xref: /linux/kernel/events/core.c (revision f9aec1648df09d55436a0e3a94acff1df507751f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 	struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603 	if (event->cgrp)
1604 		cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607 	return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 		      const u64 left_group_index, const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626 	{
1627 		const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629 		if (left_cgroup != right_cgroup) {
1630 			if (!left_cgroup) {
1631 				/*
1632 				 * Left has no cgroup but right does, no
1633 				 * cgroups come first.
1634 				 */
1635 				return -1;
1636 			}
1637 			if (!right_cgroup) {
1638 				/*
1639 				 * Right has no cgroup but left does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return 1;
1643 			}
1644 			/* Two dissimilar cgroups, order by id. */
1645 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 				return -1;
1647 
1648 			return 1;
1649 		}
1650 	}
1651 #endif
1652 
1653 	if (left_group_index < right->group_index)
1654 		return -1;
1655 	if (left_group_index > right->group_index)
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662 	rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 	struct perf_event *e = __node_2_pe(a);
1667 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 				     __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672 	int cpu;
1673 	struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 	const struct __group_key *a = key;
1679 	const struct perf_event *b = __node_2_pe(node);
1680 
1681 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	event->group_index = ++groups->index;
1695 
1696 	rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 	struct perf_event_groups *groups;
1706 
1707 	groups = get_event_groups(event, ctx);
1708 	perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 			 struct perf_event *event)
1717 {
1718 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 		     RB_EMPTY_ROOT(&groups->tree));
1720 
1721 	rb_erase(&event->group_node, &groups->tree);
1722 	init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 	struct perf_event_groups *groups;
1732 
1733 	groups = get_event_groups(event, ctx);
1734 	perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 			struct cgroup *cgrp)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = cpu,
1746 		.cgroup = cgrp,
1747 	};
1748 	struct rb_node *node;
1749 
1750 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 	if (node)
1752 		return __node_2_pe(node);
1753 
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = event->cpu,
1765 		.cgroup = event_cgroup(event),
1766 	};
1767 	struct rb_node *next;
1768 
1769 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 	if (next)
1771 		return __node_2_pe(next);
1772 
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->attr.inherit_stat)
1812 		ctx->nr_stat++;
1813 
1814 	if (event->state > PERF_EVENT_STATE_OFF)
1815 		perf_cgroup_event_enable(event, ctx);
1816 
1817 	ctx->generation++;
1818 }
1819 
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826 					      PERF_EVENT_STATE_INACTIVE;
1827 }
1828 
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831 	int entry = sizeof(u64); /* value */
1832 	int size = 0;
1833 	int nr = 1;
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836 		size += sizeof(u64);
1837 
1838 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839 		size += sizeof(u64);
1840 
1841 	if (event->attr.read_format & PERF_FORMAT_ID)
1842 		entry += sizeof(u64);
1843 
1844 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845 		nr += nr_siblings;
1846 		size += sizeof(u64);
1847 	}
1848 
1849 	size += entry * nr;
1850 	event->read_size = size;
1851 }
1852 
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855 	struct perf_sample_data *data;
1856 	u16 size = 0;
1857 
1858 	if (sample_type & PERF_SAMPLE_IP)
1859 		size += sizeof(data->ip);
1860 
1861 	if (sample_type & PERF_SAMPLE_ADDR)
1862 		size += sizeof(data->addr);
1863 
1864 	if (sample_type & PERF_SAMPLE_PERIOD)
1865 		size += sizeof(data->period);
1866 
1867 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868 		size += sizeof(data->weight.full);
1869 
1870 	if (sample_type & PERF_SAMPLE_READ)
1871 		size += event->read_size;
1872 
1873 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1874 		size += sizeof(data->data_src.val);
1875 
1876 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1877 		size += sizeof(data->txn);
1878 
1879 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880 		size += sizeof(data->phys_addr);
1881 
1882 	if (sample_type & PERF_SAMPLE_CGROUP)
1883 		size += sizeof(data->cgroup);
1884 
1885 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886 		size += sizeof(data->data_page_size);
1887 
1888 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889 		size += sizeof(data->code_page_size);
1890 
1891 	event->header_size = size;
1892 }
1893 
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900 	__perf_event_read_size(event,
1901 			       event->group_leader->nr_siblings);
1902 	__perf_event_header_size(event, event->attr.sample_type);
1903 }
1904 
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 	struct perf_sample_data *data;
1908 	u64 sample_type = event->attr.sample_type;
1909 	u16 size = 0;
1910 
1911 	if (sample_type & PERF_SAMPLE_TID)
1912 		size += sizeof(data->tid_entry);
1913 
1914 	if (sample_type & PERF_SAMPLE_TIME)
1915 		size += sizeof(data->time);
1916 
1917 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 		size += sizeof(data->id);
1919 
1920 	if (sample_type & PERF_SAMPLE_ID)
1921 		size += sizeof(data->id);
1922 
1923 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 		size += sizeof(data->stream_id);
1925 
1926 	if (sample_type & PERF_SAMPLE_CPU)
1927 		size += sizeof(data->cpu_entry);
1928 
1929 	event->id_header_size = size;
1930 }
1931 
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934 	/*
1935 	 * The values computed here will be over-written when we actually
1936 	 * attach the event.
1937 	 */
1938 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940 	perf_event__id_header_size(event);
1941 
1942 	/*
1943 	 * Sum the lot; should not exceed the 64k limit we have on records.
1944 	 * Conservative limit to allow for callchains and other variable fields.
1945 	 */
1946 	if (event->read_size + event->header_size +
1947 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948 		return false;
1949 
1950 	return true;
1951 }
1952 
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955 	struct perf_event *group_leader = event->group_leader, *pos;
1956 
1957 	lockdep_assert_held(&event->ctx->lock);
1958 
1959 	/*
1960 	 * We can have double attach due to group movement in perf_event_open.
1961 	 */
1962 	if (event->attach_state & PERF_ATTACH_GROUP)
1963 		return;
1964 
1965 	event->attach_state |= PERF_ATTACH_GROUP;
1966 
1967 	if (group_leader == event)
1968 		return;
1969 
1970 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971 
1972 	group_leader->group_caps &= event->event_caps;
1973 
1974 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975 	group_leader->nr_siblings++;
1976 
1977 	perf_event__header_size(group_leader);
1978 
1979 	for_each_sibling_event(pos, group_leader)
1980 		perf_event__header_size(pos);
1981 }
1982 
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990 	WARN_ON_ONCE(event->ctx != ctx);
1991 	lockdep_assert_held(&ctx->lock);
1992 
1993 	/*
1994 	 * We can have double detach due to exit/hot-unplug + close.
1995 	 */
1996 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997 		return;
1998 
1999 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000 
2001 	ctx->nr_events--;
2002 	if (event->attr.inherit_stat)
2003 		ctx->nr_stat--;
2004 
2005 	list_del_rcu(&event->event_entry);
2006 
2007 	if (event->group_leader == event)
2008 		del_event_from_groups(event, ctx);
2009 
2010 	/*
2011 	 * If event was in error state, then keep it
2012 	 * that way, otherwise bogus counts will be
2013 	 * returned on read(). The only way to get out
2014 	 * of error state is by explicit re-enabling
2015 	 * of the event
2016 	 */
2017 	if (event->state > PERF_EVENT_STATE_OFF) {
2018 		perf_cgroup_event_disable(event, ctx);
2019 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020 	}
2021 
2022 	ctx->generation++;
2023 }
2024 
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028 	if (!has_aux(aux_event))
2029 		return 0;
2030 
2031 	if (!event->pmu->aux_output_match)
2032 		return 0;
2033 
2034 	return event->pmu->aux_output_match(aux_event);
2035 }
2036 
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039 			    struct perf_cpu_context *cpuctx,
2040 			    struct perf_event_context *ctx);
2041 
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044 	struct perf_event_context *ctx = event->ctx;
2045 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046 	struct perf_event *iter;
2047 
2048 	/*
2049 	 * If event uses aux_event tear down the link
2050 	 */
2051 	if (event->aux_event) {
2052 		iter = event->aux_event;
2053 		event->aux_event = NULL;
2054 		put_event(iter);
2055 		return;
2056 	}
2057 
2058 	/*
2059 	 * If the event is an aux_event, tear down all links to
2060 	 * it from other events.
2061 	 */
2062 	for_each_sibling_event(iter, event->group_leader) {
2063 		if (iter->aux_event != event)
2064 			continue;
2065 
2066 		iter->aux_event = NULL;
2067 		put_event(event);
2068 
2069 		/*
2070 		 * If it's ACTIVE, schedule it out and put it into ERROR
2071 		 * state so that we don't try to schedule it again. Note
2072 		 * that perf_event_enable() will clear the ERROR status.
2073 		 */
2074 		event_sched_out(iter, cpuctx, ctx);
2075 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076 	}
2077 }
2078 
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083 
2084 static int perf_get_aux_event(struct perf_event *event,
2085 			      struct perf_event *group_leader)
2086 {
2087 	/*
2088 	 * Our group leader must be an aux event if we want to be
2089 	 * an aux_output. This way, the aux event will precede its
2090 	 * aux_output events in the group, and therefore will always
2091 	 * schedule first.
2092 	 */
2093 	if (!group_leader)
2094 		return 0;
2095 
2096 	/*
2097 	 * aux_output and aux_sample_size are mutually exclusive.
2098 	 */
2099 	if (event->attr.aux_output && event->attr.aux_sample_size)
2100 		return 0;
2101 
2102 	if (event->attr.aux_output &&
2103 	    !perf_aux_output_match(event, group_leader))
2104 		return 0;
2105 
2106 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107 		return 0;
2108 
2109 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110 		return 0;
2111 
2112 	/*
2113 	 * Link aux_outputs to their aux event; this is undone in
2114 	 * perf_group_detach() by perf_put_aux_event(). When the
2115 	 * group in torn down, the aux_output events loose their
2116 	 * link to the aux_event and can't schedule any more.
2117 	 */
2118 	event->aux_event = group_leader;
2119 
2120 	return 1;
2121 }
2122 
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125 	struct perf_event_context *ctx = event->ctx;
2126 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128 
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137 	struct perf_event_context *ctx = event->ctx;
2138 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139 
2140 	event_sched_out(event, cpuctx, ctx);
2141 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143 
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146 	struct perf_event *leader = event->group_leader;
2147 	struct perf_event *sibling, *tmp;
2148 	struct perf_event_context *ctx = event->ctx;
2149 
2150 	lockdep_assert_held(&ctx->lock);
2151 
2152 	/*
2153 	 * We can have double detach due to exit/hot-unplug + close.
2154 	 */
2155 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2156 		return;
2157 
2158 	event->attach_state &= ~PERF_ATTACH_GROUP;
2159 
2160 	perf_put_aux_event(event);
2161 
2162 	/*
2163 	 * If this is a sibling, remove it from its group.
