more to do; 3057 * fall through with ret==-ENXIO. 3058 */ 3059 ret = cpu_function_call(READ_ONCE(event->oncpu), 3060 __perf_event_stop, &sd); 3061 } while (ret == -EAGAIN); 3062 3063 return ret; 3064 } 3065 3066 /* 3067 * In order to contain the amount of racy and tricky in the address filter 3068 * configuration management, it is a two part process: 3069 * 3070 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3071 * we update the addresses of corresponding vmas in 3072 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3073 * (p2) when an event is scheduled in (pmu::add), it calls 3074 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3075 * if the generation has changed since the previous call. 3076 * 3077 * If (p1) happens while the event is active, we restart it to force (p2). 3078 * 3079 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3080 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3081 * ioctl; 3082 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3083 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3084 * for reading; 3085 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3086 * of exec. 3087 */ 3088 void perf_event_addr_filters_sync(struct perf_event *event) 3089 { 3090 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3091 3092 if (!has_addr_filter(event)) 3093 return; 3094 3095 raw_spin_lock(&ifh->lock); 3096 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3097 event->pmu->addr_filters_sync(event); 3098 event->hw.addr_filters_gen = event->addr_filters_gen; 3099 } 3100 raw_spin_unlock(&ifh->lock); 3101 } 3102 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3103 3104 static int _perf_event_refresh(struct perf_event *event, int refresh) 3105 { 3106 /* 3107 * not supported on inherited events 3108 */ 3109 if (event->attr.inherit || !is_sampling_event(event)) 3110 return -EINVAL; 3111 3112 atomic_add(refresh, &event->event_limit); 3113 _perf_event_enable(event); 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * See perf_event_disable() 3120 */ 3121 int perf_event_refresh(struct perf_event *event, int refresh) 3122 { 3123 struct perf_event_context *ctx; 3124 int ret; 3125 3126 ctx = perf_event_ctx_lock(event); 3127 ret = _perf_event_refresh(event, refresh); 3128 perf_event_ctx_unlock(event, ctx); 3129 3130 return ret; 3131 } 3132 EXPORT_SYMBOL_GPL(perf_event_refresh); 3133 3134 static int perf_event_modify_breakpoint(struct perf_event *bp, 3135 struct perf_event_attr *attr) 3136 { 3137 int err; 3138 3139 _perf_event_disable(bp); 3140 3141 err = modify_user_hw_breakpoint_check(bp, attr, true); 3142 3143 if (!bp->attr.disabled) 3144 _perf_event_enable(bp); 3145 3146 return err; 3147 } 3148 3149 /* 3150 * Copy event-type-independent attributes that may be modified. 3151 */ 3152 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3153 const struct perf_event_attr *from) 3154 { 3155 to->sig_data = from->sig_data; 3156 } 3157 3158 static int perf_event_modify_attr(struct perf_event *event, 3159 struct perf_event_attr *attr) 3160 { 3161 int (*func)(struct perf_event *, struct perf_event_attr *); 3162 struct perf_event *child; 3163 int err; 3164 3165 if (event->attr.type != attr->type) 3166 return -EINVAL; 3167 3168 switch (event->attr.type) { 3169 case PERF_TYPE_BREAKPOINT: 3170 func = perf_event_modify_breakpoint; 3171 break; 3172 default: 3173 /* Place holder for future additions. */ 3174 return -EOPNOTSUPP; 3175 } 3176 3177 WARN_ON_ONCE(event->ctx->parent_ctx); 3178 3179 mutex_lock(&event->child_mutex); 3180 /* 3181 * Event-type-independent attributes must be copied before event-type 3182 * modification, which will validate that final attributes match the 3183 * source attributes after all relevant attributes have been copied. 3184 */ 3185 perf_event_modify_copy_attr(&event->attr, attr); 3186 err = func(event, attr); 3187 if (err) 3188 goto out; 3189 list_for_each_entry(child, &event->child_list, child_list) { 3190 perf_event_modify_copy_attr(&child->attr, attr); 3191 err = func(child, attr); 3192 if (err) 3193 goto out; 3194 } 3195 out: 3196 mutex_unlock(&event->child_mutex); 3197 return err; 3198 } 3199 3200 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3201 enum event_type_t event_type) 3202 { 3203 struct perf_event_context *ctx = pmu_ctx->ctx; 3204 struct perf_event *event, *tmp; 3205 struct pmu *pmu = pmu_ctx->pmu; 3206 3207 if (ctx->task && !ctx->is_active) { 3208 struct perf_cpu_pmu_context *cpc; 3209 3210 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3211 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3212 cpc->task_epc = NULL; 3213 } 3214 3215 if (!event_type) 3216 return; 3217 3218 perf_pmu_disable(pmu); 3219 if (event_type & EVENT_PINNED) { 3220 list_for_each_entry_safe(event, tmp, 3221 &pmu_ctx->pinned_active, 3222 active_list) 3223 group_sched_out(event, ctx); 3224 } 3225 3226 if (event_type & EVENT_FLEXIBLE) { 3227 list_for_each_entry_safe(event, tmp, 3228 &pmu_ctx->flexible_active, 3229 active_list) 3230 group_sched_out(event, ctx); 3231 /* 3232 * Since we cleared EVENT_FLEXIBLE, also clear 3233 * rotate_necessary, is will be reset by 3234 * ctx_flexible_sched_in() when needed. 3235 */ 3236 pmu_ctx->rotate_necessary = 0; 3237 } 3238 perf_pmu_enable(pmu); 3239 } 3240 3241 static void 3242 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3243 { 3244 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3245 struct perf_event_pmu_context *pmu_ctx; 3246 int is_active = ctx->is_active; 3247 3248 lockdep_assert_held(&ctx->lock); 3249 3250 if (likely(!ctx->nr_events)) { 3251 /* 3252 * See __perf_remove_from_context(). 3253 */ 3254 WARN_ON_ONCE(ctx->is_active); 3255 if (ctx->task) 3256 WARN_ON_ONCE(cpuctx->task_ctx); 3257 return; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3274 /* 3275 * CPU-release for the below ->is_active store, 3276 * see __load_acquire() in perf_event_time_now() 3277 */ 3278 barrier(); 3279 } 3280 3281 ctx->is_active &= ~event_type; 3282 if (!(ctx->is_active & EVENT_ALL)) 3283 ctx->is_active = 0; 3284 3285 if (ctx->task) { 3286 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3287 if (!ctx->is_active) 3288 cpuctx->task_ctx = NULL; 3289 } 3290 3291 is_active ^= ctx->is_active; /* changed bits */ 3292 3293 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 3294 __pmu_ctx_sched_out(pmu_ctx, is_active); 3295 } 3296 3297 /* 3298 * Test whether two contexts are equivalent, i.e. whether they have both been 3299 * cloned from the same version of the same context. 3300 * 3301 * Equivalence is measured using a generation number in the context that is 3302 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3303 * and list_del_event(). 3304 */ 3305 static int context_equiv(struct perf_event_context *ctx1, 3306 struct perf_event_context *ctx2) 3307 { 3308 lockdep_assert_held(&ctx1->lock); 3309 lockdep_assert_held(&ctx2->lock); 3310 3311 /* Pinning disables the swap optimization */ 3312 if (ctx1->pin_count || ctx2->pin_count) 3313 return 0; 3314 3315 /* If ctx1 is the parent of ctx2 */ 3316 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3317 return 1; 3318 3319 /* If ctx2 is the parent of ctx1 */ 3320 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3321 return 1; 3322 3323 /* 3324 * If ctx1 and ctx2 have the same parent; we flatten the parent 3325 * hierarchy, see perf_event_init_context(). 3326 */ 3327 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3328 ctx1->parent_gen == ctx2->parent_gen) 3329 return 1; 3330 3331 /* Unmatched */ 3332 return 0; 3333 } 3334 3335 static void __perf_event_sync_stat(struct perf_event *event, 3336 struct perf_event *next_event) 3337 { 3338 u64 value; 3339 3340 if (!event->attr.inherit_stat) 3341 return; 3342 3343 /* 3344 * Update the event value, we cannot use perf_event_read() 3345 * because we're in the middle of a context switch and have IRQs 3346 * disabled, which upsets smp_call_function_single(), however 3347 * we know the event must be on the current CPU, therefore we 3348 * don't need to use it. 3349 */ 3350 if (event->state == PERF_EVENT_STATE_ACTIVE) 3351 event->pmu->read(event); 3352 3353 perf_event_update_time(event); 3354 3355 /* 3356 * In order to keep per-task stats reliable we need to flip the event 3357 * values when we flip the contexts. 3358 */ 3359 value = local64_read(&next_event->count); 3360 value = local64_xchg(&event->count, value); 3361 local64_set(&next_event->count, value); 3362 3363 swap(event->total_time_enabled, next_event->total_time_enabled); 3364 swap(event->total_time_running, next_event->total_time_running); 3365 3366 /* 3367 * Since we swizzled the values, update the user visible data too. 3368 */ 3369 perf_event_update_userpage(event); 3370 perf_event_update_userpage(next_event); 3371 } 3372 3373 static void perf_event_sync_stat(struct perf_event_context *ctx, 3374 struct perf_event_context *next_ctx) 3375 { 3376 struct perf_event *event, *next_event; 3377 3378 if (!ctx->nr_stat) 3379 return; 3380 3381 update_context_time(ctx); 3382 3383 event = list_first_entry(&ctx->event_list, 3384 struct perf_event, event_entry); 3385 3386 next_event = list_first_entry(&next_ctx->event_list, 3387 struct perf_event, event_entry); 3388 3389 while (&event->event_entry != &ctx->event_list && 3390 &next_event->event_entry != &next_ctx->event_list) { 3391 3392 __perf_event_sync_stat(event, next_event); 3393 3394 event = list_next_entry(event, event_entry); 3395 next_event = list_next_entry(next_event, event_entry); 3396 } 3397 } 3398 3399 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3400 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3401 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3402 !list_entry_is_head(pos1, head1, member) && \ 3403 !list_entry_is_head(pos2, head2, member); \ 3404 pos1 = list_next_entry(pos1, member), \ 3405 pos2 = list_next_entry(pos2, member)) 3406 3407 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3408 struct perf_event_context *next_ctx) 3409 { 3410 struct perf_event_pmu_context *prev_epc, *next_epc; 3411 3412 if (!prev_ctx->nr_task_data) 3413 return; 3414 3415 double_list_for_each_entry(prev_epc, next_epc, 3416 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3417 pmu_ctx_entry) { 3418 3419 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3420 continue; 3421 3422 /* 3423 * PMU specific parts of task perf context can require 3424 * additional synchronization. As an example of such 3425 * synchronization see implementation details of Intel 3426 * LBR call stack data profiling; 3427 */ 3428 if (prev_epc->pmu->swap_task_ctx) 3429 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3430 else 3431 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3432 } 3433 } 3434 3435 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3436 { 3437 struct perf_event_pmu_context *pmu_ctx; 3438 struct perf_cpu_pmu_context *cpc; 3439 3440 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3441 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3442 3443 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3444 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3445 } 3446 } 3447 3448 static void 3449 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3450 { 3451 struct perf_event_context *ctx = task->perf_event_ctxp; 3452 struct perf_event_context *next_ctx; 3453 struct perf_event_context *parent, *next_parent; 3454 int do_switch = 1; 3455 3456 if (likely(!ctx)) 3457 return; 3458 3459 rcu_read_lock(); 3460 next_ctx = rcu_dereference(next->perf_event_ctxp); 3461 if (!next_ctx) 3462 goto unlock; 3463 3464 parent = rcu_dereference(ctx->parent_ctx); 3465 next_parent = rcu_dereference(next_ctx->parent_ctx); 3466 3467 /* If neither context have a parent context; they cannot be clones. */ 3468 if (!parent && !next_parent) 3469 goto unlock; 3470 3471 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3472 /* 3473 * Looks like the two contexts are clones, so we might be 3474 * able to optimize the context switch. We lock both 3475 * contexts and check that they are clones under the 3476 * lock (including re-checking that neither has been 3477 * uncloned in the meantime). It doesn't matter which 3478 * order we take the locks because no other cpu could 3479 * be trying to lock both of these tasks. 3480 */ 3481 raw_spin_lock(&ctx->lock); 3482 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3483 if (context_equiv(ctx, next_ctx)) { 3484 3485 perf_ctx_disable(ctx); 3486 3487 /* PMIs are disabled; ctx->nr_pending is stable. */ 3488 if (local_read(&ctx->nr_pending) || 3489 local_read(&next_ctx->nr_pending)) { 3490 /* 3491 * Must not swap out ctx when there's pending 3492 * events that rely on the ctx->task relation. 3493 */ 3494 raw_spin_unlock(&next_ctx->lock); 3495 rcu_read_unlock(); 3496 goto inside_switch; 3497 } 3498 3499 WRITE_ONCE(ctx->task, next); 3500 WRITE_ONCE(next_ctx->task, task); 3501 3502 perf_ctx_sched_task_cb(ctx, false); 3503 perf_event_swap_task_ctx_data(ctx, next_ctx); 3504 3505 perf_ctx_enable(ctx); 3506 3507 /* 3508 * RCU_INIT_POINTER here is safe because we've not 3509 * modified the ctx and the above modification of 3510 * ctx->task and ctx->task_ctx_data are immaterial 3511 * since those values are always verified under 3512 * ctx->lock which we're now holding. 3513 */ 3514 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3515 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3516 3517 do_switch = 0; 3518 3519 perf_event_sync_stat(ctx, next_ctx); 3520 } 3521 raw_spin_unlock(&next_ctx->lock); 3522 raw_spin_unlock(&ctx->lock); 3523 } 3524 unlock: 3525 rcu_read_unlock(); 3526 3527 if (do_switch) { 3528 raw_spin_lock(&ctx->lock); 3529 perf_ctx_disable(ctx); 3530 3531 inside_switch: 3532 perf_ctx_sched_task_cb(ctx, false); 3533 task_ctx_sched_out(ctx, EVENT_ALL); 3534 3535 perf_ctx_enable(ctx); 3536 raw_spin_unlock(&ctx->lock); 3537 } 3538 } 3539 3540 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3541 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3542 3543 void perf_sched_cb_dec(struct pmu *pmu) 3544 { 3545 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3546 3547 this_cpu_dec(perf_sched_cb_usages); 3548 barrier(); 3549 3550 if (!--cpc->sched_cb_usage) 3551 list_del(&cpc->sched_cb_entry); 3552 } 3553 3554 3555 void perf_sched_cb_inc(struct pmu *pmu) 3556 { 3557 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3558 3559 if (!cpc->sched_cb_usage++) 3560 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3561 3562 barrier(); 3563 this_cpu_inc(perf_sched_cb_usages); 3564 } 3565 3566 /* 3567 * This function provides the context switch callback to the lower code 3568 * layer. It is invoked ONLY when the context switch callback is enabled. 3569 * 3570 * This callback is relevant even to per-cpu events; for example multi event 3571 * PEBS requires this to provide PID/TID information. This requires we flush 3572 * all queued PEBS records before we context switch to a new task. 3573 */ 3574 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3575 { 3576 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3577 struct pmu *pmu; 3578 3579 pmu = cpc->epc.pmu; 3580 3581 /* software PMUs will not have sched_task */ 3582 if (WARN_ON_ONCE(!pmu->sched_task)) 3583 return; 3584 3585 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3586 perf_pmu_disable(pmu); 3587 3588 pmu->sched_task(cpc->task_epc, sched_in); 3589 3590 perf_pmu_enable(pmu); 3591 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3592 } 3593 3594 static void perf_pmu_sched_task(struct task_struct *prev, 3595 struct task_struct *next, 3596 bool sched_in) 3597 { 3598 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3599 struct perf_cpu_pmu_context *cpc; 3600 3601 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3602 if (prev == next || cpuctx->task_ctx) 3603 return; 3604 3605 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3606 __perf_pmu_sched_task(cpc, sched_in); 3607 } 3608 3609 static void perf_event_switch(struct task_struct *task, 3610 struct task_struct *next_prev, bool sched_in); 3611 3612 /* 3613 * Called from scheduler to remove the events of the current task, 3614 * with interrupts disabled. 3615 * 3616 * We stop each event and update the event value in event->count. 3617 * 3618 * This does not protect us against NMI, but disable() 3619 * sets the disabled bit in the control field of event _before_ 3620 * accessing the event control register. If a NMI hits, then it will 3621 * not restart the event. 3622 */ 3623 void __perf_event_task_sched_out(struct task_struct *task, 3624 struct task_struct *next) 3625 { 3626 if (__this_cpu_read(perf_sched_cb_usages)) 3627 perf_pmu_sched_task(task, next, false); 3628 3629 if (atomic_read(&nr_switch_events)) 3630 perf_event_switch(task, next, false); 3631 3632 perf_event_context_sched_out(task, next); 3633 3634 /* 3635 * if cgroup events exist on this CPU, then we need 3636 * to check if we have to switch out PMU state. 3637 * cgroup event are system-wide mode only 3638 */ 3639 perf_cgroup_switch(next); 3640 } 3641 3642 static bool perf_less_group_idx(const void *l, const void *r) 3643 { 3644 const struct perf_event *le = *(const struct perf_event **)l; 3645 const struct perf_event *re = *(const struct perf_event **)r; 3646 3647 return le->group_index < re->group_index; 3648 } 3649 3650 static void swap_ptr(void *l, void *r) 3651 { 3652 void **lp = l, **rp = r; 3653 3654 swap(*lp, *rp); 3655 } 3656 3657 static const struct min_heap_callbacks perf_min_heap = { 3658 .elem_size = sizeof(struct perf_event *), 3659 .less = perf_less_group_idx, 3660 .swp = swap_ptr, 3661 }; 3662 3663 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3664 { 3665 struct perf_event **itrs = heap->data; 3666 3667 if (event) { 3668 itrs[heap->nr] = event; 3669 heap->nr++; 3670 } 3671 } 3672 3673 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3674 { 3675 struct perf_cpu_pmu_context *cpc; 3676 3677 if (!pmu_ctx->ctx->task) 3678 return; 3679 3680 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3681 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3682 cpc->task_epc = pmu_ctx; 3683 } 3684 3685 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3686 struct perf_event_groups *groups, int cpu, 3687 struct pmu *pmu, 3688 int (*func)(struct perf_event *, void *), 3689 void *data) 3690 { 3691 #ifdef CONFIG_CGROUP_PERF 3692 struct cgroup_subsys_state *css = NULL; 3693 #endif 3694 struct perf_cpu_context *cpuctx = NULL; 3695 /* Space for per CPU and/or any CPU event iterators. */ 3696 struct perf_event *itrs[2]; 3697 struct min_heap event_heap; 3698 struct perf_event **evt; 3699 int ret; 3700 3701 if (pmu->filter && pmu->filter(pmu, cpu)) 3702 return 0; 3703 3704 if (!ctx->task) { 3705 cpuctx = this_cpu_ptr(&perf_cpu_context); 3706 event_heap = (struct min_heap){ 3707 .data = cpuctx->heap, 3708 .nr = 0, 3709 .size = cpuctx->heap_size, 3710 }; 3711 3712 lockdep_assert_held(&cpuctx->ctx.lock); 3713 3714 #ifdef CONFIG_CGROUP_PERF 3715 if (cpuctx->cgrp) 3716 css = &cpuctx->cgrp->css; 3717 #endif 3718 } else { 3719 event_heap = (struct min_heap){ 3720 .data = itrs, 3721 .nr = 0, 3722 .size = ARRAY_SIZE(itrs), 3723 }; 3724 /* Events not within a CPU context may be on any CPU. */ 3725 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3726 } 3727 evt = event_heap.data; 3728 3729 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3730 3731 #ifdef CONFIG_CGROUP_PERF 3732 for (; css; css = css->parent) 3733 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3734 #endif 3735 3736 if (event_heap.nr) { 3737 __link_epc((*evt)->pmu_ctx); 3738 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3739 } 3740 3741 min_heapify_all(&event_heap, &perf_min_heap); 3742 3743 while (event_heap.nr) { 3744 ret = func(*evt, data); 3745 if (ret) 3746 return ret; 3747 3748 *evt = perf_event_groups_next(*evt, pmu); 3749 if (*evt) 3750 min_heapify(&event_heap, 0, &perf_min_heap); 3751 else 3752 min_heap_pop(&event_heap, &perf_min_heap); 3753 } 3754 3755 return 0; 3756 } 3757 3758 /* 3759 * Because the userpage is strictly per-event (there is no concept of context, 3760 * so there cannot be a context indirection), every userpage must be updated 3761 * when context time starts :-( 3762 * 3763 * IOW, we must not miss EVENT_TIME edges. 3764 */ 3765 static inline bool event_update_userpage(struct perf_event *event) 3766 { 3767 if (likely(!atomic_read(&event->mmap_count))) 3768 return false; 3769 3770 perf_event_update_time(event); 3771 perf_event_update_userpage(event); 3772 3773 return true; 3774 } 3775 3776 static inline void group_update_userpage(struct perf_event *group_event) 3777 { 3778 struct perf_event *event; 3779 3780 if (!event_update_userpage(group_event)) 3781 return; 3782 3783 for_each_sibling_event(event, group_event) 3784 event_update_userpage(event); 3785 } 3786 3787 static int merge_sched_in(struct perf_event *event, void *data) 3788 { 3789 struct perf_event_context *ctx = event->ctx; 3790 int *can_add_hw = data; 3791 3792 if (event->state <= PERF_EVENT_STATE_OFF) 3793 return 0; 3794 3795 if (!event_filter_match(event)) 3796 return 0; 3797 3798 if (group_can_go_on(event, *can_add_hw)) { 3799 if (!group_sched_in(event, ctx)) 3800 list_add_tail(&event->active_list, get_event_list(event)); 3801 } 3802 3803 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3804 *can_add_hw = 0; 3805 if (event->attr.pinned) { 3806 perf_cgroup_event_disable(event, ctx); 3807 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3808 } else { 3809 struct perf_cpu_pmu_context *cpc; 3810 3811 event->pmu_ctx->rotate_necessary = 1; 3812 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3813 perf_mux_hrtimer_restart(cpc); 3814 group_update_userpage(event); 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 3821 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3822 { 3823 struct perf_event_pmu_context *pmu_ctx; 3824 int can_add_hw = 1; 3825 3826 if (pmu) { 3827 visit_groups_merge(ctx, &ctx->pinned_groups, 3828 smp_processor_id(), pmu, 3829 merge_sched_in, &can_add_hw); 3830 } else { 3831 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3832 can_add_hw = 1; 3833 visit_groups_merge(ctx, &ctx->pinned_groups, 3834 smp_processor_id(), pmu_ctx->pmu, 3835 merge_sched_in, &can_add_hw); 3836 } 3837 } 3838 } 3839 3840 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3841 { 3842 struct perf_event_pmu_context *pmu_ctx; 3843 int can_add_hw = 1; 3844 3845 if (pmu) { 3846 visit_groups_merge(ctx, &ctx->flexible_groups, 3847 smp_processor_id(), pmu, 3848 merge_sched_in, &can_add_hw); 3849 } else { 3850 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3851 can_add_hw = 1; 3852 visit_groups_merge(ctx, &ctx->flexible_groups, 3853 smp_processor_id(), pmu_ctx->pmu, 3854 merge_sched_in, &can_add_hw); 3855 } 3856 } 3857 } 3858 3859 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3860 { 3861 ctx_flexible_sched_in(ctx, pmu); 3862 } 3863 3864 static void 3865 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3866 { 3867 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3868 int is_active = ctx->is_active; 3869 3870 lockdep_assert_held(&ctx->lock); 3871 3872 if (likely(!ctx->nr_events)) 3873 return; 3874 3875 if (is_active ^ EVENT_TIME) { 3876 /* start ctx time */ 3877 __update_context_time(ctx, false); 3878 perf_cgroup_set_timestamp(cpuctx); 3879 /* 3880 * CPU-release for the below ->is_active store, 3881 * see __load_acquire() in perf_event_time_now() 3882 */ 3883 barrier(); 3884 } 3885 3886 ctx->is_active |= (event_type | EVENT_TIME); 3887 if (ctx->task) { 3888 if (!is_active) 3889 cpuctx->task_ctx = ctx; 3890 else 3891 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3892 } 3893 3894 is_active ^= ctx->is_active; /* changed bits */ 3895 3896 /* 3897 * First go through the list and put on any pinned groups 3898 * in order to give them the best chance of going on. 3899 */ 3900 if (is_active & EVENT_PINNED) 3901 ctx_pinned_sched_in(ctx, NULL); 3902 3903 /* Then walk through the lower prio flexible groups */ 3904 if (is_active & EVENT_FLEXIBLE) 3905 ctx_flexible_sched_in(ctx, NULL); 3906 } 3907 3908 static void perf_event_context_sched_in(struct task_struct *task) 3909 { 3910 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3911 struct perf_event_context *ctx; 3912 3913 rcu_read_lock(); 3914 ctx = rcu_dereference(task->perf_event_ctxp); 3915 if (!ctx) 3916 goto rcu_unlock; 3917 3918 if (cpuctx->task_ctx == ctx) { 3919 perf_ctx_lock(cpuctx, ctx); 3920 perf_ctx_disable(ctx); 3921 3922 perf_ctx_sched_task_cb(ctx, true); 3923 3924 perf_ctx_enable(ctx); 3925 perf_ctx_unlock(cpuctx, ctx); 3926 goto rcu_unlock; 3927 } 3928 3929 perf_ctx_lock(cpuctx, ctx); 3930 /* 3931 * We must check ctx->nr_events while holding ctx->lock, such 3932 * that we serialize against perf_install_in_context(). 3933 */ 3934 if (!ctx->nr_events) 3935 goto unlock; 3936 3937 perf_ctx_disable(ctx); 3938 /* 3939 * We want to keep the following priority order: 3940 * cpu pinned (that don't need to move), task pinned, 3941 * cpu flexible, task flexible. 3942 * 3943 * However, if task's ctx is not carrying any pinned 3944 * events, no need to flip the cpuctx's events around. 3945 */ 3946 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3947 perf_ctx_disable(&cpuctx->ctx); 3948 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3949 } 3950 3951 perf_event_sched_in(cpuctx, ctx); 3952 3953 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3954 3955 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3956 perf_ctx_enable(&cpuctx->ctx); 3957 3958 perf_ctx_enable(ctx); 3959 3960 unlock: 3961 perf_ctx_unlock(cpuctx, ctx); 3962 rcu_unlock: 3963 rcu_read_unlock(); 3964 } 3965 3966 /* 3967 * Called from scheduler to add the events of the current task 3968 * with interrupts disabled. 3969 * 3970 * We restore the event value and then enable it. 3971 * 3972 * This does not protect us against NMI, but enable() 3973 * sets the enabled bit in the control field of event _before_ 3974 * accessing the event control register. If a NMI hits, then it will 3975 * keep the event running. 3976 */ 3977 void __perf_event_task_sched_in(struct task_struct *prev, 3978 struct task_struct *task) 3979 { 3980 perf_event_context_sched_in(task); 3981 3982 if (atomic_read(&nr_switch_events)) 3983 perf_event_switch(task, prev, true); 3984 3985 if (__this_cpu_read(perf_sched_cb_usages)) 3986 perf_pmu_sched_task(prev, task, true); 3987 } 3988 3989 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3990 { 3991 u64 frequency = event->attr.sample_freq; 3992 u64 sec = NSEC_PER_SEC; 3993 u64 divisor, dividend; 3994 3995 int count_fls, nsec_fls, frequency_fls, sec_fls; 3996 3997 count_fls = fls64(count); 3998 nsec_fls = fls64(nsec); 3999 frequency_fls = fls64(frequency); 4000 sec_fls = 30; 4001 4002 /* 4003 * We got @count in @nsec, with a target of sample_freq HZ 4004 * the target period becomes: 4005 * 4006 * @count * 10^9 4007 * period = ------------------- 4008 * @nsec * sample_freq 4009 * 4010 */ 4011 4012 /* 4013 * Reduce accuracy by one bit such that @a and @b converge 4014 * to a similar magnitude. 4015 */ 4016 #define REDUCE_FLS(a, b) \ 4017 do { \ 4018 if (a##_fls > b##_fls) { \ 4019 a >>= 1; \ 4020 a##_fls--; \ 4021 } else { \ 4022 b >>= 1; \ 4023 b##_fls--; \ 4024 } \ 4025 } while (0) 4026 4027 /* 4028 * Reduce accuracy until either term fits in a u64, then proceed with 4029 * the other, so that finally we can do a u64/u64 division. 4030 */ 4031 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4032 REDUCE_FLS(nsec, frequency); 4033 REDUCE_FLS(sec, count); 4034 } 4035 4036 if (count_fls + sec_fls > 64) { 4037 divisor = nsec * frequency; 4038 4039 while (count_fls + sec_fls > 64) { 4040 REDUCE_FLS(count, sec); 4041 divisor >>= 1; 4042 } 4043 4044 dividend = count * sec; 4045 } else { 4046 dividend = count * sec; 4047 4048 while (nsec_fls + frequency_fls > 64) { 4049 REDUCE_FLS(nsec, frequency); 4050 dividend >>= 1; 4051 } 4052 4053 divisor = nsec * frequency; 4054 } 4055 4056 if (!divisor) 4057 return dividend; 4058 4059 return div64_u64(dividend, divisor); 4060 } 4061 4062 static DEFINE_PER_CPU(int, perf_throttled_count); 4063 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4064 4065 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4066 { 4067 struct hw_perf_event *hwc = &event->hw; 4068 s64 period, sample_period; 4069 s64 delta; 4070 4071 period = perf_calculate_period(event, nsec, count); 4072 4073 delta = (s64)(period - hwc->sample_period); 4074 delta = (delta + 7) / 8; /* low pass filter */ 4075 4076 sample_period = hwc->sample_period + delta; 4077 4078 if (!sample_period) 4079 sample_period = 1; 4080 4081 hwc->sample_period = sample_period; 4082 4083 if (local64_read(&hwc->period_left) > 8*sample_period) { 4084 if (disable) 4085 event->pmu->stop(event, PERF_EF_UPDATE); 4086 4087 local64_set(&hwc->period_left, 0); 4088 4089 if (disable) 4090 event->pmu->start(event, PERF_EF_RELOAD); 4091 } 4092 } 4093 4094 /* 4095 * combine freq adjustment with unthrottling to avoid two passes over the 4096 * events. At the same time, make sure, having freq events does not change 4097 * the rate of unthrottling as that would introduce bias. 4098 */ 4099 static void 4100 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4101 { 4102 struct perf_event *event; 4103 struct hw_perf_event *hwc; 4104 u64 now, period = TICK_NSEC; 4105 s64 delta; 4106 4107 /* 4108 * only need to iterate over all events iff: 4109 * - context have events in frequency mode (needs freq adjust) 4110 * - there are events to unthrottle on this cpu 4111 */ 4112 if (!(ctx->nr_freq || unthrottle)) 4113 return; 4114 4115 raw_spin_lock(&ctx->lock); 4116 4117 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4118 if (event->state != PERF_EVENT_STATE_ACTIVE) 4119 continue; 4120 4121 // XXX use visit thingy to avoid the -1,cpu match 4122 if (!event_filter_match(event)) 4123 continue; 4124 4125 perf_pmu_disable(event->pmu); 4126 4127 hwc = &event->hw; 4128 4129 if (hwc->interrupts == MAX_INTERRUPTS) { 4130 hwc->interrupts = 0; 4131 perf_log_throttle(event, 1); 4132 event->pmu->start(event, 0); 4133 } 4134 4135 if (!event->attr.freq || !event->attr.sample_freq) 4136 goto next; 4137 4138 /* 4139 * stop the event and update event->count 4140 */ 4141 event->pmu->stop(event, PERF_EF_UPDATE); 4142 4143 now = local64_read(&event->count); 4144 delta = now - hwc->freq_count_stamp; 4145 hwc->freq_count_stamp = now; 4146 4147 /* 4148 * restart the event 4149 * reload only if value has changed 4150 * we have stopped the event so tell that 4151 * to perf_adjust_period() to avoid stopping it 4152 * twice. 4153 */ 4154 if (delta > 0) 4155 perf_adjust_period(event, period, delta, false); 4156 4157 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4158 next: 4159 perf_pmu_enable(event->pmu); 4160 } 4161 4162 raw_spin_unlock(&ctx->lock); 4163 } 4164 4165 /* 4166 * Move @event to the tail of the @ctx's elegible events. 4167 */ 4168 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4169 { 4170 /* 4171 * Rotate the first entry last of non-pinned groups. Rotation might be 4172 * disabled by the inheritance code. 4173 */ 4174 if (ctx->rotate_disable) 4175 return; 4176 4177 perf_event_groups_delete(&ctx->flexible_groups, event); 4178 perf_event_groups_insert(&ctx->flexible_groups, event); 4179 } 4180 4181 /* pick an event from the flexible_groups to rotate */ 4182 static inline struct perf_event * 4183 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4184 { 4185 struct perf_event *event; 4186 struct rb_node *node; 4187 struct rb_root *tree; 4188 struct __group_key key = { 4189 .pmu = pmu_ctx->pmu, 4190 }; 4191 4192 /* pick the first active flexible event */ 4193 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4194 struct perf_event, active_list); 4195 if (event) 4196 goto out; 4197 4198 /* if no active flexible event, pick the first event */ 4199 tree = &pmu_ctx->ctx->flexible_groups.tree; 4200 4201 if (!pmu_ctx->ctx->task) { 4202 key.cpu = smp_processor_id(); 4203 4204 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4205 if (node) 4206 event = __node_2_pe(node); 4207 goto out; 4208 } 4209 4210 key.cpu = -1; 4211 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4212 if (node) { 4213 event = __node_2_pe(node); 4214 goto out; 4215 } 4216 4217 key.cpu = smp_processor_id(); 4218 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4219 if (node) 4220 event = __node_2_pe(node); 4221 4222 out: 4223 /* 4224 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4225 * finds there are unschedulable events, it will set it again. 4226 */ 4227 pmu_ctx->rotate_necessary = 0; 4228 4229 return event; 4230 } 4231 4232 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4233 { 4234 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4235 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4236 struct perf_event *cpu_event = NULL, *task_event = NULL; 4237 int cpu_rotate, task_rotate; 4238 struct pmu *pmu; 4239 4240 /* 4241 * Since we run this from IRQ context, nobody can install new 4242 * events, thus the event count values are stable. 4243 */ 4244 4245 cpu_epc = &cpc->epc; 4246 pmu = cpu_epc->pmu; 4247 task_epc = cpc->task_epc; 4248 4249 cpu_rotate = cpu_epc->rotate_necessary; 4250 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4251 4252 if (!(cpu_rotate || task_rotate)) 4253 return false; 4254 4255 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4256 perf_pmu_disable(pmu); 4257 4258 if (task_rotate) 4259 task_event = ctx_event_to_rotate(task_epc); 4260 if (cpu_rotate) 4261 cpu_event = ctx_event_to_rotate(cpu_epc); 4262 4263 /* 4264 * As per the order given at ctx_resched() first 'pop' task flexible 4265 * and then, if needed CPU flexible. 4266 */ 4267 if (task_event || (task_epc && cpu_event)) { 4268 update_context_time(task_epc->ctx); 4269 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4270 } 4271 4272 if (cpu_event) { 4273 update_context_time(&cpuctx->ctx); 4274 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4275 rotate_ctx(&cpuctx->ctx, cpu_event); 4276 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4277 } 4278 4279 if (task_event) 4280 rotate_ctx(task_epc->ctx, task_event); 4281 4282 if (task_event || (task_epc && cpu_event)) 4283 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4284 4285 perf_pmu_enable(pmu); 4286 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4287 4288 return true; 4289 } 4290 4291 void perf_event_task_tick(void) 4292 { 4293 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4294 struct perf_event_context *ctx; 4295 int throttled; 4296 4297 lockdep_assert_irqs_disabled(); 4298 4299 __this_cpu_inc(perf_throttled_seq); 4300 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4301 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4302 4303 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4304 4305 rcu_read_lock(); 4306 ctx = rcu_dereference(current->perf_event_ctxp); 4307 if (ctx) 4308 perf_adjust_freq_unthr_context(ctx, !!throttled); 4309 rcu_read_unlock(); 4310 } 4311 4312 static int event_enable_on_exec(struct perf_event *event, 4313 struct perf_event_context *ctx) 4314 { 4315 if (!event->attr.enable_on_exec) 4316 return 0; 4317 4318 event->attr.enable_on_exec = 0; 4319 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4320 return 0; 4321 4322 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4323 4324 return 1; 4325 } 4326 4327 /* 4328 * Enable all of a task's events that have been marked enable-on-exec. 4329 * This expects task == current. 4330 */ 4331 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4332 { 4333 struct perf_event_context *clone_ctx = NULL; 4334 enum event_type_t event_type = 0; 4335 struct perf_cpu_context *cpuctx; 4336 struct perf_event *event; 4337 unsigned long flags; 4338 int enabled = 0; 4339 4340 local_irq_save(flags); 4341 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4342 goto out; 4343 4344 if (!ctx->nr_events) 4345 goto out; 4346 4347 cpuctx = this_cpu_ptr(&perf_cpu_context); 4348 perf_ctx_lock(cpuctx, ctx); 4349 ctx_sched_out(ctx, EVENT_TIME); 4350 4351 list_for_each_entry(event, &ctx->event_list, event_entry) { 4352 enabled |= event_enable_on_exec(event, ctx); 4353 event_type |= get_event_type(event); 4354 } 4355 4356 /* 4357 * Unclone and reschedule this context if we enabled any event. 4358 */ 4359 if (enabled) { 4360 clone_ctx = unclone_ctx(ctx); 4361 ctx_resched(cpuctx, ctx, event_type); 4362 } else { 4363 ctx_sched_in(ctx, EVENT_TIME); 4364 } 4365 perf_ctx_unlock(cpuctx, ctx); 4366 4367 out: 4368 local_irq_restore(flags); 4369 4370 if (clone_ctx) 4371 put_ctx(clone_ctx); 4372 } 4373 4374 static void perf_remove_from_owner(struct perf_event *event); 4375 static void perf_event_exit_event(struct perf_event *event, 4376 struct perf_event_context *ctx); 4377 4378 /* 4379 * Removes all events from the current task that have been marked 4380 * remove-on-exec, and feeds their values back to parent events. 