xref: /linux/kernel/events/core.c (revision fb7399cf2d0b33825b8039f95c45395c7deba25c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 #define TASK_TOMBSTONE ((void *)-1L)
211 
212 static bool is_kernel_event(struct perf_event *event)
213 {
214 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
215 }
216 
217 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
218 
219 struct perf_event_context *perf_cpu_task_ctx(void)
220 {
221 	lockdep_assert_irqs_disabled();
222 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
223 }
224 
225 /*
226  * On task ctx scheduling...
227  *
228  * When !ctx->nr_events a task context will not be scheduled. This means
229  * we can disable the scheduler hooks (for performance) without leaving
230  * pending task ctx state.
231  *
232  * This however results in two special cases:
233  *
234  *  - removing the last event from a task ctx; this is relatively straight
235  *    forward and is done in __perf_remove_from_context.
236  *
237  *  - adding the first event to a task ctx; this is tricky because we cannot
238  *    rely on ctx->is_active and therefore cannot use event_function_call().
239  *    See perf_install_in_context().
240  *
241  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
242  */
243 
244 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
245 			struct perf_event_context *, void *);
246 
247 struct event_function_struct {
248 	struct perf_event *event;
249 	event_f func;
250 	void *data;
251 };
252 
253 static int event_function(void *info)
254 {
255 	struct event_function_struct *efs = info;
256 	struct perf_event *event = efs->event;
257 	struct perf_event_context *ctx = event->ctx;
258 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
259 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
260 	int ret = 0;
261 
262 	lockdep_assert_irqs_disabled();
263 
264 	perf_ctx_lock(cpuctx, task_ctx);
265 	/*
266 	 * Since we do the IPI call without holding ctx->lock things can have
267 	 * changed, double check we hit the task we set out to hit.
268 	 */
269 	if (ctx->task) {
270 		if (ctx->task != current) {
271 			ret = -ESRCH;
272 			goto unlock;
273 		}
274 
275 		/*
276 		 * We only use event_function_call() on established contexts,
277 		 * and event_function() is only ever called when active (or
278 		 * rather, we'll have bailed in task_function_call() or the
279 		 * above ctx->task != current test), therefore we must have
280 		 * ctx->is_active here.
281 		 */
282 		WARN_ON_ONCE(!ctx->is_active);
283 		/*
284 		 * And since we have ctx->is_active, cpuctx->task_ctx must
285 		 * match.
286 		 */
287 		WARN_ON_ONCE(task_ctx != ctx);
288 	} else {
289 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
290 	}
291 
292 	efs->func(event, cpuctx, ctx, efs->data);
293 unlock:
294 	perf_ctx_unlock(cpuctx, task_ctx);
295 
296 	return ret;
297 }
298 
299 static void event_function_call(struct perf_event *event, event_f func, void *data)
300 {
301 	struct perf_event_context *ctx = event->ctx;
302 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
303 	struct perf_cpu_context *cpuctx;
304 	struct event_function_struct efs = {
305 		.event = event,
306 		.func = func,
307 		.data = data,
308 	};
309 
310 	if (!event->parent) {
311 		/*
312 		 * If this is a !child event, we must hold ctx::mutex to
313 		 * stabilize the event->ctx relation. See
314 		 * perf_event_ctx_lock().
315 		 */
316 		lockdep_assert_held(&ctx->mutex);
317 	}
318 
319 	if (!task) {
320 		cpu_function_call(event->cpu, event_function, &efs);
321 		return;
322 	}
323 
324 	if (task == TASK_TOMBSTONE)
325 		return;
326 
327 again:
328 	if (!task_function_call(task, event_function, &efs))
329 		return;
330 
331 	local_irq_disable();
332 	cpuctx = this_cpu_ptr(&perf_cpu_context);
333 	perf_ctx_lock(cpuctx, ctx);
334 	/*
335 	 * Reload the task pointer, it might have been changed by
336 	 * a concurrent perf_event_context_sched_out().
337 	 */
338 	task = ctx->task;
339 	if (task == TASK_TOMBSTONE)
340 		goto unlock;
341 	if (ctx->is_active) {
342 		perf_ctx_unlock(cpuctx, ctx);
343 		local_irq_enable();
344 		goto again;
345 	}
346 	func(event, NULL, ctx, data);
347 unlock:
348 	perf_ctx_unlock(cpuctx, ctx);
349 	local_irq_enable();
350 }
351 
352 /*
353  * Similar to event_function_call() + event_function(), but hard assumes IRQs
354  * are already disabled and we're on the right CPU.
355  */
356 static void event_function_local(struct perf_event *event, event_f func, void *data)
357 {
358 	struct perf_event_context *ctx = event->ctx;
359 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
360 	struct task_struct *task = READ_ONCE(ctx->task);
361 	struct perf_event_context *task_ctx = NULL;
362 
363 	lockdep_assert_irqs_disabled();
364 
365 	if (task) {
366 		if (task == TASK_TOMBSTONE)
367 			return;
368 
369 		task_ctx = ctx;
370 	}
371 
372 	perf_ctx_lock(cpuctx, task_ctx);
373 
374 	task = ctx->task;
375 	if (task == TASK_TOMBSTONE)
376 		goto unlock;
377 
378 	if (task) {
379 		/*
380 		 * We must be either inactive or active and the right task,
381 		 * otherwise we're screwed, since we cannot IPI to somewhere
382 		 * else.
383 		 */
384 		if (ctx->is_active) {
385 			if (WARN_ON_ONCE(task != current))
386 				goto unlock;
387 
388 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
389 				goto unlock;
390 		}
391 	} else {
392 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
393 	}
394 
395 	func(event, cpuctx, ctx, data);
396 unlock:
397 	perf_ctx_unlock(cpuctx, task_ctx);
398 }
399 
400 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
401 		       PERF_FLAG_FD_OUTPUT  |\
402 		       PERF_FLAG_PID_CGROUP |\
403 		       PERF_FLAG_FD_CLOEXEC)
404 
405 /*
406  * branch priv levels that need permission checks
407  */
408 #define PERF_SAMPLE_BRANCH_PERM_PLM \
409 	(PERF_SAMPLE_BRANCH_KERNEL |\
410 	 PERF_SAMPLE_BRANCH_HV)
411 
412 /*
413  * perf_sched_events : >0 events exist
414  */
415 
416 static void perf_sched_delayed(struct work_struct *work);
417 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
418 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
419 static DEFINE_MUTEX(perf_sched_mutex);
420 static atomic_t perf_sched_count;
421 
422 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
423 
424 static atomic_t nr_mmap_events __read_mostly;
425 static atomic_t nr_comm_events __read_mostly;
426 static atomic_t nr_namespaces_events __read_mostly;
427 static atomic_t nr_task_events __read_mostly;
428 static atomic_t nr_freq_events __read_mostly;
429 static atomic_t nr_switch_events __read_mostly;
430 static atomic_t nr_ksymbol_events __read_mostly;
431 static atomic_t nr_bpf_events __read_mostly;
432 static atomic_t nr_cgroup_events __read_mostly;
433 static atomic_t nr_text_poke_events __read_mostly;
434 static atomic_t nr_build_id_events __read_mostly;
435 
436 static LIST_HEAD(pmus);
437 static DEFINE_MUTEX(pmus_lock);
438 static struct srcu_struct pmus_srcu;
439 static cpumask_var_t perf_online_mask;
440 static cpumask_var_t perf_online_core_mask;
441 static cpumask_var_t perf_online_die_mask;
442 static cpumask_var_t perf_online_cluster_mask;
443 static cpumask_var_t perf_online_pkg_mask;
444 static cpumask_var_t perf_online_sys_mask;
445 static struct kmem_cache *perf_event_cache;
446 
447 /*
448  * perf event paranoia level:
449  *  -1 - not paranoid at all
450  *   0 - disallow raw tracepoint access for unpriv
451  *   1 - disallow cpu events for unpriv
452  *   2 - disallow kernel profiling for unpriv
453  */
454 int sysctl_perf_event_paranoid __read_mostly = 2;
455 
456 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
457 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
458 
459 /*
460  * max perf event sample rate
461  */
462 #define DEFAULT_MAX_SAMPLE_RATE		100000
463 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
464 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
465 
466 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
467 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 
469 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
470 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
471 
472 static int perf_sample_allowed_ns __read_mostly =
473 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
474 
475 static void update_perf_cpu_limits(void)
476 {
477 	u64 tmp = perf_sample_period_ns;
478 
479 	tmp *= sysctl_perf_cpu_time_max_percent;
480 	tmp = div_u64(tmp, 100);
481 	if (!tmp)
482 		tmp = 1;
483 
484 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
485 }
486 
487 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
488 
489 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
490 				       void *buffer, size_t *lenp, loff_t *ppos)
491 {
492 	int ret;
493 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
494 	/*
495 	 * If throttling is disabled don't allow the write:
496 	 */
497 	if (write && (perf_cpu == 100 || perf_cpu == 0))
498 		return -EINVAL;
499 
500 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501 	if (ret || !write)
502 		return ret;
503 
504 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
505 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
506 	update_perf_cpu_limits();
507 
508 	return 0;
509 }
510 
511 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 
516 	if (ret || !write)
517 		return ret;
518 
519 	if (sysctl_perf_cpu_time_max_percent == 100 ||
520 	    sysctl_perf_cpu_time_max_percent == 0) {
521 		printk(KERN_WARNING
522 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 		WRITE_ONCE(perf_sample_allowed_ns, 0);
524 	} else {
525 		update_perf_cpu_limits();
526 	}
527 
528 	return 0;
529 }
530 
531 static const struct ctl_table events_core_sysctl_table[] = {
532 	/*
533 	 * User-space relies on this file as a feature check for
534 	 * perf_events being enabled. It's an ABI, do not remove!
535 	 */
536 	{
537 		.procname	= "perf_event_paranoid",
538 		.data		= &sysctl_perf_event_paranoid,
539 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
540 		.mode		= 0644,
541 		.proc_handler	= proc_dointvec,
542 	},
543 	{
544 		.procname	= "perf_event_mlock_kb",
545 		.data		= &sysctl_perf_event_mlock,
546 		.maxlen		= sizeof(sysctl_perf_event_mlock),
547 		.mode		= 0644,
548 		.proc_handler	= proc_dointvec,
549 	},
550 	{
551 		.procname	= "perf_event_max_sample_rate",
552 		.data		= &sysctl_perf_event_sample_rate,
553 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
554 		.mode		= 0644,
555 		.proc_handler	= perf_event_max_sample_rate_handler,
556 		.extra1		= SYSCTL_ONE,
557 	},
558 	{
559 		.procname	= "perf_cpu_time_max_percent",
560 		.data		= &sysctl_perf_cpu_time_max_percent,
561 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
562 		.mode		= 0644,
563 		.proc_handler	= perf_cpu_time_max_percent_handler,
564 		.extra1		= SYSCTL_ZERO,
565 		.extra2		= SYSCTL_ONE_HUNDRED,
566 	},
567 };
568 
569 static int __init init_events_core_sysctls(void)
570 {
571 	register_sysctl_init("kernel", events_core_sysctl_table);
572 	return 0;
573 }
574 core_initcall(init_events_core_sysctls);
575 
576 
577 /*
578  * perf samples are done in some very critical code paths (NMIs).
579  * If they take too much CPU time, the system can lock up and not
580  * get any real work done.  This will drop the sample rate when
581  * we detect that events are taking too long.
582  */
583 #define NR_ACCUMULATED_SAMPLES 128
584 static DEFINE_PER_CPU(u64, running_sample_length);
585 
586 static u64 __report_avg;
587 static u64 __report_allowed;
588 
589 static void perf_duration_warn(struct irq_work *w)
590 {
591 	printk_ratelimited(KERN_INFO
592 		"perf: interrupt took too long (%lld > %lld), lowering "
593 		"kernel.perf_event_max_sample_rate to %d\n",
594 		__report_avg, __report_allowed,
595 		sysctl_perf_event_sample_rate);
596 }
597 
598 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
599 
600 void perf_sample_event_took(u64 sample_len_ns)
601 {
602 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
603 	u64 running_len;
604 	u64 avg_len;
605 	u32 max;
606 
607 	if (max_len == 0)
608 		return;
609 
610 	/* Decay the counter by 1 average sample. */
611 	running_len = __this_cpu_read(running_sample_length);
612 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
613 	running_len += sample_len_ns;
614 	__this_cpu_write(running_sample_length, running_len);
615 
616 	/*
617 	 * Note: this will be biased artificially low until we have
618 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
619 	 * from having to maintain a count.
620 	 */
621 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
622 	if (avg_len <= max_len)
623 		return;
624 
625 	__report_avg = avg_len;
626 	__report_allowed = max_len;
627 
628 	/*
629 	 * Compute a throttle threshold 25% below the current duration.
630 	 */
631 	avg_len += avg_len / 4;
632 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
633 	if (avg_len < max)
634 		max /= (u32)avg_len;
635 	else
636 		max = 1;
637 
638 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
639 	WRITE_ONCE(max_samples_per_tick, max);
640 
641 	sysctl_perf_event_sample_rate = max * HZ;
642 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
643 
644 	if (!irq_work_queue(&perf_duration_work)) {
645 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
646 			     "kernel.perf_event_max_sample_rate to %d\n",
647 			     __report_avg, __report_allowed,
648 			     sysctl_perf_event_sample_rate);
649 	}
650 }
651 
652 static atomic64_t perf_event_id;
653 
654 static void update_context_time(struct perf_event_context *ctx);
655 static u64 perf_event_time(struct perf_event *event);
656 
657 void __weak perf_event_print_debug(void)	{ }
658 
659 static inline u64 perf_clock(void)
660 {
661 	return local_clock();
662 }
663 
664 static inline u64 perf_event_clock(struct perf_event *event)
665 {
666 	return event->clock();
667 }
668 
669 /*
670  * State based event timekeeping...
671  *
672  * The basic idea is to use event->state to determine which (if any) time
673  * fields to increment with the current delta. This means we only need to
674  * update timestamps when we change state or when they are explicitly requested
675  * (read).
676  *
677  * Event groups make things a little more complicated, but not terribly so. The
678  * rules for a group are that if the group leader is OFF the entire group is
679  * OFF, irrespective of what the group member states are. This results in
680  * __perf_effective_state().
681  *
682  * A further ramification is that when a group leader flips between OFF and
683  * !OFF, we need to update all group member times.
684  *
685  *
686  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
687  * need to make sure the relevant context time is updated before we try and
688  * update our timestamps.
689  */
690 
691 static __always_inline enum perf_event_state
692 __perf_effective_state(struct perf_event *event)
693 {
694 	struct perf_event *leader = event->group_leader;
695 
696 	if (leader->state <= PERF_EVENT_STATE_OFF)
697 		return leader->state;
698 
699 	return event->state;
700 }
701 
702 static __always_inline void
703 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
704 {
705 	enum perf_event_state state = __perf_effective_state(event);
706 	u64 delta = now - event->tstamp;
707 
708 	*enabled = event->total_time_enabled;
709 	if (state >= PERF_EVENT_STATE_INACTIVE)
710 		*enabled += delta;
711 
712 	*running = event->total_time_running;
713 	if (state >= PERF_EVENT_STATE_ACTIVE)
714 		*running += delta;
715 }
716 
717 static void perf_event_update_time(struct perf_event *event)
718 {
719 	u64 now = perf_event_time(event);
720 
721 	__perf_update_times(event, now, &event->total_time_enabled,
722 					&event->total_time_running);
723 	event->tstamp = now;
724 }
725 
726 static void perf_event_update_sibling_time(struct perf_event *leader)
727 {
728 	struct perf_event *sibling;
729 
730 	for_each_sibling_event(sibling, leader)
731 		perf_event_update_time(sibling);
732 }
733 
734 static void
735 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
736 {
737 	if (event->state == state)
738 		return;
739 
740 	perf_event_update_time(event);
741 	/*
742 	 * If a group leader gets enabled/disabled all its siblings
743 	 * are affected too.
744 	 */
745 	if ((event->state < 0) ^ (state < 0))
746 		perf_event_update_sibling_time(event);
747 
748 	WRITE_ONCE(event->state, state);
749 }
750 
751 /*
752  * UP store-release, load-acquire
753  */
754 
755 #define __store_release(ptr, val)					\
756 do {									\
757 	barrier();							\
758 	WRITE_ONCE(*(ptr), (val));					\
759 } while (0)
760 
761 #define __load_acquire(ptr)						\
762 ({									\
763 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
764 	barrier();							\
765 	___p;								\
766 })
767 
768 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
769 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
770 		if (_cgroup && !_epc->nr_cgroups)			\
771 			continue;					\
772 		else if (_pmu && _epc->pmu != _pmu)			\
773 			continue;					\
774 		else
775 
776 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
777 {
778 	struct perf_event_pmu_context *pmu_ctx;
779 
780 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
781 		perf_pmu_disable(pmu_ctx->pmu);
782 }
783 
784 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
785 {
786 	struct perf_event_pmu_context *pmu_ctx;
787 
788 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
789 		perf_pmu_enable(pmu_ctx->pmu);
790 }
791 
792 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
793 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
794 
795 #ifdef CONFIG_CGROUP_PERF
796 
797 static inline bool
798 perf_cgroup_match(struct perf_event *event)
799 {
800 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
801 
802 	/* @event doesn't care about cgroup */
803 	if (!event->cgrp)
804 		return true;
805 
806 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
807 	if (!cpuctx->cgrp)
808 		return false;
809 
810 	/*
811 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
812 	 * also enabled for all its descendant cgroups.  If @cpuctx's
813 	 * cgroup is a descendant of @event's (the test covers identity
814 	 * case), it's a match.
815 	 */
816 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
817 				    event->cgrp->css.cgroup);
818 }
819 
820 static inline void perf_detach_cgroup(struct perf_event *event)
821 {
822 	css_put(&event->cgrp->css);
823 	event->cgrp = NULL;
824 }
825 
826 static inline int is_cgroup_event(struct perf_event *event)
827 {
828 	return event->cgrp != NULL;
829 }
830 
831 static inline u64 perf_cgroup_event_time(struct perf_event *event)
832 {
833 	struct perf_cgroup_info *t;
834 
835 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
836 	return t->time;
837 }
838 
839 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
840 {
841 	struct perf_cgroup_info *t;
842 
843 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
844 	if (!__load_acquire(&t->active))
845 		return t->time;
846 	now += READ_ONCE(t->timeoffset);
847 	return now;
848 }
849 
850 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
851 {
852 	if (adv)
853 		info->time += now - info->timestamp;
854 	info->timestamp = now;
855 	/*
856 	 * see update_context_time()
857 	 */
858 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
859 }
860 
861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
862 {
863 	struct perf_cgroup *cgrp = cpuctx->cgrp;
864 	struct cgroup_subsys_state *css;
865 	struct perf_cgroup_info *info;
866 
867 	if (cgrp) {
868 		u64 now = perf_clock();
869 
870 		for (css = &cgrp->css; css; css = css->parent) {
871 			cgrp = container_of(css, struct perf_cgroup, css);
872 			info = this_cpu_ptr(cgrp->info);
873 
874 			__update_cgrp_time(info, now, true);
875 			if (final)
876 				__store_release(&info->active, 0);
877 		}
878 	}
879 }
880 
881 static inline void update_cgrp_time_from_event(struct perf_event *event)
882 {
883 	struct perf_cgroup_info *info;
884 
885 	/*
886 	 * ensure we access cgroup data only when needed and
887 	 * when we know the cgroup is pinned (css_get)
888 	 */
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	info = this_cpu_ptr(event->cgrp->info);
893 	/*
894 	 * Do not update time when cgroup is not active
895 	 */
896 	if (info->active)
897 		__update_cgrp_time(info, perf_clock(), true);
898 }
899 
900 static inline void
901 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
902 {
903 	struct perf_event_context *ctx = &cpuctx->ctx;
904 	struct perf_cgroup *cgrp = cpuctx->cgrp;
905 	struct perf_cgroup_info *info;
906 	struct cgroup_subsys_state *css;
907 
908 	/*
909 	 * ctx->lock held by caller
910 	 * ensure we do not access cgroup data
911 	 * unless we have the cgroup pinned (css_get)
912 	 */
913 	if (!cgrp)
914 		return;
915 
916 	WARN_ON_ONCE(!ctx->nr_cgroups);
917 
918 	for (css = &cgrp->css; css; css = css->parent) {
919 		cgrp = container_of(css, struct perf_cgroup, css);
920 		info = this_cpu_ptr(cgrp->info);
921 		__update_cgrp_time(info, ctx->timestamp, false);
922 		__store_release(&info->active, 1);
923 	}
924 }
925 
926 /*
927  * reschedule events based on the cgroup constraint of task.
928  */
929 static void perf_cgroup_switch(struct task_struct *task)
930 {
931 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
932 	struct perf_cgroup *cgrp;
933 
934 	/*
935 	 * cpuctx->cgrp is set when the first cgroup event enabled,
936 	 * and is cleared when the last cgroup event disabled.
937 	 */
938 	if (READ_ONCE(cpuctx->cgrp) == NULL)
939 		return;
940 
941 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
942 
943 	cgrp = perf_cgroup_from_task(task, NULL);
944 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
945 		return;
946 
947 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
948 	perf_ctx_disable(&cpuctx->ctx, true);
949 
950 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
951 	/*
952 	 * must not be done before ctxswout due
953 	 * to update_cgrp_time_from_cpuctx() in
954 	 * ctx_sched_out()
955 	 */
956 	cpuctx->cgrp = cgrp;
957 	/*
958 	 * set cgrp before ctxsw in to allow
959 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
960 	 * to not have to pass task around
961 	 */
962 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
963 
964 	perf_ctx_enable(&cpuctx->ctx, true);
965 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
966 }
967 
968 static int perf_cgroup_ensure_storage(struct perf_event *event,
969 				struct cgroup_subsys_state *css)
970 {
971 	struct perf_cpu_context *cpuctx;
972 	struct perf_event **storage;
973 	int cpu, heap_size, ret = 0;
974 
975 	/*
976 	 * Allow storage to have sufficient space for an iterator for each
977 	 * possibly nested cgroup plus an iterator for events with no cgroup.
978 	 */
979 	for (heap_size = 1; css; css = css->parent)
980 		heap_size++;
981 
982 	for_each_possible_cpu(cpu) {
983 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
984 		if (heap_size <= cpuctx->heap_size)
985 			continue;
986 
987 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
988 				       GFP_KERNEL, cpu_to_node(cpu));
989 		if (!storage) {
990 			ret = -ENOMEM;
991 			break;
992 		}
993 
994 		raw_spin_lock_irq(&cpuctx->ctx.lock);
995 		if (cpuctx->heap_size < heap_size) {
996 			swap(cpuctx->heap, storage);
997 			if (storage == cpuctx->heap_default)
998 				storage = NULL;
999 			cpuctx->heap_size = heap_size;
1000 		}
1001 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1002 
1003 		kfree(storage);
1004 	}
1005 
1006 	return ret;
1007 }
1008 
1009 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1010 				      struct perf_event_attr *attr,
1011 				      struct perf_event *group_leader)
1012 {
1013 	struct perf_cgroup *cgrp;
1014 	struct cgroup_subsys_state *css;
1015 	CLASS(fd, f)(fd);
1016 	int ret = 0;
1017 
1018 	if (fd_empty(f))
1019 		return -EBADF;
1020 
1021 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1022 					 &perf_event_cgrp_subsys);
1023 	if (IS_ERR(css))
1024 		return PTR_ERR(css);
1025 
1026 	ret = perf_cgroup_ensure_storage(event, css);
1027 	if (ret)
1028 		return ret;
1029 
1030 	cgrp = container_of(css, struct perf_cgroup, css);
1031 	event->cgrp = cgrp;
1032 
1033 	/*
1034 	 * all events in a group must monitor
1035 	 * the same cgroup because a task belongs
1036 	 * to only one perf cgroup at a time
1037 	 */
1038 	if (group_leader && group_leader->cgrp != cgrp) {
1039 		perf_detach_cgroup(event);
1040 		ret = -EINVAL;
1041 	}
1042 	return ret;
1043 }
1044 
1045 static inline void
1046 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1047 {
1048 	struct perf_cpu_context *cpuctx;
1049 
1050 	if (!is_cgroup_event(event))
1051 		return;
1052 
1053 	event->pmu_ctx->nr_cgroups++;
1054 
1055 	/*
1056 	 * Because cgroup events are always per-cpu events,
1057 	 * @ctx == &cpuctx->ctx.
1058 	 */
1059 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1060 
1061 	if (ctx->nr_cgroups++)
1062 		return;
1063 
1064 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1065 }
1066 
1067 static inline void
1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 	struct perf_cpu_context *cpuctx;
1071 
1072 	if (!is_cgroup_event(event))
1073 		return;
1074 
1075 	event->pmu_ctx->nr_cgroups--;
1076 
1077 	/*
1078 	 * Because cgroup events are always per-cpu events,
1079 	 * @ctx == &cpuctx->ctx.
1080 	 */
1081 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1082 
1083 	if (--ctx->nr_cgroups)
1084 		return;
1085 
1086 	cpuctx->cgrp = NULL;
1087 }
1088 
1089 #else /* !CONFIG_CGROUP_PERF */
1090 
1091 static inline bool
1092 perf_cgroup_match(struct perf_event *event)
1093 {
1094 	return true;
1095 }
1096 
1097 static inline void perf_detach_cgroup(struct perf_event *event)
1098 {}
1099 
1100 static inline int is_cgroup_event(struct perf_event *event)
1101 {
1102 	return 0;
1103 }
1104 
1105 static inline void update_cgrp_time_from_event(struct perf_event *event)
1106 {
1107 }
1108 
1109 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1110 						bool final)
1111 {
1112 }
1113 
1114 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1115 				      struct perf_event_attr *attr,
1116 				      struct perf_event *group_leader)
1117 {
1118 	return -EINVAL;
1119 }
1120 
1121 static inline void
1122 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1123 {
1124 }
1125 
1126 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1127 {
1128 	return 0;
1129 }
1130 
1131 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1132 {
1133 	return 0;
1134 }
1135 
1136 static inline void
1137 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1138 {
1139 }
1140 
1141 static inline void
1142 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145 
1146 static void perf_cgroup_switch(struct task_struct *task)
1147 {
1148 }
1149 #endif
1150 
1151 /*
1152  * set default to be dependent on timer tick just
1153  * like original code
1154  */
1155 #define PERF_CPU_HRTIMER (1000 / HZ)
1156 /*
1157  * function must be called with interrupts disabled
1158  */
1159 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1160 {
1161 	struct perf_cpu_pmu_context *cpc;
1162 	bool rotations;
1163 
1164 	lockdep_assert_irqs_disabled();
1165 
1166 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1167 	rotations = perf_rotate_context(cpc);
1168 
1169 	raw_spin_lock(&cpc->hrtimer_lock);
1170 	if (rotations)
1171 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1172 	else
1173 		cpc->hrtimer_active = 0;
1174 	raw_spin_unlock(&cpc->hrtimer_lock);
1175 
1176 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1177 }
1178 
1179 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1180 {
1181 	struct hrtimer *timer = &cpc->hrtimer;
1182 	struct pmu *pmu = cpc->epc.pmu;
1183 	u64 interval;
1184 
1185 	/*
1186 	 * check default is sane, if not set then force to
1187 	 * default interval (1/tick)
1188 	 */
1189 	interval = pmu->hrtimer_interval_ms;
1190 	if (interval < 1)
1191 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1192 
1193 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1194 
1195 	raw_spin_lock_init(&cpc->hrtimer_lock);
1196 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1197 		      HRTIMER_MODE_ABS_PINNED_HARD);
1198 }
1199 
1200 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1201 {
1202 	struct hrtimer *timer = &cpc->hrtimer;
1203 	unsigned long flags;
1204 
1205 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1206 	if (!cpc->hrtimer_active) {
1207 		cpc->hrtimer_active = 1;
1208 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1209 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1210 	}
1211 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1212 
1213 	return 0;
1214 }
1215 
1216 static int perf_mux_hrtimer_restart_ipi(void *arg)
1217 {
1218 	return perf_mux_hrtimer_restart(arg);
1219 }
1220 
1221 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1222 {
1223 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1224 }
1225 
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228 	int *count = &this_cpc(pmu)->pmu_disable_count;
1229 	if (!(*count)++)
1230 		pmu->pmu_disable(pmu);
1231 }
1232 
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235 	int *count = &this_cpc(pmu)->pmu_disable_count;
1236 	if (!--(*count))
1237 		pmu->pmu_enable(pmu);
1238 }
1239 
1240 static void perf_assert_pmu_disabled(struct pmu *pmu)
1241 {
1242 	int *count = &this_cpc(pmu)->pmu_disable_count;
1243 	WARN_ON_ONCE(*count == 0);
1244 }
1245 
1246 static inline void perf_pmu_read(struct perf_event *event)
1247 {
1248 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1249 		event->pmu->read(event);
1250 }
1251 
1252 static void get_ctx(struct perf_event_context *ctx)
1253 {
1254 	refcount_inc(&ctx->refcount);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	kfree(ctx);
1263 }
1264 
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267 	if (refcount_dec_and_test(&ctx->refcount)) {
1268 		if (ctx->parent_ctx)
1269 			put_ctx(ctx->parent_ctx);
1270 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271 			put_task_struct(ctx->task);
1272 		call_rcu(&ctx->rcu_head, free_ctx);
1273 	} else {
1274 		smp_mb__after_atomic(); /* pairs with wait_var_event() */
1275 		if (ctx->task == TASK_TOMBSTONE)
1276 			wake_up_var(&ctx->refcount);
1277 	}
1278 }
1279 
1280 /*
1281  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1282  * perf_pmu_migrate_context() we need some magic.
1283  *
1284  * Those places that change perf_event::ctx will hold both
1285  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1286  *
1287  * Lock ordering is by mutex address. There are two other sites where
1288  * perf_event_context::mutex nests and those are:
1289  *
1290  *  - perf_event_exit_task_context()	[ child , 0 ]
1291  *      perf_event_exit_event()
1292  *        put_event()			[ parent, 1 ]
1293  *
1294  *  - perf_event_init_context()		[ parent, 0 ]
1295  *      inherit_task_group()
1296  *        inherit_group()
1297  *          inherit_event()
1298  *            perf_event_alloc()
1299  *              perf_init_event()
1300  *                perf_try_init_event()	[ child , 1 ]
1301  *
1302  * While it appears there is an obvious deadlock here -- the parent and child
1303  * nesting levels are inverted between the two. This is in fact safe because
1304  * life-time rules separate them. That is an exiting task cannot fork, and a
1305  * spawning task cannot (yet) exit.
1306  *
1307  * But remember that these are parent<->child context relations, and
1308  * migration does not affect children, therefore these two orderings should not
1309  * interact.
1310  *
1311  * The change in perf_event::ctx does not affect children (as claimed above)
1312  * because the sys_perf_event_open() case will install a new event and break
1313  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1314  * concerned with cpuctx and that doesn't have children.
1315  *
1316  * The places that change perf_event::ctx will issue:
1317  *
1318  *   perf_remove_from_context();
1319  *   synchronize_rcu();
1320  *   perf_install_in_context();
1321  *
1322  * to affect the change. The remove_from_context() + synchronize_rcu() should
1323  * quiesce the event, after which we can install it in the new location. This
1324  * means that only external vectors (perf_fops, prctl) can perturb the event
1325  * while in transit. Therefore all such accessors should also acquire
1326  * perf_event_context::mutex to serialize against this.
1327  *
1328  * However; because event->ctx can change while we're waiting to acquire
1329  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1330  * function.
1331  *
1332  * Lock order:
1333  *    exec_update_lock
1334  *	task_struct::perf_event_mutex
1335  *	  perf_event_context::mutex
1336  *	    perf_event::child_mutex;
1337  *	      perf_event_context::lock
1338  *	    mmap_lock
1339  *	      perf_event::mmap_mutex
1340  *	        perf_buffer::aux_mutex
1341  *	      perf_addr_filters_head::lock
1342  *
1343  *    cpu_hotplug_lock
1344  *      pmus_lock
1345  *	  cpuctx->mutex / perf_event_context::mutex
1346  */
1347 static struct perf_event_context *
1348 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1349 {
1350 	struct perf_event_context *ctx;
1351 
1352 again:
1353 	rcu_read_lock();
1354 	ctx = READ_ONCE(event->ctx);
1355 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1356 		rcu_read_unlock();
1357 		goto again;
1358 	}
1359 	rcu_read_unlock();
1360 
1361 	mutex_lock_nested(&ctx->mutex, nesting);
1362 	if (event->ctx != ctx) {
1363 		mutex_unlock(&ctx->mutex);
1364 		put_ctx(ctx);
1365 		goto again;
1366 	}
1367 
1368 	return ctx;
1369 }
1370 
1371 static inline struct perf_event_context *
1372 perf_event_ctx_lock(struct perf_event *event)
1373 {
1374 	return perf_event_ctx_lock_nested(event, 0);
1375 }
1376 
1377 static void perf_event_ctx_unlock(struct perf_event *event,
1378 				  struct perf_event_context *ctx)
1379 {
1380 	mutex_unlock(&ctx->mutex);
1381 	put_ctx(ctx);
1382 }
1383 
1384 /*
1385  * This must be done under the ctx->lock, such as to serialize against
1386  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1387  * calling scheduler related locks and ctx->lock nests inside those.
1388  */
1389 static __must_check struct perf_event_context *
1390 unclone_ctx(struct perf_event_context *ctx)
1391 {
1392 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1393 
1394 	lockdep_assert_held(&ctx->lock);
1395 
1396 	if (parent_ctx)
1397 		ctx->parent_ctx = NULL;
1398 	ctx->generation++;
1399 
1400 	return parent_ctx;
1401 }
1402 
1403 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1404 				enum pid_type type)
1405 {
1406 	u32 nr;
1407 	/*
1408 	 * only top level events have the pid namespace they were created in
1409 	 */
1410 	if (event->parent)
1411 		event = event->parent;
1412 
1413 	nr = __task_pid_nr_ns(p, type, event->ns);
1414 	/* avoid -1 if it is idle thread or runs in another ns */
1415 	if (!nr && !pid_alive(p))
1416 		nr = -1;
1417 	return nr;
1418 }
1419 
1420 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1421 {
1422 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1423 }
1424 
1425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1426 {
1427 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1428 }
1429 
1430 /*
1431  * If we inherit events we want to return the parent event id
1432  * to userspace.
1433  */
1434 static u64 primary_event_id(struct perf_event *event)
1435 {
1436 	u64 id = event->id;
1437 
1438 	if (event->parent)
1439 		id = event->parent->id;
1440 
1441 	return id;
1442 }
1443 
1444 /*
1445  * Get the perf_event_context for a task and lock it.
1446  *
1447  * This has to cope with the fact that until it is locked,
1448  * the context could get moved to another task.
1449  */
1450 static struct perf_event_context *
1451 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1452 {
1453 	struct perf_event_context *ctx;
1454 
1455 retry:
1456 	/*
1457 	 * One of the few rules of preemptible RCU is that one cannot do
1458 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1459 	 * part of the read side critical section was irqs-enabled -- see
1460 	 * rcu_read_unlock_special().
1461 	 *
1462 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1463 	 * side critical section has interrupts disabled.
1464 	 */
1465 	local_irq_save(*flags);
1466 	rcu_read_lock();
1467 	ctx = rcu_dereference(task->perf_event_ctxp);
1468 	if (ctx) {
1469 		/*
1470 		 * If this context is a clone of another, it might
1471 		 * get swapped for another underneath us by
1472 		 * perf_event_task_sched_out, though the
1473 		 * rcu_read_lock() protects us from any context
1474 		 * getting freed.  Lock the context and check if it
1475 		 * got swapped before we could get the lock, and retry
1476 		 * if so.  If we locked the right context, then it
1477 		 * can't get swapped on us any more.
1478 		 */
1479 		raw_spin_lock(&ctx->lock);
1480 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1481 			raw_spin_unlock(&ctx->lock);
1482 			rcu_read_unlock();
1483 			local_irq_restore(*flags);
1484 			goto retry;
1485 		}
1486 
1487 		if (ctx->task == TASK_TOMBSTONE ||
1488 		    !refcount_inc_not_zero(&ctx->refcount)) {
1489 			raw_spin_unlock(&ctx->lock);
1490 			ctx = NULL;
1491 		} else {
1492 			WARN_ON_ONCE(ctx->task != task);
1493 		}
1494 	}
1495 	rcu_read_unlock();
1496 	if (!ctx)
1497 		local_irq_restore(*flags);
1498 	return ctx;
1499 }
1500 
1501 /*
1502  * Get the context for a task and increment its pin_count so it
1503  * can't get swapped to another task.  This also increments its
1504  * reference count so that the context can't get freed.
1505  */
1506 static struct perf_event_context *
1507 perf_pin_task_context(struct task_struct *task)
1508 {
1509 	struct perf_event_context *ctx;
1510 	unsigned long flags;
1511 
1512 	ctx = perf_lock_task_context(task, &flags);
1513 	if (ctx) {
1514 		++ctx->pin_count;
1515 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1516 	}
1517 	return ctx;
1518 }
1519 
1520 static void perf_unpin_context(struct perf_event_context *ctx)
1521 {
1522 	unsigned long flags;
1523 
1524 	raw_spin_lock_irqsave(&ctx->lock, flags);
1525 	--ctx->pin_count;
1526 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1527 }
1528 
1529 /*
1530  * Update the record of the current time in a context.
1531  */
1532 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1533 {
1534 	u64 now = perf_clock();
1535 
1536 	lockdep_assert_held(&ctx->lock);
1537 
1538 	if (adv)
1539 		ctx->time += now - ctx->timestamp;
1540 	ctx->timestamp = now;
1541 
1542 	/*
1543 	 * The above: time' = time + (now - timestamp), can be re-arranged
1544 	 * into: time` = now + (time - timestamp), which gives a single value
1545 	 * offset to compute future time without locks on.
1546 	 *
1547 	 * See perf_event_time_now(), which can be used from NMI context where
1548 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1549 	 * both the above values in a consistent manner.
1550 	 */
1551 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1552 }
1553 
1554 static void update_context_time(struct perf_event_context *ctx)
1555 {
1556 	__update_context_time(ctx, true);
1557 }
1558 
1559 static u64 perf_event_time(struct perf_event *event)
1560 {
1561 	struct perf_event_context *ctx = event->ctx;
1562 
1563 	if (unlikely(!ctx))
1564 		return 0;
1565 
1566 	if (is_cgroup_event(event))
1567 		return perf_cgroup_event_time(event);
1568 
1569 	return ctx->time;
1570 }
1571 
1572 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1573 {
1574 	struct perf_event_context *ctx = event->ctx;
1575 
1576 	if (unlikely(!ctx))
1577 		return 0;
1578 
1579 	if (is_cgroup_event(event))
1580 		return perf_cgroup_event_time_now(event, now);
1581 
1582 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1583 		return ctx->time;
1584 
1585 	now += READ_ONCE(ctx->timeoffset);
1586 	return now;
1587 }
1588 
1589 static enum event_type_t get_event_type(struct perf_event *event)
1590 {
1591 	struct perf_event_context *ctx = event->ctx;
1592 	enum event_type_t event_type;
1593 
1594 	lockdep_assert_held(&ctx->lock);
1595 
1596 	/*
1597 	 * It's 'group type', really, because if our group leader is
1598 	 * pinned, so are we.
1599 	 */
1600 	if (event->group_leader != event)
1601 		event = event->group_leader;
1602 
1603 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1604 	if (!ctx->task)
1605 		event_type |= EVENT_CPU;
1606 
1607 	return event_type;
1608 }
1609 
1610 /*
1611  * Helper function to initialize event group nodes.
1612  */
1613 static void init_event_group(struct perf_event *event)
1614 {
1615 	RB_CLEAR_NODE(&event->group_node);
1616 	event->group_index = 0;
1617 }
1618 
1619 /*
1620  * Extract pinned or flexible groups from the context
1621  * based on event attrs bits.
1622  */
1623 static struct perf_event_groups *
1624 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1625 {
1626 	if (event->attr.pinned)
1627 		return &ctx->pinned_groups;
1628 	else
1629 		return &ctx->flexible_groups;
1630 }
1631 
1632 /*
1633  * Helper function to initializes perf_event_group trees.
1634  */
1635 static void perf_event_groups_init(struct perf_event_groups *groups)
1636 {
1637 	groups->tree = RB_ROOT;
1638 	groups->index = 0;
1639 }
1640 
1641 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1642 {
1643 	struct cgroup *cgroup = NULL;
1644 
1645 #ifdef CONFIG_CGROUP_PERF
1646 	if (event->cgrp)
1647 		cgroup = event->cgrp->css.cgroup;
1648 #endif
1649 
1650 	return cgroup;
1651 }
1652 
1653 /*
1654  * Compare function for event groups;
1655  *
1656  * Implements complex key that first sorts by CPU and then by virtual index
1657  * which provides ordering when rotating groups for the same CPU.
1658  */
1659 static __always_inline int
1660 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1661 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1662 		      const struct perf_event *right)
1663 {
1664 	if (left_cpu < right->cpu)
1665 		return -1;
1666 	if (left_cpu > right->cpu)
1667 		return 1;
1668 
1669 	if (left_pmu) {
1670 		if (left_pmu < right->pmu_ctx->pmu)
1671 			return -1;
1672 		if (left_pmu > right->pmu_ctx->pmu)
1673 			return 1;
1674 	}
1675 
1676 #ifdef CONFIG_CGROUP_PERF
1677 	{
1678 		const struct cgroup *right_cgroup = event_cgroup(right);
1679 
1680 		if (left_cgroup != right_cgroup) {
1681 			if (!left_cgroup) {
1682 				/*
1683 				 * Left has no cgroup but right does, no
1684 				 * cgroups come first.
1685 				 */
1686 				return -1;
1687 			}
1688 			if (!right_cgroup) {
1689 				/*
1690 				 * Right has no cgroup but left does, no
1691 				 * cgroups come first.
1692 				 */
1693 				return 1;
1694 			}
1695 			/* Two dissimilar cgroups, order by id. */
1696 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1697 				return -1;
1698 
1699 			return 1;
1700 		}
1701 	}
1702 #endif
1703 
1704 	if (left_group_index < right->group_index)
1705 		return -1;
1706 	if (left_group_index > right->group_index)
1707 		return 1;
1708 
1709 	return 0;
1710 }
1711 
1712 #define __node_2_pe(node) \
1713 	rb_entry((node), struct perf_event, group_node)
1714 
1715 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1716 {
1717 	struct perf_event *e = __node_2_pe(a);
1718 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1719 				     e->group_index, __node_2_pe(b)) < 0;
1720 }
1721 
1722 struct __group_key {
1723 	int cpu;
1724 	struct pmu *pmu;
1725 	struct cgroup *cgroup;
1726 };
1727 
1728 static inline int __group_cmp(const void *key, const struct rb_node *node)
1729 {
1730 	const struct __group_key *a = key;
1731 	const struct perf_event *b = __node_2_pe(node);
1732 
1733 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1734 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1735 }
1736 
1737 static inline int
1738 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1739 {
1740 	const struct __group_key *a = key;
1741 	const struct perf_event *b = __node_2_pe(node);
1742 
1743 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1744 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1745 				     b->group_index, b);
1746 }
1747 
1748 /*
1749  * Insert @event into @groups' tree; using
1750  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1751  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1752  */
1753 static void
1754 perf_event_groups_insert(struct perf_event_groups *groups,
1755 			 struct perf_event *event)
1756 {
1757 	event->group_index = ++groups->index;
1758 
1759 	rb_add(&event->group_node, &groups->tree, __group_less);
1760 }
1761 
1762 /*
1763  * Helper function to insert event into the pinned or flexible groups.
1764  */
1765 static void
1766 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768 	struct perf_event_groups *groups;
1769 
1770 	groups = get_event_groups(event, ctx);
1771 	perf_event_groups_insert(groups, event);
1772 }
1773 
1774 /*
1775  * Delete a group from a tree.
1776  */
1777 static void
1778 perf_event_groups_delete(struct perf_event_groups *groups,
1779 			 struct perf_event *event)
1780 {
1781 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1782 		     RB_EMPTY_ROOT(&groups->tree));
1783 
1784 	rb_erase(&event->group_node, &groups->tree);
1785 	init_event_group(event);
1786 }
1787 
1788 /*
1789  * Helper function to delete event from its groups.
1790  */
1791 static void
1792 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1793 {
1794 	struct perf_event_groups *groups;
1795 
1796 	groups = get_event_groups(event, ctx);
1797 	perf_event_groups_delete(groups, event);
1798 }
1799 
1800 /*
1801  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1802  */
1803 static struct perf_event *
1804 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1805 			struct pmu *pmu, struct cgroup *cgrp)
1806 {
1807 	struct __group_key key = {
1808 		.cpu = cpu,
1809 		.pmu = pmu,
1810 		.cgroup = cgrp,
1811 	};
1812 	struct rb_node *node;
1813 
1814 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1815 	if (node)
1816 		return __node_2_pe(node);
1817 
1818 	return NULL;
1819 }
1820 
1821 static struct perf_event *
1822 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1823 {
1824 	struct __group_key key = {
1825 		.cpu = event->cpu,
1826 		.pmu = pmu,
1827 		.cgroup = event_cgroup(event),
1828 	};
1829 	struct rb_node *next;
1830 
1831 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1832 	if (next)
1833 		return __node_2_pe(next);
1834 
1835 	return NULL;
1836 }
1837 
1838 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1839 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1840 	     event; event = perf_event_groups_next(event, pmu))
1841 
1842 /*
1843  * Iterate through the whole groups tree.
1844  */
1845 #define perf_event_groups_for_each(event, groups)			\
1846 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1847 				typeof(*event), group_node); event;	\
1848 		event = rb_entry_safe(rb_next(&event->group_node),	\
1849 				typeof(*event), group_node))
1850 
1851 /*
1852  * Does the event attribute request inherit with PERF_SAMPLE_READ
1853  */
1854 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1855 {
1856 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1857 }
1858 
1859 /*
1860  * Add an event from the lists for its context.
1861  * Must be called with ctx->mutex and ctx->lock held.
1862  */
1863 static void
1864 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1865 {
1866 	lockdep_assert_held(&ctx->lock);
1867 
1868 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1869 	event->attach_state |= PERF_ATTACH_CONTEXT;
1870 
1871 	event->tstamp = perf_event_time(event);
1872 
1873 	/*
1874 	 * If we're a stand alone event or group leader, we go to the context
1875 	 * list, group events are kept attached to the group so that
1876 	 * perf_group_detach can, at all times, locate all siblings.
1877 	 */
1878 	if (event->group_leader == event) {
1879 		event->group_caps = event->event_caps;
1880 		add_event_to_groups(event, ctx);
1881 	}
1882 
1883 	list_add_rcu(&event->event_entry, &ctx->event_list);
1884 	ctx->nr_events++;
1885 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1886 		ctx->nr_user++;
1887 	if (event->attr.inherit_stat)
1888 		ctx->nr_stat++;
1889 	if (has_inherit_and_sample_read(&event->attr))
1890 		local_inc(&ctx->nr_no_switch_fast);
1891 
1892 	if (event->state > PERF_EVENT_STATE_OFF)
1893 		perf_cgroup_event_enable(event, ctx);
1894 
1895 	ctx->generation++;
1896 	event->pmu_ctx->nr_events++;
1897 }
1898 
1899 /*
1900  * Initialize event state based on the perf_event_attr::disabled.
1901  */
1902 static inline void perf_event__state_init(struct perf_event *event)
1903 {
1904 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1905 					      PERF_EVENT_STATE_INACTIVE;
1906 }
1907 
1908 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1909 {
1910 	int entry = sizeof(u64); /* value */
1911 	int size = 0;
1912 	int nr = 1;
1913 
1914 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1915 		size += sizeof(u64);
1916 
1917 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1918 		size += sizeof(u64);
1919 
1920 	if (read_format & PERF_FORMAT_ID)
1921 		entry += sizeof(u64);
1922 
1923 	if (read_format & PERF_FORMAT_LOST)
1924 		entry += sizeof(u64);
1925 
1926 	if (read_format & PERF_FORMAT_GROUP) {
1927 		nr += nr_siblings;
1928 		size += sizeof(u64);
1929 	}
1930 
1931 	/*
1932 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1933 	 * adding more siblings, this will never overflow.
1934 	 */
1935 	return size + nr * entry;
1936 }
1937 
1938 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1939 {
1940 	struct perf_sample_data *data;
1941 	u16 size = 0;
1942 
1943 	if (sample_type & PERF_SAMPLE_IP)
1944 		size += sizeof(data->ip);
1945 
1946 	if (sample_type & PERF_SAMPLE_ADDR)
1947 		size += sizeof(data->addr);
1948 
1949 	if (sample_type & PERF_SAMPLE_PERIOD)
1950 		size += sizeof(data->period);
1951 
1952 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1953 		size += sizeof(data->weight.full);
1954 
1955 	if (sample_type & PERF_SAMPLE_READ)
1956 		size += event->read_size;
1957 
1958 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1959 		size += sizeof(data->data_src.val);
1960 
1961 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1962 		size += sizeof(data->txn);
1963 
1964 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1965 		size += sizeof(data->phys_addr);
1966 
1967 	if (sample_type & PERF_SAMPLE_CGROUP)
1968 		size += sizeof(data->cgroup);
1969 
1970 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1971 		size += sizeof(data->data_page_size);
1972 
1973 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1974 		size += sizeof(data->code_page_size);
1975 
1976 	event->header_size = size;
1977 }
1978 
1979 /*
1980  * Called at perf_event creation and when events are attached/detached from a
1981  * group.
1982  */
1983 static void perf_event__header_size(struct perf_event *event)
1984 {
1985 	event->read_size =
1986 		__perf_event_read_size(event->attr.read_format,
1987 				       event->group_leader->nr_siblings);
1988 	__perf_event_header_size(event, event->attr.sample_type);
1989 }
1990 
1991 static void perf_event__id_header_size(struct perf_event *event)
1992 {
1993 	struct perf_sample_data *data;
1994 	u64 sample_type = event->attr.sample_type;
1995 	u16 size = 0;
1996 
1997 	if (sample_type & PERF_SAMPLE_TID)
1998 		size += sizeof(data->tid_entry);
1999 
2000 	if (sample_type & PERF_SAMPLE_TIME)
2001 		size += sizeof(data->time);
2002 
2003 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2004 		size += sizeof(data->id);
2005 
2006 	if (sample_type & PERF_SAMPLE_ID)
2007 		size += sizeof(data->id);
2008 
2009 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2010 		size += sizeof(data->stream_id);
2011 
2012 	if (sample_type & PERF_SAMPLE_CPU)
2013 		size += sizeof(data->cpu_entry);
2014 
2015 	event->id_header_size = size;
2016 }
2017 
2018 /*
2019  * Check that adding an event to the group does not result in anybody
2020  * overflowing the 64k event limit imposed by the output buffer.
2021  *
2022  * Specifically, check that the read_size for the event does not exceed 16k,
2023  * read_size being the one term that grows with groups size. Since read_size
2024  * depends on per-event read_format, also (re)check the existing events.
2025  *
2026  * This leaves 48k for the constant size fields and things like callchains,
2027  * branch stacks and register sets.
2028  */
2029 static bool perf_event_validate_size(struct perf_event *event)
2030 {
2031 	struct perf_event *sibling, *group_leader = event->group_leader;
2032 
2033 	if (__perf_event_read_size(event->attr.read_format,
2034 				   group_leader->nr_siblings + 1) > 16*1024)
2035 		return false;
2036 
2037 	if (__perf_event_read_size(group_leader->attr.read_format,
2038 				   group_leader->nr_siblings + 1) > 16*1024)
2039 		return false;
2040 
2041 	/*
2042 	 * When creating a new group leader, group_leader->ctx is initialized
2043 	 * after the size has been validated, but we cannot safely use
2044 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2045 	 * leader cannot have any siblings yet, so we can safely skip checking
2046 	 * the non-existent siblings.
2047 	 */
2048 	if (event == group_leader)
2049 		return true;
2050 
2051 	for_each_sibling_event(sibling, group_leader) {
2052 		if (__perf_event_read_size(sibling->attr.read_format,
2053 					   group_leader->nr_siblings + 1) > 16*1024)
2054 			return false;
2055 	}
2056 
2057 	return true;
2058 }
2059 
2060 static void perf_group_attach(struct perf_event *event)
2061 {
2062 	struct perf_event *group_leader = event->group_leader, *pos;
2063 
2064 	lockdep_assert_held(&event->ctx->lock);
2065 
2066 	/*
2067 	 * We can have double attach due to group movement (move_group) in
2068 	 * perf_event_open().
2069 	 */
2070 	if (event->attach_state & PERF_ATTACH_GROUP)
2071 		return;
2072 
2073 	event->attach_state |= PERF_ATTACH_GROUP;
2074 
2075 	if (group_leader == event)
2076 		return;
2077 
2078 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2079 
2080 	group_leader->group_caps &= event->event_caps;
2081 
2082 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2083 	group_leader->nr_siblings++;
2084 	group_leader->group_generation++;
2085 
2086 	perf_event__header_size(group_leader);
2087 
2088 	for_each_sibling_event(pos, group_leader)
2089 		perf_event__header_size(pos);
2090 }
2091 
2092 /*
2093  * Remove an event from the lists for its context.
2094  * Must be called with ctx->mutex and ctx->lock held.
2095  */
2096 static void
2097 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2098 {
2099 	WARN_ON_ONCE(event->ctx != ctx);
2100 	lockdep_assert_held(&ctx->lock);
2101 
2102 	/*
2103 	 * We can have double detach due to exit/hot-unplug + close.