2164 	 */
2165 	if (leader != event) {
2166 		list_del_init(&event->sibling_list);
2167 		event->group_leader->nr_siblings--;
2168 		goto out;
2169 	}
2170 
2171 	/*
2172 	 * If this was a group event with sibling events then
2173 	 * upgrade the siblings to singleton events by adding them
2174 	 * to whatever list we are on.
2175 	 */
2176 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177 
2178 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179 			perf_remove_sibling_event(sibling);
2180 
2181 		sibling->group_leader = sibling;
2182 		list_del_init(&sibling->sibling_list);
2183 
2184 		/* Inherit group flags from the previous leader */
2185 		sibling->group_caps = event->group_caps;
2186 
2187 		if (!RB_EMPTY_NODE(&event->group_node)) {
2188 			add_event_to_groups(sibling, event->ctx);
2189 
2190 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2192 		}
2193 
2194 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2195 	}
2196 
2197 out:
2198 	for_each_sibling_event(tmp, leader)
2199 		perf_event__header_size(tmp);
2200 
2201 	perf_event__header_size(leader);
2202 }
2203 
2204 static void sync_child_event(struct perf_event *child_event);
2205 
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208 	struct perf_event *parent_event = event->parent;
2209 
2210 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2211 		return;
2212 
2213 	event->attach_state &= ~PERF_ATTACH_CHILD;
2214 
2215 	if (WARN_ON_ONCE(!parent_event))
2216 		return;
2217 
2218 	lockdep_assert_held(&parent_event->child_mutex);
2219 
2220 	sync_child_event(event);
2221 	list_del_init(&event->child_list);
2222 }
2223 
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226 	return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228 
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231 	struct pmu *pmu = event->pmu;
2232 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234 
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243 	struct perf_event *sibling;
2244 
2245 	if (!__pmu_filter_match(event))
2246 		return 0;
2247 
2248 	for_each_sibling_event(sibling, event) {
2249 		if (!__pmu_filter_match(sibling))
2250 			return 0;
2251 	}
2252 
2253 	return 1;
2254 }
2255 
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260 	       perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262 
2263 static void
2264 event_sched_out(struct perf_event *event,
2265 		  struct perf_cpu_context *cpuctx,
2266 		  struct perf_event_context *ctx)
2267 {
2268 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269 
2270 	WARN_ON_ONCE(event->ctx != ctx);
2271 	lockdep_assert_held(&ctx->lock);
2272 
2273 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2274 		return;
2275 
2276 	/*
2277 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278 	 * we can schedule events _OUT_ individually through things like
2279 	 * __perf_remove_from_context().
2280 	 */
2281 	list_del_init(&event->active_list);
2282 
2283 	perf_pmu_disable(event->pmu);
2284 
2285 	event->pmu->del(event, 0);
2286 	event->oncpu = -1;
2287 
2288 	if (READ_ONCE(event->pending_disable) >= 0) {
2289 		WRITE_ONCE(event->pending_disable, -1);
2290 		perf_cgroup_event_disable(event, ctx);
2291 		state = PERF_EVENT_STATE_OFF;
2292 	}
2293 	perf_event_set_state(event, state);
2294 
2295 	if (!is_software_event(event))
2296 		cpuctx->active_oncpu--;
2297 	if (!--ctx->nr_active)
2298 		perf_event_ctx_deactivate(ctx);
2299 	if (event->attr.freq && event->attr.sample_freq)
2300 		ctx->nr_freq--;
2301 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2302 		cpuctx->exclusive = 0;
2303 
2304 	perf_pmu_enable(event->pmu);
2305 }
2306 
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309 		struct perf_cpu_context *cpuctx,
2310 		struct perf_event_context *ctx)
2311 {
2312 	struct perf_event *event;
2313 
2314 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315 		return;
2316 
2317 	perf_pmu_disable(ctx->pmu);
2318 
2319 	event_sched_out(group_event, cpuctx, ctx);
2320 
2321 	/*
2322 	 * Schedule out siblings (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event)
2325 		event_sched_out(event, cpuctx, ctx);
2326 
2327 	perf_pmu_enable(ctx->pmu);
2328 }
2329 
2330 #define DETACH_GROUP	0x01UL
2331 #define DETACH_CHILD	0x02UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341 			   struct perf_cpu_context *cpuctx,
2342 			   struct perf_event_context *ctx,
2343 			   void *info)
2344 {
2345 	unsigned long flags = (unsigned long)info;
2346 
2347 	if (ctx->is_active & EVENT_TIME) {
2348 		update_context_time(ctx);
2349 		update_cgrp_time_from_cpuctx(cpuctx);
2350 	}
2351 
2352 	event_sched_out(event, cpuctx, ctx);
2353 	if (flags & DETACH_GROUP)
2354 		perf_group_detach(event);
2355 	if (flags & DETACH_CHILD)
2356 		perf_child_detach(event);
2357 	list_del_event(event, ctx);
2358 
2359 	if (!ctx->nr_events && ctx->is_active) {
2360 		ctx->is_active = 0;
2361 		ctx->rotate_necessary = 0;
2362 		if (ctx->task) {
2363 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364 			cpuctx->task_ctx = NULL;
2365 		}
2366 	}
2367 }
2368 
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381 	struct perf_event_context *ctx = event->ctx;
2382 
2383 	lockdep_assert_held(&ctx->mutex);
2384 
2385 	/*
2386 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2388 	 * event_function_call() user.
2389 	 */
2390 	raw_spin_lock_irq(&ctx->lock);
2391 	if (!ctx->is_active) {
2392 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2393 					   ctx, (void *)flags);
2394 		raw_spin_unlock_irq(&ctx->lock);
2395 		return;
2396 	}
2397 	raw_spin_unlock_irq(&ctx->lock);
2398 
2399 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401 
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406 				 struct perf_cpu_context *cpuctx,
2407 				 struct perf_event_context *ctx,
2408 				 void *info)
2409 {
2410 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2411 		return;
2412 
2413 	if (ctx->is_active & EVENT_TIME) {
2414 		update_context_time(ctx);
2415 		update_cgrp_time_from_event(event);
2416 	}
2417 
2418 	if (event == event->group_leader)
2419 		group_sched_out(event, cpuctx, ctx);
2420 	else
2421 		event_sched_out(event, cpuctx, ctx);
2422 
2423 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424 	perf_cgroup_event_disable(event, ctx);
2425 }
2426 
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443 	struct perf_event_context *ctx = event->ctx;
2444 
2445 	raw_spin_lock_irq(&ctx->lock);
2446 	if (event->state <= PERF_EVENT_STATE_OFF) {
2447 		raw_spin_unlock_irq(&ctx->lock);
2448 		return;
2449 	}
2450 	raw_spin_unlock_irq(&ctx->lock);
2451 
2452 	event_function_call(event, __perf_event_disable, NULL);
2453 }
2454 
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457 	event_function_local(event, __perf_event_disable, NULL);
2458 }
2459 
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466 	struct perf_event_context *ctx;
2467 
2468 	ctx = perf_event_ctx_lock(event);
2469 	_perf_event_disable(event);
2470 	perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473 
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2477 	/* can fail, see perf_pending_event_disable() */
2478 	irq_work_queue(&event->pending);
2479 }
2480 
2481 static void perf_set_shadow_time(struct perf_event *event,
2482 				 struct perf_event_context *ctx)
2483 {
2484 	/*
2485 	 * use the correct time source for the time snapshot
2486 	 *
2487 	 * We could get by without this by leveraging the
2488 	 * fact that to get to this function, the caller
2489 	 * has most likely already called update_context_time()
2490 	 * and update_cgrp_time_xx() and thus both timestamp
2491 	 * are identical (or very close). Given that tstamp is,
2492 	 * already adjusted for cgroup, we could say that:
2493 	 *    tstamp - ctx->timestamp
2494 	 * is equivalent to
2495 	 *    tstamp - cgrp->timestamp.
2496 	 *
2497 	 * Then, in perf_output_read(), the calculation would
2498 	 * work with no changes because:
2499 	 * - event is guaranteed scheduled in
2500 	 * - no scheduled out in between
2501 	 * - thus the timestamp would be the same
2502 	 *
2503 	 * But this is a bit hairy.
2504 	 *
2505 	 * So instead, we have an explicit cgroup call to remain
2506 	 * within the time source all along. We believe it
2507 	 * is cleaner and simpler to understand.
2508 	 */
2509 	if (is_cgroup_event(event))
2510 		perf_cgroup_set_shadow_time(event, event->tstamp);
2511 	else
2512 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514 
2515 #define MAX_INTERRUPTS (~0ULL)
2516 
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519 
2520 static int
2521 event_sched_in(struct perf_event *event,
2522 		 struct perf_cpu_context *cpuctx,
2523 		 struct perf_event_context *ctx)
2524 {
2525 	int ret = 0;
2526 
2527 	WARN_ON_ONCE(event->ctx != ctx);
2528 
2529 	lockdep_assert_held(&ctx->lock);
2530 
2531 	if (event->state <= PERF_EVENT_STATE_OFF)
2532 		return 0;
2533 
2534 	WRITE_ONCE(event->oncpu, smp_processor_id());
2535 	/*
2536 	 * Order event::oncpu write to happen before the ACTIVE state is
2537 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2538 	 * ->oncpu if it sees ACTIVE.
2539 	 */
2540 	smp_wmb();
2541 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542 
2543 	/*
2544 	 * Unthrottle events, since we scheduled we might have missed several
2545 	 * ticks already, also for a heavily scheduling task there is little
2546 	 * guarantee it'll get a tick in a timely manner.
2547 	 */
2548 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549 		perf_log_throttle(event, 1);
2550 		event->hw.interrupts = 0;
2551 	}
2552 
2553 	perf_pmu_disable(event->pmu);
2554 
2555 	perf_set_shadow_time(event, ctx);
2556 
2557 	perf_log_itrace_start(event);
2558 
2559 	if (event->pmu->add(event, PERF_EF_START)) {
2560 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561 		event->oncpu = -1;
2562 		ret = -EAGAIN;
2563 		goto out;
2564 	}
2565 
2566 	if (!is_software_event(event))
2567 		cpuctx->active_oncpu++;
2568 	if (!ctx->nr_active++)
2569 		perf_event_ctx_activate(ctx);
2570 	if (event->attr.freq && event->attr.sample_freq)
2571 		ctx->nr_freq++;
2572 
2573 	if (event->attr.exclusive)
2574 		cpuctx->exclusive = 1;
2575 
2576 out:
2577 	perf_pmu_enable(event->pmu);
2578 
2579 	return ret;
2580 }
2581 
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584 	       struct perf_cpu_context *cpuctx,
2585 	       struct perf_event_context *ctx)
2586 {
2587 	struct perf_event *event, *partial_group = NULL;
2588 	struct pmu *pmu = ctx->pmu;
2589 
2590 	if (group_event->state == PERF_EVENT_STATE_OFF)
2591 		return 0;
2592 
2593 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594 
2595 	if (event_sched_in(group_event, cpuctx, ctx))
2596 		goto error;
2597 
2598 	/*
2599 	 * Schedule in siblings as one group (if any):
2600 	 */
2601 	for_each_sibling_event(event, group_event) {
2602 		if (event_sched_in(event, cpuctx, ctx)) {
2603 			partial_group = event;
2604 			goto group_error;
2605 		}
2606 	}
2607 
2608 	if (!pmu->commit_txn(pmu))
2609 		return 0;
2610 
2611 group_error:
2612 	/*
2613 	 * Groups can be scheduled in as one unit only, so undo any
2614 	 * partial group before returning:
2615 	 * The events up to the failed event are scheduled out normally.