4381 */ 4382 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4383 { 4384 struct perf_event_context *clone_ctx = NULL; 4385 struct perf_event *event, *next; 4386 unsigned long flags; 4387 bool modified = false; 4388 4389 mutex_lock(&ctx->mutex); 4390 4391 if (WARN_ON_ONCE(ctx->task != current)) 4392 goto unlock; 4393 4394 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4395 if (!event->attr.remove_on_exec) 4396 continue; 4397 4398 if (!is_kernel_event(event)) 4399 perf_remove_from_owner(event); 4400 4401 modified = true; 4402 4403 perf_event_exit_event(event, ctx); 4404 } 4405 4406 raw_spin_lock_irqsave(&ctx->lock, flags); 4407 if (modified) 4408 clone_ctx = unclone_ctx(ctx); 4409 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4410 4411 unlock: 4412 mutex_unlock(&ctx->mutex); 4413 4414 if (clone_ctx) 4415 put_ctx(clone_ctx); 4416 } 4417 4418 struct perf_read_data { 4419 struct perf_event *event; 4420 bool group; 4421 int ret; 4422 }; 4423 4424 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4425 { 4426 u16 local_pkg, event_pkg; 4427 4428 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4429 int local_cpu = smp_processor_id(); 4430 4431 event_pkg = topology_physical_package_id(event_cpu); 4432 local_pkg = topology_physical_package_id(local_cpu); 4433 4434 if (event_pkg == local_pkg) 4435 return local_cpu; 4436 } 4437 4438 return event_cpu; 4439 } 4440 4441 /* 4442 * Cross CPU call to read the hardware event 4443 */ 4444 static void __perf_event_read(void *info) 4445 { 4446 struct perf_read_data *data = info; 4447 struct perf_event *sub, *event = data->event; 4448 struct perf_event_context *ctx = event->ctx; 4449 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4450 struct pmu *pmu = event->pmu; 4451 4452 /* 4453 * If this is a task context, we need to check whether it is 4454 * the current task context of this cpu. If not it has been 4455 * scheduled out before the smp call arrived. In that case 4456 * event->count would have been updated to a recent sample 4457 * when the event was scheduled out. 4458 */ 4459 if (ctx->task && cpuctx->task_ctx != ctx) 4460 return; 4461 4462 raw_spin_lock(&ctx->lock); 4463 if (ctx->is_active & EVENT_TIME) { 4464 update_context_time(ctx); 4465 update_cgrp_time_from_event(event); 4466 } 4467 4468 perf_event_update_time(event); 4469 if (data->group) 4470 perf_event_update_sibling_time(event); 4471 4472 if (event->state != PERF_EVENT_STATE_ACTIVE) 4473 goto unlock; 4474 4475 if (!data->group) { 4476 pmu->read(event); 4477 data->ret = 0; 4478 goto unlock; 4479 } 4480 4481 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4482 4483 pmu->read(event); 4484 4485 for_each_sibling_event(sub, event) { 4486 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4487 /* 4488 * Use sibling's PMU rather than @event's since 4489 * sibling could be on different (eg: software) PMU. 4490 */ 4491 sub->pmu->read(sub); 4492 } 4493 } 4494 4495 data->ret = pmu->commit_txn(pmu); 4496 4497 unlock: 4498 raw_spin_unlock(&ctx->lock); 4499 } 4500 4501 static inline u64 perf_event_count(struct perf_event *event) 4502 { 4503 return local64_read(&event->count) + atomic64_read(&event->child_count); 4504 } 4505 4506 static void calc_timer_values(struct perf_event *event, 4507 u64 *now, 4508 u64 *enabled, 4509 u64 *running) 4510 { 4511 u64 ctx_time; 4512 4513 *now = perf_clock(); 4514 ctx_time = perf_event_time_now(event, *now); 4515 __perf_update_times(event, ctx_time, enabled, running); 4516 } 4517 4518 /* 4519 * NMI-safe method to read a local event, that is an event that 4520 * is: 4521 * - either for the current task, or for this CPU 4522 * - does not have inherit set, for inherited task events 4523 * will not be local and we cannot read them atomically 4524 * - must not have a pmu::count method 4525 */ 4526 int perf_event_read_local(struct perf_event *event, u64 *value, 4527 u64 *enabled, u64 *running) 4528 { 4529 unsigned long flags; 4530 int ret = 0; 4531 4532 /* 4533 * Disabling interrupts avoids all counter scheduling (context 4534 * switches, timer based rotation and IPIs). 4535 */ 4536 local_irq_save(flags); 4537 4538 /* 4539 * It must not be an event with inherit set, we cannot read 4540 * all child counters from atomic context. 4541 */ 4542 if (event->attr.inherit) { 4543 ret = -EOPNOTSUPP; 4544 goto out; 4545 } 4546 4547 /* If this is a per-task event, it must be for current */ 4548 if ((event->attach_state & PERF_ATTACH_TASK) && 4549 event->hw.target != current) { 4550 ret = -EINVAL; 4551 goto out; 4552 } 4553 4554 /* If this is a per-CPU event, it must be for this CPU */ 4555 if (!(event->attach_state & PERF_ATTACH_TASK) && 4556 event->cpu != smp_processor_id()) { 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 /* If this is a pinned event it must be running on this CPU */ 4562 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4563 ret = -EBUSY; 4564 goto out; 4565 } 4566 4567 /* 4568 * If the event is currently on this CPU, its either a per-task event, 4569 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4570 * oncpu == -1). 4571 */ 4572 if (event->oncpu == smp_processor_id()) 4573 event->pmu->read(event); 4574 4575 *value = local64_read(&event->count); 4576 if (enabled || running) { 4577 u64 __enabled, __running, __now; 4578 4579 calc_timer_values(event, &__now, &__enabled, &__running); 4580 if (enabled) 4581 *enabled = __enabled; 4582 if (running) 4583 *running = __running; 4584 } 4585 out: 4586 local_irq_restore(flags); 4587 4588 return ret; 4589 } 4590 4591 static int perf_event_read(struct perf_event *event, bool group) 4592 { 4593 enum perf_event_state state = READ_ONCE(event->state); 4594 int event_cpu, ret = 0; 4595 4596 /* 4597 * If event is enabled and currently active on a CPU, update the 4598 * value in the event structure: 4599 */ 4600 again: 4601 if (state == PERF_EVENT_STATE_ACTIVE) { 4602 struct perf_read_data data; 4603 4604 /* 4605 * Orders the ->state and ->oncpu loads such that if we see 4606 * ACTIVE we must also see the right ->oncpu. 4607 * 4608 * Matches the smp_wmb() from event_sched_in(). 4609 */ 4610 smp_rmb(); 4611 4612 event_cpu = READ_ONCE(event->oncpu); 4613 if ((unsigned)event_cpu >= nr_cpu_ids) 4614 return 0; 4615 4616 data = (struct perf_read_data){ 4617 .event = event, 4618 .group = group, 4619 .ret = 0, 4620 }; 4621 4622 preempt_disable(); 4623 event_cpu = __perf_event_read_cpu(event, event_cpu); 4624 4625 /* 4626 * Purposely ignore the smp_call_function_single() return 4627 * value. 4628 * 4629 * If event_cpu isn't a valid CPU it means the event got 4630 * scheduled out and that will have updated the event count. 4631 * 4632 * Therefore, either way, we'll have an up-to-date event count 4633 * after this. 4634 */ 4635 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4636 preempt_enable(); 4637 ret = data.ret; 4638 4639 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4640 struct perf_event_context *ctx = event->ctx; 4641 unsigned long flags; 4642 4643 raw_spin_lock_irqsave(&ctx->lock, flags); 4644 state = event->state; 4645 if (state != PERF_EVENT_STATE_INACTIVE) { 4646 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4647 goto again; 4648 } 4649 4650 /* 4651 * May read while context is not active (e.g., thread is 4652 * blocked), in that case we cannot update context time 4653 */ 4654 if (ctx->is_active & EVENT_TIME) { 4655 update_context_time(ctx); 4656 update_cgrp_time_from_event(event); 4657 } 4658 4659 perf_event_update_time(event); 4660 if (group) 4661 perf_event_update_sibling_time(event); 4662 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4663 } 4664 4665 return ret; 4666 } 4667 4668 /* 4669 * Initialize the perf_event context in a task_struct: 4670 */ 4671 static void __perf_event_init_context(struct perf_event_context *ctx) 4672 { 4673 raw_spin_lock_init(&ctx->lock); 4674 mutex_init(&ctx->mutex); 4675 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4676 perf_event_groups_init(&ctx->pinned_groups); 4677 perf_event_groups_init(&ctx->flexible_groups); 4678 INIT_LIST_HEAD(&ctx->event_list); 4679 refcount_set(&ctx->refcount, 1); 4680 } 4681 4682 static void 4683 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4684 { 4685 epc->pmu = pmu; 4686 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4687 INIT_LIST_HEAD(&epc->pinned_active); 4688 INIT_LIST_HEAD(&epc->flexible_active); 4689 atomic_set(&epc->refcount, 1); 4690 } 4691 4692 static struct perf_event_context * 4693 alloc_perf_context(struct task_struct *task) 4694 { 4695 struct perf_event_context *ctx; 4696 4697 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4698 if (!ctx) 4699 return NULL; 4700 4701 __perf_event_init_context(ctx); 4702 if (task) 4703 ctx->task = get_task_struct(task); 4704 4705 return ctx; 4706 } 4707 4708 static struct task_struct * 4709 find_lively_task_by_vpid(pid_t vpid) 4710 { 4711 struct task_struct *task; 4712 4713 rcu_read_lock(); 4714 if (!vpid) 4715 task = current; 4716 else 4717 task = find_task_by_vpid(vpid); 4718 if (task) 4719 get_task_struct(task); 4720 rcu_read_unlock(); 4721 4722 if (!task) 4723 return ERR_PTR(-ESRCH); 4724 4725 return task; 4726 } 4727 4728 /* 4729 * Returns a matching context with refcount and pincount. 4730 */ 4731 static struct perf_event_context * 4732 find_get_context(struct task_struct *task, struct perf_event *event) 4733 { 4734 struct perf_event_context *ctx, *clone_ctx = NULL; 4735 struct perf_cpu_context *cpuctx; 4736 unsigned long flags; 4737 int err; 4738 4739 if (!task) { 4740 /* Must be root to operate on a CPU event: */ 4741 err = perf_allow_cpu(&event->attr); 4742 if (err) 4743 return ERR_PTR(err); 4744 4745 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4746 ctx = &cpuctx->ctx; 4747 get_ctx(ctx); 4748 raw_spin_lock_irqsave(&ctx->lock, flags); 4749 ++ctx->pin_count; 4750 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4751 4752 return ctx; 4753 } 4754 4755 err = -EINVAL; 4756 retry: 4757 ctx = perf_lock_task_context(task, &flags); 4758 if (ctx) { 4759 clone_ctx = unclone_ctx(ctx); 4760 ++ctx->pin_count; 4761 4762 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4763 4764 if (clone_ctx) 4765 put_ctx(clone_ctx); 4766 } else { 4767 ctx = alloc_perf_context(task); 4768 err = -ENOMEM; 4769 if (!ctx) 4770 goto errout; 4771 4772 err = 0; 4773 mutex_lock(&task->perf_event_mutex); 4774 /* 4775 * If it has already passed perf_event_exit_task(). 4776 * we must see PF_EXITING, it takes this mutex too. 4777 */ 4778 if (task->flags & PF_EXITING) 4779 err = -ESRCH; 4780 else if (task->perf_event_ctxp) 4781 err = -EAGAIN; 4782 else { 4783 get_ctx(ctx); 4784 ++ctx->pin_count; 4785 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4786 } 4787 mutex_unlock(&task->perf_event_mutex); 4788 4789 if (unlikely(err)) { 4790 put_ctx(ctx); 4791 4792 if (err == -EAGAIN) 4793 goto retry; 4794 goto errout; 4795 } 4796 } 4797 4798 return ctx; 4799 4800 errout: 4801 return ERR_PTR(err); 4802 } 4803 4804 static struct perf_event_pmu_context * 4805 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4806 struct perf_event *event) 4807 { 4808 struct perf_event_pmu_context *new = NULL, *epc; 4809 void *task_ctx_data = NULL; 4810 4811 if (!ctx->task) { 4812 struct perf_cpu_pmu_context *cpc; 4813 4814 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4815 epc = &cpc->epc; 4816 4817 if (!epc->ctx) { 4818 atomic_set(&epc->refcount, 1); 4819 epc->embedded = 1; 4820 raw_spin_lock_irq(&ctx->lock); 4821 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4822 epc->ctx = ctx; 4823 raw_spin_unlock_irq(&ctx->lock); 4824 } else { 4825 WARN_ON_ONCE(epc->ctx != ctx); 4826 atomic_inc(&epc->refcount); 4827 } 4828 4829 return epc; 4830 } 4831 4832 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4833 if (!new) 4834 return ERR_PTR(-ENOMEM); 4835 4836 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4837 task_ctx_data = alloc_task_ctx_data(pmu); 4838 if (!task_ctx_data) { 4839 kfree(new); 4840 return ERR_PTR(-ENOMEM); 4841 } 4842 } 4843 4844 __perf_init_event_pmu_context(new, pmu); 4845 4846 /* 4847 * XXX 4848 * 4849 * lockdep_assert_held(&ctx->mutex); 4850 * 4851 * can't because perf_event_init_task() doesn't actually hold the 4852 * child_ctx->mutex. 4853 */ 4854 4855 raw_spin_lock_irq(&ctx->lock); 4856 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4857 if (epc->pmu == pmu) { 4858 WARN_ON_ONCE(epc->ctx != ctx); 4859 atomic_inc(&epc->refcount); 4860 goto found_epc; 4861 } 4862 } 4863 4864 epc = new; 4865 new = NULL; 4866 4867 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4868 epc->ctx = ctx; 4869 4870 found_epc: 4871 if (task_ctx_data && !epc->task_ctx_data) { 4872 epc->task_ctx_data = task_ctx_data; 4873 task_ctx_data = NULL; 4874 ctx->nr_task_data++; 4875 } 4876 raw_spin_unlock_irq(&ctx->lock); 4877 4878 free_task_ctx_data(pmu, task_ctx_data); 4879 kfree(new); 4880 4881 return epc; 4882 } 4883 4884 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4885 { 4886 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4887 } 4888 4889 static void free_epc_rcu(struct rcu_head *head) 4890 { 4891 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4892 4893 kfree(epc->task_ctx_data); 4894 kfree(epc); 4895 } 4896 4897 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4898 { 4899 unsigned long flags; 4900 4901 if (!atomic_dec_and_test(&epc->refcount)) 4902 return; 4903 4904 if (epc->ctx) { 4905 struct perf_event_context *ctx = epc->ctx; 4906 4907 /* 4908 * XXX 4909 * 4910 * lockdep_assert_held(&ctx->mutex); 4911 * 4912 * can't because of the call-site in _free_event()/put_event() 4913 * which isn't always called under ctx->mutex. 4914 */ 4915 4916 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4917 raw_spin_lock_irqsave(&ctx->lock, flags); 4918 list_del_init(&epc->pmu_ctx_entry); 4919 epc->ctx = NULL; 4920 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4921 } 4922 4923 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4924 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4925 4926 if (epc->embedded) 4927 return; 4928 4929 call_rcu(&epc->rcu_head, free_epc_rcu); 4930 } 4931 4932 static void perf_event_free_filter(struct perf_event *event); 4933 4934 static void free_event_rcu(struct rcu_head *head) 4935 { 4936 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4937 4938 if (event->ns) 4939 put_pid_ns(event->ns); 4940 perf_event_free_filter(event); 4941 kmem_cache_free(perf_event_cache, event); 4942 } 4943 4944 static void ring_buffer_attach(struct perf_event *event, 4945 struct perf_buffer *rb); 4946 4947 static void detach_sb_event(struct perf_event *event) 4948 { 4949 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4950 4951 raw_spin_lock(&pel->lock); 4952 list_del_rcu(&event->sb_list); 4953 raw_spin_unlock(&pel->lock); 4954 } 4955 4956 static bool is_sb_event(struct perf_event *event) 4957 { 4958 struct perf_event_attr *attr = &event->attr; 4959 4960 if (event->parent) 4961 return false; 4962 4963 if (event->attach_state & PERF_ATTACH_TASK) 4964 return false; 4965 4966 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4967 attr->comm || attr->comm_exec || 4968 attr->task || attr->ksymbol || 4969 attr->context_switch || attr->text_poke || 4970 attr->bpf_event) 4971 return true; 4972 return false; 4973 } 4974 4975 static void unaccount_pmu_sb_event(struct perf_event *event) 4976 { 4977 if (is_sb_event(event)) 4978 detach_sb_event(event); 4979 } 4980 4981 #ifdef CONFIG_NO_HZ_FULL 4982 static DEFINE_SPINLOCK(nr_freq_lock); 4983 #endif 4984 4985 static void unaccount_freq_event_nohz(void) 4986 { 4987 #ifdef CONFIG_NO_HZ_FULL 4988 spin_lock(&nr_freq_lock); 4989 if (atomic_dec_and_test(&nr_freq_events)) 4990 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4991 spin_unlock(&nr_freq_lock); 4992 #endif 4993 } 4994 4995 static void unaccount_freq_event(void) 4996 { 4997 if (tick_nohz_full_enabled()) 4998 unaccount_freq_event_nohz(); 4999 else 5000 atomic_dec(&nr_freq_events); 5001 } 5002 5003 static void unaccount_event(struct perf_event *event) 5004 { 5005 bool dec = false; 5006 5007 if (event->parent) 5008 return; 5009 5010 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5011 dec = true; 5012 if (event->attr.mmap || event->attr.mmap_data) 5013 atomic_dec(&nr_mmap_events); 5014 if (event->attr.build_id) 5015 atomic_dec(&nr_build_id_events); 5016 if (event->attr.comm) 5017 atomic_dec(&nr_comm_events); 5018 if (event->attr.namespaces) 5019 atomic_dec(&nr_namespaces_events); 5020 if (event->attr.cgroup) 5021 atomic_dec(&nr_cgroup_events); 5022 if (event->attr.task) 5023 atomic_dec(&nr_task_events); 5024 if (event->attr.freq) 5025 unaccount_freq_event(); 5026 if (event->attr.context_switch) { 5027 dec = true; 5028 atomic_dec(&nr_switch_events); 5029 } 5030 if (is_cgroup_event(event)) 5031 dec = true; 5032 if (has_branch_stack(event)) 5033 dec = true; 5034 if (event->attr.ksymbol) 5035 atomic_dec(&nr_ksymbol_events); 5036 if (event->attr.bpf_event) 5037 atomic_dec(&nr_bpf_events); 5038 if (event->attr.text_poke) 5039 atomic_dec(&nr_text_poke_events); 5040 5041 if (dec) { 5042 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5043 schedule_delayed_work(&perf_sched_work, HZ); 5044 } 5045 5046 unaccount_pmu_sb_event(event); 5047 } 5048 5049 static void perf_sched_delayed(struct work_struct *work) 5050 { 5051 mutex_lock(&perf_sched_mutex); 5052 if (atomic_dec_and_test(&perf_sched_count)) 5053 static_branch_disable(&perf_sched_events); 5054 mutex_unlock(&perf_sched_mutex); 5055 } 5056 5057 /* 5058 * The following implement mutual exclusion of events on "exclusive" pmus 5059 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5060 * at a time, so we disallow creating events that might conflict, namely: 5061 * 5062 * 1) cpu-wide events in the presence of per-task events, 5063 * 2) per-task events in the presence of cpu-wide events, 5064 * 3) two matching events on the same perf_event_context. 5065 * 5066 * The former two cases are handled in the allocation path (perf_event_alloc(), 5067 * _free_event()), the latter -- before the first perf_install_in_context(). 5068 */ 5069 static int exclusive_event_init(struct perf_event *event) 5070 { 5071 struct pmu *pmu = event->pmu; 5072 5073 if (!is_exclusive_pmu(pmu)) 5074 return 0; 5075 5076 /* 5077 * Prevent co-existence of per-task and cpu-wide events on the 5078 * same exclusive pmu. 5079 * 5080 * Negative pmu::exclusive_cnt means there are cpu-wide 5081 * events on this "exclusive" pmu, positive means there are 5082 * per-task events. 5083 * 5084 * Since this is called in perf_event_alloc() path, event::ctx 5085 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5086 * to mean "per-task event", because unlike other attach states it 5087 * never gets cleared. 5088 */ 5089 if (event->attach_state & PERF_ATTACH_TASK) { 5090 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5091 return -EBUSY; 5092 } else { 5093 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5094 return -EBUSY; 5095 } 5096 5097 return 0; 5098 } 5099 5100 static void exclusive_event_destroy(struct perf_event *event) 5101 { 5102 struct pmu *pmu = event->pmu; 5103 5104 if (!is_exclusive_pmu(pmu)) 5105 return; 5106 5107 /* see comment in exclusive_event_init() */ 5108 if (event->attach_state & PERF_ATTACH_TASK) 5109 atomic_dec(&pmu->exclusive_cnt); 5110 else 5111 atomic_inc(&pmu->exclusive_cnt); 5112 } 5113 5114 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5115 { 5116 if ((e1->pmu == e2->pmu) && 5117 (e1->cpu == e2->cpu || 5118 e1->cpu == -1 || 5119 e2->cpu == -1)) 5120 return true; 5121 return false; 5122 } 5123 5124 static bool exclusive_event_installable(struct perf_event *event, 5125 struct perf_event_context *ctx) 5126 { 5127 struct perf_event *iter_event; 5128 struct pmu *pmu = event->pmu; 5129 5130 lockdep_assert_held(&ctx->mutex); 5131 5132 if (!is_exclusive_pmu(pmu)) 5133 return true; 5134 5135 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5136 if (exclusive_event_match(iter_event, event)) 5137 return false; 5138 } 5139 5140 return true; 5141 } 5142 5143 static void perf_addr_filters_splice(struct perf_event *event, 5144 struct list_head *head); 5145 5146 static void _free_event(struct perf_event *event) 5147 { 5148 irq_work_sync(&event->pending_irq); 5149 5150 unaccount_event(event); 5151 5152 security_perf_event_free(event); 5153 5154 if (event->rb) { 5155 /* 5156 * Can happen when we close an event with re-directed output. 5157 * 5158 * Since we have a 0 refcount, perf_mmap_close() will skip 5159 * over us; possibly making our ring_buffer_put() the last. 5160 */ 5161 mutex_lock(&event->mmap_mutex); 5162 ring_buffer_attach(event, NULL); 5163 mutex_unlock(&event->mmap_mutex); 5164 } 5165 5166 if (is_cgroup_event(event)) 5167 perf_detach_cgroup(event); 5168 5169 if (!event->parent) { 5170 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5171 put_callchain_buffers(); 5172 } 5173 5174 perf_event_free_bpf_prog(event); 5175 perf_addr_filters_splice(event, NULL); 5176 kfree(event->addr_filter_ranges); 5177 5178 if (event->destroy) 5179 event->destroy(event); 5180 5181 /* 5182 * Must be after ->destroy(), due to uprobe_perf_close() using 5183 * hw.target. 5184 */ 5185 if (event->hw.target) 5186 put_task_struct(event->hw.target); 5187 5188 if (event->pmu_ctx) 5189 put_pmu_ctx(event->pmu_ctx); 5190 5191 /* 5192 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5193 * all task references must be cleaned up. 5194 */ 5195 if (event->ctx) 5196 put_ctx(event->ctx); 5197 5198 exclusive_event_destroy(event); 5199 module_put(event->pmu->module); 5200 5201 call_rcu(&event->rcu_head, free_event_rcu); 5202 } 5203 5204 /* 5205 * Used to free events which have a known refcount of 1, such as in error paths 5206 * where the event isn't exposed yet and inherited events. 5207 */ 5208 static void free_event(struct perf_event *event) 5209 { 5210 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5211 "unexpected event refcount: %ld; ptr=%p\n", 5212 atomic_long_read(&event->refcount), event)) { 5213 /* leak to avoid use-after-free */ 5214 return; 5215 } 5216 5217 _free_event(event); 5218 } 5219 5220 /* 5221 * Remove user event from the owner task. 5222 */ 5223 static void perf_remove_from_owner(struct perf_event *event) 5224 { 5225 struct task_struct *owner; 5226 5227 rcu_read_lock(); 5228 /* 5229 * Matches the smp_store_release() in perf_event_exit_task(). If we 5230 * observe !owner it means the list deletion is complete and we can 5231 * indeed free this event, otherwise we need to serialize on 5232 * owner->perf_event_mutex. 5233 */ 5234 owner = READ_ONCE(event->owner); 5235 if (owner) { 5236 /* 5237 * Since delayed_put_task_struct() also drops the last 5238 * task reference we can safely take a new reference 5239 * while holding the rcu_read_lock(). 5240 */ 5241 get_task_struct(owner); 5242 } 5243 rcu_read_unlock(); 5244 5245 if (owner) { 5246 /* 5247 * If we're here through perf_event_exit_task() we're already 5248 * holding ctx->mutex which would be an inversion wrt. the 5249 * normal lock order. 5250 * 5251 * However we can safely take this lock because its the child 5252 * ctx->mutex. 5253 */ 5254 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5255 5256 /* 5257 * We have to re-check the event->owner field, if it is cleared 5258 * we raced with perf_event_exit_task(), acquiring the mutex 5259 * ensured they're done, and we can proceed with freeing the 5260 * event. 5261 */ 5262 if (event->owner) { 5263 list_del_init(&event->owner_entry); 5264 smp_store_release(&event->owner, NULL); 5265 } 5266 mutex_unlock(&owner->perf_event_mutex); 5267 put_task_struct(owner); 5268 } 5269 } 5270 5271 static void put_event(struct perf_event *event) 5272 { 5273 if (!atomic_long_dec_and_test(&event->refcount)) 5274 return; 5275 5276 _free_event(event); 5277 } 5278 5279 /* 5280 * Kill an event dead; while event:refcount will preserve the event 5281 * object, it will not preserve its functionality. Once the last 'user' 5282 * gives up the object, we'll destroy the thing. 5283 */ 5284 int perf_event_release_kernel(struct perf_event *event) 5285 { 5286 struct perf_event_context *ctx = event->ctx; 5287 struct perf_event *child, *tmp; 5288 LIST_HEAD(free_list); 5289 5290 /* 5291 * If we got here through err_alloc: free_event(event); we will not 5292 * have attached to a context yet. 5293 */ 5294 if (!ctx) { 5295 WARN_ON_ONCE(event->attach_state & 5296 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5297 goto no_ctx; 5298 } 5299 5300 if (!is_kernel_event(event)) 5301 perf_remove_from_owner(event); 5302 5303 ctx = perf_event_ctx_lock(event); 5304 WARN_ON_ONCE(ctx->parent_ctx); 5305 5306 /* 5307 * Mark this event as STATE_DEAD, there is no external reference to it 5308 * anymore. 5309 * 5310 * Anybody acquiring event->child_mutex after the below loop _must_ 5311 * also see this, most importantly inherit_event() which will avoid 5312 * placing more children on the list. 5313 * 5314 * Thus this guarantees that we will in fact observe and kill _ALL_ 5315 * child events. 5316 */ 5317 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5318 5319 perf_event_ctx_unlock(event, ctx); 5320 5321 again: 5322 mutex_lock(&event->child_mutex); 5323 list_for_each_entry(child, &event->child_list, child_list) { 5324 5325 /* 5326 * Cannot change, child events are not migrated, see the 5327 * comment with perf_event_ctx_lock_nested(). 5328 */ 5329 ctx = READ_ONCE(child->ctx); 5330 /* 5331 * Since child_mutex nests inside ctx::mutex, we must jump 5332 * through hoops. We start by grabbing a reference on the ctx. 5333 * 5334 * Since the event cannot get freed while we hold the 5335 * child_mutex, the context must also exist and have a !0 5336 * reference count. 5337 */ 5338 get_ctx(ctx); 5339 5340 /* 5341 * Now that we have a ctx ref, we can drop child_mutex, and 5342 * acquire ctx::mutex without fear of it going away. Then we 5343 * can re-acquire child_mutex. 5344 */ 5345 mutex_unlock(&event->child_mutex); 5346 mutex_lock(&ctx->mutex); 5347 mutex_lock(&event->child_mutex); 5348 5349 /* 5350 * Now that we hold ctx::mutex and child_mutex, revalidate our 5351 * state, if child is still the first entry, it didn't get freed 5352 * and we can continue doing so. 5353 */ 5354 tmp = list_first_entry_or_null(&event->child_list, 5355 struct perf_event, child_list); 5356 if (tmp == child) { 5357 perf_remove_from_context(child, DETACH_GROUP); 5358 list_move(&child->child_list, &free_list); 5359 /* 5360 * This matches the refcount bump in inherit_event(); 5361 * this can't be the last reference. 5362 */ 5363 put_event(event); 5364 } 5365 5366 mutex_unlock(&event->child_mutex); 5367 mutex_unlock(&ctx->mutex); 5368 put_ctx(ctx); 5369 goto again; 5370 } 5371 mutex_unlock(&event->child_mutex); 5372 5373 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5374 void *var = &child->ctx->refcount; 5375 5376 list_del(&child->child_list); 5377 free_event(child); 5378 5379 /* 5380 * Wake any perf_event_free_task() waiting for this event to be 5381 * freed. 5382 */ 5383 smp_mb(); /* pairs with wait_var_event() */ 5384 wake_up_var(var); 5385 } 5386 5387 no_ctx: 5388 put_event(event); /* Must be the 'last' reference */ 5389 return 0; 5390 } 5391 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5392 5393 /* 5394 * Called when the last reference to the file is gone. 5395 */ 5396 static int perf_release(struct inode *inode, struct file *file) 5397 { 5398 perf_event_release_kernel(file->private_data); 5399 return 0; 5400 } 5401 5402 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5403 { 5404 struct perf_event *child; 5405 u64 total = 0; 5406 5407 *enabled = 0; 5408 *running = 0; 5409 5410 mutex_lock(&event->child_mutex); 5411 5412 (void)perf_event_read(event, false); 5413 total += perf_event_count(event); 5414 5415 *enabled += event->total_time_enabled + 5416 atomic64_read(&event->child_total_time_enabled); 5417 *running += event->total_time_running + 5418 atomic64_read(&event->child_total_time_running); 5419 5420 list_for_each_entry(child, &event->child_list, child_list) { 5421 (void)perf_event_read(child, false); 5422 total += perf_event_count(child); 5423 *enabled += child->total_time_enabled; 5424 *running += child->total_time_running; 5425 } 5426 mutex_unlock(&event->child_mutex); 5427 5428 return total; 5429 } 5430 5431 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5432 { 5433 struct perf_event_context *ctx; 5434 u64 count; 5435 5436 ctx = perf_event_ctx_lock(event); 5437 count = __perf_event_read_value(event, enabled, running); 5438 perf_event_ctx_unlock(event, ctx); 5439 5440 return count; 5441 } 5442 EXPORT_SYMBOL_GPL(perf_event_read_value); 5443 5444 static int __perf_read_group_add(struct perf_event *leader, 5445 u64 read_format, u64 *values) 5446 { 5447 struct perf_event_context *ctx = leader->ctx; 5448 struct perf_event *sub; 5449 unsigned long flags; 5450 int n = 1; /* skip @nr */ 5451 int ret; 5452 5453 ret = perf_event_read(leader, true); 5454 if (ret) 5455 return ret; 5456 5457 raw_spin_lock_irqsave(&ctx->lock, flags); 5458 5459 /* 5460 * Since we co-schedule groups, {enabled,running} times of siblings 5461 * will be identical to those of the leader, so we only publish one 5462 * set. 5463 */ 5464 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5465 values[n++] += leader->total_time_enabled + 5466 atomic64_read(&leader->child_total_time_enabled); 5467 } 5468 5469 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5470 values[n++] += leader->total_time_running + 5471 atomic64_read(&leader->child_total_time_running); 5472 } 5473 5474 /* 5475 * Write {count,id} tuples for every sibling. 5476 */ 5477 values[n++] += perf_event_count(leader); 5478 if (read_format & PERF_FORMAT_ID) 5479 values[n++] = primary_event_id(leader); 5480 if (read_format & PERF_FORMAT_LOST) 5481 values[n++] = atomic64_read(&leader->lost_samples); 5482 5483 for_each_sibling_event(sub, leader) { 5484 values[n++] += perf_event_count(sub); 5485 if (read_format & PERF_FORMAT_ID) 5486 values[n++] = primary_event_id(sub); 5487 if (read_format & PERF_FORMAT_LOST) 5488 values[n++] = atomic64_read(&sub->lost_samples); 5489 } 5490 5491 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5492 return 0; 5493 } 5494 5495 static int perf_read_group(struct perf_event *event, 5496 u64 read_format, char __user *buf) 5497 { 5498 struct perf_event *leader = event->group_leader, *child; 5499 struct perf_event_context *ctx = leader->ctx; 5500 int ret; 5501 u64 *values; 5502 5503 lockdep_assert_held(&ctx->mutex); 5504 5505 values = kzalloc(event->read_size, GFP_KERNEL); 5506 if (!values) 5507 return -ENOMEM; 5508 5509 values[0] = 1 + leader->nr_siblings; 5510 5511 /* 5512 * By locking the child_mutex of the leader we effectively 5513 * lock the child list of all siblings.. XXX explain how. 5514 */ 5515 mutex_lock(&leader->child_mutex); 5516 5517 ret = __perf_read_group_add(leader, read_format, values); 5518 if (ret) 5519 goto unlock; 5520 5521 list_for_each_entry(child, &leader->child_list, child_list) { 5522 ret = __perf_read_group_add(child, read_format, values); 5523 if (ret) 5524 goto unlock; 5525 } 5526 5527 mutex_unlock(&leader->child_mutex); 5528 5529 ret = event->read_size; 5530 if (copy_to_user(buf, values, event->read_size)) 5531 ret = -EFAULT; 5532 goto out; 5533 5534 unlock: 5535 mutex_unlock(&leader->child_mutex); 5536 out: 5537 kfree(values); 5538 return ret; 5539 } 5540 5541 static int perf_read_one(struct perf_event *event, 5542 u64 read_format, char __user *buf) 5543 { 5544 u64 enabled, running; 5545 u64 values[5]; 5546 int n = 0; 5547 5548 values[n++] = __perf_event_read_value(event, &enabled, &running); 5549 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5550 values[n++] = enabled; 5551 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5552 values[n++] = running; 5553 if (read_format & PERF_FORMAT_ID) 5554 values[n++] = primary_event_id(event); 5555 if (read_format & PERF_FORMAT_LOST) 5556 values[n++] = atomic64_read(&event->lost_samples); 5557 5558 if (copy_to_user(buf, values, n * sizeof(u64))) 5559 return -EFAULT; 5560 5561 return n * sizeof(u64); 5562 } 5563 5564 static bool is_event_hup(struct perf_event *event) 5565 { 5566 bool no_children; 5567 5568 if (event->state > PERF_EVENT_STATE_EXIT) 5569 return false; 5570 5571 mutex_lock(&event->child_mutex); 5572 no_children = list_empty(&event->child_list); 5573 mutex_unlock(&event->child_mutex); 5574 return no_children; 5575 } 5576 5577 /* 5578 * Read the performance event - simple non blocking version for now 5579 */ 5580 static ssize_t 5581 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5582 { 5583 u64 read_format = event->attr.read_format; 5584 int ret; 5585 5586 /* 5587 * Return end-of-file for a read on an event that is in 5588 * error state (i.e. because it was pinned but it couldn't be 5589 * scheduled on to the CPU at some point). 5590 */ 5591 if (event->state == PERF_EVENT_STATE_ERROR) 5592 return 0; 5593 5594 if (count < event->read_size) 5595 return -ENOSPC; 5596 5597 WARN_ON_ONCE(event->ctx->parent_ctx); 5598 if (read_format & PERF_FORMAT_GROUP) 5599 ret = perf_read_group(event, read_format, buf); 5600 else 5601 ret = perf_read_one(event, read_format, buf); 5602 5603 return ret; 5604 } 5605 5606 static ssize_t 5607 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5608 { 5609 struct perf_event *event = file->private_data; 5610 struct perf_event_context *ctx; 5611 int ret; 5612 5613 ret = security_perf_event_read(event); 5614 if (ret) 5615 return ret; 5616 5617 ctx = perf_event_ctx_lock(event); 5618 ret = __perf_read(event, buf, count); 5619 perf_event_ctx_unlock(event, ctx); 5620 5621 return ret; 5622 } 5623 5624 static __poll_t perf_poll(struct file *file, poll_table *wait) 5625 { 5626 struct perf_event *event = file->private_data; 5627 struct perf_buffer *rb; 5628 __poll_t events = EPOLLHUP; 5629 5630 poll_wait(file, &event->waitq, wait); 5631 5632 if (is_event_hup(event)) 5633 return events; 5634 5635 /* 5636 * Pin the event->rb by taking event->mmap_mutex; otherwise 5637 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5638 */ 5639 mutex_lock(&event->mmap_mutex); 5640 rb = event->rb; 5641 if (rb) 5642 events = atomic_xchg(&rb->poll, 0); 5643 mutex_unlock(&event->mmap_mutex); 5644 return events; 5645 } 5646 5647 static void _perf_event_reset(struct perf_event *event) 5648 { 5649 (void)perf_event_read(event, false); 5650 local64_set(&event->count, 0); 5651 perf_event_update_userpage(event); 5652 } 5653 5654 /* Assume it's not an event with inherit set. */ 5655 u64 perf_event_pause(struct perf_event *event, bool reset) 5656 { 5657 struct perf_event_context *ctx; 5658 u64 count; 5659 5660 ctx = perf_event_ctx_lock(event); 5661 WARN_ON_ONCE(event->attr.inherit); 5662 _perf_event_disable(event); 5663 count = local64_read(&event->count); 5664 if (reset) 5665 local64_set(&event->count, 0); 5666 perf_event_ctx_unlock(event, ctx); 5667 5668 return count; 5669 } 5670 EXPORT_SYMBOL_GPL(perf_event_pause); 5671 5672 /* 5673 * Holding the top-level event's child_mutex means that any 5674 * descendant process that has inherited this event will block 5675 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5676 * task existence requirements of perf_event_enable/disable. 5677 */ 5678 static void perf_event_for_each_child(struct perf_event *event, 5679 void (*func)(struct perf_event *)) 5680 { 5681 struct perf_event *child; 5682 5683 WARN_ON_ONCE(event->ctx->parent_ctx); 5684 5685 mutex_lock(&event->child_mutex); 5686 func(event); 5687 list_for_each_entry(child, &event->child_list, child_list) 5688 func(child); 5689 mutex_unlock(&event->child_mutex); 5690 } 5691 5692 static void perf_event_for_each(struct perf_event *event, 5693 void (*func)(struct perf_event *)) 5694 { 5695 struct perf_event_context *ctx = event->ctx; 5696 struct perf_event *sibling; 5697 5698 lockdep_assert_held(&ctx->mutex); 5699 5700 event = event->group_leader; 5701 5702 perf_event_for_each_child(event, func); 5703 for_each_sibling_event(sibling, event) 5704 perf_event_for_each_child(sibling, func); 5705 } 5706 5707 static void __perf_event_period(struct perf_event *event, 5708 struct perf_cpu_context *cpuctx, 5709 struct perf_event_context *ctx, 5710 void *info) 5711 { 5712 u64 value = *((u64 *)info); 5713 bool active; 5714 5715 if (event->attr.freq) { 5716 event->attr.sample_freq = value; 5717 } else { 5718 event->attr.sample_period = value; 5719 event->hw.sample_period = value; 5720 } 5721 5722 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5723 if (active) { 5724 perf_pmu_disable(event->pmu); 5725 /* 5726 * We could be throttled; unthrottle now to avoid the tick 5727 * trying to unthrottle while we already re-started the event. 