2104 	 */
2105 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2106 		return;
2107 
2108 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2109 
2110 	ctx->nr_events--;
2111 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2112 		ctx->nr_user--;
2113 	if (event->attr.inherit_stat)
2114 		ctx->nr_stat--;
2115 	if (has_inherit_and_sample_read(&event->attr))
2116 		local_dec(&ctx->nr_no_switch_fast);
2117 
2118 	list_del_rcu(&event->event_entry);
2119 
2120 	if (event->group_leader == event)
2121 		del_event_from_groups(event, ctx);
2122 
2123 	/*
2124 	 * If event was in error state, then keep it
2125 	 * that way, otherwise bogus counts will be
2126 	 * returned on read(). The only way to get out
2127 	 * of error state is by explicit re-enabling
2128 	 * of the event
2129 	 */
2130 	if (event->state > PERF_EVENT_STATE_OFF) {
2131 		perf_cgroup_event_disable(event, ctx);
2132 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2133 	}
2134 
2135 	ctx->generation++;
2136 	event->pmu_ctx->nr_events--;
2137 }
2138 
2139 static int
2140 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2141 {
2142 	if (!has_aux(aux_event))
2143 		return 0;
2144 
2145 	if (!event->pmu->aux_output_match)
2146 		return 0;
2147 
2148 	return event->pmu->aux_output_match(aux_event);
2149 }
2150 
2151 static void put_event(struct perf_event *event);
2152 static void event_sched_out(struct perf_event *event,
2153 			    struct perf_event_context *ctx);
2154 
2155 static void perf_put_aux_event(struct perf_event *event)
2156 {
2157 	struct perf_event_context *ctx = event->ctx;
2158 	struct perf_event *iter;
2159 
2160 	/*
2161 	 * If event uses aux_event tear down the link
2162 	 */
2163 	if (event->aux_event) {
2164 		iter = event->aux_event;
2165 		event->aux_event = NULL;
2166 		put_event(iter);
2167 		return;
2168 	}
2169 
2170 	/*
2171 	 * If the event is an aux_event, tear down all links to
2172 	 * it from other events.
2173 	 */
2174 	for_each_sibling_event(iter, event) {
2175 		if (iter->aux_event != event)
2176 			continue;
2177 
2178 		iter->aux_event = NULL;
2179 		put_event(event);
2180 
2181 		/*
2182 		 * If it's ACTIVE, schedule it out and put it into ERROR
2183 		 * state so that we don't try to schedule it again. Note
2184 		 * that perf_event_enable() will clear the ERROR status.
2185 		 */
2186 		event_sched_out(iter, ctx);
2187 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2188 	}
2189 }
2190 
2191 static bool perf_need_aux_event(struct perf_event *event)
2192 {
2193 	return event->attr.aux_output || has_aux_action(event);
2194 }
2195 
2196 static int perf_get_aux_event(struct perf_event *event,
2197 			      struct perf_event *group_leader)
2198 {
2199 	/*
2200 	 * Our group leader must be an aux event if we want to be
2201 	 * an aux_output. This way, the aux event will precede its
2202 	 * aux_output events in the group, and therefore will always
2203 	 * schedule first.
2204 	 */
2205 	if (!group_leader)
2206 		return 0;
2207 
2208 	/*
2209 	 * aux_output and aux_sample_size are mutually exclusive.
2210 	 */
2211 	if (event->attr.aux_output && event->attr.aux_sample_size)
2212 		return 0;
2213 
2214 	if (event->attr.aux_output &&
2215 	    !perf_aux_output_match(event, group_leader))
2216 		return 0;
2217 
2218 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2219 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2220 		return 0;
2221 
2222 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2223 		return 0;
2224 
2225 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2226 		return 0;
2227 
2228 	/*
2229 	 * Link aux_outputs to their aux event; this is undone in
2230 	 * perf_group_detach() by perf_put_aux_event(). When the
2231 	 * group in torn down, the aux_output events loose their
2232 	 * link to the aux_event and can't schedule any more.
2233 	 */
2234 	event->aux_event = group_leader;
2235 
2236 	return 1;
2237 }
2238 
2239 static inline struct list_head *get_event_list(struct perf_event *event)
2240 {
2241 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2242 				    &event->pmu_ctx->flexible_active;
2243 }
2244 
2245 /*
2246  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2247  * cannot exist on their own, schedule them out and move them into the ERROR
2248  * state. Also see _perf_event_enable(), it will not be able to recover
2249  * this ERROR state.
2250  */
2251 static inline void perf_remove_sibling_event(struct perf_event *event)
2252 {
2253 	event_sched_out(event, event->ctx);
2254 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2255 }
2256 
2257 static void perf_group_detach(struct perf_event *event)
2258 {
2259 	struct perf_event *leader = event->group_leader;
2260 	struct perf_event *sibling, *tmp;
2261 	struct perf_event_context *ctx = event->ctx;
2262 
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	/*
2266 	 * We can have double detach due to exit/hot-unplug + close.
2267 	 */
2268 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2269 		return;
2270 
2271 	event->attach_state &= ~PERF_ATTACH_GROUP;
2272 
2273 	perf_put_aux_event(event);
2274 
2275 	/*
2276 	 * If this is a sibling, remove it from its group.
2277 	 */
2278 	if (leader != event) {
2279 		list_del_init(&event->sibling_list);
2280 		event->group_leader->nr_siblings--;
2281 		event->group_leader->group_generation++;
2282 		goto out;
2283 	}
2284 
2285 	/*
2286 	 * If this was a group event with sibling events then
2287 	 * upgrade the siblings to singleton events by adding them
2288 	 * to whatever list we are on.
2289 	 */
2290 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2291 
2292 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2293 			perf_remove_sibling_event(sibling);
2294 
2295 		sibling->group_leader = sibling;
2296 		list_del_init(&sibling->sibling_list);
2297 
2298 		/* Inherit group flags from the previous leader */
2299 		sibling->group_caps = event->group_caps;
2300 
2301 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2302 			add_event_to_groups(sibling, event->ctx);
2303 
2304 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2305 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2306 		}
2307 
2308 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2309 	}
2310 
2311 out:
2312 	for_each_sibling_event(tmp, leader)
2313 		perf_event__header_size(tmp);
2314 
2315 	perf_event__header_size(leader);
2316 }
2317 
2318 static void sync_child_event(struct perf_event *child_event);
2319 
2320 static void perf_child_detach(struct perf_event *event)
2321 {
2322 	struct perf_event *parent_event = event->parent;
2323 
2324 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2325 		return;
2326 
2327 	event->attach_state &= ~PERF_ATTACH_CHILD;
2328 
2329 	if (WARN_ON_ONCE(!parent_event))
2330 		return;
2331 
2332 	/*
2333 	 * Can't check this from an IPI, the holder is likey another CPU.
2334 	 *
2335 	lockdep_assert_held(&parent_event->child_mutex);
2336 	 */
2337 
2338 	sync_child_event(event);
2339 	list_del_init(&event->child_list);
2340 }
2341 
2342 static bool is_orphaned_event(struct perf_event *event)
2343 {
2344 	return event->state == PERF_EVENT_STATE_DEAD;
2345 }
2346 
2347 static inline int
2348 event_filter_match(struct perf_event *event)
2349 {
2350 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2351 	       perf_cgroup_match(event);
2352 }
2353 
2354 static inline bool is_event_in_freq_mode(struct perf_event *event)
2355 {
2356 	return event->attr.freq && event->attr.sample_freq;
2357 }
2358 
2359 static void
2360 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2361 {
2362 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2363 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2364 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2365 
2366 	// XXX cpc serialization, probably per-cpu IRQ disabled
2367 
2368 	WARN_ON_ONCE(event->ctx != ctx);
2369 	lockdep_assert_held(&ctx->lock);
2370 
2371 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2372 		return;
2373 
2374 	/*
2375 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2376 	 * we can schedule events _OUT_ individually through things like
2377 	 * __perf_remove_from_context().
2378 	 */
2379 	list_del_init(&event->active_list);
2380 
2381 	perf_pmu_disable(event->pmu);
2382 
2383 	event->pmu->del(event, 0);
2384 	event->oncpu = -1;
2385 
2386 	if (event->pending_disable) {
2387 		event->pending_disable = 0;
2388 		perf_cgroup_event_disable(event, ctx);
2389 		state = PERF_EVENT_STATE_OFF;
2390 	}
2391 
2392 	perf_event_set_state(event, state);
2393 
2394 	if (!is_software_event(event))
2395 		cpc->active_oncpu--;
2396 	if (is_event_in_freq_mode(event)) {
2397 		ctx->nr_freq--;
2398 		epc->nr_freq--;
2399 	}
2400 	if (event->attr.exclusive || !cpc->active_oncpu)
2401 		cpc->exclusive = 0;
2402 
2403 	perf_pmu_enable(event->pmu);
2404 }
2405 
2406 static void
2407 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2408 {
2409 	struct perf_event *event;
2410 
2411 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2412 		return;
2413 
2414 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2415 
2416 	event_sched_out(group_event, ctx);
2417 
2418 	/*
2419 	 * Schedule out siblings (if any):
2420 	 */
2421 	for_each_sibling_event(event, group_event)
2422 		event_sched_out(event, ctx);
2423 }
2424 
2425 static inline void
2426 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2427 {
2428 	if (ctx->is_active & EVENT_TIME) {
2429 		if (ctx->is_active & EVENT_FROZEN)
2430 			return;
2431 		update_context_time(ctx);
2432 		update_cgrp_time_from_cpuctx(cpuctx, final);
2433 	}
2434 }
2435 
2436 static inline void
2437 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2438 {
2439 	__ctx_time_update(cpuctx, ctx, false);
2440 }
2441 
2442 /*
2443  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2444  */
2445 static inline void
2446 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2447 {
2448 	ctx_time_update(cpuctx, ctx);
2449 	if (ctx->is_active & EVENT_TIME)
2450 		ctx->is_active |= EVENT_FROZEN;
2451 }
2452 
2453 static inline void
2454 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2455 {
2456 	if (ctx->is_active & EVENT_TIME) {
2457 		if (ctx->is_active & EVENT_FROZEN)
2458 			return;
2459 		update_context_time(ctx);
2460 		update_cgrp_time_from_event(event);
2461 	}
2462 }
2463 
2464 #define DETACH_GROUP	0x01UL
2465 #define DETACH_CHILD	0x02UL
2466 #define DETACH_EXIT	0x04UL
2467 #define DETACH_REVOKE	0x08UL
2468 #define DETACH_DEAD	0x10UL
2469 
2470 /*
2471  * Cross CPU call to remove a performance event
2472  *
2473  * We disable the event on the hardware level first. After that we
2474  * remove it from the context list.
2475  */
2476 static void
2477 __perf_remove_from_context(struct perf_event *event,
2478 			   struct perf_cpu_context *cpuctx,
2479 			   struct perf_event_context *ctx,
2480 			   void *info)
2481 {
2482 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2483 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2484 	unsigned long flags = (unsigned long)info;
2485 
2486 	ctx_time_update(cpuctx, ctx);
2487 
2488 	/*
2489 	 * Ensure event_sched_out() switches to OFF, at the very least
2490 	 * this avoids raising perf_pending_task() at this time.
2491 	 */
2492 	if (flags & DETACH_EXIT)
2493 		state = PERF_EVENT_STATE_EXIT;
2494 	if (flags & DETACH_REVOKE)
2495 		state = PERF_EVENT_STATE_REVOKED;
2496 	if (flags & DETACH_DEAD) {
2497 		event->pending_disable = 1;
2498 		state = PERF_EVENT_STATE_DEAD;
2499 	}
2500 	event_sched_out(event, ctx);
2501 	perf_event_set_state(event, min(event->state, state));
2502 
2503 	if (flags & DETACH_GROUP)
2504 		perf_group_detach(event);
2505 	if (flags & DETACH_CHILD)
2506 		perf_child_detach(event);
2507 	list_del_event(event, ctx);
2508 
2509 	if (!pmu_ctx->nr_events) {
2510 		pmu_ctx->rotate_necessary = 0;
2511 
2512 		if (ctx->task && ctx->is_active) {
2513 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2514 
2515 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2516 			cpc->task_epc = NULL;
2517 		}
2518 	}
2519 
2520 	if (!ctx->nr_events && ctx->is_active) {
2521 		if (ctx == &cpuctx->ctx)
2522 			update_cgrp_time_from_cpuctx(cpuctx, true);
2523 
2524 		ctx->is_active = 0;
2525 		if (ctx->task) {
2526 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2527 			cpuctx->task_ctx = NULL;
2528 		}
2529 	}
2530 }
2531 
2532 /*
2533  * Remove the event from a task's (or a CPU's) list of events.
2534  *
2535  * If event->ctx is a cloned context, callers must make sure that
2536  * every task struct that event->ctx->task could possibly point to
2537  * remains valid.  This is OK when called from perf_release since
2538  * that only calls us on the top-level context, which can't be a clone.
2539  * When called from perf_event_exit_task, it's OK because the
2540  * context has been detached from its task.
2541  */
2542 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2543 {
2544 	struct perf_event_context *ctx = event->ctx;
2545 
2546 	lockdep_assert_held(&ctx->mutex);
2547 
2548 	/*
2549 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2550 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2551 	 * event_function_call() user.
2552 	 */
2553 	raw_spin_lock_irq(&ctx->lock);
2554 	if (!ctx->is_active) {
2555 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2556 					   ctx, (void *)flags);
2557 		raw_spin_unlock_irq(&ctx->lock);
2558 		return;
2559 	}
2560 	raw_spin_unlock_irq(&ctx->lock);
2561 
2562 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2563 }
2564 
2565 /*
2566  * Cross CPU call to disable a performance event
2567  */
2568 static void __perf_event_disable(struct perf_event *event,
2569 				 struct perf_cpu_context *cpuctx,
2570 				 struct perf_event_context *ctx,
2571 				 void *info)
2572 {
2573 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2574 		return;
2575 
2576 	perf_pmu_disable(event->pmu_ctx->pmu);
2577 	ctx_time_update_event(ctx, event);
2578 
2579 	if (event == event->group_leader)
2580 		group_sched_out(event, ctx);
2581 	else
2582 		event_sched_out(event, ctx);
2583 
2584 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2585 	perf_cgroup_event_disable(event, ctx);
2586 
2587 	perf_pmu_enable(event->pmu_ctx->pmu);
2588 }
2589 
2590 /*
2591  * Disable an event.
2592  *
2593  * If event->ctx is a cloned context, callers must make sure that
2594  * every task struct that event->ctx->task could possibly point to
2595  * remains valid.  This condition is satisfied when called through
2596  * perf_event_for_each_child or perf_event_for_each because they
2597  * hold the top-level event's child_mutex, so any descendant that
2598  * goes to exit will block in perf_event_exit_event().
2599  *
2600  * When called from perf_pending_disable it's OK because event->ctx
2601  * is the current context on this CPU and preemption is disabled,
2602  * hence we can't get into perf_event_task_sched_out for this context.
2603  */
2604 static void _perf_event_disable(struct perf_event *event)
2605 {
2606 	struct perf_event_context *ctx = event->ctx;
2607 
2608 	raw_spin_lock_irq(&ctx->lock);
2609 	if (event->state <= PERF_EVENT_STATE_OFF) {
2610 		raw_spin_unlock_irq(&ctx->lock);
2611 		return;
2612 	}
2613 	raw_spin_unlock_irq(&ctx->lock);
2614 
2615 	event_function_call(event, __perf_event_disable, NULL);
2616 }
2617 
2618 void perf_event_disable_local(struct perf_event *event)
2619 {
2620 	event_function_local(event, __perf_event_disable, NULL);
2621 }
2622 
2623 /*
2624  * Strictly speaking kernel users cannot create groups and therefore this
2625  * interface does not need the perf_event_ctx_lock() magic.
2626  */
2627 void perf_event_disable(struct perf_event *event)
2628 {
2629 	struct perf_event_context *ctx;
2630 
2631 	ctx = perf_event_ctx_lock(event);
2632 	_perf_event_disable(event);
2633 	perf_event_ctx_unlock(event, ctx);
2634 }
2635 EXPORT_SYMBOL_GPL(perf_event_disable);
2636 
2637 void perf_event_disable_inatomic(struct perf_event *event)
2638 {
2639 	event->pending_disable = 1;
2640 	irq_work_queue(&event->pending_disable_irq);
2641 }
2642 
2643 #define MAX_INTERRUPTS (~0ULL)
2644 
2645 static void perf_log_throttle(struct perf_event *event, int enable);
2646 static void perf_log_itrace_start(struct perf_event *event);
2647 
2648 static void perf_event_unthrottle(struct perf_event *event, bool start)
2649 {
2650 	event->hw.interrupts = 0;
2651 	if (start)
2652 		event->pmu->start(event, 0);
2653 	if (event == event->group_leader)
2654 		perf_log_throttle(event, 1);
2655 }
2656 
2657 static void perf_event_throttle(struct perf_event *event)
2658 {
2659 	event->pmu->stop(event, 0);
2660 	event->hw.interrupts = MAX_INTERRUPTS;
2661 	if (event == event->group_leader)
2662 		perf_log_throttle(event, 0);
2663 }
2664 
2665 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2666 {
2667 	struct perf_event *sibling, *leader = event->group_leader;
2668 
2669 	perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2670 	for_each_sibling_event(sibling, leader)
2671 		perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2672 }
2673 
2674 static void perf_event_throttle_group(struct perf_event *event)
2675 {
2676 	struct perf_event *sibling, *leader = event->group_leader;
2677 
2678 	perf_event_throttle(leader);
2679 	for_each_sibling_event(sibling, leader)
2680 		perf_event_throttle(sibling);
2681 }
2682 
2683 static int
2684 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2685 {
2686 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2687 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2688 	int ret = 0;
2689 
2690 	WARN_ON_ONCE(event->ctx != ctx);
2691 
2692 	lockdep_assert_held(&ctx->lock);
2693 
2694 	if (event->state <= PERF_EVENT_STATE_OFF)
2695 		return 0;
2696 
2697 	WRITE_ONCE(event->oncpu, smp_processor_id());
2698 	/*
2699 	 * Order event::oncpu write to happen before the ACTIVE state is
2700 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2701 	 * ->oncpu if it sees ACTIVE.
2702 	 */
2703 	smp_wmb();
2704 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2705 
2706 	/*
2707 	 * Unthrottle events, since we scheduled we might have missed several
2708 	 * ticks already, also for a heavily scheduling task there is little
2709 	 * guarantee it'll get a tick in a timely manner.
2710 	 */
2711 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2712 		perf_event_unthrottle(event, false);
2713 
2714 	perf_pmu_disable(event->pmu);
2715 
2716 	perf_log_itrace_start(event);
2717 
2718 	if (event->pmu->add(event, PERF_EF_START)) {
2719 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2720 		event->oncpu = -1;
2721 		ret = -EAGAIN;
2722 		goto out;
2723 	}
2724 
2725 	if (!is_software_event(event))
2726 		cpc->active_oncpu++;
2727 	if (is_event_in_freq_mode(event)) {
2728 		ctx->nr_freq++;
2729 		epc->nr_freq++;
2730 	}
2731 	if (event->attr.exclusive)
2732 		cpc->exclusive = 1;
2733 
2734 out:
2735 	perf_pmu_enable(event->pmu);
2736 
2737 	return ret;
2738 }
2739 
2740 static int
2741 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2742 {
2743 	struct perf_event *event, *partial_group = NULL;
2744 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2745 
2746 	if (group_event->state == PERF_EVENT_STATE_OFF)
2747 		return 0;
2748 
2749 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2750 
2751 	if (event_sched_in(group_event, ctx))
2752 		goto error;
2753 
2754 	/*
2755 	 * Schedule in siblings as one group (if any):
2756 	 */
2757 	for_each_sibling_event(event, group_event) {
2758 		if (event_sched_in(event, ctx)) {
2759 			partial_group = event;
2760 			goto group_error;
2761 		}
2762 	}
2763 
2764 	if (!pmu->commit_txn(pmu))
2765 		return 0;
2766 
2767 group_error:
2768 	/*
2769 	 * Groups can be scheduled in as one unit only, so undo any
2770 	 * partial group before returning:
2771 	 * The events up to the failed event are scheduled out normally.
2772 	 */
2773 	for_each_sibling_event(event, group_event) {
2774 		if (event == partial_group)
2775 			break;
2776 
2777 		event_sched_out(event, ctx);
2778 	}
2779 	event_sched_out(group_event, ctx);
2780 
2781 error:
2782 	pmu->cancel_txn(pmu);
2783 	return -EAGAIN;
2784 }
2785 
2786 /*
2787  * Work out whether we can put this event group on the CPU now.
2788  */
2789 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2790 {
2791 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2792 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2793 
2794 	/*
2795 	 * Groups consisting entirely of software events can always go on.
2796 	 */
2797 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2798 		return 1;
2799 	/*
2800 	 * If an exclusive group is already on, no other hardware
2801 	 * events can go on.
2802 	 */
2803 	if (cpc->exclusive)
2804 		return 0;
2805 	/*
2806 	 * If this group is exclusive and there are already
2807 	 * events on the CPU, it can't go on.
2808 	 */
2809 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2810 		return 0;
2811 	/*
2812 	 * Otherwise, try to add it if all previous groups were able
2813 	 * to go on.
2814 	 */
2815 	return can_add_hw;
2816 }
2817 
2818 static void add_event_to_ctx(struct perf_event *event,
2819 			       struct perf_event_context *ctx)
2820 {
2821 	list_add_event(event, ctx);
2822 	perf_group_attach(event);
2823 }
2824 
2825 static void task_ctx_sched_out(struct perf_event_context *ctx,
2826 			       struct pmu *pmu,
2827 			       enum event_type_t event_type)
2828 {
2829 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2830 
2831 	if (!cpuctx->task_ctx)
2832 		return;
2833 
2834 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2835 		return;
2836 
2837 	ctx_sched_out(ctx, pmu, event_type);
2838 }
2839 
2840 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2841 				struct perf_event_context *ctx,
2842 				struct pmu *pmu)
2843 {
2844 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2845 	if (ctx)
2846 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2847 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2848 	if (ctx)
2849 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2850 }
2851 
2852 /*
2853  * We want to maintain the following priority of scheduling:
2854  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2855  *  - task pinned (EVENT_PINNED)
2856  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2857  *  - task flexible (EVENT_FLEXIBLE).
2858  *
2859  * In order to avoid unscheduling and scheduling back in everything every
2860  * time an event is added, only do it for the groups of equal priority and
2861  * below.
2862  *
2863  * This can be called after a batch operation on task events, in which case
2864  * event_type is a bit mask of the types of events involved. For CPU events,
2865  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2866  */
2867 static void ctx_resched(struct perf_cpu_context *cpuctx,
2868 			struct perf_event_context *task_ctx,
2869 			struct pmu *pmu, enum event_type_t event_type)
2870 {
2871 	bool cpu_event = !!(event_type & EVENT_CPU);
2872 	struct perf_event_pmu_context *epc;
2873 
2874 	/*
2875 	 * If pinned groups are involved, flexible groups also need to be
2876 	 * scheduled out.
2877 	 */
2878 	if (event_type & EVENT_PINNED)
2879 		event_type |= EVENT_FLEXIBLE;
2880 
2881 	event_type &= EVENT_ALL;
2882 
2883 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2884 		perf_pmu_disable(epc->pmu);
2885 
2886 	if (task_ctx) {
2887 		for_each_epc(epc, task_ctx, pmu, false)
2888 			perf_pmu_disable(epc->pmu);
2889 
2890 		task_ctx_sched_out(task_ctx, pmu, event_type);
2891 	}
2892 
2893 	/*
2894 	 * Decide which cpu ctx groups to schedule out based on the types
2895 	 * of events that caused rescheduling:
2896 	 *  - EVENT_CPU: schedule out corresponding groups;
2897 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2898 	 *  - otherwise, do nothing more.
2899 	 */
2900 	if (cpu_event)
2901 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2902 	else if (event_type & EVENT_PINNED)
2903 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2904 
2905 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2906 
2907 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2908 		perf_pmu_enable(epc->pmu);
2909 
2910 	if (task_ctx) {
2911 		for_each_epc(epc, task_ctx, pmu, false)
2912 			perf_pmu_enable(epc->pmu);
2913 	}
2914 }
2915 
2916 void perf_pmu_resched(struct pmu *pmu)
2917 {
2918 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2919 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2920 
2921 	perf_ctx_lock(cpuctx, task_ctx);
2922 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2923 	perf_ctx_unlock(cpuctx, task_ctx);
2924 }
2925 
2926 /*
2927  * Cross CPU call to install and enable a performance event
2928  *
2929  * Very similar to remote_function() + event_function() but cannot assume that
2930  * things like ctx->is_active and cpuctx->task_ctx are set.
2931  */
2932 static int  __perf_install_in_context(void *info)
2933 {
2934 	struct perf_event *event = info;
2935 	struct perf_event_context *ctx = event->ctx;
2936 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2937 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2938 	bool reprogram = true;
2939 	int ret = 0;
2940 
2941 	raw_spin_lock(&cpuctx->ctx.lock);
2942 	if (ctx->task) {
2943 		raw_spin_lock(&ctx->lock);
2944 		task_ctx = ctx;
2945 
2946 		reprogram = (ctx->task == current);
2947 
2948 		/*
2949 		 * If the task is running, it must be running on this CPU,
2950 		 * otherwise we cannot reprogram things.
2951 		 *
2952 		 * If its not running, we don't care, ctx->lock will
2953 		 * serialize against it becoming runnable.
2954 		 */
2955 		if (task_curr(ctx->task) && !reprogram) {
2956 			ret = -ESRCH;
2957 			goto unlock;
2958 		}
2959 
2960 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2961 	} else if (task_ctx) {
2962 		raw_spin_lock(&task_ctx->lock);
2963 	}
2964 
2965 #ifdef CONFIG_CGROUP_PERF
2966 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2967 		/*
2968 		 * If the current cgroup doesn't match the event's
2969 		 * cgroup, we should not try to schedule it.
2970 		 */
2971 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2972 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2973 					event->cgrp->css.cgroup);
2974 	}
2975 #endif
2976 
2977 	if (reprogram) {
2978 		ctx_time_freeze(cpuctx, ctx);
2979 		add_event_to_ctx(event, ctx);
2980 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2981 			    get_event_type(event));
2982 	} else {
2983 		add_event_to_ctx(event, ctx);
2984 	}
2985 
2986 unlock:
2987 	perf_ctx_unlock(cpuctx, task_ctx);
2988 
2989 	return ret;
2990 }
2991 
2992 static bool exclusive_event_installable(struct perf_event *event,
2993 					struct perf_event_context *ctx);
2994 
2995 /*
2996  * Attach a performance event to a context.
2997  *
2998  * Very similar to event_function_call, see comment there.
2999  */
3000 static void
3001 perf_install_in_context(struct perf_event_context *ctx,
3002 			struct perf_event *event,
3003 			int cpu)
3004 {
3005 	struct task_struct *task = READ_ONCE(ctx->task);
3006 
3007 	lockdep_assert_held(&ctx->mutex);
3008 
3009 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3010 
3011 	if (event->cpu != -1)
3012 		WARN_ON_ONCE(event->cpu != cpu);
3013 
3014 	/*
3015 	 * Ensures that if we can observe event->ctx, both the event and ctx
3016 	 * will be 'complete'. See perf_iterate_sb_cpu().
3017 	 */
3018 	smp_store_release(&event->ctx, ctx);
3019 
3020 	/*
3021 	 * perf_event_attr::disabled events will not run and can be initialized
3022 	 * without IPI. Except when this is the first event for the context, in
3023 	 * that case we need the magic of the IPI to set ctx->is_active.
3024 	 *
3025 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
3026 	 * event will issue the IPI and reprogram the hardware.
3027 	 */
3028 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3029 	    ctx->nr_events && !is_cgroup_event(event)) {
3030 		raw_spin_lock_irq(&ctx->lock);
3031 		if (ctx->task == TASK_TOMBSTONE) {
3032 			raw_spin_unlock_irq(&ctx->lock);
3033 			return;
3034 		}
3035 		add_event_to_ctx(event, ctx);
3036 		raw_spin_unlock_irq(&ctx->lock);
3037 		return;
3038 	}
3039 
3040 	if (!task) {
3041 		cpu_function_call(cpu, __perf_install_in_context, event);
3042 		return;
3043 	}
3044 
3045 	/*
3046 	 * Should not happen, we validate the ctx is still alive before calling.
3047 	 */
3048 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3049 		return;
3050 
3051 	/*
3052 	 * Installing events is tricky because we cannot rely on ctx->is_active
3053 	 * to be set in case this is the nr_events 0 -> 1 transition.
3054 	 *
3055 	 * Instead we use task_curr(), which tells us if the task is running.
3056 	 * However, since we use task_curr() outside of rq::lock, we can race
3057 	 * against the actual state. This means the result can be wrong.
3058 	 *
3059 	 * If we get a false positive, we retry, this is harmless.
3060 	 *
3061 	 * If we get a false negative, things are complicated. If we are after
3062 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3063 	 * value must be correct. If we're before, it doesn't matter since
3064 	 * perf_event_context_sched_in() will program the counter.
3065 	 *
3066 	 * However, this hinges on the remote context switch having observed
3067 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3068 	 * ctx::lock in perf_event_context_sched_in().
3069 	 *
3070 	 * We do this by task_function_call(), if the IPI fails to hit the task
3071 	 * we know any future context switch of task must see the
3072 	 * perf_event_ctpx[] store.
3073 	 */
3074 
3075 	/*
3076 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3077 	 * task_cpu() load, such that if the IPI then does not find the task
3078 	 * running, a future context switch of that task must observe the
3079 	 * store.
3080 	 */
3081 	smp_mb();
3082 again:
3083 	if (!task_function_call(task, __perf_install_in_context, event))
3084 		return;
3085 
3086 	raw_spin_lock_irq(&ctx->lock);
3087 	task = ctx->task;
3088 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3089 		/*
3090 		 * Cannot happen because we already checked above (which also
3091 		 * cannot happen), and we hold ctx->mutex, which serializes us
3092 		 * against perf_event_exit_task_context().
3093 		 */
3094 		raw_spin_unlock_irq(&ctx->lock);
3095 		return;
3096 	}
3097 	/*
3098 	 * If the task is not running, ctx->lock will avoid it becoming so,
3099 	 * thus we can safely install the event.
3100 	 */
3101 	if (task_curr(task)) {
3102 		raw_spin_unlock_irq(&ctx->lock);
3103 		goto again;
3104 	}
3105 	add_event_to_ctx(event, ctx);
3106 	raw_spin_unlock_irq(&ctx->lock);
3107 }
3108 
3109 /*
3110  * Cross CPU call to enable a performance event
3111  */
3112 static void __perf_event_enable(struct perf_event *event,
3113 				struct perf_cpu_context *cpuctx,
3114 				struct perf_event_context *ctx,
3115 				void *info)
3116 {
3117 	struct perf_event *leader = event->group_leader;
3118 	struct perf_event_context *task_ctx;
3119 
3120 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3121 	    event->state <= PERF_EVENT_STATE_ERROR)
3122 		return;
3123 
3124 	ctx_time_freeze(cpuctx, ctx);
3125 
3126 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3127 	perf_cgroup_event_enable(event, ctx);
3128 
3129 	if (!ctx->is_active)
3130 		return;
3131 
3132 	if (!event_filter_match(event))
3133 		return;
3134 
3135 	/*
3136 	 * If the event is in a group and isn't the group leader,
3137 	 * then don't put it on unless the group is on.
3138 	 */
3139 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3140 		return;
3141 
3142 	task_ctx = cpuctx->task_ctx;
3143 	if (ctx->task)
3144 		WARN_ON_ONCE(task_ctx != ctx);
3145 
3146 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3147 }
3148 
3149 /*
3150  * Enable an event.
3151  *
3152  * If event->ctx is a cloned context, callers must make sure that
3153  * every task struct that event->ctx->task could possibly point to
3154  * remains valid.  This condition is satisfied when called through
3155  * perf_event_for_each_child or perf_event_for_each as described
3156  * for perf_event_disable.
3157  */
3158 static void _perf_event_enable(struct perf_event *event)
3159 {
3160 	struct perf_event_context *ctx = event->ctx;
3161 
3162 	raw_spin_lock_irq(&ctx->lock);
3163 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3164 	    event->state <  PERF_EVENT_STATE_ERROR) {
3165 out:
3166 		raw_spin_unlock_irq(&ctx->lock);
3167 		return;
3168 	}
3169 
3170 	/*
3171 	 * If the event is in error state, clear that first.
3172 	 *
3173 	 * That way, if we see the event in error state below, we know that it
3174 	 * has gone back into error state, as distinct from the task having
3175 	 * been scheduled away before the cross-call arrived.
3176 	 */
3177 	if (event->state == PERF_EVENT_STATE_ERROR) {
3178 		/*
3179 		 * Detached SIBLING events cannot leave ERROR state.
3180 		 */
3181 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3182 		    event->group_leader == event)
3183 			goto out;
3184 
3185 		event->state = PERF_EVENT_STATE_OFF;
3186 	}
3187 	raw_spin_unlock_irq(&ctx->lock);
3188 
3189 	event_function_call(event, __perf_event_enable, NULL);
3190 }
3191 
3192 /*
3193  * See perf_event_disable();
3194  */
3195 void perf_event_enable(struct perf_event *event)
3196 {
3197 	struct perf_event_context *ctx;
3198 
3199 	ctx = perf_event_ctx_lock(event);
3200 	_perf_event_enable(event);
3201 	perf_event_ctx_unlock(event, ctx);
3202 }
3203 EXPORT_SYMBOL_GPL(perf_event_enable);
3204 
3205 struct stop_event_data {
3206 	struct perf_event	*event;
3207 	unsigned int		restart;
3208 };
3209 
3210 static int __perf_event_stop(void *info)
3211 {
3212 	struct stop_event_data *sd = info;
3213 	struct perf_event *event = sd->event;
3214 
3215 	/* if it's already INACTIVE, do nothing */
3216 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3217 		return 0;
3218 
3219 	/* matches smp_wmb() in event_sched_in() */
3220 	smp_rmb();
3221 
3222 	/*
3223 	 * There is a window with interrupts enabled before we get here,
3224 	 * so we need to check again lest we try to stop another CPU's event.
3225 	 */
3226 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3227 		return -EAGAIN;
3228 
3229 	event->pmu->stop(event, PERF_EF_UPDATE);
3230 
3231 	/*
3232 	 * May race with the actual stop (through perf_pmu_output_stop()),
3233 	 * but it is only used for events with AUX ring buffer, and such
3234 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3235 	 * see comments in perf_aux_output_begin().
3236 	 *
3237 	 * Since this is happening on an event-local CPU, no trace is lost
3238 	 * while restarting.
3239 	 */
3240 	if (sd->restart)
3241 		event->pmu->start(event, 0);
3242 
3243 	return 0;
3244 }
3245 
3246 static int perf_event_stop(struct perf_event *event, int restart)
3247 {
3248 	struct stop_event_data sd = {
3249 		.event		= event,
3250 		.restart	= restart,
3251 	};
3252 	int ret = 0;
3253 
3254 	do {
3255 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3256 			return 0;
3257 
3258 		/* matches smp_wmb() in event_sched_in() */
3259 		smp_rmb();
3260 
3261 		/*
3262 		 * We only want to restart ACTIVE events, so if the event goes
3263 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3264 		 * fall through with ret==-ENXIO.
3265 		 */
3266 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3267 					__perf_event_stop, &sd);
3268 	} while (ret == -EAGAIN);
3269 
3270 	return ret;
3271 }
3272 
3273 /*
3274  * In order to contain the amount of racy and tricky in the address filter
3275  * configuration management, it is a two part process:
3276  *
3277  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3278  *      we update the addresses of corresponding vmas in
3279  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3280  * (p2) when an event is scheduled in (pmu::add), it calls
3281  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3282  *      if the generation has changed since the previous call.
3283  *
3284  * If (p1) happens while the event is active, we restart it to force (p2).
3285  *
3286  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3287  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3288  *     ioctl;
3289  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3290  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3291  *     for reading;
3292  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3293  *     of exec.
3294  */
3295 void perf_event_addr_filters_sync(struct perf_event *event)
3296 {
3297 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3298 
3299 	if (!has_addr_filter(event))
3300 		return;
3301 
3302 	raw_spin_lock(&ifh->lock);
3303 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3304 		event->pmu->addr_filters_sync(event);
3305 		event->hw.addr_filters_gen = event->addr_filters_gen;
3306 	}
3307 	raw_spin_unlock(&ifh->lock);
3308 }
3309 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3310 
3311 static int _perf_event_refresh(struct perf_event *event, int refresh)
3312 {
3313 	/*
3314 	 * not supported on inherited events
3315 	 */
3316 	if (event->attr.inherit || !is_sampling_event(event))
3317 		return -EINVAL;
3318 
3319 	atomic_add(refresh, &event->event_limit);
3320 	_perf_event_enable(event);
3321 
3322 	return 0;
3323 }
3324 
3325 /*
3326  * See perf_event_disable()
3327  */
3328 int perf_event_refresh(struct perf_event *event, int refresh)
3329 {
3330 	struct perf_event_context *ctx;
3331 	int ret;
3332 
3333 	ctx = perf_event_ctx_lock(event);
3334 	ret = _perf_event_refresh(event, refresh);
3335 	perf_event_ctx_unlock(event, ctx);
3336 
3337 	return ret;
3338 }
3339 EXPORT_SYMBOL_GPL(perf_event_refresh);
3340 
3341 static int perf_event_modify_breakpoint(struct perf_event *bp,
3342 					 struct perf_event_attr *attr)
3343 {
3344 	int err;
3345 
3346 	_perf_event_disable(bp);
3347 
3348 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3349 
3350 	if (!bp->attr.disabled)
3351 		_perf_event_enable(bp);
3352 
3353 	return err;
3354 }
3355 
3356 /*
3357  * Copy event-type-independent attributes that may be modified.
3358  */
3359 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3360 					const struct perf_event_attr *from)
3361 {
3362 	to->sig_data = from->sig_data;
3363 }
3364 
3365 static int perf_event_modify_attr(struct perf_event *event,
3366 				  struct perf_event_attr *attr)
3367 {
3368 	int (*func)(struct perf_event *, struct perf_event_attr *);
3369 	struct perf_event *child;
3370 	int err;
3371 
3372 	if (event->attr.type != attr->type)
3373 		return -EINVAL;
3374 
3375 	switch (event->attr.type) {
3376 	case PERF_TYPE_BREAKPOINT:
3377 		func = perf_event_modify_breakpoint;
3378 		break;
3379 	default:
3380 		/* Place holder for future additions. */
3381 		return -EOPNOTSUPP;
3382 	}
3383 
3384 	WARN_ON_ONCE(event->ctx->parent_ctx);
3385 
3386 	mutex_lock(&event->child_mutex);
3387 	/*
3388 	 * Event-type-independent attributes must be copied before event-type
3389 	 * modification, which will validate that final attributes match the
3390 	 * source attributes after all relevant attributes have been copied.
3391 	 */
3392 	perf_event_modify_copy_attr(&event->attr, attr);
3393 	err = func(event, attr);
3394 	if (err)
3395 		goto out;
3396 	list_for_each_entry(child, &event->child_list, child_list) {
3397 		perf_event_modify_copy_attr(&child->attr, attr);
3398 		err = func(child, attr);
3399 		if (err)
3400 			goto out;
3401 	}
3402 out:
3403 	mutex_unlock(&event->child_mutex);
3404 	return err;
3405 }
3406 
3407 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3408 				enum event_type_t event_type)
3409 {
3410 	struct perf_event_context *ctx = pmu_ctx->ctx;
3411 	struct perf_event *event, *tmp;
3412 	struct pmu *pmu = pmu_ctx->pmu;
3413 
3414 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3415 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3416 
3417 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3418 		cpc->task_epc = NULL;
3419 	}
3420 
3421 	if (!(event_type & EVENT_ALL))
3422 		return;
3423 
3424 	perf_pmu_disable(pmu);
3425 	if (event_type & EVENT_PINNED) {
3426 		list_for_each_entry_safe(event, tmp,
3427 					 &pmu_ctx->pinned_active,
3428 					 active_list)
3429 			group_sched_out(event, ctx);
3430 	}
3431 
3432 	if (event_type & EVENT_FLEXIBLE) {
3433 		list_for_each_entry_safe(event, tmp,
3434 					 &pmu_ctx->flexible_active,
3435 					 active_list)
3436 			group_sched_out(event, ctx);
3437 		/*
3438 		 * Since we cleared EVENT_FLEXIBLE, also clear
3439 		 * rotate_necessary, is will be reset by
3440 		 * ctx_flexible_sched_in() when needed.
3441 		 */
3442 		pmu_ctx->rotate_necessary = 0;
3443 	}
3444 	perf_pmu_enable(pmu);
3445 }
3446 
3447 /*
3448  * Be very careful with the @pmu argument since this will change ctx state.
3449  * The @pmu argument works for ctx_resched(), because that is symmetric in
3450  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3451  *
3452  * However, if you were to be asymmetrical, you could end up with messed up
3453  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3454  * be active.
3455  */
3456 static void
3457 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3458 {
3459 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3460 	struct perf_event_pmu_context *pmu_ctx;
3461 	int is_active = ctx->is_active;
3462 	bool cgroup = event_type & EVENT_CGROUP;
3463 
3464 	event_type &= ~EVENT_CGROUP;
3465 
3466 	lockdep_assert_held(&ctx->lock);
3467 
3468 	if (likely(!ctx->nr_events)) {
3469 		/*
3470 		 * See __perf_remove_from_context().
3471 		 */
3472 		WARN_ON_ONCE(ctx->is_active);
3473 		if (ctx->task)
3474 			WARN_ON_ONCE(cpuctx->task_ctx);
3475 		return;
3476 	}
3477 
3478 	/*
3479 	 * Always update time if it was set; not only when it changes.
3480 	 * Otherwise we can 'forget' to update time for any but the last
3481 	 * context we sched out. For example:
3482 	 *
3483 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3484 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3485 	 *
3486 	 * would only update time for the pinned events.
3487 	 */
3488 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3489 
3490 	/*
3491 	 * CPU-release for the below ->is_active store,
3492 	 * see __load_acquire() in perf_event_time_now()
3493 	 */
3494 	barrier();
3495 	ctx->is_active &= ~event_type;
3496 
3497 	if (!(ctx->is_active & EVENT_ALL)) {
3498 		/*
3499 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3500 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3501 		 */
3502 		if (ctx->is_active & EVENT_FROZEN)
3503 			ctx->is_active &= EVENT_TIME_FROZEN;
3504 		else
3505 			ctx->is_active = 0;
3506 	}
3507 
3508 	if (ctx->task) {
3509 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3510 		if (!(ctx->is_active & EVENT_ALL))
3511 			cpuctx->task_ctx = NULL;
3512 	}
3513 
3514 	is_active ^= ctx->is_active; /* changed bits */
3515 
3516 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3517 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3518 }
3519 
3520 /*
3521  * Test whether two contexts are equivalent, i.e. whether they have both been
3522  * cloned from the same version of the same context.
3523  *
3524  * Equivalence is measured using a generation number in the context that is
3525  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3526  * and list_del_event().
3527  */
3528 static int context_equiv(struct perf_event_context *ctx1,
3529 			 struct perf_event_context *ctx2)
3530 {
3531 	lockdep_assert_held(&ctx1->lock);
3532 	lockdep_assert_held(&ctx2->lock);
3533 
3534 	/* Pinning disables the swap optimization */
3535 	if (ctx1->pin_count || ctx2->pin_count)
3536 		return 0;
3537 
3538 	/* If ctx1 is the parent of ctx2 */
3539 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3540 		return 1;
3541 
3542 	/* If ctx2 is the parent of ctx1 */
3543 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3544 		return 1;
3545 
3546 	/*
3547 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3548 	 * hierarchy, see perf_event_init_context().
3549 	 */
3550 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3551 			ctx1->parent_gen == ctx2->parent_gen)
3552 		return 1;
3553 
3554 	/* Unmatched */
3555 	return 0;
3556 }
3557 
3558 static void __perf_event_sync_stat(struct perf_event *event,
3559 				     struct perf_event *next_event)
3560 {
3561 	u64 value;
3562 
3563 	if (!event->attr.inherit_stat)
3564 		return;
3565 
3566 	/*
3567 	 * Update the event value, we cannot use perf_event_read()
3568 	 * because we're in the middle of a context switch and have IRQs
3569 	 * disabled, which upsets smp_call_function_single(), however
3570 	 * we know the event must be on the current CPU, therefore we
3571 	 * don't need to use it.
3572 	 */
3573 	perf_pmu_read(event);
3574 
3575 	perf_event_update_time(event);
3576 
3577 	/*
3578 	 * In order to keep per-task stats reliable we need to flip the event
3579 	 * values when we flip the contexts.
3580 	 */
3581 	value = local64_read(&next_event->count);
3582 	value = local64_xchg(&event->count, value);
3583 	local64_set(&next_event->count, value);
3584 
3585 	swap(event->total_time_enabled, next_event->total_time_enabled);
3586 	swap(event->total_time_running, next_event->total_time_running);
3587 
3588 	/*
3589 	 * Since we swizzled the values, update the user visible data too.
3590 	 */
3591 	perf_event_update_userpage(event);
3592 	perf_event_update_userpage(next_event);
3593 }
3594 
3595 static void perf_event_sync_stat(struct perf_event_context *ctx,
3596 				   struct perf_event_context *next_ctx)
3597 {
3598 	struct perf_event *event, *next_event;
3599 
3600 	if (!ctx->nr_stat)
3601 		return;
3602 
3603 	update_context_time(ctx);
3604 
3605 	event = list_first_entry(&ctx->event_list,
3606 				   struct perf_event, event_entry);
3607 
3608 	next_event = list_first_entry(&next_ctx->event_list,
3609 					struct perf_event, event_entry);
3610 
3611 	while (&event->event_entry != &ctx->event_list &&
3612 	       &next_event->event_entry != &next_ctx->event_list) {
3613 
3614 		__perf_event_sync_stat(event, next_event);
3615 
3616 		event = list_next_entry(event, event_entry);
3617 		next_event = list_next_entry(next_event, event_entry);
3618 	}
3619 }
3620 
3621 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3622 				   struct task_struct *task, bool sched_in)
3623 {
3624 	struct perf_event_pmu_context *pmu_ctx;
3625 	struct perf_cpu_pmu_context *cpc;
3626 
3627 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3628 		cpc = this_cpc(pmu_ctx->pmu);
3629 
3630 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3631 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3632 	}
3633 }
3634 
3635 static void
3636 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3637 {
3638 	struct perf_event_context *ctx = task->perf_event_ctxp;
3639 	struct perf_event_context *next_ctx;
3640 	struct perf_event_context *parent, *next_parent;
3641 	int do_switch = 1;
3642 
3643 	if (likely(!ctx))
3644 		return;
3645 
3646 	rcu_read_lock();
3647 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3648 	if (!next_ctx)
3649 		goto unlock;
3650 
3651 	parent = rcu_dereference(ctx->parent_ctx);
3652 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3653 
3654 	/* If neither context have a parent context; they cannot be clones. */
3655 	if (!parent && !next_parent)
3656 		goto unlock;
3657 
3658 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3659 		/*
3660 		 * Looks like the two contexts are clones, so we might be
3661 		 * able to optimize the context switch.  We lock both
3662 		 * contexts and check that they are clones under the
3663 		 * lock (including re-checking that neither has been
3664 		 * uncloned in the meantime).  It doesn't matter which
3665 		 * order we take the locks because no other cpu could
3666 		 * be trying to lock both of these tasks.
3667 		 */
3668 		raw_spin_lock(&ctx->lock);
3669 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3670 		if (context_equiv(ctx, next_ctx)) {
3671 
3672 			perf_ctx_disable(ctx, false);
3673 
3674 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3675 			if (local_read(&ctx->nr_no_switch_fast) ||
3676 			    local_read(&next_ctx->nr_no_switch_fast)) {
3677 				/*
3678 				 * Must not swap out ctx when there's pending
3679 				 * events that rely on the ctx->task relation.
3680 				 *
3681 				 * Likewise, when a context contains inherit +
3682 				 * SAMPLE_READ events they should be switched
3683 				 * out using the slow path so that they are
3684 				 * treated as if they were distinct contexts.
3685 				 */
3686 				raw_spin_unlock(&next_ctx->lock);
3687 				rcu_read_unlock();
3688 				goto inside_switch;
3689 			}
3690 
3691 			WRITE_ONCE(ctx->task, next);
3692 			WRITE_ONCE(next_ctx->task, task);
3693 
3694 			perf_ctx_sched_task_cb(ctx, task, false);
3695 
3696 			perf_ctx_enable(ctx, false);
3697 
3698 			/*
3699 			 * RCU_INIT_POINTER here is safe because we've not
3700 			 * modified the ctx and the above modification of
3701 			 * ctx->task is immaterial since this value is
3702 			 * always verified under ctx->lock which we're now
3703 			 * holding.
3704 			 */
3705 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3706 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3707 
3708 			do_switch = 0;
3709 
3710 			perf_event_sync_stat(ctx, next_ctx);
3711 		}
3712 		raw_spin_unlock(&next_ctx->lock);
3713 		raw_spin_unlock(&ctx->lock);
3714 	}
3715 unlock:
3716 	rcu_read_unlock();
3717 
3718 	if (do_switch) {
3719 		raw_spin_lock(&ctx->lock);
3720 		perf_ctx_disable(ctx, false);
3721 
3722 inside_switch:
3723 		perf_ctx_sched_task_cb(ctx, task, false);
3724 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3725 
3726 		perf_ctx_enable(ctx, false);
3727 		raw_spin_unlock(&ctx->lock);
3728 	}
3729 }
3730 
3731 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3732 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3733 
3734 void perf_sched_cb_dec(struct pmu *pmu)
3735 {
3736 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3737 
3738 	this_cpu_dec(perf_sched_cb_usages);
3739 	barrier();
3740 
3741 	if (!--cpc->sched_cb_usage)
3742 		list_del(&cpc->sched_cb_entry);
3743 }
3744 
3745 
3746 void perf_sched_cb_inc(struct pmu *pmu)
3747 {
3748 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3749 
3750 	if (!cpc->sched_cb_usage++)
3751 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3752 
3753 	barrier();
3754 	this_cpu_inc(perf_sched_cb_usages);
3755 }
3756 
3757 /*
3758  * This function provides the context switch callback to the lower code
3759  * layer. It is invoked ONLY when the context switch callback is enabled.
3760  *
3761  * This callback is relevant even to per-cpu events; for example multi event
3762  * PEBS requires this to provide PID/TID information. This requires we flush
3763  * all queued PEBS records before we context switch to a new task.
3764  */
3765 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3766 				  struct task_struct *task, bool sched_in)
3767 {
3768 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3769 	struct pmu *pmu;
3770 
3771 	pmu = cpc->epc.pmu;
3772 
3773 	/* software PMUs will not have sched_task */
3774 	if (WARN_ON_ONCE(!pmu->sched_task))
3775 		return;
3776 
3777 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3778 	perf_pmu_disable(pmu);
3779 
3780 	pmu->sched_task(cpc->task_epc, task, sched_in);
3781 
3782 	perf_pmu_enable(pmu);
3783 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3784 }
3785 
3786 static void perf_pmu_sched_task(struct task_struct *prev,
3787 				struct task_struct *next,
3788 				bool sched_in)
3789 {
3790 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3791 	struct perf_cpu_pmu_context *cpc;
3792 
3793 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3794 	if (prev == next || cpuctx->task_ctx)
3795 		return;
3796 
3797 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3798 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3799 }
3800 
3801 static void perf_event_switch(struct task_struct *task,
3802 			      struct task_struct *next_prev, bool sched_in);
3803 
3804 /*
3805  * Called from scheduler to remove the events of the current task,
3806  * with interrupts disabled.
3807  *
3808  * We stop each event and update the event value in event->count.
3809  *
3810  * This does not protect us against NMI, but disable()
3811  * sets the disabled bit in the control field of event _before_
3812  * accessing the event control register. If a NMI hits, then it will
3813  * not restart the event.
3814  */
3815 void __perf_event_task_sched_out(struct task_struct *task,
3816 				 struct task_struct *next)
3817 {
3818 	if (__this_cpu_read(perf_sched_cb_usages))
3819 		perf_pmu_sched_task(task, next, false);
3820 
3821 	if (atomic_read(&nr_switch_events))
3822 		perf_event_switch(task, next, false);
3823 
3824 	perf_event_context_sched_out(task, next);
3825 
3826 	/*
3827 	 * if cgroup events exist on this CPU, then we need
3828 	 * to check if we have to switch out PMU state.
3829 	 * cgroup event are system-wide mode only
3830 	 */
3831 	perf_cgroup_switch(next);
3832 }
3833 
3834 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3835 {
3836 	const struct perf_event *le = *(const struct perf_event **)l;
3837 	const struct perf_event *re = *(const struct perf_event **)r;
3838 
3839 	return le->group_index < re->group_index;
3840 }
3841 
3842 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3843 
3844 static const struct min_heap_callbacks perf_min_heap = {
3845 	.less = perf_less_group_idx,
3846 	.swp = NULL,
3847 };
3848 
3849 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3850 {
3851 	struct perf_event **itrs = heap->data;
3852 
3853 	if (event) {
3854 		itrs[heap->nr] = event;
3855 		heap->nr++;
3856 	}
3857 }
3858 
3859 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3860 {
3861 	struct perf_cpu_pmu_context *cpc;
3862 
3863 	if (!pmu_ctx->ctx->task)
3864 		return;
3865 
3866 	cpc = this_cpc(pmu_ctx->pmu);
3867 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3868 	cpc->task_epc = pmu_ctx;
3869 }
3870 
3871 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3872 				struct perf_event_groups *groups, int cpu,
3873 				struct pmu *pmu,
3874 				int (*func)(struct perf_event *, void *),
3875 				void *data)
3876 {
3877 #ifdef CONFIG_CGROUP_PERF
3878 	struct cgroup_subsys_state *css = NULL;
3879 #endif
3880 	struct perf_cpu_context *cpuctx = NULL;
3881 	/* Space for per CPU and/or any CPU event iterators. */
3882 	struct perf_event *itrs[2];
3883 	struct perf_event_min_heap event_heap;
3884 	struct perf_event **evt;
3885 	int ret;
3886 
3887 	if (pmu->filter && pmu->filter(pmu, cpu))
3888 		return 0;
3889 
3890 	if (!ctx->task) {
3891 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3892 		event_heap = (struct perf_event_min_heap){
3893 			.data = cpuctx->heap,
3894 			.nr = 0,
3895 			.size = cpuctx->heap_size,
3896 		};
3897 
3898 		lockdep_assert_held(&cpuctx->ctx.lock);
3899 
3900 #ifdef CONFIG_CGROUP_PERF
3901 		if (cpuctx->cgrp)
3902 			css = &cpuctx->cgrp->css;
3903 #endif
3904 	} else {
3905 		event_heap = (struct perf_event_min_heap){
3906 			.data = itrs,
3907 			.nr = 0,
3908 			.size = ARRAY_SIZE(itrs),
3909 		};
3910 		/* Events not within a CPU context may be on any CPU. */
3911 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3912 	}
3913 	evt = event_heap.data;
3914 
3915 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3916 
3917 #ifdef CONFIG_CGROUP_PERF
3918 	for (; css; css = css->parent)
3919 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3920 #endif
3921 
3922 	if (event_heap.nr) {
3923 		__link_epc((*evt)->pmu_ctx);
3924 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3925 	}
3926 
3927 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3928 
3929 	while (event_heap.nr) {
3930 		ret = func(*evt, data);
3931 		if (ret)
3932 			return ret;
3933 
3934 		*evt = perf_event_groups_next(*evt, pmu);
3935 		if (*evt)
3936 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3937 		else
3938 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3939 	}
3940 
3941 	return 0;
3942 }
3943 
3944 /*
3945  * Because the userpage is strictly per-event (there is no concept of context,
3946  * so there cannot be a context indirection), every userpage must be updated
3947  * when context time starts :-(
3948  *
3949  * IOW, we must not miss EVENT_TIME edges.