2616 	 */
2617 	for_each_sibling_event(event, group_event) {
2618 		if (event == partial_group)
2619 			break;
2620 
2621 		event_sched_out(event, cpuctx, ctx);
2622 	}
2623 	event_sched_out(group_event, cpuctx, ctx);
2624 
2625 error:
2626 	pmu->cancel_txn(pmu);
2627 	return -EAGAIN;
2628 }
2629 
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634 			   struct perf_cpu_context *cpuctx,
2635 			   int can_add_hw)
2636 {
2637 	/*
2638 	 * Groups consisting entirely of software events can always go on.
2639 	 */
2640 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641 		return 1;
2642 	/*
2643 	 * If an exclusive group is already on, no other hardware
2644 	 * events can go on.
2645 	 */
2646 	if (cpuctx->exclusive)
2647 		return 0;
2648 	/*
2649 	 * If this group is exclusive and there are already
2650 	 * events on the CPU, it can't go on.
2651 	 */
2652 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653 		return 0;
2654 	/*
2655 	 * Otherwise, try to add it if all previous groups were able
2656 	 * to go on.
2657 	 */
2658 	return can_add_hw;
2659 }
2660 
2661 static void add_event_to_ctx(struct perf_event *event,
2662 			       struct perf_event_context *ctx)
2663 {
2664 	list_add_event(event, ctx);
2665 	perf_group_attach(event);
2666 }
2667 
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669 			  struct perf_cpu_context *cpuctx,
2670 			  enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673 	     struct perf_cpu_context *cpuctx,
2674 	     enum event_type_t event_type,
2675 	     struct task_struct *task);
2676 
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678 			       struct perf_event_context *ctx,
2679 			       enum event_type_t event_type)
2680 {
2681 	if (!cpuctx->task_ctx)
2682 		return;
2683 
2684 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685 		return;
2686 
2687 	ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689 
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691 				struct perf_event_context *ctx,
2692 				struct task_struct *task)
2693 {
2694 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695 	if (ctx)
2696 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698 	if (ctx)
2699 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701 
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718 			struct perf_event_context *task_ctx,
2719 			enum event_type_t event_type)
2720 {
2721 	enum event_type_t ctx_event_type;
2722 	bool cpu_event = !!(event_type & EVENT_CPU);
2723 
2724 	/*
2725 	 * If pinned groups are involved, flexible groups also need to be
2726 	 * scheduled out.
2727 	 */
2728 	if (event_type & EVENT_PINNED)
2729 		event_type |= EVENT_FLEXIBLE;
2730 
2731 	ctx_event_type = event_type & EVENT_ALL;
2732 
2733 	perf_pmu_disable(cpuctx->ctx.pmu);
2734 	if (task_ctx)
2735 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736 
2737 	/*
2738 	 * Decide which cpu ctx groups to schedule out based on the types
2739 	 * of events that caused rescheduling:
2740 	 *  - EVENT_CPU: schedule out corresponding groups;
2741 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742 	 *  - otherwise, do nothing more.
2743 	 */
2744 	if (cpu_event)
2745 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746 	else if (ctx_event_type & EVENT_PINNED)
2747 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748 
2749 	perf_event_sched_in(cpuctx, task_ctx, current);
2750 	perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752 
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757 
2758 	perf_ctx_lock(cpuctx, task_ctx);
2759 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760 	perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762 
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771 	struct perf_event *event = info;
2772 	struct perf_event_context *ctx = event->ctx;
2773 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775 	bool reprogram = true;
2776 	int ret = 0;
2777 
2778 	raw_spin_lock(&cpuctx->ctx.lock);
2779 	if (ctx->task) {
2780 		raw_spin_lock(&ctx->lock);
2781 		task_ctx = ctx;
2782 
2783 		reprogram = (ctx->task == current);
2784 
2785 		/*
2786 		 * If the task is running, it must be running on this CPU,
2787 		 * otherwise we cannot reprogram things.
2788 		 *
2789 		 * If its not running, we don't care, ctx->lock will
2790 		 * serialize against it becoming runnable.
2791 		 */
2792 		if (task_curr(ctx->task) && !reprogram) {
2793 			ret = -ESRCH;
2794 			goto unlock;
2795 		}
2796 
2797 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798 	} else if (task_ctx) {
2799 		raw_spin_lock(&task_ctx->lock);
2800 	}
2801 
2802 #ifdef CONFIG_CGROUP_PERF
2803 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804 		/*
2805 		 * If the current cgroup doesn't match the event's
2806 		 * cgroup, we should not try to schedule it.
2807 		 */
2808 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810 					event->cgrp->css.cgroup);
2811 	}
2812 #endif
2813 
2814 	if (reprogram) {
2815 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816 		add_event_to_ctx(event, ctx);
2817 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818 	} else {
2819 		add_event_to_ctx(event, ctx);
2820 	}
2821 
2822 unlock:
2823 	perf_ctx_unlock(cpuctx, task_ctx);
2824 
2825 	return ret;
2826 }
2827 
2828 static bool exclusive_event_installable(struct perf_event *event,
2829 					struct perf_event_context *ctx);
2830 
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838 			struct perf_event *event,
2839 			int cpu)
2840 {
2841 	struct task_struct *task = READ_ONCE(ctx->task);
2842 
2843 	lockdep_assert_held(&ctx->mutex);
2844 
2845 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846 
2847 	if (event->cpu != -1)
2848 		event->cpu = cpu;
2849 
2850 	/*
2851 	 * Ensures that if we can observe event->ctx, both the event and ctx
2852 	 * will be 'complete'. See perf_iterate_sb_cpu().
2853 	 */
2854 	smp_store_release(&event->ctx, ctx);
2855 
2856 	/*
2857 	 * perf_event_attr::disabled events will not run and can be initialized
2858 	 * without IPI. Except when this is the first event for the context, in
2859 	 * that case we need the magic of the IPI to set ctx->is_active.
2860 	 *
2861 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2862 	 * event will issue the IPI and reprogram the hardware.
2863 	 */
2864 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865 		raw_spin_lock_irq(&ctx->lock);
2866 		if (ctx->task == TASK_TOMBSTONE) {
2867 			raw_spin_unlock_irq(&ctx->lock);
2868 			return;
2869 		}
2870 		add_event_to_ctx(event, ctx);
2871 		raw_spin_unlock_irq(&ctx->lock);
2872 		return;
2873 	}
2874 
2875 	if (!task) {
2876 		cpu_function_call(cpu, __perf_install_in_context, event);
2877 		return;
2878 	}
2879 
2880 	/*
2881 	 * Should not happen, we validate the ctx is still alive before calling.
2882 	 */
2883 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884 		return;
2885 
2886 	/*
2887 	 * Installing events is tricky because we cannot rely on ctx->is_active
2888 	 * to be set in case this is the nr_events 0 -> 1 transition.
2889 	 *
2890 	 * Instead we use task_curr(), which tells us if the task is running.
2891 	 * However, since we use task_curr() outside of rq::lock, we can race
2892 	 * against the actual state. This means the result can be wrong.
2893 	 *
2894 	 * If we get a false positive, we retry, this is harmless.
2895 	 *
2896 	 * If we get a false negative, things are complicated. If we are after
2897 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898 	 * value must be correct. If we're before, it doesn't matter since
2899 	 * perf_event_context_sched_in() will program the counter.
2900 	 *
2901 	 * However, this hinges on the remote context switch having observed
2902 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2903 	 * ctx::lock in perf_event_context_sched_in().
2904 	 *
2905 	 * We do this by task_function_call(), if the IPI fails to hit the task
2906 	 * we know any future context switch of task must see the
2907 	 * perf_event_ctpx[] store.
2908 	 */
2909 
2910 	/*
2911 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912 	 * task_cpu() load, such that if the IPI then does not find the task
2913 	 * running, a future context switch of that task must observe the
2914 	 * store.
2915 	 */
2916 	smp_mb();
2917 again:
2918 	if (!task_function_call(task, __perf_install_in_context, event))
2919 		return;
2920 
2921 	raw_spin_lock_irq(&ctx->lock);
2922 	task = ctx->task;
2923 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924 		/*
2925 		 * Cannot happen because we already checked above (which also
2926 		 * cannot happen), and we hold ctx->mutex, which serializes us
2927 		 * against perf_event_exit_task_context().
2928 		 */
2929 		raw_spin_unlock_irq(&ctx->lock);
2930 		return;
2931 	}
2932 	/*
2933 	 * If the task is not running, ctx->lock will avoid it becoming so,
2934 	 * thus we can safely install the event.
2935 	 */
2936 	if (task_curr(task)) {
2937 		raw_spin_unlock_irq(&ctx->lock);
2938 		goto again;
2939 	}
2940 	add_event_to_ctx(event, ctx);
2941 	raw_spin_unlock_irq(&ctx->lock);
2942 }
2943 
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948 				struct perf_cpu_context *cpuctx,
2949 				struct perf_event_context *ctx,
2950 				void *info)
2951 {
2952 	struct perf_event *leader = event->group_leader;
2953 	struct perf_event_context *task_ctx;
2954 
2955 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956 	    event->state <= PERF_EVENT_STATE_ERROR)
2957 		return;
2958 
2959 	if (ctx->is_active)
2960 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961 
2962 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963 	perf_cgroup_event_enable(event, ctx);
2964 
2965 	if (!ctx->is_active)
2966 		return;
2967 
2968 	if (!event_filter_match(event)) {
2969 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970 		return;
2971 	}
2972 
2973 	/*
2974 	 * If the event is in a group and isn't the group leader,
2975 	 * then don't put it on unless the group is on.
2976 	 */
2977 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979 		return;
2980 	}
2981 
2982 	task_ctx = cpuctx->task_ctx;
2983 	if (ctx->task)
2984 		WARN_ON_ONCE(task_ctx != ctx);
2985 
2986 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988 
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000 	struct perf_event_context *ctx = event->ctx;
3001 
3002 	raw_spin_lock_irq(&ctx->lock);
3003 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004 	    event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006 		raw_spin_unlock_irq(&ctx->lock);
3007 		return;
3008 	}
3009 
3010 	/*
3011 	 * If the event is in error state, clear that first.