5728 */ 5729 if (event->hw.interrupts == MAX_INTERRUPTS) { 5730 event->hw.interrupts = 0; 5731 perf_log_throttle(event, 1); 5732 } 5733 event->pmu->stop(event, PERF_EF_UPDATE); 5734 } 5735 5736 local64_set(&event->hw.period_left, 0); 5737 5738 if (active) { 5739 event->pmu->start(event, PERF_EF_RELOAD); 5740 perf_pmu_enable(event->pmu); 5741 } 5742 } 5743 5744 static int perf_event_check_period(struct perf_event *event, u64 value) 5745 { 5746 return event->pmu->check_period(event, value); 5747 } 5748 5749 static int _perf_event_period(struct perf_event *event, u64 value) 5750 { 5751 if (!is_sampling_event(event)) 5752 return -EINVAL; 5753 5754 if (!value) 5755 return -EINVAL; 5756 5757 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5758 return -EINVAL; 5759 5760 if (perf_event_check_period(event, value)) 5761 return -EINVAL; 5762 5763 if (!event->attr.freq && (value & (1ULL << 63))) 5764 return -EINVAL; 5765 5766 event_function_call(event, __perf_event_period, &value); 5767 5768 return 0; 5769 } 5770 5771 int perf_event_period(struct perf_event *event, u64 value) 5772 { 5773 struct perf_event_context *ctx; 5774 int ret; 5775 5776 ctx = perf_event_ctx_lock(event); 5777 ret = _perf_event_period(event, value); 5778 perf_event_ctx_unlock(event, ctx); 5779 5780 return ret; 5781 } 5782 EXPORT_SYMBOL_GPL(perf_event_period); 5783 5784 static const struct file_operations perf_fops; 5785 5786 static inline int perf_fget_light(int fd, struct fd *p) 5787 { 5788 struct fd f = fdget(fd); 5789 if (!f.file) 5790 return -EBADF; 5791 5792 if (f.file->f_op != &perf_fops) { 5793 fdput(f); 5794 return -EBADF; 5795 } 5796 *p = f; 5797 return 0; 5798 } 5799 5800 static int perf_event_set_output(struct perf_event *event, 5801 struct perf_event *output_event); 5802 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5803 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5804 struct perf_event_attr *attr); 5805 5806 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5807 { 5808 void (*func)(struct perf_event *); 5809 u32 flags = arg; 5810 5811 switch (cmd) { 5812 case PERF_EVENT_IOC_ENABLE: 5813 func = _perf_event_enable; 5814 break; 5815 case PERF_EVENT_IOC_DISABLE: 5816 func = _perf_event_disable; 5817 break; 5818 case PERF_EVENT_IOC_RESET: 5819 func = _perf_event_reset; 5820 break; 5821 5822 case PERF_EVENT_IOC_REFRESH: 5823 return _perf_event_refresh(event, arg); 5824 5825 case PERF_EVENT_IOC_PERIOD: 5826 { 5827 u64 value; 5828 5829 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5830 return -EFAULT; 5831 5832 return _perf_event_period(event, value); 5833 } 5834 case PERF_EVENT_IOC_ID: 5835 { 5836 u64 id = primary_event_id(event); 5837 5838 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5839 return -EFAULT; 5840 return 0; 5841 } 5842 5843 case PERF_EVENT_IOC_SET_OUTPUT: 5844 { 5845 int ret; 5846 if (arg != -1) { 5847 struct perf_event *output_event; 5848 struct fd output; 5849 ret = perf_fget_light(arg, &output); 5850 if (ret) 5851 return ret; 5852 output_event = output.file->private_data; 5853 ret = perf_event_set_output(event, output_event); 5854 fdput(output); 5855 } else { 5856 ret = perf_event_set_output(event, NULL); 5857 } 5858 return ret; 5859 } 5860 5861 case PERF_EVENT_IOC_SET_FILTER: 5862 return perf_event_set_filter(event, (void __user *)arg); 5863 5864 case PERF_EVENT_IOC_SET_BPF: 5865 { 5866 struct bpf_prog *prog; 5867 int err; 5868 5869 prog = bpf_prog_get(arg); 5870 if (IS_ERR(prog)) 5871 return PTR_ERR(prog); 5872 5873 err = perf_event_set_bpf_prog(event, prog, 0); 5874 if (err) { 5875 bpf_prog_put(prog); 5876 return err; 5877 } 5878 5879 return 0; 5880 } 5881 5882 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5883 struct perf_buffer *rb; 5884 5885 rcu_read_lock(); 5886 rb = rcu_dereference(event->rb); 5887 if (!rb || !rb->nr_pages) { 5888 rcu_read_unlock(); 5889 return -EINVAL; 5890 } 5891 rb_toggle_paused(rb, !!arg); 5892 rcu_read_unlock(); 5893 return 0; 5894 } 5895 5896 case PERF_EVENT_IOC_QUERY_BPF: 5897 return perf_event_query_prog_array(event, (void __user *)arg); 5898 5899 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5900 struct perf_event_attr new_attr; 5901 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5902 &new_attr); 5903 5904 if (err) 5905 return err; 5906 5907 return perf_event_modify_attr(event, &new_attr); 5908 } 5909 default: 5910 return -ENOTTY; 5911 } 5912 5913 if (flags & PERF_IOC_FLAG_GROUP) 5914 perf_event_for_each(event, func); 5915 else 5916 perf_event_for_each_child(event, func); 5917 5918 return 0; 5919 } 5920 5921 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5922 { 5923 struct perf_event *event = file->private_data; 5924 struct perf_event_context *ctx; 5925 long ret; 5926 5927 /* Treat ioctl like writes as it is likely a mutating operation. */ 5928 ret = security_perf_event_write(event); 5929 if (ret) 5930 return ret; 5931 5932 ctx = perf_event_ctx_lock(event); 5933 ret = _perf_ioctl(event, cmd, arg); 5934 perf_event_ctx_unlock(event, ctx); 5935 5936 return ret; 5937 } 5938 5939 #ifdef CONFIG_COMPAT 5940 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5941 unsigned long arg) 5942 { 5943 switch (_IOC_NR(cmd)) { 5944 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5945 case _IOC_NR(PERF_EVENT_IOC_ID): 5946 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5947 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5948 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5949 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5950 cmd &= ~IOCSIZE_MASK; 5951 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5952 } 5953 break; 5954 } 5955 return perf_ioctl(file, cmd, arg); 5956 } 5957 #else 5958 # define perf_compat_ioctl NULL 5959 #endif 5960 5961 int perf_event_task_enable(void) 5962 { 5963 struct perf_event_context *ctx; 5964 struct perf_event *event; 5965 5966 mutex_lock(¤t->perf_event_mutex); 5967 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5968 ctx = perf_event_ctx_lock(event); 5969 perf_event_for_each_child(event, _perf_event_enable); 5970 perf_event_ctx_unlock(event, ctx); 5971 } 5972 mutex_unlock(¤t->perf_event_mutex); 5973 5974 return 0; 5975 } 5976 5977 int perf_event_task_disable(void) 5978 { 5979 struct perf_event_context *ctx; 5980 struct perf_event *event; 5981 5982 mutex_lock(¤t->perf_event_mutex); 5983 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5984 ctx = perf_event_ctx_lock(event); 5985 perf_event_for_each_child(event, _perf_event_disable); 5986 perf_event_ctx_unlock(event, ctx); 5987 } 5988 mutex_unlock(¤t->perf_event_mutex); 5989 5990 return 0; 5991 } 5992 5993 static int perf_event_index(struct perf_event *event) 5994 { 5995 if (event->hw.state & PERF_HES_STOPPED) 5996 return 0; 5997 5998 if (event->state != PERF_EVENT_STATE_ACTIVE) 5999 return 0; 6000 6001 return event->pmu->event_idx(event); 6002 } 6003 6004 static void perf_event_init_userpage(struct perf_event *event) 6005 { 6006 struct perf_event_mmap_page *userpg; 6007 struct perf_buffer *rb; 6008 6009 rcu_read_lock(); 6010 rb = rcu_dereference(event->rb); 6011 if (!rb) 6012 goto unlock; 6013 6014 userpg = rb->user_page; 6015 6016 /* Allow new userspace to detect that bit 0 is deprecated */ 6017 userpg->cap_bit0_is_deprecated = 1; 6018 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6019 userpg->data_offset = PAGE_SIZE; 6020 userpg->data_size = perf_data_size(rb); 6021 6022 unlock: 6023 rcu_read_unlock(); 6024 } 6025 6026 void __weak arch_perf_update_userpage( 6027 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6028 { 6029 } 6030 6031 /* 6032 * Callers need to ensure there can be no nesting of this function, otherwise 6033 * the seqlock logic goes bad. We can not serialize this because the arch 6034 * code calls this from NMI context. 6035 */ 6036 void perf_event_update_userpage(struct perf_event *event) 6037 { 6038 struct perf_event_mmap_page *userpg; 6039 struct perf_buffer *rb; 6040 u64 enabled, running, now; 6041 6042 rcu_read_lock(); 6043 rb = rcu_dereference(event->rb); 6044 if (!rb) 6045 goto unlock; 6046 6047 /* 6048 * compute total_time_enabled, total_time_running 6049 * based on snapshot values taken when the event 6050 * was last scheduled in. 6051 * 6052 * we cannot simply called update_context_time() 6053 * because of locking issue as we can be called in 6054 * NMI context 6055 */ 6056 calc_timer_values(event, &now, &enabled, &running); 6057 6058 userpg = rb->user_page; 6059 /* 6060 * Disable preemption to guarantee consistent time stamps are stored to 6061 * the user page. 6062 */ 6063 preempt_disable(); 6064 ++userpg->lock; 6065 barrier(); 6066 userpg->index = perf_event_index(event); 6067 userpg->offset = perf_event_count(event); 6068 if (userpg->index) 6069 userpg->offset -= local64_read(&event->hw.prev_count); 6070 6071 userpg->time_enabled = enabled + 6072 atomic64_read(&event->child_total_time_enabled); 6073 6074 userpg->time_running = running + 6075 atomic64_read(&event->child_total_time_running); 6076 6077 arch_perf_update_userpage(event, userpg, now); 6078 6079 barrier(); 6080 ++userpg->lock; 6081 preempt_enable(); 6082 unlock: 6083 rcu_read_unlock(); 6084 } 6085 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6086 6087 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6088 { 6089 struct perf_event *event = vmf->vma->vm_file->private_data; 6090 struct perf_buffer *rb; 6091 vm_fault_t ret = VM_FAULT_SIGBUS; 6092 6093 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6094 if (vmf->pgoff == 0) 6095 ret = 0; 6096 return ret; 6097 } 6098 6099 rcu_read_lock(); 6100 rb = rcu_dereference(event->rb); 6101 if (!rb) 6102 goto unlock; 6103 6104 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6105 goto unlock; 6106 6107 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6108 if (!vmf->page) 6109 goto unlock; 6110 6111 get_page(vmf->page); 6112 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6113 vmf->page->index = vmf->pgoff; 6114 6115 ret = 0; 6116 unlock: 6117 rcu_read_unlock(); 6118 6119 return ret; 6120 } 6121 6122 static void ring_buffer_attach(struct perf_event *event, 6123 struct perf_buffer *rb) 6124 { 6125 struct perf_buffer *old_rb = NULL; 6126 unsigned long flags; 6127 6128 WARN_ON_ONCE(event->parent); 6129 6130 if (event->rb) { 6131 /* 6132 * Should be impossible, we set this when removing 6133 * event->rb_entry and wait/clear when adding event->rb_entry. 6134 */ 6135 WARN_ON_ONCE(event->rcu_pending); 6136 6137 old_rb = event->rb; 6138 spin_lock_irqsave(&old_rb->event_lock, flags); 6139 list_del_rcu(&event->rb_entry); 6140 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6141 6142 event->rcu_batches = get_state_synchronize_rcu(); 6143 event->rcu_pending = 1; 6144 } 6145 6146 if (rb) { 6147 if (event->rcu_pending) { 6148 cond_synchronize_rcu(event->rcu_batches); 6149 event->rcu_pending = 0; 6150 } 6151 6152 spin_lock_irqsave(&rb->event_lock, flags); 6153 list_add_rcu(&event->rb_entry, &rb->event_list); 6154 spin_unlock_irqrestore(&rb->event_lock, flags); 6155 } 6156 6157 /* 6158 * Avoid racing with perf_mmap_close(AUX): stop the event 6159 * before swizzling the event::rb pointer; if it's getting 6160 * unmapped, its aux_mmap_count will be 0 and it won't 6161 * restart. See the comment in __perf_pmu_output_stop(). 6162 * 6163 * Data will inevitably be lost when set_output is done in 6164 * mid-air, but then again, whoever does it like this is 6165 * not in for the data anyway. 6166 */ 6167 if (has_aux(event)) 6168 perf_event_stop(event, 0); 6169 6170 rcu_assign_pointer(event->rb, rb); 6171 6172 if (old_rb) { 6173 ring_buffer_put(old_rb); 6174 /* 6175 * Since we detached before setting the new rb, so that we 6176 * could attach the new rb, we could have missed a wakeup. 6177 * Provide it now. 6178 */ 6179 wake_up_all(&event->waitq); 6180 } 6181 } 6182 6183 static void ring_buffer_wakeup(struct perf_event *event) 6184 { 6185 struct perf_buffer *rb; 6186 6187 if (event->parent) 6188 event = event->parent; 6189 6190 rcu_read_lock(); 6191 rb = rcu_dereference(event->rb); 6192 if (rb) { 6193 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6194 wake_up_all(&event->waitq); 6195 } 6196 rcu_read_unlock(); 6197 } 6198 6199 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6200 { 6201 struct perf_buffer *rb; 6202 6203 if (event->parent) 6204 event = event->parent; 6205 6206 rcu_read_lock(); 6207 rb = rcu_dereference(event->rb); 6208 if (rb) { 6209 if (!refcount_inc_not_zero(&rb->refcount)) 6210 rb = NULL; 6211 } 6212 rcu_read_unlock(); 6213 6214 return rb; 6215 } 6216 6217 void ring_buffer_put(struct perf_buffer *rb) 6218 { 6219 if (!refcount_dec_and_test(&rb->refcount)) 6220 return; 6221 6222 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6223 6224 call_rcu(&rb->rcu_head, rb_free_rcu); 6225 } 6226 6227 static void perf_mmap_open(struct vm_area_struct *vma) 6228 { 6229 struct perf_event *event = vma->vm_file->private_data; 6230 6231 atomic_inc(&event->mmap_count); 6232 atomic_inc(&event->rb->mmap_count); 6233 6234 if (vma->vm_pgoff) 6235 atomic_inc(&event->rb->aux_mmap_count); 6236 6237 if (event->pmu->event_mapped) 6238 event->pmu->event_mapped(event, vma->vm_mm); 6239 } 6240 6241 static void perf_pmu_output_stop(struct perf_event *event); 6242 6243 /* 6244 * A buffer can be mmap()ed multiple times; either directly through the same 6245 * event, or through other events by use of perf_event_set_output(). 6246 * 6247 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6248 * the buffer here, where we still have a VM context. This means we need 6249 * to detach all events redirecting to us. 6250 */ 6251 static void perf_mmap_close(struct vm_area_struct *vma) 6252 { 6253 struct perf_event *event = vma->vm_file->private_data; 6254 struct perf_buffer *rb = ring_buffer_get(event); 6255 struct user_struct *mmap_user = rb->mmap_user; 6256 int mmap_locked = rb->mmap_locked; 6257 unsigned long size = perf_data_size(rb); 6258 bool detach_rest = false; 6259 6260 if (event->pmu->event_unmapped) 6261 event->pmu->event_unmapped(event, vma->vm_mm); 6262 6263 /* 6264 * rb->aux_mmap_count will always drop before rb->mmap_count and 6265 * event->mmap_count, so it is ok to use event->mmap_mutex to 6266 * serialize with perf_mmap here. 6267 */ 6268 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6269 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6270 /* 6271 * Stop all AUX events that are writing to this buffer, 6272 * so that we can free its AUX pages and corresponding PMU 6273 * data. Note that after rb::aux_mmap_count dropped to zero, 6274 * they won't start any more (see perf_aux_output_begin()). 6275 */ 6276 perf_pmu_output_stop(event); 6277 6278 /* now it's safe to free the pages */ 6279 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6280 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6281 6282 /* this has to be the last one */ 6283 rb_free_aux(rb); 6284 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6285 6286 mutex_unlock(&event->mmap_mutex); 6287 } 6288 6289 if (atomic_dec_and_test(&rb->mmap_count)) 6290 detach_rest = true; 6291 6292 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6293 goto out_put; 6294 6295 ring_buffer_attach(event, NULL); 6296 mutex_unlock(&event->mmap_mutex); 6297 6298 /* If there's still other mmap()s of this buffer, we're done. */ 6299 if (!detach_rest) 6300 goto out_put; 6301 6302 /* 6303 * No other mmap()s, detach from all other events that might redirect 6304 * into the now unreachable buffer. Somewhat complicated by the 6305 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6306 */ 6307 again: 6308 rcu_read_lock(); 6309 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6310 if (!atomic_long_inc_not_zero(&event->refcount)) { 6311 /* 6312 * This event is en-route to free_event() which will 6313 * detach it and remove it from the list. 6314 */ 6315 continue; 6316 } 6317 rcu_read_unlock(); 6318 6319 mutex_lock(&event->mmap_mutex); 6320 /* 6321 * Check we didn't race with perf_event_set_output() which can 6322 * swizzle the rb from under us while we were waiting to 6323 * acquire mmap_mutex. 6324 * 6325 * If we find a different rb; ignore this event, a next 6326 * iteration will no longer find it on the list. We have to 6327 * still restart the iteration to make sure we're not now 6328 * iterating the wrong list. 6329 */ 6330 if (event->rb == rb) 6331 ring_buffer_attach(event, NULL); 6332 6333 mutex_unlock(&event->mmap_mutex); 6334 put_event(event); 6335 6336 /* 6337 * Restart the iteration; either we're on the wrong list or 6338 * destroyed its integrity by doing a deletion. 6339 */ 6340 goto again; 6341 } 6342 rcu_read_unlock(); 6343 6344 /* 6345 * It could be there's still a few 0-ref events on the list; they'll 6346 * get cleaned up by free_event() -- they'll also still have their 6347 * ref on the rb and will free it whenever they are done with it. 6348 * 6349 * Aside from that, this buffer is 'fully' detached and unmapped, 6350 * undo the VM accounting. 6351 */ 6352 6353 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6354 &mmap_user->locked_vm); 6355 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6356 free_uid(mmap_user); 6357 6358 out_put: 6359 ring_buffer_put(rb); /* could be last */ 6360 } 6361 6362 static const struct vm_operations_struct perf_mmap_vmops = { 6363 .open = perf_mmap_open, 6364 .close = perf_mmap_close, /* non mergeable */ 6365 .fault = perf_mmap_fault, 6366 .page_mkwrite = perf_mmap_fault, 6367 }; 6368 6369 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6370 { 6371 struct perf_event *event = file->private_data; 6372 unsigned long user_locked, user_lock_limit; 6373 struct user_struct *user = current_user(); 6374 struct perf_buffer *rb = NULL; 6375 unsigned long locked, lock_limit; 6376 unsigned long vma_size; 6377 unsigned long nr_pages; 6378 long user_extra = 0, extra = 0; 6379 int ret = 0, flags = 0; 6380 6381 /* 6382 * Don't allow mmap() of inherited per-task counters. This would 6383 * create a performance issue due to all children writing to the 6384 * same rb. 6385 */ 6386 if (event->cpu == -1 && event->attr.inherit) 6387 return -EINVAL; 6388 6389 if (!(vma->vm_flags & VM_SHARED)) 6390 return -EINVAL; 6391 6392 ret = security_perf_event_read(event); 6393 if (ret) 6394 return ret; 6395 6396 vma_size = vma->vm_end - vma->vm_start; 6397 6398 if (vma->vm_pgoff == 0) { 6399 nr_pages = (vma_size / PAGE_SIZE) - 1; 6400 } else { 6401 /* 6402 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6403 * mapped, all subsequent mappings should have the same size 6404 * and offset. Must be above the normal perf buffer. 6405 */ 6406 u64 aux_offset, aux_size; 6407 6408 if (!event->rb) 6409 return -EINVAL; 6410 6411 nr_pages = vma_size / PAGE_SIZE; 6412 6413 mutex_lock(&event->mmap_mutex); 6414 ret = -EINVAL; 6415 6416 rb = event->rb; 6417 if (!rb) 6418 goto aux_unlock; 6419 6420 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6421 aux_size = READ_ONCE(rb->user_page->aux_size); 6422 6423 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6424 goto aux_unlock; 6425 6426 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6427 goto aux_unlock; 6428 6429 /* already mapped with a different offset */ 6430 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6431 goto aux_unlock; 6432 6433 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6434 goto aux_unlock; 6435 6436 /* already mapped with a different size */ 6437 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6438 goto aux_unlock; 6439 6440 if (!is_power_of_2(nr_pages)) 6441 goto aux_unlock; 6442 6443 if (!atomic_inc_not_zero(&rb->mmap_count)) 6444 goto aux_unlock; 6445 6446 if (rb_has_aux(rb)) { 6447 atomic_inc(&rb->aux_mmap_count); 6448 ret = 0; 6449 goto unlock; 6450 } 6451 6452 atomic_set(&rb->aux_mmap_count, 1); 6453 user_extra = nr_pages; 6454 6455 goto accounting; 6456 } 6457 6458 /* 6459 * If we have rb pages ensure they're a power-of-two number, so we 6460 * can do bitmasks instead of modulo. 6461 */ 6462 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6463 return -EINVAL; 6464 6465 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6466 return -EINVAL; 6467 6468 WARN_ON_ONCE(event->ctx->parent_ctx); 6469 again: 6470 mutex_lock(&event->mmap_mutex); 6471 if (event->rb) { 6472 if (data_page_nr(event->rb) != nr_pages) { 6473 ret = -EINVAL; 6474 goto unlock; 6475 } 6476 6477 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6478 /* 6479 * Raced against perf_mmap_close(); remove the 6480 * event and try again. 6481 */ 6482 ring_buffer_attach(event, NULL); 6483 mutex_unlock(&event->mmap_mutex); 6484 goto again; 6485 } 6486 6487 goto unlock; 6488 } 6489 6490 user_extra = nr_pages + 1; 6491 6492 accounting: 6493 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6494 6495 /* 6496 * Increase the limit linearly with more CPUs: 6497 */ 6498 user_lock_limit *= num_online_cpus(); 6499 6500 user_locked = atomic_long_read(&user->locked_vm); 6501 6502 /* 6503 * sysctl_perf_event_mlock may have changed, so that 6504 * user->locked_vm > user_lock_limit 6505 */ 6506 if (user_locked > user_lock_limit) 6507 user_locked = user_lock_limit; 6508 user_locked += user_extra; 6509 6510 if (user_locked > user_lock_limit) { 6511 /* 6512 * charge locked_vm until it hits user_lock_limit; 6513 * charge the rest from pinned_vm 6514 */ 6515 extra = user_locked - user_lock_limit; 6516 user_extra -= extra; 6517 } 6518 6519 lock_limit = rlimit(RLIMIT_MEMLOCK); 6520 lock_limit >>= PAGE_SHIFT; 6521 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6522 6523 if ((locked > lock_limit) && perf_is_paranoid() && 6524 !capable(CAP_IPC_LOCK)) { 6525 ret = -EPERM; 6526 goto unlock; 6527 } 6528 6529 WARN_ON(!rb && event->rb); 6530 6531 if (vma->vm_flags & VM_WRITE) 6532 flags |= RING_BUFFER_WRITABLE; 6533 6534 if (!rb) { 6535 rb = rb_alloc(nr_pages, 6536 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6537 event->cpu, flags); 6538 6539 if (!rb) { 6540 ret = -ENOMEM; 6541 goto unlock; 6542 } 6543 6544 atomic_set(&rb->mmap_count, 1); 6545 rb->mmap_user = get_current_user(); 6546 rb->mmap_locked = extra; 6547 6548 ring_buffer_attach(event, rb); 6549 6550 perf_event_update_time(event); 6551 perf_event_init_userpage(event); 6552 perf_event_update_userpage(event); 6553 } else { 6554 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6555 event->attr.aux_watermark, flags); 6556 if (!ret) 6557 rb->aux_mmap_locked = extra; 6558 } 6559 6560 unlock: 6561 if (!ret) { 6562 atomic_long_add(user_extra, &user->locked_vm); 6563 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6564 6565 atomic_inc(&event->mmap_count); 6566 } else if (rb) { 6567 atomic_dec(&rb->mmap_count); 6568 } 6569 aux_unlock: 6570 mutex_unlock(&event->mmap_mutex); 6571 6572 /* 6573 * Since pinned accounting is per vm we cannot allow fork() to copy our 6574 * vma. 6575 */ 6576 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6577 vma->vm_ops = &perf_mmap_vmops; 6578 6579 if (event->pmu->event_mapped) 6580 event->pmu->event_mapped(event, vma->vm_mm); 6581 6582 return ret; 6583 } 6584 6585 static int perf_fasync(int fd, struct file *filp, int on) 6586 { 6587 struct inode *inode = file_inode(filp); 6588 struct perf_event *event = filp->private_data; 6589 int retval; 6590 6591 inode_lock(inode); 6592 retval = fasync_helper(fd, filp, on, &event->fasync); 6593 inode_unlock(inode); 6594 6595 if (retval < 0) 6596 return retval; 6597 6598 return 0; 6599 } 6600 6601 static const struct file_operations perf_fops = { 6602 .llseek = no_llseek, 6603 .release = perf_release, 6604 .read = perf_read, 6605 .poll = perf_poll, 6606 .unlocked_ioctl = perf_ioctl, 6607 .compat_ioctl = perf_compat_ioctl, 6608 .mmap = perf_mmap, 6609 .fasync = perf_fasync, 6610 }; 6611 6612 /* 6613 * Perf event wakeup 6614 * 6615 * If there's data, ensure we set the poll() state and publish everything 6616 * to user-space before waking everybody up. 6617 */ 6618 6619 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6620 { 6621 /* only the parent has fasync state */ 6622 if (event->parent) 6623 event = event->parent; 6624 return &event->fasync; 6625 } 6626 6627 void perf_event_wakeup(struct perf_event *event) 6628 { 6629 ring_buffer_wakeup(event); 6630 6631 if (event->pending_kill) { 6632 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6633 event->pending_kill = 0; 6634 } 6635 } 6636 6637 static void perf_sigtrap(struct perf_event *event) 6638 { 6639 /* 6640 * We'd expect this to only occur if the irq_work is delayed and either 6641 * ctx->task or current has changed in the meantime. This can be the 6642 * case on architectures that do not implement arch_irq_work_raise(). 6643 */ 6644 if (WARN_ON_ONCE(event->ctx->task != current)) 6645 return; 6646 6647 /* 6648 * Both perf_pending_task() and perf_pending_irq() can race with the 6649 * task exiting. 6650 */ 6651 if (current->flags & PF_EXITING) 6652 return; 6653 6654 send_sig_perf((void __user *)event->pending_addr, 6655 event->attr.type, event->attr.sig_data); 6656 } 6657 6658 /* 6659 * Deliver the pending work in-event-context or follow the context. 6660 */ 6661 static void __perf_pending_irq(struct perf_event *event) 6662 { 6663 int cpu = READ_ONCE(event->oncpu); 6664 6665 /* 6666 * If the event isn't running; we done. event_sched_out() will have 6667 * taken care of things. 6668 */ 6669 if (cpu < 0) 6670 return; 6671 6672 /* 6673 * Yay, we hit home and are in the context of the event. 6674 */ 6675 if (cpu == smp_processor_id()) { 6676 if (event->pending_sigtrap) { 6677 event->pending_sigtrap = 0; 6678 perf_sigtrap(event); 6679 local_dec(&event->ctx->nr_pending); 6680 } 6681 if (event->pending_disable) { 6682 event->pending_disable = 0; 6683 perf_event_disable_local(event); 6684 } 6685 return; 6686 } 6687 6688 /* 6689 * CPU-A CPU-B 6690 * 6691 * perf_event_disable_inatomic() 6692 * @pending_disable = CPU-A; 6693 * irq_work_queue(); 6694 * 6695 * sched-out 6696 * @pending_disable = -1; 6697 * 6698 * sched-in 6699 * perf_event_disable_inatomic() 6700 * @pending_disable = CPU-B; 6701 * irq_work_queue(); // FAILS 6702 * 6703 * irq_work_run() 6704 * perf_pending_irq() 6705 * 6706 * But the event runs on CPU-B and wants disabling there. 6707 */ 6708 irq_work_queue_on(&event->pending_irq, cpu); 6709 } 6710 6711 static void perf_pending_irq(struct irq_work *entry) 6712 { 6713 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6714 int rctx; 6715 6716 /* 6717 * If we 'fail' here, that's OK, it means recursion is already disabled 6718 * and we won't recurse 'further'. 6719 */ 6720 rctx = perf_swevent_get_recursion_context(); 6721 6722 /* 6723 * The wakeup isn't bound to the context of the event -- it can happen 6724 * irrespective of where the event is. 6725 */ 6726 if (event->pending_wakeup) { 6727 event->pending_wakeup = 0; 6728 perf_event_wakeup(event); 6729 } 6730 6731 __perf_pending_irq(event); 6732 6733 if (rctx >= 0) 6734 perf_swevent_put_recursion_context(rctx); 6735 } 6736 6737 static void perf_pending_task(struct callback_head *head) 6738 { 6739 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6740 int rctx; 6741 6742 /* 6743 * If we 'fail' here, that's OK, it means recursion is already disabled 6744 * and we won't recurse 'further'. 6745 */ 6746 preempt_disable_notrace(); 6747 rctx = perf_swevent_get_recursion_context(); 6748 6749 if (event->pending_work) { 6750 event->pending_work = 0; 6751 perf_sigtrap(event); 6752 local_dec(&event->ctx->nr_pending); 6753 } 6754 6755 if (rctx >= 0) 6756 perf_swevent_put_recursion_context(rctx); 6757 preempt_enable_notrace(); 6758 6759 put_event(event); 6760 } 6761 6762 #ifdef CONFIG_GUEST_PERF_EVENTS 6763 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6764 6765 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6766 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6767 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6768 6769 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6770 { 6771 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6772 return; 6773 6774 rcu_assign_pointer(perf_guest_cbs, cbs); 6775 static_call_update(__perf_guest_state, cbs->state); 6776 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6777 6778 /* Implementing ->handle_intel_pt_intr is optional. */ 6779 if (cbs->handle_intel_pt_intr) 6780 static_call_update(__perf_guest_handle_intel_pt_intr, 6781 cbs->handle_intel_pt_intr); 6782 } 6783 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6784 6785 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6786 { 6787 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6788 return; 6789 6790 rcu_assign_pointer(perf_guest_cbs, NULL); 6791 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6792 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6793 static_call_update(__perf_guest_handle_intel_pt_intr, 6794 (void *)&__static_call_return0); 6795 synchronize_rcu(); 6796 } 6797 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6798 #endif 6799 6800 static void 6801 perf_output_sample_regs(struct perf_output_handle *handle, 6802 struct pt_regs *regs, u64 mask) 6803 { 6804 int bit; 6805 DECLARE_BITMAP(_mask, 64); 6806 6807 bitmap_from_u64(_mask, mask); 6808 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6809 u64 val; 6810 6811 val = perf_reg_value(regs, bit); 6812 perf_output_put(handle, val); 6813 } 6814 } 6815 6816 static void perf_sample_regs_user(struct perf_regs *regs_user, 6817 struct pt_regs *regs) 6818 { 6819 if (user_mode(regs)) { 6820 regs_user->abi = perf_reg_abi(current); 6821 regs_user->regs = regs; 6822 } else if (!(current->flags & PF_KTHREAD)) { 6823 perf_get_regs_user(regs_user, regs); 6824 } else { 6825 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6826 regs_user->regs = NULL; 6827 } 6828 } 6829 6830 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6831 struct pt_regs *regs) 6832 { 6833 regs_intr->regs = regs; 6834 regs_intr->abi = perf_reg_abi(current); 6835 } 6836 6837 6838 /* 6839 * Get remaining task size from user stack pointer. 6840 * 6841 * It'd be better to take stack vma map and limit this more 6842 * precisely, but there's no way to get it safely under interrupt, 6843 * so using TASK_SIZE as limit. 6844 */ 6845 static u64 perf_ustack_task_size(struct pt_regs *regs) 6846 { 6847 unsigned long addr = perf_user_stack_pointer(regs); 6848 6849 if (!addr || addr >= TASK_SIZE) 6850 return 0; 6851 6852 return TASK_SIZE - addr; 6853 } 6854 6855 static u16 6856 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6857 struct pt_regs *regs) 6858 { 6859 u64 task_size; 6860 6861 /* No regs, no stack pointer, no dump. */ 6862 if (!regs) 6863 return 0; 6864 6865 /* 6866 * Check if we fit in with the requested stack size into the: 6867 * - TASK_SIZE 6868 * If we don't, we limit the size to the TASK_SIZE. 6869 * 6870 * - remaining sample size 6871 * If we don't, we customize the stack size to 6872 * fit in to the remaining sample size. 6873 */ 6874 6875 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6876 stack_size = min(stack_size, (u16) task_size); 6877 6878 /* Current header size plus static size and dynamic size. */ 6879 header_size += 2 * sizeof(u64); 6880 6881 /* Do we fit in with the current stack dump size? */ 6882 if ((u16) (header_size + stack_size) < header_size) { 6883 /* 6884 * If we overflow the maximum size for the sample, 6885 * we customize the stack dump size to fit in. 6886 */ 6887 stack_size = USHRT_MAX - header_size - sizeof(u64); 6888 stack_size = round_up(stack_size, sizeof(u64)); 6889 } 6890 6891 return stack_size; 6892 } 6893 6894 static void 6895 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6896 struct pt_regs *regs) 6897 { 6898 /* Case of a kernel thread, nothing to dump */ 6899 if (!regs) { 6900 u64 size = 0; 6901 perf_output_put(handle, size); 6902 } else { 6903 unsigned long sp; 6904 unsigned int rem; 6905 u64 dyn_size; 6906 6907 /* 6908 * We dump: 6909 * static size 6910 * - the size requested by user or the best one we can fit 6911 * in to the sample max size 6912 * data 6913 * - user stack dump data 6914 * dynamic size 6915 * - the actual dumped size 6916 */ 6917 6918 /* Static size. */ 6919 perf_output_put(handle, dump_size); 6920 6921 /* Data. */ 6922 sp = perf_user_stack_pointer(regs); 6923 rem = __output_copy_user(handle, (void *) sp, dump_size); 6924 dyn_size = dump_size - rem; 6925 6926 perf_output_skip(handle, rem); 6927 6928 /* Dynamic size. */ 6929 perf_output_put(handle, dyn_size); 6930 } 6931 } 6932 6933 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6934 struct perf_sample_data *data, 6935 size_t size) 6936 { 6937 struct perf_event *sampler = event->aux_event; 6938 struct perf_buffer *rb; 6939 6940 data->aux_size = 0; 6941 6942 if (!sampler) 6943 goto out; 6944 6945 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6946 goto out; 6947 6948 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6949 goto out; 6950 6951 rb = ring_buffer_get(sampler); 6952 if (!rb) 6953 goto out; 6954 6955 /* 6956 * If this is an NMI hit inside sampling code, don't take 6957 * the sample. See also perf_aux_sample_output(). 6958 */ 6959 if (READ_ONCE(rb->aux_in_sampling)) { 6960 data->aux_size = 0; 6961 } else { 6962 size = min_t(size_t, size, perf_aux_size(rb)); 6963 data->aux_size = ALIGN(size, sizeof(u64)); 6964 } 6965 ring_buffer_put(rb); 6966 6967 out: 6968 return data->aux_size; 6969 } 6970 6971 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6972 struct perf_event *event, 6973 struct perf_output_handle *handle, 6974 unsigned long size) 6975 { 6976 unsigned long flags; 6977 long ret; 6978 6979 /* 6980 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6981 * paths. If we start calling them in NMI context, they may race with 6982 * the IRQ ones, that is, for example, re-starting an event that's just 6983 * been stopped, which is why we're using a separate callback that 6984 * doesn't change the event state. 6985 * 6986 * IRQs need to be disabled to prevent IPIs from racing with us. 6987 */ 6988 local_irq_save(flags); 6989 /* 6990 * Guard against NMI hits inside the critical section; 6991 * see also perf_prepare_sample_aux(). 6992 */ 6993 WRITE_ONCE(rb->aux_in_sampling, 1); 6994 barrier(); 6995 6996 ret = event->pmu->snapshot_aux(event, handle, size); 6997 6998 barrier(); 6999 WRITE_ONCE(rb->aux_in_sampling, 0); 7000 local_irq_restore(flags); 7001 7002 return ret; 7003 } 7004 7005 static void perf_aux_sample_output(struct perf_event *event, 7006 struct perf_output_handle *handle, 7007 struct perf_sample_data *data) 7008 { 7009 struct perf_event *sampler = event->aux_event; 7010 struct perf_buffer *rb; 7011 unsigned long pad; 7012 long size; 7013 7014 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7015 return; 7016 7017 rb = ring_buffer_get(sampler); 7018 if (!rb) 7019 return; 7020 7021 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7022 7023 /* 7024 * An error here means that perf_output_copy() failed (returned a 7025 * non-zero surplus that it didn't copy), which in its current 7026 * enlightened implementation is not possible. If that changes, we'd 7027 * like to know. 7028 */ 7029 if (WARN_ON_ONCE(size < 0)) 7030 goto out_put; 7031 7032 /* 7033 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7034 * perf_prepare_sample_aux(), so should not be more than that. 7035 */ 7036 pad = data->aux_size - size; 7037 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7038 pad = 8; 7039 7040 if (pad) { 7041 u64 zero = 0; 7042 perf_output_copy(handle, &zero, pad); 7043 } 7044 7045 out_put: 7046 ring_buffer_put(rb); 7047 } 7048 7049 static void __perf_event_header__init_id(struct perf_event_header *header, 7050 struct perf_sample_data *data, 7051 struct perf_event *event, 7052 u64 sample_type) 7053 { 7054 data->type = event->attr.sample_type; 7055 header->size += event->id_header_size; 7056 7057 if (sample_type & PERF_SAMPLE_TID) { 7058 /* namespace issues */ 7059 data->tid_entry.pid = perf_event_pid(event, current); 7060 data->tid_entry.tid = perf_event_tid(event, current); 7061 } 7062 7063 if (sample_type & PERF_SAMPLE_TIME) 7064 data->time = perf_event_clock(event); 7065 7066 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7067 data->id = primary_event_id(event); 7068 7069 if (sample_type & PERF_SAMPLE_STREAM_ID) 7070 data->stream_id = event->id; 7071 7072 if (sample_type & PERF_SAMPLE_CPU) { 7073 data->cpu_entry.cpu = raw_smp_processor_id(); 7074 data->cpu_entry.reserved = 0; 7075 } 7076 } 7077 7078 void perf_event_header__init_id(struct perf_event_header *header, 7079 struct perf_sample_data *data, 7080 struct perf_event *event) 7081 { 7082 if (event->attr.sample_id_all) 7083 __perf_event_header__init_id(header, data, event, event->attr.sample_type); 7084 } 7085 7086 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7087 struct perf_sample_data *data) 7088 { 7089 u64 sample_type = data->type; 7090 7091 if (sample_type & PERF_SAMPLE_TID) 7092 perf_output_put(handle, data->tid_entry); 7093 7094 if (sample_type & PERF_SAMPLE_TIME) 7095 perf_output_put(handle, data->time); 7096 7097 if (sample_type & PERF_SAMPLE_ID) 7098 perf_output_put(handle, data->id); 7099 7100 if (sample_type & PERF_SAMPLE_STREAM_ID) 7101 perf_output_put(handle, data->stream_id); 7102 7103 if (sample_type & PERF_SAMPLE_CPU) 7104 perf_output_put(handle, data->cpu_entry); 7105 7106 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7107 perf_output_put(handle, data->id); 7108 } 7109 7110 void perf_event__output_id_sample(struct perf_event *event, 7111 struct perf_output_handle *handle, 7112 struct perf_sample_data *sample) 7113 { 7114 if (event->attr.sample_id_all) 7115 __perf_event__output_id_sample(handle, sample); 7116 } 7117 7118 static void perf_output_read_one(struct perf_output_handle *handle, 7119 struct perf_event *event, 7120 u64 enabled, u64 running) 7121 { 7122 u64 read_format = event->attr.read_format; 7123 u64 values[5]; 7124 int n = 0; 7125 7126 values[n++] = perf_event_count(event); 7127 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7128 values[n++] = enabled + 7129 atomic64_read(&event->child_total_time_enabled); 7130 } 7131 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7132 values[n++] = running + 7133 atomic64_read(&event->child_total_time_running); 7134 } 7135 if (read_format & PERF_FORMAT_ID) 7136 values[n++] = primary_event_id(event); 7137 if (read_format & PERF_FORMAT_LOST) 7138 values[n++] = atomic64_read(&event->lost_samples); 7139 7140 __output_copy(handle, values, n * sizeof(u64)); 7141 } 7142 7143 static void perf_output_read_group(struct perf_output_handle *handle, 7144 struct perf_event *event, 7145 u64 enabled, u64 running) 7146 { 7147 struct perf_event *leader = event->group_leader, *sub; 7148 u64 read_format = event->attr.read_format; 7149 unsigned long flags; 7150 u64 values[6]; 7151 int n = 0; 7152 7153 /* 7154 * Disabling interrupts avoids all counter scheduling 7155 * (context switches, timer based rotation and IPIs). 