3950  */
3951 static inline bool event_update_userpage(struct perf_event *event)
3952 {
3953 	if (likely(!atomic_read(&event->mmap_count)))
3954 		return false;
3955 
3956 	perf_event_update_time(event);
3957 	perf_event_update_userpage(event);
3958 
3959 	return true;
3960 }
3961 
3962 static inline void group_update_userpage(struct perf_event *group_event)
3963 {
3964 	struct perf_event *event;
3965 
3966 	if (!event_update_userpage(group_event))
3967 		return;
3968 
3969 	for_each_sibling_event(event, group_event)
3970 		event_update_userpage(event);
3971 }
3972 
3973 static int merge_sched_in(struct perf_event *event, void *data)
3974 {
3975 	struct perf_event_context *ctx = event->ctx;
3976 	int *can_add_hw = data;
3977 
3978 	if (event->state <= PERF_EVENT_STATE_OFF)
3979 		return 0;
3980 
3981 	if (!event_filter_match(event))
3982 		return 0;
3983 
3984 	if (group_can_go_on(event, *can_add_hw)) {
3985 		if (!group_sched_in(event, ctx))
3986 			list_add_tail(&event->active_list, get_event_list(event));
3987 	}
3988 
3989 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3990 		*can_add_hw = 0;
3991 		if (event->attr.pinned) {
3992 			perf_cgroup_event_disable(event, ctx);
3993 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3994 
3995 			if (*perf_event_fasync(event))
3996 				event->pending_kill = POLL_ERR;
3997 
3998 			perf_event_wakeup(event);
3999 		} else {
4000 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4001 
4002 			event->pmu_ctx->rotate_necessary = 1;
4003 			perf_mux_hrtimer_restart(cpc);
4004 			group_update_userpage(event);
4005 		}
4006 	}
4007 
4008 	return 0;
4009 }
4010 
4011 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4012 				struct perf_event_groups *groups,
4013 				struct pmu *pmu)
4014 {
4015 	int can_add_hw = 1;
4016 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4017 			   merge_sched_in, &can_add_hw);
4018 }
4019 
4020 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4021 			       enum event_type_t event_type)
4022 {
4023 	struct perf_event_context *ctx = pmu_ctx->ctx;
4024 
4025 	if (event_type & EVENT_PINNED)
4026 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4027 	if (event_type & EVENT_FLEXIBLE)
4028 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4029 }
4030 
4031 static void
4032 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4033 {
4034 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4035 	struct perf_event_pmu_context *pmu_ctx;
4036 	int is_active = ctx->is_active;
4037 	bool cgroup = event_type & EVENT_CGROUP;
4038 
4039 	event_type &= ~EVENT_CGROUP;
4040 
4041 	lockdep_assert_held(&ctx->lock);
4042 
4043 	if (likely(!ctx->nr_events))
4044 		return;
4045 
4046 	if (!(is_active & EVENT_TIME)) {
4047 		/* start ctx time */
4048 		__update_context_time(ctx, false);
4049 		perf_cgroup_set_timestamp(cpuctx);
4050 		/*
4051 		 * CPU-release for the below ->is_active store,
4052 		 * see __load_acquire() in perf_event_time_now()
4053 		 */
4054 		barrier();
4055 	}
4056 
4057 	ctx->is_active |= (event_type | EVENT_TIME);
4058 	if (ctx->task) {
4059 		if (!(is_active & EVENT_ALL))
4060 			cpuctx->task_ctx = ctx;
4061 		else
4062 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4063 	}
4064 
4065 	is_active ^= ctx->is_active; /* changed bits */
4066 
4067 	/*
4068 	 * First go through the list and put on any pinned groups
4069 	 * in order to give them the best chance of going on.
4070 	 */
4071 	if (is_active & EVENT_PINNED) {
4072 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4073 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4074 	}
4075 
4076 	/* Then walk through the lower prio flexible groups */
4077 	if (is_active & EVENT_FLEXIBLE) {
4078 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4079 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4080 	}
4081 }
4082 
4083 static void perf_event_context_sched_in(struct task_struct *task)
4084 {
4085 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4086 	struct perf_event_context *ctx;
4087 
4088 	rcu_read_lock();
4089 	ctx = rcu_dereference(task->perf_event_ctxp);
4090 	if (!ctx)
4091 		goto rcu_unlock;
4092 
4093 	if (cpuctx->task_ctx == ctx) {
4094 		perf_ctx_lock(cpuctx, ctx);
4095 		perf_ctx_disable(ctx, false);
4096 
4097 		perf_ctx_sched_task_cb(ctx, task, true);
4098 
4099 		perf_ctx_enable(ctx, false);
4100 		perf_ctx_unlock(cpuctx, ctx);
4101 		goto rcu_unlock;
4102 	}
4103 
4104 	perf_ctx_lock(cpuctx, ctx);
4105 	/*
4106 	 * We must check ctx->nr_events while holding ctx->lock, such
4107 	 * that we serialize against perf_install_in_context().
4108 	 */
4109 	if (!ctx->nr_events)
4110 		goto unlock;
4111 
4112 	perf_ctx_disable(ctx, false);
4113 	/*
4114 	 * We want to keep the following priority order:
4115 	 * cpu pinned (that don't need to move), task pinned,
4116 	 * cpu flexible, task flexible.
4117 	 *
4118 	 * However, if task's ctx is not carrying any pinned
4119 	 * events, no need to flip the cpuctx's events around.
4120 	 */
4121 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4122 		perf_ctx_disable(&cpuctx->ctx, false);
4123 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4124 	}
4125 
4126 	perf_event_sched_in(cpuctx, ctx, NULL);
4127 
4128 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4129 
4130 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4131 		perf_ctx_enable(&cpuctx->ctx, false);
4132 
4133 	perf_ctx_enable(ctx, false);
4134 
4135 unlock:
4136 	perf_ctx_unlock(cpuctx, ctx);
4137 rcu_unlock:
4138 	rcu_read_unlock();
4139 }
4140 
4141 /*
4142  * Called from scheduler to add the events of the current task
4143  * with interrupts disabled.
4144  *
4145  * We restore the event value and then enable it.
4146  *
4147  * This does not protect us against NMI, but enable()
4148  * sets the enabled bit in the control field of event _before_
4149  * accessing the event control register. If a NMI hits, then it will
4150  * keep the event running.
4151  */
4152 void __perf_event_task_sched_in(struct task_struct *prev,
4153 				struct task_struct *task)
4154 {
4155 	perf_event_context_sched_in(task);
4156 
4157 	if (atomic_read(&nr_switch_events))
4158 		perf_event_switch(task, prev, true);
4159 
4160 	if (__this_cpu_read(perf_sched_cb_usages))
4161 		perf_pmu_sched_task(prev, task, true);
4162 }
4163 
4164 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4165 {
4166 	u64 frequency = event->attr.sample_freq;
4167 	u64 sec = NSEC_PER_SEC;
4168 	u64 divisor, dividend;
4169 
4170 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4171 
4172 	count_fls = fls64(count);
4173 	nsec_fls = fls64(nsec);
4174 	frequency_fls = fls64(frequency);
4175 	sec_fls = 30;
4176 
4177 	/*
4178 	 * We got @count in @nsec, with a target of sample_freq HZ
4179 	 * the target period becomes:
4180 	 *
4181 	 *             @count * 10^9
4182 	 * period = -------------------
4183 	 *          @nsec * sample_freq
4184 	 *
4185 	 */
4186 
4187 	/*
4188 	 * Reduce accuracy by one bit such that @a and @b converge
4189 	 * to a similar magnitude.
4190 	 */
4191 #define REDUCE_FLS(a, b)		\
4192 do {					\
4193 	if (a##_fls > b##_fls) {	\
4194 		a >>= 1;		\
4195 		a##_fls--;		\
4196 	} else {			\
4197 		b >>= 1;		\
4198 		b##_fls--;		\
4199 	}				\
4200 } while (0)
4201 
4202 	/*
4203 	 * Reduce accuracy until either term fits in a u64, then proceed with
4204 	 * the other, so that finally we can do a u64/u64 division.
4205 	 */
4206 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4207 		REDUCE_FLS(nsec, frequency);
4208 		REDUCE_FLS(sec, count);
4209 	}
4210 
4211 	if (count_fls + sec_fls > 64) {
4212 		divisor = nsec * frequency;
4213 
4214 		while (count_fls + sec_fls > 64) {
4215 			REDUCE_FLS(count, sec);
4216 			divisor >>= 1;
4217 		}
4218 
4219 		dividend = count * sec;
4220 	} else {
4221 		dividend = count * sec;
4222 
4223 		while (nsec_fls + frequency_fls > 64) {
4224 			REDUCE_FLS(nsec, frequency);
4225 			dividend >>= 1;
4226 		}
4227 
4228 		divisor = nsec * frequency;
4229 	}
4230 
4231 	if (!divisor)
4232 		return dividend;
4233 
4234 	return div64_u64(dividend, divisor);
4235 }
4236 
4237 static DEFINE_PER_CPU(int, perf_throttled_count);
4238 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4239 
4240 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4241 {
4242 	struct hw_perf_event *hwc = &event->hw;
4243 	s64 period, sample_period;
4244 	s64 delta;
4245 
4246 	period = perf_calculate_period(event, nsec, count);
4247 
4248 	delta = (s64)(period - hwc->sample_period);
4249 	if (delta >= 0)
4250 		delta += 7;
4251 	else
4252 		delta -= 7;
4253 	delta /= 8; /* low pass filter */
4254 
4255 	sample_period = hwc->sample_period + delta;
4256 
4257 	if (!sample_period)
4258 		sample_period = 1;
4259 
4260 	hwc->sample_period = sample_period;
4261 
4262 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4263 		if (disable)
4264 			event->pmu->stop(event, PERF_EF_UPDATE);
4265 
4266 		local64_set(&hwc->period_left, 0);
4267 
4268 		if (disable)
4269 			event->pmu->start(event, PERF_EF_RELOAD);
4270 	}
4271 }
4272 
4273 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4274 {
4275 	struct perf_event *event;
4276 	struct hw_perf_event *hwc;
4277 	u64 now, period = TICK_NSEC;
4278 	s64 delta;
4279 
4280 	list_for_each_entry(event, event_list, active_list) {
4281 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4282 			continue;
4283 
4284 		// XXX use visit thingy to avoid the -1,cpu match
4285 		if (!event_filter_match(event))
4286 			continue;
4287 
4288 		hwc = &event->hw;
4289 
4290 		if (hwc->interrupts == MAX_INTERRUPTS)
4291 			perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4292 
4293 		if (!is_event_in_freq_mode(event))
4294 			continue;
4295 
4296 		/*
4297 		 * stop the event and update event->count
4298 		 */
4299 		event->pmu->stop(event, PERF_EF_UPDATE);
4300 
4301 		now = local64_read(&event->count);
4302 		delta = now - hwc->freq_count_stamp;
4303 		hwc->freq_count_stamp = now;
4304 
4305 		/*
4306 		 * restart the event
4307 		 * reload only if value has changed
4308 		 * we have stopped the event so tell that
4309 		 * to perf_adjust_period() to avoid stopping it
4310 		 * twice.
4311 		 */
4312 		if (delta > 0)
4313 			perf_adjust_period(event, period, delta, false);
4314 
4315 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4316 	}
4317 }
4318 
4319 /*
4320  * combine freq adjustment with unthrottling to avoid two passes over the
4321  * events. At the same time, make sure, having freq events does not change
4322  * the rate of unthrottling as that would introduce bias.
4323  */
4324 static void
4325 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4326 {
4327 	struct perf_event_pmu_context *pmu_ctx;
4328 
4329 	/*
4330 	 * only need to iterate over all events iff:
4331 	 * - context have events in frequency mode (needs freq adjust)
4332 	 * - there are events to unthrottle on this cpu
4333 	 */
4334 	if (!(ctx->nr_freq || unthrottle))
4335 		return;
4336 
4337 	raw_spin_lock(&ctx->lock);
4338 
4339 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4340 		if (!(pmu_ctx->nr_freq || unthrottle))
4341 			continue;
4342 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4343 			continue;
4344 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4345 			continue;
4346 
4347 		perf_pmu_disable(pmu_ctx->pmu);
4348 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4349 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4350 		perf_pmu_enable(pmu_ctx->pmu);
4351 	}
4352 
4353 	raw_spin_unlock(&ctx->lock);
4354 }
4355 
4356 /*
4357  * Move @event to the tail of the @ctx's elegible events.
4358  */
4359 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4360 {
4361 	/*
4362 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4363 	 * disabled by the inheritance code.
4364 	 */
4365 	if (ctx->rotate_disable)
4366 		return;
4367 
4368 	perf_event_groups_delete(&ctx->flexible_groups, event);
4369 	perf_event_groups_insert(&ctx->flexible_groups, event);
4370 }
4371 
4372 /* pick an event from the flexible_groups to rotate */
4373 static inline struct perf_event *
4374 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4375 {
4376 	struct perf_event *event;
4377 	struct rb_node *node;
4378 	struct rb_root *tree;
4379 	struct __group_key key = {
4380 		.pmu = pmu_ctx->pmu,
4381 	};
4382 
4383 	/* pick the first active flexible event */
4384 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4385 					 struct perf_event, active_list);
4386 	if (event)
4387 		goto out;
4388 
4389 	/* if no active flexible event, pick the first event */
4390 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4391 
4392 	if (!pmu_ctx->ctx->task) {
4393 		key.cpu = smp_processor_id();
4394 
4395 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4396 		if (node)
4397 			event = __node_2_pe(node);
4398 		goto out;
4399 	}
4400 
4401 	key.cpu = -1;
4402 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4403 	if (node) {
4404 		event = __node_2_pe(node);
4405 		goto out;
4406 	}
4407 
4408 	key.cpu = smp_processor_id();
4409 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4410 	if (node)
4411 		event = __node_2_pe(node);
4412 
4413 out:
4414 	/*
4415 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4416 	 * finds there are unschedulable events, it will set it again.
4417 	 */
4418 	pmu_ctx->rotate_necessary = 0;
4419 
4420 	return event;
4421 }
4422 
4423 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4424 {
4425 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4426 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4427 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4428 	int cpu_rotate, task_rotate;
4429 	struct pmu *pmu;
4430 
4431 	/*
4432 	 * Since we run this from IRQ context, nobody can install new
4433 	 * events, thus the event count values are stable.
4434 	 */
4435 
4436 	cpu_epc = &cpc->epc;
4437 	pmu = cpu_epc->pmu;
4438 	task_epc = cpc->task_epc;
4439 
4440 	cpu_rotate = cpu_epc->rotate_necessary;
4441 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4442 
4443 	if (!(cpu_rotate || task_rotate))
4444 		return false;
4445 
4446 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4447 	perf_pmu_disable(pmu);
4448 
4449 	if (task_rotate)
4450 		task_event = ctx_event_to_rotate(task_epc);
4451 	if (cpu_rotate)
4452 		cpu_event = ctx_event_to_rotate(cpu_epc);
4453 
4454 	/*
4455 	 * As per the order given at ctx_resched() first 'pop' task flexible
4456 	 * and then, if needed CPU flexible.
4457 	 */
4458 	if (task_event || (task_epc && cpu_event)) {
4459 		update_context_time(task_epc->ctx);
4460 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4461 	}
4462 
4463 	if (cpu_event) {
4464 		update_context_time(&cpuctx->ctx);
4465 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4466 		rotate_ctx(&cpuctx->ctx, cpu_event);
4467 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4468 	}
4469 
4470 	if (task_event)
4471 		rotate_ctx(task_epc->ctx, task_event);
4472 
4473 	if (task_event || (task_epc && cpu_event))
4474 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4475 
4476 	perf_pmu_enable(pmu);
4477 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4478 
4479 	return true;
4480 }
4481 
4482 void perf_event_task_tick(void)
4483 {
4484 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4485 	struct perf_event_context *ctx;
4486 	int throttled;
4487 
4488 	lockdep_assert_irqs_disabled();
4489 
4490 	__this_cpu_inc(perf_throttled_seq);
4491 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4492 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4493 
4494 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4495 
4496 	rcu_read_lock();
4497 	ctx = rcu_dereference(current->perf_event_ctxp);
4498 	if (ctx)
4499 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4500 	rcu_read_unlock();
4501 }
4502 
4503 static int event_enable_on_exec(struct perf_event *event,
4504 				struct perf_event_context *ctx)
4505 {
4506 	if (!event->attr.enable_on_exec)
4507 		return 0;
4508 
4509 	event->attr.enable_on_exec = 0;
4510 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4511 		return 0;
4512 
4513 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4514 
4515 	return 1;
4516 }
4517 
4518 /*
4519  * Enable all of a task's events that have been marked enable-on-exec.
4520  * This expects task == current.
4521  */
4522 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4523 {
4524 	struct perf_event_context *clone_ctx = NULL;
4525 	enum event_type_t event_type = 0;
4526 	struct perf_cpu_context *cpuctx;
4527 	struct perf_event *event;
4528 	unsigned long flags;
4529 	int enabled = 0;
4530 
4531 	local_irq_save(flags);
4532 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4533 		goto out;
4534 
4535 	if (!ctx->nr_events)
4536 		goto out;
4537 
4538 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4539 	perf_ctx_lock(cpuctx, ctx);
4540 	ctx_time_freeze(cpuctx, ctx);
4541 
4542 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4543 		enabled |= event_enable_on_exec(event, ctx);
4544 		event_type |= get_event_type(event);
4545 	}
4546 
4547 	/*
4548 	 * Unclone and reschedule this context if we enabled any event.
4549 	 */
4550 	if (enabled) {
4551 		clone_ctx = unclone_ctx(ctx);
4552 		ctx_resched(cpuctx, ctx, NULL, event_type);
4553 	}
4554 	perf_ctx_unlock(cpuctx, ctx);
4555 
4556 out:
4557 	local_irq_restore(flags);
4558 
4559 	if (clone_ctx)
4560 		put_ctx(clone_ctx);
4561 }
4562 
4563 static void perf_remove_from_owner(struct perf_event *event);
4564 static void perf_event_exit_event(struct perf_event *event,
4565 				  struct perf_event_context *ctx,
4566 				  bool revoke);
4567 
4568 /*
4569  * Removes all events from the current task that have been marked
4570  * remove-on-exec, and feeds their values back to parent events.
4571  */
4572 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4573 {
4574 	struct perf_event_context *clone_ctx = NULL;
4575 	struct perf_event *event, *next;
4576 	unsigned long flags;
4577 	bool modified = false;
4578 
4579 	mutex_lock(&ctx->mutex);
4580 
4581 	if (WARN_ON_ONCE(ctx->task != current))
4582 		goto unlock;
4583 
4584 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4585 		if (!event->attr.remove_on_exec)
4586 			continue;
4587 
4588 		if (!is_kernel_event(event))
4589 			perf_remove_from_owner(event);
4590 
4591 		modified = true;
4592 
4593 		perf_event_exit_event(event, ctx, false);
4594 	}
4595 
4596 	raw_spin_lock_irqsave(&ctx->lock, flags);
4597 	if (modified)
4598 		clone_ctx = unclone_ctx(ctx);
4599 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4600 
4601 unlock:
4602 	mutex_unlock(&ctx->mutex);
4603 
4604 	if (clone_ctx)
4605 		put_ctx(clone_ctx);
4606 }
4607 
4608 struct perf_read_data {
4609 	struct perf_event *event;
4610 	bool group;
4611 	int ret;
4612 };
4613 
4614 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4615 
4616 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4617 {
4618 	int local_cpu = smp_processor_id();
4619 	u16 local_pkg, event_pkg;
4620 
4621 	if ((unsigned)event_cpu >= nr_cpu_ids)
4622 		return event_cpu;
4623 
4624 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4625 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4626 
4627 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4628 			return local_cpu;
4629 	}
4630 
4631 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4632 		event_pkg = topology_physical_package_id(event_cpu);
4633 		local_pkg = topology_physical_package_id(local_cpu);
4634 
4635 		if (event_pkg == local_pkg)
4636 			return local_cpu;
4637 	}
4638 
4639 	return event_cpu;
4640 }
4641 
4642 /*
4643  * Cross CPU call to read the hardware event
4644  */
4645 static void __perf_event_read(void *info)
4646 {
4647 	struct perf_read_data *data = info;
4648 	struct perf_event *sub, *event = data->event;
4649 	struct perf_event_context *ctx = event->ctx;
4650 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4651 	struct pmu *pmu = event->pmu;
4652 
4653 	/*
4654 	 * If this is a task context, we need to check whether it is
4655 	 * the current task context of this cpu.  If not it has been
4656 	 * scheduled out before the smp call arrived.  In that case
4657 	 * event->count would have been updated to a recent sample
4658 	 * when the event was scheduled out.
4659 	 */
4660 	if (ctx->task && cpuctx->task_ctx != ctx)
4661 		return;
4662 
4663 	raw_spin_lock(&ctx->lock);
4664 	ctx_time_update_event(ctx, event);
4665 
4666 	perf_event_update_time(event);
4667 	if (data->group)
4668 		perf_event_update_sibling_time(event);
4669 
4670 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4671 		goto unlock;
4672 
4673 	if (!data->group) {
4674 		pmu->read(event);
4675 		data->ret = 0;
4676 		goto unlock;
4677 	}
4678 
4679 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4680 
4681 	pmu->read(event);
4682 
4683 	for_each_sibling_event(sub, event)
4684 		perf_pmu_read(sub);
4685 
4686 	data->ret = pmu->commit_txn(pmu);
4687 
4688 unlock:
4689 	raw_spin_unlock(&ctx->lock);
4690 }
4691 
4692 static inline u64 perf_event_count(struct perf_event *event, bool self)
4693 {
4694 	if (self)
4695 		return local64_read(&event->count);
4696 
4697 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4698 }
4699 
4700 static void calc_timer_values(struct perf_event *event,
4701 				u64 *now,
4702 				u64 *enabled,
4703 				u64 *running)
4704 {
4705 	u64 ctx_time;
4706 
4707 	*now = perf_clock();
4708 	ctx_time = perf_event_time_now(event, *now);
4709 	__perf_update_times(event, ctx_time, enabled, running);
4710 }
4711 
4712 /*
4713  * NMI-safe method to read a local event, that is an event that
4714  * is:
4715  *   - either for the current task, or for this CPU
4716  *   - does not have inherit set, for inherited task events
4717  *     will not be local and we cannot read them atomically
4718  *   - must not have a pmu::count method
4719  */
4720 int perf_event_read_local(struct perf_event *event, u64 *value,
4721 			  u64 *enabled, u64 *running)
4722 {
4723 	unsigned long flags;
4724 	int event_oncpu;
4725 	int event_cpu;
4726 	int ret = 0;
4727 
4728 	/*
4729 	 * Disabling interrupts avoids all counter scheduling (context
4730 	 * switches, timer based rotation and IPIs).
4731 	 */
4732 	local_irq_save(flags);
4733 
4734 	/*
4735 	 * It must not be an event with inherit set, we cannot read
4736 	 * all child counters from atomic context.
4737 	 */
4738 	if (event->attr.inherit) {
4739 		ret = -EOPNOTSUPP;
4740 		goto out;
4741 	}
4742 
4743 	/* If this is a per-task event, it must be for current */
4744 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4745 	    event->hw.target != current) {
4746 		ret = -EINVAL;
4747 		goto out;
4748 	}
4749 
4750 	/*
4751 	 * Get the event CPU numbers, and adjust them to local if the event is
4752 	 * a per-package event that can be read locally
4753 	 */
4754 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4755 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4756 
4757 	/* If this is a per-CPU event, it must be for this CPU */
4758 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4759 	    event_cpu != smp_processor_id()) {
4760 		ret = -EINVAL;
4761 		goto out;
4762 	}
4763 
4764 	/* If this is a pinned event it must be running on this CPU */
4765 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4766 		ret = -EBUSY;
4767 		goto out;
4768 	}
4769 
4770 	/*
4771 	 * If the event is currently on this CPU, its either a per-task event,
4772 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4773 	 * oncpu == -1).
4774 	 */
4775 	if (event_oncpu == smp_processor_id())
4776 		event->pmu->read(event);
4777 
4778 	*value = local64_read(&event->count);
4779 	if (enabled || running) {
4780 		u64 __enabled, __running, __now;
4781 
4782 		calc_timer_values(event, &__now, &__enabled, &__running);
4783 		if (enabled)
4784 			*enabled = __enabled;
4785 		if (running)
4786 			*running = __running;
4787 	}
4788 out:
4789 	local_irq_restore(flags);
4790 
4791 	return ret;
4792 }
4793 
4794 static int perf_event_read(struct perf_event *event, bool group)
4795 {
4796 	enum perf_event_state state = READ_ONCE(event->state);
4797 	int event_cpu, ret = 0;
4798 
4799 	/*
4800 	 * If event is enabled and currently active on a CPU, update the
4801 	 * value in the event structure:
4802 	 */
4803 again:
4804 	if (state == PERF_EVENT_STATE_ACTIVE) {
4805 		struct perf_read_data data;
4806 
4807 		/*
4808 		 * Orders the ->state and ->oncpu loads such that if we see
4809 		 * ACTIVE we must also see the right ->oncpu.
4810 		 *
4811 		 * Matches the smp_wmb() from event_sched_in().
4812 		 */
4813 		smp_rmb();
4814 
4815 		event_cpu = READ_ONCE(event->oncpu);
4816 		if ((unsigned)event_cpu >= nr_cpu_ids)
4817 			return 0;
4818 
4819 		data = (struct perf_read_data){
4820 			.event = event,
4821 			.group = group,
4822 			.ret = 0,
4823 		};
4824 
4825 		preempt_disable();
4826 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4827 
4828 		/*
4829 		 * Purposely ignore the smp_call_function_single() return
4830 		 * value.
4831 		 *
4832 		 * If event_cpu isn't a valid CPU it means the event got
4833 		 * scheduled out and that will have updated the event count.
4834 		 *
4835 		 * Therefore, either way, we'll have an up-to-date event count
4836 		 * after this.
4837 		 */
4838 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4839 		preempt_enable();
4840 		ret = data.ret;
4841 
4842 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4843 		struct perf_event_context *ctx = event->ctx;
4844 		unsigned long flags;
4845 
4846 		raw_spin_lock_irqsave(&ctx->lock, flags);
4847 		state = event->state;
4848 		if (state != PERF_EVENT_STATE_INACTIVE) {
4849 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4850 			goto again;
4851 		}
4852 
4853 		/*
4854 		 * May read while context is not active (e.g., thread is
4855 		 * blocked), in that case we cannot update context time
4856 		 */
4857 		ctx_time_update_event(ctx, event);
4858 
4859 		perf_event_update_time(event);
4860 		if (group)
4861 			perf_event_update_sibling_time(event);
4862 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4863 	}
4864 
4865 	return ret;
4866 }
4867 
4868 /*
4869  * Initialize the perf_event context in a task_struct:
4870  */
4871 static void __perf_event_init_context(struct perf_event_context *ctx)
4872 {
4873 	raw_spin_lock_init(&ctx->lock);
4874 	mutex_init(&ctx->mutex);
4875 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4876 	perf_event_groups_init(&ctx->pinned_groups);
4877 	perf_event_groups_init(&ctx->flexible_groups);
4878 	INIT_LIST_HEAD(&ctx->event_list);
4879 	refcount_set(&ctx->refcount, 1);
4880 }
4881 
4882 static void
4883 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4884 {
4885 	epc->pmu = pmu;
4886 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4887 	INIT_LIST_HEAD(&epc->pinned_active);
4888 	INIT_LIST_HEAD(&epc->flexible_active);
4889 	atomic_set(&epc->refcount, 1);
4890 }
4891 
4892 static struct perf_event_context *
4893 alloc_perf_context(struct task_struct *task)
4894 {
4895 	struct perf_event_context *ctx;
4896 
4897 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4898 	if (!ctx)
4899 		return NULL;
4900 
4901 	__perf_event_init_context(ctx);
4902 	if (task)
4903 		ctx->task = get_task_struct(task);
4904 
4905 	return ctx;
4906 }
4907 
4908 static struct task_struct *
4909 find_lively_task_by_vpid(pid_t vpid)
4910 {
4911 	struct task_struct *task;
4912 
4913 	rcu_read_lock();
4914 	if (!vpid)
4915 		task = current;
4916 	else
4917 		task = find_task_by_vpid(vpid);
4918 	if (task)
4919 		get_task_struct(task);
4920 	rcu_read_unlock();
4921 
4922 	if (!task)
4923 		return ERR_PTR(-ESRCH);
4924 
4925 	return task;
4926 }
4927 
4928 /*
4929  * Returns a matching context with refcount and pincount.
4930  */
4931 static struct perf_event_context *
4932 find_get_context(struct task_struct *task, struct perf_event *event)
4933 {
4934 	struct perf_event_context *ctx, *clone_ctx = NULL;
4935 	struct perf_cpu_context *cpuctx;
4936 	unsigned long flags;
4937 	int err;
4938 
4939 	if (!task) {
4940 		/* Must be root to operate on a CPU event: */
4941 		err = perf_allow_cpu();
4942 		if (err)
4943 			return ERR_PTR(err);
4944 
4945 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4946 		ctx = &cpuctx->ctx;
4947 		get_ctx(ctx);
4948 		raw_spin_lock_irqsave(&ctx->lock, flags);
4949 		++ctx->pin_count;
4950 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4951 
4952 		return ctx;
4953 	}
4954 
4955 	err = -EINVAL;
4956 retry:
4957 	ctx = perf_lock_task_context(task, &flags);
4958 	if (ctx) {
4959 		clone_ctx = unclone_ctx(ctx);
4960 		++ctx->pin_count;
4961 
4962 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4963 
4964 		if (clone_ctx)
4965 			put_ctx(clone_ctx);
4966 	} else {
4967 		ctx = alloc_perf_context(task);
4968 		err = -ENOMEM;
4969 		if (!ctx)
4970 			goto errout;
4971 
4972 		err = 0;
4973 		mutex_lock(&task->perf_event_mutex);
4974 		/*
4975 		 * If it has already passed perf_event_exit_task().
4976 		 * we must see PF_EXITING, it takes this mutex too.
4977 		 */
4978 		if (task->flags & PF_EXITING)
4979 			err = -ESRCH;
4980 		else if (task->perf_event_ctxp)
4981 			err = -EAGAIN;
4982 		else {
4983 			get_ctx(ctx);
4984 			++ctx->pin_count;
4985 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4986 		}
4987 		mutex_unlock(&task->perf_event_mutex);
4988 
4989 		if (unlikely(err)) {
4990 			put_ctx(ctx);
4991 
4992 			if (err == -EAGAIN)
4993 				goto retry;
4994 			goto errout;
4995 		}
4996 	}
4997 
4998 	return ctx;
4999 
5000 errout:
5001 	return ERR_PTR(err);
5002 }
5003 
5004 static struct perf_event_pmu_context *
5005 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5006 		     struct perf_event *event)
5007 {
5008 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5009 
5010 	if (!ctx->task) {
5011 		/*
5012 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5013 		 * relies on the fact that find_get_pmu_context() cannot fail
5014 		 * for CPU contexts.
5015 		 */
5016 		struct perf_cpu_pmu_context *cpc;
5017 
5018 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5019 		epc = &cpc->epc;
5020 		raw_spin_lock_irq(&ctx->lock);
5021 		if (!epc->ctx) {
5022 			/*
5023 			 * One extra reference for the pmu; see perf_pmu_free().
5024 			 */
5025 			atomic_set(&epc->refcount, 2);
5026 			epc->embedded = 1;
5027 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5028 			epc->ctx = ctx;
5029 		} else {
5030 			WARN_ON_ONCE(epc->ctx != ctx);
5031 			atomic_inc(&epc->refcount);
5032 		}
5033 		raw_spin_unlock_irq(&ctx->lock);
5034 		return epc;
5035 	}
5036 
5037 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5038 	if (!new)
5039 		return ERR_PTR(-ENOMEM);
5040 
5041 	__perf_init_event_pmu_context(new, pmu);
5042 
5043 	/*
5044 	 * XXX
5045 	 *
5046 	 * lockdep_assert_held(&ctx->mutex);
5047 	 *
5048 	 * can't because perf_event_init_task() doesn't actually hold the
5049 	 * child_ctx->mutex.
5050 	 */
5051 
5052 	raw_spin_lock_irq(&ctx->lock);
5053 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5054 		if (epc->pmu == pmu) {
5055 			WARN_ON_ONCE(epc->ctx != ctx);
5056 			atomic_inc(&epc->refcount);
5057 			goto found_epc;
5058 		}
5059 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5060 		if (!pos && epc->pmu->type > pmu->type)
5061 			pos = epc;
5062 	}
5063 
5064 	epc = new;
5065 	new = NULL;
5066 
5067 	if (!pos)
5068 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5069 	else
5070 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5071 
5072 	epc->ctx = ctx;
5073 
5074 found_epc:
5075 	raw_spin_unlock_irq(&ctx->lock);
5076 	kfree(new);
5077 
5078 	return epc;
5079 }
5080 
5081 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5082 {
5083 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5084 }
5085 
5086 static void free_cpc_rcu(struct rcu_head *head)
5087 {
5088 	struct perf_cpu_pmu_context *cpc =
5089 		container_of(head, typeof(*cpc), epc.rcu_head);
5090 
5091 	kfree(cpc);
5092 }
5093 
5094 static void free_epc_rcu(struct rcu_head *head)
5095 {
5096 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5097 
5098 	kfree(epc);
5099 }
5100 
5101 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5102 {
5103 	struct perf_event_context *ctx = epc->ctx;
5104 	unsigned long flags;
5105 
5106 	/*
5107 	 * XXX
5108 	 *
5109 	 * lockdep_assert_held(&ctx->mutex);
5110 	 *
5111 	 * can't because of the call-site in _free_event()/put_event()
5112 	 * which isn't always called under ctx->mutex.
5113 	 */
5114 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5115 		return;
5116 
5117 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5118 
5119 	list_del_init(&epc->pmu_ctx_entry);
5120 	epc->ctx = NULL;
5121 
5122 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5123 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5124 
5125 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5126 
5127 	if (epc->embedded) {
5128 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5129 		return;
5130 	}
5131 
5132 	call_rcu(&epc->rcu_head, free_epc_rcu);
5133 }
5134 
5135 static void perf_event_free_filter(struct perf_event *event);
5136 
5137 static void free_event_rcu(struct rcu_head *head)
5138 {
5139 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5140 
5141 	if (event->ns)
5142 		put_pid_ns(event->ns);
5143 	perf_event_free_filter(event);
5144 	kmem_cache_free(perf_event_cache, event);
5145 }
5146 
5147 static void ring_buffer_attach(struct perf_event *event,
5148 			       struct perf_buffer *rb);
5149 
5150 static void detach_sb_event(struct perf_event *event)
5151 {
5152 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5153 
5154 	raw_spin_lock(&pel->lock);
5155 	list_del_rcu(&event->sb_list);
5156 	raw_spin_unlock(&pel->lock);
5157 }
5158 
5159 static bool is_sb_event(struct perf_event *event)
5160 {
5161 	struct perf_event_attr *attr = &event->attr;
5162 
5163 	if (event->parent)
5164 		return false;
5165 
5166 	if (event->attach_state & PERF_ATTACH_TASK)
5167 		return false;
5168 
5169 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5170 	    attr->comm || attr->comm_exec ||
5171 	    attr->task || attr->ksymbol ||
5172 	    attr->context_switch || attr->text_poke ||
5173 	    attr->bpf_event)
5174 		return true;
5175 
5176 	return false;
5177 }
5178 
5179 static void unaccount_pmu_sb_event(struct perf_event *event)
5180 {
5181 	if (is_sb_event(event))
5182 		detach_sb_event(event);
5183 }
5184 
5185 #ifdef CONFIG_NO_HZ_FULL
5186 static DEFINE_SPINLOCK(nr_freq_lock);
5187 #endif
5188 
5189 static void unaccount_freq_event_nohz(void)
5190 {
5191 #ifdef CONFIG_NO_HZ_FULL
5192 	spin_lock(&nr_freq_lock);
5193 	if (atomic_dec_and_test(&nr_freq_events))
5194 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5195 	spin_unlock(&nr_freq_lock);
5196 #endif
5197 }
5198 
5199 static void unaccount_freq_event(void)
5200 {
5201 	if (tick_nohz_full_enabled())
5202 		unaccount_freq_event_nohz();
5203 	else
5204 		atomic_dec(&nr_freq_events);
5205 }
5206 
5207 
5208 static struct perf_ctx_data *
5209 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5210 {
5211 	struct perf_ctx_data *cd;
5212 
5213 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5214 	if (!cd)
5215 		return NULL;
5216 
5217 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5218 	if (!cd->data) {
5219 		kfree(cd);
5220 		return NULL;
5221 	}
5222 
5223 	cd->global = global;
5224 	cd->ctx_cache = ctx_cache;
5225 	refcount_set(&cd->refcount, 1);
5226 
5227 	return cd;
5228 }
5229 
5230 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5231 {
5232 	kmem_cache_free(cd->ctx_cache, cd->data);
5233 	kfree(cd);
5234 }
5235 
5236 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5237 {
5238 	struct perf_ctx_data *cd;
5239 
5240 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5241 	free_perf_ctx_data(cd);
5242 }
5243 
5244 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5245 {
5246 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5247 }
5248 
5249 static int
5250 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5251 		     bool global)
5252 {
5253 	struct perf_ctx_data *cd, *old = NULL;
5254 
5255 	cd = alloc_perf_ctx_data(ctx_cache, global);
5256 	if (!cd)
5257 		return -ENOMEM;
5258 
5259 	for (;;) {
5260 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5261 			if (old)
5262 				perf_free_ctx_data_rcu(old);
5263 			return 0;
5264 		}
5265 
5266 		if (!old) {
5267 			/*
5268 			 * After seeing a dead @old, we raced with
5269 			 * removal and lost, try again to install @cd.
5270 			 */
5271 			continue;
5272 		}
5273 
5274 		if (refcount_inc_not_zero(&old->refcount)) {
5275 			free_perf_ctx_data(cd); /* unused */
5276 			return 0;
5277 		}
5278 
5279 		/*
5280 		 * @old is a dead object, refcount==0 is stable, try and
5281 		 * replace it with @cd.
5282 		 */
5283 	}
5284 	return 0;
5285 }
5286 
5287 static void __detach_global_ctx_data(void);
5288 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5289 static refcount_t global_ctx_data_ref;
5290 
5291 static int
5292 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5293 {
5294 	struct task_struct *g, *p;
5295 	struct perf_ctx_data *cd;
5296 	int ret;
5297 
5298 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5299 		return 0;
5300 
5301 	guard(percpu_write)(&global_ctx_data_rwsem);
5302 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5303 		return 0;
5304 again:
5305 	/* Allocate everything */
5306 	scoped_guard (rcu) {
5307 		for_each_process_thread(g, p) {
5308 			cd = rcu_dereference(p->perf_ctx_data);
5309 			if (cd && !cd->global) {
5310 				cd->global = 1;
5311 				if (!refcount_inc_not_zero(&cd->refcount))
5312 					cd = NULL;
5313 			}
5314 			if (!cd) {
5315 				get_task_struct(p);
5316 				goto alloc;
5317 			}
5318 		}
5319 	}
5320 
5321 	refcount_set(&global_ctx_data_ref, 1);
5322 
5323 	return 0;
5324 alloc:
5325 	ret = attach_task_ctx_data(p, ctx_cache, true);
5326 	put_task_struct(p);
5327 	if (ret) {
5328 		__detach_global_ctx_data();
5329 		return ret;
5330 	}
5331 	goto again;
5332 }
5333 
5334 static int
5335 attach_perf_ctx_data(struct perf_event *event)
5336 {
5337 	struct task_struct *task = event->hw.target;
5338 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5339 	int ret;
5340 
5341 	if (!ctx_cache)
5342 		return -ENOMEM;
5343 
5344 	if (task)
5345 		return attach_task_ctx_data(task, ctx_cache, false);
5346 
5347 	ret = attach_global_ctx_data(ctx_cache);
5348 	if (ret)
5349 		return ret;
5350 
5351 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5352 	return 0;
5353 }
5354 
5355 static void
5356 detach_task_ctx_data(struct task_struct *p)
5357 {
5358 	struct perf_ctx_data *cd;
5359 
5360 	scoped_guard (rcu) {
5361 		cd = rcu_dereference(p->perf_ctx_data);
5362 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5363 			return;
5364 	}
5365 
5366 	/*
5367 	 * The old ctx_data may be lost because of the race.
5368 	 * Nothing is required to do for the case.
5369 	 * See attach_task_ctx_data().
5370 	 */
5371 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5372 		perf_free_ctx_data_rcu(cd);
5373 }
5374 
5375 static void __detach_global_ctx_data(void)
5376 {
5377 	struct task_struct *g, *p;
5378 	struct perf_ctx_data *cd;
5379 
5380 again:
5381 	scoped_guard (rcu) {
5382 		for_each_process_thread(g, p) {
5383 			cd = rcu_dereference(p->perf_ctx_data);
5384 			if (!cd || !cd->global)
5385 				continue;
5386 			cd->global = 0;
5387 			get_task_struct(p);
5388 			goto detach;
5389 		}
5390 	}
5391 	return;
5392 detach:
5393 	detach_task_ctx_data(p);
5394 	put_task_struct(p);
5395 	goto again;
5396 }
5397 
5398 static void detach_global_ctx_data(void)
5399 {
5400 	if (refcount_dec_not_one(&global_ctx_data_ref))
5401 		return;
5402 
5403 	guard(percpu_write)(&global_ctx_data_rwsem);
5404 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5405 		return;
5406 
5407 	/* remove everything */
5408 	__detach_global_ctx_data();
5409 }
5410 
5411 static void detach_perf_ctx_data(struct perf_event *event)
5412 {
5413 	struct task_struct *task = event->hw.target;
5414 
5415 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5416 
5417 	if (task)
5418 		return detach_task_ctx_data(task);
5419 
5420 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5421 		detach_global_ctx_data();
5422 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5423 	}
5424 }
5425 
5426 static void unaccount_event(struct perf_event *event)
5427 {
5428 	bool dec = false;
5429 
5430 	if (event->parent)
5431 		return;
5432 
5433 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5434 		dec = true;
5435 	if (event->attr.mmap || event->attr.mmap_data)
5436 		atomic_dec(&nr_mmap_events);
5437 	if (event->attr.build_id)
5438 		atomic_dec(&nr_build_id_events);
5439 	if (event->attr.comm)
5440 		atomic_dec(&nr_comm_events);
5441 	if (event->attr.namespaces)
5442 		atomic_dec(&nr_namespaces_events);
5443 	if (event->attr.cgroup)
5444 		atomic_dec(&nr_cgroup_events);
5445 	if (event->attr.task)
5446 		atomic_dec(&nr_task_events);
5447 	if (event->attr.freq)
5448 		unaccount_freq_event();
5449 	if (event->attr.context_switch) {
5450 		dec = true;
5451 		atomic_dec(&nr_switch_events);
5452 	}
5453 	if (is_cgroup_event(event))
5454 		dec = true;
5455 	if (has_branch_stack(event))
5456 		dec = true;
5457 	if (event->attr.ksymbol)
5458 		atomic_dec(&nr_ksymbol_events);
5459 	if (event->attr.bpf_event)
5460 		atomic_dec(&nr_bpf_events);
5461 	if (event->attr.text_poke)
5462 		atomic_dec(&nr_text_poke_events);
5463 
5464 	if (dec) {
5465 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5466 			schedule_delayed_work(&perf_sched_work, HZ);
5467 	}
5468 
5469 	unaccount_pmu_sb_event(event);
5470 }
5471 
5472 static void perf_sched_delayed(struct work_struct *work)
5473 {
5474 	mutex_lock(&perf_sched_mutex);
5475 	if (atomic_dec_and_test(&perf_sched_count))
5476 		static_branch_disable(&perf_sched_events);
5477 	mutex_unlock(&perf_sched_mutex);
5478 }
5479 
5480 /*
5481  * The following implement mutual exclusion of events on "exclusive" pmus
5482  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5483  * at a time, so we disallow creating events that might conflict, namely:
5484  *
5485  *  1) cpu-wide events in the presence of per-task events,
5486  *  2) per-task events in the presence of cpu-wide events,
5487  *  3) two matching events on the same perf_event_context.
5488  *
5489  * The former two cases are handled in the allocation path (perf_event_alloc(),
5490  * _free_event()), the latter -- before the first perf_install_in_context().
5491  */
5492 static int exclusive_event_init(struct perf_event *event)
5493 {
5494 	struct pmu *pmu = event->pmu;
5495 
5496 	if (!is_exclusive_pmu(pmu))
5497 		return 0;
5498 
5499 	/*
5500 	 * Prevent co-existence of per-task and cpu-wide events on the
5501 	 * same exclusive pmu.
5502 	 *
5503 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5504 	 * events on this "exclusive" pmu, positive means there are
5505 	 * per-task events.
5506 	 *
5507 	 * Since this is called in perf_event_alloc() path, event::ctx
5508 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5509 	 * to mean "per-task event", because unlike other attach states it
5510 	 * never gets cleared.
5511 	 */
5512 	if (event->attach_state & PERF_ATTACH_TASK) {
5513 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5514 			return -EBUSY;
5515 	} else {
5516 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5517 			return -EBUSY;
5518 	}
5519 
5520 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5521 
5522 	return 0;
5523 }
5524 
5525 static void exclusive_event_destroy(struct perf_event *event)
5526 {
5527 	struct pmu *pmu = event->pmu;
5528 
5529 	/* see comment in exclusive_event_init() */
5530 	if (event->attach_state & PERF_ATTACH_TASK)
5531 		atomic_dec(&pmu->exclusive_cnt);
5532 	else
5533 		atomic_inc(&pmu->exclusive_cnt);
5534 
5535 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5536 }
5537 
5538 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5539 {
5540 	if ((e1->pmu == e2->pmu) &&
5541 	    (e1->cpu == e2->cpu ||
5542 	     e1->cpu == -1 ||
5543 	     e2->cpu == -1))
5544 		return true;
5545 	return false;
5546 }
5547 
5548 static bool exclusive_event_installable(struct perf_event *event,
5549 					struct perf_event_context *ctx)
5550 {
5551 	struct perf_event *iter_event;
5552 	struct pmu *pmu = event->pmu;
5553 
5554 	lockdep_assert_held(&ctx->mutex);
5555 
5556 	if (!is_exclusive_pmu(pmu))
5557 		return true;
5558 
5559 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5560 		if (exclusive_event_match(iter_event, event))
5561 			return false;
5562 	}
5563 
5564 	return true;
5565 }
5566 
5567 static void perf_free_addr_filters(struct perf_event *event);
5568 
5569 /* vs perf_event_alloc() error */
5570 static void __free_event(struct perf_event *event)
5571 {
5572 	struct pmu *pmu = event->pmu;
5573 
5574 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5575 		put_callchain_buffers();
5576 
5577 	kfree(event->addr_filter_ranges);
5578 
5579 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5580 		exclusive_event_destroy(event);
5581 
5582 	if (is_cgroup_event(event))
5583 		perf_detach_cgroup(event);
5584 
5585 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5586 		detach_perf_ctx_data(event);
5587 
5588 	if (event->destroy)
5589 		event->destroy(event);
5590 
5591 	/*
5592 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5593 	 * hw.target.
5594 	 */
5595 	if (event->hw.target)
5596 		put_task_struct(event->hw.target);
5597 
5598 	if (event->pmu_ctx) {
5599 		/*
5600 		 * put_pmu_ctx() needs an event->ctx reference, because of
5601 		 * epc->ctx.
5602 		 */
5603 		WARN_ON_ONCE(!pmu);
5604 		WARN_ON_ONCE(!event->ctx);
5605 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5606 		put_pmu_ctx(event->pmu_ctx);
5607 	}
5608 
5609 	/*
5610 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5611 	 * particular all task references must be cleaned up.
5612 	 */
5613 	if (event->ctx)
5614 		put_ctx(event->ctx);
5615 
5616 	if (pmu) {
5617 		module_put(pmu->module);
5618 		scoped_guard (spinlock, &pmu->events_lock) {
5619 			list_del(&event->pmu_list);
5620 			wake_up_var(pmu);
5621 		}
5622 	}
5623 
5624 	call_rcu(&event->rcu_head, free_event_rcu);
5625 }
5626 
5627 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5628 
5629 /* vs perf_event_alloc() success */
5630 static void _free_event(struct perf_event *event)
5631 {
5632 	irq_work_sync(&event->pending_irq);
5633 	irq_work_sync(&event->pending_disable_irq);
5634 
5635 	unaccount_event(event);
5636 
5637 	security_perf_event_free(event);
5638 
5639 	if (event->rb) {
5640 		/*
5641 		 * Can happen when we close an event with re-directed output.
5642 		 *
5643 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5644 		 * over us; possibly making our ring_buffer_put() the last.
5645 		 */
5646 		mutex_lock(&event->mmap_mutex);
5647 		ring_buffer_attach(event, NULL);
5648 		mutex_unlock(&event->mmap_mutex);
5649 	}
5650 
5651 	perf_event_free_bpf_prog(event);
5652 	perf_free_addr_filters(event);
5653 
5654 	__free_event(event);
5655 }
5656 
5657 /*
5658  * Used to free events which have a known refcount of 1, such as in error paths
5659  * of inherited events.
5660  */
5661 static void free_event(struct perf_event *event)
5662 {
5663 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5664 				     "unexpected event refcount: %ld; ptr=%p\n",
5665 				     atomic_long_read(&event->refcount), event)) {
5666 		/* leak to avoid use-after-free */
5667 		return;
5668 	}
5669 
5670 	_free_event(event);
5671 }
5672 
5673 /*
5674  * Remove user event from the owner task.
5675  */
5676 static void perf_remove_from_owner(struct perf_event *event)
5677 {
5678 	struct task_struct *owner;
5679 
5680 	rcu_read_lock();
5681 	/*
5682 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5683 	 * observe !owner it means the list deletion is complete and we can
5684 	 * indeed free this event, otherwise we need to serialize on
5685 	 * owner->perf_event_mutex.
5686 	 */
5687 	owner = READ_ONCE(event->owner);
5688 	if (owner) {
5689 		/*
5690 		 * Since delayed_put_task_struct() also drops the last
5691 		 * task reference we can safely take a new reference
5692 		 * while holding the rcu_read_lock().
5693 		 */
5694 		get_task_struct(owner);
5695 	}
5696 	rcu_read_unlock();
5697 
5698 	if (owner) {
5699 		/*
5700 		 * If we're here through perf_event_exit_task() we're already
5701 		 * holding ctx->mutex which would be an inversion wrt. the
5702 		 * normal lock order.
5703 		 *
5704 		 * However we can safely take this lock because its the child
5705 		 * ctx->mutex.
5706 		 */
5707 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5708 
5709 		/*
5710 		 * We have to re-check the event->owner field, if it is cleared
5711 		 * we raced with perf_event_exit_task(), acquiring the mutex
5712 		 * ensured they're done, and we can proceed with freeing the
5713 		 * event.
5714 		 */
5715 		if (event->owner) {
5716 			list_del_init(&event->owner_entry);
5717 			smp_store_release(&event->owner, NULL);
5718 		}
5719 		mutex_unlock(&owner->perf_event_mutex);
5720 		put_task_struct(owner);
5721 	}
5722 }
5723 
5724 static void put_event(struct perf_event *event)
5725 {
5726 	struct perf_event *parent;
5727 
5728 	if (!atomic_long_dec_and_test(&event->refcount))
5729 		return;
5730 
5731 	parent = event->parent;
5732 	_free_event(event);
5733 
5734 	/* Matches the refcount bump in inherit_event() */
5735 	if (parent)
5736 		put_event(parent);
5737 }
5738 
5739 /*
5740  * Kill an event dead; while event:refcount will preserve the event
5741  * object, it will not preserve its functionality. Once the last 'user'
5742  * gives up the object, we'll destroy the thing.
5743  */
5744 int perf_event_release_kernel(struct perf_event *event)
5745 {
5746 	struct perf_event_context *ctx = event->ctx;
5747 	struct perf_event *child, *tmp;
5748 
5749 	/*
5750 	 * If we got here through err_alloc: free_event(event); we will not
5751 	 * have attached to a context yet.
5752 	 */
5753 	if (!ctx) {
5754 		WARN_ON_ONCE(event->attach_state &
5755 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5756 		goto no_ctx;
5757 	}
5758 
5759 	if (!is_kernel_event(event))
5760 		perf_remove_from_owner(event);
5761 
5762 	ctx = perf_event_ctx_lock(event);
5763 	WARN_ON_ONCE(ctx->parent_ctx);
5764 
5765 	/*
5766 	 * Mark this event as STATE_DEAD, there is no external reference to it
5767 	 * anymore.
5768 	 *
5769 	 * Anybody acquiring event->child_mutex after the below loop _must_
5770 	 * also see this, most importantly inherit_event() which will avoid
5771 	 * placing more children on the list.
5772 	 *
5773 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5774 	 * child events.
5775 	 */
5776 	if (event->state > PERF_EVENT_STATE_REVOKED) {
5777 		perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5778 	} else {
5779 		event->state = PERF_EVENT_STATE_DEAD;
5780 	}
5781 
5782 	perf_event_ctx_unlock(event, ctx);
5783 
5784 again:
5785 	mutex_lock(&event->child_mutex);
5786 	list_for_each_entry(child, &event->child_list, child_list) {
5787 		/*
5788 		 * Cannot change, child events are not migrated, see the
5789 		 * comment with perf_event_ctx_lock_nested().
5790 		 */
5791 		ctx = READ_ONCE(child->ctx);
5792 		/*
5793 		 * Since child_mutex nests inside ctx::mutex, we must jump
5794 		 * through hoops. We start by grabbing a reference on the ctx.
5795 		 *
5796 		 * Since the event cannot get freed while we hold the
5797 		 * child_mutex, the context must also exist and have a !0
5798 		 * reference count.