3012 	 *
3013 	 * That way, if we see the event in error state below, we know that it
3014 	 * has gone back into error state, as distinct from the task having
3015 	 * been scheduled away before the cross-call arrived.
3016 	 */
3017 	if (event->state == PERF_EVENT_STATE_ERROR) {
3018 		/*
3019 		 * Detached SIBLING events cannot leave ERROR state.
3020 		 */
3021 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022 		    event->group_leader == event)
3023 			goto out;
3024 
3025 		event->state = PERF_EVENT_STATE_OFF;
3026 	}
3027 	raw_spin_unlock_irq(&ctx->lock);
3028 
3029 	event_function_call(event, __perf_event_enable, NULL);
3030 }
3031 
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037 	struct perf_event_context *ctx;
3038 
3039 	ctx = perf_event_ctx_lock(event);
3040 	_perf_event_enable(event);
3041 	perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044 
3045 struct stop_event_data {
3046 	struct perf_event	*event;
3047 	unsigned int		restart;
3048 };
3049 
3050 static int __perf_event_stop(void *info)
3051 {
3052 	struct stop_event_data *sd = info;
3053 	struct perf_event *event = sd->event;
3054 
3055 	/* if it's already INACTIVE, do nothing */
3056 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057 		return 0;
3058 
3059 	/* matches smp_wmb() in event_sched_in() */
3060 	smp_rmb();
3061 
3062 	/*
3063 	 * There is a window with interrupts enabled before we get here,
3064 	 * so we need to check again lest we try to stop another CPU's event.
3065 	 */
3066 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3067 		return -EAGAIN;
3068 
3069 	event->pmu->stop(event, PERF_EF_UPDATE);
3070 
3071 	/*
3072 	 * May race with the actual stop (through perf_pmu_output_stop()),
3073 	 * but it is only used for events with AUX ring buffer, and such
3074 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3075 	 * see comments in perf_aux_output_begin().
3076 	 *
3077 	 * Since this is happening on an event-local CPU, no trace is lost
3078 	 * while restarting.
3079 	 */
3080 	if (sd->restart)
3081 		event->pmu->start(event, 0);
3082 
3083 	return 0;
3084 }
3085 
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088 	struct stop_event_data sd = {
3089 		.event		= event,
3090 		.restart	= restart,
3091 	};
3092 	int ret = 0;
3093 
3094 	do {
3095 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096 			return 0;
3097 
3098 		/* matches smp_wmb() in event_sched_in() */
3099 		smp_rmb();
3100 
3101 		/*
3102 		 * We only want to restart ACTIVE events, so if the event goes
3103 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3104 		 * fall through with ret==-ENXIO.
3105 		 */
3106 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3107 					__perf_event_stop, &sd);
3108 	} while (ret == -EAGAIN);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138 
3139 	if (!has_addr_filter(event))
3140 		return;
3141 
3142 	raw_spin_lock(&ifh->lock);
3143 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144 		event->pmu->addr_filters_sync(event);
3145 		event->hw.addr_filters_gen = event->addr_filters_gen;
3146 	}
3147 	raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150 
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153 	/*
3154 	 * not supported on inherited events
3155 	 */
3156 	if (event->attr.inherit || !is_sampling_event(event))
3157 		return -EINVAL;
3158 
3159 	atomic_add(refresh, &event->event_limit);
3160 	_perf_event_enable(event);
3161 
3162 	return 0;
3163 }
3164 
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170 	struct perf_event_context *ctx;
3171 	int ret;
3172 
3173 	ctx = perf_event_ctx_lock(event);
3174 	ret = _perf_event_refresh(event, refresh);
3175 	perf_event_ctx_unlock(event, ctx);
3176 
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180 
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182 					 struct perf_event_attr *attr)
3183 {
3184 	int err;
3185 
3186 	_perf_event_disable(bp);
3187 
3188 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3189 
3190 	if (!bp->attr.disabled)
3191 		_perf_event_enable(bp);
3192 
3193 	return err;
3194 }
3195 
3196 static int perf_event_modify_attr(struct perf_event *event,
3197 				  struct perf_event_attr *attr)
3198 {
3199 	int (*func)(struct perf_event *, struct perf_event_attr *);
3200 	struct perf_event *child;
3201 	int err;
3202 
3203 	if (event->attr.type != attr->type)
3204 		return -EINVAL;
3205 
3206 	switch (event->attr.type) {
3207 	case PERF_TYPE_BREAKPOINT:
3208 		func = perf_event_modify_breakpoint;
3209 		break;
3210 	default:
3211 		/* Place holder for future additions. */
3212 		return -EOPNOTSUPP;
3213 	}
3214 
3215 	WARN_ON_ONCE(event->ctx->parent_ctx);
3216 
3217 	mutex_lock(&event->child_mutex);
3218 	err = func(event, attr);
3219 	if (err)
3220 		goto out;
3221 	list_for_each_entry(child, &event->child_list, child_list) {
3222 		err = func(child, attr);
3223 		if (err)
3224 			goto out;
3225 	}
3226 out:
3227 	mutex_unlock(&event->child_mutex);
3228 	return err;
3229 }
3230 
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232 			  struct perf_cpu_context *cpuctx,
3233 			  enum event_type_t event_type)
3234 {
3235 	struct perf_event *event, *tmp;
3236 	int is_active = ctx->is_active;
3237 
3238 	lockdep_assert_held(&ctx->lock);
3239 
3240 	if (likely(!ctx->nr_events)) {
3241 		/*
3242 		 * See __perf_remove_from_context().
3243 		 */
3244 		WARN_ON_ONCE(ctx->is_active);
3245 		if (ctx->task)
3246 			WARN_ON_ONCE(cpuctx->task_ctx);
3247 		return;
3248 	}
3249 
3250 	ctx->is_active &= ~event_type;
3251 	if (!(ctx->is_active & EVENT_ALL))
3252 		ctx->is_active = 0;
3253 
3254 	if (ctx->task) {
3255 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256 		if (!ctx->is_active)
3257 			cpuctx->task_ctx = NULL;
3258 	}
3259 
3260 	/*
3261 	 * Always update time if it was set; not only when it changes.
3262 	 * Otherwise we can 'forget' to update time for any but the last
3263 	 * context we sched out. For example:
3264 	 *
3265 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3267 	 *
3268 	 * would only update time for the pinned events.
3269 	 */
3270 	if (is_active & EVENT_TIME) {
3271 		/* update (and stop) ctx time */
3272 		update_context_time(ctx);
3273 		update_cgrp_time_from_cpuctx(cpuctx);
3274 	}
3275 
3276 	is_active ^= ctx->is_active; /* changed bits */
3277 
3278 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279 		return;
3280 
3281 	perf_pmu_disable(ctx->pmu);
3282 	if (is_active & EVENT_PINNED) {
3283 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284 			group_sched_out(event, cpuctx, ctx);
3285 	}
3286 
3287 	if (is_active & EVENT_FLEXIBLE) {
3288 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289 			group_sched_out(event, cpuctx, ctx);
3290 
3291 		/*
3292 		 * Since we cleared EVENT_FLEXIBLE, also clear
3293 		 * rotate_necessary, is will be reset by
3294 		 * ctx_flexible_sched_in() when needed.
3295 		 */
3296 		ctx->rotate_necessary = 0;
3297 	}
3298 	perf_pmu_enable(ctx->pmu);
3299 }
3300 
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310 			 struct perf_event_context *ctx2)
3311 {
3312 	lockdep_assert_held(&ctx1->lock);
3313 	lockdep_assert_held(&ctx2->lock);
3314 
3315 	/* Pinning disables the swap optimization */
3316 	if (ctx1->pin_count || ctx2->pin_count)
3317 		return 0;
3318 
3319 	/* If ctx1 is the parent of ctx2 */
3320 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321 		return 1;
3322 
3323 	/* If ctx2 is the parent of ctx1 */
3324 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325 		return 1;
3326 
3327 	/*
3328 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3329 	 * hierarchy, see perf_event_init_context().
3330 	 */
3331 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332 			ctx1->parent_gen == ctx2->parent_gen)
3333 		return 1;
3334 
3335 	/* Unmatched */
3336 	return 0;
3337 }
3338 
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340 				     struct perf_event *next_event)
3341 {
3342 	u64 value;
3343 
3344 	if (!event->attr.inherit_stat)
3345 		return;
3346 
3347 	/*
3348 	 * Update the event value, we cannot use perf_event_read()
3349 	 * because we're in the middle of a context switch and have IRQs
3350 	 * disabled, which upsets smp_call_function_single(), however
3351 	 * we know the event must be on the current CPU, therefore we
3352 	 * don't need to use it.
3353 	 */
3354 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3355 		event->pmu->read(event);
3356 
3357 	perf_event_update_time(event);
3358 
3359 	/*
3360 	 * In order to keep per-task stats reliable we need to flip the event
3361 	 * values when we flip the contexts.
3362 	 */
3363 	value = local64_read(&next_event->count);
3364 	value = local64_xchg(&event->count, value);
3365 	local64_set(&next_event->count, value);
3366 
3367 	swap(event->total_time_enabled, next_event->total_time_enabled);
3368 	swap(event->total_time_running, next_event->total_time_running);
3369 
3370 	/*
3371 	 * Since we swizzled the values, update the user visible data too.
3372 	 */
3373 	perf_event_update_userpage(event);
3374 	perf_event_update_userpage(next_event);
3375 }
3376 
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378 				   struct perf_event_context *next_ctx)
3379 {
3380 	struct perf_event *event, *next_event;
3381 
3382 	if (!ctx->nr_stat)
3383 		return;
3384 
3385 	update_context_time(ctx);
3386 
3387 	event = list_first_entry(&ctx->event_list,
3388 				   struct perf_event, event_entry);
3389 
3390 	next_event = list_first_entry(&next_ctx->event_list,
3391 					struct perf_event, event_entry);
3392 
3393 	while (&event->event_entry != &ctx->event_list &&
3394 	       &next_event->event_entry != &next_ctx->event_list) {
3395 
3396 		__perf_event_sync_stat(event, next_event);
3397 
3398 		event = list_next_entry(event, event_entry);
3399 		next_event = list_next_entry(next_event, event_entry);
3400 	}
3401 }
3402 
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404 					 struct task_struct *next)
3405 {
3406 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407 	struct perf_event_context *next_ctx;
3408 	struct perf_event_context *parent, *next_parent;
3409 	struct perf_cpu_context *cpuctx;
3410 	int do_switch = 1;
3411 	struct pmu *pmu;
3412 
3413 	if (likely(!ctx))
3414 		return;
3415 
3416 	pmu = ctx->pmu;
3417 	cpuctx = __get_cpu_context(ctx);
3418 	if (!cpuctx->task_ctx)
3419 		return;
3420 
3421 	rcu_read_lock();
3422 	next_ctx = next->perf_event_ctxp[ctxn];
3423 	if (!next_ctx)
3424 		goto unlock;
3425 
3426 	parent = rcu_dereference(ctx->parent_ctx);
3427 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3428 
3429 	/* If neither context have a parent context; they cannot be clones. */
3430 	if (!parent && !next_parent)
3431 		goto unlock;
3432 
3433 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434 		/*
3435 		 * Looks like the two contexts are clones, so we might be
3436 		 * able to optimize the context switch.  We lock both
3437 		 * contexts and check that they are clones under the
3438 		 * lock (including re-checking that neither has been
3439 		 * uncloned in the meantime).  It doesn't matter which
3440 		 * order we take the locks because no other cpu could
3441 		 * be trying to lock both of these tasks.