7156 */ 7157 local_irq_save(flags); 7158 7159 values[n++] = 1 + leader->nr_siblings; 7160 7161 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7162 values[n++] = enabled; 7163 7164 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7165 values[n++] = running; 7166 7167 if ((leader != event) && 7168 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7169 leader->pmu->read(leader); 7170 7171 values[n++] = perf_event_count(leader); 7172 if (read_format & PERF_FORMAT_ID) 7173 values[n++] = primary_event_id(leader); 7174 if (read_format & PERF_FORMAT_LOST) 7175 values[n++] = atomic64_read(&leader->lost_samples); 7176 7177 __output_copy(handle, values, n * sizeof(u64)); 7178 7179 for_each_sibling_event(sub, leader) { 7180 n = 0; 7181 7182 if ((sub != event) && 7183 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7184 sub->pmu->read(sub); 7185 7186 values[n++] = perf_event_count(sub); 7187 if (read_format & PERF_FORMAT_ID) 7188 values[n++] = primary_event_id(sub); 7189 if (read_format & PERF_FORMAT_LOST) 7190 values[n++] = atomic64_read(&sub->lost_samples); 7191 7192 __output_copy(handle, values, n * sizeof(u64)); 7193 } 7194 7195 local_irq_restore(flags); 7196 } 7197 7198 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7199 PERF_FORMAT_TOTAL_TIME_RUNNING) 7200 7201 /* 7202 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7203 * 7204 * The problem is that its both hard and excessively expensive to iterate the 7205 * child list, not to mention that its impossible to IPI the children running 7206 * on another CPU, from interrupt/NMI context. 7207 */ 7208 static void perf_output_read(struct perf_output_handle *handle, 7209 struct perf_event *event) 7210 { 7211 u64 enabled = 0, running = 0, now; 7212 u64 read_format = event->attr.read_format; 7213 7214 /* 7215 * compute total_time_enabled, total_time_running 7216 * based on snapshot values taken when the event 7217 * was last scheduled in. 7218 * 7219 * we cannot simply called update_context_time() 7220 * because of locking issue as we are called in 7221 * NMI context 7222 */ 7223 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7224 calc_timer_values(event, &now, &enabled, &running); 7225 7226 if (event->attr.read_format & PERF_FORMAT_GROUP) 7227 perf_output_read_group(handle, event, enabled, running); 7228 else 7229 perf_output_read_one(handle, event, enabled, running); 7230 } 7231 7232 void perf_output_sample(struct perf_output_handle *handle, 7233 struct perf_event_header *header, 7234 struct perf_sample_data *data, 7235 struct perf_event *event) 7236 { 7237 u64 sample_type = data->type; 7238 7239 perf_output_put(handle, *header); 7240 7241 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7242 perf_output_put(handle, data->id); 7243 7244 if (sample_type & PERF_SAMPLE_IP) 7245 perf_output_put(handle, data->ip); 7246 7247 if (sample_type & PERF_SAMPLE_TID) 7248 perf_output_put(handle, data->tid_entry); 7249 7250 if (sample_type & PERF_SAMPLE_TIME) 7251 perf_output_put(handle, data->time); 7252 7253 if (sample_type & PERF_SAMPLE_ADDR) 7254 perf_output_put(handle, data->addr); 7255 7256 if (sample_type & PERF_SAMPLE_ID) 7257 perf_output_put(handle, data->id); 7258 7259 if (sample_type & PERF_SAMPLE_STREAM_ID) 7260 perf_output_put(handle, data->stream_id); 7261 7262 if (sample_type & PERF_SAMPLE_CPU) 7263 perf_output_put(handle, data->cpu_entry); 7264 7265 if (sample_type & PERF_SAMPLE_PERIOD) 7266 perf_output_put(handle, data->period); 7267 7268 if (sample_type & PERF_SAMPLE_READ) 7269 perf_output_read(handle, event); 7270 7271 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7272 int size = 1; 7273 7274 size += data->callchain->nr; 7275 size *= sizeof(u64); 7276 __output_copy(handle, data->callchain, size); 7277 } 7278 7279 if (sample_type & PERF_SAMPLE_RAW) { 7280 struct perf_raw_record *raw = data->raw; 7281 7282 if (raw) { 7283 struct perf_raw_frag *frag = &raw->frag; 7284 7285 perf_output_put(handle, raw->size); 7286 do { 7287 if (frag->copy) { 7288 __output_custom(handle, frag->copy, 7289 frag->data, frag->size); 7290 } else { 7291 __output_copy(handle, frag->data, 7292 frag->size); 7293 } 7294 if (perf_raw_frag_last(frag)) 7295 break; 7296 frag = frag->next; 7297 } while (1); 7298 if (frag->pad) 7299 __output_skip(handle, NULL, frag->pad); 7300 } else { 7301 struct { 7302 u32 size; 7303 u32 data; 7304 } raw = { 7305 .size = sizeof(u32), 7306 .data = 0, 7307 }; 7308 perf_output_put(handle, raw); 7309 } 7310 } 7311 7312 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7313 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7314 size_t size; 7315 7316 size = data->br_stack->nr 7317 * sizeof(struct perf_branch_entry); 7318 7319 perf_output_put(handle, data->br_stack->nr); 7320 if (branch_sample_hw_index(event)) 7321 perf_output_put(handle, data->br_stack->hw_idx); 7322 perf_output_copy(handle, data->br_stack->entries, size); 7323 } else { 7324 /* 7325 * we always store at least the value of nr 7326 */ 7327 u64 nr = 0; 7328 perf_output_put(handle, nr); 7329 } 7330 } 7331 7332 if (sample_type & PERF_SAMPLE_REGS_USER) { 7333 u64 abi = data->regs_user.abi; 7334 7335 /* 7336 * If there are no regs to dump, notice it through 7337 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7338 */ 7339 perf_output_put(handle, abi); 7340 7341 if (abi) { 7342 u64 mask = event->attr.sample_regs_user; 7343 perf_output_sample_regs(handle, 7344 data->regs_user.regs, 7345 mask); 7346 } 7347 } 7348 7349 if (sample_type & PERF_SAMPLE_STACK_USER) { 7350 perf_output_sample_ustack(handle, 7351 data->stack_user_size, 7352 data->regs_user.regs); 7353 } 7354 7355 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7356 perf_output_put(handle, data->weight.full); 7357 7358 if (sample_type & PERF_SAMPLE_DATA_SRC) 7359 perf_output_put(handle, data->data_src.val); 7360 7361 if (sample_type & PERF_SAMPLE_TRANSACTION) 7362 perf_output_put(handle, data->txn); 7363 7364 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7365 u64 abi = data->regs_intr.abi; 7366 /* 7367 * If there are no regs to dump, notice it through 7368 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7369 */ 7370 perf_output_put(handle, abi); 7371 7372 if (abi) { 7373 u64 mask = event->attr.sample_regs_intr; 7374 7375 perf_output_sample_regs(handle, 7376 data->regs_intr.regs, 7377 mask); 7378 } 7379 } 7380 7381 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7382 perf_output_put(handle, data->phys_addr); 7383 7384 if (sample_type & PERF_SAMPLE_CGROUP) 7385 perf_output_put(handle, data->cgroup); 7386 7387 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7388 perf_output_put(handle, data->data_page_size); 7389 7390 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7391 perf_output_put(handle, data->code_page_size); 7392 7393 if (sample_type & PERF_SAMPLE_AUX) { 7394 perf_output_put(handle, data->aux_size); 7395 7396 if (data->aux_size) 7397 perf_aux_sample_output(event, handle, data); 7398 } 7399 7400 if (!event->attr.watermark) { 7401 int wakeup_events = event->attr.wakeup_events; 7402 7403 if (wakeup_events) { 7404 struct perf_buffer *rb = handle->rb; 7405 int events = local_inc_return(&rb->events); 7406 7407 if (events >= wakeup_events) { 7408 local_sub(wakeup_events, &rb->events); 7409 local_inc(&rb->wakeup); 7410 } 7411 } 7412 } 7413 } 7414 7415 static u64 perf_virt_to_phys(u64 virt) 7416 { 7417 u64 phys_addr = 0; 7418 7419 if (!virt) 7420 return 0; 7421 7422 if (virt >= TASK_SIZE) { 7423 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7424 if (virt_addr_valid((void *)(uintptr_t)virt) && 7425 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7426 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7427 } else { 7428 /* 7429 * Walking the pages tables for user address. 7430 * Interrupts are disabled, so it prevents any tear down 7431 * of the page tables. 7432 * Try IRQ-safe get_user_page_fast_only first. 7433 * If failed, leave phys_addr as 0. 7434 */ 7435 if (current->mm != NULL) { 7436 struct page *p; 7437 7438 pagefault_disable(); 7439 if (get_user_page_fast_only(virt, 0, &p)) { 7440 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7441 put_page(p); 7442 } 7443 pagefault_enable(); 7444 } 7445 } 7446 7447 return phys_addr; 7448 } 7449 7450 /* 7451 * Return the pagetable size of a given virtual address. 7452 */ 7453 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7454 { 7455 u64 size = 0; 7456 7457 #ifdef CONFIG_HAVE_FAST_GUP 7458 pgd_t *pgdp, pgd; 7459 p4d_t *p4dp, p4d; 7460 pud_t *pudp, pud; 7461 pmd_t *pmdp, pmd; 7462 pte_t *ptep, pte; 7463 7464 pgdp = pgd_offset(mm, addr); 7465 pgd = READ_ONCE(*pgdp); 7466 if (pgd_none(pgd)) 7467 return 0; 7468 7469 if (pgd_leaf(pgd)) 7470 return pgd_leaf_size(pgd); 7471 7472 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7473 p4d = READ_ONCE(*p4dp); 7474 if (!p4d_present(p4d)) 7475 return 0; 7476 7477 if (p4d_leaf(p4d)) 7478 return p4d_leaf_size(p4d); 7479 7480 pudp = pud_offset_lockless(p4dp, p4d, addr); 7481 pud = READ_ONCE(*pudp); 7482 if (!pud_present(pud)) 7483 return 0; 7484 7485 if (pud_leaf(pud)) 7486 return pud_leaf_size(pud); 7487 7488 pmdp = pmd_offset_lockless(pudp, pud, addr); 7489 pmd = pmdp_get_lockless(pmdp); 7490 if (!pmd_present(pmd)) 7491 return 0; 7492 7493 if (pmd_leaf(pmd)) 7494 return pmd_leaf_size(pmd); 7495 7496 ptep = pte_offset_map(&pmd, addr); 7497 pte = ptep_get_lockless(ptep); 7498 if (pte_present(pte)) 7499 size = pte_leaf_size(pte); 7500 pte_unmap(ptep); 7501 #endif /* CONFIG_HAVE_FAST_GUP */ 7502 7503 return size; 7504 } 7505 7506 static u64 perf_get_page_size(unsigned long addr) 7507 { 7508 struct mm_struct *mm; 7509 unsigned long flags; 7510 u64 size; 7511 7512 if (!addr) 7513 return 0; 7514 7515 /* 7516 * Software page-table walkers must disable IRQs, 7517 * which prevents any tear down of the page tables. 7518 */ 7519 local_irq_save(flags); 7520 7521 mm = current->mm; 7522 if (!mm) { 7523 /* 7524 * For kernel threads and the like, use init_mm so that 7525 * we can find kernel memory. 7526 */ 7527 mm = &init_mm; 7528 } 7529 7530 size = perf_get_pgtable_size(mm, addr); 7531 7532 local_irq_restore(flags); 7533 7534 return size; 7535 } 7536 7537 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7538 7539 struct perf_callchain_entry * 7540 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7541 { 7542 bool kernel = !event->attr.exclude_callchain_kernel; 7543 bool user = !event->attr.exclude_callchain_user; 7544 /* Disallow cross-task user callchains. */ 7545 bool crosstask = event->ctx->task && event->ctx->task != current; 7546 const u32 max_stack = event->attr.sample_max_stack; 7547 struct perf_callchain_entry *callchain; 7548 7549 if (!kernel && !user) 7550 return &__empty_callchain; 7551 7552 callchain = get_perf_callchain(regs, 0, kernel, user, 7553 max_stack, crosstask, true); 7554 return callchain ?: &__empty_callchain; 7555 } 7556 7557 void perf_prepare_sample(struct perf_event_header *header, 7558 struct perf_sample_data *data, 7559 struct perf_event *event, 7560 struct pt_regs *regs) 7561 { 7562 u64 sample_type = event->attr.sample_type; 7563 u64 filtered_sample_type; 7564 7565 header->type = PERF_RECORD_SAMPLE; 7566 header->size = sizeof(*header) + event->header_size; 7567 7568 header->misc = 0; 7569 header->misc |= perf_misc_flags(regs); 7570 7571 /* 7572 * Clear the sample flags that have already been done by the 7573 * PMU driver. 7574 */ 7575 filtered_sample_type = sample_type & ~data->sample_flags; 7576 __perf_event_header__init_id(header, data, event, filtered_sample_type); 7577 7578 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7579 data->ip = perf_instruction_pointer(regs); 7580 7581 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7582 int size = 1; 7583 7584 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7585 data->callchain = perf_callchain(event, regs); 7586 7587 size += data->callchain->nr; 7588 7589 header->size += size * sizeof(u64); 7590 } 7591 7592 if (sample_type & PERF_SAMPLE_RAW) { 7593 struct perf_raw_record *raw = data->raw; 7594 int size; 7595 7596 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) { 7597 struct perf_raw_frag *frag = &raw->frag; 7598 u32 sum = 0; 7599 7600 do { 7601 sum += frag->size; 7602 if (perf_raw_frag_last(frag)) 7603 break; 7604 frag = frag->next; 7605 } while (1); 7606 7607 size = round_up(sum + sizeof(u32), sizeof(u64)); 7608 raw->size = size - sizeof(u32); 7609 frag->pad = raw->size - sum; 7610 } else { 7611 size = sizeof(u64); 7612 data->raw = NULL; 7613 } 7614 7615 header->size += size; 7616 } 7617 7618 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7619 int size = sizeof(u64); /* nr */ 7620 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { 7621 if (branch_sample_hw_index(event)) 7622 size += sizeof(u64); 7623 7624 size += data->br_stack->nr 7625 * sizeof(struct perf_branch_entry); 7626 } 7627 header->size += size; 7628 } 7629 7630 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7631 perf_sample_regs_user(&data->regs_user, regs); 7632 7633 if (sample_type & PERF_SAMPLE_REGS_USER) { 7634 /* regs dump ABI info */ 7635 int size = sizeof(u64); 7636 7637 if (data->regs_user.regs) { 7638 u64 mask = event->attr.sample_regs_user; 7639 size += hweight64(mask) * sizeof(u64); 7640 } 7641 7642 header->size += size; 7643 } 7644 7645 if (sample_type & PERF_SAMPLE_STACK_USER) { 7646 /* 7647 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7648 * processed as the last one or have additional check added 7649 * in case new sample type is added, because we could eat 7650 * up the rest of the sample size. 7651 */ 7652 u16 stack_size = event->attr.sample_stack_user; 7653 u16 size = sizeof(u64); 7654 7655 stack_size = perf_sample_ustack_size(stack_size, header->size, 7656 data->regs_user.regs); 7657 7658 /* 7659 * If there is something to dump, add space for the dump 7660 * itself and for the field that tells the dynamic size, 7661 * which is how many have been actually dumped. 7662 */ 7663 if (stack_size) 7664 size += sizeof(u64) + stack_size; 7665 7666 data->stack_user_size = stack_size; 7667 header->size += size; 7668 } 7669 7670 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7671 data->weight.full = 0; 7672 7673 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) 7674 data->data_src.val = PERF_MEM_NA; 7675 7676 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) 7677 data->txn = 0; 7678 7679 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) { 7680 if (filtered_sample_type & PERF_SAMPLE_ADDR) 7681 data->addr = 0; 7682 } 7683 7684 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7685 /* regs dump ABI info */ 7686 int size = sizeof(u64); 7687 7688 perf_sample_regs_intr(&data->regs_intr, regs); 7689 7690 if (data->regs_intr.regs) { 7691 u64 mask = event->attr.sample_regs_intr; 7692 7693 size += hweight64(mask) * sizeof(u64); 7694 } 7695 7696 header->size += size; 7697 } 7698 7699 if (sample_type & PERF_SAMPLE_PHYS_ADDR && 7700 filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) 7701 data->phys_addr = perf_virt_to_phys(data->addr); 7702 7703 #ifdef CONFIG_CGROUP_PERF 7704 if (sample_type & PERF_SAMPLE_CGROUP) { 7705 struct cgroup *cgrp; 7706 7707 /* protected by RCU */ 7708 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7709 data->cgroup = cgroup_id(cgrp); 7710 } 7711 #endif 7712 7713 /* 7714 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7715 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7716 * but the value will not dump to the userspace. 7717 */ 7718 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7719 data->data_page_size = perf_get_page_size(data->addr); 7720 7721 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7722 data->code_page_size = perf_get_page_size(data->ip); 7723 7724 if (sample_type & PERF_SAMPLE_AUX) { 7725 u64 size; 7726 7727 header->size += sizeof(u64); /* size */ 7728 7729 /* 7730 * Given the 16bit nature of header::size, an AUX sample can 7731 * easily overflow it, what with all the preceding sample bits. 7732 * Make sure this doesn't happen by using up to U16_MAX bytes 7733 * per sample in total (rounded down to 8 byte boundary). 7734 */ 7735 size = min_t(size_t, U16_MAX - header->size, 7736 event->attr.aux_sample_size); 7737 size = rounddown(size, 8); 7738 size = perf_prepare_sample_aux(event, data, size); 7739 7740 WARN_ON_ONCE(size + header->size > U16_MAX); 7741 header->size += size; 7742 } 7743 /* 7744 * If you're adding more sample types here, you likely need to do 7745 * something about the overflowing header::size, like repurpose the 7746 * lowest 3 bits of size, which should be always zero at the moment. 7747 * This raises a more important question, do we really need 512k sized 7748 * samples and why, so good argumentation is in order for whatever you 7749 * do here next. 7750 */ 7751 WARN_ON_ONCE(header->size & 7); 7752 } 7753 7754 static __always_inline int 7755 __perf_event_output(struct perf_event *event, 7756 struct perf_sample_data *data, 7757 struct pt_regs *regs, 7758 int (*output_begin)(struct perf_output_handle *, 7759 struct perf_sample_data *, 7760 struct perf_event *, 7761 unsigned int)) 7762 { 7763 struct perf_output_handle handle; 7764 struct perf_event_header header; 7765 int err; 7766 7767 /* protect the callchain buffers */ 7768 rcu_read_lock(); 7769 7770 perf_prepare_sample(&header, data, event, regs); 7771 7772 err = output_begin(&handle, data, event, header.size); 7773 if (err) 7774 goto exit; 7775 7776 perf_output_sample(&handle, &header, data, event); 7777 7778 perf_output_end(&handle); 7779 7780 exit: 7781 rcu_read_unlock(); 7782 return err; 7783 } 7784 7785 void 7786 perf_event_output_forward(struct perf_event *event, 7787 struct perf_sample_data *data, 7788 struct pt_regs *regs) 7789 { 7790 __perf_event_output(event, data, regs, perf_output_begin_forward); 7791 } 7792 7793 void 7794 perf_event_output_backward(struct perf_event *event, 7795 struct perf_sample_data *data, 7796 struct pt_regs *regs) 7797 { 7798 __perf_event_output(event, data, regs, perf_output_begin_backward); 7799 } 7800 7801 int 7802 perf_event_output(struct perf_event *event, 7803 struct perf_sample_data *data, 7804 struct pt_regs *regs) 7805 { 7806 return __perf_event_output(event, data, regs, perf_output_begin); 7807 } 7808 7809 /* 7810 * read event_id 7811 */ 7812 7813 struct perf_read_event { 7814 struct perf_event_header header; 7815 7816 u32 pid; 7817 u32 tid; 7818 }; 7819 7820 static void 7821 perf_event_read_event(struct perf_event *event, 7822 struct task_struct *task) 7823 { 7824 struct perf_output_handle handle; 7825 struct perf_sample_data sample; 7826 struct perf_read_event read_event = { 7827 .header = { 7828 .type = PERF_RECORD_READ, 7829 .misc = 0, 7830 .size = sizeof(read_event) + event->read_size, 7831 }, 7832 .pid = perf_event_pid(event, task), 7833 .tid = perf_event_tid(event, task), 7834 }; 7835 int ret; 7836 7837 perf_event_header__init_id(&read_event.header, &sample, event); 7838 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7839 if (ret) 7840 return; 7841 7842 perf_output_put(&handle, read_event); 7843 perf_output_read(&handle, event); 7844 perf_event__output_id_sample(event, &handle, &sample); 7845 7846 perf_output_end(&handle); 7847 } 7848 7849 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7850 7851 static void 7852 perf_iterate_ctx(struct perf_event_context *ctx, 7853 perf_iterate_f output, 7854 void *data, bool all) 7855 { 7856 struct perf_event *event; 7857 7858 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7859 if (!all) { 7860 if (event->state < PERF_EVENT_STATE_INACTIVE) 7861 continue; 7862 if (!event_filter_match(event)) 7863 continue; 7864 } 7865 7866 output(event, data); 7867 } 7868 } 7869 7870 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7871 { 7872 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7873 struct perf_event *event; 7874 7875 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7876 /* 7877 * Skip events that are not fully formed yet; ensure that 7878 * if we observe event->ctx, both event and ctx will be 7879 * complete enough. See perf_install_in_context(). 7880 */ 7881 if (!smp_load_acquire(&event->ctx)) 7882 continue; 7883 7884 if (event->state < PERF_EVENT_STATE_INACTIVE) 7885 continue; 7886 if (!event_filter_match(event)) 7887 continue; 7888 output(event, data); 7889 } 7890 } 7891 7892 /* 7893 * Iterate all events that need to receive side-band events. 7894 * 7895 * For new callers; ensure that account_pmu_sb_event() includes 7896 * your event, otherwise it might not get delivered. 7897 */ 7898 static void 7899 perf_iterate_sb(perf_iterate_f output, void *data, 7900 struct perf_event_context *task_ctx) 7901 { 7902 struct perf_event_context *ctx; 7903 7904 rcu_read_lock(); 7905 preempt_disable(); 7906 7907 /* 7908 * If we have task_ctx != NULL we only notify the task context itself. 7909 * The task_ctx is set only for EXIT events before releasing task 7910 * context. 7911 */ 7912 if (task_ctx) { 7913 perf_iterate_ctx(task_ctx, output, data, false); 7914 goto done; 7915 } 7916 7917 perf_iterate_sb_cpu(output, data); 7918 7919 ctx = rcu_dereference(current->perf_event_ctxp); 7920 if (ctx) 7921 perf_iterate_ctx(ctx, output, data, false); 7922 done: 7923 preempt_enable(); 7924 rcu_read_unlock(); 7925 } 7926 7927 /* 7928 * Clear all file-based filters at exec, they'll have to be 7929 * re-instated when/if these objects are mmapped again. 7930 */ 7931 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7932 { 7933 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7934 struct perf_addr_filter *filter; 7935 unsigned int restart = 0, count = 0; 7936 unsigned long flags; 7937 7938 if (!has_addr_filter(event)) 7939 return; 7940 7941 raw_spin_lock_irqsave(&ifh->lock, flags); 7942 list_for_each_entry(filter, &ifh->list, entry) { 7943 if (filter->path.dentry) { 7944 event->addr_filter_ranges[count].start = 0; 7945 event->addr_filter_ranges[count].size = 0; 7946 restart++; 7947 } 7948 7949 count++; 7950 } 7951 7952 if (restart) 7953 event->addr_filters_gen++; 7954 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7955 7956 if (restart) 7957 perf_event_stop(event, 1); 7958 } 7959 7960 void perf_event_exec(void) 7961 { 7962 struct perf_event_context *ctx; 7963 7964 ctx = perf_pin_task_context(current); 7965 if (!ctx) 7966 return; 7967 7968 perf_event_enable_on_exec(ctx); 7969 perf_event_remove_on_exec(ctx); 7970 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 7971 7972 perf_unpin_context(ctx); 7973 put_ctx(ctx); 7974 } 7975 7976 struct remote_output { 7977 struct perf_buffer *rb; 7978 int err; 7979 }; 7980 7981 static void __perf_event_output_stop(struct perf_event *event, void *data) 7982 { 7983 struct perf_event *parent = event->parent; 7984 struct remote_output *ro = data; 7985 struct perf_buffer *rb = ro->rb; 7986 struct stop_event_data sd = { 7987 .event = event, 7988 }; 7989 7990 if (!has_aux(event)) 7991 return; 7992 7993 if (!parent) 7994 parent = event; 7995 7996 /* 7997 * In case of inheritance, it will be the parent that links to the 7998 * ring-buffer, but it will be the child that's actually using it. 7999 * 8000 * We are using event::rb to determine if the event should be stopped, 8001 * however this may race with ring_buffer_attach() (through set_output), 8002 * which will make us skip the event that actually needs to be stopped. 8003 * So ring_buffer_attach() has to stop an aux event before re-assigning 8004 * its rb pointer. 8005 */ 8006 if (rcu_dereference(parent->rb) == rb) 8007 ro->err = __perf_event_stop(&sd); 8008 } 8009 8010 static int __perf_pmu_output_stop(void *info) 8011 { 8012 struct perf_event *event = info; 8013 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8014 struct remote_output ro = { 8015 .rb = event->rb, 8016 }; 8017 8018 rcu_read_lock(); 8019 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8020 if (cpuctx->task_ctx) 8021 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8022 &ro, false); 8023 rcu_read_unlock(); 8024 8025 return ro.err; 8026 } 8027 8028 static void perf_pmu_output_stop(struct perf_event *event) 8029 { 8030 struct perf_event *iter; 8031 int err, cpu; 8032 8033 restart: 8034 rcu_read_lock(); 8035 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8036 /* 8037 * For per-CPU events, we need to make sure that neither they 8038 * nor their children are running; for cpu==-1 events it's 8039 * sufficient to stop the event itself if it's active, since 8040 * it can't have children. 8041 */ 8042 cpu = iter->cpu; 8043 if (cpu == -1) 8044 cpu = READ_ONCE(iter->oncpu); 8045 8046 if (cpu == -1) 8047 continue; 8048 8049 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8050 if (err == -EAGAIN) { 8051 rcu_read_unlock(); 8052 goto restart; 8053 } 8054 } 8055 rcu_read_unlock(); 8056 } 8057 8058 /* 8059 * task tracking -- fork/exit 8060 * 8061 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8062 */ 8063 8064 struct perf_task_event { 8065 struct task_struct *task; 8066 struct perf_event_context *task_ctx; 8067 8068 struct { 8069 struct perf_event_header header; 8070 8071 u32 pid; 8072 u32 ppid; 8073 u32 tid; 8074 u32 ptid; 8075 u64 time; 8076 } event_id; 8077 }; 8078 8079 static int perf_event_task_match(struct perf_event *event) 8080 { 8081 return event->attr.comm || event->attr.mmap || 8082 event->attr.mmap2 || event->attr.mmap_data || 8083 event->attr.task; 8084 } 8085 8086 static void perf_event_task_output(struct perf_event *event, 8087 void *data) 8088 { 8089 struct perf_task_event *task_event = data; 8090 struct perf_output_handle handle; 8091 struct perf_sample_data sample; 8092 struct task_struct *task = task_event->task; 8093 int ret, size = task_event->event_id.header.size; 8094 8095 if (!perf_event_task_match(event)) 8096 return; 8097 8098 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8099 8100 ret = perf_output_begin(&handle, &sample, event, 8101 task_event->event_id.header.size); 8102 if (ret) 8103 goto out; 8104 8105 task_event->event_id.pid = perf_event_pid(event, task); 8106 task_event->event_id.tid = perf_event_tid(event, task); 8107 8108 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8109 task_event->event_id.ppid = perf_event_pid(event, 8110 task->real_parent); 8111 task_event->event_id.ptid = perf_event_pid(event, 8112 task->real_parent); 8113 } else { /* PERF_RECORD_FORK */ 8114 task_event->event_id.ppid = perf_event_pid(event, current); 8115 task_event->event_id.ptid = perf_event_tid(event, current); 8116 } 8117 8118 task_event->event_id.time = perf_event_clock(event); 8119 8120 perf_output_put(&handle, task_event->event_id); 8121 8122 perf_event__output_id_sample(event, &handle, &sample); 8123 8124 perf_output_end(&handle); 8125 out: 8126 task_event->event_id.header.size = size; 8127 } 8128 8129 static void perf_event_task(struct task_struct *task, 8130 struct perf_event_context *task_ctx, 8131 int new) 8132 { 8133 struct perf_task_event task_event; 8134 8135 if (!atomic_read(&nr_comm_events) && 8136 !atomic_read(&nr_mmap_events) && 8137 !atomic_read(&nr_task_events)) 8138 return; 8139 8140 task_event = (struct perf_task_event){ 8141 .task = task, 8142 .task_ctx = task_ctx, 8143 .event_id = { 8144 .header = { 8145 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8146 .misc = 0, 8147 .size = sizeof(task_event.event_id), 8148 }, 8149 /* .pid */ 8150 /* .ppid */ 8151 /* .tid */ 8152 /* .ptid */ 8153 /* .time */ 8154 }, 8155 }; 8156 8157 perf_iterate_sb(perf_event_task_output, 8158 &task_event, 8159 task_ctx); 8160 } 8161 8162 void perf_event_fork(struct task_struct *task) 8163 { 8164 perf_event_task(task, NULL, 1); 8165 perf_event_namespaces(task); 8166 } 8167 8168 /* 8169 * comm tracking 8170 */ 8171 8172 struct perf_comm_event { 8173 struct task_struct *task; 8174 char *comm; 8175 int comm_size; 8176 8177 struct { 8178 struct perf_event_header header; 8179 8180 u32 pid; 8181 u32 tid; 8182 } event_id; 8183 }; 8184 8185 static int perf_event_comm_match(struct perf_event *event) 8186 { 8187 return event->attr.comm; 8188 } 8189 8190 static void perf_event_comm_output(struct perf_event *event, 8191 void *data) 8192 { 8193 struct perf_comm_event *comm_event = data; 8194 struct perf_output_handle handle; 8195 struct perf_sample_data sample; 8196 int size = comm_event->event_id.header.size; 8197 int ret; 8198 8199 if (!perf_event_comm_match(event)) 8200 return; 8201 8202 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8203 ret = perf_output_begin(&handle, &sample, event, 8204 comm_event->event_id.header.size); 8205 8206 if (ret) 8207 goto out; 8208 8209 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8210 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8211 8212 perf_output_put(&handle, comm_event->event_id); 8213 __output_copy(&handle, comm_event->comm, 8214 comm_event->comm_size); 8215 8216 perf_event__output_id_sample(event, &handle, &sample); 8217 8218 perf_output_end(&handle); 8219 out: 8220 comm_event->event_id.header.size = size; 8221 } 8222 8223 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8224 { 8225 char comm[TASK_COMM_LEN]; 8226 unsigned int size; 8227 8228 memset(comm, 0, sizeof(comm)); 8229 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 8230 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8231 8232 comm_event->comm = comm; 8233 comm_event->comm_size = size; 8234 8235 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8236 8237 perf_iterate_sb(perf_event_comm_output, 8238 comm_event, 8239 NULL); 8240 } 8241 8242 void perf_event_comm(struct task_struct *task, bool exec) 8243 { 8244 struct perf_comm_event comm_event; 8245 8246 if (!atomic_read(&nr_comm_events)) 8247 return; 8248 8249 comm_event = (struct perf_comm_event){ 8250 .task = task, 8251 /* .comm */ 8252 /* .comm_size */ 8253 .event_id = { 8254 .header = { 8255 .type = PERF_RECORD_COMM, 8256 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8257 /* .size */ 8258 }, 8259 /* .pid */ 8260 /* .tid */ 8261 }, 8262 }; 8263 8264 perf_event_comm_event(&comm_event); 8265 } 8266 8267 /* 8268 * namespaces tracking 8269 */ 8270 8271 struct perf_namespaces_event { 8272 struct task_struct *task; 8273 8274 struct { 8275 struct perf_event_header header; 8276 8277 u32 pid; 8278 u32 tid; 8279 u64 nr_namespaces; 8280 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8281 } event_id; 8282 }; 8283 8284 static int perf_event_namespaces_match(struct perf_event *event) 8285 { 8286 return event->attr.namespaces; 8287 } 8288 8289 static void perf_event_namespaces_output(struct perf_event *event, 8290 void *data) 8291 { 8292 struct perf_namespaces_event *namespaces_event = data; 8293 struct perf_output_handle handle; 8294 struct perf_sample_data sample; 8295 u16 header_size = namespaces_event->event_id.header.size; 8296 int ret; 8297 8298 if (!perf_event_namespaces_match(event)) 8299 return; 8300 8301 perf_event_header__init_id(&namespaces_event->event_id.header, 8302 &sample, event); 8303 ret = perf_output_begin(&handle, &sample, event, 8304 namespaces_event->event_id.header.size); 8305 if (ret) 8306 goto out; 8307 8308 namespaces_event->event_id.pid = perf_event_pid(event, 8309 namespaces_event->task); 8310 namespaces_event->event_id.tid = perf_event_tid(event, 8311 namespaces_event->task); 8312 8313 perf_output_put(&handle, namespaces_event->event_id); 8314 8315 perf_event__output_id_sample(event, &handle, &sample); 8316 8317 perf_output_end(&handle); 8318 out: 8319 namespaces_event->event_id.header.size = header_size; 8320 } 8321 8322 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8323 struct task_struct *task, 8324 const struct proc_ns_operations *ns_ops) 8325 { 8326 struct path ns_path; 8327 struct inode *ns_inode; 8328 int error; 8329 8330 error = ns_get_path(&ns_path, task, ns_ops); 8331 if (!error) { 8332 ns_inode = ns_path.dentry->d_inode; 8333 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8334 ns_link_info->ino = ns_inode->i_ino; 8335 path_put(&ns_path); 8336 } 8337 } 8338 8339 void perf_event_namespaces(struct task_struct *task) 8340 { 8341 struct perf_namespaces_event namespaces_event; 8342 struct perf_ns_link_info *ns_link_info; 8343 8344 if (!atomic_read(&nr_namespaces_events)) 8345 return; 8346 8347 namespaces_event = (struct perf_namespaces_event){ 8348 .task = task, 8349 .event_id = { 8350 .header = { 8351 .type = PERF_RECORD_NAMESPACES, 8352 .misc = 0, 8353 .size = sizeof(namespaces_event.event_id), 8354 }, 8355 /* .pid */ 8356 /* .tid */ 8357 .nr_namespaces = NR_NAMESPACES, 8358 /* .link_info[NR_NAMESPACES] */ 8359 }, 8360 }; 8361 8362 ns_link_info = namespaces_event.event_id.link_info; 8363 8364 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8365 task, &mntns_operations); 8366 8367 #ifdef CONFIG_USER_NS 8368 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8369 task, &userns_operations); 8370 #endif 8371 #ifdef CONFIG_NET_NS 8372 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8373 task, &netns_operations); 8374 #endif 8375 #ifdef CONFIG_UTS_NS 8376 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8377 task, &utsns_operations); 8378 #endif 8379 #ifdef CONFIG_IPC_NS 8380 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8381 task, &ipcns_operations); 8382 #endif 8383 #ifdef CONFIG_PID_NS 8384 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8385 task, &pidns_operations); 8386 #endif 8387 #ifdef CONFIG_CGROUPS 8388 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8389 task, &cgroupns_operations); 8390 #endif 8391 8392 perf_iterate_sb(perf_event_namespaces_output, 8393 &namespaces_event, 8394 NULL); 8395 } 8396 8397 /* 8398 * cgroup tracking 8399 */ 8400 #ifdef CONFIG_CGROUP_PERF 8401 8402 struct perf_cgroup_event { 8403 char *path; 8404 int path_size; 8405 struct { 8406 struct perf_event_header header; 8407 u64 id; 8408 char path[]; 8409 } event_id; 8410 }; 8411 8412 static int perf_event_cgroup_match(struct perf_event *event) 8413 { 8414 return event->attr.cgroup; 8415 } 8416 8417 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8418 { 8419 struct perf_cgroup_event *cgroup_event = data; 8420 struct perf_output_handle handle; 8421 struct perf_sample_data sample; 8422 u16 header_size = cgroup_event->event_id.header.size; 8423 int ret; 8424 8425 if (!perf_event_cgroup_match(event)) 8426 return; 8427 8428 perf_event_header__init_id(&cgroup_event->event_id.header, 8429 &sample, event); 8430 ret = perf_output_begin(&handle, &sample, event, 8431 cgroup_event->event_id.header.size); 8432 if (ret) 8433 goto out; 8434 8435 perf_output_put(&handle, cgroup_event->event_id); 8436 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8437 8438 perf_event__output_id_sample(event, &handle, &sample); 8439 8440 perf_output_end(&handle); 8441 out: 8442 cgroup_event->event_id.header.size = header_size; 8443 } 8444 8445 static void perf_event_cgroup(struct cgroup *cgrp) 8446 { 8447 struct perf_cgroup_event cgroup_event; 8448 char path_enomem[16] = "//enomem"; 8449 char *pathname; 8450 size_t size; 8451 8452 if (!atomic_read(&nr_cgroup_events)) 8453 return; 8454 8455 cgroup_event = (struct perf_cgroup_event){ 8456 .event_id = { 8457 .header = { 8458 .type = PERF_RECORD_CGROUP, 8459 .misc = 0, 8460 .size = sizeof(cgroup_event.event_id), 8461 }, 8462 .id = cgroup_id(cgrp), 8463 }, 8464 }; 8465 8466 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8467 if (pathname == NULL) { 8468 cgroup_event.path = path_enomem; 8469 } else { 8470 /* just to be sure to have enough space for alignment */ 8471 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8472 cgroup_event.path = pathname; 8473 } 8474 8475 /* 8476 * Since our buffer works in 8 byte units we need to align our string 8477 * size to a multiple of 8. However, we must guarantee the tail end is 8478 * zero'd out to avoid leaking random bits to userspace. 