5799 		 */
5800 		get_ctx(ctx);
5801 
5802 		/*
5803 		 * Now that we have a ctx ref, we can drop child_mutex, and
5804 		 * acquire ctx::mutex without fear of it going away. Then we
5805 		 * can re-acquire child_mutex.
5806 		 */
5807 		mutex_unlock(&event->child_mutex);
5808 		mutex_lock(&ctx->mutex);
5809 		mutex_lock(&event->child_mutex);
5810 
5811 		/*
5812 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5813 		 * state, if child is still the first entry, it didn't get freed
5814 		 * and we can continue doing so.
5815 		 */
5816 		tmp = list_first_entry_or_null(&event->child_list,
5817 					       struct perf_event, child_list);
5818 		if (tmp == child) {
5819 			perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5820 		} else {
5821 			child = NULL;
5822 		}
5823 
5824 		mutex_unlock(&event->child_mutex);
5825 		mutex_unlock(&ctx->mutex);
5826 
5827 		if (child) {
5828 			/* Last reference unless ->pending_task work is pending */
5829 			put_event(child);
5830 		}
5831 		put_ctx(ctx);
5832 
5833 		goto again;
5834 	}
5835 	mutex_unlock(&event->child_mutex);
5836 
5837 no_ctx:
5838 	/*
5839 	 * Last reference unless ->pending_task work is pending on this event
5840 	 * or any of its children.
5841 	 */
5842 	put_event(event);
5843 	return 0;
5844 }
5845 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5846 
5847 /*
5848  * Called when the last reference to the file is gone.
5849  */
5850 static int perf_release(struct inode *inode, struct file *file)
5851 {
5852 	perf_event_release_kernel(file->private_data);
5853 	return 0;
5854 }
5855 
5856 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5857 {
5858 	struct perf_event *child;
5859 	u64 total = 0;
5860 
5861 	*enabled = 0;
5862 	*running = 0;
5863 
5864 	mutex_lock(&event->child_mutex);
5865 
5866 	(void)perf_event_read(event, false);
5867 	total += perf_event_count(event, false);
5868 
5869 	*enabled += event->total_time_enabled +
5870 			atomic64_read(&event->child_total_time_enabled);
5871 	*running += event->total_time_running +
5872 			atomic64_read(&event->child_total_time_running);
5873 
5874 	list_for_each_entry(child, &event->child_list, child_list) {
5875 		(void)perf_event_read(child, false);
5876 		total += perf_event_count(child, false);
5877 		*enabled += child->total_time_enabled;
5878 		*running += child->total_time_running;
5879 	}
5880 	mutex_unlock(&event->child_mutex);
5881 
5882 	return total;
5883 }
5884 
5885 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5886 {
5887 	struct perf_event_context *ctx;
5888 	u64 count;
5889 
5890 	ctx = perf_event_ctx_lock(event);
5891 	count = __perf_event_read_value(event, enabled, running);
5892 	perf_event_ctx_unlock(event, ctx);
5893 
5894 	return count;
5895 }
5896 EXPORT_SYMBOL_GPL(perf_event_read_value);
5897 
5898 static int __perf_read_group_add(struct perf_event *leader,
5899 					u64 read_format, u64 *values)
5900 {
5901 	struct perf_event_context *ctx = leader->ctx;
5902 	struct perf_event *sub, *parent;
5903 	unsigned long flags;
5904 	int n = 1; /* skip @nr */
5905 	int ret;
5906 
5907 	ret = perf_event_read(leader, true);
5908 	if (ret)
5909 		return ret;
5910 
5911 	raw_spin_lock_irqsave(&ctx->lock, flags);
5912 	/*
5913 	 * Verify the grouping between the parent and child (inherited)
5914 	 * events is still in tact.
5915 	 *
5916 	 * Specifically:
5917 	 *  - leader->ctx->lock pins leader->sibling_list
5918 	 *  - parent->child_mutex pins parent->child_list
5919 	 *  - parent->ctx->mutex pins parent->sibling_list
5920 	 *
5921 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5922 	 * ctx->mutex), group destruction is not atomic between children, also
5923 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5924 	 * group.
5925 	 *
5926 	 * Therefore it is possible to have parent and child groups in a
5927 	 * different configuration and summing over such a beast makes no sense
5928 	 * what so ever.
5929 	 *
5930 	 * Reject this.
5931 	 */
5932 	parent = leader->parent;
5933 	if (parent &&
5934 	    (parent->group_generation != leader->group_generation ||
5935 	     parent->nr_siblings != leader->nr_siblings)) {
5936 		ret = -ECHILD;
5937 		goto unlock;
5938 	}
5939 
5940 	/*
5941 	 * Since we co-schedule groups, {enabled,running} times of siblings
5942 	 * will be identical to those of the leader, so we only publish one
5943 	 * set.
5944 	 */
5945 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5946 		values[n++] += leader->total_time_enabled +
5947 			atomic64_read(&leader->child_total_time_enabled);
5948 	}
5949 
5950 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5951 		values[n++] += leader->total_time_running +
5952 			atomic64_read(&leader->child_total_time_running);
5953 	}
5954 
5955 	/*
5956 	 * Write {count,id} tuples for every sibling.
5957 	 */
5958 	values[n++] += perf_event_count(leader, false);
5959 	if (read_format & PERF_FORMAT_ID)
5960 		values[n++] = primary_event_id(leader);
5961 	if (read_format & PERF_FORMAT_LOST)
5962 		values[n++] = atomic64_read(&leader->lost_samples);
5963 
5964 	for_each_sibling_event(sub, leader) {
5965 		values[n++] += perf_event_count(sub, false);
5966 		if (read_format & PERF_FORMAT_ID)
5967 			values[n++] = primary_event_id(sub);
5968 		if (read_format & PERF_FORMAT_LOST)
5969 			values[n++] = atomic64_read(&sub->lost_samples);
5970 	}
5971 
5972 unlock:
5973 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5974 	return ret;
5975 }
5976 
5977 static int perf_read_group(struct perf_event *event,
5978 				   u64 read_format, char __user *buf)
5979 {
5980 	struct perf_event *leader = event->group_leader, *child;
5981 	struct perf_event_context *ctx = leader->ctx;
5982 	int ret;
5983 	u64 *values;
5984 
5985 	lockdep_assert_held(&ctx->mutex);
5986 
5987 	values = kzalloc(event->read_size, GFP_KERNEL);
5988 	if (!values)
5989 		return -ENOMEM;
5990 
5991 	values[0] = 1 + leader->nr_siblings;
5992 
5993 	mutex_lock(&leader->child_mutex);
5994 
5995 	ret = __perf_read_group_add(leader, read_format, values);
5996 	if (ret)
5997 		goto unlock;
5998 
5999 	list_for_each_entry(child, &leader->child_list, child_list) {
6000 		ret = __perf_read_group_add(child, read_format, values);
6001 		if (ret)
6002 			goto unlock;
6003 	}
6004 
6005 	mutex_unlock(&leader->child_mutex);
6006 
6007 	ret = event->read_size;
6008 	if (copy_to_user(buf, values, event->read_size))
6009 		ret = -EFAULT;
6010 	goto out;
6011 
6012 unlock:
6013 	mutex_unlock(&leader->child_mutex);
6014 out:
6015 	kfree(values);
6016 	return ret;
6017 }
6018 
6019 static int perf_read_one(struct perf_event *event,
6020 				 u64 read_format, char __user *buf)
6021 {
6022 	u64 enabled, running;
6023 	u64 values[5];
6024 	int n = 0;
6025 
6026 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6027 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6028 		values[n++] = enabled;
6029 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6030 		values[n++] = running;
6031 	if (read_format & PERF_FORMAT_ID)
6032 		values[n++] = primary_event_id(event);
6033 	if (read_format & PERF_FORMAT_LOST)
6034 		values[n++] = atomic64_read(&event->lost_samples);
6035 
6036 	if (copy_to_user(buf, values, n * sizeof(u64)))
6037 		return -EFAULT;
6038 
6039 	return n * sizeof(u64);
6040 }
6041 
6042 static bool is_event_hup(struct perf_event *event)
6043 {
6044 	bool no_children;
6045 
6046 	if (event->state > PERF_EVENT_STATE_EXIT)
6047 		return false;
6048 
6049 	mutex_lock(&event->child_mutex);
6050 	no_children = list_empty(&event->child_list);
6051 	mutex_unlock(&event->child_mutex);
6052 	return no_children;
6053 }
6054 
6055 /*
6056  * Read the performance event - simple non blocking version for now
6057  */
6058 static ssize_t
6059 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6060 {
6061 	u64 read_format = event->attr.read_format;
6062 	int ret;
6063 
6064 	/*
6065 	 * Return end-of-file for a read on an event that is in
6066 	 * error state (i.e. because it was pinned but it couldn't be
6067 	 * scheduled on to the CPU at some point).
6068 	 */
6069 	if (event->state == PERF_EVENT_STATE_ERROR)
6070 		return 0;
6071 
6072 	if (count < event->read_size)
6073 		return -ENOSPC;
6074 
6075 	WARN_ON_ONCE(event->ctx->parent_ctx);
6076 	if (read_format & PERF_FORMAT_GROUP)
6077 		ret = perf_read_group(event, read_format, buf);
6078 	else
6079 		ret = perf_read_one(event, read_format, buf);
6080 
6081 	return ret;
6082 }
6083 
6084 static ssize_t
6085 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6086 {
6087 	struct perf_event *event = file->private_data;
6088 	struct perf_event_context *ctx;
6089 	int ret;
6090 
6091 	ret = security_perf_event_read(event);
6092 	if (ret)
6093 		return ret;
6094 
6095 	ctx = perf_event_ctx_lock(event);
6096 	ret = __perf_read(event, buf, count);
6097 	perf_event_ctx_unlock(event, ctx);
6098 
6099 	return ret;
6100 }
6101 
6102 static __poll_t perf_poll(struct file *file, poll_table *wait)
6103 {
6104 	struct perf_event *event = file->private_data;
6105 	struct perf_buffer *rb;
6106 	__poll_t events = EPOLLHUP;
6107 
6108 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6109 		return EPOLLERR;
6110 
6111 	poll_wait(file, &event->waitq, wait);
6112 
6113 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6114 		return EPOLLERR;
6115 
6116 	if (is_event_hup(event))
6117 		return events;
6118 
6119 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6120 		     event->attr.pinned))
6121 		return EPOLLERR;
6122 
6123 	/*
6124 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6125 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6126 	 */
6127 	mutex_lock(&event->mmap_mutex);
6128 	rb = event->rb;
6129 	if (rb)
6130 		events = atomic_xchg(&rb->poll, 0);
6131 	mutex_unlock(&event->mmap_mutex);
6132 	return events;
6133 }
6134 
6135 static void _perf_event_reset(struct perf_event *event)
6136 {
6137 	(void)perf_event_read(event, false);
6138 	local64_set(&event->count, 0);
6139 	perf_event_update_userpage(event);
6140 }
6141 
6142 /* Assume it's not an event with inherit set. */
6143 u64 perf_event_pause(struct perf_event *event, bool reset)
6144 {
6145 	struct perf_event_context *ctx;
6146 	u64 count;
6147 
6148 	ctx = perf_event_ctx_lock(event);
6149 	WARN_ON_ONCE(event->attr.inherit);
6150 	_perf_event_disable(event);
6151 	count = local64_read(&event->count);
6152 	if (reset)
6153 		local64_set(&event->count, 0);
6154 	perf_event_ctx_unlock(event, ctx);
6155 
6156 	return count;
6157 }
6158 EXPORT_SYMBOL_GPL(perf_event_pause);
6159 
6160 /*
6161  * Holding the top-level event's child_mutex means that any
6162  * descendant process that has inherited this event will block
6163  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6164  * task existence requirements of perf_event_enable/disable.
6165  */
6166 static void perf_event_for_each_child(struct perf_event *event,
6167 					void (*func)(struct perf_event *))
6168 {
6169 	struct perf_event *child;
6170 
6171 	WARN_ON_ONCE(event->ctx->parent_ctx);
6172 
6173 	mutex_lock(&event->child_mutex);
6174 	func(event);
6175 	list_for_each_entry(child, &event->child_list, child_list)
6176 		func(child);
6177 	mutex_unlock(&event->child_mutex);
6178 }
6179 
6180 static void perf_event_for_each(struct perf_event *event,
6181 				  void (*func)(struct perf_event *))
6182 {
6183 	struct perf_event_context *ctx = event->ctx;
6184 	struct perf_event *sibling;
6185 
6186 	lockdep_assert_held(&ctx->mutex);
6187 
6188 	event = event->group_leader;
6189 
6190 	perf_event_for_each_child(event, func);
6191 	for_each_sibling_event(sibling, event)
6192 		perf_event_for_each_child(sibling, func);
6193 }
6194 
6195 static void __perf_event_period(struct perf_event *event,
6196 				struct perf_cpu_context *cpuctx,
6197 				struct perf_event_context *ctx,
6198 				void *info)
6199 {
6200 	u64 value = *((u64 *)info);
6201 	bool active;
6202 
6203 	if (event->attr.freq) {
6204 		event->attr.sample_freq = value;
6205 	} else {
6206 		event->attr.sample_period = value;
6207 		event->hw.sample_period = value;
6208 	}
6209 
6210 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6211 	if (active) {
6212 		perf_pmu_disable(event->pmu);
6213 		event->pmu->stop(event, PERF_EF_UPDATE);
6214 	}
6215 
6216 	local64_set(&event->hw.period_left, 0);
6217 
6218 	if (active) {
6219 		event->pmu->start(event, PERF_EF_RELOAD);
6220 		/*
6221 		 * Once the period is force-reset, the event starts immediately.
6222 		 * But the event/group could be throttled. Unthrottle the
6223 		 * event/group now to avoid the next tick trying to unthrottle
6224 		 * while we already re-started the event/group.
6225 		 */
6226 		if (event->hw.interrupts == MAX_INTERRUPTS)
6227 			perf_event_unthrottle_group(event, true);
6228 		perf_pmu_enable(event->pmu);
6229 	}
6230 }
6231 
6232 static int perf_event_check_period(struct perf_event *event, u64 value)
6233 {
6234 	return event->pmu->check_period(event, value);
6235 }
6236 
6237 static int _perf_event_period(struct perf_event *event, u64 value)
6238 {
6239 	if (!is_sampling_event(event))
6240 		return -EINVAL;
6241 
6242 	if (!value)
6243 		return -EINVAL;
6244 
6245 	if (event->attr.freq) {
6246 		if (value > sysctl_perf_event_sample_rate)
6247 			return -EINVAL;
6248 	} else {
6249 		if (perf_event_check_period(event, value))
6250 			return -EINVAL;
6251 		if (value & (1ULL << 63))
6252 			return -EINVAL;
6253 	}
6254 
6255 	event_function_call(event, __perf_event_period, &value);
6256 
6257 	return 0;
6258 }
6259 
6260 int perf_event_period(struct perf_event *event, u64 value)
6261 {
6262 	struct perf_event_context *ctx;
6263 	int ret;
6264 
6265 	ctx = perf_event_ctx_lock(event);
6266 	ret = _perf_event_period(event, value);
6267 	perf_event_ctx_unlock(event, ctx);
6268 
6269 	return ret;
6270 }
6271 EXPORT_SYMBOL_GPL(perf_event_period);
6272 
6273 static const struct file_operations perf_fops;
6274 
6275 static inline bool is_perf_file(struct fd f)
6276 {
6277 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6278 }
6279 
6280 static int perf_event_set_output(struct perf_event *event,
6281 				 struct perf_event *output_event);
6282 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6283 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6284 			  struct perf_event_attr *attr);
6285 static int __perf_event_set_bpf_prog(struct perf_event *event,
6286 				     struct bpf_prog *prog,
6287 				     u64 bpf_cookie);
6288 
6289 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6290 {
6291 	void (*func)(struct perf_event *);
6292 	u32 flags = arg;
6293 
6294 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6295 		return -ENODEV;
6296 
6297 	switch (cmd) {
6298 	case PERF_EVENT_IOC_ENABLE:
6299 		func = _perf_event_enable;
6300 		break;
6301 	case PERF_EVENT_IOC_DISABLE:
6302 		func = _perf_event_disable;
6303 		break;
6304 	case PERF_EVENT_IOC_RESET:
6305 		func = _perf_event_reset;
6306 		break;
6307 
6308 	case PERF_EVENT_IOC_REFRESH:
6309 		return _perf_event_refresh(event, arg);
6310 
6311 	case PERF_EVENT_IOC_PERIOD:
6312 	{
6313 		u64 value;
6314 
6315 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6316 			return -EFAULT;
6317 
6318 		return _perf_event_period(event, value);
6319 	}
6320 	case PERF_EVENT_IOC_ID:
6321 	{
6322 		u64 id = primary_event_id(event);
6323 
6324 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6325 			return -EFAULT;
6326 		return 0;
6327 	}
6328 
6329 	case PERF_EVENT_IOC_SET_OUTPUT:
6330 	{
6331 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6332 		struct perf_event *output_event = NULL;
6333 		if (arg != -1) {
6334 			if (!is_perf_file(output))
6335 				return -EBADF;
6336 			output_event = fd_file(output)->private_data;
6337 		}
6338 		return perf_event_set_output(event, output_event);
6339 	}
6340 
6341 	case PERF_EVENT_IOC_SET_FILTER:
6342 		return perf_event_set_filter(event, (void __user *)arg);
6343 
6344 	case PERF_EVENT_IOC_SET_BPF:
6345 	{
6346 		struct bpf_prog *prog;
6347 		int err;
6348 
6349 		prog = bpf_prog_get(arg);
6350 		if (IS_ERR(prog))
6351 			return PTR_ERR(prog);
6352 
6353 		err = __perf_event_set_bpf_prog(event, prog, 0);
6354 		if (err) {
6355 			bpf_prog_put(prog);
6356 			return err;
6357 		}
6358 
6359 		return 0;
6360 	}
6361 
6362 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6363 		struct perf_buffer *rb;
6364 
6365 		rcu_read_lock();
6366 		rb = rcu_dereference(event->rb);
6367 		if (!rb || !rb->nr_pages) {
6368 			rcu_read_unlock();
6369 			return -EINVAL;
6370 		}
6371 		rb_toggle_paused(rb, !!arg);
6372 		rcu_read_unlock();
6373 		return 0;
6374 	}
6375 
6376 	case PERF_EVENT_IOC_QUERY_BPF:
6377 		return perf_event_query_prog_array(event, (void __user *)arg);
6378 
6379 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6380 		struct perf_event_attr new_attr;
6381 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6382 					 &new_attr);
6383 
6384 		if (err)
6385 			return err;
6386 
6387 		return perf_event_modify_attr(event,  &new_attr);
6388 	}
6389 	default:
6390 		return -ENOTTY;
6391 	}
6392 
6393 	if (flags & PERF_IOC_FLAG_GROUP)
6394 		perf_event_for_each(event, func);
6395 	else
6396 		perf_event_for_each_child(event, func);
6397 
6398 	return 0;
6399 }
6400 
6401 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6402 {
6403 	struct perf_event *event = file->private_data;
6404 	struct perf_event_context *ctx;
6405 	long ret;
6406 
6407 	/* Treat ioctl like writes as it is likely a mutating operation. */
6408 	ret = security_perf_event_write(event);
6409 	if (ret)
6410 		return ret;
6411 
6412 	ctx = perf_event_ctx_lock(event);
6413 	ret = _perf_ioctl(event, cmd, arg);
6414 	perf_event_ctx_unlock(event, ctx);
6415 
6416 	return ret;
6417 }
6418 
6419 #ifdef CONFIG_COMPAT
6420 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6421 				unsigned long arg)
6422 {
6423 	switch (_IOC_NR(cmd)) {
6424 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6425 	case _IOC_NR(PERF_EVENT_IOC_ID):
6426 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6427 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6428 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6429 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6430 			cmd &= ~IOCSIZE_MASK;
6431 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6432 		}
6433 		break;
6434 	}
6435 	return perf_ioctl(file, cmd, arg);
6436 }
6437 #else
6438 # define perf_compat_ioctl NULL
6439 #endif
6440 
6441 int perf_event_task_enable(void)
6442 {
6443 	struct perf_event_context *ctx;
6444 	struct perf_event *event;
6445 
6446 	mutex_lock(&current->perf_event_mutex);
6447 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6448 		ctx = perf_event_ctx_lock(event);
6449 		perf_event_for_each_child(event, _perf_event_enable);
6450 		perf_event_ctx_unlock(event, ctx);
6451 	}
6452 	mutex_unlock(&current->perf_event_mutex);
6453 
6454 	return 0;
6455 }
6456 
6457 int perf_event_task_disable(void)
6458 {
6459 	struct perf_event_context *ctx;
6460 	struct perf_event *event;
6461 
6462 	mutex_lock(&current->perf_event_mutex);
6463 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6464 		ctx = perf_event_ctx_lock(event);
6465 		perf_event_for_each_child(event, _perf_event_disable);
6466 		perf_event_ctx_unlock(event, ctx);
6467 	}
6468 	mutex_unlock(&current->perf_event_mutex);
6469 
6470 	return 0;
6471 }
6472 
6473 static int perf_event_index(struct perf_event *event)
6474 {
6475 	if (event->hw.state & PERF_HES_STOPPED)
6476 		return 0;
6477 
6478 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6479 		return 0;
6480 
6481 	return event->pmu->event_idx(event);
6482 }
6483 
6484 static void perf_event_init_userpage(struct perf_event *event)
6485 {
6486 	struct perf_event_mmap_page *userpg;
6487 	struct perf_buffer *rb;
6488 
6489 	rcu_read_lock();
6490 	rb = rcu_dereference(event->rb);
6491 	if (!rb)
6492 		goto unlock;
6493 
6494 	userpg = rb->user_page;
6495 
6496 	/* Allow new userspace to detect that bit 0 is deprecated */
6497 	userpg->cap_bit0_is_deprecated = 1;
6498 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6499 	userpg->data_offset = PAGE_SIZE;
6500 	userpg->data_size = perf_data_size(rb);
6501 
6502 unlock:
6503 	rcu_read_unlock();
6504 }
6505 
6506 void __weak arch_perf_update_userpage(
6507 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6508 {
6509 }
6510 
6511 /*
6512  * Callers need to ensure there can be no nesting of this function, otherwise
6513  * the seqlock logic goes bad. We can not serialize this because the arch
6514  * code calls this from NMI context.
6515  */
6516 void perf_event_update_userpage(struct perf_event *event)
6517 {
6518 	struct perf_event_mmap_page *userpg;
6519 	struct perf_buffer *rb;
6520 	u64 enabled, running, now;
6521 
6522 	rcu_read_lock();
6523 	rb = rcu_dereference(event->rb);
6524 	if (!rb)
6525 		goto unlock;
6526 
6527 	/*
6528 	 * compute total_time_enabled, total_time_running
6529 	 * based on snapshot values taken when the event
6530 	 * was last scheduled in.
6531 	 *
6532 	 * we cannot simply called update_context_time()
6533 	 * because of locking issue as we can be called in
6534 	 * NMI context
6535 	 */
6536 	calc_timer_values(event, &now, &enabled, &running);
6537 
6538 	userpg = rb->user_page;
6539 	/*
6540 	 * Disable preemption to guarantee consistent time stamps are stored to
6541 	 * the user page.
6542 	 */
6543 	preempt_disable();
6544 	++userpg->lock;
6545 	barrier();
6546 	userpg->index = perf_event_index(event);
6547 	userpg->offset = perf_event_count(event, false);
6548 	if (userpg->index)
6549 		userpg->offset -= local64_read(&event->hw.prev_count);
6550 
6551 	userpg->time_enabled = enabled +
6552 			atomic64_read(&event->child_total_time_enabled);
6553 
6554 	userpg->time_running = running +
6555 			atomic64_read(&event->child_total_time_running);
6556 
6557 	arch_perf_update_userpage(event, userpg, now);
6558 
6559 	barrier();
6560 	++userpg->lock;
6561 	preempt_enable();
6562 unlock:
6563 	rcu_read_unlock();
6564 }
6565 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6566 
6567 static void ring_buffer_attach(struct perf_event *event,
6568 			       struct perf_buffer *rb)
6569 {
6570 	struct perf_buffer *old_rb = NULL;
6571 	unsigned long flags;
6572 
6573 	WARN_ON_ONCE(event->parent);
6574 
6575 	if (event->rb) {
6576 		/*
6577 		 * Should be impossible, we set this when removing
6578 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6579 		 */
6580 		WARN_ON_ONCE(event->rcu_pending);
6581 
6582 		old_rb = event->rb;
6583 		spin_lock_irqsave(&old_rb->event_lock, flags);
6584 		list_del_rcu(&event->rb_entry);
6585 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6586 
6587 		event->rcu_batches = get_state_synchronize_rcu();
6588 		event->rcu_pending = 1;
6589 	}
6590 
6591 	if (rb) {
6592 		if (event->rcu_pending) {
6593 			cond_synchronize_rcu(event->rcu_batches);
6594 			event->rcu_pending = 0;
6595 		}
6596 
6597 		spin_lock_irqsave(&rb->event_lock, flags);
6598 		list_add_rcu(&event->rb_entry, &rb->event_list);
6599 		spin_unlock_irqrestore(&rb->event_lock, flags);
6600 	}
6601 
6602 	/*
6603 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6604 	 * before swizzling the event::rb pointer; if it's getting
6605 	 * unmapped, its aux_mmap_count will be 0 and it won't
6606 	 * restart. See the comment in __perf_pmu_output_stop().
6607 	 *
6608 	 * Data will inevitably be lost when set_output is done in
6609 	 * mid-air, but then again, whoever does it like this is
6610 	 * not in for the data anyway.
6611 	 */
6612 	if (has_aux(event))
6613 		perf_event_stop(event, 0);
6614 
6615 	rcu_assign_pointer(event->rb, rb);
6616 
6617 	if (old_rb) {
6618 		ring_buffer_put(old_rb);
6619 		/*
6620 		 * Since we detached before setting the new rb, so that we
6621 		 * could attach the new rb, we could have missed a wakeup.
6622 		 * Provide it now.
6623 		 */
6624 		wake_up_all(&event->waitq);
6625 	}
6626 }
6627 
6628 static void ring_buffer_wakeup(struct perf_event *event)
6629 {
6630 	struct perf_buffer *rb;
6631 
6632 	if (event->parent)
6633 		event = event->parent;
6634 
6635 	rcu_read_lock();
6636 	rb = rcu_dereference(event->rb);
6637 	if (rb) {
6638 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6639 			wake_up_all(&event->waitq);
6640 	}
6641 	rcu_read_unlock();
6642 }
6643 
6644 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6645 {
6646 	struct perf_buffer *rb;
6647 
6648 	if (event->parent)
6649 		event = event->parent;
6650 
6651 	rcu_read_lock();
6652 	rb = rcu_dereference(event->rb);
6653 	if (rb) {
6654 		if (!refcount_inc_not_zero(&rb->refcount))
6655 			rb = NULL;
6656 	}
6657 	rcu_read_unlock();
6658 
6659 	return rb;
6660 }
6661 
6662 void ring_buffer_put(struct perf_buffer *rb)
6663 {
6664 	if (!refcount_dec_and_test(&rb->refcount))
6665 		return;
6666 
6667 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6668 
6669 	call_rcu(&rb->rcu_head, rb_free_rcu);
6670 }
6671 
6672 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6673 
6674 #define get_mapped(event, func)			\
6675 ({	struct pmu *pmu;			\
6676 	mapped_f f = NULL;			\
6677 	guard(rcu)();				\
6678 	pmu = READ_ONCE(event->pmu);		\
6679 	if (pmu)				\
6680 		f = pmu->func;			\
6681 	f;					\
6682 })
6683 
6684 static void perf_mmap_open(struct vm_area_struct *vma)
6685 {
6686 	struct perf_event *event = vma->vm_file->private_data;
6687 	mapped_f mapped = get_mapped(event, event_mapped);
6688 
6689 	atomic_inc(&event->mmap_count);
6690 	atomic_inc(&event->rb->mmap_count);
6691 
6692 	if (vma->vm_pgoff)
6693 		atomic_inc(&event->rb->aux_mmap_count);
6694 
6695 	if (mapped)
6696 		mapped(event, vma->vm_mm);
6697 }
6698 
6699 static void perf_pmu_output_stop(struct perf_event *event);
6700 
6701 /*
6702  * A buffer can be mmap()ed multiple times; either directly through the same
6703  * event, or through other events by use of perf_event_set_output().
6704  *
6705  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6706  * the buffer here, where we still have a VM context. This means we need
6707  * to detach all events redirecting to us.
6708  */
6709 static void perf_mmap_close(struct vm_area_struct *vma)
6710 {
6711 	struct perf_event *event = vma->vm_file->private_data;
6712 	mapped_f unmapped = get_mapped(event, event_unmapped);
6713 	struct perf_buffer *rb = ring_buffer_get(event);
6714 	struct user_struct *mmap_user = rb->mmap_user;
6715 	int mmap_locked = rb->mmap_locked;
6716 	unsigned long size = perf_data_size(rb);
6717 	bool detach_rest = false;
6718 
6719 	/* FIXIES vs perf_pmu_unregister() */
6720 	if (unmapped)
6721 		unmapped(event, vma->vm_mm);
6722 
6723 	/*
6724 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6725 	 * to avoid complications.
6726 	 */
6727 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6728 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6729 		/*
6730 		 * Stop all AUX events that are writing to this buffer,
6731 		 * so that we can free its AUX pages and corresponding PMU
6732 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6733 		 * they won't start any more (see perf_aux_output_begin()).
6734 		 */
6735 		perf_pmu_output_stop(event);
6736 
6737 		/* now it's safe to free the pages */
6738 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6739 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6740 
6741 		/* this has to be the last one */
6742 		rb_free_aux(rb);
6743 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6744 
6745 		mutex_unlock(&rb->aux_mutex);
6746 	}
6747 
6748 	if (atomic_dec_and_test(&rb->mmap_count))
6749 		detach_rest = true;
6750 
6751 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6752 		goto out_put;
6753 
6754 	ring_buffer_attach(event, NULL);
6755 	mutex_unlock(&event->mmap_mutex);
6756 
6757 	/* If there's still other mmap()s of this buffer, we're done. */
6758 	if (!detach_rest)
6759 		goto out_put;
6760 
6761 	/*
6762 	 * No other mmap()s, detach from all other events that might redirect
6763 	 * into the now unreachable buffer. Somewhat complicated by the
6764 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6765 	 */
6766 again:
6767 	rcu_read_lock();
6768 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6769 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6770 			/*
6771 			 * This event is en-route to free_event() which will
6772 			 * detach it and remove it from the list.
6773 			 */
6774 			continue;
6775 		}
6776 		rcu_read_unlock();
6777 
6778 		mutex_lock(&event->mmap_mutex);
6779 		/*
6780 		 * Check we didn't race with perf_event_set_output() which can
6781 		 * swizzle the rb from under us while we were waiting to
6782 		 * acquire mmap_mutex.
6783 		 *
6784 		 * If we find a different rb; ignore this event, a next
6785 		 * iteration will no longer find it on the list. We have to
6786 		 * still restart the iteration to make sure we're not now
6787 		 * iterating the wrong list.
6788 		 */
6789 		if (event->rb == rb)
6790 			ring_buffer_attach(event, NULL);
6791 
6792 		mutex_unlock(&event->mmap_mutex);
6793 		put_event(event);
6794 
6795 		/*
6796 		 * Restart the iteration; either we're on the wrong list or
6797 		 * destroyed its integrity by doing a deletion.
6798 		 */
6799 		goto again;
6800 	}
6801 	rcu_read_unlock();
6802 
6803 	/*
6804 	 * It could be there's still a few 0-ref events on the list; they'll
6805 	 * get cleaned up by free_event() -- they'll also still have their
6806 	 * ref on the rb and will free it whenever they are done with it.
6807 	 *
6808 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6809 	 * undo the VM accounting.
6810 	 */
6811 
6812 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6813 			&mmap_user->locked_vm);
6814 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6815 	free_uid(mmap_user);
6816 
6817 out_put:
6818 	ring_buffer_put(rb); /* could be last */
6819 }
6820 
6821 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6822 {
6823 	/* The first page is the user control page, others are read-only. */
6824 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6825 }
6826 
6827 static const struct vm_operations_struct perf_mmap_vmops = {
6828 	.open		= perf_mmap_open,
6829 	.close		= perf_mmap_close, /* non mergeable */
6830 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6831 };
6832 
6833 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6834 {
6835 	unsigned long nr_pages = vma_pages(vma);
6836 	int err = 0;
6837 	unsigned long pagenum;
6838 
6839 	/*
6840 	 * We map this as a VM_PFNMAP VMA.
6841 	 *
6842 	 * This is not ideal as this is designed broadly for mappings of PFNs
6843 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6844 	 * !pfn_valid(pfn).
6845 	 *
6846 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6847 	 * which would more ideally be mapped using vm_insert_page() or a
6848 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6849 	 *
6850 	 * However this won't work here, because:
6851 	 *
6852 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6853 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6854 	 *    indicate that this should be mapped CoW in order that the
6855 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6856 	 *    rest R/O as desired.
6857 	 *
6858 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6859 	 *    vm_normal_page() returning a struct page * pointer, which means
6860 	 *    vm_ops->page_mkwrite() will be invoked rather than
6861 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6862 	 *    to work around retry logic in the fault handler, however this
6863 	 *    field is no longer allowed to be used within struct page.
6864 	 *
6865 	 * 3. Having a struct page * made available in the fault logic also
6866 	 *    means that the page gets put on the rmap and becomes
6867 	 *    inappropriately accessible and subject to map and ref counting.
6868 	 *
6869 	 * Ideally we would have a mechanism that could explicitly express our
6870 	 * desires, but this is not currently the case, so we instead use
6871 	 * VM_PFNMAP.
6872 	 *
6873 	 * We manage the lifetime of these mappings with internal refcounts (see
6874 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6875 	 * this mapping is maintained correctly.
6876 	 */
6877 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6878 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6879 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6880 
6881 		if (page == NULL) {
6882 			err = -EINVAL;
6883 			break;
6884 		}
6885 
6886 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6887 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6888 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6889 		if (err)
6890 			break;
6891 	}
6892 
6893 #ifdef CONFIG_MMU
6894 	/* Clear any partial mappings on error. */
6895 	if (err)
6896 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6897 #endif
6898 
6899 	return err;
6900 }
6901 
6902 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6903 {
6904 	struct perf_event *event = file->private_data;
6905 	unsigned long user_locked, user_lock_limit;
6906 	struct user_struct *user = current_user();
6907 	struct mutex *aux_mutex = NULL;
6908 	struct perf_buffer *rb = NULL;
6909 	unsigned long locked, lock_limit;
6910 	unsigned long vma_size;
6911 	unsigned long nr_pages;
6912 	long user_extra = 0, extra = 0;
6913 	int ret, flags = 0;
6914 	mapped_f mapped;
6915 
6916 	/*
6917 	 * Don't allow mmap() of inherited per-task counters. This would
6918 	 * create a performance issue due to all children writing to the
6919 	 * same rb.
6920 	 */
6921 	if (event->cpu == -1 && event->attr.inherit)
6922 		return -EINVAL;
6923 
6924 	if (!(vma->vm_flags & VM_SHARED))
6925 		return -EINVAL;
6926 
6927 	ret = security_perf_event_read(event);
6928 	if (ret)
6929 		return ret;
6930 
6931 	vma_size = vma->vm_end - vma->vm_start;
6932 	nr_pages = vma_size / PAGE_SIZE;
6933 
6934 	if (nr_pages > INT_MAX)
6935 		return -ENOMEM;
6936 
6937 	if (vma_size != PAGE_SIZE * nr_pages)
6938 		return -EINVAL;
6939 
6940 	user_extra = nr_pages;
6941 
6942 	mutex_lock(&event->mmap_mutex);
6943 	ret = -EINVAL;
6944 
6945 	/*
6946 	 * This relies on __pmu_detach_event() taking mmap_mutex after marking
6947 	 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
6948 	 * will detach the rb created here.
6949 	 */
6950 	if (event->state <= PERF_EVENT_STATE_REVOKED) {
6951 		ret = -ENODEV;
6952 		goto unlock;
6953 	}
6954 
6955 	if (vma->vm_pgoff == 0) {
6956 		nr_pages -= 1;
6957 
6958 		/*
6959 		 * If we have rb pages ensure they're a power-of-two number, so we
6960 		 * can do bitmasks instead of modulo.
6961 		 */
6962 		if (nr_pages != 0 && !is_power_of_2(nr_pages))
6963 			goto unlock;
6964 
6965 		WARN_ON_ONCE(event->ctx->parent_ctx);
6966 
6967 		if (event->rb) {
6968 			if (data_page_nr(event->rb) != nr_pages)
6969 				goto unlock;
6970 
6971 			if (atomic_inc_not_zero(&event->rb->mmap_count)) {
6972 				/*
6973 				 * Success -- managed to mmap() the same buffer
6974 				 * multiple times.
6975 				 */
6976 				ret = 0;
6977 				/* We need the rb to map pages. */
6978 				rb = event->rb;
6979 				goto unlock;
6980 			}
6981 
6982 			/*
6983 			 * Raced against perf_mmap_close()'s
6984 			 * atomic_dec_and_mutex_lock() remove the
6985 			 * event and continue as if !event->rb
6986 			 */
6987 			ring_buffer_attach(event, NULL);
6988 		}
6989 
6990 	} else {
6991 		/*
6992 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6993 		 * mapped, all subsequent mappings should have the same size
6994 		 * and offset. Must be above the normal perf buffer.
6995 		 */
6996 		u64 aux_offset, aux_size;
6997 
6998 		rb = event->rb;
6999 		if (!rb)
7000 			goto aux_unlock;
7001 
7002 		aux_mutex = &rb->aux_mutex;
7003 		mutex_lock(aux_mutex);
7004 
7005 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
7006 		aux_size = READ_ONCE(rb->user_page->aux_size);
7007 
7008 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7009 			goto aux_unlock;
7010 
7011 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7012 			goto aux_unlock;
7013 
7014 		/* already mapped with a different offset */
7015 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7016 			goto aux_unlock;
7017 
7018 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
7019 			goto aux_unlock;
7020 
7021 		/* already mapped with a different size */
7022 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7023 			goto aux_unlock;
7024 
7025 		if (!is_power_of_2(nr_pages))
7026 			goto aux_unlock;
7027 
7028 		if (!atomic_inc_not_zero(&rb->mmap_count))
7029 			goto aux_unlock;
7030 
7031 		if (rb_has_aux(rb)) {
7032 			atomic_inc(&rb->aux_mmap_count);
7033 			ret = 0;
7034 			goto unlock;
7035 		}
7036 
7037 		atomic_set(&rb->aux_mmap_count, 1);
7038 	}
7039 
7040 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
7041 
7042 	/*
7043 	 * Increase the limit linearly with more CPUs:
7044 	 */
7045 	user_lock_limit *= num_online_cpus();
7046 
7047 	user_locked = atomic_long_read(&user->locked_vm);
7048 
7049 	/*
7050 	 * sysctl_perf_event_mlock may have changed, so that
7051 	 *     user->locked_vm > user_lock_limit
7052 	 */
7053 	if (user_locked > user_lock_limit)
7054 		user_locked = user_lock_limit;
7055 	user_locked += user_extra;
7056 
7057 	if (user_locked > user_lock_limit) {
7058 		/*
7059 		 * charge locked_vm until it hits user_lock_limit;
7060 		 * charge the rest from pinned_vm
7061 		 */
7062 		extra = user_locked - user_lock_limit;
7063 		user_extra -= extra;
7064 	}
7065 
7066 	lock_limit = rlimit(RLIMIT_MEMLOCK);
7067 	lock_limit >>= PAGE_SHIFT;
7068 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7069 
7070 	if ((locked > lock_limit) && perf_is_paranoid() &&
7071 		!capable(CAP_IPC_LOCK)) {
7072 		ret = -EPERM;
7073 		goto unlock;
7074 	}
7075 
7076 	WARN_ON(!rb && event->rb);
7077 
7078 	if (vma->vm_flags & VM_WRITE)
7079 		flags |= RING_BUFFER_WRITABLE;
7080 
7081 	if (!rb) {
7082 		rb = rb_alloc(nr_pages,
7083 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7084 			      event->cpu, flags);
7085 
7086 		if (!rb) {
7087 			ret = -ENOMEM;
7088 			goto unlock;
7089 		}
7090 
7091 		atomic_set(&rb->mmap_count, 1);
7092 		rb->mmap_user = get_current_user();
7093 		rb->mmap_locked = extra;
7094 
7095 		ring_buffer_attach(event, rb);
7096 
7097 		perf_event_update_time(event);
7098 		perf_event_init_userpage(event);
7099 		perf_event_update_userpage(event);
7100 	} else {
7101 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7102 				   event->attr.aux_watermark, flags);
7103 		if (!ret)
7104 			rb->aux_mmap_locked = extra;
7105 	}
7106 
7107 	ret = 0;
7108 
7109 unlock:
7110 	if (!ret) {
7111 		atomic_long_add(user_extra, &user->locked_vm);
7112 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
7113 
7114 		atomic_inc(&event->mmap_count);
7115 	} else if (rb) {
7116 		atomic_dec(&rb->mmap_count);
7117 	}
7118 aux_unlock:
7119 	if (aux_mutex)
7120 		mutex_unlock(aux_mutex);
7121 	mutex_unlock(&event->mmap_mutex);
7122 
7123 	/*
7124 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7125 	 * vma.
7126 	 */
7127 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7128 	vma->vm_ops = &perf_mmap_vmops;
7129 
7130 	if (!ret)
7131 		ret = map_range(rb, vma);
7132 
7133 	mapped = get_mapped(event, event_mapped);
7134 	if (mapped)
7135 		mapped(event, vma->vm_mm);
7136 
7137 	return ret;
7138 }
7139 
7140 static int perf_fasync(int fd, struct file *filp, int on)
7141 {
7142 	struct inode *inode = file_inode(filp);
7143 	struct perf_event *event = filp->private_data;
7144 	int retval;
7145 
7146 	if (event->state <= PERF_EVENT_STATE_REVOKED)
7147 		return -ENODEV;
7148 
7149 	inode_lock(inode);
7150 	retval = fasync_helper(fd, filp, on, &event->fasync);
7151 	inode_unlock(inode);
7152 
7153 	if (retval < 0)
7154 		return retval;
7155 
7156 	return 0;
7157 }
7158 
7159 static const struct file_operations perf_fops = {
7160 	.release		= perf_release,
7161 	.read			= perf_read,
7162 	.poll			= perf_poll,
7163 	.unlocked_ioctl		= perf_ioctl,
7164 	.compat_ioctl		= perf_compat_ioctl,
7165 	.mmap			= perf_mmap,
7166 	.fasync			= perf_fasync,
7167 };
7168 
7169 /*
7170  * Perf event wakeup
7171  *
7172  * If there's data, ensure we set the poll() state and publish everything
7173  * to user-space before waking everybody up.
7174  */
7175 
7176 void perf_event_wakeup(struct perf_event *event)
7177 {
7178 	ring_buffer_wakeup(event);
7179 
7180 	if (event->pending_kill) {
7181 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7182 		event->pending_kill = 0;
7183 	}
7184 }
7185 
7186 static void perf_sigtrap(struct perf_event *event)
7187 {
7188 	/*
7189 	 * We'd expect this to only occur if the irq_work is delayed and either
7190 	 * ctx->task or current has changed in the meantime. This can be the
7191 	 * case on architectures that do not implement arch_irq_work_raise().
7192 	 */
7193 	if (WARN_ON_ONCE(event->ctx->task != current))
7194 		return;
7195 
7196 	/*
7197 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7198 	 * task exiting.
7199 	 */
7200 	if (current->flags & PF_EXITING)
7201 		return;
7202 
7203 	send_sig_perf((void __user *)event->pending_addr,
7204 		      event->orig_type, event->attr.sig_data);
7205 }
7206 
7207 /*
7208  * Deliver the pending work in-event-context or follow the context.
7209  */
7210 static void __perf_pending_disable(struct perf_event *event)
7211 {
7212 	int cpu = READ_ONCE(event->oncpu);
7213 
7214 	/*
7215 	 * If the event isn't running; we done. event_sched_out() will have
7216 	 * taken care of things.
7217 	 */
7218 	if (cpu < 0)
7219 		return;
7220 
7221 	/*
7222 	 * Yay, we hit home and are in the context of the event.
7223 	 */
7224 	if (cpu == smp_processor_id()) {
7225 		if (event->pending_disable) {
7226 			event->pending_disable = 0;
7227 			perf_event_disable_local(event);
7228 		}
7229 		return;
7230 	}
7231 
7232 	/*
7233 	 *  CPU-A			CPU-B
7234 	 *
7235 	 *  perf_event_disable_inatomic()
7236 	 *    @pending_disable = CPU-A;
7237 	 *    irq_work_queue();
7238 	 *
7239 	 *  sched-out
7240 	 *    @pending_disable = -1;
7241 	 *
7242 	 *				sched-in
7243 	 *				perf_event_disable_inatomic()
7244 	 *				  @pending_disable = CPU-B;
7245 	 *				  irq_work_queue(); // FAILS
7246 	 *
7247 	 *  irq_work_run()
7248 	 *    perf_pending_disable()
7249 	 *
7250 	 * But the event runs on CPU-B and wants disabling there.
7251 	 */
7252 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7253 }
7254 
7255 static void perf_pending_disable(struct irq_work *entry)
7256 {
7257 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7258 	int rctx;
7259 
7260 	/*
7261 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7262 	 * and we won't recurse 'further'.
7263 	 */
7264 	rctx = perf_swevent_get_recursion_context();
7265 	__perf_pending_disable(event);
7266 	if (rctx >= 0)
7267 		perf_swevent_put_recursion_context(rctx);
7268 }
7269 
7270 static void perf_pending_irq(struct irq_work *entry)
7271 {
7272 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7273 	int rctx;
7274 
7275 	/*
7276 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7277 	 * and we won't recurse 'further'.
7278 	 */
7279 	rctx = perf_swevent_get_recursion_context();
7280 
7281 	/*
7282 	 * The wakeup isn't bound to the context of the event -- it can happen
7283 	 * irrespective of where the event is.
7284 	 */
7285 	if (event->pending_wakeup) {
7286 		event->pending_wakeup = 0;
7287 		perf_event_wakeup(event);
7288 	}
7289 
7290 	if (rctx >= 0)
7291 		perf_swevent_put_recursion_context(rctx);
7292 }
7293 
7294 static void perf_pending_task(struct callback_head *head)
7295 {
7296 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7297 	int rctx;
7298 
7299 	/*
7300 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7301 	 * and we won't recurse 'further'.
7302 	 */
7303 	rctx = perf_swevent_get_recursion_context();
7304 
7305 	if (event->pending_work) {
7306 		event->pending_work = 0;
7307 		perf_sigtrap(event);
7308 		local_dec(&event->ctx->nr_no_switch_fast);
7309 	}
7310 	put_event(event);
7311 
7312 	if (rctx >= 0)
7313 		perf_swevent_put_recursion_context(rctx);
7314 }
7315 
7316 #ifdef CONFIG_GUEST_PERF_EVENTS
7317 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7318 
7319 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7320 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7321 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7322 
7323 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7324 {
7325 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7326 		return;
7327 
7328 	rcu_assign_pointer(perf_guest_cbs, cbs);
7329 	static_call_update(__perf_guest_state, cbs->state);
7330 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7331 
7332 	/* Implementing ->handle_intel_pt_intr is optional. */
7333 	if (cbs->handle_intel_pt_intr)
7334 		static_call_update(__perf_guest_handle_intel_pt_intr,
7335 				   cbs->handle_intel_pt_intr);
7336 }
7337 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7338 
7339 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7340 {
7341 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7342 		return;
7343 
7344 	rcu_assign_pointer(perf_guest_cbs, NULL);
7345 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7346 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7347 	static_call_update(__perf_guest_handle_intel_pt_intr,
7348 			   (void *)&__static_call_return0);
7349 	synchronize_rcu();
7350 }
7351 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7352 #endif
7353 
7354 static bool should_sample_guest(struct perf_event *event)
7355 {
7356 	return !event->attr.exclude_guest && perf_guest_state();
7357 }
7358 
7359 unsigned long perf_misc_flags(struct perf_event *event,
7360 			      struct pt_regs *regs)
7361 {
7362 	if (should_sample_guest(event))
7363 		return perf_arch_guest_misc_flags(regs);
7364 
7365 	return perf_arch_misc_flags(regs);
7366 }
7367 
7368 unsigned long perf_instruction_pointer(struct perf_event *event,
7369 				       struct pt_regs *regs)
7370 {
7371 	if (should_sample_guest(event))
7372 		return perf_guest_get_ip();
7373 
7374 	return perf_arch_instruction_pointer(regs);
7375 }
7376 
7377 static void
7378 perf_output_sample_regs(struct perf_output_handle *handle,
7379 			struct pt_regs *regs, u64 mask)
7380 {
7381 	int bit;
7382 	DECLARE_BITMAP(_mask, 64);
7383 
7384 	bitmap_from_u64(_mask, mask);
7385 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7386 		u64 val;
7387 
7388 		val = perf_reg_value(regs, bit);
7389 		perf_output_put(handle, val);
7390 	}
7391 }
7392 
7393 static void perf_sample_regs_user(struct perf_regs *regs_user,
7394 				  struct pt_regs *regs)
7395 {
7396 	if (user_mode(regs)) {
7397 		regs_user->abi = perf_reg_abi(current);
7398 		regs_user->regs = regs;
7399 	} else if (!(current->flags & PF_KTHREAD)) {
7400 		perf_get_regs_user(regs_user, regs);
7401 	} else {
7402 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7403 		regs_user->regs = NULL;
7404 	}
7405 }
7406 
7407 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7408 				  struct pt_regs *regs)
7409 {
7410 	regs_intr->regs = regs;
7411 	regs_intr->abi  = perf_reg_abi(current);
7412 }
7413 
7414 
7415 /*
7416  * Get remaining task size from user stack pointer.
7417  *
7418  * It'd be better to take stack vma map and limit this more
7419  * precisely, but there's no way to get it safely under interrupt,
7420  * so using TASK_SIZE as limit.
7421  */
7422 static u64 perf_ustack_task_size(struct pt_regs *regs)
7423 {
7424 	unsigned long addr = perf_user_stack_pointer(regs);
7425 
7426 	if (!addr || addr >= TASK_SIZE)
7427 		return 0;
7428 
7429 	return TASK_SIZE - addr;
7430 }
7431 
7432 static u16
7433 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7434 			struct pt_regs *regs)
7435 {
7436 	u64 task_size;
7437 
7438 	/* No regs, no stack pointer, no dump. */
7439 	if (!regs)
7440 		return 0;
7441 
7442 	/*
7443 	 * Check if we fit in with the requested stack size into the:
7444 	 * - TASK_SIZE
7445 	 *   If we don't, we limit the size to the TASK_SIZE.
7446 	 *
7447 	 * - remaining sample size
7448 	 *   If we don't, we customize the stack size to
7449 	 *   fit in to the remaining sample size.
7450 	 */
7451 
7452 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7453 	stack_size = min(stack_size, (u16) task_size);
7454 
7455 	/* Current header size plus static size and dynamic size. */
7456 	header_size += 2 * sizeof(u64);
7457 
7458 	/* Do we fit in with the current stack dump size? */
7459 	if ((u16) (header_size + stack_size) < header_size) {
7460 		/*
7461 		 * If we overflow the maximum size for the sample,
7462 		 * we customize the stack dump size to fit in.
7463 		 */
7464 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7465 		stack_size = round_up(stack_size, sizeof(u64));
7466 	}
7467 
7468 	return stack_size;
7469 }
7470 
7471 static void
7472 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7473 			  struct pt_regs *regs)
7474 {
7475 	/* Case of a kernel thread, nothing to dump */
7476 	if (!regs) {
7477 		u64 size = 0;
7478 		perf_output_put(handle, size);
7479 	} else {
7480 		unsigned long sp;
7481 		unsigned int rem;
7482 		u64 dyn_size;
7483 
7484 		/*
7485 		 * We dump:
7486 		 * static size
7487 		 *   - the size requested by user or the best one we can fit
7488 		 *     in to the sample max size
7489 		 * data
7490 		 *   - user stack dump data
7491 		 * dynamic size
7492 		 *   - the actual dumped size
7493 		 */
7494 
7495 		/* Static size. */
7496 		perf_output_put(handle, dump_size);
7497 
7498 		/* Data. */
7499 		sp = perf_user_stack_pointer(regs);
7500 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7501 		dyn_size = dump_size - rem;
7502 
7503 		perf_output_skip(handle, rem);
7504 
7505 		/* Dynamic size. */
7506 		perf_output_put(handle, dyn_size);
7507 	}
7508 }
7509 
7510 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7511 					  struct perf_sample_data *data,
7512 					  size_t size)
7513 {
7514 	struct perf_event *sampler = event->aux_event;
7515 	struct perf_buffer *rb;
7516 
7517 	data->aux_size = 0;
7518 
7519 	if (!sampler)
7520 		goto out;
7521 
7522 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7523 		goto out;
7524 
7525 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7526 		goto out;
7527 
7528 	rb = ring_buffer_get(sampler);
7529 	if (!rb)
7530 		goto out;
7531 
7532 	/*
7533 	 * If this is an NMI hit inside sampling code, don't take
7534 	 * the sample. See also perf_aux_sample_output().
7535 	 */
7536 	if (READ_ONCE(rb->aux_in_sampling)) {
7537 		data->aux_size = 0;
7538 	} else {
7539 		size = min_t(size_t, size, perf_aux_size(rb));
7540 		data->aux_size = ALIGN(size, sizeof(u64));
7541 	}
7542 	ring_buffer_put(rb);
7543 
7544 out:
7545 	return data->aux_size;
7546 }
7547 
7548 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7549                                  struct perf_event *event,
7550                                  struct perf_output_handle *handle,
7551                                  unsigned long size)
7552 {
7553 	unsigned long flags;
7554 	long ret;
7555 
7556 	/*
7557 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7558 	 * paths. If we start calling them in NMI context, they may race with
7559 	 * the IRQ ones, that is, for example, re-starting an event that's just
7560 	 * been stopped, which is why we're using a separate callback that
7561 	 * doesn't change the event state.
7562 	 *
7563 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7564 	 */
7565 	local_irq_save(flags);
7566 	/*
7567 	 * Guard against NMI hits inside the critical section;
7568 	 * see also perf_prepare_sample_aux().