3442 		 */
3443 		raw_spin_lock(&ctx->lock);
3444 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445 		if (context_equiv(ctx, next_ctx)) {
3446 
3447 			WRITE_ONCE(ctx->task, next);
3448 			WRITE_ONCE(next_ctx->task, task);
3449 
3450 			perf_pmu_disable(pmu);
3451 
3452 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3453 				pmu->sched_task(ctx, false);
3454 
3455 			/*
3456 			 * PMU specific parts of task perf context can require
3457 			 * additional synchronization. As an example of such
3458 			 * synchronization see implementation details of Intel
3459 			 * LBR call stack data profiling;
3460 			 */
3461 			if (pmu->swap_task_ctx)
3462 				pmu->swap_task_ctx(ctx, next_ctx);
3463 			else
3464 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465 
3466 			perf_pmu_enable(pmu);
3467 
3468 			/*
3469 			 * RCU_INIT_POINTER here is safe because we've not
3470 			 * modified the ctx and the above modification of
3471 			 * ctx->task and ctx->task_ctx_data are immaterial
3472 			 * since those values are always verified under
3473 			 * ctx->lock which we're now holding.
3474 			 */
3475 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477 
3478 			do_switch = 0;
3479 
3480 			perf_event_sync_stat(ctx, next_ctx);
3481 		}
3482 		raw_spin_unlock(&next_ctx->lock);
3483 		raw_spin_unlock(&ctx->lock);
3484 	}
3485 unlock:
3486 	rcu_read_unlock();
3487 
3488 	if (do_switch) {
3489 		raw_spin_lock(&ctx->lock);
3490 		perf_pmu_disable(pmu);
3491 
3492 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3493 			pmu->sched_task(ctx, false);
3494 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495 
3496 		perf_pmu_enable(pmu);
3497 		raw_spin_unlock(&ctx->lock);
3498 	}
3499 }
3500 
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502 
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506 
3507 	this_cpu_dec(perf_sched_cb_usages);
3508 
3509 	if (!--cpuctx->sched_cb_usage)
3510 		list_del(&cpuctx->sched_cb_entry);
3511 }
3512 
3513 
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517 
3518 	if (!cpuctx->sched_cb_usage++)
3519 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520 
3521 	this_cpu_inc(perf_sched_cb_usages);
3522 }
3523 
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534 	struct pmu *pmu;
3535 
3536 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537 
3538 	if (WARN_ON_ONCE(!pmu->sched_task))
3539 		return;
3540 
3541 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542 	perf_pmu_disable(pmu);
3543 
3544 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3545 
3546 	perf_pmu_enable(pmu);
3547 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549 
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551 				struct task_struct *next,
3552 				bool sched_in)
3553 {
3554 	struct perf_cpu_context *cpuctx;
3555 
3556 	if (prev == next)
3557 		return;
3558 
3559 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560 		/* will be handled in perf_event_context_sched_in/out */
3561 		if (cpuctx->task_ctx)
3562 			continue;
3563 
3564 		__perf_pmu_sched_task(cpuctx, sched_in);
3565 	}
3566 }
3567 
3568 static void perf_event_switch(struct task_struct *task,
3569 			      struct task_struct *next_prev, bool sched_in);
3570 
3571 #define for_each_task_context_nr(ctxn)					\
3572 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573 
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586 				 struct task_struct *next)
3587 {
3588 	int ctxn;
3589 
3590 	if (__this_cpu_read(perf_sched_cb_usages))
3591 		perf_pmu_sched_task(task, next, false);
3592 
3593 	if (atomic_read(&nr_switch_events))
3594 		perf_event_switch(task, next, false);
3595 
3596 	for_each_task_context_nr(ctxn)
3597 		perf_event_context_sched_out(task, ctxn, next);
3598 
3599 	/*
3600 	 * if cgroup events exist on this CPU, then we need
3601 	 * to check if we have to switch out PMU state.
3602 	 * cgroup event are system-wide mode only
3603 	 */
3604 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605 		perf_cgroup_sched_out(task, next);
3606 }
3607 
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612 			      enum event_type_t event_type)
3613 {
3614 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616 
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619 	const struct perf_event *le = *(const struct perf_event **)l;
3620 	const struct perf_event *re = *(const struct perf_event **)r;
3621 
3622 	return le->group_index < re->group_index;
3623 }
3624 
3625 static void swap_ptr(void *l, void *r)
3626 {
3627 	void **lp = l, **rp = r;
3628 
3629 	swap(*lp, *rp);
3630 }
3631 
3632 static const struct min_heap_callbacks perf_min_heap = {
3633 	.elem_size = sizeof(struct perf_event *),
3634 	.less = perf_less_group_idx,
3635 	.swp = swap_ptr,
3636 };
3637 
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640 	struct perf_event **itrs = heap->data;
3641 
3642 	if (event) {
3643 		itrs[heap->nr] = event;
3644 		heap->nr++;
3645 	}
3646 }
3647 
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649 				struct perf_event_groups *groups, int cpu,
3650 				int (*func)(struct perf_event *, void *),
3651 				void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654 	struct cgroup_subsys_state *css = NULL;
3655 #endif
3656 	/* Space for per CPU and/or any CPU event iterators. */
3657 	struct perf_event *itrs[2];
3658 	struct min_heap event_heap;
3659 	struct perf_event **evt;
3660 	int ret;
3661 
3662 	if (cpuctx) {
3663 		event_heap = (struct min_heap){
3664 			.data = cpuctx->heap,
3665 			.nr = 0,
3666 			.size = cpuctx->heap_size,
3667 		};
3668 
3669 		lockdep_assert_held(&cpuctx->ctx.lock);
3670 
3671 #ifdef CONFIG_CGROUP_PERF
3672 		if (cpuctx->cgrp)
3673 			css = &cpuctx->cgrp->css;
3674 #endif
3675 	} else {
3676 		event_heap = (struct min_heap){
3677 			.data = itrs,
3678 			.nr = 0,
3679 			.size = ARRAY_SIZE(itrs),
3680 		};
3681 		/* Events not within a CPU context may be on any CPU. */
3682 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683 	}
3684 	evt = event_heap.data;
3685 
3686 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687 
3688 #ifdef CONFIG_CGROUP_PERF
3689 	for (; css; css = css->parent)
3690 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692 
3693 	min_heapify_all(&event_heap, &perf_min_heap);
3694 
3695 	while (event_heap.nr) {
3696 		ret = func(*evt, data);
3697 		if (ret)
3698 			return ret;
3699 
3700 		*evt = perf_event_groups_next(*evt);
3701 		if (*evt)
3702 			min_heapify(&event_heap, 0, &perf_min_heap);
3703 		else
3704 			min_heap_pop(&event_heap, &perf_min_heap);
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712 	struct perf_event_context *ctx = event->ctx;
3713 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714 	int *can_add_hw = data;
3715 
3716 	if (event->state <= PERF_EVENT_STATE_OFF)
3717 		return 0;
3718 
3719 	if (!event_filter_match(event))
3720 		return 0;
3721 
3722 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723 		if (!group_sched_in(event, cpuctx, ctx))
3724 			list_add_tail(&event->active_list, get_event_list(event));
3725 	}
3726 
3727 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728 		if (event->attr.pinned) {
3729 			perf_cgroup_event_disable(event, ctx);
3730 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731 		}
3732 
3733 		*can_add_hw = 0;
3734 		ctx->rotate_necessary = 1;
3735 		perf_mux_hrtimer_restart(cpuctx);
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743 		    struct perf_cpu_context *cpuctx)
3744 {
3745 	int can_add_hw = 1;
3746 
3747 	if (ctx != &cpuctx->ctx)
3748 		cpuctx = NULL;
3749 
3750 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751 			   smp_processor_id(),
3752 			   merge_sched_in, &can_add_hw);
3753 }
3754 
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757 		      struct perf_cpu_context *cpuctx)
3758 {
3759 	int can_add_hw = 1;
3760 
3761 	if (ctx != &cpuctx->ctx)
3762 		cpuctx = NULL;
3763 
3764 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765 			   smp_processor_id(),
3766 			   merge_sched_in, &can_add_hw);
3767 }
3768 
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771 	     struct perf_cpu_context *cpuctx,
3772 	     enum event_type_t event_type,
3773 	     struct task_struct *task)
3774 {
3775 	int is_active = ctx->is_active;
3776 	u64 now;
3777 
3778 	lockdep_assert_held(&ctx->lock);
3779 
3780 	if (likely(!ctx->nr_events))
3781 		return;
3782 
3783 	ctx->is_active |= (event_type | EVENT_TIME);
3784 	if (ctx->task) {
3785 		if (!is_active)
3786 			cpuctx->task_ctx = ctx;
3787 		else
3788 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789 	}
3790 
3791 	is_active ^= ctx->is_active; /* changed bits */
3792 
3793 	if (is_active & EVENT_TIME) {
3794 		/* start ctx time */
3795 		now = perf_clock();
3796 		ctx->timestamp = now;
3797 		perf_cgroup_set_timestamp(task, ctx);
3798 	}
3799 
3800 	/*
3801 	 * First go through the list and put on any pinned groups
3802 	 * in order to give them the best chance of going on.
3803 	 */
3804 	if (is_active & EVENT_PINNED)
3805 		ctx_pinned_sched_in(ctx, cpuctx);
3806 
3807 	/* Then walk through the lower prio flexible groups */
3808 	if (is_active & EVENT_FLEXIBLE)
3809 		ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811 
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813 			     enum event_type_t event_type,
3814 			     struct task_struct *task)
3815 {
3816 	struct perf_event_context *ctx = &cpuctx->ctx;
3817 
3818 	ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820 
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822 					struct task_struct *task)
3823 {
3824 	struct perf_cpu_context *cpuctx;
3825 	struct pmu *pmu;
3826 
3827 	cpuctx = __get_cpu_context(ctx);
3828 
3829 	/*
3830 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3831 	 * different PMU, force (re)set the context,
3832 	 */
3833 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3834 
3835 	if (cpuctx->task_ctx == ctx) {
3836 		if (cpuctx->sched_cb_usage)
3837 			__perf_pmu_sched_task(cpuctx, true);
3838 		return;
3839 	}
3840 
3841 	perf_ctx_lock(cpuctx, ctx);
3842 	/*
3843 	 * We must check ctx->nr_events while holding ctx->lock, such
3844 	 * that we serialize against perf_install_in_context().