8479 */ 8480 size = strlen(cgroup_event.path) + 1; 8481 while (!IS_ALIGNED(size, sizeof(u64))) 8482 cgroup_event.path[size++] = '\0'; 8483 8484 cgroup_event.event_id.header.size += size; 8485 cgroup_event.path_size = size; 8486 8487 perf_iterate_sb(perf_event_cgroup_output, 8488 &cgroup_event, 8489 NULL); 8490 8491 kfree(pathname); 8492 } 8493 8494 #endif 8495 8496 /* 8497 * mmap tracking 8498 */ 8499 8500 struct perf_mmap_event { 8501 struct vm_area_struct *vma; 8502 8503 const char *file_name; 8504 int file_size; 8505 int maj, min; 8506 u64 ino; 8507 u64 ino_generation; 8508 u32 prot, flags; 8509 u8 build_id[BUILD_ID_SIZE_MAX]; 8510 u32 build_id_size; 8511 8512 struct { 8513 struct perf_event_header header; 8514 8515 u32 pid; 8516 u32 tid; 8517 u64 start; 8518 u64 len; 8519 u64 pgoff; 8520 } event_id; 8521 }; 8522 8523 static int perf_event_mmap_match(struct perf_event *event, 8524 void *data) 8525 { 8526 struct perf_mmap_event *mmap_event = data; 8527 struct vm_area_struct *vma = mmap_event->vma; 8528 int executable = vma->vm_flags & VM_EXEC; 8529 8530 return (!executable && event->attr.mmap_data) || 8531 (executable && (event->attr.mmap || event->attr.mmap2)); 8532 } 8533 8534 static void perf_event_mmap_output(struct perf_event *event, 8535 void *data) 8536 { 8537 struct perf_mmap_event *mmap_event = data; 8538 struct perf_output_handle handle; 8539 struct perf_sample_data sample; 8540 int size = mmap_event->event_id.header.size; 8541 u32 type = mmap_event->event_id.header.type; 8542 bool use_build_id; 8543 int ret; 8544 8545 if (!perf_event_mmap_match(event, data)) 8546 return; 8547 8548 if (event->attr.mmap2) { 8549 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8550 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8551 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8552 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8553 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8554 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8555 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8556 } 8557 8558 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8559 ret = perf_output_begin(&handle, &sample, event, 8560 mmap_event->event_id.header.size); 8561 if (ret) 8562 goto out; 8563 8564 mmap_event->event_id.pid = perf_event_pid(event, current); 8565 mmap_event->event_id.tid = perf_event_tid(event, current); 8566 8567 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8568 8569 if (event->attr.mmap2 && use_build_id) 8570 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8571 8572 perf_output_put(&handle, mmap_event->event_id); 8573 8574 if (event->attr.mmap2) { 8575 if (use_build_id) { 8576 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8577 8578 __output_copy(&handle, size, 4); 8579 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8580 } else { 8581 perf_output_put(&handle, mmap_event->maj); 8582 perf_output_put(&handle, mmap_event->min); 8583 perf_output_put(&handle, mmap_event->ino); 8584 perf_output_put(&handle, mmap_event->ino_generation); 8585 } 8586 perf_output_put(&handle, mmap_event->prot); 8587 perf_output_put(&handle, mmap_event->flags); 8588 } 8589 8590 __output_copy(&handle, mmap_event->file_name, 8591 mmap_event->file_size); 8592 8593 perf_event__output_id_sample(event, &handle, &sample); 8594 8595 perf_output_end(&handle); 8596 out: 8597 mmap_event->event_id.header.size = size; 8598 mmap_event->event_id.header.type = type; 8599 } 8600 8601 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8602 { 8603 struct vm_area_struct *vma = mmap_event->vma; 8604 struct file *file = vma->vm_file; 8605 int maj = 0, min = 0; 8606 u64 ino = 0, gen = 0; 8607 u32 prot = 0, flags = 0; 8608 unsigned int size; 8609 char tmp[16]; 8610 char *buf = NULL; 8611 char *name; 8612 8613 if (vma->vm_flags & VM_READ) 8614 prot |= PROT_READ; 8615 if (vma->vm_flags & VM_WRITE) 8616 prot |= PROT_WRITE; 8617 if (vma->vm_flags & VM_EXEC) 8618 prot |= PROT_EXEC; 8619 8620 if (vma->vm_flags & VM_MAYSHARE) 8621 flags = MAP_SHARED; 8622 else 8623 flags = MAP_PRIVATE; 8624 8625 if (vma->vm_flags & VM_LOCKED) 8626 flags |= MAP_LOCKED; 8627 if (is_vm_hugetlb_page(vma)) 8628 flags |= MAP_HUGETLB; 8629 8630 if (file) { 8631 struct inode *inode; 8632 dev_t dev; 8633 8634 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8635 if (!buf) { 8636 name = "//enomem"; 8637 goto cpy_name; 8638 } 8639 /* 8640 * d_path() works from the end of the rb backwards, so we 8641 * need to add enough zero bytes after the string to handle 8642 * the 64bit alignment we do later. 8643 */ 8644 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8645 if (IS_ERR(name)) { 8646 name = "//toolong"; 8647 goto cpy_name; 8648 } 8649 inode = file_inode(vma->vm_file); 8650 dev = inode->i_sb->s_dev; 8651 ino = inode->i_ino; 8652 gen = inode->i_generation; 8653 maj = MAJOR(dev); 8654 min = MINOR(dev); 8655 8656 goto got_name; 8657 } else { 8658 if (vma->vm_ops && vma->vm_ops->name) { 8659 name = (char *) vma->vm_ops->name(vma); 8660 if (name) 8661 goto cpy_name; 8662 } 8663 8664 name = (char *)arch_vma_name(vma); 8665 if (name) 8666 goto cpy_name; 8667 8668 if (vma->vm_start <= vma->vm_mm->start_brk && 8669 vma->vm_end >= vma->vm_mm->brk) { 8670 name = "[heap]"; 8671 goto cpy_name; 8672 } 8673 if (vma->vm_start <= vma->vm_mm->start_stack && 8674 vma->vm_end >= vma->vm_mm->start_stack) { 8675 name = "[stack]"; 8676 goto cpy_name; 8677 } 8678 8679 name = "//anon"; 8680 goto cpy_name; 8681 } 8682 8683 cpy_name: 8684 strlcpy(tmp, name, sizeof(tmp)); 8685 name = tmp; 8686 got_name: 8687 /* 8688 * Since our buffer works in 8 byte units we need to align our string 8689 * size to a multiple of 8. However, we must guarantee the tail end is 8690 * zero'd out to avoid leaking random bits to userspace. 8691 */ 8692 size = strlen(name)+1; 8693 while (!IS_ALIGNED(size, sizeof(u64))) 8694 name[size++] = '\0'; 8695 8696 mmap_event->file_name = name; 8697 mmap_event->file_size = size; 8698 mmap_event->maj = maj; 8699 mmap_event->min = min; 8700 mmap_event->ino = ino; 8701 mmap_event->ino_generation = gen; 8702 mmap_event->prot = prot; 8703 mmap_event->flags = flags; 8704 8705 if (!(vma->vm_flags & VM_EXEC)) 8706 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8707 8708 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8709 8710 if (atomic_read(&nr_build_id_events)) 8711 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8712 8713 perf_iterate_sb(perf_event_mmap_output, 8714 mmap_event, 8715 NULL); 8716 8717 kfree(buf); 8718 } 8719 8720 /* 8721 * Check whether inode and address range match filter criteria. 8722 */ 8723 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8724 struct file *file, unsigned long offset, 8725 unsigned long size) 8726 { 8727 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8728 if (!filter->path.dentry) 8729 return false; 8730 8731 if (d_inode(filter->path.dentry) != file_inode(file)) 8732 return false; 8733 8734 if (filter->offset > offset + size) 8735 return false; 8736 8737 if (filter->offset + filter->size < offset) 8738 return false; 8739 8740 return true; 8741 } 8742 8743 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8744 struct vm_area_struct *vma, 8745 struct perf_addr_filter_range *fr) 8746 { 8747 unsigned long vma_size = vma->vm_end - vma->vm_start; 8748 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8749 struct file *file = vma->vm_file; 8750 8751 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8752 return false; 8753 8754 if (filter->offset < off) { 8755 fr->start = vma->vm_start; 8756 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8757 } else { 8758 fr->start = vma->vm_start + filter->offset - off; 8759 fr->size = min(vma->vm_end - fr->start, filter->size); 8760 } 8761 8762 return true; 8763 } 8764 8765 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8766 { 8767 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8768 struct vm_area_struct *vma = data; 8769 struct perf_addr_filter *filter; 8770 unsigned int restart = 0, count = 0; 8771 unsigned long flags; 8772 8773 if (!has_addr_filter(event)) 8774 return; 8775 8776 if (!vma->vm_file) 8777 return; 8778 8779 raw_spin_lock_irqsave(&ifh->lock, flags); 8780 list_for_each_entry(filter, &ifh->list, entry) { 8781 if (perf_addr_filter_vma_adjust(filter, vma, 8782 &event->addr_filter_ranges[count])) 8783 restart++; 8784 8785 count++; 8786 } 8787 8788 if (restart) 8789 event->addr_filters_gen++; 8790 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8791 8792 if (restart) 8793 perf_event_stop(event, 1); 8794 } 8795 8796 /* 8797 * Adjust all task's events' filters to the new vma 8798 */ 8799 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8800 { 8801 struct perf_event_context *ctx; 8802 8803 /* 8804 * Data tracing isn't supported yet and as such there is no need 8805 * to keep track of anything that isn't related to executable code: 8806 */ 8807 if (!(vma->vm_flags & VM_EXEC)) 8808 return; 8809 8810 rcu_read_lock(); 8811 ctx = rcu_dereference(current->perf_event_ctxp); 8812 if (ctx) 8813 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8814 rcu_read_unlock(); 8815 } 8816 8817 void perf_event_mmap(struct vm_area_struct *vma) 8818 { 8819 struct perf_mmap_event mmap_event; 8820 8821 if (!atomic_read(&nr_mmap_events)) 8822 return; 8823 8824 mmap_event = (struct perf_mmap_event){ 8825 .vma = vma, 8826 /* .file_name */ 8827 /* .file_size */ 8828 .event_id = { 8829 .header = { 8830 .type = PERF_RECORD_MMAP, 8831 .misc = PERF_RECORD_MISC_USER, 8832 /* .size */ 8833 }, 8834 /* .pid */ 8835 /* .tid */ 8836 .start = vma->vm_start, 8837 .len = vma->vm_end - vma->vm_start, 8838 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8839 }, 8840 /* .maj (attr_mmap2 only) */ 8841 /* .min (attr_mmap2 only) */ 8842 /* .ino (attr_mmap2 only) */ 8843 /* .ino_generation (attr_mmap2 only) */ 8844 /* .prot (attr_mmap2 only) */ 8845 /* .flags (attr_mmap2 only) */ 8846 }; 8847 8848 perf_addr_filters_adjust(vma); 8849 perf_event_mmap_event(&mmap_event); 8850 } 8851 8852 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8853 unsigned long size, u64 flags) 8854 { 8855 struct perf_output_handle handle; 8856 struct perf_sample_data sample; 8857 struct perf_aux_event { 8858 struct perf_event_header header; 8859 u64 offset; 8860 u64 size; 8861 u64 flags; 8862 } rec = { 8863 .header = { 8864 .type = PERF_RECORD_AUX, 8865 .misc = 0, 8866 .size = sizeof(rec), 8867 }, 8868 .offset = head, 8869 .size = size, 8870 .flags = flags, 8871 }; 8872 int ret; 8873 8874 perf_event_header__init_id(&rec.header, &sample, event); 8875 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8876 8877 if (ret) 8878 return; 8879 8880 perf_output_put(&handle, rec); 8881 perf_event__output_id_sample(event, &handle, &sample); 8882 8883 perf_output_end(&handle); 8884 } 8885 8886 /* 8887 * Lost/dropped samples logging 8888 */ 8889 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8890 { 8891 struct perf_output_handle handle; 8892 struct perf_sample_data sample; 8893 int ret; 8894 8895 struct { 8896 struct perf_event_header header; 8897 u64 lost; 8898 } lost_samples_event = { 8899 .header = { 8900 .type = PERF_RECORD_LOST_SAMPLES, 8901 .misc = 0, 8902 .size = sizeof(lost_samples_event), 8903 }, 8904 .lost = lost, 8905 }; 8906 8907 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8908 8909 ret = perf_output_begin(&handle, &sample, event, 8910 lost_samples_event.header.size); 8911 if (ret) 8912 return; 8913 8914 perf_output_put(&handle, lost_samples_event); 8915 perf_event__output_id_sample(event, &handle, &sample); 8916 perf_output_end(&handle); 8917 } 8918 8919 /* 8920 * context_switch tracking 8921 */ 8922 8923 struct perf_switch_event { 8924 struct task_struct *task; 8925 struct task_struct *next_prev; 8926 8927 struct { 8928 struct perf_event_header header; 8929 u32 next_prev_pid; 8930 u32 next_prev_tid; 8931 } event_id; 8932 }; 8933 8934 static int perf_event_switch_match(struct perf_event *event) 8935 { 8936 return event->attr.context_switch; 8937 } 8938 8939 static void perf_event_switch_output(struct perf_event *event, void *data) 8940 { 8941 struct perf_switch_event *se = data; 8942 struct perf_output_handle handle; 8943 struct perf_sample_data sample; 8944 int ret; 8945 8946 if (!perf_event_switch_match(event)) 8947 return; 8948 8949 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8950 if (event->ctx->task) { 8951 se->event_id.header.type = PERF_RECORD_SWITCH; 8952 se->event_id.header.size = sizeof(se->event_id.header); 8953 } else { 8954 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8955 se->event_id.header.size = sizeof(se->event_id); 8956 se->event_id.next_prev_pid = 8957 perf_event_pid(event, se->next_prev); 8958 se->event_id.next_prev_tid = 8959 perf_event_tid(event, se->next_prev); 8960 } 8961 8962 perf_event_header__init_id(&se->event_id.header, &sample, event); 8963 8964 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8965 if (ret) 8966 return; 8967 8968 if (event->ctx->task) 8969 perf_output_put(&handle, se->event_id.header); 8970 else 8971 perf_output_put(&handle, se->event_id); 8972 8973 perf_event__output_id_sample(event, &handle, &sample); 8974 8975 perf_output_end(&handle); 8976 } 8977 8978 static void perf_event_switch(struct task_struct *task, 8979 struct task_struct *next_prev, bool sched_in) 8980 { 8981 struct perf_switch_event switch_event; 8982 8983 /* N.B. caller checks nr_switch_events != 0 */ 8984 8985 switch_event = (struct perf_switch_event){ 8986 .task = task, 8987 .next_prev = next_prev, 8988 .event_id = { 8989 .header = { 8990 /* .type */ 8991 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8992 /* .size */ 8993 }, 8994 /* .next_prev_pid */ 8995 /* .next_prev_tid */ 8996 }, 8997 }; 8998 8999 if (!sched_in && task->on_rq) { 9000 switch_event.event_id.header.misc |= 9001 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9002 } 9003 9004 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9005 } 9006 9007 /* 9008 * IRQ throttle logging 9009 */ 9010 9011 static void perf_log_throttle(struct perf_event *event, int enable) 9012 { 9013 struct perf_output_handle handle; 9014 struct perf_sample_data sample; 9015 int ret; 9016 9017 struct { 9018 struct perf_event_header header; 9019 u64 time; 9020 u64 id; 9021 u64 stream_id; 9022 } throttle_event = { 9023 .header = { 9024 .type = PERF_RECORD_THROTTLE, 9025 .misc = 0, 9026 .size = sizeof(throttle_event), 9027 }, 9028 .time = perf_event_clock(event), 9029 .id = primary_event_id(event), 9030 .stream_id = event->id, 9031 }; 9032 9033 if (enable) 9034 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9035 9036 perf_event_header__init_id(&throttle_event.header, &sample, event); 9037 9038 ret = perf_output_begin(&handle, &sample, event, 9039 throttle_event.header.size); 9040 if (ret) 9041 return; 9042 9043 perf_output_put(&handle, throttle_event); 9044 perf_event__output_id_sample(event, &handle, &sample); 9045 perf_output_end(&handle); 9046 } 9047 9048 /* 9049 * ksymbol register/unregister tracking 9050 */ 9051 9052 struct perf_ksymbol_event { 9053 const char *name; 9054 int name_len; 9055 struct { 9056 struct perf_event_header header; 9057 u64 addr; 9058 u32 len; 9059 u16 ksym_type; 9060 u16 flags; 9061 } event_id; 9062 }; 9063 9064 static int perf_event_ksymbol_match(struct perf_event *event) 9065 { 9066 return event->attr.ksymbol; 9067 } 9068 9069 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9070 { 9071 struct perf_ksymbol_event *ksymbol_event = data; 9072 struct perf_output_handle handle; 9073 struct perf_sample_data sample; 9074 int ret; 9075 9076 if (!perf_event_ksymbol_match(event)) 9077 return; 9078 9079 perf_event_header__init_id(&ksymbol_event->event_id.header, 9080 &sample, event); 9081 ret = perf_output_begin(&handle, &sample, event, 9082 ksymbol_event->event_id.header.size); 9083 if (ret) 9084 return; 9085 9086 perf_output_put(&handle, ksymbol_event->event_id); 9087 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9088 perf_event__output_id_sample(event, &handle, &sample); 9089 9090 perf_output_end(&handle); 9091 } 9092 9093 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9094 const char *sym) 9095 { 9096 struct perf_ksymbol_event ksymbol_event; 9097 char name[KSYM_NAME_LEN]; 9098 u16 flags = 0; 9099 int name_len; 9100 9101 if (!atomic_read(&nr_ksymbol_events)) 9102 return; 9103 9104 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9105 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9106 goto err; 9107 9108 strlcpy(name, sym, KSYM_NAME_LEN); 9109 name_len = strlen(name) + 1; 9110 while (!IS_ALIGNED(name_len, sizeof(u64))) 9111 name[name_len++] = '\0'; 9112 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9113 9114 if (unregister) 9115 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9116 9117 ksymbol_event = (struct perf_ksymbol_event){ 9118 .name = name, 9119 .name_len = name_len, 9120 .event_id = { 9121 .header = { 9122 .type = PERF_RECORD_KSYMBOL, 9123 .size = sizeof(ksymbol_event.event_id) + 9124 name_len, 9125 }, 9126 .addr = addr, 9127 .len = len, 9128 .ksym_type = ksym_type, 9129 .flags = flags, 9130 }, 9131 }; 9132 9133 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9134 return; 9135 err: 9136 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9137 } 9138 9139 /* 9140 * bpf program load/unload tracking 9141 */ 9142 9143 struct perf_bpf_event { 9144 struct bpf_prog *prog; 9145 struct { 9146 struct perf_event_header header; 9147 u16 type; 9148 u16 flags; 9149 u32 id; 9150 u8 tag[BPF_TAG_SIZE]; 9151 } event_id; 9152 }; 9153 9154 static int perf_event_bpf_match(struct perf_event *event) 9155 { 9156 return event->attr.bpf_event; 9157 } 9158 9159 static void perf_event_bpf_output(struct perf_event *event, void *data) 9160 { 9161 struct perf_bpf_event *bpf_event = data; 9162 struct perf_output_handle handle; 9163 struct perf_sample_data sample; 9164 int ret; 9165 9166 if (!perf_event_bpf_match(event)) 9167 return; 9168 9169 perf_event_header__init_id(&bpf_event->event_id.header, 9170 &sample, event); 9171 ret = perf_output_begin(&handle, data, event, 9172 bpf_event->event_id.header.size); 9173 if (ret) 9174 return; 9175 9176 perf_output_put(&handle, bpf_event->event_id); 9177 perf_event__output_id_sample(event, &handle, &sample); 9178 9179 perf_output_end(&handle); 9180 } 9181 9182 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9183 enum perf_bpf_event_type type) 9184 { 9185 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9186 int i; 9187 9188 if (prog->aux->func_cnt == 0) { 9189 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9190 (u64)(unsigned long)prog->bpf_func, 9191 prog->jited_len, unregister, 9192 prog->aux->ksym.name); 9193 } else { 9194 for (i = 0; i < prog->aux->func_cnt; i++) { 9195 struct bpf_prog *subprog = prog->aux->func[i]; 9196 9197 perf_event_ksymbol( 9198 PERF_RECORD_KSYMBOL_TYPE_BPF, 9199 (u64)(unsigned long)subprog->bpf_func, 9200 subprog->jited_len, unregister, 9201 subprog->aux->ksym.name); 9202 } 9203 } 9204 } 9205 9206 void perf_event_bpf_event(struct bpf_prog *prog, 9207 enum perf_bpf_event_type type, 9208 u16 flags) 9209 { 9210 struct perf_bpf_event bpf_event; 9211 9212 if (type <= PERF_BPF_EVENT_UNKNOWN || 9213 type >= PERF_BPF_EVENT_MAX) 9214 return; 9215 9216 switch (type) { 9217 case PERF_BPF_EVENT_PROG_LOAD: 9218 case PERF_BPF_EVENT_PROG_UNLOAD: 9219 if (atomic_read(&nr_ksymbol_events)) 9220 perf_event_bpf_emit_ksymbols(prog, type); 9221 break; 9222 default: 9223 break; 9224 } 9225 9226 if (!atomic_read(&nr_bpf_events)) 9227 return; 9228 9229 bpf_event = (struct perf_bpf_event){ 9230 .prog = prog, 9231 .event_id = { 9232 .header = { 9233 .type = PERF_RECORD_BPF_EVENT, 9234 .size = sizeof(bpf_event.event_id), 9235 }, 9236 .type = type, 9237 .flags = flags, 9238 .id = prog->aux->id, 9239 }, 9240 }; 9241 9242 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9243 9244 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9245 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9246 } 9247 9248 struct perf_text_poke_event { 9249 const void *old_bytes; 9250 const void *new_bytes; 9251 size_t pad; 9252 u16 old_len; 9253 u16 new_len; 9254 9255 struct { 9256 struct perf_event_header header; 9257 9258 u64 addr; 9259 } event_id; 9260 }; 9261 9262 static int perf_event_text_poke_match(struct perf_event *event) 9263 { 9264 return event->attr.text_poke; 9265 } 9266 9267 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9268 { 9269 struct perf_text_poke_event *text_poke_event = data; 9270 struct perf_output_handle handle; 9271 struct perf_sample_data sample; 9272 u64 padding = 0; 9273 int ret; 9274 9275 if (!perf_event_text_poke_match(event)) 9276 return; 9277 9278 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9279 9280 ret = perf_output_begin(&handle, &sample, event, 9281 text_poke_event->event_id.header.size); 9282 if (ret) 9283 return; 9284 9285 perf_output_put(&handle, text_poke_event->event_id); 9286 perf_output_put(&handle, text_poke_event->old_len); 9287 perf_output_put(&handle, text_poke_event->new_len); 9288 9289 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9290 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9291 9292 if (text_poke_event->pad) 9293 __output_copy(&handle, &padding, text_poke_event->pad); 9294 9295 perf_event__output_id_sample(event, &handle, &sample); 9296 9297 perf_output_end(&handle); 9298 } 9299 9300 void perf_event_text_poke(const void *addr, const void *old_bytes, 9301 size_t old_len, const void *new_bytes, size_t new_len) 9302 { 9303 struct perf_text_poke_event text_poke_event; 9304 size_t tot, pad; 9305 9306 if (!atomic_read(&nr_text_poke_events)) 9307 return; 9308 9309 tot = sizeof(text_poke_event.old_len) + old_len; 9310 tot += sizeof(text_poke_event.new_len) + new_len; 9311 pad = ALIGN(tot, sizeof(u64)) - tot; 9312 9313 text_poke_event = (struct perf_text_poke_event){ 9314 .old_bytes = old_bytes, 9315 .new_bytes = new_bytes, 9316 .pad = pad, 9317 .old_len = old_len, 9318 .new_len = new_len, 9319 .event_id = { 9320 .header = { 9321 .type = PERF_RECORD_TEXT_POKE, 9322 .misc = PERF_RECORD_MISC_KERNEL, 9323 .size = sizeof(text_poke_event.event_id) + tot + pad, 9324 }, 9325 .addr = (unsigned long)addr, 9326 }, 9327 }; 9328 9329 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9330 } 9331 9332 void perf_event_itrace_started(struct perf_event *event) 9333 { 9334 event->attach_state |= PERF_ATTACH_ITRACE; 9335 } 9336 9337 static void perf_log_itrace_start(struct perf_event *event) 9338 { 9339 struct perf_output_handle handle; 9340 struct perf_sample_data sample; 9341 struct perf_aux_event { 9342 struct perf_event_header header; 9343 u32 pid; 9344 u32 tid; 9345 } rec; 9346 int ret; 9347 9348 if (event->parent) 9349 event = event->parent; 9350 9351 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9352 event->attach_state & PERF_ATTACH_ITRACE) 9353 return; 9354 9355 rec.header.type = PERF_RECORD_ITRACE_START; 9356 rec.header.misc = 0; 9357 rec.header.size = sizeof(rec); 9358 rec.pid = perf_event_pid(event, current); 9359 rec.tid = perf_event_tid(event, current); 9360 9361 perf_event_header__init_id(&rec.header, &sample, event); 9362 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9363 9364 if (ret) 9365 return; 9366 9367 perf_output_put(&handle, rec); 9368 perf_event__output_id_sample(event, &handle, &sample); 9369 9370 perf_output_end(&handle); 9371 } 9372 9373 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9374 { 9375 struct perf_output_handle handle; 9376 struct perf_sample_data sample; 9377 struct perf_aux_event { 9378 struct perf_event_header header; 9379 u64 hw_id; 9380 } rec; 9381 int ret; 9382 9383 if (event->parent) 9384 event = event->parent; 9385 9386 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9387 rec.header.misc = 0; 9388 rec.header.size = sizeof(rec); 9389 rec.hw_id = hw_id; 9390 9391 perf_event_header__init_id(&rec.header, &sample, event); 9392 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9393 9394 if (ret) 9395 return; 9396 9397 perf_output_put(&handle, rec); 9398 perf_event__output_id_sample(event, &handle, &sample); 9399 9400 perf_output_end(&handle); 9401 } 9402 9403 static int 9404 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9405 { 9406 struct hw_perf_event *hwc = &event->hw; 9407 int ret = 0; 9408 u64 seq; 9409 9410 seq = __this_cpu_read(perf_throttled_seq); 9411 if (seq != hwc->interrupts_seq) { 9412 hwc->interrupts_seq = seq; 9413 hwc->interrupts = 1; 9414 } else { 9415 hwc->interrupts++; 9416 if (unlikely(throttle 9417 && hwc->interrupts >= max_samples_per_tick)) { 9418 __this_cpu_inc(perf_throttled_count); 9419 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9420 hwc->interrupts = MAX_INTERRUPTS; 9421 perf_log_throttle(event, 0); 9422 ret = 1; 9423 } 9424 } 9425 9426 if (event->attr.freq) { 9427 u64 now = perf_clock(); 9428 s64 delta = now - hwc->freq_time_stamp; 9429 9430 hwc->freq_time_stamp = now; 9431 9432 if (delta > 0 && delta < 2*TICK_NSEC) 9433 perf_adjust_period(event, delta, hwc->last_period, true); 9434 } 9435 9436 return ret; 9437 } 9438 9439 int perf_event_account_interrupt(struct perf_event *event) 9440 { 9441 return __perf_event_account_interrupt(event, 1); 9442 } 9443 9444 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9445 { 9446 /* 9447 * Due to interrupt latency (AKA "skid"), we may enter the 9448 * kernel before taking an overflow, even if the PMU is only 9449 * counting user events. 9450 */ 9451 if (event->attr.exclude_kernel && !user_mode(regs)) 9452 return false; 9453 9454 return true; 9455 } 9456 9457 /* 9458 * Generic event overflow handling, sampling. 9459 */ 9460 9461 static int __perf_event_overflow(struct perf_event *event, 9462 int throttle, struct perf_sample_data *data, 9463 struct pt_regs *regs) 9464 { 9465 int events = atomic_read(&event->event_limit); 9466 int ret = 0; 9467 9468 /* 9469 * Non-sampling counters might still use the PMI to fold short 9470 * hardware counters, ignore those. 9471 */ 9472 if (unlikely(!is_sampling_event(event))) 9473 return 0; 9474 9475 ret = __perf_event_account_interrupt(event, throttle); 9476 9477 /* 9478 * XXX event_limit might not quite work as expected on inherited 9479 * events 9480 */ 9481 9482 event->pending_kill = POLL_IN; 9483 if (events && atomic_dec_and_test(&event->event_limit)) { 9484 ret = 1; 9485 event->pending_kill = POLL_HUP; 9486 perf_event_disable_inatomic(event); 9487 } 9488 9489 if (event->attr.sigtrap) { 9490 /* 9491 * The desired behaviour of sigtrap vs invalid samples is a bit 9492 * tricky; on the one hand, one should not loose the SIGTRAP if 9493 * it is the first event, on the other hand, we should also not 9494 * trigger the WARN or override the data address. 9495 */ 9496 bool valid_sample = sample_is_allowed(event, regs); 9497 unsigned int pending_id = 1; 9498 9499 if (regs) 9500 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9501 if (!event->pending_sigtrap) { 9502 event->pending_sigtrap = pending_id; 9503 local_inc(&event->ctx->nr_pending); 9504 } else if (event->attr.exclude_kernel && valid_sample) { 9505 /* 9506 * Should not be able to return to user space without 9507 * consuming pending_sigtrap; with exceptions: 9508 * 9509 * 1. Where !exclude_kernel, events can overflow again 9510 * in the kernel without returning to user space. 9511 * 9512 * 2. Events that can overflow again before the IRQ- 9513 * work without user space progress (e.g. hrtimer). 9514 * To approximate progress (with false negatives), 9515 * check 32-bit hash of the current IP. 9516 */ 9517 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9518 } 9519 9520 event->pending_addr = 0; 9521 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9522 event->pending_addr = data->addr; 9523 irq_work_queue(&event->pending_irq); 9524 } 9525 9526 READ_ONCE(event->overflow_handler)(event, data, regs); 9527 9528 if (*perf_event_fasync(event) && event->pending_kill) { 9529 event->pending_wakeup = 1; 9530 irq_work_queue(&event->pending_irq); 9531 } 9532 9533 return ret; 9534 } 9535 9536 int perf_event_overflow(struct perf_event *event, 9537 struct perf_sample_data *data, 9538 struct pt_regs *regs) 9539 { 9540 return __perf_event_overflow(event, 1, data, regs); 9541 } 9542 9543 /* 9544 * Generic software event infrastructure 9545 */ 9546 9547 struct swevent_htable { 9548 struct swevent_hlist *swevent_hlist; 9549 struct mutex hlist_mutex; 9550 int hlist_refcount; 9551 9552 /* Recursion avoidance in each contexts */ 9553 int recursion[PERF_NR_CONTEXTS]; 9554 }; 9555 9556 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9557 9558 /* 9559 * We directly increment event->count and keep a second value in 9560 * event->hw.period_left to count intervals. This period event 9561 * is kept in the range [-sample_period, 0] so that we can use the 9562 * sign as trigger. 9563 */ 9564 9565 u64 perf_swevent_set_period(struct perf_event *event) 9566 { 9567 struct hw_perf_event *hwc = &event->hw; 9568 u64 period = hwc->last_period; 9569 u64 nr, offset; 9570 s64 old, val; 9571 9572 hwc->last_period = hwc->sample_period; 9573 9574 again: 9575 old = val = local64_read(&hwc->period_left); 9576 if (val < 0) 9577 return 0; 9578 9579 nr = div64_u64(period + val, period); 9580 offset = nr * period; 9581 val -= offset; 9582 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9583 goto again; 9584 9585 return nr; 9586 } 9587 9588 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9589 struct perf_sample_data *data, 9590 struct pt_regs *regs) 9591 { 9592 struct hw_perf_event *hwc = &event->hw; 9593 int throttle = 0; 9594 9595 if (!overflow) 9596 overflow = perf_swevent_set_period(event); 9597 9598 if (hwc->interrupts == MAX_INTERRUPTS) 9599 return; 9600 9601 for (; overflow; overflow--) { 9602 if (__perf_event_overflow(event, throttle, 9603 data, regs)) { 9604 /* 9605 * We inhibit the overflow from happening when 9606 * hwc->interrupts == MAX_INTERRUPTS. 9607 */ 9608 break; 9609 } 9610 throttle = 1; 9611 } 9612 } 9613 9614 static void perf_swevent_event(struct perf_event *event, u64 nr, 9615 struct perf_sample_data *data, 9616 struct pt_regs *regs) 9617 { 9618 struct hw_perf_event *hwc = &event->hw; 9619 9620 local64_add(nr, &event->count); 9621 9622 if (!regs) 9623 return; 9624 9625 if (!is_sampling_event(event)) 9626 return; 9627 9628 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9629 data->period = nr; 9630 return perf_swevent_overflow(event, 1, data, regs); 9631 } else 9632 data->period = event->hw.last_period; 9633 9634 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9635 return perf_swevent_overflow(event, 1, data, regs); 9636 9637 if (local64_add_negative(nr, &hwc->period_left)) 9638 return; 9639 9640 perf_swevent_overflow(event, 0, data, regs); 9641 } 9642 9643 static int perf_exclude_event(struct perf_event *event, 9644 struct pt_regs *regs) 9645 { 9646 if (event->hw.state & PERF_HES_STOPPED) 9647 return 1; 9648 9649 if (regs) { 9650 if (event->attr.exclude_user && user_mode(regs)) 9651 return 1; 9652 9653 if (event->attr.exclude_kernel && !user_mode(regs)) 9654 return 1; 9655 } 9656 9657 return 0; 9658 } 9659 9660 static int perf_swevent_match(struct perf_event *event, 9661 enum perf_type_id type, 9662 u32 event_id, 9663 struct perf_sample_data *data, 9664 struct pt_regs *regs) 9665 { 9666 if (event->attr.type != type) 9667 return 0; 9668 9669 if (event->attr.config != event_id) 9670 return 0; 9671 9672 if (perf_exclude_event(event, regs)) 9673 return 0; 9674 9675 return 1; 9676 } 9677 9678 static inline u64 swevent_hash(u64 type, u32 event_id) 9679 { 9680 u64 val = event_id | (type << 32); 9681 9682 return hash_64(val, SWEVENT_HLIST_BITS); 9683 } 9684 9685 static inline struct hlist_head * 9686 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9687 { 9688 u64 hash = swevent_hash(type, event_id); 9689 9690 return &hlist->heads[hash]; 9691 } 9692 9693 /* For the read side: events when they trigger */ 9694 static inline struct hlist_head * 9695 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9696 { 9697 struct swevent_hlist *hlist; 9698 9699 hlist = rcu_dereference(swhash->swevent_hlist); 9700 if (!hlist) 9701 return NULL; 9702 9703 return __find_swevent_head(hlist, type, event_id); 9704 } 9705 9706 /* For the event head insertion and removal in the hlist */ 9707 static inline struct hlist_head * 9708 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9709 { 9710 struct swevent_hlist *hlist; 9711 u32 event_id = event->attr.config; 9712 u64 type = event->attr.type; 9713 9714 /* 9715 * Event scheduling is always serialized against hlist allocation 9716 * and release. Which makes the protected version suitable here. 9717 * The context lock guarantees that. 9718 */ 9719 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9720 lockdep_is_held(&event->ctx->lock)); 9721 if (!hlist) 9722 return NULL; 9723 9724 return __find_swevent_head(hlist, type, event_id); 9725 } 9726 9727 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9728 u64 nr, 9729 struct perf_sample_data *data, 9730 struct pt_regs *regs) 9731 { 9732 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9733 struct perf_event *event; 9734 struct hlist_head *head; 9735 9736 rcu_read_lock(); 9737 head = find_swevent_head_rcu(swhash, type, event_id); 9738 if (!head) 9739 goto end; 9740 9741 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9742 if (perf_swevent_match(event, type, event_id, data, regs)) 9743 perf_swevent_event(event, nr, data, regs); 9744 } 9745 end: 9746 rcu_read_unlock(); 9747 } 9748 9749 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9750 9751 int perf_swevent_get_recursion_context(void) 9752 { 9753 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9754 9755 return get_recursion_context(swhash->recursion); 9756 } 9757 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9758 9759 void perf_swevent_put_recursion_context(int rctx) 9760 { 9761 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9762 9763 put_recursion_context(swhash->recursion, rctx); 9764 } 9765 9766 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9767 { 9768 struct perf_sample_data data; 9769 9770 if (WARN_ON_ONCE(!regs)) 9771 return; 9772 9773 perf_sample_data_init(&data, addr, 0); 9774 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9775 } 9776 9777 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9778 { 9779 int rctx; 9780 9781 preempt_disable_notrace(); 9782 rctx = perf_swevent_get_recursion_context(); 9783 if (unlikely(rctx < 0)) 9784 goto fail; 9785 9786 ___perf_sw_event(event_id, nr, regs, addr); 9787 9788 perf_swevent_put_recursion_context(rctx); 9789 fail: 9790 preempt_enable_notrace(); 9791 } 9792 9793 static void perf_swevent_read(struct perf_event *event) 9794 { 9795 } 9796 9797 static int perf_swevent_add(struct perf_event *event, int flags) 9798 { 9799 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9800 struct hw_perf_event *hwc = &event->hw; 9801 struct hlist_head *head; 9802 9803 if (is_sampling_event(event)) { 9804 hwc->last_period = hwc->sample_period; 9805 perf_swevent_set_period(event); 9806 } 9807 9808 hwc->state = !