7569 	 */
7570 	WRITE_ONCE(rb->aux_in_sampling, 1);
7571 	barrier();
7572 
7573 	ret = event->pmu->snapshot_aux(event, handle, size);
7574 
7575 	barrier();
7576 	WRITE_ONCE(rb->aux_in_sampling, 0);
7577 	local_irq_restore(flags);
7578 
7579 	return ret;
7580 }
7581 
7582 static void perf_aux_sample_output(struct perf_event *event,
7583 				   struct perf_output_handle *handle,
7584 				   struct perf_sample_data *data)
7585 {
7586 	struct perf_event *sampler = event->aux_event;
7587 	struct perf_buffer *rb;
7588 	unsigned long pad;
7589 	long size;
7590 
7591 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7592 		return;
7593 
7594 	rb = ring_buffer_get(sampler);
7595 	if (!rb)
7596 		return;
7597 
7598 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7599 
7600 	/*
7601 	 * An error here means that perf_output_copy() failed (returned a
7602 	 * non-zero surplus that it didn't copy), which in its current
7603 	 * enlightened implementation is not possible. If that changes, we'd
7604 	 * like to know.
7605 	 */
7606 	if (WARN_ON_ONCE(size < 0))
7607 		goto out_put;
7608 
7609 	/*
7610 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7611 	 * perf_prepare_sample_aux(), so should not be more than that.
7612 	 */
7613 	pad = data->aux_size - size;
7614 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7615 		pad = 8;
7616 
7617 	if (pad) {
7618 		u64 zero = 0;
7619 		perf_output_copy(handle, &zero, pad);
7620 	}
7621 
7622 out_put:
7623 	ring_buffer_put(rb);
7624 }
7625 
7626 /*
7627  * A set of common sample data types saved even for non-sample records
7628  * when event->attr.sample_id_all is set.
7629  */
7630 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7631 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7632 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7633 
7634 static void __perf_event_header__init_id(struct perf_sample_data *data,
7635 					 struct perf_event *event,
7636 					 u64 sample_type)
7637 {
7638 	data->type = event->attr.sample_type;
7639 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7640 
7641 	if (sample_type & PERF_SAMPLE_TID) {
7642 		/* namespace issues */
7643 		data->tid_entry.pid = perf_event_pid(event, current);
7644 		data->tid_entry.tid = perf_event_tid(event, current);
7645 	}
7646 
7647 	if (sample_type & PERF_SAMPLE_TIME)
7648 		data->time = perf_event_clock(event);
7649 
7650 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7651 		data->id = primary_event_id(event);
7652 
7653 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7654 		data->stream_id = event->id;
7655 
7656 	if (sample_type & PERF_SAMPLE_CPU) {
7657 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7658 		data->cpu_entry.reserved = 0;
7659 	}
7660 }
7661 
7662 void perf_event_header__init_id(struct perf_event_header *header,
7663 				struct perf_sample_data *data,
7664 				struct perf_event *event)
7665 {
7666 	if (event->attr.sample_id_all) {
7667 		header->size += event->id_header_size;
7668 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7669 	}
7670 }
7671 
7672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7673 					   struct perf_sample_data *data)
7674 {
7675 	u64 sample_type = data->type;
7676 
7677 	if (sample_type & PERF_SAMPLE_TID)
7678 		perf_output_put(handle, data->tid_entry);
7679 
7680 	if (sample_type & PERF_SAMPLE_TIME)
7681 		perf_output_put(handle, data->time);
7682 
7683 	if (sample_type & PERF_SAMPLE_ID)
7684 		perf_output_put(handle, data->id);
7685 
7686 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7687 		perf_output_put(handle, data->stream_id);
7688 
7689 	if (sample_type & PERF_SAMPLE_CPU)
7690 		perf_output_put(handle, data->cpu_entry);
7691 
7692 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7693 		perf_output_put(handle, data->id);
7694 }
7695 
7696 void perf_event__output_id_sample(struct perf_event *event,
7697 				  struct perf_output_handle *handle,
7698 				  struct perf_sample_data *sample)
7699 {
7700 	if (event->attr.sample_id_all)
7701 		__perf_event__output_id_sample(handle, sample);
7702 }
7703 
7704 static void perf_output_read_one(struct perf_output_handle *handle,
7705 				 struct perf_event *event,
7706 				 u64 enabled, u64 running)
7707 {
7708 	u64 read_format = event->attr.read_format;
7709 	u64 values[5];
7710 	int n = 0;
7711 
7712 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7713 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7714 		values[n++] = enabled +
7715 			atomic64_read(&event->child_total_time_enabled);
7716 	}
7717 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7718 		values[n++] = running +
7719 			atomic64_read(&event->child_total_time_running);
7720 	}
7721 	if (read_format & PERF_FORMAT_ID)
7722 		values[n++] = primary_event_id(event);
7723 	if (read_format & PERF_FORMAT_LOST)
7724 		values[n++] = atomic64_read(&event->lost_samples);
7725 
7726 	__output_copy(handle, values, n * sizeof(u64));
7727 }
7728 
7729 static void perf_output_read_group(struct perf_output_handle *handle,
7730 				   struct perf_event *event,
7731 				   u64 enabled, u64 running)
7732 {
7733 	struct perf_event *leader = event->group_leader, *sub;
7734 	u64 read_format = event->attr.read_format;
7735 	unsigned long flags;
7736 	u64 values[6];
7737 	int n = 0;
7738 	bool self = has_inherit_and_sample_read(&event->attr);
7739 
7740 	/*
7741 	 * Disabling interrupts avoids all counter scheduling
7742 	 * (context switches, timer based rotation and IPIs).
7743 	 */
7744 	local_irq_save(flags);
7745 
7746 	values[n++] = 1 + leader->nr_siblings;
7747 
7748 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7749 		values[n++] = enabled;
7750 
7751 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7752 		values[n++] = running;
7753 
7754 	if ((leader != event) && !handle->skip_read)
7755 		perf_pmu_read(leader);
7756 
7757 	values[n++] = perf_event_count(leader, self);
7758 	if (read_format & PERF_FORMAT_ID)
7759 		values[n++] = primary_event_id(leader);
7760 	if (read_format & PERF_FORMAT_LOST)
7761 		values[n++] = atomic64_read(&leader->lost_samples);
7762 
7763 	__output_copy(handle, values, n * sizeof(u64));
7764 
7765 	for_each_sibling_event(sub, leader) {
7766 		n = 0;
7767 
7768 		if ((sub != event) && !handle->skip_read)
7769 			perf_pmu_read(sub);
7770 
7771 		values[n++] = perf_event_count(sub, self);
7772 		if (read_format & PERF_FORMAT_ID)
7773 			values[n++] = primary_event_id(sub);
7774 		if (read_format & PERF_FORMAT_LOST)
7775 			values[n++] = atomic64_read(&sub->lost_samples);
7776 
7777 		__output_copy(handle, values, n * sizeof(u64));
7778 	}
7779 
7780 	local_irq_restore(flags);
7781 }
7782 
7783 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7784 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7785 
7786 /*
7787  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7788  *
7789  * The problem is that its both hard and excessively expensive to iterate the
7790  * child list, not to mention that its impossible to IPI the children running
7791  * on another CPU, from interrupt/NMI context.
7792  *
7793  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7794  * counts rather than attempting to accumulate some value across all children on
7795  * all cores.
7796  */
7797 static void perf_output_read(struct perf_output_handle *handle,
7798 			     struct perf_event *event)
7799 {
7800 	u64 enabled = 0, running = 0, now;
7801 	u64 read_format = event->attr.read_format;
7802 
7803 	/*
7804 	 * compute total_time_enabled, total_time_running
7805 	 * based on snapshot values taken when the event
7806 	 * was last scheduled in.
7807 	 *
7808 	 * we cannot simply called update_context_time()
7809 	 * because of locking issue as we are called in
7810 	 * NMI context
7811 	 */
7812 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7813 		calc_timer_values(event, &now, &enabled, &running);
7814 
7815 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7816 		perf_output_read_group(handle, event, enabled, running);
7817 	else
7818 		perf_output_read_one(handle, event, enabled, running);
7819 }
7820 
7821 void perf_output_sample(struct perf_output_handle *handle,
7822 			struct perf_event_header *header,
7823 			struct perf_sample_data *data,
7824 			struct perf_event *event)
7825 {
7826 	u64 sample_type = data->type;
7827 
7828 	if (data->sample_flags & PERF_SAMPLE_READ)
7829 		handle->skip_read = 1;
7830 
7831 	perf_output_put(handle, *header);
7832 
7833 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7834 		perf_output_put(handle, data->id);
7835 
7836 	if (sample_type & PERF_SAMPLE_IP)
7837 		perf_output_put(handle, data->ip);
7838 
7839 	if (sample_type & PERF_SAMPLE_TID)
7840 		perf_output_put(handle, data->tid_entry);
7841 
7842 	if (sample_type & PERF_SAMPLE_TIME)
7843 		perf_output_put(handle, data->time);
7844 
7845 	if (sample_type & PERF_SAMPLE_ADDR)
7846 		perf_output_put(handle, data->addr);
7847 
7848 	if (sample_type & PERF_SAMPLE_ID)
7849 		perf_output_put(handle, data->id);
7850 
7851 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7852 		perf_output_put(handle, data->stream_id);
7853 
7854 	if (sample_type & PERF_SAMPLE_CPU)
7855 		perf_output_put(handle, data->cpu_entry);
7856 
7857 	if (sample_type & PERF_SAMPLE_PERIOD)
7858 		perf_output_put(handle, data->period);
7859 
7860 	if (sample_type & PERF_SAMPLE_READ)
7861 		perf_output_read(handle, event);
7862 
7863 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7864 		int size = 1;
7865 
7866 		size += data->callchain->nr;
7867 		size *= sizeof(u64);
7868 		__output_copy(handle, data->callchain, size);
7869 	}
7870 
7871 	if (sample_type & PERF_SAMPLE_RAW) {
7872 		struct perf_raw_record *raw = data->raw;
7873 
7874 		if (raw) {
7875 			struct perf_raw_frag *frag = &raw->frag;
7876 
7877 			perf_output_put(handle, raw->size);
7878 			do {
7879 				if (frag->copy) {
7880 					__output_custom(handle, frag->copy,
7881 							frag->data, frag->size);
7882 				} else {
7883 					__output_copy(handle, frag->data,
7884 						      frag->size);
7885 				}
7886 				if (perf_raw_frag_last(frag))
7887 					break;
7888 				frag = frag->next;
7889 			} while (1);
7890 			if (frag->pad)
7891 				__output_skip(handle, NULL, frag->pad);
7892 		} else {
7893 			struct {
7894 				u32	size;
7895 				u32	data;
7896 			} raw = {
7897 				.size = sizeof(u32),
7898 				.data = 0,
7899 			};
7900 			perf_output_put(handle, raw);
7901 		}
7902 	}
7903 
7904 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7905 		if (data->br_stack) {
7906 			size_t size;
7907 
7908 			size = data->br_stack->nr
7909 			     * sizeof(struct perf_branch_entry);
7910 
7911 			perf_output_put(handle, data->br_stack->nr);
7912 			if (branch_sample_hw_index(event))
7913 				perf_output_put(handle, data->br_stack->hw_idx);
7914 			perf_output_copy(handle, data->br_stack->entries, size);
7915 			/*
7916 			 * Add the extension space which is appended
7917 			 * right after the struct perf_branch_stack.
7918 			 */
7919 			if (data->br_stack_cntr) {
7920 				size = data->br_stack->nr * sizeof(u64);
7921 				perf_output_copy(handle, data->br_stack_cntr, size);
7922 			}
7923 		} else {
7924 			/*
7925 			 * we always store at least the value of nr
7926 			 */
7927 			u64 nr = 0;
7928 			perf_output_put(handle, nr);
7929 		}
7930 	}
7931 
7932 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7933 		u64 abi = data->regs_user.abi;
7934 
7935 		/*
7936 		 * If there are no regs to dump, notice it through
7937 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7938 		 */
7939 		perf_output_put(handle, abi);
7940 
7941 		if (abi) {
7942 			u64 mask = event->attr.sample_regs_user;
7943 			perf_output_sample_regs(handle,
7944 						data->regs_user.regs,
7945 						mask);
7946 		}
7947 	}
7948 
7949 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7950 		perf_output_sample_ustack(handle,
7951 					  data->stack_user_size,
7952 					  data->regs_user.regs);
7953 	}
7954 
7955 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7956 		perf_output_put(handle, data->weight.full);
7957 
7958 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7959 		perf_output_put(handle, data->data_src.val);
7960 
7961 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7962 		perf_output_put(handle, data->txn);
7963 
7964 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7965 		u64 abi = data->regs_intr.abi;
7966 		/*
7967 		 * If there are no regs to dump, notice it through
7968 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7969 		 */
7970 		perf_output_put(handle, abi);
7971 
7972 		if (abi) {
7973 			u64 mask = event->attr.sample_regs_intr;
7974 
7975 			perf_output_sample_regs(handle,
7976 						data->regs_intr.regs,
7977 						mask);
7978 		}
7979 	}
7980 
7981 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7982 		perf_output_put(handle, data->phys_addr);
7983 
7984 	if (sample_type & PERF_SAMPLE_CGROUP)
7985 		perf_output_put(handle, data->cgroup);
7986 
7987 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7988 		perf_output_put(handle, data->data_page_size);
7989 
7990 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7991 		perf_output_put(handle, data->code_page_size);
7992 
7993 	if (sample_type & PERF_SAMPLE_AUX) {
7994 		perf_output_put(handle, data->aux_size);
7995 
7996 		if (data->aux_size)
7997 			perf_aux_sample_output(event, handle, data);
7998 	}
7999 
8000 	if (!event->attr.watermark) {
8001 		int wakeup_events = event->attr.wakeup_events;
8002 
8003 		if (wakeup_events) {
8004 			struct perf_buffer *rb = handle->rb;
8005 			int events = local_inc_return(&rb->events);
8006 
8007 			if (events >= wakeup_events) {
8008 				local_sub(wakeup_events, &rb->events);
8009 				local_inc(&rb->wakeup);
8010 			}
8011 		}
8012 	}
8013 }
8014 
8015 static u64 perf_virt_to_phys(u64 virt)
8016 {
8017 	u64 phys_addr = 0;
8018 
8019 	if (!virt)
8020 		return 0;
8021 
8022 	if (virt >= TASK_SIZE) {
8023 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
8024 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
8025 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
8026 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8027 	} else {
8028 		/*
8029 		 * Walking the pages tables for user address.
8030 		 * Interrupts are disabled, so it prevents any tear down
8031 		 * of the page tables.
8032 		 * Try IRQ-safe get_user_page_fast_only first.
8033 		 * If failed, leave phys_addr as 0.
8034 		 */
8035 		if (current->mm != NULL) {
8036 			struct page *p;
8037 
8038 			pagefault_disable();
8039 			if (get_user_page_fast_only(virt, 0, &p)) {
8040 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8041 				put_page(p);
8042 			}
8043 			pagefault_enable();
8044 		}
8045 	}
8046 
8047 	return phys_addr;
8048 }
8049 
8050 /*
8051  * Return the pagetable size of a given virtual address.
8052  */
8053 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8054 {
8055 	u64 size = 0;
8056 
8057 #ifdef CONFIG_HAVE_GUP_FAST
8058 	pgd_t *pgdp, pgd;
8059 	p4d_t *p4dp, p4d;
8060 	pud_t *pudp, pud;
8061 	pmd_t *pmdp, pmd;
8062 	pte_t *ptep, pte;
8063 
8064 	pgdp = pgd_offset(mm, addr);
8065 	pgd = READ_ONCE(*pgdp);
8066 	if (pgd_none(pgd))
8067 		return 0;
8068 
8069 	if (pgd_leaf(pgd))
8070 		return pgd_leaf_size(pgd);
8071 
8072 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8073 	p4d = READ_ONCE(*p4dp);
8074 	if (!p4d_present(p4d))
8075 		return 0;
8076 
8077 	if (p4d_leaf(p4d))
8078 		return p4d_leaf_size(p4d);
8079 
8080 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8081 	pud = READ_ONCE(*pudp);
8082 	if (!pud_present(pud))
8083 		return 0;
8084 
8085 	if (pud_leaf(pud))
8086 		return pud_leaf_size(pud);
8087 
8088 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8089 again:
8090 	pmd = pmdp_get_lockless(pmdp);
8091 	if (!pmd_present(pmd))
8092 		return 0;
8093 
8094 	if (pmd_leaf(pmd))
8095 		return pmd_leaf_size(pmd);
8096 
8097 	ptep = pte_offset_map(&pmd, addr);
8098 	if (!ptep)
8099 		goto again;
8100 
8101 	pte = ptep_get_lockless(ptep);
8102 	if (pte_present(pte))
8103 		size = __pte_leaf_size(pmd, pte);
8104 	pte_unmap(ptep);
8105 #endif /* CONFIG_HAVE_GUP_FAST */
8106 
8107 	return size;
8108 }
8109 
8110 static u64 perf_get_page_size(unsigned long addr)
8111 {
8112 	struct mm_struct *mm;
8113 	unsigned long flags;
8114 	u64 size;
8115 
8116 	if (!addr)
8117 		return 0;
8118 
8119 	/*
8120 	 * Software page-table walkers must disable IRQs,
8121 	 * which prevents any tear down of the page tables.
8122 	 */
8123 	local_irq_save(flags);
8124 
8125 	mm = current->mm;
8126 	if (!mm) {
8127 		/*
8128 		 * For kernel threads and the like, use init_mm so that
8129 		 * we can find kernel memory.
8130 		 */
8131 		mm = &init_mm;
8132 	}
8133 
8134 	size = perf_get_pgtable_size(mm, addr);
8135 
8136 	local_irq_restore(flags);
8137 
8138 	return size;
8139 }
8140 
8141 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8142 
8143 struct perf_callchain_entry *
8144 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8145 {
8146 	bool kernel = !event->attr.exclude_callchain_kernel;
8147 	bool user   = !event->attr.exclude_callchain_user;
8148 	/* Disallow cross-task user callchains. */
8149 	bool crosstask = event->ctx->task && event->ctx->task != current;
8150 	const u32 max_stack = event->attr.sample_max_stack;
8151 	struct perf_callchain_entry *callchain;
8152 
8153 	if (!kernel && !user)
8154 		return &__empty_callchain;
8155 
8156 	callchain = get_perf_callchain(regs, 0, kernel, user,
8157 				       max_stack, crosstask, true);
8158 	return callchain ?: &__empty_callchain;
8159 }
8160 
8161 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8162 {
8163 	return d * !!(flags & s);
8164 }
8165 
8166 void perf_prepare_sample(struct perf_sample_data *data,
8167 			 struct perf_event *event,
8168 			 struct pt_regs *regs)
8169 {
8170 	u64 sample_type = event->attr.sample_type;
8171 	u64 filtered_sample_type;
8172 
8173 	/*
8174 	 * Add the sample flags that are dependent to others.  And clear the
8175 	 * sample flags that have already been done by the PMU driver.
8176 	 */
8177 	filtered_sample_type = sample_type;
8178 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8179 					   PERF_SAMPLE_IP);
8180 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8181 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8182 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8183 					   PERF_SAMPLE_REGS_USER);
8184 	filtered_sample_type &= ~data->sample_flags;
8185 
8186 	if (filtered_sample_type == 0) {
8187 		/* Make sure it has the correct data->type for output */
8188 		data->type = event->attr.sample_type;
8189 		return;
8190 	}
8191 
8192 	__perf_event_header__init_id(data, event, filtered_sample_type);
8193 
8194 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8195 		data->ip = perf_instruction_pointer(event, regs);
8196 		data->sample_flags |= PERF_SAMPLE_IP;
8197 	}
8198 
8199 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8200 		perf_sample_save_callchain(data, event, regs);
8201 
8202 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8203 		data->raw = NULL;
8204 		data->dyn_size += sizeof(u64);
8205 		data->sample_flags |= PERF_SAMPLE_RAW;
8206 	}
8207 
8208 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8209 		data->br_stack = NULL;
8210 		data->dyn_size += sizeof(u64);
8211 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8212 	}
8213 
8214 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8215 		perf_sample_regs_user(&data->regs_user, regs);
8216 
8217 	/*
8218 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8219 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8220 	 * the dyn_size if it's not requested by users.
8221 	 */
8222 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8223 		/* regs dump ABI info */
8224 		int size = sizeof(u64);
8225 
8226 		if (data->regs_user.regs) {
8227 			u64 mask = event->attr.sample_regs_user;
8228 			size += hweight64(mask) * sizeof(u64);
8229 		}
8230 
8231 		data->dyn_size += size;
8232 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8233 	}
8234 
8235 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8236 		/*
8237 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8238 		 * processed as the last one or have additional check added
8239 		 * in case new sample type is added, because we could eat
8240 		 * up the rest of the sample size.
8241 		 */
8242 		u16 stack_size = event->attr.sample_stack_user;
8243 		u16 header_size = perf_sample_data_size(data, event);
8244 		u16 size = sizeof(u64);
8245 
8246 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8247 						     data->regs_user.regs);
8248 
8249 		/*
8250 		 * If there is something to dump, add space for the dump
8251 		 * itself and for the field that tells the dynamic size,
8252 		 * which is how many have been actually dumped.
8253 		 */
8254 		if (stack_size)
8255 			size += sizeof(u64) + stack_size;
8256 
8257 		data->stack_user_size = stack_size;
8258 		data->dyn_size += size;
8259 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8260 	}
8261 
8262 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8263 		data->weight.full = 0;
8264 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8265 	}
8266 
8267 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8268 		data->data_src.val = PERF_MEM_NA;
8269 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8270 	}
8271 
8272 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8273 		data->txn = 0;
8274 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8275 	}
8276 
8277 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8278 		data->addr = 0;
8279 		data->sample_flags |= PERF_SAMPLE_ADDR;
8280 	}
8281 
8282 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8283 		/* regs dump ABI info */
8284 		int size = sizeof(u64);
8285 
8286 		perf_sample_regs_intr(&data->regs_intr, regs);
8287 
8288 		if (data->regs_intr.regs) {
8289 			u64 mask = event->attr.sample_regs_intr;
8290 
8291 			size += hweight64(mask) * sizeof(u64);
8292 		}
8293 
8294 		data->dyn_size += size;
8295 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8296 	}
8297 
8298 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8299 		data->phys_addr = perf_virt_to_phys(data->addr);
8300 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8301 	}
8302 
8303 #ifdef CONFIG_CGROUP_PERF
8304 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8305 		struct cgroup *cgrp;
8306 
8307 		/* protected by RCU */
8308 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8309 		data->cgroup = cgroup_id(cgrp);
8310 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8311 	}
8312 #endif
8313 
8314 	/*
8315 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8316 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8317 	 * but the value will not dump to the userspace.
8318 	 */
8319 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8320 		data->data_page_size = perf_get_page_size(data->addr);
8321 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8322 	}
8323 
8324 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8325 		data->code_page_size = perf_get_page_size(data->ip);
8326 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8327 	}
8328 
8329 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8330 		u64 size;
8331 		u16 header_size = perf_sample_data_size(data, event);
8332 
8333 		header_size += sizeof(u64); /* size */
8334 
8335 		/*
8336 		 * Given the 16bit nature of header::size, an AUX sample can
8337 		 * easily overflow it, what with all the preceding sample bits.
8338 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8339 		 * per sample in total (rounded down to 8 byte boundary).
8340 		 */
8341 		size = min_t(size_t, U16_MAX - header_size,
8342 			     event->attr.aux_sample_size);
8343 		size = rounddown(size, 8);
8344 		size = perf_prepare_sample_aux(event, data, size);
8345 
8346 		WARN_ON_ONCE(size + header_size > U16_MAX);
8347 		data->dyn_size += size + sizeof(u64); /* size above */
8348 		data->sample_flags |= PERF_SAMPLE_AUX;
8349 	}
8350 }
8351 
8352 void perf_prepare_header(struct perf_event_header *header,
8353 			 struct perf_sample_data *data,
8354 			 struct perf_event *event,
8355 			 struct pt_regs *regs)
8356 {
8357 	header->type = PERF_RECORD_SAMPLE;
8358 	header->size = perf_sample_data_size(data, event);
8359 	header->misc = perf_misc_flags(event, regs);
8360 
8361 	/*
8362 	 * If you're adding more sample types here, you likely need to do
8363 	 * something about the overflowing header::size, like repurpose the
8364 	 * lowest 3 bits of size, which should be always zero at the moment.
8365 	 * This raises a more important question, do we really need 512k sized
8366 	 * samples and why, so good argumentation is in order for whatever you
8367 	 * do here next.
8368 	 */
8369 	WARN_ON_ONCE(header->size & 7);
8370 }
8371 
8372 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8373 {
8374 	if (pause) {
8375 		if (!event->hw.aux_paused) {
8376 			event->hw.aux_paused = 1;
8377 			event->pmu->stop(event, PERF_EF_PAUSE);
8378 		}
8379 	} else {
8380 		if (event->hw.aux_paused) {
8381 			event->hw.aux_paused = 0;
8382 			event->pmu->start(event, PERF_EF_RESUME);
8383 		}
8384 	}
8385 }
8386 
8387 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8388 {
8389 	struct perf_buffer *rb;
8390 
8391 	if (WARN_ON_ONCE(!event))
8392 		return;
8393 
8394 	rb = ring_buffer_get(event);
8395 	if (!rb)
8396 		return;
8397 
8398 	scoped_guard (irqsave) {
8399 		/*
8400 		 * Guard against self-recursion here. Another event could trip
8401 		 * this same from NMI context.
8402 		 */
8403 		if (READ_ONCE(rb->aux_in_pause_resume))
8404 			break;
8405 
8406 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8407 		barrier();
8408 		__perf_event_aux_pause(event, pause);
8409 		barrier();
8410 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8411 	}
8412 	ring_buffer_put(rb);
8413 }
8414 
8415 static __always_inline int
8416 __perf_event_output(struct perf_event *event,
8417 		    struct perf_sample_data *data,
8418 		    struct pt_regs *regs,
8419 		    int (*output_begin)(struct perf_output_handle *,
8420 					struct perf_sample_data *,
8421 					struct perf_event *,
8422 					unsigned int))
8423 {
8424 	struct perf_output_handle handle;
8425 	struct perf_event_header header;
8426 	int err;
8427 
8428 	/* protect the callchain buffers */
8429 	rcu_read_lock();
8430 
8431 	perf_prepare_sample(data, event, regs);
8432 	perf_prepare_header(&header, data, event, regs);
8433 
8434 	err = output_begin(&handle, data, event, header.size);
8435 	if (err)
8436 		goto exit;
8437 
8438 	perf_output_sample(&handle, &header, data, event);
8439 
8440 	perf_output_end(&handle);
8441 
8442 exit:
8443 	rcu_read_unlock();
8444 	return err;
8445 }
8446 
8447 void
8448 perf_event_output_forward(struct perf_event *event,
8449 			 struct perf_sample_data *data,
8450 			 struct pt_regs *regs)
8451 {
8452 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8453 }
8454 
8455 void
8456 perf_event_output_backward(struct perf_event *event,
8457 			   struct perf_sample_data *data,
8458 			   struct pt_regs *regs)
8459 {
8460 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8461 }
8462 
8463 int
8464 perf_event_output(struct perf_event *event,
8465 		  struct perf_sample_data *data,
8466 		  struct pt_regs *regs)
8467 {
8468 	return __perf_event_output(event, data, regs, perf_output_begin);
8469 }
8470 
8471 /*
8472  * read event_id
8473  */
8474 
8475 struct perf_read_event {
8476 	struct perf_event_header	header;
8477 
8478 	u32				pid;
8479 	u32				tid;
8480 };
8481 
8482 static void
8483 perf_event_read_event(struct perf_event *event,
8484 			struct task_struct *task)
8485 {
8486 	struct perf_output_handle handle;
8487 	struct perf_sample_data sample;
8488 	struct perf_read_event read_event = {
8489 		.header = {
8490 			.type = PERF_RECORD_READ,
8491 			.misc = 0,
8492 			.size = sizeof(read_event) + event->read_size,
8493 		},
8494 		.pid = perf_event_pid(event, task),
8495 		.tid = perf_event_tid(event, task),
8496 	};
8497 	int ret;
8498 
8499 	perf_event_header__init_id(&read_event.header, &sample, event);
8500 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8501 	if (ret)
8502 		return;
8503 
8504 	perf_output_put(&handle, read_event);
8505 	perf_output_read(&handle, event);
8506 	perf_event__output_id_sample(event, &handle, &sample);
8507 
8508 	perf_output_end(&handle);
8509 }
8510 
8511 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8512 
8513 static void
8514 perf_iterate_ctx(struct perf_event_context *ctx,
8515 		   perf_iterate_f output,
8516 		   void *data, bool all)
8517 {
8518 	struct perf_event *event;
8519 
8520 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8521 		if (!all) {
8522 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8523 				continue;
8524 			if (!event_filter_match(event))
8525 				continue;
8526 		}
8527 
8528 		output(event, data);
8529 	}
8530 }
8531 
8532 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8533 {
8534 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8535 	struct perf_event *event;
8536 
8537 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8538 		/*
8539 		 * Skip events that are not fully formed yet; ensure that
8540 		 * if we observe event->ctx, both event and ctx will be
8541 		 * complete enough. See perf_install_in_context().
8542 		 */
8543 		if (!smp_load_acquire(&event->ctx))
8544 			continue;
8545 
8546 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8547 			continue;
8548 		if (!event_filter_match(event))
8549 			continue;
8550 		output(event, data);
8551 	}
8552 }
8553 
8554 /*
8555  * Iterate all events that need to receive side-band events.
8556  *
8557  * For new callers; ensure that account_pmu_sb_event() includes
8558  * your event, otherwise it might not get delivered.
8559  */
8560 static void
8561 perf_iterate_sb(perf_iterate_f output, void *data,
8562 	       struct perf_event_context *task_ctx)
8563 {
8564 	struct perf_event_context *ctx;
8565 
8566 	rcu_read_lock();
8567 	preempt_disable();
8568 
8569 	/*
8570 	 * If we have task_ctx != NULL we only notify the task context itself.
8571 	 * The task_ctx is set only for EXIT events before releasing task
8572 	 * context.
8573 	 */
8574 	if (task_ctx) {
8575 		perf_iterate_ctx(task_ctx, output, data, false);
8576 		goto done;
8577 	}
8578 
8579 	perf_iterate_sb_cpu(output, data);
8580 
8581 	ctx = rcu_dereference(current->perf_event_ctxp);
8582 	if (ctx)
8583 		perf_iterate_ctx(ctx, output, data, false);
8584 done:
8585 	preempt_enable();
8586 	rcu_read_unlock();
8587 }
8588 
8589 /*
8590  * Clear all file-based filters at exec, they'll have to be
8591  * re-instated when/if these objects are mmapped again.
8592  */
8593 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8594 {
8595 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8596 	struct perf_addr_filter *filter;
8597 	unsigned int restart = 0, count = 0;
8598 	unsigned long flags;
8599 
8600 	if (!has_addr_filter(event))
8601 		return;
8602 
8603 	raw_spin_lock_irqsave(&ifh->lock, flags);
8604 	list_for_each_entry(filter, &ifh->list, entry) {
8605 		if (filter->path.dentry) {
8606 			event->addr_filter_ranges[count].start = 0;
8607 			event->addr_filter_ranges[count].size = 0;
8608 			restart++;
8609 		}
8610 
8611 		count++;
8612 	}
8613 
8614 	if (restart)
8615 		event->addr_filters_gen++;
8616 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8617 
8618 	if (restart)
8619 		perf_event_stop(event, 1);
8620 }
8621 
8622 void perf_event_exec(void)
8623 {
8624 	struct perf_event_context *ctx;
8625 
8626 	ctx = perf_pin_task_context(current);
8627 	if (!ctx)
8628 		return;
8629 
8630 	perf_event_enable_on_exec(ctx);
8631 	perf_event_remove_on_exec(ctx);
8632 	scoped_guard(rcu)
8633 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8634 
8635 	perf_unpin_context(ctx);
8636 	put_ctx(ctx);
8637 }
8638 
8639 struct remote_output {
8640 	struct perf_buffer	*rb;
8641 	int			err;
8642 };
8643 
8644 static void __perf_event_output_stop(struct perf_event *event, void *data)
8645 {
8646 	struct perf_event *parent = event->parent;
8647 	struct remote_output *ro = data;
8648 	struct perf_buffer *rb = ro->rb;
8649 	struct stop_event_data sd = {
8650 		.event	= event,
8651 	};
8652 
8653 	if (!has_aux(event))
8654 		return;
8655 
8656 	if (!parent)
8657 		parent = event;
8658 
8659 	/*
8660 	 * In case of inheritance, it will be the parent that links to the
8661 	 * ring-buffer, but it will be the child that's actually using it.
8662 	 *
8663 	 * We are using event::rb to determine if the event should be stopped,
8664 	 * however this may race with ring_buffer_attach() (through set_output),
8665 	 * which will make us skip the event that actually needs to be stopped.
8666 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8667 	 * its rb pointer.
8668 	 */
8669 	if (rcu_dereference(parent->rb) == rb)
8670 		ro->err = __perf_event_stop(&sd);
8671 }
8672 
8673 static int __perf_pmu_output_stop(void *info)
8674 {
8675 	struct perf_event *event = info;
8676 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8677 	struct remote_output ro = {
8678 		.rb	= event->rb,
8679 	};
8680 
8681 	rcu_read_lock();
8682 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8683 	if (cpuctx->task_ctx)
8684 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8685 				   &ro, false);
8686 	rcu_read_unlock();
8687 
8688 	return ro.err;
8689 }
8690 
8691 static void perf_pmu_output_stop(struct perf_event *event)
8692 {
8693 	struct perf_event *iter;
8694 	int err, cpu;
8695 
8696 restart:
8697 	rcu_read_lock();
8698 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8699 		/*
8700 		 * For per-CPU events, we need to make sure that neither they
8701 		 * nor their children are running; for cpu==-1 events it's
8702 		 * sufficient to stop the event itself if it's active, since
8703 		 * it can't have children.
8704 		 */
8705 		cpu = iter->cpu;
8706 		if (cpu == -1)
8707 			cpu = READ_ONCE(iter->oncpu);
8708 
8709 		if (cpu == -1)
8710 			continue;
8711 
8712 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8713 		if (err == -EAGAIN) {
8714 			rcu_read_unlock();
8715 			goto restart;
8716 		}
8717 	}
8718 	rcu_read_unlock();
8719 }
8720 
8721 /*
8722  * task tracking -- fork/exit
8723  *
8724  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8725  */
8726 
8727 struct perf_task_event {
8728 	struct task_struct		*task;
8729 	struct perf_event_context	*task_ctx;
8730 
8731 	struct {
8732 		struct perf_event_header	header;
8733 
8734 		u32				pid;
8735 		u32				ppid;
8736 		u32				tid;
8737 		u32				ptid;
8738 		u64				time;
8739 	} event_id;
8740 };
8741 
8742 static int perf_event_task_match(struct perf_event *event)
8743 {
8744 	return event->attr.comm  || event->attr.mmap ||
8745 	       event->attr.mmap2 || event->attr.mmap_data ||
8746 	       event->attr.task;
8747 }
8748 
8749 static void perf_event_task_output(struct perf_event *event,
8750 				   void *data)
8751 {
8752 	struct perf_task_event *task_event = data;
8753 	struct perf_output_handle handle;
8754 	struct perf_sample_data	sample;
8755 	struct task_struct *task = task_event->task;
8756 	int ret, size = task_event->event_id.header.size;
8757 
8758 	if (!perf_event_task_match(event))
8759 		return;
8760 
8761 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8762 
8763 	ret = perf_output_begin(&handle, &sample, event,
8764 				task_event->event_id.header.size);
8765 	if (ret)
8766 		goto out;
8767 
8768 	task_event->event_id.pid = perf_event_pid(event, task);
8769 	task_event->event_id.tid = perf_event_tid(event, task);
8770 
8771 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8772 		task_event->event_id.ppid = perf_event_pid(event,
8773 							task->real_parent);
8774 		task_event->event_id.ptid = perf_event_pid(event,
8775 							task->real_parent);
8776 	} else {  /* PERF_RECORD_FORK */
8777 		task_event->event_id.ppid = perf_event_pid(event, current);
8778 		task_event->event_id.ptid = perf_event_tid(event, current);
8779 	}
8780 
8781 	task_event->event_id.time = perf_event_clock(event);
8782 
8783 	perf_output_put(&handle, task_event->event_id);
8784 
8785 	perf_event__output_id_sample(event, &handle, &sample);
8786 
8787 	perf_output_end(&handle);
8788 out:
8789 	task_event->event_id.header.size = size;
8790 }
8791 
8792 static void perf_event_task(struct task_struct *task,
8793 			      struct perf_event_context *task_ctx,
8794 			      int new)
8795 {
8796 	struct perf_task_event task_event;
8797 
8798 	if (!atomic_read(&nr_comm_events) &&
8799 	    !atomic_read(&nr_mmap_events) &&
8800 	    !atomic_read(&nr_task_events))
8801 		return;
8802 
8803 	task_event = (struct perf_task_event){
8804 		.task	  = task,
8805 		.task_ctx = task_ctx,
8806 		.event_id    = {
8807 			.header = {
8808 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8809 				.misc = 0,
8810 				.size = sizeof(task_event.event_id),
8811 			},
8812 			/* .pid  */
8813 			/* .ppid */
8814 			/* .tid  */
8815 			/* .ptid */
8816 			/* .time */
8817 		},
8818 	};
8819 
8820 	perf_iterate_sb(perf_event_task_output,
8821 		       &task_event,
8822 		       task_ctx);
8823 }
8824 
8825 /*
8826  * Allocate data for a new task when profiling system-wide
8827  * events which require PMU specific data
8828  */
8829 static void
8830 perf_event_alloc_task_data(struct task_struct *child,
8831 			   struct task_struct *parent)
8832 {
8833 	struct kmem_cache *ctx_cache = NULL;
8834 	struct perf_ctx_data *cd;
8835 
8836 	if (!refcount_read(&global_ctx_data_ref))
8837 		return;
8838 
8839 	scoped_guard (rcu) {
8840 		cd = rcu_dereference(parent->perf_ctx_data);
8841 		if (cd)
8842 			ctx_cache = cd->ctx_cache;
8843 	}
8844 
8845 	if (!ctx_cache)
8846 		return;
8847 
8848 	guard(percpu_read)(&global_ctx_data_rwsem);
8849 	scoped_guard (rcu) {
8850 		cd = rcu_dereference(child->perf_ctx_data);
8851 		if (!cd) {
8852 			/*
8853 			 * A system-wide event may be unaccount,
8854 			 * when attaching the perf_ctx_data.
8855 			 */
8856 			if (!refcount_read(&global_ctx_data_ref))
8857 				return;
8858 			goto attach;
8859 		}
8860 
8861 		if (!cd->global) {
8862 			cd->global = 1;
8863 			refcount_inc(&cd->refcount);
8864 		}
8865 	}
8866 
8867 	return;
8868 attach:
8869 	attach_task_ctx_data(child, ctx_cache, true);
8870 }
8871 
8872 void perf_event_fork(struct task_struct *task)
8873 {
8874 	perf_event_task(task, NULL, 1);
8875 	perf_event_namespaces(task);
8876 	perf_event_alloc_task_data(task, current);
8877 }
8878 
8879 /*
8880  * comm tracking
8881  */
8882 
8883 struct perf_comm_event {
8884 	struct task_struct	*task;
8885 	char			*comm;
8886 	int			comm_size;
8887 
8888 	struct {
8889 		struct perf_event_header	header;
8890 
8891 		u32				pid;
8892 		u32				tid;
8893 	} event_id;
8894 };
8895 
8896 static int perf_event_comm_match(struct perf_event *event)
8897 {
8898 	return event->attr.comm;
8899 }
8900 
8901 static void perf_event_comm_output(struct perf_event *event,
8902 				   void *data)
8903 {
8904 	struct perf_comm_event *comm_event = data;
8905 	struct perf_output_handle handle;
8906 	struct perf_sample_data sample;
8907 	int size = comm_event->event_id.header.size;
8908 	int ret;
8909 
8910 	if (!perf_event_comm_match(event))
8911 		return;
8912 
8913 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8914 	ret = perf_output_begin(&handle, &sample, event,
8915 				comm_event->event_id.header.size);
8916 
8917 	if (ret)
8918 		goto out;
8919 
8920 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8921 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8922 
8923 	perf_output_put(&handle, comm_event->event_id);
8924 	__output_copy(&handle, comm_event->comm,
8925 				   comm_event->comm_size);
8926 
8927 	perf_event__output_id_sample(event, &handle, &sample);
8928 
8929 	perf_output_end(&handle);
8930 out:
8931 	comm_event->event_id.header.size = size;
8932 }
8933 
8934 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8935 {
8936 	char comm[TASK_COMM_LEN];
8937 	unsigned int size;
8938 
8939 	memset(comm, 0, sizeof(comm));
8940 	strscpy(comm, comm_event->task->comm);
8941 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8942 
8943 	comm_event->comm = comm;
8944 	comm_event->comm_size = size;
8945 
8946 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8947 
8948 	perf_iterate_sb(perf_event_comm_output,
8949 		       comm_event,
8950 		       NULL);
8951 }
8952 
8953 void perf_event_comm(struct task_struct *task, bool exec)
8954 {
8955 	struct perf_comm_event comm_event;
8956 
8957 	if (!atomic_read(&nr_comm_events))
8958 		return;
8959 
8960 	comm_event = (struct perf_comm_event){
8961 		.task	= task,
8962 		/* .comm      */
8963 		/* .comm_size */
8964 		.event_id  = {
8965 			.header = {
8966 				.type = PERF_RECORD_COMM,
8967 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8968 				/* .size */
8969 			},
8970 			/* .pid */
8971 			/* .tid */
8972 		},
8973 	};
8974 
8975 	perf_event_comm_event(&comm_event);
8976 }
8977 
8978 /*
8979  * namespaces tracking
8980  */
8981 
8982 struct perf_namespaces_event {
8983 	struct task_struct		*task;
8984 
8985 	struct {
8986 		struct perf_event_header	header;
8987 
8988 		u32				pid;
8989 		u32				tid;
8990 		u64				nr_namespaces;
8991 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8992 	} event_id;
8993 };
8994 
8995 static int perf_event_namespaces_match(struct perf_event *event)
8996 {
8997 	return event->attr.namespaces;
8998 }
8999 
9000 static void perf_event_namespaces_output(struct perf_event *event,
9001 					 void *data)
9002 {
9003 	struct perf_namespaces_event *namespaces_event = data;
9004 	struct perf_output_handle handle;
9005 	struct perf_sample_data sample;
9006 	u16 header_size = namespaces_event->event_id.header.size;
9007 	int ret;
9008 
9009 	if (!perf_event_namespaces_match(event))
9010 		return;
9011 
9012 	perf_event_header__init_id(&namespaces_event->event_id.header,
9013 				   &sample, event);
9014 	ret = perf_output_begin(&handle, &sample, event,
9015 				namespaces_event->event_id.header.size);
9016 	if (ret)
9017 		goto out;
9018 
9019 	namespaces_event->event_id.pid = perf_event_pid(event,
9020 							namespaces_event->task);
9021 	namespaces_event->event_id.tid = perf_event_tid(event,
9022 							namespaces_event->task);
9023 
9024 	perf_output_put(&handle, namespaces_event->event_id);
9025 
9026 	perf_event__output_id_sample(event, &handle, &sample);
9027 
9028 	perf_output_end(&handle);
9029 out:
9030 	namespaces_event->event_id.header.size = header_size;
9031 }
9032 
9033 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9034 				   struct task_struct *task,
9035 				   const struct proc_ns_operations *ns_ops)
9036 {
9037 	struct path ns_path;
9038 	struct inode *ns_inode;
9039 	int error;
9040 
9041 	error = ns_get_path(&ns_path, task, ns_ops);
9042 	if (!error) {
9043 		ns_inode = ns_path.dentry->d_inode;
9044 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9045 		ns_link_info->ino = ns_inode->i_ino;
9046 		path_put(&ns_path);
9047 	}
9048 }
9049 
9050 void perf_event_namespaces(struct task_struct *task)
9051 {
9052 	struct perf_namespaces_event namespaces_event;
9053 	struct perf_ns_link_info *ns_link_info;
9054 
9055 	if (!atomic_read(&nr_namespaces_events))
9056 		return;
9057 
9058 	namespaces_event = (struct perf_namespaces_event){
9059 		.task	= task,
9060 		.event_id  = {
9061 			.header = {
9062 				.type = PERF_RECORD_NAMESPACES,
9063 				.misc = 0,
9064 				.size = sizeof(namespaces_event.event_id),
9065 			},
9066 			/* .pid */
9067 			/* .tid */
9068 			.nr_namespaces = NR_NAMESPACES,
9069 			/* .link_info[NR_NAMESPACES] */
9070 		},
9071 	};
9072 
9073 	ns_link_info = namespaces_event.event_id.link_info;
9074 
9075 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9076 			       task, &mntns_operations);
9077 
9078 #ifdef CONFIG_USER_NS
9079 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9080 			       task, &userns_operations);
9081 #endif
9082 #ifdef CONFIG_NET_NS
9083 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9084 			       task, &netns_operations);
9085 #endif
9086 #ifdef CONFIG_UTS_NS
9087 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9088 			       task, &utsns_operations);
9089 #endif
9090 #ifdef CONFIG_IPC_NS
9091 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9092 			       task, &ipcns_operations);
9093 #endif
9094 #ifdef CONFIG_PID_NS
9095 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9096 			       task, &pidns_operations);
9097 #endif
9098 #ifdef CONFIG_CGROUPS
9099 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9100 			       task, &cgroupns_operations);
9101 #endif
9102 
9103 	perf_iterate_sb(perf_event_namespaces_output,
9104 			&namespaces_event,
9105 			NULL);
9106 }
9107 
9108 /*
9109  * cgroup tracking
9110  */
9111 #ifdef CONFIG_CGROUP_PERF
9112 
9113 struct perf_cgroup_event {
9114 	char				*path;
9115 	int				path_size;
9116 	struct {
9117 		struct perf_event_header	header;
9118 		u64				id;
9119 		char				path[];
9120 	} event_id;
9121 };
9122 
9123 static int perf_event_cgroup_match(struct perf_event *event)
9124 {
9125 	return event->attr.cgroup;
9126 }
9127 
9128 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9129 {
9130 	struct perf_cgroup_event *cgroup_event = data;
9131 	struct perf_output_handle handle;
9132 	struct perf_sample_data sample;
9133 	u16 header_size = cgroup_event->event_id.header.size;
9134 	int ret;
9135 
9136 	if (!perf_event_cgroup_match(event))
9137 		return;
9138 
9139 	perf_event_header__init_id(&cgroup_event->event_id.header,
9140 				   &sample, event);
9141 	ret = perf_output_begin(&handle, &sample, event,
9142 				cgroup_event->event_id.header.size);
9143 	if (ret)
9144 		goto out;
9145 
9146 	perf_output_put(&handle, cgroup_event->event_id);
9147 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9148 
9149 	perf_event__output_id_sample(event, &handle, &sample);
9150 
9151 	perf_output_end(&handle);
9152 out:
9153 	cgroup_event->event_id.header.size = header_size;
9154 }
9155 
9156 static void perf_event_cgroup(struct cgroup *cgrp)
9157 {
9158 	struct perf_cgroup_event cgroup_event;
9159 	char path_enomem[16] = "//enomem";
9160 	char *pathname;
9161 	size_t size;
9162 
9163 	if (!atomic_read(&nr_cgroup_events))
9164 		return;
9165 
9166 	cgroup_event = (struct perf_cgroup_event){
9167 		.event_id  = {
9168 			.header = {
9169 				.type = PERF_RECORD_CGROUP,
9170 				.misc = 0,
9171 				.size = sizeof(cgroup_event.event_id),
9172 			},
9173 			.id = cgroup_id(cgrp),
9174 		},
9175 	};
9176 
9177 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9178 	if (pathname == NULL) {
9179 		cgroup_event.path = path_enomem;
9180 	} else {
9181 		/* just to be sure to have enough space for alignment */
9182 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9183 		cgroup_event.path = pathname;
9184 	}
9185 
9186 	/*
9187 	 * Since our buffer works in 8 byte units we need to align our string
9188 	 * size to a multiple of 8. However, we must guarantee the tail end is
9189 	 * zero'd out to avoid leaking random bits to userspace.
9190 	 */
9191 	size = strlen(cgroup_event.path) + 1;
9192 	while (!IS_ALIGNED(size, sizeof(u64)))
9193 		cgroup_event.path[size++] = '\0';
9194 
9195 	cgroup_event.event_id.header.size += size;
9196 	cgroup_event.path_size = size;
9197 
9198 	perf_iterate_sb(perf_event_cgroup_output,
9199 			&cgroup_event,
9200 			NULL);
9201 
9202 	kfree(pathname);
9203 }
9204 
9205 #endif
9206 
9207 /*
9208  * mmap tracking
9209  */
9210 
9211 struct perf_mmap_event {
9212 	struct vm_area_struct	*vma;
9213 
9214 	const char		*file_name;
9215 	int			file_size;
9216 	int			maj, min;
9217 	u64			ino;
9218 	u64			ino_generation;
9219 	u32			prot, flags;
9220 	u8			build_id[BUILD_ID_SIZE_MAX];
9221 	u32			build_id_size;
9222 
9223 	struct {
9224 		struct perf_event_header	header;
9225 
9226 		u32				pid;
9227 		u32				tid;
9228 		u64				start;
9229 		u64				len;
9230 		u64				pgoff;
9231 	} event_id;
9232 };
9233 
9234 static int perf_event_mmap_match(struct perf_event *event,
9235 				 void *data)
9236 {
9237 	struct perf_mmap_event *mmap_event = data;
9238 	struct vm_area_struct *vma = mmap_event->vma;
9239 	int executable = vma->vm_flags & VM_EXEC;
9240 
9241 	return (!executable && event->attr.mmap_data) ||
9242 	       (executable && (event->attr.mmap || event->attr.mmap2));
9243 }
9244 
9245 static void perf_event_mmap_output(struct perf_event *event,
9246 				   void *data)
9247 {
9248 	struct perf_mmap_event *mmap_event = data;
9249 	struct perf_output_handle handle;
9250 	struct perf_sample_data sample;
9251 	int size = mmap_event->event_id.header.size;
9252 	u32 type = mmap_event->event_id.header.type;
9253 	bool use_build_id;
9254 	int ret;
9255 
9256 	if (!perf_event_mmap_match(event, data))
9257 		return;
9258 
9259 	if (event->attr.mmap2) {
9260 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9261 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9262 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9263 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9264 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9265 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9266 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9267 	}
9268 
9269 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9270 	ret = perf_output_begin(&handle, &sample, event,
9271 				mmap_event->event_id.header.size);
9272 	if (ret)
9273 		goto out;
9274 
9275 	mmap_event->event_id.pid = perf_event_pid(event, current);
9276 	mmap_event->event_id.tid = perf_event_tid(event, current);
9277 
9278 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9279 
9280 	if (event->attr.mmap2 && use_build_id)
9281 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9282 
9283 	perf_output_put(&handle, mmap_event->event_id);
9284 
9285 	if (event->attr.mmap2) {
9286 		if (use_build_id) {
9287 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9288 
9289 			__output_copy(&handle, size, 4);
9290 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9291 		} else {
9292 			perf_output_put(&handle, mmap_event->maj);
9293 			perf_output_put(&handle, mmap_event->min);
9294 			perf_output_put(&handle, mmap_event->ino);
9295 			perf_output_put(&handle, mmap_event->ino_generation);
9296 		}
9297 		perf_output_put(&handle, mmap_event->prot);
9298 		perf_output_put(&handle, mmap_event->flags);
9299 	}
9300 
9301 	__output_copy(&handle, mmap_event->file_name,
9302 				   mmap_event->file_size);
9303 
9304 	perf_event__output_id_sample(event, &handle, &sample);
9305 
9306 	perf_output_end(&handle);
9307 out:
9308 	mmap_event->event_id.header.size = size;
9309 	mmap_event->event_id.header.type = type;
9310 }
9311 
9312 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9313 {
9314 	struct vm_area_struct *vma = mmap_event->vma;
9315 	struct file *file = vma->vm_file;
9316 	int maj = 0, min = 0;
9317 	u64 ino = 0, gen = 0;
9318 	u32 prot = 0, flags = 0;
9319 	unsigned int size;
9320 	char tmp[16];
9321 	char *buf = NULL;
9322 	char *name = NULL;
9323 
9324 	if (vma->vm_flags & VM_READ)
9325 		prot |= PROT_READ;
9326 	if (vma->vm_flags & VM_WRITE)
9327 		prot |= PROT_WRITE;
9328 	if (vma->vm_flags & VM_EXEC)
9329 		prot |= PROT_EXEC;
9330 
9331 	if (vma->vm_flags & VM_MAYSHARE)
9332 		flags = MAP_SHARED;
9333 	else
9334 		flags = MAP_PRIVATE;
9335 
9336 	if (vma->vm_flags & VM_LOCKED)
9337 		flags |= MAP_LOCKED;
9338 	if (is_vm_hugetlb_page(vma))
9339 		flags |= MAP_HUGETLB;
9340 
9341 	if (file) {
9342 		struct inode *inode;
9343 		dev_t dev;
9344 
9345 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9346 		if (!buf) {
9347 			name = "//enomem";
9348 			goto cpy_name;
9349 		}
9350 		/*
9351 		 * d_path() works from the end of the rb backwards, so we
9352 		 * need to add enough zero bytes after the string to handle
9353 		 * the 64bit alignment we do later.
9354 		 */
9355 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9356 		if (IS_ERR(name)) {
9357 			name = "//toolong";
9358 			goto cpy_name;
9359 		}
9360 		inode = file_inode(vma->vm_file);
9361 		dev = inode->i_sb->s_dev;
9362 		ino = inode->i_ino;
9363 		gen = inode->i_generation;
9364 		maj = MAJOR(dev);
9365 		min = MINOR(dev);
9366 
9367 		goto got_name;
9368 	} else {
9369 		if (vma->vm_ops && vma->vm_ops->name)
9370 			name = (char *) vma->vm_ops->name(vma);
9371 		if (!name)
9372 			name = (char *)arch_vma_name(vma);
9373 		if (!name) {
9374 			if (vma_is_initial_heap(vma))
9375 				name = "[heap]";
9376 			else if (vma_is_initial_stack(vma))
9377 				name = "[stack]";
9378 			else
9379 				name = "//anon";
9380 		}
9381 	}
9382 
9383 cpy_name:
9384 	strscpy(tmp, name);
9385 	name = tmp;
9386 got_name:
9387 	/*
9388 	 * Since our buffer works in 8 byte units we need to align our string
9389 	 * size to a multiple of 8. However, we must guarantee the tail end is
9390 	 * zero'd out to avoid leaking random bits to userspace.