3845 	 */
3846 	if (!ctx->nr_events)
3847 		goto unlock;
3848 
3849 	perf_pmu_disable(pmu);
3850 	/*
3851 	 * We want to keep the following priority order:
3852 	 * cpu pinned (that don't need to move), task pinned,
3853 	 * cpu flexible, task flexible.
3854 	 *
3855 	 * However, if task's ctx is not carrying any pinned
3856 	 * events, no need to flip the cpuctx's events around.
3857 	 */
3858 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860 	perf_event_sched_in(cpuctx, ctx, task);
3861 
3862 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3863 		pmu->sched_task(cpuctx->task_ctx, true);
3864 
3865 	perf_pmu_enable(pmu);
3866 
3867 unlock:
3868 	perf_ctx_unlock(cpuctx, ctx);
3869 }
3870 
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883 				struct task_struct *task)
3884 {
3885 	struct perf_event_context *ctx;
3886 	int ctxn;
3887 
3888 	/*
3889 	 * If cgroup events exist on this CPU, then we need to check if we have
3890 	 * to switch in PMU state; cgroup event are system-wide mode only.
3891 	 *
3892 	 * Since cgroup events are CPU events, we must schedule these in before
3893 	 * we schedule in the task events.
3894 	 */
3895 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896 		perf_cgroup_sched_in(prev, task);
3897 
3898 	for_each_task_context_nr(ctxn) {
3899 		ctx = task->perf_event_ctxp[ctxn];
3900 		if (likely(!ctx))
3901 			continue;
3902 
3903 		perf_event_context_sched_in(ctx, task);
3904 	}
3905 
3906 	if (atomic_read(&nr_switch_events))
3907 		perf_event_switch(task, prev, true);
3908 
3909 	if (__this_cpu_read(perf_sched_cb_usages))
3910 		perf_pmu_sched_task(prev, task, true);
3911 }
3912 
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915 	u64 frequency = event->attr.sample_freq;
3916 	u64 sec = NSEC_PER_SEC;
3917 	u64 divisor, dividend;
3918 
3919 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3920 
3921 	count_fls = fls64(count);
3922 	nsec_fls = fls64(nsec);
3923 	frequency_fls = fls64(frequency);
3924 	sec_fls = 30;
3925 
3926 	/*
3927 	 * We got @count in @nsec, with a target of sample_freq HZ
3928 	 * the target period becomes:
3929 	 *
3930 	 *             @count * 10^9
3931 	 * period = -------------------
3932 	 *          @nsec * sample_freq
3933 	 *
3934 	 */
3935 
3936 	/*
3937 	 * Reduce accuracy by one bit such that @a and @b converge
3938 	 * to a similar magnitude.
3939 	 */
3940 #define REDUCE_FLS(a, b)		\
3941 do {					\
3942 	if (a##_fls > b##_fls) {	\
3943 		a >>= 1;		\
3944 		a##_fls--;		\
3945 	} else {			\
3946 		b >>= 1;		\
3947 		b##_fls--;		\
3948 	}				\
3949 } while (0)
3950 
3951 	/*
3952 	 * Reduce accuracy until either term fits in a u64, then proceed with
3953 	 * the other, so that finally we can do a u64/u64 division.
3954 	 */
3955 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956 		REDUCE_FLS(nsec, frequency);
3957 		REDUCE_FLS(sec, count);
3958 	}
3959 
3960 	if (count_fls + sec_fls > 64) {
3961 		divisor = nsec * frequency;
3962 
3963 		while (count_fls + sec_fls > 64) {
3964 			REDUCE_FLS(count, sec);
3965 			divisor >>= 1;
3966 		}
3967 
3968 		dividend = count * sec;
3969 	} else {
3970 		dividend = count * sec;
3971 
3972 		while (nsec_fls + frequency_fls > 64) {
3973 			REDUCE_FLS(nsec, frequency);
3974 			dividend >>= 1;
3975 		}
3976 
3977 		divisor = nsec * frequency;
3978 	}
3979 
3980 	if (!divisor)
3981 		return dividend;
3982 
3983 	return div64_u64(dividend, divisor);
3984 }
3985 
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988 
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991 	struct hw_perf_event *hwc = &event->hw;
3992 	s64 period, sample_period;
3993 	s64 delta;
3994 
3995 	period = perf_calculate_period(event, nsec, count);
3996 
3997 	delta = (s64)(period - hwc->sample_period);
3998 	delta = (delta + 7) / 8; /* low pass filter */
3999 
4000 	sample_period = hwc->sample_period + delta;
4001 
4002 	if (!sample_period)
4003 		sample_period = 1;
4004 
4005 	hwc->sample_period = sample_period;
4006 
4007 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4008 		if (disable)
4009 			event->pmu->stop(event, PERF_EF_UPDATE);
4010 
4011 		local64_set(&hwc->period_left, 0);
4012 
4013 		if (disable)
4014 			event->pmu->start(event, PERF_EF_RELOAD);
4015 	}
4016 }
4017 
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024 					   int needs_unthr)
4025 {
4026 	struct perf_event *event;
4027 	struct hw_perf_event *hwc;
4028 	u64 now, period = TICK_NSEC;
4029 	s64 delta;
4030 
4031 	/*
4032 	 * only need to iterate over all events iff:
4033 	 * - context have events in frequency mode (needs freq adjust)
4034 	 * - there are events to unthrottle on this cpu
4035 	 */
4036 	if (!(ctx->nr_freq || needs_unthr))
4037 		return;
4038 
4039 	raw_spin_lock(&ctx->lock);
4040 	perf_pmu_disable(ctx->pmu);
4041 
4042 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4044 			continue;
4045 
4046 		if (!event_filter_match(event))
4047 			continue;
4048 
4049 		perf_pmu_disable(event->pmu);
4050 
4051 		hwc = &event->hw;
4052 
4053 		if (hwc->interrupts == MAX_INTERRUPTS) {
4054 			hwc->interrupts = 0;
4055 			perf_log_throttle(event, 1);
4056 			event->pmu->start(event, 0);
4057 		}
4058 
4059 		if (!event->attr.freq || !event->attr.sample_freq)
4060 			goto next;
4061 
4062 		/*
4063 		 * stop the event and update event->count
4064 		 */
4065 		event->pmu->stop(event, PERF_EF_UPDATE);
4066 
4067 		now = local64_read(&event->count);
4068 		delta = now - hwc->freq_count_stamp;
4069 		hwc->freq_count_stamp = now;
4070 
4071 		/*
4072 		 * restart the event
4073 		 * reload only if value has changed
4074 		 * we have stopped the event so tell that
4075 		 * to perf_adjust_period() to avoid stopping it
4076 		 * twice.
4077 		 */
4078 		if (delta > 0)
4079 			perf_adjust_period(event, period, delta, false);
4080 
4081 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082 	next:
4083 		perf_pmu_enable(event->pmu);
4084 	}
4085 
4086 	perf_pmu_enable(ctx->pmu);
4087 	raw_spin_unlock(&ctx->lock);
4088 }
4089 
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095 	/*
4096 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4097 	 * disabled by the inheritance code.
4098 	 */
4099 	if (ctx->rotate_disable)
4100 		return;
4101 
4102 	perf_event_groups_delete(&ctx->flexible_groups, event);
4103 	perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105 
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110 	struct perf_event *event;
4111 
4112 	/* pick the first active flexible event */
4113 	event = list_first_entry_or_null(&ctx->flexible_active,
4114 					 struct perf_event, active_list);
4115 
4116 	/* if no active flexible event, pick the first event */
4117 	if (!event) {
4118 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119 				      typeof(*event), group_node);
4120 	}
4121 
4122 	/*
4123 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124 	 * finds there are unschedulable events, it will set it again.
4125 	 */
4126 	ctx->rotate_necessary = 0;
4127 
4128 	return event;
4129 }
4130 
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4134 	struct perf_event_context *task_ctx = NULL;
4135 	int cpu_rotate, task_rotate;
4136 
4137 	/*
4138 	 * Since we run this from IRQ context, nobody can install new
4139 	 * events, thus the event count values are stable.
4140 	 */
4141 
4142 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4143 	task_ctx = cpuctx->task_ctx;
4144 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145 
4146 	if (!(cpu_rotate || task_rotate))
4147 		return false;
4148 
4149 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150 	perf_pmu_disable(cpuctx->ctx.pmu);
4151 
4152 	if (task_rotate)
4153 		task_event = ctx_event_to_rotate(task_ctx);
4154 	if (cpu_rotate)
4155 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156 
4157 	/*
4158 	 * As per the order given at ctx_resched() first 'pop' task flexible
4159 	 * and then, if needed CPU flexible.
4160 	 */
4161 	if (task_event || (task_ctx && cpu_event))
4162 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163 	if (cpu_event)
4164 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165 
4166 	if (task_event)
4167 		rotate_ctx(task_ctx, task_event);
4168 	if (cpu_event)
4169 		rotate_ctx(&cpuctx->ctx, cpu_event);
4170 
4171 	perf_event_sched_in(cpuctx, task_ctx, current);
4172 
4173 	perf_pmu_enable(cpuctx->ctx.pmu);
4174 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175 
4176 	return true;
4177 }
4178 
4179 void perf_event_task_tick(void)
4180 {
4181 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182 	struct perf_event_context *ctx, *tmp;
4183 	int throttled;
4184 
4185 	lockdep_assert_irqs_disabled();
4186 
4187 	__this_cpu_inc(perf_throttled_seq);
4188 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190 
4191 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192 		perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194 
4195 static int event_enable_on_exec(struct perf_event *event,
4196 				struct perf_event_context *ctx)
4197 {
4198 	if (!event->attr.enable_on_exec)
4199 		return 0;
4200 
4201 	event->attr.enable_on_exec = 0;
4202 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203 		return 0;
4204 
4205 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206 
4207 	return 1;
4208 }
4209 
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216 	struct perf_event_context *ctx, *clone_ctx = NULL;
4217 	enum event_type_t event_type = 0;
4218 	struct perf_cpu_context *cpuctx;
4219 	struct perf_event *event;
4220 	unsigned long flags;
4221 	int enabled = 0;
4222 
4223 	local_irq_save(flags);
4224 	ctx = current->perf_event_ctxp[ctxn];
4225 	if (!ctx || !ctx->nr_events)
4226 		goto out;
4227 
4228 	cpuctx = __get_cpu_context(ctx);
4229 	perf_ctx_lock(cpuctx, ctx);
4230 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4232 		enabled |= event_enable_on_exec(event, ctx);
4233 		event_type |= get_event_type(event);
4234 	}
4235 
4236 	/*
4237 	 * Unclone and reschedule this context if we enabled any event.