(flags & PERF_EF_START); 9809 9810 head = find_swevent_head(swhash, event); 9811 if (WARN_ON_ONCE(!head)) 9812 return -EINVAL; 9813 9814 hlist_add_head_rcu(&event->hlist_entry, head); 9815 perf_event_update_userpage(event); 9816 9817 return 0; 9818 } 9819 9820 static void perf_swevent_del(struct perf_event *event, int flags) 9821 { 9822 hlist_del_rcu(&event->hlist_entry); 9823 } 9824 9825 static void perf_swevent_start(struct perf_event *event, int flags) 9826 { 9827 event->hw.state = 0; 9828 } 9829 9830 static void perf_swevent_stop(struct perf_event *event, int flags) 9831 { 9832 event->hw.state = PERF_HES_STOPPED; 9833 } 9834 9835 /* Deref the hlist from the update side */ 9836 static inline struct swevent_hlist * 9837 swevent_hlist_deref(struct swevent_htable *swhash) 9838 { 9839 return rcu_dereference_protected(swhash->swevent_hlist, 9840 lockdep_is_held(&swhash->hlist_mutex)); 9841 } 9842 9843 static void swevent_hlist_release(struct swevent_htable *swhash) 9844 { 9845 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9846 9847 if (!hlist) 9848 return; 9849 9850 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9851 kfree_rcu(hlist, rcu_head); 9852 } 9853 9854 static void swevent_hlist_put_cpu(int cpu) 9855 { 9856 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9857 9858 mutex_lock(&swhash->hlist_mutex); 9859 9860 if (!--swhash->hlist_refcount) 9861 swevent_hlist_release(swhash); 9862 9863 mutex_unlock(&swhash->hlist_mutex); 9864 } 9865 9866 static void swevent_hlist_put(void) 9867 { 9868 int cpu; 9869 9870 for_each_possible_cpu(cpu) 9871 swevent_hlist_put_cpu(cpu); 9872 } 9873 9874 static int swevent_hlist_get_cpu(int cpu) 9875 { 9876 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9877 int err = 0; 9878 9879 mutex_lock(&swhash->hlist_mutex); 9880 if (!swevent_hlist_deref(swhash) && 9881 cpumask_test_cpu(cpu, perf_online_mask)) { 9882 struct swevent_hlist *hlist; 9883 9884 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9885 if (!hlist) { 9886 err = -ENOMEM; 9887 goto exit; 9888 } 9889 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9890 } 9891 swhash->hlist_refcount++; 9892 exit: 9893 mutex_unlock(&swhash->hlist_mutex); 9894 9895 return err; 9896 } 9897 9898 static int swevent_hlist_get(void) 9899 { 9900 int err, cpu, failed_cpu; 9901 9902 mutex_lock(&pmus_lock); 9903 for_each_possible_cpu(cpu) { 9904 err = swevent_hlist_get_cpu(cpu); 9905 if (err) { 9906 failed_cpu = cpu; 9907 goto fail; 9908 } 9909 } 9910 mutex_unlock(&pmus_lock); 9911 return 0; 9912 fail: 9913 for_each_possible_cpu(cpu) { 9914 if (cpu == failed_cpu) 9915 break; 9916 swevent_hlist_put_cpu(cpu); 9917 } 9918 mutex_unlock(&pmus_lock); 9919 return err; 9920 } 9921 9922 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9923 9924 static void sw_perf_event_destroy(struct perf_event *event) 9925 { 9926 u64 event_id = event->attr.config; 9927 9928 WARN_ON(event->parent); 9929 9930 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9931 swevent_hlist_put(); 9932 } 9933 9934 static int perf_swevent_init(struct perf_event *event) 9935 { 9936 u64 event_id = event->attr.config; 9937 9938 if (event->attr.type != PERF_TYPE_SOFTWARE) 9939 return -ENOENT; 9940 9941 /* 9942 * no branch sampling for software events 9943 */ 9944 if (has_branch_stack(event)) 9945 return -EOPNOTSUPP; 9946 9947 switch (event_id) { 9948 case PERF_COUNT_SW_CPU_CLOCK: 9949 case PERF_COUNT_SW_TASK_CLOCK: 9950 return -ENOENT; 9951 9952 default: 9953 break; 9954 } 9955 9956 if (event_id >= PERF_COUNT_SW_MAX) 9957 return -ENOENT; 9958 9959 if (!event->parent) { 9960 int err; 9961 9962 err = swevent_hlist_get(); 9963 if (err) 9964 return err; 9965 9966 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9967 event->destroy = sw_perf_event_destroy; 9968 } 9969 9970 return 0; 9971 } 9972 9973 static struct pmu perf_swevent = { 9974 .task_ctx_nr = perf_sw_context, 9975 9976 .capabilities = PERF_PMU_CAP_NO_NMI, 9977 9978 .event_init = perf_swevent_init, 9979 .add = perf_swevent_add, 9980 .del = perf_swevent_del, 9981 .start = perf_swevent_start, 9982 .stop = perf_swevent_stop, 9983 .read = perf_swevent_read, 9984 }; 9985 9986 #ifdef CONFIG_EVENT_TRACING 9987 9988 static void tp_perf_event_destroy(struct perf_event *event) 9989 { 9990 perf_trace_destroy(event); 9991 } 9992 9993 static int perf_tp_event_init(struct perf_event *event) 9994 { 9995 int err; 9996 9997 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9998 return -ENOENT; 9999 10000 /* 10001 * no branch sampling for tracepoint events 10002 */ 10003 if (has_branch_stack(event)) 10004 return -EOPNOTSUPP; 10005 10006 err = perf_trace_init(event); 10007 if (err) 10008 return err; 10009 10010 event->destroy = tp_perf_event_destroy; 10011 10012 return 0; 10013 } 10014 10015 static struct pmu perf_tracepoint = { 10016 .task_ctx_nr = perf_sw_context, 10017 10018 .event_init = perf_tp_event_init, 10019 .add = perf_trace_add, 10020 .del = perf_trace_del, 10021 .start = perf_swevent_start, 10022 .stop = perf_swevent_stop, 10023 .read = perf_swevent_read, 10024 }; 10025 10026 static int perf_tp_filter_match(struct perf_event *event, 10027 struct perf_sample_data *data) 10028 { 10029 void *record = data->raw->frag.data; 10030 10031 /* only top level events have filters set */ 10032 if (event->parent) 10033 event = event->parent; 10034 10035 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10036 return 1; 10037 return 0; 10038 } 10039 10040 static int perf_tp_event_match(struct perf_event *event, 10041 struct perf_sample_data *data, 10042 struct pt_regs *regs) 10043 { 10044 if (event->hw.state & PERF_HES_STOPPED) 10045 return 0; 10046 /* 10047 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10048 */ 10049 if (event->attr.exclude_kernel && !user_mode(regs)) 10050 return 0; 10051 10052 if (!perf_tp_filter_match(event, data)) 10053 return 0; 10054 10055 return 1; 10056 } 10057 10058 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10059 struct trace_event_call *call, u64 count, 10060 struct pt_regs *regs, struct hlist_head *head, 10061 struct task_struct *task) 10062 { 10063 if (bpf_prog_array_valid(call)) { 10064 *(struct pt_regs **)raw_data = regs; 10065 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10066 perf_swevent_put_recursion_context(rctx); 10067 return; 10068 } 10069 } 10070 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10071 rctx, task); 10072 } 10073 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10074 10075 static void __perf_tp_event_target_task(u64 count, void *record, 10076 struct pt_regs *regs, 10077 struct perf_sample_data *data, 10078 struct perf_event *event) 10079 { 10080 struct trace_entry *entry = record; 10081 10082 if (event->attr.config != entry->type) 10083 return; 10084 /* Cannot deliver synchronous signal to other task. */ 10085 if (event->attr.sigtrap) 10086 return; 10087 if (perf_tp_event_match(event, data, regs)) 10088 perf_swevent_event(event, count, data, regs); 10089 } 10090 10091 static void perf_tp_event_target_task(u64 count, void *record, 10092 struct pt_regs *regs, 10093 struct perf_sample_data *data, 10094 struct perf_event_context *ctx) 10095 { 10096 unsigned int cpu = smp_processor_id(); 10097 struct pmu *pmu = &perf_tracepoint; 10098 struct perf_event *event, *sibling; 10099 10100 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10101 __perf_tp_event_target_task(count, record, regs, data, event); 10102 for_each_sibling_event(sibling, event) 10103 __perf_tp_event_target_task(count, record, regs, data, sibling); 10104 } 10105 10106 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10107 __perf_tp_event_target_task(count, record, regs, data, event); 10108 for_each_sibling_event(sibling, event) 10109 __perf_tp_event_target_task(count, record, regs, data, sibling); 10110 } 10111 } 10112 10113 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10114 struct pt_regs *regs, struct hlist_head *head, int rctx, 10115 struct task_struct *task) 10116 { 10117 struct perf_sample_data data; 10118 struct perf_event *event; 10119 10120 struct perf_raw_record raw = { 10121 .frag = { 10122 .size = entry_size, 10123 .data = record, 10124 }, 10125 }; 10126 10127 perf_sample_data_init(&data, 0, 0); 10128 data.raw = &raw; 10129 data.sample_flags |= PERF_SAMPLE_RAW; 10130 10131 perf_trace_buf_update(record, event_type); 10132 10133 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10134 if (perf_tp_event_match(event, &data, regs)) 10135 perf_swevent_event(event, count, &data, regs); 10136 } 10137 10138 /* 10139 * If we got specified a target task, also iterate its context and 10140 * deliver this event there too. 10141 */ 10142 if (task && task != current) { 10143 struct perf_event_context *ctx; 10144 10145 rcu_read_lock(); 10146 ctx = rcu_dereference(task->perf_event_ctxp); 10147 if (!ctx) 10148 goto unlock; 10149 10150 raw_spin_lock(&ctx->lock); 10151 perf_tp_event_target_task(count, record, regs, &data, ctx); 10152 raw_spin_unlock(&ctx->lock); 10153 unlock: 10154 rcu_read_unlock(); 10155 } 10156 10157 perf_swevent_put_recursion_context(rctx); 10158 } 10159 EXPORT_SYMBOL_GPL(perf_tp_event); 10160 10161 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10162 /* 10163 * Flags in config, used by dynamic PMU kprobe and uprobe 10164 * The flags should match following PMU_FORMAT_ATTR(). 10165 * 10166 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10167 * if not set, create kprobe/uprobe 10168 * 10169 * The following values specify a reference counter (or semaphore in the 10170 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10171 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10172 * 10173 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10174 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10175 */ 10176 enum perf_probe_config { 10177 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10178 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10179 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10180 }; 10181 10182 PMU_FORMAT_ATTR(retprobe, "config:0"); 10183 #endif 10184 10185 #ifdef CONFIG_KPROBE_EVENTS 10186 static struct attribute *kprobe_attrs[] = { 10187 &format_attr_retprobe.attr, 10188 NULL, 10189 }; 10190 10191 static struct attribute_group kprobe_format_group = { 10192 .name = "format", 10193 .attrs = kprobe_attrs, 10194 }; 10195 10196 static const struct attribute_group *kprobe_attr_groups[] = { 10197 &kprobe_format_group, 10198 NULL, 10199 }; 10200 10201 static int perf_kprobe_event_init(struct perf_event *event); 10202 static struct pmu perf_kprobe = { 10203 .task_ctx_nr = perf_sw_context, 10204 .event_init = perf_kprobe_event_init, 10205 .add = perf_trace_add, 10206 .del = perf_trace_del, 10207 .start = perf_swevent_start, 10208 .stop = perf_swevent_stop, 10209 .read = perf_swevent_read, 10210 .attr_groups = kprobe_attr_groups, 10211 }; 10212 10213 static int perf_kprobe_event_init(struct perf_event *event) 10214 { 10215 int err; 10216 bool is_retprobe; 10217 10218 if (event->attr.type != perf_kprobe.type) 10219 return -ENOENT; 10220 10221 if (!perfmon_capable()) 10222 return -EACCES; 10223 10224 /* 10225 * no branch sampling for probe events 10226 */ 10227 if (has_branch_stack(event)) 10228 return -EOPNOTSUPP; 10229 10230 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10231 err = perf_kprobe_init(event, is_retprobe); 10232 if (err) 10233 return err; 10234 10235 event->destroy = perf_kprobe_destroy; 10236 10237 return 0; 10238 } 10239 #endif /* CONFIG_KPROBE_EVENTS */ 10240 10241 #ifdef CONFIG_UPROBE_EVENTS 10242 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10243 10244 static struct attribute *uprobe_attrs[] = { 10245 &format_attr_retprobe.attr, 10246 &format_attr_ref_ctr_offset.attr, 10247 NULL, 10248 }; 10249 10250 static struct attribute_group uprobe_format_group = { 10251 .name = "format", 10252 .attrs = uprobe_attrs, 10253 }; 10254 10255 static const struct attribute_group *uprobe_attr_groups[] = { 10256 &uprobe_format_group, 10257 NULL, 10258 }; 10259 10260 static int perf_uprobe_event_init(struct perf_event *event); 10261 static struct pmu perf_uprobe = { 10262 .task_ctx_nr = perf_sw_context, 10263 .event_init = perf_uprobe_event_init, 10264 .add = perf_trace_add, 10265 .del = perf_trace_del, 10266 .start = perf_swevent_start, 10267 .stop = perf_swevent_stop, 10268 .read = perf_swevent_read, 10269 .attr_groups = uprobe_attr_groups, 10270 }; 10271 10272 static int perf_uprobe_event_init(struct perf_event *event) 10273 { 10274 int err; 10275 unsigned long ref_ctr_offset; 10276 bool is_retprobe; 10277 10278 if (event->attr.type != perf_uprobe.type) 10279 return -ENOENT; 10280 10281 if (!perfmon_capable()) 10282 return -EACCES; 10283 10284 /* 10285 * no branch sampling for probe events 10286 */ 10287 if (has_branch_stack(event)) 10288 return -EOPNOTSUPP; 10289 10290 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10291 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10292 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10293 if (err) 10294 return err; 10295 10296 event->destroy = perf_uprobe_destroy; 10297 10298 return 0; 10299 } 10300 #endif /* CONFIG_UPROBE_EVENTS */ 10301 10302 static inline void perf_tp_register(void) 10303 { 10304 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10305 #ifdef CONFIG_KPROBE_EVENTS 10306 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10307 #endif 10308 #ifdef CONFIG_UPROBE_EVENTS 10309 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10310 #endif 10311 } 10312 10313 static void perf_event_free_filter(struct perf_event *event) 10314 { 10315 ftrace_profile_free_filter(event); 10316 } 10317 10318 #ifdef CONFIG_BPF_SYSCALL 10319 static void bpf_overflow_handler(struct perf_event *event, 10320 struct perf_sample_data *data, 10321 struct pt_regs *regs) 10322 { 10323 struct bpf_perf_event_data_kern ctx = { 10324 .data = data, 10325 .event = event, 10326 }; 10327 struct bpf_prog *prog; 10328 int ret = 0; 10329 10330 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10331 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10332 goto out; 10333 rcu_read_lock(); 10334 prog = READ_ONCE(event->prog); 10335 if (prog) { 10336 if (prog->call_get_stack && 10337 (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) && 10338 !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) { 10339 data->callchain = perf_callchain(event, regs); 10340 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 10341 } 10342 10343 ret = bpf_prog_run(prog, &ctx); 10344 } 10345 rcu_read_unlock(); 10346 out: 10347 __this_cpu_dec(bpf_prog_active); 10348 if (!ret) 10349 return; 10350 10351 event->orig_overflow_handler(event, data, regs); 10352 } 10353 10354 static int perf_event_set_bpf_handler(struct perf_event *event, 10355 struct bpf_prog *prog, 10356 u64 bpf_cookie) 10357 { 10358 if (event->overflow_handler_context) 10359 /* hw breakpoint or kernel counter */ 10360 return -EINVAL; 10361 10362 if (event->prog) 10363 return -EEXIST; 10364 10365 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10366 return -EINVAL; 10367 10368 if (event->attr.precise_ip && 10369 prog->call_get_stack && 10370 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10371 event->attr.exclude_callchain_kernel || 10372 event->attr.exclude_callchain_user)) { 10373 /* 10374 * On perf_event with precise_ip, calling bpf_get_stack() 10375 * may trigger unwinder warnings and occasional crashes. 10376 * bpf_get_[stack|stackid] works around this issue by using 10377 * callchain attached to perf_sample_data. If the 10378 * perf_event does not full (kernel and user) callchain 10379 * attached to perf_sample_data, do not allow attaching BPF 10380 * program that calls bpf_get_[stack|stackid]. 10381 */ 10382 return -EPROTO; 10383 } 10384 10385 event->prog = prog; 10386 event->bpf_cookie = bpf_cookie; 10387 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10388 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10389 return 0; 10390 } 10391 10392 static void perf_event_free_bpf_handler(struct perf_event *event) 10393 { 10394 struct bpf_prog *prog = event->prog; 10395 10396 if (!prog) 10397 return; 10398 10399 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10400 event->prog = NULL; 10401 bpf_prog_put(prog); 10402 } 10403 #else 10404 static int perf_event_set_bpf_handler(struct perf_event *event, 10405 struct bpf_prog *prog, 10406 u64 bpf_cookie) 10407 { 10408 return -EOPNOTSUPP; 10409 } 10410 static void perf_event_free_bpf_handler(struct perf_event *event) 10411 { 10412 } 10413 #endif 10414 10415 /* 10416 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10417 * with perf_event_open() 10418 */ 10419 static inline bool perf_event_is_tracing(struct perf_event *event) 10420 { 10421 if (event->pmu == &perf_tracepoint) 10422 return true; 10423 #ifdef CONFIG_KPROBE_EVENTS 10424 if (event->pmu == &perf_kprobe) 10425 return true; 10426 #endif 10427 #ifdef CONFIG_UPROBE_EVENTS 10428 if (event->pmu == &perf_uprobe) 10429 return true; 10430 #endif 10431 return false; 10432 } 10433 10434 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10435 u64 bpf_cookie) 10436 { 10437 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10438 10439 if (!perf_event_is_tracing(event)) 10440 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10441 10442 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10443 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10444 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10445 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10446 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10447 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10448 return -EINVAL; 10449 10450 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10451 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10452 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10453 return -EINVAL; 10454 10455 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10456 /* only uprobe programs are allowed to be sleepable */ 10457 return -EINVAL; 10458 10459 /* Kprobe override only works for kprobes, not uprobes. */ 10460 if (prog->kprobe_override && !is_kprobe) 10461 return -EINVAL; 10462 10463 if (is_tracepoint || is_syscall_tp) { 10464 int off = trace_event_get_offsets(event->tp_event); 10465 10466 if (prog->aux->max_ctx_offset > off) 10467 return -EACCES; 10468 } 10469 10470 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10471 } 10472 10473 void perf_event_free_bpf_prog(struct perf_event *event) 10474 { 10475 if (!perf_event_is_tracing(event)) { 10476 perf_event_free_bpf_handler(event); 10477 return; 10478 } 10479 perf_event_detach_bpf_prog(event); 10480 } 10481 10482 #else 10483 10484 static inline void perf_tp_register(void) 10485 { 10486 } 10487 10488 static void perf_event_free_filter(struct perf_event *event) 10489 { 10490 } 10491 10492 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10493 u64 bpf_cookie) 10494 { 10495 return -ENOENT; 10496 } 10497 10498 void perf_event_free_bpf_prog(struct perf_event *event) 10499 { 10500 } 10501 #endif /* CONFIG_EVENT_TRACING */ 10502 10503 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10504 void perf_bp_event(struct perf_event *bp, void *data) 10505 { 10506 struct perf_sample_data sample; 10507 struct pt_regs *regs = data; 10508 10509 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10510 10511 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10512 perf_swevent_event(bp, 1, &sample, regs); 10513 } 10514 #endif 10515 10516 /* 10517 * Allocate a new address filter 10518 */ 10519 static struct perf_addr_filter * 10520 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10521 { 10522 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10523 struct perf_addr_filter *filter; 10524 10525 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10526 if (!filter) 10527 return NULL; 10528 10529 INIT_LIST_HEAD(&filter->entry); 10530 list_add_tail(&filter->entry, filters); 10531 10532 return filter; 10533 } 10534 10535 static void free_filters_list(struct list_head *filters) 10536 { 10537 struct perf_addr_filter *filter, *iter; 10538 10539 list_for_each_entry_safe(filter, iter, filters, entry) { 10540 path_put(&filter->path); 10541 list_del(&filter->entry); 10542 kfree(filter); 10543 } 10544 } 10545 10546 /* 10547 * Free existing address filters and optionally install new ones 10548 */ 10549 static void perf_addr_filters_splice(struct perf_event *event, 10550 struct list_head *head) 10551 { 10552 unsigned long flags; 10553 LIST_HEAD(list); 10554 10555 if (!has_addr_filter(event)) 10556 return; 10557 10558 /* don't bother with children, they don't have their own filters */ 10559 if (event->parent) 10560 return; 10561 10562 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10563 10564 list_splice_init(&event->addr_filters.list, &list); 10565 if (head) 10566 list_splice(head, &event->addr_filters.list); 10567 10568 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10569 10570 free_filters_list(&list); 10571 } 10572 10573 /* 10574 * Scan through mm's vmas and see if one of them matches the 10575 * @filter; if so, adjust filter's address range. 10576 * Called with mm::mmap_lock down for reading. 10577 */ 10578 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10579 struct mm_struct *mm, 10580 struct perf_addr_filter_range *fr) 10581 { 10582 struct vm_area_struct *vma; 10583 VMA_ITERATOR(vmi, mm, 0); 10584 10585 for_each_vma(vmi, vma) { 10586 if (!vma->vm_file) 10587 continue; 10588 10589 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10590 return; 10591 } 10592 } 10593 10594 /* 10595 * Update event's address range filters based on the 10596 * task's existing mappings, if any. 10597 */ 10598 static void perf_event_addr_filters_apply(struct perf_event *event) 10599 { 10600 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10601 struct task_struct *task = READ_ONCE(event->ctx->task); 10602 struct perf_addr_filter *filter; 10603 struct mm_struct *mm = NULL; 10604 unsigned int count = 0; 10605 unsigned long flags; 10606 10607 /* 10608 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10609 * will stop on the parent's child_mutex that our caller is also holding 10610 */ 10611 if (task == TASK_TOMBSTONE) 10612 return; 10613 10614 if (ifh->nr_file_filters) { 10615 mm = get_task_mm(task); 10616 if (!mm) 10617 goto restart; 10618 10619 mmap_read_lock(mm); 10620 } 10621 10622 raw_spin_lock_irqsave(&ifh->lock, flags); 10623 list_for_each_entry(filter, &ifh->list, entry) { 10624 if (filter->path.dentry) { 10625 /* 10626 * Adjust base offset if the filter is associated to a 10627 * binary that needs to be mapped: 10628 */ 10629 event->addr_filter_ranges[count].start = 0; 10630 event->addr_filter_ranges[count].size = 0; 10631 10632 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10633 } else { 10634 event->addr_filter_ranges[count].start = filter->offset; 10635 event->addr_filter_ranges[count].size = filter->size; 10636 } 10637 10638 count++; 10639 } 10640 10641 event->addr_filters_gen++; 10642 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10643 10644 if (ifh->nr_file_filters) { 10645 mmap_read_unlock(mm); 10646 10647 mmput(mm); 10648 } 10649 10650 restart: 10651 perf_event_stop(event, 1); 10652 } 10653 10654 /* 10655 * Address range filtering: limiting the data to certain 10656 * instruction address ranges. Filters are ioctl()ed to us from 10657 * userspace as ascii strings. 10658 * 10659 * Filter string format: 10660 * 10661 * ACTION RANGE_SPEC 10662 * where ACTION is one of the 10663 * * "filter": limit the trace to this region 10664 * * "start": start tracing from this address 10665 * * "stop": stop tracing at this address/region; 10666 * RANGE_SPEC is 10667 * * for kernel addresses: <start address>[/<size>] 10668 * * for object files: <start address>[/<size>]@</path/to/object/file> 10669 * 10670 * if <size> is not specified or is zero, the range is treated as a single 10671 * address; not valid for ACTION=="filter". 10672 */ 10673 enum { 10674 IF_ACT_NONE = -1, 10675 IF_ACT_FILTER, 10676 IF_ACT_START, 10677 IF_ACT_STOP, 10678 IF_SRC_FILE, 10679 IF_SRC_KERNEL, 10680 IF_SRC_FILEADDR, 10681 IF_SRC_KERNELADDR, 10682 }; 10683 10684 enum { 10685 IF_STATE_ACTION = 0, 10686 IF_STATE_SOURCE, 10687 IF_STATE_END, 10688 }; 10689 10690 static const match_table_t if_tokens = { 10691 { IF_ACT_FILTER, "filter" }, 10692 { IF_ACT_START, "start" }, 10693 { IF_ACT_STOP, "stop" }, 10694 { IF_SRC_FILE, "%u/%u@%s" }, 10695 { IF_SRC_KERNEL, "%u/%u" }, 10696 { IF_SRC_FILEADDR, "%u@%s" }, 10697 { IF_SRC_KERNELADDR, "%u" }, 10698 { IF_ACT_NONE, NULL }, 10699 }; 10700 10701 /* 10702 * Address filter string parser 10703 */ 10704 static int 10705 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10706 struct list_head *filters) 10707 { 10708 struct perf_addr_filter *filter = NULL; 10709 char *start, *orig, *filename = NULL; 10710 substring_t args[MAX_OPT_ARGS]; 10711 int state = IF_STATE_ACTION, token; 10712 unsigned int kernel = 0; 10713 int ret = -EINVAL; 10714 10715 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10716 if (!fstr) 10717 return -ENOMEM; 10718 10719 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10720 static const enum perf_addr_filter_action_t actions[] = { 10721 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10722 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10723 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10724 }; 10725 ret = -EINVAL; 10726 10727 if (!*start) 10728 continue; 10729 10730 /* filter definition begins */ 10731 if (state == IF_STATE_ACTION) { 10732 filter = perf_addr_filter_new(event, filters); 10733 if (!filter) 10734 goto fail; 10735 } 10736 10737 token = match_token(start, if_tokens, args); 10738 switch (token) { 10739 case IF_ACT_FILTER: 10740 case IF_ACT_START: 10741 case IF_ACT_STOP: 10742 if (state != IF_STATE_ACTION) 10743 goto fail; 10744 10745 filter->action = actions[token]; 10746 state = IF_STATE_SOURCE; 10747 break; 10748 10749 case IF_SRC_KERNELADDR: 10750 case IF_SRC_KERNEL: 10751 kernel = 1; 10752 fallthrough; 10753 10754 case IF_SRC_FILEADDR: 10755 case IF_SRC_FILE: 10756 if (state != IF_STATE_SOURCE) 10757 goto fail; 10758 10759 *args[0].to = 0; 10760 ret = kstrtoul(args[0].from, 0, &filter->offset); 10761 if (ret) 10762 goto fail; 10763 10764 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10765 *args[1].to = 0; 10766 ret = kstrtoul(args[1].from, 0, &filter->size); 10767 if (ret) 10768 goto fail; 10769 } 10770 10771 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10772 int fpos = token == IF_SRC_FILE ? 2 : 1; 10773 10774 kfree(filename); 10775 filename = match_strdup(&args[fpos]); 10776 if (!filename) { 10777 ret = -ENOMEM; 10778 goto fail; 10779 } 10780 } 10781 10782 state = IF_STATE_END; 10783 break; 10784 10785 default: 10786 goto fail; 10787 } 10788 10789 /* 10790 * Filter definition is fully parsed, validate and install it. 10791 * Make sure that it doesn't contradict itself or the event's 10792 * attribute. 10793 */ 10794 if (state == IF_STATE_END) { 10795 ret = -EINVAL; 10796 10797 /* 10798 * ACTION "filter" must have a non-zero length region 10799 * specified. 10800 */ 10801 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10802 !filter->size) 10803 goto fail; 10804 10805 if (!kernel) { 10806 if (!filename) 10807 goto fail; 10808 10809 /* 10810 * For now, we only support file-based filters 10811 * in per-task events; doing so for CPU-wide 10812 * events requires additional context switching 10813 * trickery, since same object code will be 10814 * mapped at different virtual addresses in 10815 * different processes. 10816 */ 10817 ret = -EOPNOTSUPP; 10818 if (!event->ctx->task) 10819 goto fail; 10820 10821 /* look up the path and grab its inode */ 10822 ret = kern_path(filename, LOOKUP_FOLLOW, 10823 &filter->path); 10824 if (ret) 10825 goto fail; 10826 10827 ret = -EINVAL; 10828 if (!filter->path.dentry || 10829 !S_ISREG(d_inode(filter->path.dentry) 10830 ->i_mode)) 10831 goto fail; 10832 10833 event->addr_filters.nr_file_filters++; 10834 } 10835 10836 /* ready to consume more filters */ 10837 kfree(filename); 10838 filename = NULL; 10839 state = IF_STATE_ACTION; 10840 filter = NULL; 10841 kernel = 0; 10842 } 10843 } 10844 10845 if (state != IF_STATE_ACTION) 10846 goto fail; 10847 10848 kfree(filename); 10849 kfree(orig); 10850 10851 return 0; 10852 10853 fail: 10854 kfree(filename); 10855 free_filters_list(filters); 10856 kfree(orig); 10857 10858 return ret; 10859 } 10860 10861 static int 10862 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10863 { 10864 LIST_HEAD(filters); 10865 int ret; 10866 10867 /* 10868 * Since this is called in perf_ioctl() path, we're already holding 10869 * ctx::mutex. 10870 */ 10871 lockdep_assert_held(&event->ctx->mutex); 10872 10873 if (WARN_ON_ONCE(event->parent)) 10874 return -EINVAL; 10875 10876 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10877 if (ret) 10878 goto fail_clear_files; 10879 10880 ret = event->pmu->addr_filters_validate(&filters); 10881 if (ret) 10882 goto fail_free_filters; 10883 10884 /* remove existing filters, if any */ 10885 perf_addr_filters_splice(event, &filters); 10886 10887 /* install new filters */ 10888 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10889 10890 return ret; 10891 10892 fail_free_filters: 10893 free_filters_list(&filters); 10894 10895 fail_clear_files: 10896 event->addr_filters.nr_file_filters = 0; 10897 10898 return ret; 10899 } 10900 10901 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10902 { 10903 int ret = -EINVAL; 10904 char *filter_str; 10905 10906 filter_str = strndup_user(arg, PAGE_SIZE); 10907 if (IS_ERR(filter_str)) 10908 return PTR_ERR(filter_str); 10909 10910 #ifdef CONFIG_EVENT_TRACING 10911 if (perf_event_is_tracing(event)) { 10912 struct perf_event_context *ctx = event->ctx; 10913 10914 /* 10915 * Beware, here be dragons!! 10916 * 10917 * the tracepoint muck will deadlock against ctx->mutex, but 10918 * the tracepoint stuff does not actually need it. So 10919 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10920 * already have a reference on ctx. 10921 * 10922 * This can result in event getting moved to a different ctx, 10923 * but that does not affect the tracepoint state. 10924 */ 10925 mutex_unlock(&ctx->mutex); 10926 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10927 mutex_lock(&ctx->mutex); 10928 } else 10929 #endif 10930 if (has_addr_filter(event)) 10931 ret = perf_event_set_addr_filter(event, filter_str); 10932 10933 kfree(filter_str); 10934 return ret; 10935 } 10936 10937 /* 10938 * hrtimer based swevent callback 10939 */ 10940 10941 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10942 { 10943 enum hrtimer_restart ret = HRTIMER_RESTART; 10944 struct perf_sample_data data; 10945 struct pt_regs *regs; 10946 struct perf_event *event; 10947 u64 period; 10948 10949 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10950 10951 if (event->state != PERF_EVENT_STATE_ACTIVE) 10952 return HRTIMER_NORESTART; 10953 10954 event->pmu->read(event); 10955 10956 perf_sample_data_init(&data, 0, event->hw.last_period); 10957 regs = get_irq_regs(); 10958 10959 if (regs && !perf_exclude_event(event, regs)) { 10960 if (!(event->attr.exclude_idle && is_idle_task(current))) 10961 if (__perf_event_overflow(event, 1, &data, regs)) 10962 ret = HRTIMER_NORESTART; 10963 } 10964 10965 period = max_t(u64, 10000, event->hw.sample_period); 10966 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10967 10968 return ret; 10969 } 10970 10971 static void perf_swevent_start_hrtimer(struct perf_event *event) 10972 { 10973 struct hw_perf_event *hwc = &event->hw; 10974 s64 period; 10975 10976 if (!is_sampling_event(event)) 10977 return; 10978 10979 period = local64_read(&hwc->period_left); 10980 if (period) { 10981 if (period < 0) 10982 period = 10000; 10983 10984 local64_set(&hwc->period_left, 0); 10985 } else { 10986 period = max_t(u64, 10000, hwc->sample_period); 10987 } 10988 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10989 HRTIMER_MODE_REL_PINNED_HARD); 10990 } 10991 10992 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10993 { 10994 struct hw_perf_event *hwc = &event->hw; 10995 10996 if (is_sampling_event(event)) { 10997 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10998 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10999 11000 hrtimer_cancel(&hwc->hrtimer); 11001 } 11002 } 11003 11004 static void perf_swevent_init_hrtimer(struct perf_event *event) 11005 { 11006 struct hw_perf_event *hwc = &event->hw; 11007 11008 if (!is_sampling_event(event)) 11009 return; 11010 11011 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11012 hwc->hrtimer.function = perf_swevent_hrtimer; 11013 11014 /* 11015 * Since hrtimers have a fixed rate, we can do a static freq->period 11016 * mapping and avoid the whole period adjust feedback stuff. 