9391 	 */
9392 	size = strlen(name)+1;
9393 	while (!IS_ALIGNED(size, sizeof(u64)))
9394 		name[size++] = '\0';
9395 
9396 	mmap_event->file_name = name;
9397 	mmap_event->file_size = size;
9398 	mmap_event->maj = maj;
9399 	mmap_event->min = min;
9400 	mmap_event->ino = ino;
9401 	mmap_event->ino_generation = gen;
9402 	mmap_event->prot = prot;
9403 	mmap_event->flags = flags;
9404 
9405 	if (!(vma->vm_flags & VM_EXEC))
9406 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9407 
9408 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9409 
9410 	if (atomic_read(&nr_build_id_events))
9411 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9412 
9413 	perf_iterate_sb(perf_event_mmap_output,
9414 		       mmap_event,
9415 		       NULL);
9416 
9417 	kfree(buf);
9418 }
9419 
9420 /*
9421  * Check whether inode and address range match filter criteria.
9422  */
9423 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9424 				     struct file *file, unsigned long offset,
9425 				     unsigned long size)
9426 {
9427 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9428 	if (!filter->path.dentry)
9429 		return false;
9430 
9431 	if (d_inode(filter->path.dentry) != file_inode(file))
9432 		return false;
9433 
9434 	if (filter->offset > offset + size)
9435 		return false;
9436 
9437 	if (filter->offset + filter->size < offset)
9438 		return false;
9439 
9440 	return true;
9441 }
9442 
9443 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9444 					struct vm_area_struct *vma,
9445 					struct perf_addr_filter_range *fr)
9446 {
9447 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9448 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9449 	struct file *file = vma->vm_file;
9450 
9451 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9452 		return false;
9453 
9454 	if (filter->offset < off) {
9455 		fr->start = vma->vm_start;
9456 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9457 	} else {
9458 		fr->start = vma->vm_start + filter->offset - off;
9459 		fr->size = min(vma->vm_end - fr->start, filter->size);
9460 	}
9461 
9462 	return true;
9463 }
9464 
9465 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9466 {
9467 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9468 	struct vm_area_struct *vma = data;
9469 	struct perf_addr_filter *filter;
9470 	unsigned int restart = 0, count = 0;
9471 	unsigned long flags;
9472 
9473 	if (!has_addr_filter(event))
9474 		return;
9475 
9476 	if (!vma->vm_file)
9477 		return;
9478 
9479 	raw_spin_lock_irqsave(&ifh->lock, flags);
9480 	list_for_each_entry(filter, &ifh->list, entry) {
9481 		if (perf_addr_filter_vma_adjust(filter, vma,
9482 						&event->addr_filter_ranges[count]))
9483 			restart++;
9484 
9485 		count++;
9486 	}
9487 
9488 	if (restart)
9489 		event->addr_filters_gen++;
9490 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9491 
9492 	if (restart)
9493 		perf_event_stop(event, 1);
9494 }
9495 
9496 /*
9497  * Adjust all task's events' filters to the new vma
9498  */
9499 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9500 {
9501 	struct perf_event_context *ctx;
9502 
9503 	/*
9504 	 * Data tracing isn't supported yet and as such there is no need
9505 	 * to keep track of anything that isn't related to executable code:
9506 	 */
9507 	if (!(vma->vm_flags & VM_EXEC))
9508 		return;
9509 
9510 	rcu_read_lock();
9511 	ctx = rcu_dereference(current->perf_event_ctxp);
9512 	if (ctx)
9513 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9514 	rcu_read_unlock();
9515 }
9516 
9517 void perf_event_mmap(struct vm_area_struct *vma)
9518 {
9519 	struct perf_mmap_event mmap_event;
9520 
9521 	if (!atomic_read(&nr_mmap_events))
9522 		return;
9523 
9524 	mmap_event = (struct perf_mmap_event){
9525 		.vma	= vma,
9526 		/* .file_name */
9527 		/* .file_size */
9528 		.event_id  = {
9529 			.header = {
9530 				.type = PERF_RECORD_MMAP,
9531 				.misc = PERF_RECORD_MISC_USER,
9532 				/* .size */
9533 			},
9534 			/* .pid */
9535 			/* .tid */
9536 			.start  = vma->vm_start,
9537 			.len    = vma->vm_end - vma->vm_start,
9538 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9539 		},
9540 		/* .maj (attr_mmap2 only) */
9541 		/* .min (attr_mmap2 only) */
9542 		/* .ino (attr_mmap2 only) */
9543 		/* .ino_generation (attr_mmap2 only) */
9544 		/* .prot (attr_mmap2 only) */
9545 		/* .flags (attr_mmap2 only) */
9546 	};
9547 
9548 	perf_addr_filters_adjust(vma);
9549 	perf_event_mmap_event(&mmap_event);
9550 }
9551 
9552 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9553 			  unsigned long size, u64 flags)
9554 {
9555 	struct perf_output_handle handle;
9556 	struct perf_sample_data sample;
9557 	struct perf_aux_event {
9558 		struct perf_event_header	header;
9559 		u64				offset;
9560 		u64				size;
9561 		u64				flags;
9562 	} rec = {
9563 		.header = {
9564 			.type = PERF_RECORD_AUX,
9565 			.misc = 0,
9566 			.size = sizeof(rec),
9567 		},
9568 		.offset		= head,
9569 		.size		= size,
9570 		.flags		= flags,
9571 	};
9572 	int ret;
9573 
9574 	perf_event_header__init_id(&rec.header, &sample, event);
9575 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9576 
9577 	if (ret)
9578 		return;
9579 
9580 	perf_output_put(&handle, rec);
9581 	perf_event__output_id_sample(event, &handle, &sample);
9582 
9583 	perf_output_end(&handle);
9584 }
9585 
9586 /*
9587  * Lost/dropped samples logging
9588  */
9589 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9590 {
9591 	struct perf_output_handle handle;
9592 	struct perf_sample_data sample;
9593 	int ret;
9594 
9595 	struct {
9596 		struct perf_event_header	header;
9597 		u64				lost;
9598 	} lost_samples_event = {
9599 		.header = {
9600 			.type = PERF_RECORD_LOST_SAMPLES,
9601 			.misc = 0,
9602 			.size = sizeof(lost_samples_event),
9603 		},
9604 		.lost		= lost,
9605 	};
9606 
9607 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9608 
9609 	ret = perf_output_begin(&handle, &sample, event,
9610 				lost_samples_event.header.size);
9611 	if (ret)
9612 		return;
9613 
9614 	perf_output_put(&handle, lost_samples_event);
9615 	perf_event__output_id_sample(event, &handle, &sample);
9616 	perf_output_end(&handle);
9617 }
9618 
9619 /*
9620  * context_switch tracking
9621  */
9622 
9623 struct perf_switch_event {
9624 	struct task_struct	*task;
9625 	struct task_struct	*next_prev;
9626 
9627 	struct {
9628 		struct perf_event_header	header;
9629 		u32				next_prev_pid;
9630 		u32				next_prev_tid;
9631 	} event_id;
9632 };
9633 
9634 static int perf_event_switch_match(struct perf_event *event)
9635 {
9636 	return event->attr.context_switch;
9637 }
9638 
9639 static void perf_event_switch_output(struct perf_event *event, void *data)
9640 {
9641 	struct perf_switch_event *se = data;
9642 	struct perf_output_handle handle;
9643 	struct perf_sample_data sample;
9644 	int ret;
9645 
9646 	if (!perf_event_switch_match(event))
9647 		return;
9648 
9649 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9650 	if (event->ctx->task) {
9651 		se->event_id.header.type = PERF_RECORD_SWITCH;
9652 		se->event_id.header.size = sizeof(se->event_id.header);
9653 	} else {
9654 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9655 		se->event_id.header.size = sizeof(se->event_id);
9656 		se->event_id.next_prev_pid =
9657 					perf_event_pid(event, se->next_prev);
9658 		se->event_id.next_prev_tid =
9659 					perf_event_tid(event, se->next_prev);
9660 	}
9661 
9662 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9663 
9664 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9665 	if (ret)
9666 		return;
9667 
9668 	if (event->ctx->task)
9669 		perf_output_put(&handle, se->event_id.header);
9670 	else
9671 		perf_output_put(&handle, se->event_id);
9672 
9673 	perf_event__output_id_sample(event, &handle, &sample);
9674 
9675 	perf_output_end(&handle);
9676 }
9677 
9678 static void perf_event_switch(struct task_struct *task,
9679 			      struct task_struct *next_prev, bool sched_in)
9680 {
9681 	struct perf_switch_event switch_event;
9682 
9683 	/* N.B. caller checks nr_switch_events != 0 */
9684 
9685 	switch_event = (struct perf_switch_event){
9686 		.task		= task,
9687 		.next_prev	= next_prev,
9688 		.event_id	= {
9689 			.header = {
9690 				/* .type */
9691 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9692 				/* .size */
9693 			},
9694 			/* .next_prev_pid */
9695 			/* .next_prev_tid */
9696 		},
9697 	};
9698 
9699 	if (!sched_in && task_is_runnable(task)) {
9700 		switch_event.event_id.header.misc |=
9701 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9702 	}
9703 
9704 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9705 }
9706 
9707 /*
9708  * IRQ throttle logging
9709  */
9710 
9711 static void perf_log_throttle(struct perf_event *event, int enable)
9712 {
9713 	struct perf_output_handle handle;
9714 	struct perf_sample_data sample;
9715 	int ret;
9716 
9717 	struct {
9718 		struct perf_event_header	header;
9719 		u64				time;
9720 		u64				id;
9721 		u64				stream_id;
9722 	} throttle_event = {
9723 		.header = {
9724 			.type = PERF_RECORD_THROTTLE,
9725 			.misc = 0,
9726 			.size = sizeof(throttle_event),
9727 		},
9728 		.time		= perf_event_clock(event),
9729 		.id		= primary_event_id(event),
9730 		.stream_id	= event->id,
9731 	};
9732 
9733 	if (enable)
9734 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9735 
9736 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9737 
9738 	ret = perf_output_begin(&handle, &sample, event,
9739 				throttle_event.header.size);
9740 	if (ret)
9741 		return;
9742 
9743 	perf_output_put(&handle, throttle_event);
9744 	perf_event__output_id_sample(event, &handle, &sample);
9745 	perf_output_end(&handle);
9746 }
9747 
9748 /*
9749  * ksymbol register/unregister tracking
9750  */
9751 
9752 struct perf_ksymbol_event {
9753 	const char	*name;
9754 	int		name_len;
9755 	struct {
9756 		struct perf_event_header        header;
9757 		u64				addr;
9758 		u32				len;
9759 		u16				ksym_type;
9760 		u16				flags;
9761 	} event_id;
9762 };
9763 
9764 static int perf_event_ksymbol_match(struct perf_event *event)
9765 {
9766 	return event->attr.ksymbol;
9767 }
9768 
9769 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9770 {
9771 	struct perf_ksymbol_event *ksymbol_event = data;
9772 	struct perf_output_handle handle;
9773 	struct perf_sample_data sample;
9774 	int ret;
9775 
9776 	if (!perf_event_ksymbol_match(event))
9777 		return;
9778 
9779 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9780 				   &sample, event);
9781 	ret = perf_output_begin(&handle, &sample, event,
9782 				ksymbol_event->event_id.header.size);
9783 	if (ret)
9784 		return;
9785 
9786 	perf_output_put(&handle, ksymbol_event->event_id);
9787 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9788 	perf_event__output_id_sample(event, &handle, &sample);
9789 
9790 	perf_output_end(&handle);
9791 }
9792 
9793 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9794 			const char *sym)
9795 {
9796 	struct perf_ksymbol_event ksymbol_event;
9797 	char name[KSYM_NAME_LEN];
9798 	u16 flags = 0;
9799 	int name_len;
9800 
9801 	if (!atomic_read(&nr_ksymbol_events))
9802 		return;
9803 
9804 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9805 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9806 		goto err;
9807 
9808 	strscpy(name, sym);
9809 	name_len = strlen(name) + 1;
9810 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9811 		name[name_len++] = '\0';
9812 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9813 
9814 	if (unregister)
9815 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9816 
9817 	ksymbol_event = (struct perf_ksymbol_event){
9818 		.name = name,
9819 		.name_len = name_len,
9820 		.event_id = {
9821 			.header = {
9822 				.type = PERF_RECORD_KSYMBOL,
9823 				.size = sizeof(ksymbol_event.event_id) +
9824 					name_len,
9825 			},
9826 			.addr = addr,
9827 			.len = len,
9828 			.ksym_type = ksym_type,
9829 			.flags = flags,
9830 		},
9831 	};
9832 
9833 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9834 	return;
9835 err:
9836 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9837 }
9838 
9839 /*
9840  * bpf program load/unload tracking
9841  */
9842 
9843 struct perf_bpf_event {
9844 	struct bpf_prog	*prog;
9845 	struct {
9846 		struct perf_event_header        header;
9847 		u16				type;
9848 		u16				flags;
9849 		u32				id;
9850 		u8				tag[BPF_TAG_SIZE];
9851 	} event_id;
9852 };
9853 
9854 static int perf_event_bpf_match(struct perf_event *event)
9855 {
9856 	return event->attr.bpf_event;
9857 }
9858 
9859 static void perf_event_bpf_output(struct perf_event *event, void *data)
9860 {
9861 	struct perf_bpf_event *bpf_event = data;
9862 	struct perf_output_handle handle;
9863 	struct perf_sample_data sample;
9864 	int ret;
9865 
9866 	if (!perf_event_bpf_match(event))
9867 		return;
9868 
9869 	perf_event_header__init_id(&bpf_event->event_id.header,
9870 				   &sample, event);
9871 	ret = perf_output_begin(&handle, &sample, event,
9872 				bpf_event->event_id.header.size);
9873 	if (ret)
9874 		return;
9875 
9876 	perf_output_put(&handle, bpf_event->event_id);
9877 	perf_event__output_id_sample(event, &handle, &sample);
9878 
9879 	perf_output_end(&handle);
9880 }
9881 
9882 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9883 					 enum perf_bpf_event_type type)
9884 {
9885 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9886 	int i;
9887 
9888 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9889 			   (u64)(unsigned long)prog->bpf_func,
9890 			   prog->jited_len, unregister,
9891 			   prog->aux->ksym.name);
9892 
9893 	for (i = 1; i < prog->aux->func_cnt; i++) {
9894 		struct bpf_prog *subprog = prog->aux->func[i];
9895 
9896 		perf_event_ksymbol(
9897 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9898 			(u64)(unsigned long)subprog->bpf_func,
9899 			subprog->jited_len, unregister,
9900 			subprog->aux->ksym.name);
9901 	}
9902 }
9903 
9904 void perf_event_bpf_event(struct bpf_prog *prog,
9905 			  enum perf_bpf_event_type type,
9906 			  u16 flags)
9907 {
9908 	struct perf_bpf_event bpf_event;
9909 
9910 	switch (type) {
9911 	case PERF_BPF_EVENT_PROG_LOAD:
9912 	case PERF_BPF_EVENT_PROG_UNLOAD:
9913 		if (atomic_read(&nr_ksymbol_events))
9914 			perf_event_bpf_emit_ksymbols(prog, type);
9915 		break;
9916 	default:
9917 		return;
9918 	}
9919 
9920 	if (!atomic_read(&nr_bpf_events))
9921 		return;
9922 
9923 	bpf_event = (struct perf_bpf_event){
9924 		.prog = prog,
9925 		.event_id = {
9926 			.header = {
9927 				.type = PERF_RECORD_BPF_EVENT,
9928 				.size = sizeof(bpf_event.event_id),
9929 			},
9930 			.type = type,
9931 			.flags = flags,
9932 			.id = prog->aux->id,
9933 		},
9934 	};
9935 
9936 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9937 
9938 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9939 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9940 }
9941 
9942 struct perf_text_poke_event {
9943 	const void		*old_bytes;
9944 	const void		*new_bytes;
9945 	size_t			pad;
9946 	u16			old_len;
9947 	u16			new_len;
9948 
9949 	struct {
9950 		struct perf_event_header	header;
9951 
9952 		u64				addr;
9953 	} event_id;
9954 };
9955 
9956 static int perf_event_text_poke_match(struct perf_event *event)
9957 {
9958 	return event->attr.text_poke;
9959 }
9960 
9961 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9962 {
9963 	struct perf_text_poke_event *text_poke_event = data;
9964 	struct perf_output_handle handle;
9965 	struct perf_sample_data sample;
9966 	u64 padding = 0;
9967 	int ret;
9968 
9969 	if (!perf_event_text_poke_match(event))
9970 		return;
9971 
9972 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9973 
9974 	ret = perf_output_begin(&handle, &sample, event,
9975 				text_poke_event->event_id.header.size);
9976 	if (ret)
9977 		return;
9978 
9979 	perf_output_put(&handle, text_poke_event->event_id);
9980 	perf_output_put(&handle, text_poke_event->old_len);
9981 	perf_output_put(&handle, text_poke_event->new_len);
9982 
9983 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9984 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9985 
9986 	if (text_poke_event->pad)
9987 		__output_copy(&handle, &padding, text_poke_event->pad);
9988 
9989 	perf_event__output_id_sample(event, &handle, &sample);
9990 
9991 	perf_output_end(&handle);
9992 }
9993 
9994 void perf_event_text_poke(const void *addr, const void *old_bytes,
9995 			  size_t old_len, const void *new_bytes, size_t new_len)
9996 {
9997 	struct perf_text_poke_event text_poke_event;
9998 	size_t tot, pad;
9999 
10000 	if (!atomic_read(&nr_text_poke_events))
10001 		return;
10002 
10003 	tot  = sizeof(text_poke_event.old_len) + old_len;
10004 	tot += sizeof(text_poke_event.new_len) + new_len;
10005 	pad  = ALIGN(tot, sizeof(u64)) - tot;
10006 
10007 	text_poke_event = (struct perf_text_poke_event){
10008 		.old_bytes    = old_bytes,
10009 		.new_bytes    = new_bytes,
10010 		.pad          = pad,
10011 		.old_len      = old_len,
10012 		.new_len      = new_len,
10013 		.event_id  = {
10014 			.header = {
10015 				.type = PERF_RECORD_TEXT_POKE,
10016 				.misc = PERF_RECORD_MISC_KERNEL,
10017 				.size = sizeof(text_poke_event.event_id) + tot + pad,
10018 			},
10019 			.addr = (unsigned long)addr,
10020 		},
10021 	};
10022 
10023 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10024 }
10025 
10026 void perf_event_itrace_started(struct perf_event *event)
10027 {
10028 	WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10029 }
10030 
10031 static void perf_log_itrace_start(struct perf_event *event)
10032 {
10033 	struct perf_output_handle handle;
10034 	struct perf_sample_data sample;
10035 	struct perf_aux_event {
10036 		struct perf_event_header        header;
10037 		u32				pid;
10038 		u32				tid;
10039 	} rec;
10040 	int ret;
10041 
10042 	if (event->parent)
10043 		event = event->parent;
10044 
10045 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10046 	    event->attach_state & PERF_ATTACH_ITRACE)
10047 		return;
10048 
10049 	rec.header.type	= PERF_RECORD_ITRACE_START;
10050 	rec.header.misc	= 0;
10051 	rec.header.size	= sizeof(rec);
10052 	rec.pid	= perf_event_pid(event, current);
10053 	rec.tid	= perf_event_tid(event, current);
10054 
10055 	perf_event_header__init_id(&rec.header, &sample, event);
10056 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10057 
10058 	if (ret)
10059 		return;
10060 
10061 	perf_output_put(&handle, rec);
10062 	perf_event__output_id_sample(event, &handle, &sample);
10063 
10064 	perf_output_end(&handle);
10065 }
10066 
10067 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10068 {
10069 	struct perf_output_handle handle;
10070 	struct perf_sample_data sample;
10071 	struct perf_aux_event {
10072 		struct perf_event_header        header;
10073 		u64				hw_id;
10074 	} rec;
10075 	int ret;
10076 
10077 	if (event->parent)
10078 		event = event->parent;
10079 
10080 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10081 	rec.header.misc	= 0;
10082 	rec.header.size	= sizeof(rec);
10083 	rec.hw_id	= hw_id;
10084 
10085 	perf_event_header__init_id(&rec.header, &sample, event);
10086 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10087 
10088 	if (ret)
10089 		return;
10090 
10091 	perf_output_put(&handle, rec);
10092 	perf_event__output_id_sample(event, &handle, &sample);
10093 
10094 	perf_output_end(&handle);
10095 }
10096 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10097 
10098 static int
10099 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10100 {
10101 	struct hw_perf_event *hwc = &event->hw;
10102 	int ret = 0;
10103 	u64 seq;
10104 
10105 	seq = __this_cpu_read(perf_throttled_seq);
10106 	if (seq != hwc->interrupts_seq) {
10107 		hwc->interrupts_seq = seq;
10108 		hwc->interrupts = 1;
10109 	} else {
10110 		hwc->interrupts++;
10111 	}
10112 
10113 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10114 		__this_cpu_inc(perf_throttled_count);
10115 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10116 		perf_event_throttle_group(event);
10117 		ret = 1;
10118 	}
10119 
10120 	if (event->attr.freq) {
10121 		u64 now = perf_clock();
10122 		s64 delta = now - hwc->freq_time_stamp;
10123 
10124 		hwc->freq_time_stamp = now;
10125 
10126 		if (delta > 0 && delta < 2*TICK_NSEC)
10127 			perf_adjust_period(event, delta, hwc->last_period, true);
10128 	}
10129 
10130 	return ret;
10131 }
10132 
10133 int perf_event_account_interrupt(struct perf_event *event)
10134 {
10135 	return __perf_event_account_interrupt(event, 1);
10136 }
10137 
10138 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10139 {
10140 	/*
10141 	 * Due to interrupt latency (AKA "skid"), we may enter the
10142 	 * kernel before taking an overflow, even if the PMU is only
10143 	 * counting user events.
10144 	 */
10145 	if (event->attr.exclude_kernel && !user_mode(regs))
10146 		return false;
10147 
10148 	return true;
10149 }
10150 
10151 #ifdef CONFIG_BPF_SYSCALL
10152 static int bpf_overflow_handler(struct perf_event *event,
10153 				struct perf_sample_data *data,
10154 				struct pt_regs *regs)
10155 {
10156 	struct bpf_perf_event_data_kern ctx = {
10157 		.data = data,
10158 		.event = event,
10159 	};
10160 	struct bpf_prog *prog;
10161 	int ret = 0;
10162 
10163 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10164 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10165 		goto out;
10166 	rcu_read_lock();
10167 	prog = READ_ONCE(event->prog);
10168 	if (prog) {
10169 		perf_prepare_sample(data, event, regs);
10170 		ret = bpf_prog_run(prog, &ctx);
10171 	}
10172 	rcu_read_unlock();
10173 out:
10174 	__this_cpu_dec(bpf_prog_active);
10175 
10176 	return ret;
10177 }
10178 
10179 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10180 					     struct bpf_prog *prog,
10181 					     u64 bpf_cookie)
10182 {
10183 	if (event->overflow_handler_context)
10184 		/* hw breakpoint or kernel counter */
10185 		return -EINVAL;
10186 
10187 	if (event->prog)
10188 		return -EEXIST;
10189 
10190 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10191 		return -EINVAL;
10192 
10193 	if (event->attr.precise_ip &&
10194 	    prog->call_get_stack &&
10195 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10196 	     event->attr.exclude_callchain_kernel ||
10197 	     event->attr.exclude_callchain_user)) {
10198 		/*
10199 		 * On perf_event with precise_ip, calling bpf_get_stack()
10200 		 * may trigger unwinder warnings and occasional crashes.
10201 		 * bpf_get_[stack|stackid] works around this issue by using
10202 		 * callchain attached to perf_sample_data. If the
10203 		 * perf_event does not full (kernel and user) callchain
10204 		 * attached to perf_sample_data, do not allow attaching BPF
10205 		 * program that calls bpf_get_[stack|stackid].
10206 		 */
10207 		return -EPROTO;
10208 	}
10209 
10210 	event->prog = prog;
10211 	event->bpf_cookie = bpf_cookie;
10212 	return 0;
10213 }
10214 
10215 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10216 {
10217 	struct bpf_prog *prog = event->prog;
10218 
10219 	if (!prog)
10220 		return;
10221 
10222 	event->prog = NULL;
10223 	bpf_prog_put(prog);
10224 }
10225 #else
10226 static inline int bpf_overflow_handler(struct perf_event *event,
10227 				       struct perf_sample_data *data,
10228 				       struct pt_regs *regs)
10229 {
10230 	return 1;
10231 }
10232 
10233 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10234 					     struct bpf_prog *prog,
10235 					     u64 bpf_cookie)
10236 {
10237 	return -EOPNOTSUPP;
10238 }
10239 
10240 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10241 {
10242 }
10243 #endif
10244 
10245 /*
10246  * Generic event overflow handling, sampling.
10247  */
10248 
10249 static int __perf_event_overflow(struct perf_event *event,
10250 				 int throttle, struct perf_sample_data *data,
10251 				 struct pt_regs *regs)
10252 {
10253 	int events = atomic_read(&event->event_limit);
10254 	int ret = 0;
10255 
10256 	/*
10257 	 * Non-sampling counters might still use the PMI to fold short
10258 	 * hardware counters, ignore those.
10259 	 */
10260 	if (unlikely(!is_sampling_event(event)))
10261 		return 0;
10262 
10263 	ret = __perf_event_account_interrupt(event, throttle);
10264 
10265 	if (event->attr.aux_pause)
10266 		perf_event_aux_pause(event->aux_event, true);
10267 
10268 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10269 	    !bpf_overflow_handler(event, data, regs))
10270 		goto out;
10271 
10272 	/*
10273 	 * XXX event_limit might not quite work as expected on inherited
10274 	 * events
10275 	 */
10276 
10277 	event->pending_kill = POLL_IN;
10278 	if (events && atomic_dec_and_test(&event->event_limit)) {
10279 		ret = 1;
10280 		event->pending_kill = POLL_HUP;
10281 		perf_event_disable_inatomic(event);
10282 	}
10283 
10284 	if (event->attr.sigtrap) {
10285 		/*
10286 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10287 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10288 		 * it is the first event, on the other hand, we should also not
10289 		 * trigger the WARN or override the data address.
10290 		 */
10291 		bool valid_sample = sample_is_allowed(event, regs);
10292 		unsigned int pending_id = 1;
10293 		enum task_work_notify_mode notify_mode;
10294 
10295 		if (regs)
10296 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10297 
10298 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10299 
10300 		if (!event->pending_work &&
10301 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10302 			event->pending_work = pending_id;
10303 			local_inc(&event->ctx->nr_no_switch_fast);
10304 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10305 
10306 			event->pending_addr = 0;
10307 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10308 				event->pending_addr = data->addr;
10309 
10310 		} else if (event->attr.exclude_kernel && valid_sample) {
10311 			/*
10312 			 * Should not be able to return to user space without
10313 			 * consuming pending_work; with exceptions:
10314 			 *
10315 			 *  1. Where !exclude_kernel, events can overflow again
10316 			 *     in the kernel without returning to user space.
10317 			 *
10318 			 *  2. Events that can overflow again before the IRQ-
10319 			 *     work without user space progress (e.g. hrtimer).
10320 			 *     To approximate progress (with false negatives),
10321 			 *     check 32-bit hash of the current IP.
10322 			 */
10323 			WARN_ON_ONCE(event->pending_work != pending_id);
10324 		}
10325 	}
10326 
10327 	READ_ONCE(event->overflow_handler)(event, data, regs);
10328 
10329 	if (*perf_event_fasync(event) && event->pending_kill) {
10330 		event->pending_wakeup = 1;
10331 		irq_work_queue(&event->pending_irq);
10332 	}
10333 out:
10334 	if (event->attr.aux_resume)
10335 		perf_event_aux_pause(event->aux_event, false);
10336 
10337 	return ret;
10338 }
10339 
10340 int perf_event_overflow(struct perf_event *event,
10341 			struct perf_sample_data *data,
10342 			struct pt_regs *regs)
10343 {
10344 	return __perf_event_overflow(event, 1, data, regs);
10345 }
10346 
10347 /*
10348  * Generic software event infrastructure
10349  */
10350 
10351 struct swevent_htable {
10352 	struct swevent_hlist		*swevent_hlist;
10353 	struct mutex			hlist_mutex;
10354 	int				hlist_refcount;
10355 };
10356 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10357 
10358 /*
10359  * We directly increment event->count and keep a second value in
10360  * event->hw.period_left to count intervals. This period event
10361  * is kept in the range [-sample_period, 0] so that we can use the
10362  * sign as trigger.
10363  */
10364 
10365 u64 perf_swevent_set_period(struct perf_event *event)
10366 {
10367 	struct hw_perf_event *hwc = &event->hw;
10368 	u64 period = hwc->last_period;
10369 	u64 nr, offset;
10370 	s64 old, val;
10371 
10372 	hwc->last_period = hwc->sample_period;
10373 
10374 	old = local64_read(&hwc->period_left);
10375 	do {
10376 		val = old;
10377 		if (val < 0)
10378 			return 0;
10379 
10380 		nr = div64_u64(period + val, period);
10381 		offset = nr * period;
10382 		val -= offset;
10383 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10384 
10385 	return nr;
10386 }
10387 
10388 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10389 				    struct perf_sample_data *data,
10390 				    struct pt_regs *regs)
10391 {
10392 	struct hw_perf_event *hwc = &event->hw;
10393 	int throttle = 0;
10394 
10395 	if (!overflow)
10396 		overflow = perf_swevent_set_period(event);
10397 
10398 	if (hwc->interrupts == MAX_INTERRUPTS)
10399 		return;
10400 
10401 	for (; overflow; overflow--) {
10402 		if (__perf_event_overflow(event, throttle,
10403 					    data, regs)) {
10404 			/*
10405 			 * We inhibit the overflow from happening when
10406 			 * hwc->interrupts == MAX_INTERRUPTS.
10407 			 */
10408 			break;
10409 		}
10410 		throttle = 1;
10411 	}
10412 }
10413 
10414 static void perf_swevent_event(struct perf_event *event, u64 nr,
10415 			       struct perf_sample_data *data,
10416 			       struct pt_regs *regs)
10417 {
10418 	struct hw_perf_event *hwc = &event->hw;
10419 
10420 	local64_add(nr, &event->count);
10421 
10422 	if (!regs)
10423 		return;
10424 
10425 	if (!is_sampling_event(event))
10426 		return;
10427 
10428 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10429 		data->period = nr;
10430 		return perf_swevent_overflow(event, 1, data, regs);
10431 	} else
10432 		data->period = event->hw.last_period;
10433 
10434 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10435 		return perf_swevent_overflow(event, 1, data, regs);
10436 
10437 	if (local64_add_negative(nr, &hwc->period_left))
10438 		return;
10439 
10440 	perf_swevent_overflow(event, 0, data, regs);
10441 }
10442 
10443 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10444 {
10445 	if (event->hw.state & PERF_HES_STOPPED)
10446 		return 1;
10447 
10448 	if (regs) {
10449 		if (event->attr.exclude_user && user_mode(regs))
10450 			return 1;
10451 
10452 		if (event->attr.exclude_kernel && !user_mode(regs))
10453 			return 1;
10454 	}
10455 
10456 	return 0;
10457 }
10458 
10459 static int perf_swevent_match(struct perf_event *event,
10460 				enum perf_type_id type,
10461 				u32 event_id,
10462 				struct perf_sample_data *data,
10463 				struct pt_regs *regs)
10464 {
10465 	if (event->attr.type != type)
10466 		return 0;
10467 
10468 	if (event->attr.config != event_id)
10469 		return 0;
10470 
10471 	if (perf_exclude_event(event, regs))
10472 		return 0;
10473 
10474 	return 1;
10475 }
10476 
10477 static inline u64 swevent_hash(u64 type, u32 event_id)
10478 {
10479 	u64 val = event_id | (type << 32);
10480 
10481 	return hash_64(val, SWEVENT_HLIST_BITS);
10482 }
10483 
10484 static inline struct hlist_head *
10485 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10486 {
10487 	u64 hash = swevent_hash(type, event_id);
10488 
10489 	return &hlist->heads[hash];
10490 }
10491 
10492 /* For the read side: events when they trigger */
10493 static inline struct hlist_head *
10494 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10495 {
10496 	struct swevent_hlist *hlist;
10497 
10498 	hlist = rcu_dereference(swhash->swevent_hlist);
10499 	if (!hlist)
10500 		return NULL;
10501 
10502 	return __find_swevent_head(hlist, type, event_id);
10503 }
10504 
10505 /* For the event head insertion and removal in the hlist */
10506 static inline struct hlist_head *
10507 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10508 {
10509 	struct swevent_hlist *hlist;
10510 	u32 event_id = event->attr.config;
10511 	u64 type = event->attr.type;
10512 
10513 	/*
10514 	 * Event scheduling is always serialized against hlist allocation
10515 	 * and release. Which makes the protected version suitable here.
10516 	 * The context lock guarantees that.
10517 	 */
10518 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10519 					  lockdep_is_held(&event->ctx->lock));
10520 	if (!hlist)
10521 		return NULL;
10522 
10523 	return __find_swevent_head(hlist, type, event_id);
10524 }
10525 
10526 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10527 				    u64 nr,
10528 				    struct perf_sample_data *data,
10529 				    struct pt_regs *regs)
10530 {
10531 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10532 	struct perf_event *event;
10533 	struct hlist_head *head;
10534 
10535 	rcu_read_lock();
10536 	head = find_swevent_head_rcu(swhash, type, event_id);
10537 	if (!head)
10538 		goto end;
10539 
10540 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10541 		if (perf_swevent_match(event, type, event_id, data, regs))
10542 			perf_swevent_event(event, nr, data, regs);
10543 	}
10544 end:
10545 	rcu_read_unlock();
10546 }
10547 
10548 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10549 
10550 int perf_swevent_get_recursion_context(void)
10551 {
10552 	return get_recursion_context(current->perf_recursion);
10553 }
10554 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10555 
10556 void perf_swevent_put_recursion_context(int rctx)
10557 {
10558 	put_recursion_context(current->perf_recursion, rctx);
10559 }
10560 
10561 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10562 {
10563 	struct perf_sample_data data;
10564 
10565 	if (WARN_ON_ONCE(!regs))
10566 		return;
10567 
10568 	perf_sample_data_init(&data, addr, 0);
10569 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10570 }
10571 
10572 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10573 {
10574 	int rctx;
10575 
10576 	preempt_disable_notrace();
10577 	rctx = perf_swevent_get_recursion_context();
10578 	if (unlikely(rctx < 0))
10579 		goto fail;
10580 
10581 	___perf_sw_event(event_id, nr, regs, addr);
10582 
10583 	perf_swevent_put_recursion_context(rctx);
10584 fail:
10585 	preempt_enable_notrace();
10586 }
10587 
10588 static void perf_swevent_read(struct perf_event *event)
10589 {
10590 }
10591 
10592 static int perf_swevent_add(struct perf_event *event, int flags)
10593 {
10594 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10595 	struct hw_perf_event *hwc = &event->hw;
10596 	struct hlist_head *head;
10597 
10598 	if (is_sampling_event(event)) {
10599 		hwc->last_period = hwc->sample_period;
10600 		perf_swevent_set_period(event);
10601 	}
10602 
10603 	hwc->state = !(flags & PERF_EF_START);
10604 
10605 	head = find_swevent_head(swhash, event);
10606 	if (WARN_ON_ONCE(!head))
10607 		return -EINVAL;
10608 
10609 	hlist_add_head_rcu(&event->hlist_entry, head);
10610 	perf_event_update_userpage(event);
10611 
10612 	return 0;
10613 }
10614 
10615 static void perf_swevent_del(struct perf_event *event, int flags)
10616 {
10617 	hlist_del_rcu(&event->hlist_entry);
10618 }
10619 
10620 static void perf_swevent_start(struct perf_event *event, int flags)
10621 {
10622 	event->hw.state = 0;
10623 }
10624 
10625 static void perf_swevent_stop(struct perf_event *event, int flags)
10626 {
10627 	event->hw.state = PERF_HES_STOPPED;
10628 }
10629 
10630 /* Deref the hlist from the update side */
10631 static inline struct swevent_hlist *
10632 swevent_hlist_deref(struct swevent_htable *swhash)
10633 {
10634 	return rcu_dereference_protected(swhash->swevent_hlist,
10635 					 lockdep_is_held(&swhash->hlist_mutex));
10636 }
10637 
10638 static void swevent_hlist_release(struct swevent_htable *swhash)
10639 {
10640 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10641 
10642 	if (!hlist)
10643 		return;
10644 
10645 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10646 	kfree_rcu(hlist, rcu_head);
10647 }
10648 
10649 static void swevent_hlist_put_cpu(int cpu)
10650 {
10651 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10652 
10653 	mutex_lock(&swhash->hlist_mutex);
10654 
10655 	if (!--swhash->hlist_refcount)
10656 		swevent_hlist_release(swhash);
10657 
10658 	mutex_unlock(&swhash->hlist_mutex);
10659 }
10660 
10661 static void swevent_hlist_put(void)
10662 {
10663 	int cpu;
10664 
10665 	for_each_possible_cpu(cpu)
10666 		swevent_hlist_put_cpu(cpu);
10667 }
10668 
10669 static int swevent_hlist_get_cpu(int cpu)
10670 {
10671 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10672 	int err = 0;
10673 
10674 	mutex_lock(&swhash->hlist_mutex);
10675 	if (!swevent_hlist_deref(swhash) &&
10676 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10677 		struct swevent_hlist *hlist;
10678 
10679 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10680 		if (!hlist) {
10681 			err = -ENOMEM;
10682 			goto exit;
10683 		}
10684 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10685 	}
10686 	swhash->hlist_refcount++;
10687 exit:
10688 	mutex_unlock(&swhash->hlist_mutex);
10689 
10690 	return err;
10691 }
10692 
10693 static int swevent_hlist_get(void)
10694 {
10695 	int err, cpu, failed_cpu;
10696 
10697 	mutex_lock(&pmus_lock);
10698 	for_each_possible_cpu(cpu) {
10699 		err = swevent_hlist_get_cpu(cpu);
10700 		if (err) {
10701 			failed_cpu = cpu;
10702 			goto fail;
10703 		}
10704 	}
10705 	mutex_unlock(&pmus_lock);
10706 	return 0;
10707 fail:
10708 	for_each_possible_cpu(cpu) {
10709 		if (cpu == failed_cpu)
10710 			break;
10711 		swevent_hlist_put_cpu(cpu);
10712 	}
10713 	mutex_unlock(&pmus_lock);
10714 	return err;
10715 }
10716 
10717 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10718 
10719 static void sw_perf_event_destroy(struct perf_event *event)
10720 {
10721 	u64 event_id = event->attr.config;
10722 
10723 	WARN_ON(event->parent);
10724 
10725 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10726 	swevent_hlist_put();
10727 }
10728 
10729 static struct pmu perf_cpu_clock; /* fwd declaration */
10730 static struct pmu perf_task_clock;
10731 
10732 static int perf_swevent_init(struct perf_event *event)
10733 {
10734 	u64 event_id = event->attr.config;
10735 
10736 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10737 		return -ENOENT;
10738 
10739 	/*
10740 	 * no branch sampling for software events
10741 	 */
10742 	if (has_branch_stack(event))
10743 		return -EOPNOTSUPP;
10744 
10745 	switch (event_id) {
10746 	case PERF_COUNT_SW_CPU_CLOCK:
10747 		event->attr.type = perf_cpu_clock.type;
10748 		return -ENOENT;
10749 	case PERF_COUNT_SW_TASK_CLOCK:
10750 		event->attr.type = perf_task_clock.type;
10751 		return -ENOENT;
10752 
10753 	default:
10754 		break;
10755 	}
10756 
10757 	if (event_id >= PERF_COUNT_SW_MAX)
10758 		return -ENOENT;
10759 
10760 	if (!event->parent) {
10761 		int err;
10762 
10763 		err = swevent_hlist_get();
10764 		if (err)
10765 			return err;
10766 
10767 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10768 		event->destroy = sw_perf_event_destroy;
10769 	}
10770 
10771 	return 0;
10772 }
10773 
10774 static struct pmu perf_swevent = {
10775 	.task_ctx_nr	= perf_sw_context,
10776 
10777 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10778 
10779 	.event_init	= perf_swevent_init,
10780 	.add		= perf_swevent_add,
10781 	.del		= perf_swevent_del,
10782 	.start		= perf_swevent_start,
10783 	.stop		= perf_swevent_stop,
10784 	.read		= perf_swevent_read,
10785 };
10786 
10787 #ifdef CONFIG_EVENT_TRACING
10788 
10789 static void tp_perf_event_destroy(struct perf_event *event)
10790 {
10791 	perf_trace_destroy(event);
10792 }
10793 
10794 static int perf_tp_event_init(struct perf_event *event)
10795 {
10796 	int err;
10797 
10798 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10799 		return -ENOENT;
10800 
10801 	/*
10802 	 * no branch sampling for tracepoint events
10803 	 */
10804 	if (has_branch_stack(event))
10805 		return -EOPNOTSUPP;
10806 
10807 	err = perf_trace_init(event);
10808 	if (err)
10809 		return err;
10810 
10811 	event->destroy = tp_perf_event_destroy;
10812 
10813 	return 0;
10814 }
10815 
10816 static struct pmu perf_tracepoint = {
10817 	.task_ctx_nr	= perf_sw_context,
10818 
10819 	.event_init	= perf_tp_event_init,
10820 	.add		= perf_trace_add,
10821 	.del		= perf_trace_del,
10822 	.start		= perf_swevent_start,
10823 	.stop		= perf_swevent_stop,
10824 	.read		= perf_swevent_read,
10825 };
10826 
10827 static int perf_tp_filter_match(struct perf_event *event,
10828 				struct perf_raw_record *raw)
10829 {
10830 	void *record = raw->frag.data;
10831 
10832 	/* only top level events have filters set */
10833 	if (event->parent)
10834 		event = event->parent;
10835 
10836 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10837 		return 1;
10838 	return 0;
10839 }
10840 
10841 static int perf_tp_event_match(struct perf_event *event,
10842 				struct perf_raw_record *raw,
10843 				struct pt_regs *regs)
10844 {
10845 	if (event->hw.state & PERF_HES_STOPPED)
10846 		return 0;
10847 	/*
10848 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10849 	 */
10850 	if (event->attr.exclude_kernel && !user_mode(regs))
10851 		return 0;
10852 
10853 	if (!perf_tp_filter_match(event, raw))
10854 		return 0;
10855 
10856 	return 1;
10857 }
10858 
10859 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10860 			       struct trace_event_call *call, u64 count,
10861 			       struct pt_regs *regs, struct hlist_head *head,
10862 			       struct task_struct *task)
10863 {
10864 	if (bpf_prog_array_valid(call)) {
10865 		*(struct pt_regs **)raw_data = regs;
10866 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10867 			perf_swevent_put_recursion_context(rctx);
10868 			return;
10869 		}
10870 	}
10871 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10872 		      rctx, task);
10873 }
10874 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10875 
10876 static void __perf_tp_event_target_task(u64 count, void *record,
10877 					struct pt_regs *regs,
10878 					struct perf_sample_data *data,
10879 					struct perf_raw_record *raw,
10880 					struct perf_event *event)
10881 {
10882 	struct trace_entry *entry = record;
10883 
10884 	if (event->attr.config != entry->type)
10885 		return;
10886 	/* Cannot deliver synchronous signal to other task. */
10887 	if (event->attr.sigtrap)
10888 		return;
10889 	if (perf_tp_event_match(event, raw, regs)) {
10890 		perf_sample_data_init(data, 0, 0);
10891 		perf_sample_save_raw_data(data, event, raw);
10892 		perf_swevent_event(event, count, data, regs);
10893 	}
10894 }
10895 
10896 static void perf_tp_event_target_task(u64 count, void *record,
10897 				      struct pt_regs *regs,
10898 				      struct perf_sample_data *data,
10899 				      struct perf_raw_record *raw,
10900 				      struct perf_event_context *ctx)
10901 {
10902 	unsigned int cpu = smp_processor_id();
10903 	struct pmu *pmu = &perf_tracepoint;
10904 	struct perf_event *event, *sibling;
10905 
10906 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10907 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10908 		for_each_sibling_event(sibling, event)
10909 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10910 	}
10911 
10912 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10913 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10914 		for_each_sibling_event(sibling, event)
10915 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10916 	}
10917 }
10918 
10919 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10920 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10921 		   struct task_struct *task)
10922 {
10923 	struct perf_sample_data data;
10924 	struct perf_event *event;
10925 
10926 	struct perf_raw_record raw = {
10927 		.frag = {
10928 			.size = entry_size,
10929 			.data = record,
10930 		},
10931 	};
10932 
10933 	perf_trace_buf_update(record, event_type);
10934 
10935 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10936 		if (perf_tp_event_match(event, &raw, regs)) {
10937 			/*
10938 			 * Here use the same on-stack perf_sample_data,
10939 			 * some members in data are event-specific and
10940 			 * need to be re-computed for different sweveents.
10941 			 * Re-initialize data->sample_flags safely to avoid
10942 			 * the problem that next event skips preparing data
10943 			 * because data->sample_flags is set.
10944 			 */
10945 			perf_sample_data_init(&data, 0, 0);
10946 			perf_sample_save_raw_data(&data, event, &raw);
10947 			perf_swevent_event(event, count, &data, regs);
10948 		}
10949 	}
10950 
10951 	/*
10952 	 * If we got specified a target task, also iterate its context and
10953 	 * deliver this event there too.
10954 	 */
10955 	if (task && task != current) {
10956 		struct perf_event_context *ctx;
10957 
10958 		rcu_read_lock();
10959 		ctx = rcu_dereference(task->perf_event_ctxp);
10960 		if (!ctx)
10961 			goto unlock;
10962 
10963 		raw_spin_lock(&ctx->lock);
10964 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10965 		raw_spin_unlock(&ctx->lock);
10966 unlock:
10967 		rcu_read_unlock();
10968 	}
10969 
10970 	perf_swevent_put_recursion_context(rctx);
10971 }
10972 EXPORT_SYMBOL_GPL(perf_tp_event);
10973 
10974 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10975 /*
10976  * Flags in config, used by dynamic PMU kprobe and uprobe
10977  * The flags should match following PMU_FORMAT_ATTR().
10978  *
10979  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10980  *                               if not set, create kprobe/uprobe
10981  *
10982  * The following values specify a reference counter (or semaphore in the
10983  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10984  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10985  *
10986  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10987  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10988  */
10989 enum perf_probe_config {
10990 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10991 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10992 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10993 };
10994 
10995 PMU_FORMAT_ATTR(retprobe, "config:0");
10996 #endif
10997 
10998 #ifdef CONFIG_KPROBE_EVENTS
10999 static struct attribute *kprobe_attrs[] = {
11000 	&format_attr_retprobe.attr,
11001 	NULL,
11002 };
11003 
11004 static struct attribute_group kprobe_format_group = {
11005 	.name = "format",
11006 	.attrs = kprobe_attrs,
11007 };
11008 
11009 static const struct attribute_group *kprobe_attr_groups[] = {
11010 	&kprobe_format_group,
11011 	NULL,
11012 };
11013 
11014 static int perf_kprobe_event_init(struct perf_event *event);
11015 static struct pmu perf_kprobe = {
11016 	.task_ctx_nr	= perf_sw_context,
11017 	.event_init	= perf_kprobe_event_init,
11018 	.add		= perf_trace_add,
11019 	.del		= perf_trace_del,
11020 	.start		= perf_swevent_start,
11021 	.stop		= perf_swevent_stop,
11022 	.read		= perf_swevent_read,
11023 	.attr_groups	= kprobe_attr_groups,
11024 };
11025 
11026 static int perf_kprobe_event_init(struct perf_event *event)
11027 {
11028 	int err;
11029 	bool is_retprobe;
11030 
11031 	if (event->attr.type != perf_kprobe.type)
11032 		return -ENOENT;
11033 
11034 	if (!perfmon_capable())
11035 		return -EACCES;
11036 
11037 	/*
11038 	 * no branch sampling for probe events
11039 	 */
11040 	if (has_branch_stack(event))
11041 		return -EOPNOTSUPP;
11042 
11043 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11044 	err = perf_kprobe_init(event, is_retprobe);
11045 	if (err)
11046 		return err;
11047 
11048 	event->destroy = perf_kprobe_destroy;
11049 
11050 	return 0;
11051 }
11052 #endif /* CONFIG_KPROBE_EVENTS */
11053 
11054 #ifdef CONFIG_UPROBE_EVENTS
11055 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11056 
11057 static struct attribute *uprobe_attrs[] = {
11058 	&format_attr_retprobe.attr,
11059 	&format_attr_ref_ctr_offset.attr,
11060 	NULL,
11061 };
11062 
11063 static struct attribute_group uprobe_format_group = {
11064 	.name = "format",
11065 	.attrs = uprobe_attrs,
11066 };
11067 
11068 static const struct attribute_group *uprobe_attr_groups[] = {
11069 	&uprobe_format_group,
11070 	NULL,
11071 };
11072 
11073 static int perf_uprobe_event_init(struct perf_event *event);
11074 static struct pmu perf_uprobe = {
11075 	.task_ctx_nr	= perf_sw_context,
11076 	.event_init	= perf_uprobe_event_init,
11077 	.add		= perf_trace_add,
11078 	.del		= perf_trace_del,
11079 	.start		= perf_swevent_start,
11080 	.stop		= perf_swevent_stop,
11081 	.read		= perf_swevent_read,
11082 	.attr_groups	= uprobe_attr_groups,
11083 };
11084 
11085 static int perf_uprobe_event_init(struct perf_event *event)
11086 {
11087 	int err;
11088 	unsigned long ref_ctr_offset;
11089 	bool is_retprobe;
11090 
11091 	if (event->attr.type != perf_uprobe.type)
11092 		return -ENOENT;
11093 
11094 	if (!perfmon_capable())
11095 		return -EACCES;
11096 
11097 	/*
11098 	 * no branch sampling for probe events
11099 	 */
11100 	if (has_branch_stack(event))
11101 		return -EOPNOTSUPP;
11102 
11103 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11104 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11105 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11106 	if (err)
11107 		return err;
11108 
11109 	event->destroy = perf_uprobe_destroy;
11110 
11111 	return 0;
11112 }
11113 #endif /* CONFIG_UPROBE_EVENTS */
11114 
11115 static inline void perf_tp_register(void)
11116 {
11117 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11118 #ifdef CONFIG_KPROBE_EVENTS
11119 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11120 #endif
11121 #ifdef CONFIG_UPROBE_EVENTS
11122 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11123 #endif
11124 }
11125 
11126 static void perf_event_free_filter(struct perf_event *event)
11127 {
11128 	ftrace_profile_free_filter(event);
11129 }
11130 
11131 /*
11132  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11133  * with perf_event_open()
11134  */
11135 static inline bool perf_event_is_tracing(struct perf_event *event)
11136 {
11137 	if (event->pmu == &perf_tracepoint)
11138 		return true;
11139 #ifdef CONFIG_KPROBE_EVENTS
11140 	if (event->pmu == &perf_kprobe)
11141 		return true;
11142 #endif
11143 #ifdef CONFIG_UPROBE_EVENTS
11144 	if (event->pmu == &perf_uprobe)
11145 		return true;
11146 #endif
11147 	return false;
11148 }
11149 
11150 static int __perf_event_set_bpf_prog(struct perf_event *event,
11151 				     struct bpf_prog *prog,
11152 				     u64 bpf_cookie)
11153 {
11154 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11155 
11156 	if (event->state <= PERF_EVENT_STATE_REVOKED)
11157 		return -ENODEV;
11158 
11159 	if (!perf_event_is_tracing(event))
11160 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11161 
11162 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11163 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11164 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11165 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11166 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11167 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11168 		return -EINVAL;
11169 
11170 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11171 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11172 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11173 		return -EINVAL;
11174 
11175 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11176 		/* only uprobe programs are allowed to be sleepable */
11177 		return -EINVAL;
11178 
11179 	/* Kprobe override only works for kprobes, not uprobes. */
11180 	if (prog->kprobe_override && !is_kprobe)
11181 		return -EINVAL;
11182 
11183 	if (is_tracepoint || is_syscall_tp) {
11184 		int off = trace_event_get_offsets(event->tp_event);
11185 
11186 		if (prog->aux->max_ctx_offset > off)
11187 			return -EACCES;
11188 	}
11189 
11190 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11191 }
11192 
11193 int perf_event_set_bpf_prog(struct perf_event *event,
11194 			    struct bpf_prog *prog,
11195 			    u64 bpf_cookie)
11196 {
11197 	struct perf_event_context *ctx;
11198 	int ret;
11199 
11200 	ctx = perf_event_ctx_lock(event);
11201 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11202 	perf_event_ctx_unlock(event, ctx);
11203 
11204 	return ret;
11205 }
11206 
11207 void perf_event_free_bpf_prog(struct perf_event *event)
11208 {
11209 	if (!event->prog)
11210 		return;
11211 
11212 	if (!perf_event_is_tracing(event)) {
11213 		perf_event_free_bpf_handler(event);
11214 		return;
11215 	}
11216 	perf_event_detach_bpf_prog(event);
11217 }
11218 
11219 #else
11220 
11221 static inline void perf_tp_register(void)
11222 {
11223 }
11224 
11225 static void perf_event_free_filter(struct perf_event *event)
11226 {
11227 }
11228 
11229 static int __perf_event_set_bpf_prog(struct perf_event *event,
11230 				     struct bpf_prog *prog,
11231 				     u64 bpf_cookie)
11232 {
11233 	return -ENOENT;
11234 }
11235 
11236 int perf_event_set_bpf_prog(struct perf_event *event,
11237 			    struct bpf_prog *prog,
11238 			    u64 bpf_cookie)
11239 {
11240 	return -ENOENT;
11241 }
11242 
11243 void perf_event_free_bpf_prog(struct perf_event *event)
11244 {
11245 }
11246 #endif /* CONFIG_EVENT_TRACING */
11247 
11248 #ifdef CONFIG_HAVE_HW_BREAKPOINT
11249 void perf_bp_event(struct perf_event *bp, void *data)
11250 {
11251 	struct perf_sample_data sample;
11252 	struct pt_regs *regs = data;
11253 
11254 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11255 
11256 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11257 		perf_swevent_event(bp, 1, &sample, regs);
11258 }
11259 #endif
11260 
11261 /*
11262  * Allocate a new address filter
11263  */
11264 static struct perf_addr_filter *
11265 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11266 {
11267 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11268 	struct perf_addr_filter *filter;
11269 
11270 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11271 	if (!filter)
11272 		return NULL;
11273 
11274 	INIT_LIST_HEAD(&filter->entry);
11275 	list_add_tail(&filter->entry, filters);
11276 
11277 	return filter;
11278 }
11279 
11280 static void free_filters_list(struct list_head *filters)
11281 {
11282 	struct perf_addr_filter *filter, *iter;
11283 
11284 	list_for_each_entry_safe(filter, iter, filters, entry) {
11285 		path_put(&filter->path);
11286 		list_del(&filter->entry);
11287 		kfree(filter);
11288 	}
11289 }
11290 
11291 /*
11292  * Free existing address filters and optionally install new ones
11293  */
11294 static void perf_addr_filters_splice(struct perf_event *event,
11295 				     struct list_head *head)
11296 {
11297 	unsigned long flags;
11298 	LIST_HEAD(list);
11299 
11300 	if (!has_addr_filter(event))
11301 		return;
11302 
11303 	/* don't bother with children, they don't have their own filters */
11304 	if (event->parent)
11305 		return;
11306 
11307 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11308 
11309 	list_splice_init(&event->addr_filters.list, &list);
11310 	if (head)
11311 		list_splice(head, &event->addr_filters.list);
11312 
11313 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11314 
11315 	free_filters_list(&list);
11316 }
11317 
11318 static void perf_free_addr_filters(struct perf_event *event)
11319 {
11320 	/*
11321 	 * Used during free paths, there is no concurrency.