4238 	 */
4239 	if (enabled) {
4240 		clone_ctx = unclone_ctx(ctx);
4241 		ctx_resched(cpuctx, ctx, event_type);
4242 	} else {
4243 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244 	}
4245 	perf_ctx_unlock(cpuctx, ctx);
4246 
4247 out:
4248 	local_irq_restore(flags);
4249 
4250 	if (clone_ctx)
4251 		put_ctx(clone_ctx);
4252 }
4253 
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256 				  struct perf_event_context *ctx);
4257 
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264 	struct perf_event_context *ctx, *clone_ctx = NULL;
4265 	struct perf_event *event, *next;
4266 	LIST_HEAD(free_list);
4267 	unsigned long flags;
4268 	bool modified = false;
4269 
4270 	ctx = perf_pin_task_context(current, ctxn);
4271 	if (!ctx)
4272 		return;
4273 
4274 	mutex_lock(&ctx->mutex);
4275 
4276 	if (WARN_ON_ONCE(ctx->task != current))
4277 		goto unlock;
4278 
4279 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280 		if (!event->attr.remove_on_exec)
4281 			continue;
4282 
4283 		if (!is_kernel_event(event))
4284 			perf_remove_from_owner(event);
4285 
4286 		modified = true;
4287 
4288 		perf_event_exit_event(event, ctx);
4289 	}
4290 
4291 	raw_spin_lock_irqsave(&ctx->lock, flags);
4292 	if (modified)
4293 		clone_ctx = unclone_ctx(ctx);
4294 	--ctx->pin_count;
4295 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296 
4297 unlock:
4298 	mutex_unlock(&ctx->mutex);
4299 
4300 	put_ctx(ctx);
4301 	if (clone_ctx)
4302 		put_ctx(clone_ctx);
4303 }
4304 
4305 struct perf_read_data {
4306 	struct perf_event *event;
4307 	bool group;
4308 	int ret;
4309 };
4310 
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313 	u16 local_pkg, event_pkg;
4314 
4315 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316 		int local_cpu = smp_processor_id();
4317 
4318 		event_pkg = topology_physical_package_id(event_cpu);
4319 		local_pkg = topology_physical_package_id(local_cpu);
4320 
4321 		if (event_pkg == local_pkg)
4322 			return local_cpu;
4323 	}
4324 
4325 	return event_cpu;
4326 }
4327 
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333 	struct perf_read_data *data = info;
4334 	struct perf_event *sub, *event = data->event;
4335 	struct perf_event_context *ctx = event->ctx;
4336 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337 	struct pmu *pmu = event->pmu;
4338 
4339 	/*
4340 	 * If this is a task context, we need to check whether it is
4341 	 * the current task context of this cpu.  If not it has been
4342 	 * scheduled out before the smp call arrived.  In that case
4343 	 * event->count would have been updated to a recent sample
4344 	 * when the event was scheduled out.
4345 	 */
4346 	if (ctx->task && cpuctx->task_ctx != ctx)
4347 		return;
4348 
4349 	raw_spin_lock(&ctx->lock);
4350 	if (ctx->is_active & EVENT_TIME) {
4351 		update_context_time(ctx);
4352 		update_cgrp_time_from_event(event);
4353 	}
4354 
4355 	perf_event_update_time(event);
4356 	if (data->group)
4357 		perf_event_update_sibling_time(event);
4358 
4359 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4360 		goto unlock;
4361 
4362 	if (!data->group) {
4363 		pmu->read(event);
4364 		data->ret = 0;
4365 		goto unlock;
4366 	}
4367 
4368 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369 
4370 	pmu->read(event);
4371 
4372 	for_each_sibling_event(sub, event) {
4373 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374 			/*
4375 			 * Use sibling's PMU rather than @event's since
4376 			 * sibling could be on different (eg: software) PMU.
4377 			 */
4378 			sub->pmu->read(sub);
4379 		}
4380 	}
4381 
4382 	data->ret = pmu->commit_txn(pmu);
4383 
4384 unlock:
4385 	raw_spin_unlock(&ctx->lock);
4386 }
4387 
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392 
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402 			  u64 *enabled, u64 *running)
4403 {
4404 	unsigned long flags;
4405 	int ret = 0;
4406 
4407 	/*
4408 	 * Disabling interrupts avoids all counter scheduling (context
4409 	 * switches, timer based rotation and IPIs).
4410 	 */
4411 	local_irq_save(flags);
4412 
4413 	/*
4414 	 * It must not be an event with inherit set, we cannot read
4415 	 * all child counters from atomic context.
4416 	 */
4417 	if (event->attr.inherit) {
4418 		ret = -EOPNOTSUPP;
4419 		goto out;
4420 	}
4421 
4422 	/* If this is a per-task event, it must be for current */
4423 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4424 	    event->hw.target != current) {
4425 		ret = -EINVAL;
4426 		goto out;
4427 	}
4428 
4429 	/* If this is a per-CPU event, it must be for this CPU */
4430 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431 	    event->cpu != smp_processor_id()) {
4432 		ret = -EINVAL;
4433 		goto out;
4434 	}
4435 
4436 	/* If this is a pinned event it must be running on this CPU */
4437 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438 		ret = -EBUSY;
4439 		goto out;
4440 	}
4441 
4442 	/*
4443 	 * If the event is currently on this CPU, its either a per-task event,
4444 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445 	 * oncpu == -1).
4446 	 */
4447 	if (event->oncpu == smp_processor_id())
4448 		event->pmu->read(event);
4449 
4450 	*value = local64_read(&event->count);
4451 	if (enabled || running) {
4452 		u64 now = event->shadow_ctx_time + perf_clock();
4453 		u64 __enabled, __running;
4454 
4455 		__perf_update_times(event, now, &__enabled, &__running);
4456 		if (enabled)
4457 			*enabled = __enabled;
4458 		if (running)
4459 			*running = __running;
4460 	}
4461 out:
4462 	local_irq_restore(flags);
4463 
4464 	return ret;
4465 }
4466 
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469 	enum perf_event_state state = READ_ONCE(event->state);
4470 	int event_cpu, ret = 0;
4471 
4472 	/*
4473 	 * If event is enabled and currently active on a CPU, update the
4474 	 * value in the event structure:
4475 	 */
4476 again:
4477 	if (state == PERF_EVENT_STATE_ACTIVE) {
4478 		struct perf_read_data data;
4479 
4480 		/*
4481 		 * Orders the ->state and ->oncpu loads such that if we see
4482 		 * ACTIVE we must also see the right ->oncpu.
4483 		 *
4484 		 * Matches the smp_wmb() from event_sched_in().
4485 		 */
4486 		smp_rmb();
4487 
4488 		event_cpu = READ_ONCE(event->oncpu);
4489 		if ((unsigned)event_cpu >= nr_cpu_ids)
4490 			return 0;
4491 
4492 		data = (struct perf_read_data){
4493 			.event = event,
4494 			.group = group,
4495 			.ret = 0,
4496 		};
4497 
4498 		preempt_disable();
4499 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4500 
4501 		/*
4502 		 * Purposely ignore the smp_call_function_single() return
4503 		 * value.
4504 		 *
4505 		 * If event_cpu isn't a valid CPU it means the event got
4506 		 * scheduled out and that will have updated the event count.
4507 		 *
4508 		 * Therefore, either way, we'll have an up-to-date event count
4509 		 * after this.
4510 		 */
4511 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512 		preempt_enable();
4513 		ret = data.ret;
4514 
4515 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4516 		struct perf_event_context *ctx = event->ctx;
4517 		unsigned long flags;
4518 
4519 		raw_spin_lock_irqsave(&ctx->lock, flags);
4520 		state = event->state;
4521 		if (state != PERF_EVENT_STATE_INACTIVE) {
4522 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523 			goto again;
4524 		}
4525 
4526 		/*
4527 		 * May read while context is not active (e.g., thread is
4528 		 * blocked), in that case we cannot update context time
4529 		 */
4530 		if (ctx->is_active & EVENT_TIME) {
4531 			update_context_time(ctx);
4532 			update_cgrp_time_from_event(event);
4533 		}
4534 
4535 		perf_event_update_time(event);
4536 		if (group)
4537 			perf_event_update_sibling_time(event);
4538 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539 	}
4540 
4541 	return ret;
4542 }
4543 
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549 	raw_spin_lock_init(&ctx->lock);
4550 	mutex_init(&ctx->mutex);
4551 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4552 	perf_event_groups_init(&ctx->pinned_groups);
4553 	perf_event_groups_init(&ctx->flexible_groups);
4554 	INIT_LIST_HEAD(&ctx->event_list);
4555 	INIT_LIST_HEAD(&ctx->pinned_active);
4556 	INIT_LIST_HEAD(&ctx->flexible_active);
4557 	refcount_set(&ctx->refcount, 1);
4558 }
4559 
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563 	struct perf_event_context *ctx;
4564 
4565 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566 	if (!ctx)
4567 		return NULL;
4568 
4569 	__perf_event_init_context(ctx);
4570 	if (task)
4571 		ctx->task = get_task_struct(task);
4572 	ctx->pmu = pmu;
4573 
4574 	return ctx;
4575 }
4576 
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580 	struct task_struct *task;
4581 
4582 	rcu_read_lock();
4583 	if (!vpid)
4584 		task = current;
4585 	else
4586 		task = find_task_by_vpid(vpid);
4587 	if (task)
4588 		get_task_struct(task);
4589 	rcu_read_unlock();
4590 
4591 	if (!task)
4592 		return ERR_PTR(-ESRCH);
4593 
4594 	return task;
4595 }
4596 
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602 		struct perf_event *event)
4603 {
4604 	struct perf_event_context *ctx, *clone_ctx = NULL;
4605 	struct perf_cpu_context *cpuctx;
4606 	void *task_ctx_data = NULL;
4607 	unsigned long flags;
4608 	int ctxn, err;
4609 	int cpu = event->cpu;
4610 
4611 	if (!task) {
4612 		/* Must be root to operate on a CPU event: */
4613 		err = perf_allow_cpu(&event->attr);
4614 		if (err)
4615 			return ERR_PTR(err);
4616 
4617 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618 		ctx = &cpuctx->ctx;
4619 		get_ctx(ctx);
4620 		raw_spin_lock_irqsave(&ctx->lock, flags);
4621 		++ctx->pin_count;
4622 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623 
4624 		return ctx;
4625 	}
4626 
4627 	err = -EINVAL;
4628 	ctxn = pmu->task_ctx_nr;
4629 	if (ctxn < 0)
4630 		goto errout;
4631 
4632 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4633 		task_ctx_data = alloc_task_ctx_data(pmu);
4634 		if (!task_ctx_data) {
4635 			err = -ENOMEM;
4636 			goto errout;
4637 		}
4638 	}
4639 
4640 retry:
4641 	ctx = perf_lock_task_context(task, ctxn, &flags);
4642 	if (ctx) {
4643 		clone_ctx = unclone_ctx(ctx);
4644 		++ctx->pin_count;
4645 
4646 		if (task_ctx_data && !ctx->task_ctx_data) {
4647 			ctx->task_ctx_data = task_ctx_data;
4648 			task_ctx_data = NULL;
4649 		}
4650 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651 
4652 		if (clone_ctx)
4653 			put_ctx(clone_ctx);
4654 	} else {
4655 		ctx = alloc_perf_context(pmu, task);
4656 		err = -ENOMEM;
4657 		if (!ctx)
4658 			goto errout;
4659 
4660 		if (task_ctx_data) {
4661 			ctx->task_ctx_data = task_ctx_data;
4662 			task_ctx_data = NULL;
4663 		}
4664 
4665 		err = 0;
4666 		mutex_lock(&task->perf_event_mutex);
4667 		/*
4668 		 * If it has already passed perf_event_exit_task().