11017 */ 11018 if (event->attr.freq) { 11019 long freq = event->attr.sample_freq; 11020 11021 event->attr.sample_period = NSEC_PER_SEC / freq; 11022 hwc->sample_period = event->attr.sample_period; 11023 local64_set(&hwc->period_left, hwc->sample_period); 11024 hwc->last_period = hwc->sample_period; 11025 event->attr.freq = 0; 11026 } 11027 } 11028 11029 /* 11030 * Software event: cpu wall time clock 11031 */ 11032 11033 static void cpu_clock_event_update(struct perf_event *event) 11034 { 11035 s64 prev; 11036 u64 now; 11037 11038 now = local_clock(); 11039 prev = local64_xchg(&event->hw.prev_count, now); 11040 local64_add(now - prev, &event->count); 11041 } 11042 11043 static void cpu_clock_event_start(struct perf_event *event, int flags) 11044 { 11045 local64_set(&event->hw.prev_count, local_clock()); 11046 perf_swevent_start_hrtimer(event); 11047 } 11048 11049 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11050 { 11051 perf_swevent_cancel_hrtimer(event); 11052 cpu_clock_event_update(event); 11053 } 11054 11055 static int cpu_clock_event_add(struct perf_event *event, int flags) 11056 { 11057 if (flags & PERF_EF_START) 11058 cpu_clock_event_start(event, flags); 11059 perf_event_update_userpage(event); 11060 11061 return 0; 11062 } 11063 11064 static void cpu_clock_event_del(struct perf_event *event, int flags) 11065 { 11066 cpu_clock_event_stop(event, flags); 11067 } 11068 11069 static void cpu_clock_event_read(struct perf_event *event) 11070 { 11071 cpu_clock_event_update(event); 11072 } 11073 11074 static int cpu_clock_event_init(struct perf_event *event) 11075 { 11076 if (event->attr.type != PERF_TYPE_SOFTWARE) 11077 return -ENOENT; 11078 11079 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11080 return -ENOENT; 11081 11082 /* 11083 * no branch sampling for software events 11084 */ 11085 if (has_branch_stack(event)) 11086 return -EOPNOTSUPP; 11087 11088 perf_swevent_init_hrtimer(event); 11089 11090 return 0; 11091 } 11092 11093 static struct pmu perf_cpu_clock = { 11094 .task_ctx_nr = perf_sw_context, 11095 11096 .capabilities = PERF_PMU_CAP_NO_NMI, 11097 11098 .event_init = cpu_clock_event_init, 11099 .add = cpu_clock_event_add, 11100 .del = cpu_clock_event_del, 11101 .start = cpu_clock_event_start, 11102 .stop = cpu_clock_event_stop, 11103 .read = cpu_clock_event_read, 11104 }; 11105 11106 /* 11107 * Software event: task time clock 11108 */ 11109 11110 static void task_clock_event_update(struct perf_event *event, u64 now) 11111 { 11112 u64 prev; 11113 s64 delta; 11114 11115 prev = local64_xchg(&event->hw.prev_count, now); 11116 delta = now - prev; 11117 local64_add(delta, &event->count); 11118 } 11119 11120 static void task_clock_event_start(struct perf_event *event, int flags) 11121 { 11122 local64_set(&event->hw.prev_count, event->ctx->time); 11123 perf_swevent_start_hrtimer(event); 11124 } 11125 11126 static void task_clock_event_stop(struct perf_event *event, int flags) 11127 { 11128 perf_swevent_cancel_hrtimer(event); 11129 task_clock_event_update(event, event->ctx->time); 11130 } 11131 11132 static int task_clock_event_add(struct perf_event *event, int flags) 11133 { 11134 if (flags & PERF_EF_START) 11135 task_clock_event_start(event, flags); 11136 perf_event_update_userpage(event); 11137 11138 return 0; 11139 } 11140 11141 static void task_clock_event_del(struct perf_event *event, int flags) 11142 { 11143 task_clock_event_stop(event, PERF_EF_UPDATE); 11144 } 11145 11146 static void task_clock_event_read(struct perf_event *event) 11147 { 11148 u64 now = perf_clock(); 11149 u64 delta = now - event->ctx->timestamp; 11150 u64 time = event->ctx->time + delta; 11151 11152 task_clock_event_update(event, time); 11153 } 11154 11155 static int task_clock_event_init(struct perf_event *event) 11156 { 11157 if (event->attr.type != PERF_TYPE_SOFTWARE) 11158 return -ENOENT; 11159 11160 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11161 return -ENOENT; 11162 11163 /* 11164 * no branch sampling for software events 11165 */ 11166 if (has_branch_stack(event)) 11167 return -EOPNOTSUPP; 11168 11169 perf_swevent_init_hrtimer(event); 11170 11171 return 0; 11172 } 11173 11174 static struct pmu perf_task_clock = { 11175 .task_ctx_nr = perf_sw_context, 11176 11177 .capabilities = PERF_PMU_CAP_NO_NMI, 11178 11179 .event_init = task_clock_event_init, 11180 .add = task_clock_event_add, 11181 .del = task_clock_event_del, 11182 .start = task_clock_event_start, 11183 .stop = task_clock_event_stop, 11184 .read = task_clock_event_read, 11185 }; 11186 11187 static void perf_pmu_nop_void(struct pmu *pmu) 11188 { 11189 } 11190 11191 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11192 { 11193 } 11194 11195 static int perf_pmu_nop_int(struct pmu *pmu) 11196 { 11197 return 0; 11198 } 11199 11200 static int perf_event_nop_int(struct perf_event *event, u64 value) 11201 { 11202 return 0; 11203 } 11204 11205 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11206 11207 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11208 { 11209 __this_cpu_write(nop_txn_flags, flags); 11210 11211 if (flags & ~PERF_PMU_TXN_ADD) 11212 return; 11213 11214 perf_pmu_disable(pmu); 11215 } 11216 11217 static int perf_pmu_commit_txn(struct pmu *pmu) 11218 { 11219 unsigned int flags = __this_cpu_read(nop_txn_flags); 11220 11221 __this_cpu_write(nop_txn_flags, 0); 11222 11223 if (flags & ~PERF_PMU_TXN_ADD) 11224 return 0; 11225 11226 perf_pmu_enable(pmu); 11227 return 0; 11228 } 11229 11230 static void perf_pmu_cancel_txn(struct pmu *pmu) 11231 { 11232 unsigned int flags = __this_cpu_read(nop_txn_flags); 11233 11234 __this_cpu_write(nop_txn_flags, 0); 11235 11236 if (flags & ~PERF_PMU_TXN_ADD) 11237 return; 11238 11239 perf_pmu_enable(pmu); 11240 } 11241 11242 static int perf_event_idx_default(struct perf_event *event) 11243 { 11244 return 0; 11245 } 11246 11247 static void free_pmu_context(struct pmu *pmu) 11248 { 11249 free_percpu(pmu->cpu_pmu_context); 11250 } 11251 11252 /* 11253 * Let userspace know that this PMU supports address range filtering: 11254 */ 11255 static ssize_t nr_addr_filters_show(struct device *dev, 11256 struct device_attribute *attr, 11257 char *page) 11258 { 11259 struct pmu *pmu = dev_get_drvdata(dev); 11260 11261 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11262 } 11263 DEVICE_ATTR_RO(nr_addr_filters); 11264 11265 static struct idr pmu_idr; 11266 11267 static ssize_t 11268 type_show(struct device *dev, struct device_attribute *attr, char *page) 11269 { 11270 struct pmu *pmu = dev_get_drvdata(dev); 11271 11272 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11273 } 11274 static DEVICE_ATTR_RO(type); 11275 11276 static ssize_t 11277 perf_event_mux_interval_ms_show(struct device *dev, 11278 struct device_attribute *attr, 11279 char *page) 11280 { 11281 struct pmu *pmu = dev_get_drvdata(dev); 11282 11283 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11284 } 11285 11286 static DEFINE_MUTEX(mux_interval_mutex); 11287 11288 static ssize_t 11289 perf_event_mux_interval_ms_store(struct device *dev, 11290 struct device_attribute *attr, 11291 const char *buf, size_t count) 11292 { 11293 struct pmu *pmu = dev_get_drvdata(dev); 11294 int timer, cpu, ret; 11295 11296 ret = kstrtoint(buf, 0, &timer); 11297 if (ret) 11298 return ret; 11299 11300 if (timer < 1) 11301 return -EINVAL; 11302 11303 /* same value, noting to do */ 11304 if (timer == pmu->hrtimer_interval_ms) 11305 return count; 11306 11307 mutex_lock(&mux_interval_mutex); 11308 pmu->hrtimer_interval_ms = timer; 11309 11310 /* update all cpuctx for this PMU */ 11311 cpus_read_lock(); 11312 for_each_online_cpu(cpu) { 11313 struct perf_cpu_pmu_context *cpc; 11314 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11315 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11316 11317 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11318 } 11319 cpus_read_unlock(); 11320 mutex_unlock(&mux_interval_mutex); 11321 11322 return count; 11323 } 11324 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11325 11326 static struct attribute *pmu_dev_attrs[] = { 11327 &dev_attr_type.attr, 11328 &dev_attr_perf_event_mux_interval_ms.attr, 11329 NULL, 11330 }; 11331 ATTRIBUTE_GROUPS(pmu_dev); 11332 11333 static int pmu_bus_running; 11334 static struct bus_type pmu_bus = { 11335 .name = "event_source", 11336 .dev_groups = pmu_dev_groups, 11337 }; 11338 11339 static void pmu_dev_release(struct device *dev) 11340 { 11341 kfree(dev); 11342 } 11343 11344 static int pmu_dev_alloc(struct pmu *pmu) 11345 { 11346 int ret = -ENOMEM; 11347 11348 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11349 if (!pmu->dev) 11350 goto out; 11351 11352 pmu->dev->groups = pmu->attr_groups; 11353 device_initialize(pmu->dev); 11354 11355 dev_set_drvdata(pmu->dev, pmu); 11356 pmu->dev->bus = &pmu_bus; 11357 pmu->dev->release = pmu_dev_release; 11358 11359 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11360 if (ret) 11361 goto free_dev; 11362 11363 ret = device_add(pmu->dev); 11364 if (ret) 11365 goto free_dev; 11366 11367 /* For PMUs with address filters, throw in an extra attribute: */ 11368 if (pmu->nr_addr_filters) 11369 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11370 11371 if (ret) 11372 goto del_dev; 11373 11374 if (pmu->attr_update) 11375 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11376 11377 if (ret) 11378 goto del_dev; 11379 11380 out: 11381 return ret; 11382 11383 del_dev: 11384 device_del(pmu->dev); 11385 11386 free_dev: 11387 put_device(pmu->dev); 11388 goto out; 11389 } 11390 11391 static struct lock_class_key cpuctx_mutex; 11392 static struct lock_class_key cpuctx_lock; 11393 11394 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11395 { 11396 int cpu, ret, max = PERF_TYPE_MAX; 11397 11398 mutex_lock(&pmus_lock); 11399 ret = -ENOMEM; 11400 pmu->pmu_disable_count = alloc_percpu(int); 11401 if (!pmu->pmu_disable_count) 11402 goto unlock; 11403 11404 pmu->type = -1; 11405 if (!name) 11406 goto skip_type; 11407 pmu->name = name; 11408 11409 if (type != PERF_TYPE_SOFTWARE) { 11410 if (type >= 0) 11411 max = type; 11412 11413 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11414 if (ret < 0) 11415 goto free_pdc; 11416 11417 WARN_ON(type >= 0 && ret != type); 11418 11419 type = ret; 11420 } 11421 pmu->type = type; 11422 11423 if (pmu_bus_running) { 11424 ret = pmu_dev_alloc(pmu); 11425 if (ret) 11426 goto free_idr; 11427 } 11428 11429 skip_type: 11430 ret = -ENOMEM; 11431 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11432 if (!pmu->cpu_pmu_context) 11433 goto free_dev; 11434 11435 for_each_possible_cpu(cpu) { 11436 struct perf_cpu_pmu_context *cpc; 11437 11438 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11439 __perf_init_event_pmu_context(&cpc->epc, pmu); 11440 __perf_mux_hrtimer_init(cpc, cpu); 11441 } 11442 11443 if (!pmu->start_txn) { 11444 if (pmu->pmu_enable) { 11445 /* 11446 * If we have pmu_enable/pmu_disable calls, install 11447 * transaction stubs that use that to try and batch 11448 * hardware accesses. 11449 */ 11450 pmu->start_txn = perf_pmu_start_txn; 11451 pmu->commit_txn = perf_pmu_commit_txn; 11452 pmu->cancel_txn = perf_pmu_cancel_txn; 11453 } else { 11454 pmu->start_txn = perf_pmu_nop_txn; 11455 pmu->commit_txn = perf_pmu_nop_int; 11456 pmu->cancel_txn = perf_pmu_nop_void; 11457 } 11458 } 11459 11460 if (!pmu->pmu_enable) { 11461 pmu->pmu_enable = perf_pmu_nop_void; 11462 pmu->pmu_disable = perf_pmu_nop_void; 11463 } 11464 11465 if (!pmu->check_period) 11466 pmu->check_period = perf_event_nop_int; 11467 11468 if (!pmu->event_idx) 11469 pmu->event_idx = perf_event_idx_default; 11470 11471 /* 11472 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11473 * since these cannot be in the IDR. This way the linear search 11474 * is fast, provided a valid software event is provided. 11475 */ 11476 if (type == PERF_TYPE_SOFTWARE || !name) 11477 list_add_rcu(&pmu->entry, &pmus); 11478 else 11479 list_add_tail_rcu(&pmu->entry, &pmus); 11480 11481 atomic_set(&pmu->exclusive_cnt, 0); 11482 ret = 0; 11483 unlock: 11484 mutex_unlock(&pmus_lock); 11485 11486 return ret; 11487 11488 free_dev: 11489 device_del(pmu->dev); 11490 put_device(pmu->dev); 11491 11492 free_idr: 11493 if (pmu->type != PERF_TYPE_SOFTWARE) 11494 idr_remove(&pmu_idr, pmu->type); 11495 11496 free_pdc: 11497 free_percpu(pmu->pmu_disable_count); 11498 goto unlock; 11499 } 11500 EXPORT_SYMBOL_GPL(perf_pmu_register); 11501 11502 void perf_pmu_unregister(struct pmu *pmu) 11503 { 11504 mutex_lock(&pmus_lock); 11505 list_del_rcu(&pmu->entry); 11506 11507 /* 11508 * We dereference the pmu list under both SRCU and regular RCU, so 11509 * synchronize against both of those. 11510 */ 11511 synchronize_srcu(&pmus_srcu); 11512 synchronize_rcu(); 11513 11514 free_percpu(pmu->pmu_disable_count); 11515 if (pmu->type != PERF_TYPE_SOFTWARE) 11516 idr_remove(&pmu_idr, pmu->type); 11517 if (pmu_bus_running) { 11518 if (pmu->nr_addr_filters) 11519 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11520 device_del(pmu->dev); 11521 put_device(pmu->dev); 11522 } 11523 free_pmu_context(pmu); 11524 mutex_unlock(&pmus_lock); 11525 } 11526 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11527 11528 static inline bool has_extended_regs(struct perf_event *event) 11529 { 11530 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11531 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11532 } 11533 11534 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11535 { 11536 struct perf_event_context *ctx = NULL; 11537 int ret; 11538 11539 if (!try_module_get(pmu->module)) 11540 return -ENODEV; 11541 11542 /* 11543 * A number of pmu->event_init() methods iterate the sibling_list to, 11544 * for example, validate if the group fits on the PMU. Therefore, 11545 * if this is a sibling event, acquire the ctx->mutex to protect 11546 * the sibling_list. 11547 */ 11548 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11549 /* 11550 * This ctx->mutex can nest when we're called through 11551 * inheritance. See the perf_event_ctx_lock_nested() comment. 11552 */ 11553 ctx = perf_event_ctx_lock_nested(event->group_leader, 11554 SINGLE_DEPTH_NESTING); 11555 BUG_ON(!ctx); 11556 } 11557 11558 event->pmu = pmu; 11559 ret = pmu->event_init(event); 11560 11561 if (ctx) 11562 perf_event_ctx_unlock(event->group_leader, ctx); 11563 11564 if (!ret) { 11565 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11566 has_extended_regs(event)) 11567 ret = -EOPNOTSUPP; 11568 11569 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11570 event_has_any_exclude_flag(event)) 11571 ret = -EINVAL; 11572 11573 if (ret && event->destroy) 11574 event->destroy(event); 11575 } 11576 11577 if (ret) 11578 module_put(pmu->module); 11579 11580 return ret; 11581 } 11582 11583 static struct pmu *perf_init_event(struct perf_event *event) 11584 { 11585 bool extended_type = false; 11586 int idx, type, ret; 11587 struct pmu *pmu; 11588 11589 idx = srcu_read_lock(&pmus_srcu); 11590 11591 /* Try parent's PMU first: */ 11592 if (event->parent && event->parent->pmu) { 11593 pmu = event->parent->pmu; 11594 ret = perf_try_init_event(pmu, event); 11595 if (!ret) 11596 goto unlock; 11597 } 11598 11599 /* 11600 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11601 * are often aliases for PERF_TYPE_RAW. 11602 */ 11603 type = event->attr.type; 11604 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11605 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11606 if (!type) { 11607 type = PERF_TYPE_RAW; 11608 } else { 11609 extended_type = true; 11610 event->attr.config &= PERF_HW_EVENT_MASK; 11611 } 11612 } 11613 11614 again: 11615 rcu_read_lock(); 11616 pmu = idr_find(&pmu_idr, type); 11617 rcu_read_unlock(); 11618 if (pmu) { 11619 if (event->attr.type != type && type != PERF_TYPE_RAW && 11620 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11621 goto fail; 11622 11623 ret = perf_try_init_event(pmu, event); 11624 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11625 type = event->attr.type; 11626 goto again; 11627 } 11628 11629 if (ret) 11630 pmu = ERR_PTR(ret); 11631 11632 goto unlock; 11633 } 11634 11635 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11636 ret = perf_try_init_event(pmu, event); 11637 if (!ret) 11638 goto unlock; 11639 11640 if (ret != -ENOENT) { 11641 pmu = ERR_PTR(ret); 11642 goto unlock; 11643 } 11644 } 11645 fail: 11646 pmu = ERR_PTR(-ENOENT); 11647 unlock: 11648 srcu_read_unlock(&pmus_srcu, idx); 11649 11650 return pmu; 11651 } 11652 11653 static void attach_sb_event(struct perf_event *event) 11654 { 11655 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11656 11657 raw_spin_lock(&pel->lock); 11658 list_add_rcu(&event->sb_list, &pel->list); 11659 raw_spin_unlock(&pel->lock); 11660 } 11661 11662 /* 11663 * We keep a list of all !task (and therefore per-cpu) events 11664 * that need to receive side-band records. 11665 * 11666 * This avoids having to scan all the various PMU per-cpu contexts 11667 * looking for them. 11668 */ 11669 static void account_pmu_sb_event(struct perf_event *event) 11670 { 11671 if (is_sb_event(event)) 11672 attach_sb_event(event); 11673 } 11674 11675 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11676 static void account_freq_event_nohz(void) 11677 { 11678 #ifdef CONFIG_NO_HZ_FULL 11679 /* Lock so we don't race with concurrent unaccount */ 11680 spin_lock(&nr_freq_lock); 11681 if (atomic_inc_return(&nr_freq_events) == 1) 11682 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11683 spin_unlock(&nr_freq_lock); 11684 #endif 11685 } 11686 11687 static void account_freq_event(void) 11688 { 11689 if (tick_nohz_full_enabled()) 11690 account_freq_event_nohz(); 11691 else 11692 atomic_inc(&nr_freq_events); 11693 } 11694 11695 11696 static void account_event(struct perf_event *event) 11697 { 11698 bool inc = false; 11699 11700 if (event->parent) 11701 return; 11702 11703 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11704 inc = true; 11705 if (event->attr.mmap || event->attr.mmap_data) 11706 atomic_inc(&nr_mmap_events); 11707 if (event->attr.build_id) 11708 atomic_inc(&nr_build_id_events); 11709 if (event->attr.comm) 11710 atomic_inc(&nr_comm_events); 11711 if (event->attr.namespaces) 11712 atomic_inc(&nr_namespaces_events); 11713 if (event->attr.cgroup) 11714 atomic_inc(&nr_cgroup_events); 11715 if (event->attr.task) 11716 atomic_inc(&nr_task_events); 11717 if (event->attr.freq) 11718 account_freq_event(); 11719 if (event->attr.context_switch) { 11720 atomic_inc(&nr_switch_events); 11721 inc = true; 11722 } 11723 if (has_branch_stack(event)) 11724 inc = true; 11725 if (is_cgroup_event(event)) 11726 inc = true; 11727 if (event->attr.ksymbol) 11728 atomic_inc(&nr_ksymbol_events); 11729 if (event->attr.bpf_event) 11730 atomic_inc(&nr_bpf_events); 11731 if (event->attr.text_poke) 11732 atomic_inc(&nr_text_poke_events); 11733 11734 if (inc) { 11735 /* 11736 * We need the mutex here because static_branch_enable() 11737 * must complete *before* the perf_sched_count increment 11738 * becomes visible. 11739 */ 11740 if (atomic_inc_not_zero(&perf_sched_count)) 11741 goto enabled; 11742 11743 mutex_lock(&perf_sched_mutex); 11744 if (!atomic_read(&perf_sched_count)) { 11745 static_branch_enable(&perf_sched_events); 11746 /* 11747 * Guarantee that all CPUs observe they key change and 11748 * call the perf scheduling hooks before proceeding to 11749 * install events that need them. 11750 */ 11751 synchronize_rcu(); 11752 } 11753 /* 11754 * Now that we have waited for the sync_sched(), allow further 11755 * increments to by-pass the mutex. 11756 */ 11757 atomic_inc(&perf_sched_count); 11758 mutex_unlock(&perf_sched_mutex); 11759 } 11760 enabled: 11761 11762 account_pmu_sb_event(event); 11763 } 11764 11765 /* 11766 * Allocate and initialize an event structure 11767 */ 11768 static struct perf_event * 11769 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11770 struct task_struct *task, 11771 struct perf_event *group_leader, 11772 struct perf_event *parent_event, 11773 perf_overflow_handler_t overflow_handler, 11774 void *context, int cgroup_fd) 11775 { 11776 struct pmu *pmu; 11777 struct perf_event *event; 11778 struct hw_perf_event *hwc; 11779 long err = -EINVAL; 11780 int node; 11781 11782 if ((unsigned)cpu >= nr_cpu_ids) { 11783 if (!task || cpu != -1) 11784 return ERR_PTR(-EINVAL); 11785 } 11786 if (attr->sigtrap && !task) { 11787 /* Requires a task: avoid signalling random tasks. */ 11788 return ERR_PTR(-EINVAL); 11789 } 11790 11791 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11792 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11793 node); 11794 if (!event) 11795 return ERR_PTR(-ENOMEM); 11796 11797 /* 11798 * Single events are their own group leaders, with an 11799 * empty sibling list: 11800 */ 11801 if (!group_leader) 11802 group_leader = event; 11803 11804 mutex_init(&event->child_mutex); 11805 INIT_LIST_HEAD(&event->child_list); 11806 11807 INIT_LIST_HEAD(&event->event_entry); 11808 INIT_LIST_HEAD(&event->sibling_list); 11809 INIT_LIST_HEAD(&event->active_list); 11810 init_event_group(event); 11811 INIT_LIST_HEAD(&event->rb_entry); 11812 INIT_LIST_HEAD(&event->active_entry); 11813 INIT_LIST_HEAD(&event->addr_filters.list); 11814 INIT_HLIST_NODE(&event->hlist_entry); 11815 11816 11817 init_waitqueue_head(&event->waitq); 11818 init_irq_work(&event->pending_irq, perf_pending_irq); 11819 init_task_work(&event->pending_task, perf_pending_task); 11820 11821 mutex_init(&event->mmap_mutex); 11822 raw_spin_lock_init(&event->addr_filters.lock); 11823 11824 atomic_long_set(&event->refcount, 1); 11825 event->cpu = cpu; 11826 event->attr = *attr; 11827 event->group_leader = group_leader; 11828 event->pmu = NULL; 11829 event->oncpu = -1; 11830 11831 event->parent = parent_event; 11832 11833 event->ns = get_pid_ns(task_active_pid_ns(current)); 11834 event->id = atomic64_inc_return(&perf_event_id); 11835 11836 event->state = PERF_EVENT_STATE_INACTIVE; 11837 11838 if (parent_event) 11839 event->event_caps = parent_event->event_caps; 11840 11841 if (task) { 11842 event->attach_state = PERF_ATTACH_TASK; 11843 /* 11844 * XXX pmu::event_init needs to know what task to account to 11845 * and we cannot use the ctx information because we need the 11846 * pmu before we get a ctx. 11847 */ 11848 event->hw.target = get_task_struct(task); 11849 } 11850 11851 event->clock = &local_clock; 11852 if (parent_event) 11853 event->clock = parent_event->clock; 11854 11855 if (!overflow_handler && parent_event) { 11856 overflow_handler = parent_event->overflow_handler; 11857 context = parent_event->overflow_handler_context; 11858 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11859 if (overflow_handler == bpf_overflow_handler) { 11860 struct bpf_prog *prog = parent_event->prog; 11861 11862 bpf_prog_inc(prog); 11863 event->prog = prog; 11864 event->orig_overflow_handler = 11865 parent_event->orig_overflow_handler; 11866 } 11867 #endif 11868 } 11869 11870 if (overflow_handler) { 11871 event->overflow_handler = overflow_handler; 11872 event->overflow_handler_context = context; 11873 } else if (is_write_backward(event)){ 11874 event->overflow_handler = perf_event_output_backward; 11875 event->overflow_handler_context = NULL; 11876 } else { 11877 event->overflow_handler = perf_event_output_forward; 11878 event->overflow_handler_context = NULL; 11879 } 11880 11881 perf_event__state_init(event); 11882 11883 pmu = NULL; 11884 11885 hwc = &event->hw; 11886 hwc->sample_period = attr->sample_period; 11887 if (attr->freq && attr->sample_freq) 11888 hwc->sample_period = 1; 11889 hwc->last_period = hwc->sample_period; 11890 11891 local64_set(&hwc->period_left, hwc->sample_period); 11892 11893 /* 11894 * We currently do not support PERF_SAMPLE_READ on inherited events. 11895 * See perf_output_read(). 11896 */ 11897 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11898 goto err_ns; 11899 11900 if (!has_branch_stack(event)) 11901 event->attr.branch_sample_type = 0; 11902 11903 pmu = perf_init_event(event); 11904 if (IS_ERR(pmu)) { 11905 err = PTR_ERR(pmu); 11906 goto err_ns; 11907 } 11908 11909 /* 11910 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11911 * events (they don't make sense as the cgroup will be different 11912 * on other CPUs in the uncore mask). 11913 */ 11914 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11915 err = -EINVAL; 11916 goto err_pmu; 11917 } 11918 11919 if (event->attr.aux_output && 11920 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11921 err = -EOPNOTSUPP; 11922 goto err_pmu; 11923 } 11924 11925 if (cgroup_fd != -1) { 11926 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11927 if (err) 11928 goto err_pmu; 11929 } 11930 11931 err = exclusive_event_init(event); 11932 if (err) 11933 goto err_pmu; 11934 11935 if (has_addr_filter(event)) { 11936 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11937 sizeof(struct perf_addr_filter_range), 11938 GFP_KERNEL); 11939 if (!event->addr_filter_ranges) { 11940 err = -ENOMEM; 11941 goto err_per_task; 11942 } 11943 11944 /* 11945 * Clone the parent's vma offsets: they are valid until exec() 11946 * even if the mm is not shared with the parent. 11947 */ 11948 if (event->parent) { 11949 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11950 11951 raw_spin_lock_irq(&ifh->lock); 11952 memcpy(event->addr_filter_ranges, 11953 event->parent->addr_filter_ranges, 11954 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11955 raw_spin_unlock_irq(&ifh->lock); 11956 } 11957 11958 /* force hw sync on the address filters */ 11959 event->addr_filters_gen = 1; 11960 } 11961 11962 if (!event->parent) { 11963 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11964 err = get_callchain_buffers(attr->sample_max_stack); 11965 if (err) 11966 goto err_addr_filters; 11967 } 11968 } 11969 11970 err = security_perf_event_alloc(event); 11971 if (err) 11972 goto err_callchain_buffer; 11973 11974 /* symmetric to unaccount_event() in _free_event() */ 11975 account_event(event); 11976 11977 return event; 11978 11979 err_callchain_buffer: 11980 if (!event->parent) { 11981 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11982 put_callchain_buffers(); 11983 } 11984 err_addr_filters: 11985 kfree(event->addr_filter_ranges); 11986 11987 err_per_task: 11988 exclusive_event_destroy(event); 11989 11990 err_pmu: 11991 if (is_cgroup_event(event)) 11992 perf_detach_cgroup(event); 11993 if (event->destroy) 11994 event->destroy(event); 11995 module_put(pmu->module); 11996 err_ns: 11997 if (event->hw.target) 11998 put_task_struct(event->hw.target); 11999 call_rcu(&event->rcu_head, free_event_rcu); 12000 12001 return ERR_PTR(err); 12002 } 12003 12004 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12005 struct perf_event_attr *attr) 12006 { 12007 u32 size; 12008 int ret; 12009 12010 /* Zero the full structure, so that a short copy will be nice. */ 12011 memset(attr, 0, sizeof(*attr)); 12012 12013 ret = get_user(size, &uattr->size); 12014 if (ret) 12015 return ret; 12016 12017 /* ABI compatibility quirk: */ 12018 if (!size) 12019 size = PERF_ATTR_SIZE_VER0; 12020 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12021 goto err_size; 12022 12023 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12024 if (ret) { 12025 if (ret == -E2BIG) 12026 goto err_size; 12027 return ret; 12028 } 12029 12030 attr->size = size; 12031 12032 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12033 return -EINVAL; 12034 12035 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12036 return -EINVAL; 12037 12038 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12039 return -EINVAL; 12040 12041 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12042 u64 mask = attr->branch_sample_type; 12043 12044 /* only using defined bits */ 12045 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12046 return -EINVAL; 12047 12048 /* at least one branch bit must be set */ 12049 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12050 return -EINVAL; 12051 12052 /* propagate priv level, when not set for branch */ 12053 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12054 12055 /* exclude_kernel checked on syscall entry */ 12056 if (!attr->exclude_kernel) 12057 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12058 12059 if (!attr->exclude_user) 12060 mask |= PERF_SAMPLE_BRANCH_USER; 12061 12062 if (!attr->exclude_hv) 12063 mask |= PERF_SAMPLE_BRANCH_HV; 12064 /* 12065 * adjust user setting (for HW filter setup) 12066 */ 12067 attr->branch_sample_type = mask; 12068 } 12069 /* privileged levels capture (kernel, hv): check permissions */ 12070 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12071 ret = perf_allow_kernel(attr); 12072 if (ret) 12073 return ret; 12074 } 12075 } 12076 12077 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12078 ret = perf_reg_validate(attr->sample_regs_user); 12079 if (ret) 12080 return ret; 12081 } 12082 12083 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12084 if (!arch_perf_have_user_stack_dump()) 12085 return -ENOSYS; 12086 12087 /* 12088 * We have __u32 type for the size, but so far 12089 * we can only use __u16 as maximum due to the 12090 * __u16 sample size limit. 12091 */ 12092 if (attr->sample_stack_user >= USHRT_MAX) 12093 return -EINVAL; 12094 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12095 return -EINVAL; 12096 } 12097 12098 if (!attr->sample_max_stack) 12099 attr->sample_max_stack = sysctl_perf_event_max_stack; 12100 12101 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12102 ret = perf_reg_validate(attr->sample_regs_intr); 12103 12104 #ifndef CONFIG_CGROUP_PERF 12105 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12106 return -EINVAL; 12107 #endif 12108 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12109 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12110 return -EINVAL; 12111 12112 if (!attr->inherit && attr->inherit_thread) 12113 return -EINVAL; 12114 12115 if (attr->remove_on_exec && attr->enable_on_exec) 12116 return -EINVAL; 12117 12118 if (attr->sigtrap && !attr->remove_on_exec) 12119 return -EINVAL; 12120 12121 out: 12122 return ret; 12123 12124 err_size: 12125 put_user(sizeof(*attr), &uattr->size); 12126 ret = -E2BIG; 12127 goto out; 12128 } 12129 12130 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12131 { 12132 if (b < a) 12133 swap(a, b); 12134 12135 mutex_lock(a); 12136 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12137 } 12138 12139 static int 12140 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12141 { 12142 struct perf_buffer *rb = NULL; 12143 int ret = -EINVAL; 12144 12145 if (!output_event) { 12146 mutex_lock(&event->mmap_mutex); 12147 goto set; 12148 } 12149 12150 /* don't allow circular references */ 12151 if (event == output_event) 12152 goto out; 12153 12154 /* 12155 * Don't allow cross-cpu buffers 12156 */ 12157 if (output_event->cpu != event->cpu) 12158 goto out; 12159 12160 /* 12161 * If its not a per-cpu rb, it must be the same task. 12162 */ 12163 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 12164 goto out; 12165 12166 /* 12167 * Mixing clocks in the same buffer is trouble you don't need. 12168 */ 12169 if (output_event->clock != event->clock) 12170 goto out; 12171 12172 /* 12173 * Either writing ring buffer from beginning or from end. 12174 * Mixing is not allowed. 12175 */ 12176 if (is_write_backward(output_event) != is_write_backward(event)) 12177 goto out; 12178 12179 /* 12180 * If both events generate aux data, they must be on the same PMU 12181 */ 12182 if (has_aux(event) && has_aux(output_event) && 12183 event->pmu != output_event->pmu) 12184 goto out; 12185 12186 /* 12187 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12188 * output_event is already on rb->event_list, and the list iteration 12189 * restarts after every removal, it is guaranteed this new event is 12190 * observed *OR* if output_event is already removed, it's guaranteed we 12191 * observe !rb->mmap_count. 12192 */ 12193 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12194 set: 12195 /* Can't redirect output if we've got an active mmap() */ 12196 if (atomic_read(&event->mmap_count)) 12197 goto unlock; 12198 12199 if (output_event) { 12200 /* get the rb we want to redirect to */ 12201 rb = ring_buffer_get(output_event); 12202 if (!rb) 12203 goto unlock; 12204 12205 /* did we race against perf_mmap_close() */ 12206 if (!atomic_read(&rb->mmap_count)) { 12207 ring_buffer_put(rb); 12208 goto unlock; 12209 } 12210 } 12211 12212 ring_buffer_attach(event, rb); 12213 12214 ret = 0; 12215 unlock: 12216 mutex_unlock(&event->mmap_mutex); 12217 if (output_event) 12218 mutex_unlock(&output_event->mmap_mutex); 12219 12220 out: 12221 return ret; 12222 } 12223 12224 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12225 { 12226 bool nmi_safe = false; 12227 12228 switch (clk_id) { 12229 case CLOCK_MONOTONIC: 12230 event->clock = &ktime_get_mono_fast_ns; 12231 nmi_safe = true; 12232 break; 12233 12234 case CLOCK_MONOTONIC_RAW: 12235 event->clock = &ktime_get_raw_fast_ns; 12236 nmi_safe = true; 12237 break; 12238 12239 case CLOCK_REALTIME: 12240 event->clock = &ktime_get_real_ns; 12241 break; 12242 12243 case CLOCK_BOOTTIME: 12244 event->clock = &ktime_get_boottime_ns; 12245 break; 12246 12247 case CLOCK_TAI: 12248 event->clock = &ktime_get_clocktai_ns; 12249 break; 12250 12251 default: 12252 return -EINVAL; 12253 } 12254 12255 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12256 return -EINVAL; 12257 12258 return 0; 12259 } 12260 12261 static bool 12262 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12263 { 12264 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12265 bool is_capable = perfmon_capable(); 12266 12267 if (attr->sigtrap) { 12268 /* 12269 * perf_event_attr::sigtrap sends signals to the other task. 12270 * Require the current task to also have CAP_KILL. 12271 */ 12272 rcu_read_lock(); 12273 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12274 rcu_read_unlock(); 12275 12276 /* 12277 * If the required capabilities aren't available, checks for 12278 * ptrace permissions: upgrade to ATTACH, since sending signals 12279 * can effectively change the target task. 12280 */ 12281 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12282 } 12283 12284 /* 12285 * Preserve ptrace permission check for backwards compatibility. The 12286 * ptrace check also includes checks that the current task and other 12287 * task have matching uids, and is therefore not done here explicitly. 12288 */ 12289 return is_capable || ptrace_may_access(task, ptrace_mode); 12290 } 12291 12292 /** 12293 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12294 * 12295 * @attr_uptr: event_id type attributes for monitoring/sampling 12296 * @pid: target pid 12297 * @cpu: target cpu 12298 * @group_fd: group leader event fd 12299 * @flags: perf event open flags 12300 */ 12301 SYSCALL_DEFINE5(perf_event_open, 12302 struct perf_event_attr __user *, attr_uptr, 12303 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12304 { 12305 struct perf_event *group_leader = NULL, *output_event = NULL; 12306 struct perf_event_pmu_context *pmu_ctx; 12307 struct perf_event *event, *sibling; 12308 struct perf_event_attr attr; 12309 struct perf_event_context *ctx; 12310 struct file *event_file = NULL; 12311 struct fd group = {NULL, 0}; 12312 struct task_struct *task = NULL; 12313 struct pmu *pmu; 12314 int event_fd; 12315 int move_group = 0; 12316 int err; 12317 int f_flags = O_RDWR; 12318 int cgroup_fd = -1; 12319 12320 /* for future expandability... */ 12321 if (flags & ~PERF_FLAG_ALL) 12322 return -EINVAL; 12323 12324 err = perf_copy_attr(attr_uptr, &attr); 12325 if (err) 12326 return err; 12327 12328 /* Do we allow access to perf_event_open(2) ? */ 12329 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12330 if (err) 12331 return err; 12332 12333 if (!attr.exclude_kernel) { 12334 err = perf_allow_kernel(&attr); 12335 if (err) 12336 return err; 12337 } 12338 12339 if (attr.namespaces) { 12340 if (!perfmon_capable()) 12341 return -EACCES; 12342 } 12343 12344 if (attr.freq) { 12345 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12346 return -EINVAL; 12347 } else { 12348 if (attr.sample_period & (1ULL << 63)) 12349 return -EINVAL; 12350 } 12351 12352 /* Only privileged users can get physical addresses */ 12353 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12354 err = perf_allow_kernel(&attr); 12355 if (err) 12356 return err; 12357 } 12358 12359 /* REGS_INTR can leak data, lockdown must prevent this */ 12360 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12361 err = security_locked_down(LOCKDOWN_PERF); 12362 if (err) 12363 return err; 12364 } 12365 12366 /* 12367 * In cgroup mode, the pid argument is used to pass the fd 12368 * opened to the cgroup directory in cgroupfs. The cpu argument 12369 * designates the cpu on which to monitor threads from that 12370 * cgroup. 12371 */ 12372 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12373 return -EINVAL; 12374 12375 if (flags & PERF_FLAG_FD_CLOEXEC) 12376 f_flags |= O_CLOEXEC; 12377 12378 event_fd = get_unused_fd_flags(f_flags); 12379 if (event_fd < 0) 12380 return event_fd; 12381 12382 if (group_fd != -1) { 12383 err = perf_fget_light(group_fd, &group); 12384 if (err) 12385 goto err_fd; 12386 group_leader = group.file->private_data; 12387 if (flags & PERF_FLAG_FD_OUTPUT) 12388 output_event = group_leader; 12389 if (flags & PERF_FLAG_FD_NO_GROUP) 12390 group_leader = NULL; 12391 } 12392 12393 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12394 task = find_lively_task_by_vpid(pid); 12395 if (IS_ERR(task)) { 12396 err = PTR_ERR(task); 12397 goto err_group_fd; 12398 } 12399 } 12400 12401 if (task && group_leader && 12402 group_leader->attr.inherit != attr.inherit) { 12403 err = -EINVAL; 12404 goto err_task; 12405 } 12406 12407 if (flags & PERF_FLAG_PID_CGROUP) 12408 cgroup_fd = pid; 12409 12410 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12411 NULL, NULL, cgroup_fd); 12412 if (IS_ERR(event)) { 12413 err = PTR_ERR(event); 12414 goto err_task; 12415 } 12416 12417 if (is_sampling_event(event)) { 12418 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12419 err = -EOPNOTSUPP; 12420 goto err_alloc; 12421 } 12422 } 12423 12424 /* 12425 * Special case software events and allow them to be part of 12426 * any hardware group. 12427 */ 12428 pmu = event->pmu; 12429 12430 if (attr.use_clockid) { 12431 err = perf_event_set_clock(event, attr.clockid); 12432 if (err) 12433 goto err_alloc; 12434 } 12435 12436 if (pmu->task_ctx_nr == perf_sw_context) 12437 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12438 12439 if (task) { 12440 err = down_read_interruptible(&task->signal->exec_update_lock); 12441 if (err) 12442 goto err_alloc; 12443 12444 /* 12445 * We must hold exec_update_lock across this and any potential 12446 * perf_install_in_context() call for this new event to 12447 * serialize against exec() altering our credentials (and the 12448 * perf_event_exit_task() that could imply). 12449 */ 12450 err = -EACCES; 12451 if (!perf_check_permission(&attr, task)) 12452 goto err_cred; 12453 } 12454 12455 /* 12456 * Get the target context (task or percpu): 12457 */ 12458 ctx = find_get_context(task, event); 12459 if (IS_ERR(ctx)) { 12460 err = PTR_ERR(ctx); 12461 goto err_cred; 12462 } 12463 12464 mutex_lock(&ctx->mutex); 12465 12466 if (ctx->task == TASK_TOMBSTONE) { 12467 err = -ESRCH; 12468 goto err_locked; 12469 } 12470 12471 if (!task) { 12472 /* 12473 * Check if the @cpu we're creating an event for is online. 12474 * 12475 * We use the perf_cpu_context::ctx::mutex to serialize against 12476 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12477 */ 12478 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12479 12480 if (!cpuctx->online) { 12481 err = -ENODEV; 12482 goto err_locked; 12483 } 12484 } 12485 12486 if (group_leader) { 12487 err = -EINVAL; 12488 12489 /* 12490 * Do not allow a recursive hierarchy (this new sibling 12491 * becoming part of another group-sibling): 12492 */ 12493 if (group_leader->group_leader != group_leader) 12494 goto err_locked; 12495 12496 /* All events in a group should have the same clock */ 12497 if (group_leader->clock != event->clock) 12498 goto err_locked; 12499 12500 /* 12501 * Make sure we're both events for the same CPU; 12502 * grouping events for different CPUs is broken; since 12503 * you can never concurrently schedule them anyhow. 12504 */ 12505 if (group_leader->cpu != event->cpu) 12506 goto err_locked; 12507 12508 /* 12509 * Make sure we're both on the same context; either task or cpu. 12510 */ 12511 if (group_leader->ctx != ctx) 12512 goto err_locked; 12513 12514 /* 12515 * Only a group leader can be exclusive or pinned 12516 */ 12517 if (attr.exclusive || attr.pinned) 12518 goto err_locked; 12519 12520 if (is_software_event(event) && 12521 !in_software_context(group_leader)) { 12522 /* 12523 * If the event is a sw event, but the group_leader 12524 * is on hw context. 12525 * 12526 * Allow the addition of software events to hw 12527 * groups, this is safe because software events 12528 * never fail to schedule. 12529 * 12530 * Note the comment that goes with struct 12531 * perf_event_pmu_context. 