11322 	 */
11323 	if (list_empty(&event->addr_filters.list))
11324 		return;
11325 
11326 	perf_addr_filters_splice(event, NULL);
11327 }
11328 
11329 /*
11330  * Scan through mm's vmas and see if one of them matches the
11331  * @filter; if so, adjust filter's address range.
11332  * Called with mm::mmap_lock down for reading.
11333  */
11334 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11335 				   struct mm_struct *mm,
11336 				   struct perf_addr_filter_range *fr)
11337 {
11338 	struct vm_area_struct *vma;
11339 	VMA_ITERATOR(vmi, mm, 0);
11340 
11341 	for_each_vma(vmi, vma) {
11342 		if (!vma->vm_file)
11343 			continue;
11344 
11345 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11346 			return;
11347 	}
11348 }
11349 
11350 /*
11351  * Update event's address range filters based on the
11352  * task's existing mappings, if any.
11353  */
11354 static void perf_event_addr_filters_apply(struct perf_event *event)
11355 {
11356 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11357 	struct task_struct *task = READ_ONCE(event->ctx->task);
11358 	struct perf_addr_filter *filter;
11359 	struct mm_struct *mm = NULL;
11360 	unsigned int count = 0;
11361 	unsigned long flags;
11362 
11363 	/*
11364 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11365 	 * will stop on the parent's child_mutex that our caller is also holding
11366 	 */
11367 	if (task == TASK_TOMBSTONE)
11368 		return;
11369 
11370 	if (ifh->nr_file_filters) {
11371 		mm = get_task_mm(task);
11372 		if (!mm)
11373 			goto restart;
11374 
11375 		mmap_read_lock(mm);
11376 	}
11377 
11378 	raw_spin_lock_irqsave(&ifh->lock, flags);
11379 	list_for_each_entry(filter, &ifh->list, entry) {
11380 		if (filter->path.dentry) {
11381 			/*
11382 			 * Adjust base offset if the filter is associated to a
11383 			 * binary that needs to be mapped:
11384 			 */
11385 			event->addr_filter_ranges[count].start = 0;
11386 			event->addr_filter_ranges[count].size = 0;
11387 
11388 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11389 		} else {
11390 			event->addr_filter_ranges[count].start = filter->offset;
11391 			event->addr_filter_ranges[count].size  = filter->size;
11392 		}
11393 
11394 		count++;
11395 	}
11396 
11397 	event->addr_filters_gen++;
11398 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11399 
11400 	if (ifh->nr_file_filters) {
11401 		mmap_read_unlock(mm);
11402 
11403 		mmput(mm);
11404 	}
11405 
11406 restart:
11407 	perf_event_stop(event, 1);
11408 }
11409 
11410 /*
11411  * Address range filtering: limiting the data to certain
11412  * instruction address ranges. Filters are ioctl()ed to us from
11413  * userspace as ascii strings.
11414  *
11415  * Filter string format:
11416  *
11417  * ACTION RANGE_SPEC
11418  * where ACTION is one of the
11419  *  * "filter": limit the trace to this region
11420  *  * "start": start tracing from this address
11421  *  * "stop": stop tracing at this address/region;
11422  * RANGE_SPEC is
11423  *  * for kernel addresses: <start address>[/<size>]
11424  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11425  *
11426  * if <size> is not specified or is zero, the range is treated as a single
11427  * address; not valid for ACTION=="filter".
11428  */
11429 enum {
11430 	IF_ACT_NONE = -1,
11431 	IF_ACT_FILTER,
11432 	IF_ACT_START,
11433 	IF_ACT_STOP,
11434 	IF_SRC_FILE,
11435 	IF_SRC_KERNEL,
11436 	IF_SRC_FILEADDR,
11437 	IF_SRC_KERNELADDR,
11438 };
11439 
11440 enum {
11441 	IF_STATE_ACTION = 0,
11442 	IF_STATE_SOURCE,
11443 	IF_STATE_END,
11444 };
11445 
11446 static const match_table_t if_tokens = {
11447 	{ IF_ACT_FILTER,	"filter" },
11448 	{ IF_ACT_START,		"start" },
11449 	{ IF_ACT_STOP,		"stop" },
11450 	{ IF_SRC_FILE,		"%u/%u@%s" },
11451 	{ IF_SRC_KERNEL,	"%u/%u" },
11452 	{ IF_SRC_FILEADDR,	"%u@%s" },
11453 	{ IF_SRC_KERNELADDR,	"%u" },
11454 	{ IF_ACT_NONE,		NULL },
11455 };
11456 
11457 /*
11458  * Address filter string parser
11459  */
11460 static int
11461 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11462 			     struct list_head *filters)
11463 {
11464 	struct perf_addr_filter *filter = NULL;
11465 	char *start, *orig, *filename = NULL;
11466 	substring_t args[MAX_OPT_ARGS];
11467 	int state = IF_STATE_ACTION, token;
11468 	unsigned int kernel = 0;
11469 	int ret = -EINVAL;
11470 
11471 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11472 	if (!fstr)
11473 		return -ENOMEM;
11474 
11475 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11476 		static const enum perf_addr_filter_action_t actions[] = {
11477 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11478 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11479 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11480 		};
11481 		ret = -EINVAL;
11482 
11483 		if (!*start)
11484 			continue;
11485 
11486 		/* filter definition begins */
11487 		if (state == IF_STATE_ACTION) {
11488 			filter = perf_addr_filter_new(event, filters);
11489 			if (!filter)
11490 				goto fail;
11491 		}
11492 
11493 		token = match_token(start, if_tokens, args);
11494 		switch (token) {
11495 		case IF_ACT_FILTER:
11496 		case IF_ACT_START:
11497 		case IF_ACT_STOP:
11498 			if (state != IF_STATE_ACTION)
11499 				goto fail;
11500 
11501 			filter->action = actions[token];
11502 			state = IF_STATE_SOURCE;
11503 			break;
11504 
11505 		case IF_SRC_KERNELADDR:
11506 		case IF_SRC_KERNEL:
11507 			kernel = 1;
11508 			fallthrough;
11509 
11510 		case IF_SRC_FILEADDR:
11511 		case IF_SRC_FILE:
11512 			if (state != IF_STATE_SOURCE)
11513 				goto fail;
11514 
11515 			*args[0].to = 0;
11516 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11517 			if (ret)
11518 				goto fail;
11519 
11520 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11521 				*args[1].to = 0;
11522 				ret = kstrtoul(args[1].from, 0, &filter->size);
11523 				if (ret)
11524 					goto fail;
11525 			}
11526 
11527 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11528 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11529 
11530 				kfree(filename);
11531 				filename = match_strdup(&args[fpos]);
11532 				if (!filename) {
11533 					ret = -ENOMEM;
11534 					goto fail;
11535 				}
11536 			}
11537 
11538 			state = IF_STATE_END;
11539 			break;
11540 
11541 		default:
11542 			goto fail;
11543 		}
11544 
11545 		/*
11546 		 * Filter definition is fully parsed, validate and install it.
11547 		 * Make sure that it doesn't contradict itself or the event's
11548 		 * attribute.
11549 		 */
11550 		if (state == IF_STATE_END) {
11551 			ret = -EINVAL;
11552 
11553 			/*
11554 			 * ACTION "filter" must have a non-zero length region
11555 			 * specified.
11556 			 */
11557 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11558 			    !filter->size)
11559 				goto fail;
11560 
11561 			if (!kernel) {
11562 				if (!filename)
11563 					goto fail;
11564 
11565 				/*
11566 				 * For now, we only support file-based filters
11567 				 * in per-task events; doing so for CPU-wide
11568 				 * events requires additional context switching
11569 				 * trickery, since same object code will be
11570 				 * mapped at different virtual addresses in
11571 				 * different processes.
11572 				 */
11573 				ret = -EOPNOTSUPP;
11574 				if (!event->ctx->task)
11575 					goto fail;
11576 
11577 				/* look up the path and grab its inode */
11578 				ret = kern_path(filename, LOOKUP_FOLLOW,
11579 						&filter->path);
11580 				if (ret)
11581 					goto fail;
11582 
11583 				ret = -EINVAL;
11584 				if (!filter->path.dentry ||
11585 				    !S_ISREG(d_inode(filter->path.dentry)
11586 					     ->i_mode))
11587 					goto fail;
11588 
11589 				event->addr_filters.nr_file_filters++;
11590 			}
11591 
11592 			/* ready to consume more filters */
11593 			kfree(filename);
11594 			filename = NULL;
11595 			state = IF_STATE_ACTION;
11596 			filter = NULL;
11597 			kernel = 0;
11598 		}
11599 	}
11600 
11601 	if (state != IF_STATE_ACTION)
11602 		goto fail;
11603 
11604 	kfree(filename);
11605 	kfree(orig);
11606 
11607 	return 0;
11608 
11609 fail:
11610 	kfree(filename);
11611 	free_filters_list(filters);
11612 	kfree(orig);
11613 
11614 	return ret;
11615 }
11616 
11617 static int
11618 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11619 {
11620 	LIST_HEAD(filters);
11621 	int ret;
11622 
11623 	/*
11624 	 * Since this is called in perf_ioctl() path, we're already holding
11625 	 * ctx::mutex.
11626 	 */
11627 	lockdep_assert_held(&event->ctx->mutex);
11628 
11629 	if (WARN_ON_ONCE(event->parent))
11630 		return -EINVAL;
11631 
11632 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11633 	if (ret)
11634 		goto fail_clear_files;
11635 
11636 	ret = event->pmu->addr_filters_validate(&filters);
11637 	if (ret)
11638 		goto fail_free_filters;
11639 
11640 	/* remove existing filters, if any */
11641 	perf_addr_filters_splice(event, &filters);
11642 
11643 	/* install new filters */
11644 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11645 
11646 	return ret;
11647 
11648 fail_free_filters:
11649 	free_filters_list(&filters);
11650 
11651 fail_clear_files:
11652 	event->addr_filters.nr_file_filters = 0;
11653 
11654 	return ret;
11655 }
11656 
11657 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11658 {
11659 	int ret = -EINVAL;
11660 	char *filter_str;
11661 
11662 	filter_str = strndup_user(arg, PAGE_SIZE);
11663 	if (IS_ERR(filter_str))
11664 		return PTR_ERR(filter_str);
11665 
11666 #ifdef CONFIG_EVENT_TRACING
11667 	if (perf_event_is_tracing(event)) {
11668 		struct perf_event_context *ctx = event->ctx;
11669 
11670 		/*
11671 		 * Beware, here be dragons!!
11672 		 *
11673 		 * the tracepoint muck will deadlock against ctx->mutex, but
11674 		 * the tracepoint stuff does not actually need it. So
11675 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11676 		 * already have a reference on ctx.
11677 		 *
11678 		 * This can result in event getting moved to a different ctx,
11679 		 * but that does not affect the tracepoint state.
11680 		 */
11681 		mutex_unlock(&ctx->mutex);
11682 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11683 		mutex_lock(&ctx->mutex);
11684 	} else
11685 #endif
11686 	if (has_addr_filter(event))
11687 		ret = perf_event_set_addr_filter(event, filter_str);
11688 
11689 	kfree(filter_str);
11690 	return ret;
11691 }
11692 
11693 /*
11694  * hrtimer based swevent callback
11695  */
11696 
11697 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11698 {
11699 	enum hrtimer_restart ret = HRTIMER_RESTART;
11700 	struct perf_sample_data data;
11701 	struct pt_regs *regs;
11702 	struct perf_event *event;
11703 	u64 period;
11704 
11705 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11706 
11707 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11708 		return HRTIMER_NORESTART;
11709 
11710 	event->pmu->read(event);
11711 
11712 	perf_sample_data_init(&data, 0, event->hw.last_period);
11713 	regs = get_irq_regs();
11714 
11715 	if (regs && !perf_exclude_event(event, regs)) {
11716 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11717 			if (__perf_event_overflow(event, 1, &data, regs))
11718 				ret = HRTIMER_NORESTART;
11719 	}
11720 
11721 	period = max_t(u64, 10000, event->hw.sample_period);
11722 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11723 
11724 	return ret;
11725 }
11726 
11727 static void perf_swevent_start_hrtimer(struct perf_event *event)
11728 {
11729 	struct hw_perf_event *hwc = &event->hw;
11730 	s64 period;
11731 
11732 	if (!is_sampling_event(event))
11733 		return;
11734 
11735 	period = local64_read(&hwc->period_left);
11736 	if (period) {
11737 		if (period < 0)
11738 			period = 10000;
11739 
11740 		local64_set(&hwc->period_left, 0);
11741 	} else {
11742 		period = max_t(u64, 10000, hwc->sample_period);
11743 	}
11744 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11745 		      HRTIMER_MODE_REL_PINNED_HARD);
11746 }
11747 
11748 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11749 {
11750 	struct hw_perf_event *hwc = &event->hw;
11751 
11752 	if (is_sampling_event(event)) {
11753 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11754 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11755 
11756 		hrtimer_cancel(&hwc->hrtimer);
11757 	}
11758 }
11759 
11760 static void perf_swevent_init_hrtimer(struct perf_event *event)
11761 {
11762 	struct hw_perf_event *hwc = &event->hw;
11763 
11764 	if (!is_sampling_event(event))
11765 		return;
11766 
11767 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11768 
11769 	/*
11770 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11771 	 * mapping and avoid the whole period adjust feedback stuff.
11772 	 */
11773 	if (event->attr.freq) {
11774 		long freq = event->attr.sample_freq;
11775 
11776 		event->attr.sample_period = NSEC_PER_SEC / freq;
11777 		hwc->sample_period = event->attr.sample_period;
11778 		local64_set(&hwc->period_left, hwc->sample_period);
11779 		hwc->last_period = hwc->sample_period;
11780 		event->attr.freq = 0;
11781 	}
11782 }
11783 
11784 /*
11785  * Software event: cpu wall time clock
11786  */
11787 
11788 static void cpu_clock_event_update(struct perf_event *event)
11789 {
11790 	s64 prev;
11791 	u64 now;
11792 
11793 	now = local_clock();
11794 	prev = local64_xchg(&event->hw.prev_count, now);
11795 	local64_add(now - prev, &event->count);
11796 }
11797 
11798 static void cpu_clock_event_start(struct perf_event *event, int flags)
11799 {
11800 	local64_set(&event->hw.prev_count, local_clock());
11801 	perf_swevent_start_hrtimer(event);
11802 }
11803 
11804 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11805 {
11806 	perf_swevent_cancel_hrtimer(event);
11807 	cpu_clock_event_update(event);
11808 }
11809 
11810 static int cpu_clock_event_add(struct perf_event *event, int flags)
11811 {
11812 	if (flags & PERF_EF_START)
11813 		cpu_clock_event_start(event, flags);
11814 	perf_event_update_userpage(event);
11815 
11816 	return 0;
11817 }
11818 
11819 static void cpu_clock_event_del(struct perf_event *event, int flags)
11820 {
11821 	cpu_clock_event_stop(event, flags);
11822 }
11823 
11824 static void cpu_clock_event_read(struct perf_event *event)
11825 {
11826 	cpu_clock_event_update(event);
11827 }
11828 
11829 static int cpu_clock_event_init(struct perf_event *event)
11830 {
11831 	if (event->attr.type != perf_cpu_clock.type)
11832 		return -ENOENT;
11833 
11834 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11835 		return -ENOENT;
11836 
11837 	/*
11838 	 * no branch sampling for software events
11839 	 */
11840 	if (has_branch_stack(event))
11841 		return -EOPNOTSUPP;
11842 
11843 	perf_swevent_init_hrtimer(event);
11844 
11845 	return 0;
11846 }
11847 
11848 static struct pmu perf_cpu_clock = {
11849 	.task_ctx_nr	= perf_sw_context,
11850 
11851 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11852 	.dev		= PMU_NULL_DEV,
11853 
11854 	.event_init	= cpu_clock_event_init,
11855 	.add		= cpu_clock_event_add,
11856 	.del		= cpu_clock_event_del,
11857 	.start		= cpu_clock_event_start,
11858 	.stop		= cpu_clock_event_stop,
11859 	.read		= cpu_clock_event_read,
11860 };
11861 
11862 /*
11863  * Software event: task time clock
11864  */
11865 
11866 static void task_clock_event_update(struct perf_event *event, u64 now)
11867 {
11868 	u64 prev;
11869 	s64 delta;
11870 
11871 	prev = local64_xchg(&event->hw.prev_count, now);
11872 	delta = now - prev;
11873 	local64_add(delta, &event->count);
11874 }
11875 
11876 static void task_clock_event_start(struct perf_event *event, int flags)
11877 {
11878 	local64_set(&event->hw.prev_count, event->ctx->time);
11879 	perf_swevent_start_hrtimer(event);
11880 }
11881 
11882 static void task_clock_event_stop(struct perf_event *event, int flags)
11883 {
11884 	perf_swevent_cancel_hrtimer(event);
11885 	task_clock_event_update(event, event->ctx->time);
11886 }
11887 
11888 static int task_clock_event_add(struct perf_event *event, int flags)
11889 {
11890 	if (flags & PERF_EF_START)
11891 		task_clock_event_start(event, flags);
11892 	perf_event_update_userpage(event);
11893 
11894 	return 0;
11895 }
11896 
11897 static void task_clock_event_del(struct perf_event *event, int flags)
11898 {
11899 	task_clock_event_stop(event, PERF_EF_UPDATE);
11900 }
11901 
11902 static void task_clock_event_read(struct perf_event *event)
11903 {
11904 	u64 now = perf_clock();
11905 	u64 delta = now - event->ctx->timestamp;
11906 	u64 time = event->ctx->time + delta;
11907 
11908 	task_clock_event_update(event, time);
11909 }
11910 
11911 static int task_clock_event_init(struct perf_event *event)
11912 {
11913 	if (event->attr.type != perf_task_clock.type)
11914 		return -ENOENT;
11915 
11916 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11917 		return -ENOENT;
11918 
11919 	/*
11920 	 * no branch sampling for software events
11921 	 */
11922 	if (has_branch_stack(event))
11923 		return -EOPNOTSUPP;
11924 
11925 	perf_swevent_init_hrtimer(event);
11926 
11927 	return 0;
11928 }
11929 
11930 static struct pmu perf_task_clock = {
11931 	.task_ctx_nr	= perf_sw_context,
11932 
11933 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11934 	.dev		= PMU_NULL_DEV,
11935 
11936 	.event_init	= task_clock_event_init,
11937 	.add		= task_clock_event_add,
11938 	.del		= task_clock_event_del,
11939 	.start		= task_clock_event_start,
11940 	.stop		= task_clock_event_stop,
11941 	.read		= task_clock_event_read,
11942 };
11943 
11944 static void perf_pmu_nop_void(struct pmu *pmu)
11945 {
11946 }
11947 
11948 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11949 {
11950 }
11951 
11952 static int perf_pmu_nop_int(struct pmu *pmu)
11953 {
11954 	return 0;
11955 }
11956 
11957 static int perf_event_nop_int(struct perf_event *event, u64 value)
11958 {
11959 	return 0;
11960 }
11961 
11962 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11963 
11964 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11965 {
11966 	__this_cpu_write(nop_txn_flags, flags);
11967 
11968 	if (flags & ~PERF_PMU_TXN_ADD)
11969 		return;
11970 
11971 	perf_pmu_disable(pmu);
11972 }
11973 
11974 static int perf_pmu_commit_txn(struct pmu *pmu)
11975 {
11976 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11977 
11978 	__this_cpu_write(nop_txn_flags, 0);
11979 
11980 	if (flags & ~PERF_PMU_TXN_ADD)
11981 		return 0;
11982 
11983 	perf_pmu_enable(pmu);
11984 	return 0;
11985 }
11986 
11987 static void perf_pmu_cancel_txn(struct pmu *pmu)
11988 {
11989 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11990 
11991 	__this_cpu_write(nop_txn_flags, 0);
11992 
11993 	if (flags & ~PERF_PMU_TXN_ADD)
11994 		return;
11995 
11996 	perf_pmu_enable(pmu);
11997 }
11998 
11999 static int perf_event_idx_default(struct perf_event *event)
12000 {
12001 	return 0;
12002 }
12003 
12004 /*
12005  * Let userspace know that this PMU supports address range filtering:
12006  */
12007 static ssize_t nr_addr_filters_show(struct device *dev,
12008 				    struct device_attribute *attr,
12009 				    char *page)
12010 {
12011 	struct pmu *pmu = dev_get_drvdata(dev);
12012 
12013 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12014 }
12015 DEVICE_ATTR_RO(nr_addr_filters);
12016 
12017 static struct idr pmu_idr;
12018 
12019 static ssize_t
12020 type_show(struct device *dev, struct device_attribute *attr, char *page)
12021 {
12022 	struct pmu *pmu = dev_get_drvdata(dev);
12023 
12024 	return sysfs_emit(page, "%d\n", pmu->type);
12025 }
12026 static DEVICE_ATTR_RO(type);
12027 
12028 static ssize_t
12029 perf_event_mux_interval_ms_show(struct device *dev,
12030 				struct device_attribute *attr,
12031 				char *page)
12032 {
12033 	struct pmu *pmu = dev_get_drvdata(dev);
12034 
12035 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12036 }
12037 
12038 static DEFINE_MUTEX(mux_interval_mutex);
12039 
12040 static ssize_t
12041 perf_event_mux_interval_ms_store(struct device *dev,
12042 				 struct device_attribute *attr,
12043 				 const char *buf, size_t count)
12044 {
12045 	struct pmu *pmu = dev_get_drvdata(dev);
12046 	int timer, cpu, ret;
12047 
12048 	ret = kstrtoint(buf, 0, &timer);
12049 	if (ret)
12050 		return ret;
12051 
12052 	if (timer < 1)
12053 		return -EINVAL;
12054 
12055 	/* same value, noting to do */
12056 	if (timer == pmu->hrtimer_interval_ms)
12057 		return count;
12058 
12059 	mutex_lock(&mux_interval_mutex);
12060 	pmu->hrtimer_interval_ms = timer;
12061 
12062 	/* update all cpuctx for this PMU */
12063 	cpus_read_lock();
12064 	for_each_online_cpu(cpu) {
12065 		struct perf_cpu_pmu_context *cpc;
12066 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12067 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12068 
12069 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12070 	}
12071 	cpus_read_unlock();
12072 	mutex_unlock(&mux_interval_mutex);
12073 
12074 	return count;
12075 }
12076 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12077 
12078 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12079 {
12080 	switch (scope) {
12081 	case PERF_PMU_SCOPE_CORE:
12082 		return topology_sibling_cpumask(cpu);
12083 	case PERF_PMU_SCOPE_DIE:
12084 		return topology_die_cpumask(cpu);
12085 	case PERF_PMU_SCOPE_CLUSTER:
12086 		return topology_cluster_cpumask(cpu);
12087 	case PERF_PMU_SCOPE_PKG:
12088 		return topology_core_cpumask(cpu);
12089 	case PERF_PMU_SCOPE_SYS_WIDE:
12090 		return cpu_online_mask;
12091 	}
12092 
12093 	return NULL;
12094 }
12095 
12096 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12097 {
12098 	switch (scope) {
12099 	case PERF_PMU_SCOPE_CORE:
12100 		return perf_online_core_mask;
12101 	case PERF_PMU_SCOPE_DIE:
12102 		return perf_online_die_mask;
12103 	case PERF_PMU_SCOPE_CLUSTER:
12104 		return perf_online_cluster_mask;
12105 	case PERF_PMU_SCOPE_PKG:
12106 		return perf_online_pkg_mask;
12107 	case PERF_PMU_SCOPE_SYS_WIDE:
12108 		return perf_online_sys_mask;
12109 	}
12110 
12111 	return NULL;
12112 }
12113 
12114 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12115 			    char *buf)
12116 {
12117 	struct pmu *pmu = dev_get_drvdata(dev);
12118 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12119 
12120 	if (mask)
12121 		return cpumap_print_to_pagebuf(true, buf, mask);
12122 	return 0;
12123 }
12124 
12125 static DEVICE_ATTR_RO(cpumask);
12126 
12127 static struct attribute *pmu_dev_attrs[] = {
12128 	&dev_attr_type.attr,
12129 	&dev_attr_perf_event_mux_interval_ms.attr,
12130 	&dev_attr_nr_addr_filters.attr,
12131 	&dev_attr_cpumask.attr,
12132 	NULL,
12133 };
12134 
12135 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12136 {
12137 	struct device *dev = kobj_to_dev(kobj);
12138 	struct pmu *pmu = dev_get_drvdata(dev);
12139 
12140 	if (n == 2 && !pmu->nr_addr_filters)
12141 		return 0;
12142 
12143 	/* cpumask */
12144 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12145 		return 0;
12146 
12147 	return a->mode;
12148 }
12149 
12150 static struct attribute_group pmu_dev_attr_group = {
12151 	.is_visible = pmu_dev_is_visible,
12152 	.attrs = pmu_dev_attrs,
12153 };
12154 
12155 static const struct attribute_group *pmu_dev_groups[] = {
12156 	&pmu_dev_attr_group,
12157 	NULL,
12158 };
12159 
12160 static int pmu_bus_running;
12161 static struct bus_type pmu_bus = {
12162 	.name		= "event_source",
12163 	.dev_groups	= pmu_dev_groups,
12164 };
12165 
12166 static void pmu_dev_release(struct device *dev)
12167 {
12168 	kfree(dev);
12169 }
12170 
12171 static int pmu_dev_alloc(struct pmu *pmu)
12172 {
12173 	int ret = -ENOMEM;
12174 
12175 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12176 	if (!pmu->dev)
12177 		goto out;
12178 
12179 	pmu->dev->groups = pmu->attr_groups;
12180 	device_initialize(pmu->dev);
12181 
12182 	dev_set_drvdata(pmu->dev, pmu);
12183 	pmu->dev->bus = &pmu_bus;
12184 	pmu->dev->parent = pmu->parent;
12185 	pmu->dev->release = pmu_dev_release;
12186 
12187 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12188 	if (ret)
12189 		goto free_dev;
12190 
12191 	ret = device_add(pmu->dev);
12192 	if (ret)
12193 		goto free_dev;
12194 
12195 	if (pmu->attr_update) {
12196 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12197 		if (ret)
12198 			goto del_dev;
12199 	}
12200 
12201 out:
12202 	return ret;
12203 
12204 del_dev:
12205 	device_del(pmu->dev);
12206 
12207 free_dev:
12208 	put_device(pmu->dev);
12209 	pmu->dev = NULL;
12210 	goto out;
12211 }
12212 
12213 static struct lock_class_key cpuctx_mutex;
12214 static struct lock_class_key cpuctx_lock;
12215 
12216 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12217 {
12218 	void *tmp, *val = idr_find(idr, id);
12219 
12220 	if (val != old)
12221 		return false;
12222 
12223 	tmp = idr_replace(idr, new, id);
12224 	if (IS_ERR(tmp))
12225 		return false;
12226 
12227 	WARN_ON_ONCE(tmp != val);
12228 	return true;
12229 }
12230 
12231 static void perf_pmu_free(struct pmu *pmu)
12232 {
12233 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12234 		if (pmu->nr_addr_filters)
12235 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12236 		device_del(pmu->dev);
12237 		put_device(pmu->dev);
12238 	}
12239 
12240 	if (pmu->cpu_pmu_context) {
12241 		int cpu;
12242 
12243 		for_each_possible_cpu(cpu) {
12244 			struct perf_cpu_pmu_context *cpc;
12245 
12246 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12247 			if (!cpc)
12248 				continue;
12249 			if (cpc->epc.embedded) {
12250 				/* refcount managed */
12251 				put_pmu_ctx(&cpc->epc);
12252 				continue;
12253 			}
12254 			kfree(cpc);
12255 		}
12256 		free_percpu(pmu->cpu_pmu_context);
12257 	}
12258 }
12259 
12260 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12261 
12262 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12263 {
12264 	int cpu, max = PERF_TYPE_MAX;
12265 
12266 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12267 	guard(mutex)(&pmus_lock);
12268 
12269 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12270 		return -EINVAL;
12271 
12272 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12273 		      "Can not register a pmu with an invalid scope.\n"))
12274 		return -EINVAL;
12275 
12276 	pmu->name = name;
12277 
12278 	if (type >= 0)
12279 		max = type;
12280 
12281 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12282 	if (pmu_type.id < 0)
12283 		return pmu_type.id;
12284 
12285 	WARN_ON(type >= 0 && pmu_type.id != type);
12286 
12287 	pmu->type = pmu_type.id;
12288 	atomic_set(&pmu->exclusive_cnt, 0);
12289 
12290 	if (pmu_bus_running && !pmu->dev) {
12291 		int ret = pmu_dev_alloc(pmu);
12292 		if (ret)
12293 			return ret;
12294 	}
12295 
12296 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12297 	if (!pmu->cpu_pmu_context)
12298 		return -ENOMEM;
12299 
12300 	for_each_possible_cpu(cpu) {
12301 		struct perf_cpu_pmu_context *cpc =
12302 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12303 				     GFP_KERNEL | __GFP_ZERO,
12304 				     cpu_to_node(cpu));
12305 
12306 		if (!cpc)
12307 			return -ENOMEM;
12308 
12309 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12310 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12311 		__perf_mux_hrtimer_init(cpc, cpu);
12312 	}
12313 
12314 	if (!pmu->start_txn) {
12315 		if (pmu->pmu_enable) {
12316 			/*
12317 			 * If we have pmu_enable/pmu_disable calls, install
12318 			 * transaction stubs that use that to try and batch
12319 			 * hardware accesses.
12320 			 */
12321 			pmu->start_txn  = perf_pmu_start_txn;
12322 			pmu->commit_txn = perf_pmu_commit_txn;
12323 			pmu->cancel_txn = perf_pmu_cancel_txn;
12324 		} else {
12325 			pmu->start_txn  = perf_pmu_nop_txn;
12326 			pmu->commit_txn = perf_pmu_nop_int;
12327 			pmu->cancel_txn = perf_pmu_nop_void;
12328 		}
12329 	}
12330 
12331 	if (!pmu->pmu_enable) {
12332 		pmu->pmu_enable  = perf_pmu_nop_void;
12333 		pmu->pmu_disable = perf_pmu_nop_void;
12334 	}
12335 
12336 	if (!pmu->check_period)
12337 		pmu->check_period = perf_event_nop_int;
12338 
12339 	if (!pmu->event_idx)
12340 		pmu->event_idx = perf_event_idx_default;
12341 
12342 	INIT_LIST_HEAD(&pmu->events);
12343 	spin_lock_init(&pmu->events_lock);
12344 
12345 	/*
12346 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12347 	 */
12348 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12349 		return -EINVAL;
12350 	list_add_rcu(&pmu->entry, &pmus);
12351 
12352 	take_idr_id(pmu_type);
12353 	_pmu = no_free_ptr(pmu); // let it rip
12354 	return 0;
12355 }
12356 EXPORT_SYMBOL_GPL(perf_pmu_register);
12357 
12358 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12359 			       struct perf_event_context *ctx)
12360 {
12361 	/*
12362 	 * De-schedule the event and mark it REVOKED.
12363 	 */
12364 	perf_event_exit_event(event, ctx, true);
12365 
12366 	/*
12367 	 * All _free_event() bits that rely on event->pmu:
12368 	 *
12369 	 * Notably, perf_mmap() relies on the ordering here.
12370 	 */
12371 	scoped_guard (mutex, &event->mmap_mutex) {
12372 		WARN_ON_ONCE(pmu->event_unmapped);
12373 		/*
12374 		 * Mostly an empty lock sequence, such that perf_mmap(), which
12375 		 * relies on mmap_mutex, is sure to observe the state change.
12376 		 */
12377 	}
12378 
12379 	perf_event_free_bpf_prog(event);
12380 	perf_free_addr_filters(event);
12381 
12382 	if (event->destroy) {
12383 		event->destroy(event);
12384 		event->destroy = NULL;
12385 	}
12386 
12387 	if (event->pmu_ctx) {
12388 		put_pmu_ctx(event->pmu_ctx);
12389 		event->pmu_ctx = NULL;
12390 	}
12391 
12392 	exclusive_event_destroy(event);
12393 	module_put(pmu->module);
12394 
12395 	event->pmu = NULL; /* force fault instead of UAF */
12396 }
12397 
12398 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12399 {
12400 	struct perf_event_context *ctx;
12401 
12402 	ctx = perf_event_ctx_lock(event);
12403 	__pmu_detach_event(pmu, event, ctx);
12404 	perf_event_ctx_unlock(event, ctx);
12405 
12406 	scoped_guard (spinlock, &pmu->events_lock)
12407 		list_del(&event->pmu_list);
12408 }
12409 
12410 static struct perf_event *pmu_get_event(struct pmu *pmu)
12411 {
12412 	struct perf_event *event;
12413 
12414 	guard(spinlock)(&pmu->events_lock);
12415 	list_for_each_entry(event, &pmu->events, pmu_list) {
12416 		if (atomic_long_inc_not_zero(&event->refcount))
12417 			return event;
12418 	}
12419 
12420 	return NULL;
12421 }
12422 
12423 static bool pmu_empty(struct pmu *pmu)
12424 {
12425 	guard(spinlock)(&pmu->events_lock);
12426 	return list_empty(&pmu->events);
12427 }
12428 
12429 static void pmu_detach_events(struct pmu *pmu)
12430 {
12431 	struct perf_event *event;
12432 
12433 	for (;;) {
12434 		event = pmu_get_event(pmu);
12435 		if (!event)
12436 			break;
12437 
12438 		pmu_detach_event(pmu, event);
12439 		put_event(event);
12440 	}
12441 
12442 	/*
12443 	 * wait for pending _free_event()s
12444 	 */
12445 	wait_var_event(pmu, pmu_empty(pmu));
12446 }
12447 
12448 int perf_pmu_unregister(struct pmu *pmu)
12449 {
12450 	scoped_guard (mutex, &pmus_lock) {
12451 		if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12452 			return -EINVAL;
12453 
12454 		list_del_rcu(&pmu->entry);
12455 	}
12456 
12457 	/*
12458 	 * We dereference the pmu list under both SRCU and regular RCU, so
12459 	 * synchronize against both of those.
12460 	 *
12461 	 * Notably, the entirety of event creation, from perf_init_event()
12462 	 * (which will now fail, because of the above) until
12463 	 * perf_install_in_context() should be under SRCU such that
12464 	 * this synchronizes against event creation. This avoids trying to
12465 	 * detach events that are not fully formed.
12466 	 */
12467 	synchronize_srcu(&pmus_srcu);
12468 	synchronize_rcu();
12469 
12470 	if (pmu->event_unmapped && !pmu_empty(pmu)) {
12471 		/*
12472 		 * Can't force remove events when pmu::event_unmapped()
12473 		 * is used in perf_mmap_close().
12474 		 */
12475 		guard(mutex)(&pmus_lock);
12476 		idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12477 		list_add_rcu(&pmu->entry, &pmus);
12478 		return -EBUSY;
12479 	}
12480 
12481 	scoped_guard (mutex, &pmus_lock)
12482 		idr_remove(&pmu_idr, pmu->type);
12483 
12484 	/*
12485 	 * PMU is removed from the pmus list, so no new events will
12486 	 * be created, now take care of the existing ones.
12487 	 */
12488 	pmu_detach_events(pmu);
12489 
12490 	/*
12491 	 * PMU is unused, make it go away.
12492 	 */
12493 	perf_pmu_free(pmu);
12494 	return 0;
12495 }
12496 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12497 
12498 static inline bool has_extended_regs(struct perf_event *event)
12499 {
12500 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12501 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12502 }
12503 
12504 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12505 {
12506 	struct perf_event_context *ctx = NULL;
12507 	int ret;
12508 
12509 	if (!try_module_get(pmu->module))
12510 		return -ENODEV;
12511 
12512 	/*
12513 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12514 	 * for example, validate if the group fits on the PMU. Therefore,
12515 	 * if this is a sibling event, acquire the ctx->mutex to protect
12516 	 * the sibling_list.
12517 	 */
12518 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12519 		/*
12520 		 * This ctx->mutex can nest when we're called through
12521 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12522 		 */
12523 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12524 						 SINGLE_DEPTH_NESTING);
12525 		BUG_ON(!ctx);
12526 	}
12527 
12528 	event->pmu = pmu;
12529 	ret = pmu->event_init(event);
12530 
12531 	if (ctx)
12532 		perf_event_ctx_unlock(event->group_leader, ctx);
12533 
12534 	if (ret)
12535 		goto err_pmu;
12536 
12537 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12538 	    has_extended_regs(event)) {
12539 		ret = -EOPNOTSUPP;
12540 		goto err_destroy;
12541 	}
12542 
12543 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12544 	    event_has_any_exclude_flag(event)) {
12545 		ret = -EINVAL;
12546 		goto err_destroy;
12547 	}
12548 
12549 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12550 		const struct cpumask *cpumask;
12551 		struct cpumask *pmu_cpumask;
12552 		int cpu;
12553 
12554 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12555 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12556 
12557 		ret = -ENODEV;
12558 		if (!pmu_cpumask || !cpumask)
12559 			goto err_destroy;
12560 
12561 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12562 		if (cpu >= nr_cpu_ids)
12563 			goto err_destroy;
12564 
12565 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12566 	}
12567 
12568 	return 0;
12569 
12570 err_destroy:
12571 	if (event->destroy) {
12572 		event->destroy(event);
12573 		event->destroy = NULL;
12574 	}
12575 
12576 err_pmu:
12577 	event->pmu = NULL;
12578 	module_put(pmu->module);
12579 	return ret;
12580 }
12581 
12582 static struct pmu *perf_init_event(struct perf_event *event)
12583 {
12584 	bool extended_type = false;
12585 	struct pmu *pmu;
12586 	int type, ret;
12587 
12588 	guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12589 
12590 	/*
12591 	 * Save original type before calling pmu->event_init() since certain
12592 	 * pmus overwrites event->attr.type to forward event to another pmu.
12593 	 */
12594 	event->orig_type = event->attr.type;
12595 
12596 	/* Try parent's PMU first: */
12597 	if (event->parent && event->parent->pmu) {
12598 		pmu = event->parent->pmu;
12599 		ret = perf_try_init_event(pmu, event);
12600 		if (!ret)
12601 			return pmu;
12602 	}
12603 
12604 	/*
12605 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12606 	 * are often aliases for PERF_TYPE_RAW.
12607 	 */
12608 	type = event->attr.type;
12609 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12610 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12611 		if (!type) {
12612 			type = PERF_TYPE_RAW;
12613 		} else {
12614 			extended_type = true;
12615 			event->attr.config &= PERF_HW_EVENT_MASK;
12616 		}
12617 	}
12618 
12619 again:
12620 	scoped_guard (rcu)
12621 		pmu = idr_find(&pmu_idr, type);
12622 	if (pmu) {
12623 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12624 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12625 			return ERR_PTR(-ENOENT);
12626 
12627 		ret = perf_try_init_event(pmu, event);
12628 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12629 			type = event->attr.type;
12630 			goto again;
12631 		}
12632 
12633 		if (ret)
12634 			return ERR_PTR(ret);
12635 
12636 		return pmu;
12637 	}
12638 
12639 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12640 		ret = perf_try_init_event(pmu, event);
12641 		if (!ret)
12642 			return pmu;
12643 
12644 		if (ret != -ENOENT)
12645 			return ERR_PTR(ret);
12646 	}
12647 
12648 	return ERR_PTR(-ENOENT);
12649 }
12650 
12651 static void attach_sb_event(struct perf_event *event)
12652 {
12653 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12654 
12655 	raw_spin_lock(&pel->lock);
12656 	list_add_rcu(&event->sb_list, &pel->list);
12657 	raw_spin_unlock(&pel->lock);
12658 }
12659 
12660 /*
12661  * We keep a list of all !task (and therefore per-cpu) events
12662  * that need to receive side-band records.
12663  *
12664  * This avoids having to scan all the various PMU per-cpu contexts
12665  * looking for them.
12666  */
12667 static void account_pmu_sb_event(struct perf_event *event)
12668 {
12669 	if (is_sb_event(event))
12670 		attach_sb_event(event);
12671 }
12672 
12673 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12674 static void account_freq_event_nohz(void)
12675 {
12676 #ifdef CONFIG_NO_HZ_FULL
12677 	/* Lock so we don't race with concurrent unaccount */
12678 	spin_lock(&nr_freq_lock);
12679 	if (atomic_inc_return(&nr_freq_events) == 1)
12680 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12681 	spin_unlock(&nr_freq_lock);
12682 #endif
12683 }
12684 
12685 static void account_freq_event(void)
12686 {
12687 	if (tick_nohz_full_enabled())
12688 		account_freq_event_nohz();
12689 	else
12690 		atomic_inc(&nr_freq_events);
12691 }
12692 
12693 
12694 static void account_event(struct perf_event *event)
12695 {
12696 	bool inc = false;
12697 
12698 	if (event->parent)
12699 		return;
12700 
12701 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12702 		inc = true;
12703 	if (event->attr.mmap || event->attr.mmap_data)
12704 		atomic_inc(&nr_mmap_events);
12705 	if (event->attr.build_id)
12706 		atomic_inc(&nr_build_id_events);
12707 	if (event->attr.comm)
12708 		atomic_inc(&nr_comm_events);
12709 	if (event->attr.namespaces)
12710 		atomic_inc(&nr_namespaces_events);
12711 	if (event->attr.cgroup)
12712 		atomic_inc(&nr_cgroup_events);
12713 	if (event->attr.task)
12714 		atomic_inc(&nr_task_events);
12715 	if (event->attr.freq)
12716 		account_freq_event();
12717 	if (event->attr.context_switch) {
12718 		atomic_inc(&nr_switch_events);
12719 		inc = true;
12720 	}
12721 	if (has_branch_stack(event))
12722 		inc = true;
12723 	if (is_cgroup_event(event))
12724 		inc = true;
12725 	if (event->attr.ksymbol)
12726 		atomic_inc(&nr_ksymbol_events);
12727 	if (event->attr.bpf_event)
12728 		atomic_inc(&nr_bpf_events);
12729 	if (event->attr.text_poke)
12730 		atomic_inc(&nr_text_poke_events);
12731 
12732 	if (inc) {
12733 		/*
12734 		 * We need the mutex here because static_branch_enable()
12735 		 * must complete *before* the perf_sched_count increment
12736 		 * becomes visible.
12737 		 */
12738 		if (atomic_inc_not_zero(&perf_sched_count))
12739 			goto enabled;
12740 
12741 		mutex_lock(&perf_sched_mutex);
12742 		if (!atomic_read(&perf_sched_count)) {
12743 			static_branch_enable(&perf_sched_events);
12744 			/*
12745 			 * Guarantee that all CPUs observe they key change and
12746 			 * call the perf scheduling hooks before proceeding to
12747 			 * install events that need them.
12748 			 */
12749 			synchronize_rcu();
12750 		}
12751 		/*
12752 		 * Now that we have waited for the sync_sched(), allow further
12753 		 * increments to by-pass the mutex.
12754 		 */
12755 		atomic_inc(&perf_sched_count);
12756 		mutex_unlock(&perf_sched_mutex);
12757 	}
12758 enabled:
12759 
12760 	account_pmu_sb_event(event);
12761 }
12762 
12763 /*
12764  * Allocate and initialize an event structure
12765  */
12766 static struct perf_event *
12767 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12768 		 struct task_struct *task,
12769 		 struct perf_event *group_leader,
12770 		 struct perf_event *parent_event,
12771 		 perf_overflow_handler_t overflow_handler,
12772 		 void *context, int cgroup_fd)
12773 {
12774 	struct pmu *pmu;
12775 	struct hw_perf_event *hwc;
12776 	long err = -EINVAL;
12777 	int node;
12778 
12779 	if ((unsigned)cpu >= nr_cpu_ids) {
12780 		if (!task || cpu != -1)
12781 			return ERR_PTR(-EINVAL);
12782 	}
12783 	if (attr->sigtrap && !task) {
12784 		/* Requires a task: avoid signalling random tasks. */
12785 		return ERR_PTR(-EINVAL);
12786 	}
12787 
12788 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12789 	struct perf_event *event __free(__free_event) =
12790 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12791 	if (!event)
12792 		return ERR_PTR(-ENOMEM);
12793 
12794 	/*
12795 	 * Single events are their own group leaders, with an
12796 	 * empty sibling list:
12797 	 */
12798 	if (!group_leader)
12799 		group_leader = event;
12800 
12801 	mutex_init(&event->child_mutex);
12802 	INIT_LIST_HEAD(&event->child_list);
12803 
12804 	INIT_LIST_HEAD(&event->event_entry);
12805 	INIT_LIST_HEAD(&event->sibling_list);
12806 	INIT_LIST_HEAD(&event->active_list);
12807 	init_event_group(event);
12808 	INIT_LIST_HEAD(&event->rb_entry);
12809 	INIT_LIST_HEAD(&event->active_entry);
12810 	INIT_LIST_HEAD(&event->addr_filters.list);
12811 	INIT_HLIST_NODE(&event->hlist_entry);
12812 	INIT_LIST_HEAD(&event->pmu_list);
12813 
12814 
12815 	init_waitqueue_head(&event->waitq);
12816 	init_irq_work(&event->pending_irq, perf_pending_irq);
12817 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12818 	init_task_work(&event->pending_task, perf_pending_task);
12819 
12820 	mutex_init(&event->mmap_mutex);
12821 	raw_spin_lock_init(&event->addr_filters.lock);
12822 
12823 	atomic_long_set(&event->refcount, 1);
12824 	event->cpu		= cpu;
12825 	event->attr		= *attr;
12826 	event->group_leader	= group_leader;
12827 	event->pmu		= NULL;
12828 	event->oncpu		= -1;
12829 
12830 	event->parent		= parent_event;
12831 
12832 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12833 	event->id		= atomic64_inc_return(&perf_event_id);
12834 
12835 	event->state		= PERF_EVENT_STATE_INACTIVE;
12836 
12837 	if (parent_event)
12838 		event->event_caps = parent_event->event_caps;
12839 
12840 	if (task) {
12841 		event->attach_state = PERF_ATTACH_TASK;
12842 		/*
12843 		 * XXX pmu::event_init needs to know what task to account to
12844 		 * and we cannot use the ctx information because we need the
12845 		 * pmu before we get a ctx.
12846 		 */
12847 		event->hw.target = get_task_struct(task);
12848 	}
12849 
12850 	event->clock = &local_clock;
12851 	if (parent_event)
12852 		event->clock = parent_event->clock;
12853 
12854 	if (!overflow_handler && parent_event) {
12855 		overflow_handler = parent_event->overflow_handler;
12856 		context = parent_event->overflow_handler_context;
12857 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12858 		if (parent_event->prog) {
12859 			struct bpf_prog *prog = parent_event->prog;
12860 
12861 			bpf_prog_inc(prog);
12862 			event->prog = prog;
12863 		}
12864 #endif
12865 	}
12866 
12867 	if (overflow_handler) {
12868 		event->overflow_handler	= overflow_handler;
12869 		event->overflow_handler_context = context;
12870 	} else if (is_write_backward(event)){
12871 		event->overflow_handler = perf_event_output_backward;
12872 		event->overflow_handler_context = NULL;
12873 	} else {
12874 		event->overflow_handler = perf_event_output_forward;
12875 		event->overflow_handler_context = NULL;
12876 	}
12877 
12878 	perf_event__state_init(event);
12879 
12880 	pmu = NULL;
12881 
12882 	hwc = &event->hw;
12883 	hwc->sample_period = attr->sample_period;
12884 	if (is_event_in_freq_mode(event))
12885 		hwc->sample_period = 1;
12886 	hwc->last_period = hwc->sample_period;
12887 
12888 	local64_set(&hwc->period_left, hwc->sample_period);
12889 
12890 	/*
12891 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12892 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12893 	 * collect per-thread samples.
12894 	 * See perf_output_read().
12895 	 */
12896 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12897 		return ERR_PTR(-EINVAL);
12898 
12899 	if (!has_branch_stack(event))
12900 		event->attr.branch_sample_type = 0;
12901 
12902 	pmu = perf_init_event(event);
12903 	if (IS_ERR(pmu))
12904 		return (void*)pmu;
12905 
12906 	/*
12907 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
12908 	 * The attach should be right after the perf_init_event().
12909 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
12910 	 * perf_ctx_data because of the other errors between them.
12911 	 */
12912 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
12913 		err = attach_perf_ctx_data(event);
12914 		if (err)
12915 			return ERR_PTR(err);
12916 	}
12917 
12918 	/*
12919 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12920 	 * events (they don't make sense as the cgroup will be different
12921 	 * on other CPUs in the uncore mask).
12922 	 */
12923 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
12924 		return ERR_PTR(-EINVAL);
12925 
12926 	if (event->attr.aux_output &&
12927 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12928 	     event->attr.aux_pause || event->attr.aux_resume))
12929 		return ERR_PTR(-EOPNOTSUPP);
12930 
12931 	if (event->attr.aux_pause && event->attr.aux_resume)
12932 		return ERR_PTR(-EINVAL);
12933 
12934 	if (event->attr.aux_start_paused) {
12935 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
12936 			return ERR_PTR(-EOPNOTSUPP);
12937 		event->hw.aux_paused = 1;
12938 	}
12939 
12940 	if (cgroup_fd != -1) {
12941 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12942 		if (err)
12943 			return ERR_PTR(err);
12944 	}
12945 
12946 	err = exclusive_event_init(event);
12947 	if (err)
12948 		return ERR_PTR(err);
12949 
12950 	if (has_addr_filter(event)) {
12951 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12952 						    sizeof(struct perf_addr_filter_range),
12953 						    GFP_KERNEL);
12954 		if (!event->addr_filter_ranges)
12955 			return ERR_PTR(-ENOMEM);
12956 
12957 		/*
12958 		 * Clone the parent's vma offsets: they are valid until exec()
12959 		 * even if the mm is not shared with the parent.
12960 		 */
12961 		if (event->parent) {
12962 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12963 
12964 			raw_spin_lock_irq(&ifh->lock);
12965 			memcpy(event->addr_filter_ranges,
12966 			       event->parent->addr_filter_ranges,
12967 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12968 			raw_spin_unlock_irq(&ifh->lock);
12969 		}
12970 
12971 		/* force hw sync on the address filters */
12972 		event->addr_filters_gen = 1;
12973 	}
12974 
12975 	if (!event->parent) {
12976 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12977 			err = get_callchain_buffers(attr->sample_max_stack);
12978 			if (err)
12979 				return ERR_PTR(err);
12980 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12981 		}
12982 	}
12983 
12984 	err = security_perf_event_alloc(event);
12985 	if (err)
12986 		return ERR_PTR(err);
12987 
12988 	/* symmetric to unaccount_event() in _free_event() */
12989 	account_event(event);
12990 
12991 	/*
12992 	 * Event creation should be under SRCU, see perf_pmu_unregister().
12993 	 */
12994 	lockdep_assert_held(&pmus_srcu);
12995 	scoped_guard (spinlock, &pmu->events_lock)
12996 		list_add(&event->pmu_list, &pmu->events);
12997 
12998 	return_ptr(event);
12999 }
13000 
13001 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13002 			  struct perf_event_attr *attr)
13003 {
13004 	u32 size;
13005 	int ret;
13006 
13007 	/* Zero the full structure, so that a short copy will be nice. */
13008 	memset(attr, 0, sizeof(*attr));
13009 
13010 	ret = get_user(size, &uattr->size);
13011 	if (ret)
13012 		return ret;
13013 
13014 	/* ABI compatibility quirk: */
13015 	if (!size)
13016 		size = PERF_ATTR_SIZE_VER0;
13017 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13018 		goto err_size;
13019 
13020 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13021 	if (ret) {
13022 		if (ret == -E2BIG)
13023 			goto err_size;
13024 		return ret;
13025 	}
13026 
13027 	attr->size = size;
13028 
13029 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13030 		return -EINVAL;
13031 
13032 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13033 		return -EINVAL;
13034 
13035 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13036 		return -EINVAL;
13037 
13038 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13039 		u64 mask = attr->branch_sample_type;
13040 
13041 		/* only using defined bits */
13042 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13043 			return -EINVAL;
13044 
13045 		/* at least one branch bit must be set */
13046 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13047 			return -EINVAL;
13048 
13049 		/* propagate priv level, when not set for branch */
13050 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13051 
13052 			/* exclude_kernel checked on syscall entry */
13053 			if (!attr->exclude_kernel)
13054 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
13055 
13056 			if (!attr->exclude_user)
13057 				mask |= PERF_SAMPLE_BRANCH_USER;
13058 
13059 			if (!attr->exclude_hv)
13060 				mask |= PERF_SAMPLE_BRANCH_HV;
13061 			/*
13062 			 * adjust user setting (for HW filter setup)
13063 			 */
13064 			attr->branch_sample_type = mask;
13065 		}
13066 		/* privileged levels capture (kernel, hv): check permissions */
13067 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13068 			ret = perf_allow_kernel();
13069 			if (ret)
13070 				return ret;
13071 		}
13072 	}
13073 
13074 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13075 		ret = perf_reg_validate(attr->sample_regs_user);
13076 		if (ret)
13077 			return ret;
13078 	}
13079 
13080 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13081 		if (!arch_perf_have_user_stack_dump())
13082 			return -ENOSYS;
13083 
13084 		/*
13085 		 * We have __u32 type for the size, but so far
13086 		 * we can only use __u16 as maximum due to the
13087 		 * __u16 sample size limit.
13088 		 */
13089 		if (attr->sample_stack_user >= USHRT_MAX)
13090 			return -EINVAL;
13091 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13092 			return -EINVAL;
13093 	}
13094 
13095 	if (!attr->sample_max_stack)
13096 		attr->sample_max_stack = sysctl_perf_event_max_stack;
13097 
13098 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13099 		ret = perf_reg_validate(attr->sample_regs_intr);
13100 
13101 #ifndef CONFIG_CGROUP_PERF
13102 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
13103 		return -EINVAL;
13104 #endif
13105 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13106 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13107 		return -EINVAL;
13108 
13109 	if (!attr->inherit && attr->inherit_thread)
13110 		return -EINVAL;
13111 
13112 	if (attr->remove_on_exec && attr->enable_on_exec)
13113 		return -EINVAL;
13114 
13115 	if (attr->sigtrap && !attr->remove_on_exec)
13116 		return -EINVAL;
13117 
13118 out:
13119 	return ret;
13120 
13121 err_size:
13122 	put_user(sizeof(*attr), &uattr->size);
13123 	ret = -E2BIG;
13124 	goto out;
13125 }
13126 
13127 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13128 {
13129 	if (b < a)
13130 		swap(a, b);
13131 
13132 	mutex_lock(a);
13133 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13134 }
13135 
13136 static int
13137 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13138 {
13139 	struct perf_buffer *rb = NULL;
13140 	int ret = -EINVAL;
13141 
13142 	if (!output_event) {
13143 		mutex_lock(&event->mmap_mutex);
13144 		goto set;
13145 	}
13146 
13147 	/* don't allow circular references */
13148 	if (event == output_event)
13149 		goto out;
13150 
13151 	/*
13152 	 * Don't allow cross-cpu buffers
13153 	 */
13154 	if (output_event->cpu != event->cpu)
13155 		goto out;
13156 
13157 	/*
13158 	 * If its not a per-cpu rb, it must be the same task.
13159 	 */
13160 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13161 		goto out;
13162 
13163 	/*
13164 	 * Mixing clocks in the same buffer is trouble you don't need.
13165 	 */
13166 	if (output_event->clock != event->clock)
13167 		goto out;
13168 
13169 	/*
13170 	 * Either writing ring buffer from beginning or from end.
13171 	 * Mixing is not allowed.
13172 	 */
13173 	if (is_write_backward(output_event) != is_write_backward(event))
13174 		goto out;
13175 
13176 	/*
13177 	 * If both events generate aux data, they must be on the same PMU
13178 	 */
13179 	if (has_aux(event) && has_aux(output_event) &&
13180 	    event->pmu != output_event->pmu)
13181 		goto out;
13182 
13183 	/*
13184 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
13185 	 * output_event is already on rb->event_list, and the list iteration
13186 	 * restarts after every removal, it is guaranteed this new event is
13187 	 * observed *OR* if output_event is already removed, it's guaranteed we
13188 	 * observe !rb->mmap_count.
13189 	 */
13190 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13191 set:
13192 	/* Can't redirect output if we've got an active mmap() */
13193 	if (atomic_read(&event->mmap_count))
13194 		goto unlock;
13195 
13196 	if (output_event) {
13197 		if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13198 			goto unlock;
13199 
13200 		/* get the rb we want to redirect to */
13201 		rb = ring_buffer_get(output_event);
13202 		if (!rb)
13203 			goto unlock;
13204 
13205 		/* did we race against perf_mmap_close() */
13206 		if (!atomic_read(&rb->mmap_count)) {
13207 			ring_buffer_put(rb);
13208 			goto unlock;
13209 		}
13210 	}
13211 
13212 	ring_buffer_attach(event, rb);
13213 
13214 	ret = 0;
13215 unlock:
13216 	mutex_unlock(&event->mmap_mutex);
13217 	if (output_event)
13218 		mutex_unlock(&output_event->mmap_mutex);
13219 
13220 out:
13221 	return ret;
13222 }
13223 
13224 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13225 {
13226 	bool nmi_safe = false;
13227 
13228 	switch (clk_id) {
13229 	case CLOCK_MONOTONIC:
13230 		event->clock = &ktime_get_mono_fast_ns;
13231 		nmi_safe = true;
13232 		break;
13233 
13234 	case CLOCK_MONOTONIC_RAW:
13235 		event->clock = &ktime_get_raw_fast_ns;
13236 		nmi_safe = true;
13237 		break;
13238 
13239 	case CLOCK_REALTIME:
13240 		event->clock = &ktime_get_real_ns;
13241 		break;
13242 
13243 	case CLOCK_BOOTTIME:
13244 		event->clock = &ktime_get_boottime_ns;
13245 		break;
13246 
13247 	case CLOCK_TAI:
13248 		event->clock = &ktime_get_clocktai_ns;
13249 		break;
13250 
13251 	default:
13252 		return -EINVAL;
13253 	}
13254 
13255 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13256 		return -EINVAL;
13257 
13258 	return 0;
13259 }
13260 
13261 static bool
13262 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13263 {
13264 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13265 	bool is_capable = perfmon_capable();
13266 
13267 	if (attr->sigtrap) {
13268 		/*
13269 		 * perf_event_attr::sigtrap sends signals to the other task.
13270 		 * Require the current task to also have CAP_KILL.
13271 		 */
13272 		rcu_read_lock();
13273 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13274 		rcu_read_unlock();
13275 
13276 		/*
13277 		 * If the required capabilities aren't available, checks for
13278 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13279 		 * can effectively change the target task.
13280 		 */
13281 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13282 	}
13283 
13284 	/*
13285 	 * Preserve ptrace permission check for backwards compatibility. The
13286 	 * ptrace check also includes checks that the current task and other
13287 	 * task have matching uids, and is therefore not done here explicitly.
13288 	 */
13289 	return is_capable || ptrace_may_access(task, ptrace_mode);
13290 }
13291 
13292 /**
13293  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13294  *
13295  * @attr_uptr:	event_id type attributes for monitoring/sampling
13296  * @pid:		target pid
13297  * @cpu:		target cpu
13298  * @group_fd:		group leader event fd
13299  * @flags:		perf event open flags
13300  */
13301 SYSCALL_DEFINE5(perf_event_open,
13302 		struct perf_event_attr __user *, attr_uptr,
13303 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13304 {
13305 	struct perf_event *group_leader = NULL, *output_event = NULL;
13306 	struct perf_event_pmu_context *pmu_ctx;
13307 	struct perf_event *event, *sibling;
13308 	struct perf_event_attr attr;
13309 	struct perf_event_context *ctx;
13310 	struct file *event_file = NULL;
13311 	struct task_struct *task = NULL;
13312 	struct pmu *pmu;
13313 	int event_fd;
13314 	int move_group = 0;
13315 	int err;
13316 	int f_flags = O_RDWR;
13317 	int cgroup_fd = -1;
13318 
13319 	/* for future expandability... */
13320 	if (flags & ~PERF_FLAG_ALL)
13321 		return -EINVAL;
13322 
13323 	err = perf_copy_attr(attr_uptr, &attr);
13324 	if (err)
13325 		return err;
13326 
13327 	/* Do we allow access to perf_event_open(2) ? */
13328 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13329 	if (err)
13330 		return err;
13331 
13332 	if (!attr.exclude_kernel) {
13333 		err = perf_allow_kernel();
13334 		if (err)
13335 			return err;
13336 	}
13337 
13338 	if (attr.namespaces) {
13339 		if (!perfmon_capable())
13340 			return -EACCES;
13341 	}
13342 
13343 	if (attr.freq) {
13344 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13345 			return -EINVAL;
13346 	} else {
13347 		if (attr.sample_period & (1ULL << 63))
13348 			return -EINVAL;
13349 	}
13350 
13351 	/* Only privileged users can get physical addresses */
13352 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13353 		err = perf_allow_kernel();
13354 		if (err)
13355 			return err;
13356 	}
13357 
13358 	/* REGS_INTR can leak data, lockdown must prevent this */
13359 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13360 		err = security_locked_down(LOCKDOWN_PERF);
13361 		if (err)
13362 			return err;
13363 	}
13364 
13365 	/*
13366 	 * In cgroup mode, the pid argument is used to pass the fd
13367 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13368 	 * designates the cpu on which to monitor threads from that
13369 	 * cgroup.
13370 	 */
13371 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13372 		return -EINVAL;
13373 
13374 	if (flags & PERF_FLAG_FD_CLOEXEC)
13375 		f_flags |= O_CLOEXEC;
13376 
13377 	event_fd = get_unused_fd_flags(f_flags);
13378 	if (event_fd < 0)
13379 		return event_fd;
13380 
13381 	/*
13382 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13383 	 */
13384 	guard(srcu)(&pmus_srcu);
13385 
13386 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13387 	if (group_fd != -1) {
13388 		if (!is_perf_file(group)) {
13389 			err = -EBADF;
13390 			goto err_fd;
13391 		}
13392 		group_leader = fd_file(group)->private_data;
13393 		if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13394 			err = -ENODEV;
13395 			goto err_fd;
13396 		}
13397 		if (flags & PERF_FLAG_FD_OUTPUT)
13398 			output_event = group_leader;
13399 		if (flags & PERF_FLAG_FD_NO_GROUP)
13400 			group_leader = NULL;
13401 	}
13402 
13403 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13404 		task = find_lively_task_by_vpid(pid);
13405 		if (IS_ERR(task)) {
13406 			err = PTR_ERR(task);
13407 			goto err_fd;
13408 		}
13409 	}
13410 
13411 	if (task && group_leader &&
13412 	    group_leader->attr.inherit != attr.inherit) {
13413 		err = -EINVAL;
13414 		goto err_task;
13415 	}
13416 
13417 	if (flags & PERF_FLAG_PID_CGROUP)
13418 		cgroup_fd = pid;
13419 
13420 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13421 				 NULL, NULL, cgroup_fd);
13422 	if (IS_ERR(event)) {
13423 		err = PTR_ERR(event);
13424 		goto err_task;
13425 	}
13426 
13427 	if (is_sampling_event(event)) {
13428 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13429 			err = -EOPNOTSUPP;
13430 			goto err_alloc;
13431 		}
13432 	}
13433 
13434 	/*
13435 	 * Special case software events and allow them to be part of
13436 	 * any hardware group.
13437 	 */
13438 	pmu = event->pmu;
13439 
13440 	if (attr.use_clockid) {
13441 		err = perf_event_set_clock(event, attr.clockid);
13442 		if (err)
13443 			goto err_alloc;
13444 	}
13445 
13446 	if (pmu->task_ctx_nr == perf_sw_context)
13447 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13448 
13449 	if (task) {
13450 		err = down_read_interruptible(&task->signal->exec_update_lock);
13451 		if (err)
13452 			goto err_alloc;
13453 
13454 		/*
13455 		 * We must hold exec_update_lock across this and any potential
13456 		 * perf_install_in_context() call for this new event to
13457 		 * serialize against exec() altering our credentials (and the
13458 		 * perf_event_exit_task() that could imply).
13459 		 */
13460 		err = -EACCES;
13461 		if (!perf_check_permission(&attr, task))
13462 			goto err_cred;
13463 	}
13464 
13465 	/*
13466 	 * Get the target context (task or percpu):
13467 	 */
13468 	ctx = find_get_context(task, event);
13469 	if (IS_ERR(ctx)) {
13470 		err = PTR_ERR(ctx);
13471 		goto err_cred;
13472 	}
13473 
13474 	mutex_lock(&ctx->mutex);
13475 
13476 	if (ctx->task == TASK_TOMBSTONE) {
13477 		err = -ESRCH;
13478 		goto err_locked;
13479 	}
13480 
13481 	if (!task) {
13482 		/*
13483 		 * Check if the @cpu we're creating an event for is online.
13484 		 *
13485 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13486 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13487 		 */
13488 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13489 
13490 		if (!cpuctx->online) {
13491 			err = -ENODEV;
13492 			goto err_locked;
13493 		}
13494 	}
13495 
13496 	if (group_leader) {
13497 		err = -EINVAL;
13498 
13499 		/*
13500 		 * Do not allow a recursive hierarchy (this new sibling
13501 		 * becoming part of another group-sibling):
13502 		 */
13503 		if (group_leader->group_leader != group_leader)
13504 			goto err_locked;
13505 
13506 		/* All events in a group should have the same clock */
13507 		if (group_leader->clock != event->clock)
13508 			goto err_locked;
13509 
13510 		/*
13511 		 * Make sure we're both events for the same CPU;
13512 		 * grouping events for different CPUs is broken; since
13513 		 * you can never concurrently schedule them anyhow.
13514 		 */
13515 		if (group_leader->cpu != event->cpu)
13516 			goto err_locked;
13517 
13518 		/*
13519 		 * Make sure we're both on the same context; either task or cpu.
13520 		 */
13521 		if (group_leader->ctx != ctx)
13522 			goto err_locked;
13523 
13524 		/*
13525 		 * Only a group leader can be exclusive or pinned
13526 		 */
13527 		if (attr.exclusive || attr.pinned)
13528 			goto err_locked;
13529 
13530 		if (is_software_event(event) &&
13531 		    !in_software_context(group_leader)) {
13532 			/*
13533 			 * If the event is a sw event, but the group_leader
13534 			 * is on hw context.
13535 			 *
13536 			 * Allow the addition of software events to hw
13537 			 * groups, this is safe because software events
13538 			 * never fail to schedule.
13539 			 *
13540 			 * Note the comment that goes with struct
13541 			 * perf_event_pmu_context.
13542 			 */
13543 			pmu = group_leader->pmu_ctx->pmu;
13544 		} else if (!is_software_event(event)) {
13545 			if (is_software_event(group_leader) &&
13546 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13547 				/*
13548 				 * In case the group is a pure software group, and we
13549 				 * try to add a hardware event, move the whole group to
13550 				 * the hardware context.
13551 				 */
13552 				move_group = 1;
13553 			}
13554 
13555 			/* Don't allow group of multiple hw events from different pmus */
13556 			if (!in_software_context(group_leader) &&
13557 			    group_leader->pmu_ctx->pmu != pmu)
13558 				goto err_locked;
13559 		}
13560 	}
13561 
13562 	/*
13563 	 * Now that we're certain of the pmu; find the pmu_ctx.
13564 	 */
13565 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13566 	if (IS_ERR(pmu_ctx)) {
13567 		err = PTR_ERR(pmu_ctx);
13568 		goto err_locked;
13569 	}
13570 	event->pmu_ctx = pmu_ctx;
13571 
13572 	if (output_event) {
13573 		err = perf_event_set_output(event, output_event);
13574 		if (err)
13575 			goto err_context;
13576 	}
13577 
13578 	if (!perf_event_validate_size(event)) {
13579 		err = -E2BIG;
13580 		goto err_context;
13581 	}
13582 
13583 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13584 		err = -EINVAL;
13585 		goto err_context;
13586 	}
13587 
13588 	/*
13589 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13590 	 * because we need to serialize with concurrent event creation.
13591 	 */
13592 	if (!exclusive_event_installable(event, ctx)) {
13593 		err = -EBUSY;
13594 		goto err_context;
13595 	}
13596 
13597 	WARN_ON_ONCE(ctx->parent_ctx);
13598 
13599 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13600 	if (IS_ERR(event_file)) {
13601 		err = PTR_ERR(event_file);
13602 		event_file = NULL;
13603 		goto err_context;
13604 	}
13605 
13606 	/*
13607 	 * This is the point on no return; we cannot fail hereafter. This is
13608 	 * where we start modifying current state.
13609 	 */
13610 
13611 	if (move_group) {
13612 		perf_remove_from_context(group_leader, 0);
13613 		put_pmu_ctx(group_leader->pmu_ctx);
13614 
13615 		for_each_sibling_event(sibling, group_leader) {
13616 			perf_remove_from_context(sibling, 0);
13617 			put_pmu_ctx(sibling->pmu_ctx);
13618 		}
13619 
13620 		/*
13621 		 * Install the group siblings before the group leader.
13622 		 *
13623 		 * Because a group leader will try and install the entire group
13624 		 * (through the sibling list, which is still in-tact), we can
13625 		 * end up with siblings installed in the wrong context.
13626 		 *
13627 		 * By installing siblings first we NO-OP because they're not
13628 		 * reachable through the group lists.
13629 		 */
13630 		for_each_sibling_event(sibling, group_leader) {
13631 			sibling->pmu_ctx = pmu_ctx;
13632 			get_pmu_ctx(pmu_ctx);
13633 			perf_event__state_init(sibling);
13634 			perf_install_in_context(ctx, sibling, sibling->cpu);
13635 		}
13636 
13637 		/*
13638 		 * Removing from the context ends up with disabled
13639 		 * event. What we want here is event in the initial
13640 		 * startup state, ready to be add into new context.
13641 		 */
13642 		group_leader->pmu_ctx = pmu_ctx;
13643 		get_pmu_ctx(pmu_ctx);
13644 		perf_event__state_init(group_leader);
13645 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13646 	}
13647 
13648 	/*
13649 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13650 	 * that we're serialized against further additions and before
13651 	 * perf_install_in_context() which is the point the event is active and
13652 	 * can use these values.
13653 	 */
13654 	perf_event__header_size(event);
13655 	perf_event__id_header_size(event);
13656 
13657 	event->owner = current;
13658 
13659 	perf_install_in_context(ctx, event, event->cpu);
13660 	perf_unpin_context(ctx);
13661 
13662 	mutex_unlock(&ctx->mutex);
13663 
13664 	if (task) {
13665 		up_read(&task->signal->exec_update_lock);
13666 		put_task_struct(task);
13667 	}
13668 
13669 	mutex_lock(&current->perf_event_mutex);
13670 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13671 	mutex_unlock(&current->perf_event_mutex);
13672 
13673 	/*
13674 	 * File reference in group guarantees that group_leader has been
13675 	 * kept alive until we place the new event on the sibling_list.
13676 	 * This ensures destruction of the group leader will find
13677 	 * the pointer to itself in perf_group_detach().
13678 	 */
13679 	fd_install(event_fd, event_file);
13680 	return event_fd;
13681 
13682 err_context:
13683 	put_pmu_ctx(event->pmu_ctx);
13684 	event->pmu_ctx = NULL; /* _free_event() */
13685 err_locked:
13686 	mutex_unlock(&ctx->mutex);
13687 	perf_unpin_context(ctx);
13688 	put_ctx(ctx);
13689 err_cred:
13690 	if (task)
13691 		up_read(&task->signal->exec_update_lock);
13692 err_alloc:
13693 	put_event(event);
13694 err_task:
13695 	if (task)
13696 		put_task_struct(task);
13697 err_fd:
13698 	put_unused_fd(event_fd);
13699 	return err;
13700 }
13701 
13702 /**
13703  * perf_event_create_kernel_counter
13704  *
13705  * @attr: attributes of the counter to create
13706  * @cpu: cpu in which the counter is bound
13707  * @task: task to profile (NULL for percpu)
13708  * @overflow_handler: callback to trigger when we hit the event
13709  * @context: context data could be used in overflow_handler callback
13710  */
13711 struct perf_event *
13712 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13713 				 struct task_struct *task,
13714 				 perf_overflow_handler_t overflow_handler,
13715 				 void *context)
13716 {
13717 	struct perf_event_pmu_context *pmu_ctx;
13718 	struct perf_event_context *ctx;
13719 	struct perf_event *event;
13720 	struct pmu *pmu;
13721 	int err;
13722 
13723 	/*
13724 	 * Grouping is not supported for kernel events, neither is 'AUX',
13725 	 * make sure the caller's intentions are adjusted.
13726 	 */
13727 	if (attr->aux_output || attr->aux_action)
13728 		return ERR_PTR(-EINVAL);
13729 
13730 	/*
13731 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13732 	 */
13733 	guard(srcu)(&pmus_srcu);
13734 
13735 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13736 				 overflow_handler, context, -1);
13737 	if (IS_ERR(event)) {
13738 		err = PTR_ERR(event);
13739 		goto err;
13740 	}
13741 
13742 	/* Mark owner so we could distinguish it from user events. */
13743 	event->owner = TASK_TOMBSTONE;
13744 	pmu = event->pmu;
13745 
13746 	if (pmu->task_ctx_nr == perf_sw_context)
13747 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13748 
13749 	/*
13750 	 * Get the target context (task or percpu):
13751 	 */
13752 	ctx = find_get_context(task, event);
13753 	if (IS_ERR(ctx)) {
13754 		err = PTR_ERR(ctx);
13755 		goto err_alloc;
13756 	}
13757 
13758 	WARN_ON_ONCE(ctx->parent_ctx);
13759 	mutex_lock(&ctx->mutex);
13760 	if (ctx->task == TASK_TOMBSTONE) {
13761 		err = -ESRCH;
13762 		goto err_unlock;
13763 	}
13764 
13765 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13766 	if (IS_ERR(pmu_ctx)) {
13767 		err = PTR_ERR(pmu_ctx);
13768 		goto err_unlock;
13769 	}
13770 	event->pmu_ctx = pmu_ctx;
13771 
13772 	if (!task) {
13773 		/*
13774 		 * Check if the @cpu we're creating an event for is online.
13775 		 *
13776 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13777 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13778 		 */
13779 		struct perf_cpu_context *cpuctx =
13780 			container_of(ctx, struct perf_cpu_context, ctx);
13781 		if (!cpuctx->online) {
13782 			err = -ENODEV;
13783 			goto err_pmu_ctx;
13784 		}
13785 	}
13786 
13787 	if (!exclusive_event_installable(event, ctx)) {
13788 		err = -EBUSY;
13789 		goto err_pmu_ctx;
13790 	}
13791 
13792 	perf_install_in_context(ctx, event, event->cpu);
13793 	perf_unpin_context(ctx);
13794 	mutex_unlock(&ctx->mutex);
13795 
13796 	return event;
13797 
13798 err_pmu_ctx:
13799 	put_pmu_ctx(pmu_ctx);
13800 	event->pmu_ctx = NULL; /* _free_event() */
13801 err_unlock:
13802 	mutex_unlock(&ctx->mutex);
13803 	perf_unpin_context(ctx);
13804 	put_ctx(ctx);
13805 err_alloc:
13806 	put_event(event);
13807 err:
13808 	return ERR_PTR(err);
13809 }
13810 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13811 
13812 static void __perf_pmu_remove(struct perf_event_context *ctx,
13813 			      int cpu, struct pmu *pmu,
13814 			      struct perf_event_groups *groups,
13815 			      struct list_head *events)
13816 {
13817 	struct perf_event *event, *sibling;
13818 
13819 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13820 		perf_remove_from_context(event, 0);
13821 		put_pmu_ctx(event->pmu_ctx);
13822 		list_add(&event->migrate_entry, events);
13823 
13824 		for_each_sibling_event(sibling, event) {
13825 			perf_remove_from_context(sibling, 0);
13826 			put_pmu_ctx(sibling->pmu_ctx);
13827 			list_add(&sibling->migrate_entry, events);
13828 		}
13829 	}
13830 }
13831 
13832 static void __perf_pmu_install_event(struct pmu *pmu,
13833 				     struct perf_event_context *ctx,
13834 				     int cpu, struct perf_event *event)
13835 {
13836 	struct perf_event_pmu_context *epc;
13837 	struct perf_event_context *old_ctx = event->ctx;
13838 
13839 	get_ctx(ctx); /* normally find_get_context() */
13840 
13841 	event->cpu = cpu;
13842 	epc = find_get_pmu_context(pmu, ctx, event);
13843 	event->pmu_ctx = epc;
13844 
13845 	if (event->state >= PERF_EVENT_STATE_OFF)
13846 		event->state = PERF_EVENT_STATE_INACTIVE;
13847 	perf_install_in_context(ctx, event, cpu);
13848 
13849 	/*
13850 	 * Now that event->ctx is updated and visible, put the old ctx.
13851 	 */
13852 	put_ctx(old_ctx);
13853 }
13854 
13855 static void __perf_pmu_install(struct perf_event_context *ctx,
13856 			       int cpu, struct pmu *pmu, struct list_head *events)
13857 {
13858 	struct perf_event *event, *tmp;
13859 
13860 	/*
13861 	 * Re-instate events in 2 passes.
13862 	 *
13863 	 * Skip over group leaders and only install siblings on this first
13864 	 * pass, siblings will not get enabled without a leader, however a
13865 	 * leader will enable its siblings, even if those are still on the old
13866 	 * context.
13867 	 */
13868 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13869 		if (event->group_leader == event)
13870 			continue;
13871 
13872 		list_del(&event->migrate_entry);
13873 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13874 	}
13875 
13876 	/*
13877 	 * Once all the siblings are setup properly, install the group leaders
13878 	 * to make it go.
13879 	 */
13880 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13881 		list_del(&event->migrate_entry);
13882 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13883 	}
13884 }
13885 
13886 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13887 {
13888 	struct perf_event_context *src_ctx, *dst_ctx;
13889 	LIST_HEAD(events);
13890 
13891 	/*
13892 	 * Since per-cpu context is persistent, no need to grab an extra
13893 	 * reference.
13894 	 */
13895 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13896 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13897 
13898 	/*
13899 	 * See perf_event_ctx_lock() for comments on the details
13900 	 * of swizzling perf_event::ctx.
13901 	 */
13902 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13903 
13904 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13905 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13906 
13907 	if (!list_empty(&events)) {
13908 		/*
13909 		 * Wait for the events to quiesce before re-instating them.
13910 		 */
13911 		synchronize_rcu();
13912 
13913 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13914 	}
13915 
13916 	mutex_unlock(&dst_ctx->mutex);
13917 	mutex_unlock(&src_ctx->mutex);
13918 }
13919 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13920 
13921 static void sync_child_event(struct perf_event *child_event)
13922 {
13923 	struct perf_event *parent_event = child_event->parent;
13924 	u64 child_val;
13925 
13926 	if (child_event->attr.inherit_stat) {
13927 		struct task_struct *task = child_event->ctx->task;
13928 
13929 		if (task && task != TASK_TOMBSTONE)
13930 			perf_event_read_event(child_event, task);
13931 	}
13932 
13933 	child_val = perf_event_count(child_event, false);
13934 
13935 	/*
13936 	 * Add back the child's count to the parent's count:
13937 	 */
13938 	atomic64_add(child_val, &parent_event->child_count);
13939 	atomic64_add(child_event->total_time_enabled,
13940 		     &parent_event->child_total_time_enabled);
13941 	atomic64_add(child_event->total_time_running,
13942 		     &parent_event->child_total_time_running);
13943 }
13944 
13945 static void
13946 perf_event_exit_event(struct perf_event *event,
13947 		      struct perf_event_context *ctx, bool revoke)
13948 {
13949 	struct perf_event *parent_event = event->parent;
13950 	unsigned long detach_flags = DETACH_EXIT;
13951 	unsigned int attach_state;
13952 
13953 	if (parent_event) {
13954 		/*
13955 		 * Do not destroy the 'original' grouping; because of the
13956 		 * context switch optimization the original events could've
13957 		 * ended up in a random child task.
13958 		 *
13959 		 * If we were to destroy the original group, all group related
13960 		 * operations would cease to function properly after this
13961 		 * random child dies.
13962 		 *
13963 		 * Do destroy all inherited groups, we don't care about those
13964 		 * and being thorough is better.
13965 		 */
13966 		detach_flags |= DETACH_GROUP | DETACH_CHILD;
13967 		mutex_lock(&parent_event->child_mutex);
13968 		/* PERF_ATTACH_ITRACE might be set concurrently */
13969 		attach_state = READ_ONCE(event->attach_state);
13970 	}
13971 
13972 	if (revoke)
13973 		detach_flags |= DETACH_GROUP | DETACH_REVOKE;
13974 
13975 	perf_remove_from_context(event, detach_flags);
13976 	/*
13977 	 * Child events can be freed.
13978 	 */
13979 	if (parent_event) {
13980 		mutex_unlock(&parent_event->child_mutex);
13981 
13982 		/*
13983 		 * Match the refcount initialization. Make sure it doesn't happen
13984 		 * twice if pmu_detach_event() calls it on an already exited task.
13985 		 */
13986 		if (attach_state & PERF_ATTACH_CHILD) {
13987 			/*
13988 			 * Kick perf_poll() for is_event_hup();
13989 			 */
13990 			perf_event_wakeup(parent_event);
13991 			/*
13992 			 * pmu_detach_event() will have an extra refcount.
13993 			 * perf_pending_task() might have one too.
13994 			 */
13995 			put_event(event);
13996 		}
13997 
13998 		return;
13999 	}
14000 
14001 	/*
14002 	 * Parent events are governed by their filedesc, retain them.
14003 	 */
14004 	perf_event_wakeup(event);
14005 }
14006 
14007 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14008 {
14009 	struct perf_event_context *ctx, *clone_ctx = NULL;
14010 	struct perf_event *child_event, *next;
14011 
14012 	ctx = perf_pin_task_context(task);
14013 	if (!ctx)
14014 		return;
14015 
14016 	/*
14017 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
14018 	 * ctx::mutex over the entire thing. This serializes against almost
14019 	 * everything that wants to access the ctx.
14020 	 *
14021 	 * The exception is sys_perf_event_open() /
14022 	 * perf_event_create_kernel_count() which does find_get_context()
14023 	 * without ctx::mutex (it cannot because of the move_group double mutex
14024 	 * lock thing). See the comments in perf_install_in_context().
14025 	 */
14026 	mutex_lock(&ctx->mutex);
14027 
14028 	/*
14029 	 * In a single ctx::lock section, de-schedule the events and detach the
14030 	 * context from the task such that we cannot ever get it scheduled back
14031 	 * in.
14032 	 */
14033 	raw_spin_lock_irq(&ctx->lock);
14034 	if (exit)
14035 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14036 
14037 	/*
14038 	 * Now that the context is inactive, destroy the task <-> ctx relation
14039 	 * and mark the context dead.
14040 	 */
14041 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14042 	put_ctx(ctx); /* cannot be last */
14043 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14044 	put_task_struct(task); /* cannot be last */
14045 
14046 	clone_ctx = unclone_ctx(ctx);
14047 	raw_spin_unlock_irq(&ctx->lock);
14048 
14049 	if (clone_ctx)
14050 		put_ctx(clone_ctx);
14051 
14052 	/*
14053 	 * Report the task dead after unscheduling the events so that we
14054 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
14055 	 * get a few PERF_RECORD_READ events.
14056 	 */
14057 	if (exit)
14058 		perf_event_task(task, ctx, 0);
14059 
14060 	list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14061 		perf_event_exit_event(child_event, ctx, false);
14062 
14063 	mutex_unlock(&ctx->mutex);
14064 
14065 	if (!exit) {
14066 		/*
14067 		 * perf_event_release_kernel() could still have a reference on
14068 		 * this context. In that case we must wait for these events to
14069 		 * have been freed (in particular all their references to this
14070 		 * task must've been dropped).
14071 		 *
14072 		 * Without this copy_process() will unconditionally free this
14073 		 * task (irrespective of its reference count) and
14074 		 * _free_event()'s put_task_struct(event->hw.target) will be a
14075 		 * use-after-free.
14076 		 *
14077 		 * Wait for all events to drop their context reference.
14078 		 */
14079 		wait_var_event(&ctx->refcount,
14080 			       refcount_read(&ctx->refcount) == 1);
14081 	}
14082 	put_ctx(ctx);
14083 }
14084 
14085 /*
14086  * When a task exits, feed back event values to parent events.
14087  *
14088  * Can be called with exec_update_lock held when called from
14089  * setup_new_exec().
14090  */
14091 void perf_event_exit_task(struct task_struct *task)
14092 {
14093 	struct perf_event *event, *tmp;
14094 
14095 	WARN_ON_ONCE(task != current);
14096 
14097 	mutex_lock(&task->perf_event_mutex);
14098 	list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14099 				 owner_entry) {
14100 		list_del_init(&event->owner_entry);
14101 
14102 		/*
14103 		 * Ensure the list deletion is visible before we clear
14104 		 * the owner, closes a race against perf_release() where
14105 		 * we need to serialize on the owner->perf_event_mutex.
14106 		 */
14107 		smp_store_release(&event->owner, NULL);
14108 	}
14109 	mutex_unlock(&task->perf_event_mutex);
14110 
14111 	perf_event_exit_task_context(task, true);
14112 
14113 	/*
14114 	 * The perf_event_exit_task_context calls perf_event_task
14115 	 * with task's task_ctx, which generates EXIT events for
14116 	 * task contexts and sets task->perf_event_ctxp[] to NULL.
14117 	 * At this point we need to send EXIT events to cpu contexts.
14118 	 */
14119 	perf_event_task(task, NULL, 0);
14120 
14121 	/*
14122 	 * Detach the perf_ctx_data for the system-wide event.
14123 	 */
14124 	guard(percpu_read)(&global_ctx_data_rwsem);
14125 	detach_task_ctx_data(task);
14126 }
14127 
14128 /*
14129  * Free a context as created by inheritance by perf_event_init_task() below,
14130  * used by fork() in case of fail.
14131  *
14132  * Even though the task has never lived, the context and events have been
14133  * exposed through the child_list, so we must take care tearing it all down.
14134  */
14135 void perf_event_free_task(struct task_struct *task)
14136 {
14137 	perf_event_exit_task_context(task, false);
14138 }
14139 
14140 void perf_event_delayed_put(struct task_struct *task)
14141 {
14142 	WARN_ON_ONCE(task->perf_event_ctxp);
14143 }
14144 
14145 struct file *perf_event_get(unsigned int fd)
14146 {
14147 	struct file *file = fget(fd);
14148 	if (!file)
14149 		return ERR_PTR(-EBADF);
14150 
14151 	if (file->f_op != &perf_fops) {
14152 		fput(file);
14153 		return ERR_PTR(-EBADF);
14154 	}
14155 
14156 	return file;
14157 }
14158 
14159 const struct perf_event *perf_get_event(struct file *file)
14160 {
14161 	if (file->f_op != &perf_fops)
14162 		return ERR_PTR(-EINVAL);
14163 
14164 	return file->private_data;
14165 }
14166 
14167 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14168 {
14169 	if (!event)
14170 		return ERR_PTR(-EINVAL);
14171 
14172 	return &event->attr;
14173 }
14174 
14175 int perf_allow_kernel(void)
14176 {
14177 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14178 		return -EACCES;
14179 
14180 	return security_perf_event_open(PERF_SECURITY_KERNEL);
14181 }
14182 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14183 
14184 /*
14185  * Inherit an event from parent task to child task.
14186  *
14187  * Returns:
14188  *  - valid pointer on success
14189  *  - NULL for orphaned events
14190  *  - IS_ERR() on error
14191  */
14192 static struct perf_event *
14193 inherit_event(struct perf_event *parent_event,
14194 	      struct task_struct *parent,
14195 	      struct perf_event_context *parent_ctx,
14196 	      struct task_struct *child,
14197 	      struct perf_event *group_leader,
14198 	      struct perf_event_context *child_ctx)
14199 {
14200 	enum perf_event_state parent_state = parent_event->state;
14201 	struct perf_event_pmu_context *pmu_ctx;
14202 	struct perf_event *child_event;
14203 	unsigned long flags;
14204 
14205 	/*
14206 	 * Instead of creating recursive hierarchies of events,
14207 	 * we link inherited events back to the original parent,
14208 	 * which has a filp for sure, which we use as the reference
14209 	 * count:
14210 	 */
14211 	if (parent_event->parent)
14212 		parent_event = parent_event->parent;
14213 
14214 	if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14215 		return NULL;
14216 
14217 	/*
14218 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14219 	 */
14220 	guard(srcu)(&pmus_srcu);
14221 
14222 	child_event = perf_event_alloc(&parent_event->attr,
14223 					   parent_event->cpu,
14224 					   child,
14225 					   group_leader, parent_event,
14226 					   NULL, NULL, -1);
14227 	if (IS_ERR(child_event))
14228 		return child_event;
14229 
14230 	get_ctx(child_ctx);
14231 	child_event->ctx = child_ctx;
14232 
14233 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14234 	if (IS_ERR(pmu_ctx)) {
14235 		free_event(child_event);
14236 		return ERR_CAST(pmu_ctx);
14237 	}
14238 	child_event->pmu_ctx = pmu_ctx;
14239 
14240 	/*
14241 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14242 	 * must be under the same lock in order to serialize against
14243 	 * perf_event_release_kernel(), such that either we must observe
14244 	 * is_orphaned_event() or they will observe us on the child_list.
14245 	 */
14246 	mutex_lock(&parent_event->child_mutex);
14247 	if (is_orphaned_event(parent_event) ||
14248 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14249 		mutex_unlock(&parent_event->child_mutex);
14250 		free_event(child_event);
14251 		return NULL;
14252 	}
14253 
14254 	/*
14255 	 * Make the child state follow the state of the parent event,
14256 	 * not its attr.disabled bit.  We hold the parent's mutex,
14257 	 * so we won't race with perf_event_{en, dis}able_family.
14258 	 */
14259 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14260 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14261 	else
14262 		child_event->state = PERF_EVENT_STATE_OFF;
14263 
14264 	if (parent_event->attr.freq) {
14265 		u64 sample_period = parent_event->hw.sample_period;
14266 		struct hw_perf_event *hwc = &child_event->hw;
14267 
14268 		hwc->sample_period = sample_period;
14269 		hwc->last_period   = sample_period;
14270 
14271 		local64_set(&hwc->period_left, sample_period);
14272 	}
14273 
14274 	child_event->overflow_handler = parent_event->overflow_handler;
14275 	child_event->overflow_handler_context
14276 		= parent_event->overflow_handler_context;
14277 
14278 	/*
14279 	 * Precalculate sample_data sizes
14280 	 */
14281 	perf_event__header_size(child_event);
14282 	perf_event__id_header_size(child_event);
14283 
14284 	/*
14285 	 * Link it up in the child's context:
14286 	 */
14287 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14288 	add_event_to_ctx(child_event, child_ctx);
14289 	child_event->attach_state |= PERF_ATTACH_CHILD;
14290 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14291 
14292 	/*
14293 	 * Link this into the parent event's child list
14294 	 */
14295 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14296 	mutex_unlock(&parent_event->child_mutex);
14297 
14298 	return child_event;
14299 }
14300 
14301 /*
14302  * Inherits an event group.
14303  *
14304  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14305  * This matches with perf_event_release_kernel() removing all child events.
14306  *
14307  * Returns:
14308  *  - 0 on success
14309  *  - <0 on error
14310  */
14311 static int inherit_group(struct perf_event *parent_event,
14312 	      struct task_struct *parent,
14313 	      struct perf_event_context *parent_ctx,
14314 	      struct task_struct *child,
14315 	      struct perf_event_context *child_ctx)
14316 {
14317 	struct perf_event *leader;
14318 	struct perf_event *sub;
14319 	struct perf_event *child_ctr;
14320 
14321 	leader = inherit_event(parent_event, parent, parent_ctx,
14322 				 child, NULL, child_ctx);
14323 	if (IS_ERR(leader))
14324 		return PTR_ERR(leader);
14325 	/*
14326 	 * @leader can be NULL here because of is_orphaned_event(). In this
14327 	 * case inherit_event() will create individual events, similar to what
14328 	 * perf_group_detach() would do anyway.
14329 	 */
14330 	for_each_sibling_event(sub, parent_event) {
14331 		child_ctr = inherit_event(sub, parent, parent_ctx,
14332 					    child, leader, child_ctx);
14333 		if (IS_ERR(child_ctr))
14334 			return PTR_ERR(child_ctr);
14335 
14336 		if (sub->aux_event == parent_event && child_ctr &&
14337 		    !perf_get_aux_event(child_ctr, leader))
14338 			return -EINVAL;
14339 	}
14340 	if (leader)
14341 		leader->group_generation = parent_event->group_generation;
14342 	return 0;
14343 }
14344 
14345 /*
14346  * Creates the child task context and tries to inherit the event-group.
14347  *
14348  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14349  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14350  * consistent with perf_event_release_kernel() removing all child events.
14351  *
14352  * Returns:
14353  *  - 0 on success
14354  *  - <0 on error
14355  */
14356 static int
14357 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14358 		   struct perf_event_context *parent_ctx,
14359 		   struct task_struct *child,
14360 		   u64 clone_flags, int *inherited_all)
14361 {
14362 	struct perf_event_context *child_ctx;
14363 	int ret;
14364 
14365 	if (!event->attr.inherit ||
14366 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14367 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14368 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14369 		*inherited_all = 0;
14370 		return 0;
14371 	}
14372 
14373 	child_ctx = child->perf_event_ctxp;
14374 	if (!child_ctx) {
14375 		/*
14376 		 * This is executed from the parent task context, so
14377 		 * inherit events that have been marked for cloning.
14378 		 * First allocate and initialize a context for the
14379 		 * child.
14380 		 */
14381 		child_ctx = alloc_perf_context(child);
14382 		if (!child_ctx)
14383 			return -ENOMEM;
14384 
14385 		child->perf_event_ctxp = child_ctx;
14386 	}
14387 
14388 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14389 	if (ret)
14390 		*inherited_all = 0;
14391 
14392 	return ret;
14393 }
14394 
14395 /*
14396  * Initialize the perf_event context in task_struct
14397  */
14398 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14399 {
14400 	struct perf_event_context *child_ctx, *parent_ctx;
14401 	struct perf_event_context *cloned_ctx;
14402 	struct perf_event *event;
14403 	struct task_struct *parent = current;
14404 	int inherited_all = 1;
14405 	unsigned long flags;
14406 	int ret = 0;
14407 
14408 	if (likely(!parent->perf_event_ctxp))
14409 		return 0;
14410 
14411 	/*
14412 	 * If the parent's context is a clone, pin it so it won't get
14413 	 * swapped under us.
14414 	 */
14415 	parent_ctx = perf_pin_task_context(parent);
14416 	if (!parent_ctx)
14417 		return 0;
14418 
14419 	/*
14420 	 * No need to check if parent_ctx != NULL here; since we saw
14421 	 * it non-NULL earlier, the only reason for it to become NULL
14422 	 * is if we exit, and since we're currently in the middle of
14423 	 * a fork we can't be exiting at the same time.
14424 	 */
14425 
14426 	/*
14427 	 * Lock the parent list. No need to lock the child - not PID
14428 	 * hashed yet and not running, so nobody can access it.
14429 	 */
14430 	mutex_lock(&parent_ctx->mutex);
14431 
14432 	/*
14433 	 * We dont have to disable NMIs - we are only looking at
14434 	 * the list, not manipulating it:
14435 	 */
14436 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14437 		ret = inherit_task_group(event, parent, parent_ctx,
14438 					 child, clone_flags, &inherited_all);
14439 		if (ret)
14440 			goto out_unlock;
14441 	}
14442 
14443 	/*
14444 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14445 	 * to allocations, but we need to prevent rotation because
14446 	 * rotate_ctx() will change the list from interrupt context.
14447 	 */
14448 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14449 	parent_ctx->rotate_disable = 1;
14450 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14451 
14452 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14453 		ret = inherit_task_group(event, parent, parent_ctx,
14454 					 child, clone_flags, &inherited_all);
14455 		if (ret)
14456 			goto out_unlock;
14457 	}
14458 
14459 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14460 	parent_ctx->rotate_disable = 0;
14461 
14462 	child_ctx = child->perf_event_ctxp;
14463 
14464 	if (child_ctx && inherited_all) {
14465 		/*
14466 		 * Mark the child context as a clone of the parent
14467 		 * context, or of whatever the parent is a clone of.
14468 		 *
14469 		 * Note that if the parent is a clone, the holding of
14470 		 * parent_ctx->lock avoids it from being uncloned.
14471 		 */
14472 		cloned_ctx = parent_ctx->parent_ctx;
14473 		if (cloned_ctx) {
14474 			child_ctx->parent_ctx = cloned_ctx;
14475 			child_ctx->parent_gen = parent_ctx->parent_gen;
14476 		} else {
14477 			child_ctx->parent_ctx = parent_ctx;
14478 			child_ctx->parent_gen = parent_ctx->generation;
14479 		}
14480 		get_ctx(child_ctx->parent_ctx);
14481 	}
14482 
14483 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14484 out_unlock:
14485 	mutex_unlock(&parent_ctx->mutex);
14486 
14487 	perf_unpin_context(parent_ctx);
14488 	put_ctx(parent_ctx);
14489 
14490 	return ret;
14491 }
14492 
14493 /*
14494  * Initialize the perf_event context in task_struct
14495  */
14496 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14497 {
14498 	int ret;
14499 
14500 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14501 	child->perf_event_ctxp = NULL;
14502 	mutex_init(&child->perf_event_mutex);
14503 	INIT_LIST_HEAD(&child->perf_event_list);
14504 	child->perf_ctx_data = NULL;
14505 
14506 	ret = perf_event_init_context(child, clone_flags);
14507 	if (ret) {
14508 		perf_event_free_task(child);
14509 		return ret;
14510 	}
14511 
14512 	return 0;
14513 }
14514 
14515 static void __init perf_event_init_all_cpus(void)
14516 {
14517 	struct swevent_htable *swhash;
14518 	struct perf_cpu_context *cpuctx;
14519 	int cpu;
14520 
14521 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14522 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14523 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14524 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14525 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14526 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14527 
14528 
14529 	for_each_possible_cpu(cpu) {
14530 		swhash = &per_cpu(swevent_htable, cpu);
14531 		mutex_init(&swhash->hlist_mutex);
14532 
14533 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14534 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14535 
14536 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14537 
14538 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14539 		__perf_event_init_context(&cpuctx->ctx);
14540 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14541 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14542 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14543 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14544 		cpuctx->heap = cpuctx->heap_default;
14545 	}
14546 }
14547 
14548 static void perf_swevent_init_cpu(unsigned int cpu)
14549 {
14550 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14551 
14552 	mutex_lock(&swhash->hlist_mutex);
14553 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14554 		struct swevent_hlist *hlist;
14555 
14556 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14557 		WARN_ON(!hlist);
14558 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14559 	}
14560 	mutex_unlock(&swhash->hlist_mutex);
14561 }
14562 
14563 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
14564 static void __perf_event_exit_context(void *__info)
14565 {
14566 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14567 	struct perf_event_context *ctx = __info;
14568 	struct perf_event *event;
14569 
14570 	raw_spin_lock(&ctx->lock);
14571 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14572 	list_for_each_entry(event, &ctx->event_list, event_entry)
14573 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14574 	raw_spin_unlock(&ctx->lock);
14575 }
14576 
14577 static void perf_event_clear_cpumask(unsigned int cpu)
14578 {
14579 	int target[PERF_PMU_MAX_SCOPE];
14580 	unsigned int scope;
14581 	struct pmu *pmu;
14582 
14583 	cpumask_clear_cpu(cpu, perf_online_mask);
14584 
14585 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14586 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14587 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14588 
14589 		target[scope] = -1;
14590 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14591 			continue;
14592 
14593 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14594 			continue;
14595 		target[scope] = cpumask_any_but(cpumask, cpu);
14596 		if (target[scope] < nr_cpu_ids)
14597 			cpumask_set_cpu(target[scope], pmu_cpumask);
14598 	}
14599 
14600 	/* migrate */
14601 	list_for_each_entry(pmu, &pmus, entry) {
14602 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14603 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14604 			continue;
14605 
14606 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14607 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14608 	}
14609 }
14610 
14611 static void perf_event_exit_cpu_context(int cpu)
14612 {
14613 	struct perf_cpu_context *cpuctx;
14614 	struct perf_event_context *ctx;
14615 
14616 	// XXX simplify cpuctx->online
14617 	mutex_lock(&pmus_lock);
14618 	/*
14619 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14620 	 * Must be invoked before the __perf_event_exit_context.
14621 	 */
14622 	perf_event_clear_cpumask(cpu);
14623 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14624 	ctx = &cpuctx->ctx;
14625 
14626 	mutex_lock(&ctx->mutex);
14627 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14628 	cpuctx->online = 0;
14629 	mutex_unlock(&ctx->mutex);
14630 	mutex_unlock(&pmus_lock);
14631 }
14632 #else
14633 
14634 static void perf_event_exit_cpu_context(int cpu) { }
14635 
14636 #endif
14637 
14638 static void perf_event_setup_cpumask(unsigned int cpu)
14639 {
14640 	struct cpumask *pmu_cpumask;
14641 	unsigned int scope;
14642 
14643 	/*
14644 	 * Early boot stage, the cpumask hasn't been set yet.
14645 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14646 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14647 	 */
14648 	if (cpumask_empty(perf_online_mask)) {
14649 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14650 			pmu_cpumask = perf_scope_cpumask(scope);
14651 			if (WARN_ON_ONCE(!pmu_cpumask))
14652 				continue;
14653 			cpumask_set_cpu(cpu, pmu_cpumask);
14654 		}
14655 		goto end;
14656 	}
14657 
14658 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14659 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14660 
14661 		pmu_cpumask = perf_scope_cpumask(scope);
14662 
14663 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14664 			continue;
14665 
14666 		if (!cpumask_empty(cpumask) &&
14667 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14668 			cpumask_set_cpu(cpu, pmu_cpumask);
14669 	}
14670 end:
14671 	cpumask_set_cpu(cpu, perf_online_mask);
14672 }
14673 
14674 int perf_event_init_cpu(unsigned int cpu)
14675 {
14676 	struct perf_cpu_context *cpuctx;
14677 	struct perf_event_context *ctx;
14678 
14679 	perf_swevent_init_cpu(cpu);
14680 
14681 	mutex_lock(&pmus_lock);
14682 	perf_event_setup_cpumask(cpu);
14683 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14684 	ctx = &cpuctx->ctx;
14685 
14686 	mutex_lock(&ctx->mutex);
14687 	cpuctx->online = 1;
14688 	mutex_unlock(&ctx->mutex);
14689 	mutex_unlock(&pmus_lock);
14690 
14691 	return 0;
14692 }
14693 
14694 int perf_event_exit_cpu(unsigned int cpu)
14695 {
14696 	perf_event_exit_cpu_context(cpu);
14697 	return 0;
14698 }
14699 
14700 static int
14701 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14702 {
14703 	int cpu;
14704 
14705 	for_each_online_cpu(cpu)
14706 		perf_event_exit_cpu(cpu);
14707 
14708 	return NOTIFY_OK;
14709 }
14710 
14711 /*
14712  * Run the perf reboot notifier at the very last possible moment so that
14713  * the generic watchdog code runs as long as possible.
14714  */
14715 static struct notifier_block perf_reboot_notifier = {
14716 	.notifier_call = perf_reboot,
14717 	.priority = INT_MIN,
14718 };
14719 
14720 void __init perf_event_init(void)
14721 {
14722 	int ret;
14723 
14724 	idr_init(&pmu_idr);
14725 
14726 	perf_event_init_all_cpus();
14727 	init_srcu_struct(&pmus_srcu);
14728 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14729 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14730 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14731 	perf_tp_register();
14732 	perf_event_init_cpu(smp_processor_id());
14733 	register_reboot_notifier(&perf_reboot_notifier);
14734 
14735 	ret = init_hw_breakpoint();
14736 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14737 
14738 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14739 
14740 	/*
14741 	 * Build time assertion that we keep the data_head at the intended
14742 	 * location.  IOW, validation we got the __reserved[] size right.
14743 	 */
14744 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14745 		     != 1024);
14746 }
14747 
14748 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14749 			      char *page)
14750 {
14751 	struct perf_pmu_events_attr *pmu_attr =
14752 		container_of(attr, struct perf_pmu_events_attr, attr);
14753 
14754 	if (pmu_attr->event_str)
14755 		return sprintf(page, "%s\n", pmu_attr->event_str);
14756 
14757 	return 0;
14758 }
14759 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14760 
14761 static int __init perf_event_sysfs_init(void)
14762 {
14763 	struct pmu *pmu;
14764 	int ret;
14765 
14766 	mutex_lock(&pmus_lock);
14767 
14768 	ret = bus_register(&pmu_bus);
14769 	if (ret)
14770 		goto unlock;
14771 
14772 	list_for_each_entry(pmu, &pmus, entry) {
14773 		if (pmu->dev)
14774 			continue;
14775 
14776 		ret = pmu_dev_alloc(pmu);
14777 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14778 	}
14779 	pmu_bus_running = 1;
14780 	ret = 0;
14781 
14782 unlock:
14783 	mutex_unlock(&pmus_lock);
14784 
14785 	return ret;
14786 }
14787 device_initcall(perf_event_sysfs_init);
14788 
14789 #ifdef CONFIG_CGROUP_PERF
14790 static struct cgroup_subsys_state *
14791 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14792 {
14793 	struct perf_cgroup *jc;
14794 
14795 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14796 	if (!jc)
14797 		return ERR_PTR(-ENOMEM);
14798 
14799 	jc->info = alloc_percpu(struct perf_cgroup_info);
14800 	if (!jc->info) {
14801 		kfree(jc);
14802 		return ERR_PTR(-ENOMEM);
14803 	}
14804 
14805 	return &jc->css;
14806 }
14807 
14808 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14809 {
14810 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14811 
14812 	free_percpu(jc->info);
14813 	kfree(jc);
14814 }
14815 
14816 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14817 {
14818 	perf_event_cgroup(css->cgroup);
14819 	return 0;
14820 }
14821 
14822 static int __perf_cgroup_move(void *info)
14823 {
14824 	struct task_struct *task = info;
14825 
14826 	preempt_disable();
14827 	perf_cgroup_switch(task);
14828 	preempt_enable();
14829 
14830 	return 0;
14831 }
14832 
14833 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14834 {
14835 	struct task_struct *task;
14836 	struct cgroup_subsys_state *css;
14837 
14838 	cgroup_taskset_for_each(task, css, tset)
14839 		task_function_call(task, __perf_cgroup_move, task);
14840 }
14841 
14842 struct cgroup_subsys perf_event_cgrp_subsys = {
14843 	.css_alloc	= perf_cgroup_css_alloc,
14844 	.css_free	= perf_cgroup_css_free,
14845 	.css_online	= perf_cgroup_css_online,
14846 	.attach		= perf_cgroup_attach,
14847 	/*
14848 	 * Implicitly enable on dfl hierarchy so that perf events can
14849 	 * always be filtered by cgroup2 path as long as perf_event
14850 	 * controller is not mounted on a legacy hierarchy.
14851 	 */
14852 	.implicit_on_dfl = true,
14853 	.threaded	= true,
14854 };
14855 #endif /* CONFIG_CGROUP_PERF */
14856 
14857 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14858