12532 */ 12533 pmu = group_leader->pmu_ctx->pmu; 12534 } else if (!is_software_event(event)) { 12535 if (is_software_event(group_leader) && 12536 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12537 /* 12538 * In case the group is a pure software group, and we 12539 * try to add a hardware event, move the whole group to 12540 * the hardware context. 12541 */ 12542 move_group = 1; 12543 } 12544 12545 /* Don't allow group of multiple hw events from different pmus */ 12546 if (!in_software_context(group_leader) && 12547 group_leader->pmu_ctx->pmu != pmu) 12548 goto err_locked; 12549 } 12550 } 12551 12552 /* 12553 * Now that we're certain of the pmu; find the pmu_ctx. 12554 */ 12555 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12556 if (IS_ERR(pmu_ctx)) { 12557 err = PTR_ERR(pmu_ctx); 12558 goto err_locked; 12559 } 12560 event->pmu_ctx = pmu_ctx; 12561 12562 if (output_event) { 12563 err = perf_event_set_output(event, output_event); 12564 if (err) 12565 goto err_context; 12566 } 12567 12568 if (!perf_event_validate_size(event)) { 12569 err = -E2BIG; 12570 goto err_context; 12571 } 12572 12573 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12574 err = -EINVAL; 12575 goto err_context; 12576 } 12577 12578 /* 12579 * Must be under the same ctx::mutex as perf_install_in_context(), 12580 * because we need to serialize with concurrent event creation. 12581 */ 12582 if (!exclusive_event_installable(event, ctx)) { 12583 err = -EBUSY; 12584 goto err_context; 12585 } 12586 12587 WARN_ON_ONCE(ctx->parent_ctx); 12588 12589 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12590 if (IS_ERR(event_file)) { 12591 err = PTR_ERR(event_file); 12592 event_file = NULL; 12593 goto err_context; 12594 } 12595 12596 /* 12597 * This is the point on no return; we cannot fail hereafter. This is 12598 * where we start modifying current state. 12599 */ 12600 12601 if (move_group) { 12602 perf_remove_from_context(group_leader, 0); 12603 put_pmu_ctx(group_leader->pmu_ctx); 12604 12605 for_each_sibling_event(sibling, group_leader) { 12606 perf_remove_from_context(sibling, 0); 12607 put_pmu_ctx(sibling->pmu_ctx); 12608 } 12609 12610 /* 12611 * Install the group siblings before the group leader. 12612 * 12613 * Because a group leader will try and install the entire group 12614 * (through the sibling list, which is still in-tact), we can 12615 * end up with siblings installed in the wrong context. 12616 * 12617 * By installing siblings first we NO-OP because they're not 12618 * reachable through the group lists. 12619 */ 12620 for_each_sibling_event(sibling, group_leader) { 12621 sibling->pmu_ctx = pmu_ctx; 12622 get_pmu_ctx(pmu_ctx); 12623 perf_event__state_init(sibling); 12624 perf_install_in_context(ctx, sibling, sibling->cpu); 12625 } 12626 12627 /* 12628 * Removing from the context ends up with disabled 12629 * event. What we want here is event in the initial 12630 * startup state, ready to be add into new context. 12631 */ 12632 group_leader->pmu_ctx = pmu_ctx; 12633 get_pmu_ctx(pmu_ctx); 12634 perf_event__state_init(group_leader); 12635 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12636 } 12637 12638 /* 12639 * Precalculate sample_data sizes; do while holding ctx::mutex such 12640 * that we're serialized against further additions and before 12641 * perf_install_in_context() which is the point the event is active and 12642 * can use these values. 12643 */ 12644 perf_event__header_size(event); 12645 perf_event__id_header_size(event); 12646 12647 event->owner = current; 12648 12649 perf_install_in_context(ctx, event, event->cpu); 12650 perf_unpin_context(ctx); 12651 12652 mutex_unlock(&ctx->mutex); 12653 12654 if (task) { 12655 up_read(&task->signal->exec_update_lock); 12656 put_task_struct(task); 12657 } 12658 12659 mutex_lock(¤t->perf_event_mutex); 12660 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12661 mutex_unlock(¤t->perf_event_mutex); 12662 12663 /* 12664 * Drop the reference on the group_event after placing the 12665 * new event on the sibling_list. This ensures destruction 12666 * of the group leader will find the pointer to itself in 12667 * perf_group_detach(). 12668 */ 12669 fdput(group); 12670 fd_install(event_fd, event_file); 12671 return event_fd; 12672 12673 err_context: 12674 put_pmu_ctx(event->pmu_ctx); 12675 event->pmu_ctx = NULL; /* _free_event() */ 12676 err_locked: 12677 mutex_unlock(&ctx->mutex); 12678 perf_unpin_context(ctx); 12679 put_ctx(ctx); 12680 err_cred: 12681 if (task) 12682 up_read(&task->signal->exec_update_lock); 12683 err_alloc: 12684 free_event(event); 12685 err_task: 12686 if (task) 12687 put_task_struct(task); 12688 err_group_fd: 12689 fdput(group); 12690 err_fd: 12691 put_unused_fd(event_fd); 12692 return err; 12693 } 12694 12695 /** 12696 * perf_event_create_kernel_counter 12697 * 12698 * @attr: attributes of the counter to create 12699 * @cpu: cpu in which the counter is bound 12700 * @task: task to profile (NULL for percpu) 12701 * @overflow_handler: callback to trigger when we hit the event 12702 * @context: context data could be used in overflow_handler callback 12703 */ 12704 struct perf_event * 12705 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12706 struct task_struct *task, 12707 perf_overflow_handler_t overflow_handler, 12708 void *context) 12709 { 12710 struct perf_event_pmu_context *pmu_ctx; 12711 struct perf_event_context *ctx; 12712 struct perf_event *event; 12713 struct pmu *pmu; 12714 int err; 12715 12716 /* 12717 * Grouping is not supported for kernel events, neither is 'AUX', 12718 * make sure the caller's intentions are adjusted. 12719 */ 12720 if (attr->aux_output) 12721 return ERR_PTR(-EINVAL); 12722 12723 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12724 overflow_handler, context, -1); 12725 if (IS_ERR(event)) { 12726 err = PTR_ERR(event); 12727 goto err; 12728 } 12729 12730 /* Mark owner so we could distinguish it from user events. */ 12731 event->owner = TASK_TOMBSTONE; 12732 pmu = event->pmu; 12733 12734 if (pmu->task_ctx_nr == perf_sw_context) 12735 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12736 12737 /* 12738 * Get the target context (task or percpu): 12739 */ 12740 ctx = find_get_context(task, event); 12741 if (IS_ERR(ctx)) { 12742 err = PTR_ERR(ctx); 12743 goto err_alloc; 12744 } 12745 12746 WARN_ON_ONCE(ctx->parent_ctx); 12747 mutex_lock(&ctx->mutex); 12748 if (ctx->task == TASK_TOMBSTONE) { 12749 err = -ESRCH; 12750 goto err_unlock; 12751 } 12752 12753 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12754 if (IS_ERR(pmu_ctx)) { 12755 err = PTR_ERR(pmu_ctx); 12756 goto err_unlock; 12757 } 12758 event->pmu_ctx = pmu_ctx; 12759 12760 if (!task) { 12761 /* 12762 * Check if the @cpu we're creating an event for is online. 12763 * 12764 * We use the perf_cpu_context::ctx::mutex to serialize against 12765 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12766 */ 12767 struct perf_cpu_context *cpuctx = 12768 container_of(ctx, struct perf_cpu_context, ctx); 12769 if (!cpuctx->online) { 12770 err = -ENODEV; 12771 goto err_pmu_ctx; 12772 } 12773 } 12774 12775 if (!exclusive_event_installable(event, ctx)) { 12776 err = -EBUSY; 12777 goto err_pmu_ctx; 12778 } 12779 12780 perf_install_in_context(ctx, event, event->cpu); 12781 perf_unpin_context(ctx); 12782 mutex_unlock(&ctx->mutex); 12783 12784 return event; 12785 12786 err_pmu_ctx: 12787 put_pmu_ctx(pmu_ctx); 12788 event->pmu_ctx = NULL; /* _free_event() */ 12789 err_unlock: 12790 mutex_unlock(&ctx->mutex); 12791 perf_unpin_context(ctx); 12792 put_ctx(ctx); 12793 err_alloc: 12794 free_event(event); 12795 err: 12796 return ERR_PTR(err); 12797 } 12798 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12799 12800 static void __perf_pmu_remove(struct perf_event_context *ctx, 12801 int cpu, struct pmu *pmu, 12802 struct perf_event_groups *groups, 12803 struct list_head *events) 12804 { 12805 struct perf_event *event, *sibling; 12806 12807 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12808 perf_remove_from_context(event, 0); 12809 put_pmu_ctx(event->pmu_ctx); 12810 list_add(&event->migrate_entry, events); 12811 12812 for_each_sibling_event(sibling, event) { 12813 perf_remove_from_context(sibling, 0); 12814 put_pmu_ctx(sibling->pmu_ctx); 12815 list_add(&sibling->migrate_entry, events); 12816 } 12817 } 12818 } 12819 12820 static void __perf_pmu_install_event(struct pmu *pmu, 12821 struct perf_event_context *ctx, 12822 int cpu, struct perf_event *event) 12823 { 12824 struct perf_event_pmu_context *epc; 12825 12826 event->cpu = cpu; 12827 epc = find_get_pmu_context(pmu, ctx, event); 12828 event->pmu_ctx = epc; 12829 12830 if (event->state >= PERF_EVENT_STATE_OFF) 12831 event->state = PERF_EVENT_STATE_INACTIVE; 12832 perf_install_in_context(ctx, event, cpu); 12833 } 12834 12835 static void __perf_pmu_install(struct perf_event_context *ctx, 12836 int cpu, struct pmu *pmu, struct list_head *events) 12837 { 12838 struct perf_event *event, *tmp; 12839 12840 /* 12841 * Re-instate events in 2 passes. 12842 * 12843 * Skip over group leaders and only install siblings on this first 12844 * pass, siblings will not get enabled without a leader, however a 12845 * leader will enable its siblings, even if those are still on the old 12846 * context. 12847 */ 12848 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12849 if (event->group_leader == event) 12850 continue; 12851 12852 list_del(&event->migrate_entry); 12853 __perf_pmu_install_event(pmu, ctx, cpu, event); 12854 } 12855 12856 /* 12857 * Once all the siblings are setup properly, install the group leaders 12858 * to make it go. 12859 */ 12860 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12861 list_del(&event->migrate_entry); 12862 __perf_pmu_install_event(pmu, ctx, cpu, event); 12863 } 12864 } 12865 12866 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12867 { 12868 struct perf_event_context *src_ctx, *dst_ctx; 12869 LIST_HEAD(events); 12870 12871 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12872 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12873 12874 /* 12875 * See perf_event_ctx_lock() for comments on the details 12876 * of swizzling perf_event::ctx. 12877 */ 12878 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12879 12880 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12881 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12882 12883 /* 12884 * Wait for the events to quiesce before re-instating them. 12885 */ 12886 synchronize_rcu(); 12887 12888 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12889 12890 mutex_unlock(&dst_ctx->mutex); 12891 mutex_unlock(&src_ctx->mutex); 12892 } 12893 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12894 12895 static void sync_child_event(struct perf_event *child_event) 12896 { 12897 struct perf_event *parent_event = child_event->parent; 12898 u64 child_val; 12899 12900 if (child_event->attr.inherit_stat) { 12901 struct task_struct *task = child_event->ctx->task; 12902 12903 if (task && task != TASK_TOMBSTONE) 12904 perf_event_read_event(child_event, task); 12905 } 12906 12907 child_val = perf_event_count(child_event); 12908 12909 /* 12910 * Add back the child's count to the parent's count: 12911 */ 12912 atomic64_add(child_val, &parent_event->child_count); 12913 atomic64_add(child_event->total_time_enabled, 12914 &parent_event->child_total_time_enabled); 12915 atomic64_add(child_event->total_time_running, 12916 &parent_event->child_total_time_running); 12917 } 12918 12919 static void 12920 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12921 { 12922 struct perf_event *parent_event = event->parent; 12923 unsigned long detach_flags = 0; 12924 12925 if (parent_event) { 12926 /* 12927 * Do not destroy the 'original' grouping; because of the 12928 * context switch optimization the original events could've 12929 * ended up in a random child task. 12930 * 12931 * If we were to destroy the original group, all group related 12932 * operations would cease to function properly after this 12933 * random child dies. 12934 * 12935 * Do destroy all inherited groups, we don't care about those 12936 * and being thorough is better. 12937 */ 12938 detach_flags = DETACH_GROUP | DETACH_CHILD; 12939 mutex_lock(&parent_event->child_mutex); 12940 } 12941 12942 perf_remove_from_context(event, detach_flags); 12943 12944 raw_spin_lock_irq(&ctx->lock); 12945 if (event->state > PERF_EVENT_STATE_EXIT) 12946 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12947 raw_spin_unlock_irq(&ctx->lock); 12948 12949 /* 12950 * Child events can be freed. 12951 */ 12952 if (parent_event) { 12953 mutex_unlock(&parent_event->child_mutex); 12954 /* 12955 * Kick perf_poll() for is_event_hup(); 12956 */ 12957 perf_event_wakeup(parent_event); 12958 free_event(event); 12959 put_event(parent_event); 12960 return; 12961 } 12962 12963 /* 12964 * Parent events are governed by their filedesc, retain them. 12965 */ 12966 perf_event_wakeup(event); 12967 } 12968 12969 static void perf_event_exit_task_context(struct task_struct *child) 12970 { 12971 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12972 struct perf_event *child_event, *next; 12973 12974 WARN_ON_ONCE(child != current); 12975 12976 child_ctx = perf_pin_task_context(child); 12977 if (!child_ctx) 12978 return; 12979 12980 /* 12981 * In order to reduce the amount of tricky in ctx tear-down, we hold 12982 * ctx::mutex over the entire thing. This serializes against almost 12983 * everything that wants to access the ctx. 12984 * 12985 * The exception is sys_perf_event_open() / 12986 * perf_event_create_kernel_count() which does find_get_context() 12987 * without ctx::mutex (it cannot because of the move_group double mutex 12988 * lock thing). See the comments in perf_install_in_context(). 12989 */ 12990 mutex_lock(&child_ctx->mutex); 12991 12992 /* 12993 * In a single ctx::lock section, de-schedule the events and detach the 12994 * context from the task such that we cannot ever get it scheduled back 12995 * in. 12996 */ 12997 raw_spin_lock_irq(&child_ctx->lock); 12998 task_ctx_sched_out(child_ctx, EVENT_ALL); 12999 13000 /* 13001 * Now that the context is inactive, destroy the task <-> ctx relation 13002 * and mark the context dead. 13003 */ 13004 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13005 put_ctx(child_ctx); /* cannot be last */ 13006 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13007 put_task_struct(current); /* cannot be last */ 13008 13009 clone_ctx = unclone_ctx(child_ctx); 13010 raw_spin_unlock_irq(&child_ctx->lock); 13011 13012 if (clone_ctx) 13013 put_ctx(clone_ctx); 13014 13015 /* 13016 * Report the task dead after unscheduling the events so that we 13017 * won't get any samples after PERF_RECORD_EXIT. We can however still 13018 * get a few PERF_RECORD_READ events. 13019 */ 13020 perf_event_task(child, child_ctx, 0); 13021 13022 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13023 perf_event_exit_event(child_event, child_ctx); 13024 13025 mutex_unlock(&child_ctx->mutex); 13026 13027 put_ctx(child_ctx); 13028 } 13029 13030 /* 13031 * When a child task exits, feed back event values to parent events. 13032 * 13033 * Can be called with exec_update_lock held when called from 13034 * setup_new_exec(). 13035 */ 13036 void perf_event_exit_task(struct task_struct *child) 13037 { 13038 struct perf_event *event, *tmp; 13039 13040 mutex_lock(&child->perf_event_mutex); 13041 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13042 owner_entry) { 13043 list_del_init(&event->owner_entry); 13044 13045 /* 13046 * Ensure the list deletion is visible before we clear 13047 * the owner, closes a race against perf_release() where 13048 * we need to serialize on the owner->perf_event_mutex. 13049 */ 13050 smp_store_release(&event->owner, NULL); 13051 } 13052 mutex_unlock(&child->perf_event_mutex); 13053 13054 perf_event_exit_task_context(child); 13055 13056 /* 13057 * The perf_event_exit_task_context calls perf_event_task 13058 * with child's task_ctx, which generates EXIT events for 13059 * child contexts and sets child->perf_event_ctxp[] to NULL. 13060 * At this point we need to send EXIT events to cpu contexts. 13061 */ 13062 perf_event_task(child, NULL, 0); 13063 } 13064 13065 static void perf_free_event(struct perf_event *event, 13066 struct perf_event_context *ctx) 13067 { 13068 struct perf_event *parent = event->parent; 13069 13070 if (WARN_ON_ONCE(!parent)) 13071 return; 13072 13073 mutex_lock(&parent->child_mutex); 13074 list_del_init(&event->child_list); 13075 mutex_unlock(&parent->child_mutex); 13076 13077 put_event(parent); 13078 13079 raw_spin_lock_irq(&ctx->lock); 13080 perf_group_detach(event); 13081 list_del_event(event, ctx); 13082 raw_spin_unlock_irq(&ctx->lock); 13083 free_event(event); 13084 } 13085 13086 /* 13087 * Free a context as created by inheritance by perf_event_init_task() below, 13088 * used by fork() in case of fail. 13089 * 13090 * Even though the task has never lived, the context and events have been 13091 * exposed through the child_list, so we must take care tearing it all down. 13092 */ 13093 void perf_event_free_task(struct task_struct *task) 13094 { 13095 struct perf_event_context *ctx; 13096 struct perf_event *event, *tmp; 13097 13098 ctx = rcu_access_pointer(task->perf_event_ctxp); 13099 if (!ctx) 13100 return; 13101 13102 mutex_lock(&ctx->mutex); 13103 raw_spin_lock_irq(&ctx->lock); 13104 /* 13105 * Destroy the task <-> ctx relation and mark the context dead. 13106 * 13107 * This is important because even though the task hasn't been 13108 * exposed yet the context has been (through child_list). 13109 */ 13110 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13111 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13112 put_task_struct(task); /* cannot be last */ 13113 raw_spin_unlock_irq(&ctx->lock); 13114 13115 13116 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13117 perf_free_event(event, ctx); 13118 13119 mutex_unlock(&ctx->mutex); 13120 13121 /* 13122 * perf_event_release_kernel() could've stolen some of our 13123 * child events and still have them on its free_list. In that 13124 * case we must wait for these events to have been freed (in 13125 * particular all their references to this task must've been 13126 * dropped). 13127 * 13128 * Without this copy_process() will unconditionally free this 13129 * task (irrespective of its reference count) and 13130 * _free_event()'s put_task_struct(event->hw.target) will be a 13131 * use-after-free. 13132 * 13133 * Wait for all events to drop their context reference. 13134 */ 13135 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13136 put_ctx(ctx); /* must be last */ 13137 } 13138 13139 void perf_event_delayed_put(struct task_struct *task) 13140 { 13141 WARN_ON_ONCE(task->perf_event_ctxp); 13142 } 13143 13144 struct file *perf_event_get(unsigned int fd) 13145 { 13146 struct file *file = fget(fd); 13147 if (!file) 13148 return ERR_PTR(-EBADF); 13149 13150 if (file->f_op != &perf_fops) { 13151 fput(file); 13152 return ERR_PTR(-EBADF); 13153 } 13154 13155 return file; 13156 } 13157 13158 const struct perf_event *perf_get_event(struct file *file) 13159 { 13160 if (file->f_op != &perf_fops) 13161 return ERR_PTR(-EINVAL); 13162 13163 return file->private_data; 13164 } 13165 13166 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13167 { 13168 if (!event) 13169 return ERR_PTR(-EINVAL); 13170 13171 return &event->attr; 13172 } 13173 13174 /* 13175 * Inherit an event from parent task to child task. 13176 * 13177 * Returns: 13178 * - valid pointer on success 13179 * - NULL for orphaned events 13180 * - IS_ERR() on error 13181 */ 13182 static struct perf_event * 13183 inherit_event(struct perf_event *parent_event, 13184 struct task_struct *parent, 13185 struct perf_event_context *parent_ctx, 13186 struct task_struct *child, 13187 struct perf_event *group_leader, 13188 struct perf_event_context *child_ctx) 13189 { 13190 enum perf_event_state parent_state = parent_event->state; 13191 struct perf_event_pmu_context *pmu_ctx; 13192 struct perf_event *child_event; 13193 unsigned long flags; 13194 13195 /* 13196 * Instead of creating recursive hierarchies of events, 13197 * we link inherited events back to the original parent, 13198 * which has a filp for sure, which we use as the reference 13199 * count: 13200 */ 13201 if (parent_event->parent) 13202 parent_event = parent_event->parent; 13203 13204 child_event = perf_event_alloc(&parent_event->attr, 13205 parent_event->cpu, 13206 child, 13207 group_leader, parent_event, 13208 NULL, NULL, -1); 13209 if (IS_ERR(child_event)) 13210 return child_event; 13211 13212 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13213 if (IS_ERR(pmu_ctx)) { 13214 free_event(child_event); 13215 return ERR_CAST(pmu_ctx); 13216 } 13217 child_event->pmu_ctx = pmu_ctx; 13218 13219 /* 13220 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13221 * must be under the same lock in order to serialize against 13222 * perf_event_release_kernel(), such that either we must observe 13223 * is_orphaned_event() or they will observe us on the child_list. 13224 */ 13225 mutex_lock(&parent_event->child_mutex); 13226 if (is_orphaned_event(parent_event) || 13227 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13228 mutex_unlock(&parent_event->child_mutex); 13229 /* task_ctx_data is freed with child_ctx */ 13230 free_event(child_event); 13231 return NULL; 13232 } 13233 13234 get_ctx(child_ctx); 13235 13236 /* 13237 * Make the child state follow the state of the parent event, 13238 * not its attr.disabled bit. We hold the parent's mutex, 13239 * so we won't race with perf_event_{en, dis}able_family. 13240 */ 13241 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13242 child_event->state = PERF_EVENT_STATE_INACTIVE; 13243 else 13244 child_event->state = PERF_EVENT_STATE_OFF; 13245 13246 if (parent_event->attr.freq) { 13247 u64 sample_period = parent_event->hw.sample_period; 13248 struct hw_perf_event *hwc = &child_event->hw; 13249 13250 hwc->sample_period = sample_period; 13251 hwc->last_period = sample_period; 13252 13253 local64_set(&hwc->period_left, sample_period); 13254 } 13255 13256 child_event->ctx = child_ctx; 13257 child_event->overflow_handler = parent_event->overflow_handler; 13258 child_event->overflow_handler_context 13259 = parent_event->overflow_handler_context; 13260 13261 /* 13262 * Precalculate sample_data sizes 13263 */ 13264 perf_event__header_size(child_event); 13265 perf_event__id_header_size(child_event); 13266 13267 /* 13268 * Link it up in the child's context: 13269 */ 13270 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13271 add_event_to_ctx(child_event, child_ctx); 13272 child_event->attach_state |= PERF_ATTACH_CHILD; 13273 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13274 13275 /* 13276 * Link this into the parent event's child list 13277 */ 13278 list_add_tail(&child_event->child_list, &parent_event->child_list); 13279 mutex_unlock(&parent_event->child_mutex); 13280 13281 return child_event; 13282 } 13283 13284 /* 13285 * Inherits an event group. 13286 * 13287 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13288 * This matches with perf_event_release_kernel() removing all child events. 13289 * 13290 * Returns: 13291 * - 0 on success 13292 * - <0 on error 13293 */ 13294 static int inherit_group(struct perf_event *parent_event, 13295 struct task_struct *parent, 13296 struct perf_event_context *parent_ctx, 13297 struct task_struct *child, 13298 struct perf_event_context *child_ctx) 13299 { 13300 struct perf_event *leader; 13301 struct perf_event *sub; 13302 struct perf_event *child_ctr; 13303 13304 leader = inherit_event(parent_event, parent, parent_ctx, 13305 child, NULL, child_ctx); 13306 if (IS_ERR(leader)) 13307 return PTR_ERR(leader); 13308 /* 13309 * @leader can be NULL here because of is_orphaned_event(). In this 13310 * case inherit_event() will create individual events, similar to what 13311 * perf_group_detach() would do anyway. 13312 */ 13313 for_each_sibling_event(sub, parent_event) { 13314 child_ctr = inherit_event(sub, parent, parent_ctx, 13315 child, leader, child_ctx); 13316 if (IS_ERR(child_ctr)) 13317 return PTR_ERR(child_ctr); 13318 13319 if (sub->aux_event == parent_event && child_ctr && 13320 !perf_get_aux_event(child_ctr, leader)) 13321 return -EINVAL; 13322 } 13323 return 0; 13324 } 13325 13326 /* 13327 * Creates the child task context and tries to inherit the event-group. 13328 * 13329 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13330 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13331 * consistent with perf_event_release_kernel() removing all child events. 13332 * 13333 * Returns: 13334 * - 0 on success 13335 * - <0 on error 13336 */ 13337 static int 13338 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13339 struct perf_event_context *parent_ctx, 13340 struct task_struct *child, 13341 u64 clone_flags, int *inherited_all) 13342 { 13343 struct perf_event_context *child_ctx; 13344 int ret; 13345 13346 if (!event->attr.inherit || 13347 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13348 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13349 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13350 *inherited_all = 0; 13351 return 0; 13352 } 13353 13354 child_ctx = child->perf_event_ctxp; 13355 if (!child_ctx) { 13356 /* 13357 * This is executed from the parent task context, so 13358 * inherit events that have been marked for cloning. 13359 * First allocate and initialize a context for the 13360 * child. 13361 */ 13362 child_ctx = alloc_perf_context(child); 13363 if (!child_ctx) 13364 return -ENOMEM; 13365 13366 child->perf_event_ctxp = child_ctx; 13367 } 13368 13369 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13370 if (ret) 13371 *inherited_all = 0; 13372 13373 return ret; 13374 } 13375 13376 /* 13377 * Initialize the perf_event context in task_struct 13378 */ 13379 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13380 { 13381 struct perf_event_context *child_ctx, *parent_ctx; 13382 struct perf_event_context *cloned_ctx; 13383 struct perf_event *event; 13384 struct task_struct *parent = current; 13385 int inherited_all = 1; 13386 unsigned long flags; 13387 int ret = 0; 13388 13389 if (likely(!parent->perf_event_ctxp)) 13390 return 0; 13391 13392 /* 13393 * If the parent's context is a clone, pin it so it won't get 13394 * swapped under us. 13395 */ 13396 parent_ctx = perf_pin_task_context(parent); 13397 if (!parent_ctx) 13398 return 0; 13399 13400 /* 13401 * No need to check if parent_ctx != NULL here; since we saw 13402 * it non-NULL earlier, the only reason for it to become NULL 13403 * is if we exit, and since we're currently in the middle of 13404 * a fork we can't be exiting at the same time. 13405 */ 13406 13407 /* 13408 * Lock the parent list. No need to lock the child - not PID 13409 * hashed yet and not running, so nobody can access it. 13410 */ 13411 mutex_lock(&parent_ctx->mutex); 13412 13413 /* 13414 * We dont have to disable NMIs - we are only looking at 13415 * the list, not manipulating it: 13416 */ 13417 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13418 ret = inherit_task_group(event, parent, parent_ctx, 13419 child, clone_flags, &inherited_all); 13420 if (ret) 13421 goto out_unlock; 13422 } 13423 13424 /* 13425 * We can't hold ctx->lock when iterating the ->flexible_group list due 13426 * to allocations, but we need to prevent rotation because 13427 * rotate_ctx() will change the list from interrupt context. 13428 */ 13429 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13430 parent_ctx->rotate_disable = 1; 13431 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13432 13433 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13434 ret = inherit_task_group(event, parent, parent_ctx, 13435 child, clone_flags, &inherited_all); 13436 if (ret) 13437 goto out_unlock; 13438 } 13439 13440 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13441 parent_ctx->rotate_disable = 0; 13442 13443 child_ctx = child->perf_event_ctxp; 13444 13445 if (child_ctx && inherited_all) { 13446 /* 13447 * Mark the child context as a clone of the parent 13448 * context, or of whatever the parent is a clone of. 13449 * 13450 * Note that if the parent is a clone, the holding of 13451 * parent_ctx->lock avoids it from being uncloned. 13452 */ 13453 cloned_ctx = parent_ctx->parent_ctx; 13454 if (cloned_ctx) { 13455 child_ctx->parent_ctx = cloned_ctx; 13456 child_ctx->parent_gen = parent_ctx->parent_gen; 13457 } else { 13458 child_ctx->parent_ctx = parent_ctx; 13459 child_ctx->parent_gen = parent_ctx->generation; 13460 } 13461 get_ctx(child_ctx->parent_ctx); 13462 } 13463 13464 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13465 out_unlock: 13466 mutex_unlock(&parent_ctx->mutex); 13467 13468 perf_unpin_context(parent_ctx); 13469 put_ctx(parent_ctx); 13470 13471 return ret; 13472 } 13473 13474 /* 13475 * Initialize the perf_event context in task_struct 13476 */ 13477 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13478 { 13479 int ret; 13480 13481 child->perf_event_ctxp = NULL; 13482 mutex_init(&child->perf_event_mutex); 13483 INIT_LIST_HEAD(&child->perf_event_list); 13484 13485 ret = perf_event_init_context(child, clone_flags); 13486 if (ret) { 13487 perf_event_free_task(child); 13488 return ret; 13489 } 13490 13491 return 0; 13492 } 13493 13494 static void __init perf_event_init_all_cpus(void) 13495 { 13496 struct swevent_htable *swhash; 13497 struct perf_cpu_context *cpuctx; 13498 int cpu; 13499 13500 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13501 13502 for_each_possible_cpu(cpu) { 13503 swhash = &per_cpu(swevent_htable, cpu); 13504 mutex_init(&swhash->hlist_mutex); 13505 13506 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13507 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13508 13509 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13510 13511 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13512 __perf_event_init_context(&cpuctx->ctx); 13513 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13514 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13515 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13516 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13517 cpuctx->heap = cpuctx->heap_default; 13518 } 13519 } 13520 13521 static void perf_swevent_init_cpu(unsigned int cpu) 13522 { 13523 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13524 13525 mutex_lock(&swhash->hlist_mutex); 13526 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13527 struct swevent_hlist *hlist; 13528 13529 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13530 WARN_ON(!hlist); 13531 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13532 } 13533 mutex_unlock(&swhash->hlist_mutex); 13534 } 13535 13536 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13537 static void __perf_event_exit_context(void *__info) 13538 { 13539 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13540 struct perf_event_context *ctx = __info; 13541 struct perf_event *event; 13542 13543 raw_spin_lock(&ctx->lock); 13544 ctx_sched_out(ctx, EVENT_TIME); 13545 list_for_each_entry(event, &ctx->event_list, event_entry) 13546 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13547 raw_spin_unlock(&ctx->lock); 13548 } 13549 13550 static void perf_event_exit_cpu_context(int cpu) 13551 { 13552 struct perf_cpu_context *cpuctx; 13553 struct perf_event_context *ctx; 13554 13555 // XXX simplify cpuctx->online 13556 mutex_lock(&pmus_lock); 13557 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13558 ctx = &cpuctx->ctx; 13559 13560 mutex_lock(&ctx->mutex); 13561 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13562 cpuctx->online = 0; 13563 mutex_unlock(&ctx->mutex); 13564 cpumask_clear_cpu(cpu, perf_online_mask); 13565 mutex_unlock(&pmus_lock); 13566 } 13567 #else 13568 13569 static void perf_event_exit_cpu_context(int cpu) { } 13570 13571 #endif 13572 13573 int perf_event_init_cpu(unsigned int cpu) 13574 { 13575 struct perf_cpu_context *cpuctx; 13576 struct perf_event_context *ctx; 13577 13578 perf_swevent_init_cpu(cpu); 13579 13580 mutex_lock(&pmus_lock); 13581 cpumask_set_cpu(cpu, perf_online_mask); 13582 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13583 ctx = &cpuctx->ctx; 13584 13585 mutex_lock(&ctx->mutex); 13586 cpuctx->online = 1; 13587 mutex_unlock(&ctx->mutex); 13588 mutex_unlock(&pmus_lock); 13589 13590 return 0; 13591 } 13592 13593 int perf_event_exit_cpu(unsigned int cpu) 13594 { 13595 perf_event_exit_cpu_context(cpu); 13596 return 0; 13597 } 13598 13599 static int 13600 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13601 { 13602 int cpu; 13603 13604 for_each_online_cpu(cpu) 13605 perf_event_exit_cpu(cpu); 13606 13607 return NOTIFY_OK; 13608 } 13609 13610 /* 13611 * Run the perf reboot notifier at the very last possible moment so that 13612 * the generic watchdog code runs as long as possible. 13613 */ 13614 static struct notifier_block perf_reboot_notifier = { 13615 .notifier_call = perf_reboot, 13616 .priority = INT_MIN, 13617 }; 13618 13619 void __init perf_event_init(void) 13620 { 13621 int ret; 13622 13623 idr_init(&pmu_idr); 13624 13625 perf_event_init_all_cpus(); 13626 init_srcu_struct(&pmus_srcu); 13627 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13628 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13629 perf_pmu_register(&perf_task_clock, NULL, -1); 13630 perf_tp_register(); 13631 perf_event_init_cpu(smp_processor_id()); 13632 register_reboot_notifier(&perf_reboot_notifier); 13633 13634 ret = init_hw_breakpoint(); 13635 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13636 13637 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13638 13639 /* 13640 * Build time assertion that we keep the data_head at the intended 13641 * location. IOW, validation we got the __reserved[] size right. 13642 */ 13643 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13644 != 1024); 13645 } 13646 13647 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13648 char *page) 13649 { 13650 struct perf_pmu_events_attr *pmu_attr = 13651 container_of(attr, struct perf_pmu_events_attr, attr); 13652 13653 if (pmu_attr->event_str) 13654 return sprintf(page, "%s\n", pmu_attr->event_str); 13655 13656 return 0; 13657 } 13658 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13659 13660 static int __init perf_event_sysfs_init(void) 13661 { 13662 struct pmu *pmu; 13663 int ret; 13664 13665 mutex_lock(&pmus_lock); 13666 13667 ret = bus_register(&pmu_bus); 13668 if (ret) 13669 goto unlock; 13670 13671 list_for_each_entry(pmu, &pmus, entry) { 13672 if (!pmu->name || pmu->type < 0) 13673 continue; 13674 13675 ret = pmu_dev_alloc(pmu); 13676 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13677 } 13678 pmu_bus_running = 1; 13679 ret = 0; 13680 13681 unlock: 13682 mutex_unlock(&pmus_lock); 13683 13684 return ret; 13685 } 13686 device_initcall(perf_event_sysfs_init); 13687 13688 #ifdef CONFIG_CGROUP_PERF 13689 static struct cgroup_subsys_state * 13690 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13691 { 13692 struct perf_cgroup *jc; 13693 13694 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13695 if (!jc) 13696 return ERR_PTR(-ENOMEM); 13697 13698 jc->info = alloc_percpu(struct perf_cgroup_info); 13699 if (!jc->info) { 13700 kfree(jc); 13701 return ERR_PTR(-ENOMEM); 13702 } 13703 13704 return &jc->css; 13705 } 13706 13707 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13708 { 13709 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13710 13711 free_percpu(jc->info); 13712 kfree(jc); 13713 } 13714 13715 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13716 { 13717 perf_event_cgroup(css->cgroup); 13718 return 0; 13719 } 13720 13721 static int __perf_cgroup_move(void *info) 13722 { 13723 struct task_struct *task = info; 13724 13725 preempt_disable(); 13726 perf_cgroup_switch(task); 13727 preempt_enable(); 13728 13729 return 0; 13730 } 13731 13732 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13733 { 13734 struct task_struct *task; 13735 struct cgroup_subsys_state *css; 13736 13737 cgroup_taskset_for_each(task, css, tset) 13738 task_function_call(task, __perf_cgroup_move, task); 13739 } 13740 13741 struct cgroup_subsys perf_event_cgrp_subsys = { 13742 .css_alloc = perf_cgroup_css_alloc, 13743 .css_free = perf_cgroup_css_free, 13744 .css_online = perf_cgroup_css_online, 13745 .attach = perf_cgroup_attach, 13746 /* 13747 * Implicitly enable on dfl hierarchy so that perf events can 13748 * always be filtered by cgroup2 path as long as perf_event 13749 * controller is not mounted on a legacy hierarchy. 13750 */ 13751 .implicit_on_dfl = true, 13752 .threaded = true, 13753 }; 13754 #endif /* CONFIG_CGROUP_PERF */ 13755 13756 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13757