4669 		 * we must see PF_EXITING, it takes this mutex too.
4670 		 */
4671 		if (task->flags & PF_EXITING)
4672 			err = -ESRCH;
4673 		else if (task->perf_event_ctxp[ctxn])
4674 			err = -EAGAIN;
4675 		else {
4676 			get_ctx(ctx);
4677 			++ctx->pin_count;
4678 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4679 		}
4680 		mutex_unlock(&task->perf_event_mutex);
4681 
4682 		if (unlikely(err)) {
4683 			put_ctx(ctx);
4684 
4685 			if (err == -EAGAIN)
4686 				goto retry;
4687 			goto errout;
4688 		}
4689 	}
4690 
4691 	free_task_ctx_data(pmu, task_ctx_data);
4692 	return ctx;
4693 
4694 errout:
4695 	free_task_ctx_data(pmu, task_ctx_data);
4696 	return ERR_PTR(err);
4697 }
4698 
4699 static void perf_event_free_filter(struct perf_event *event);
4700 
4701 static void free_event_rcu(struct rcu_head *head)
4702 {
4703 	struct perf_event *event;
4704 
4705 	event = container_of(head, struct perf_event, rcu_head);
4706 	if (event->ns)
4707 		put_pid_ns(event->ns);
4708 	perf_event_free_filter(event);
4709 	kmem_cache_free(perf_event_cache, event);
4710 }
4711 
4712 static void ring_buffer_attach(struct perf_event *event,
4713 			       struct perf_buffer *rb);
4714 
4715 static void detach_sb_event(struct perf_event *event)
4716 {
4717 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4718 
4719 	raw_spin_lock(&pel->lock);
4720 	list_del_rcu(&event->sb_list);
4721 	raw_spin_unlock(&pel->lock);
4722 }
4723 
4724 static bool is_sb_event(struct perf_event *event)
4725 {
4726 	struct perf_event_attr *attr = &event->attr;
4727 
4728 	if (event->parent)
4729 		return false;
4730 
4731 	if (event->attach_state & PERF_ATTACH_TASK)
4732 		return false;
4733 
4734 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4735 	    attr->comm || attr->comm_exec ||
4736 	    attr->task || attr->ksymbol ||
4737 	    attr->context_switch || attr->text_poke ||
4738 	    attr->bpf_event)
4739 		return true;
4740 	return false;
4741 }
4742 
4743 static void unaccount_pmu_sb_event(struct perf_event *event)
4744 {
4745 	if (is_sb_event(event))
4746 		detach_sb_event(event);
4747 }
4748 
4749 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4750 {
4751 	if (event->parent)
4752 		return;
4753 
4754 	if (is_cgroup_event(event))
4755 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4756 }
4757 
4758 #ifdef CONFIG_NO_HZ_FULL
4759 static DEFINE_SPINLOCK(nr_freq_lock);
4760 #endif
4761 
4762 static void unaccount_freq_event_nohz(void)
4763 {
4764 #ifdef CONFIG_NO_HZ_FULL
4765 	spin_lock(&nr_freq_lock);
4766 	if (atomic_dec_and_test(&nr_freq_events))
4767 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4768 	spin_unlock(&nr_freq_lock);
4769 #endif
4770 }
4771 
4772 static void unaccount_freq_event(void)
4773 {
4774 	if (tick_nohz_full_enabled())
4775 		unaccount_freq_event_nohz();
4776 	else
4777 		atomic_dec(&nr_freq_events);
4778 }
4779 
4780 static void unaccount_event(struct perf_event *event)
4781 {
4782 	bool dec = false;
4783 
4784 	if (event->parent)
4785 		return;
4786 
4787 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4788 		dec = true;
4789 	if (event->attr.mmap || event->attr.mmap_data)
4790 		atomic_dec(&nr_mmap_events);
4791 	if (event->attr.build_id)
4792 		atomic_dec(&nr_build_id_events);
4793 	if (event->attr.comm)
4794 		atomic_dec(&nr_comm_events);
4795 	if (event->attr.namespaces)
4796 		atomic_dec(&nr_namespaces_events);
4797 	if (event->attr.cgroup)
4798 		atomic_dec(&nr_cgroup_events);
4799 	if (event->attr.task)
4800 		atomic_dec(&nr_task_events);
4801 	if (event->attr.freq)
4802 		unaccount_freq_event();
4803 	if (event->attr.context_switch) {
4804 		dec = true;
4805 		atomic_dec(&nr_switch_events);
4806 	}
4807 	if (is_cgroup_event(event))
4808 		dec = true;
4809 	if (has_branch_stack(event))
4810 		dec = true;
4811 	if (event->attr.ksymbol)
4812 		atomic_dec(&nr_ksymbol_events);
4813 	if (event->attr.bpf_event)
4814 		atomic_dec(&nr_bpf_events);
4815 	if (event->attr.text_poke)
4816 		atomic_dec(&nr_text_poke_events);
4817 
4818 	if (dec) {
4819 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4820 			schedule_delayed_work(&perf_sched_work, HZ);
4821 	}
4822 
4823 	unaccount_event_cpu(event, event->cpu);
4824 
4825 	unaccount_pmu_sb_event(event);
4826 }
4827 
4828 static void perf_sched_delayed(struct work_struct *work)
4829 {
4830 	mutex_lock(&perf_sched_mutex);
4831 	if (atomic_dec_and_test(&perf_sched_count))
4832 		static_branch_disable(&perf_sched_events);
4833 	mutex_unlock(&perf_sched_mutex);
4834 }
4835 
4836 /*
4837  * The following implement mutual exclusion of events on "exclusive" pmus
4838  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4839  * at a time, so we disallow creating events that might conflict, namely:
4840  *
4841  *  1) cpu-wide events in the presence of per-task events,
4842  *  2) per-task events in the presence of cpu-wide events,
4843  *  3) two matching events on the same context.
4844  *
4845  * The former two cases are handled in the allocation path (perf_event_alloc(),
4846  * _free_event()), the latter -- before the first perf_install_in_context().
4847  */
4848 static int exclusive_event_init(struct perf_event *event)
4849 {
4850 	struct pmu *pmu = event->pmu;
4851 
4852 	if (!is_exclusive_pmu(pmu))
4853 		return 0;
4854 
4855 	/*
4856 	 * Prevent co-existence of per-task and cpu-wide events on the
4857 	 * same exclusive pmu.
4858 	 *
4859 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4860 	 * events on this "exclusive" pmu, positive means there are
4861 	 * per-task events.
4862 	 *
4863 	 * Since this is called in perf_event_alloc() path, event::ctx
4864 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4865 	 * to mean "per-task event", because unlike other attach states it
4866 	 * never gets cleared.
4867 	 */
4868 	if (event->attach_state & PERF_ATTACH_TASK) {
4869 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4870 			return -EBUSY;
4871 	} else {
4872 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4873 			return -EBUSY;
4874 	}
4875 
4876 	return 0;
4877 }
4878 
4879 static void exclusive_event_destroy(struct perf_event *event)
4880 {
4881 	struct pmu *pmu = event->pmu;
4882 
4883 	if (!is_exclusive_pmu(pmu))
4884 		return;
4885 
4886 	/* see comment in exclusive_event_init() */
4887 	if (event->attach_state & PERF_ATTACH_TASK)
4888 		atomic_dec(&pmu->exclusive_cnt);
4889 	else
4890 		atomic_inc(&pmu->exclusive_cnt);
4891 }
4892 
4893 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4894 {
4895 	if ((e1->pmu == e2->pmu) &&
4896 	    (e1->cpu == e2->cpu ||
4897 	     e1->cpu == -1 ||
4898 	     e2->cpu == -1))
4899 		return true;
4900 	return false;
4901 }
4902 
4903 static bool exclusive_event_installable(struct perf_event *event,
4904 					struct perf_event_context *ctx)
4905 {
4906 	struct perf_event *iter_event;
4907 	struct pmu *pmu = event->pmu;
4908 
4909 	lockdep_assert_held(&ctx->mutex);
4910 
4911 	if (!is_exclusive_pmu(pmu))
4912 		return true;
4913 
4914 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4915 		if (exclusive_event_match(iter_event, event))
4916 			return false;
4917 	}
4918 
4919 	return true;
4920 }
4921 
4922 static void perf_addr_filters_splice(struct perf_event *event,
4923 				       struct list_head *head);
4924 
4925 static void _free_event(struct perf_event *event)
4926 {
4927 	irq_work_sync(&event->pending);
4928 
4929 	unaccount_event(event);
4930 
4931 	security_perf_event_free(event);
4932 
4933 	if (event->rb) {
4934 		/*
4935 		 * Can happen when we close an event with re-directed output.
4936 		 *
4937 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4938 		 * over us; possibly making our ring_buffer_put() the last.
4939 		 */
4940 		mutex_lock(&event->mmap_mutex);
4941 		ring_buffer_attach(event, NULL);
4942 		mutex_unlock(&event->mmap_mutex);
4943 	}
4944 
4945 	if (is_cgroup_event(event))
4946 		perf_detach_cgroup(event);
4947 
4948 	if (!event->parent) {
4949 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4950 			put_callchain_buffers();
4951 	}
4952 
4953 	perf_event_free_bpf_prog(event);
4954 	perf_addr_filters_splice(event, NULL);
4955 	kfree(event->addr_filter_ranges);
4956 
4957 	if (event->destroy)
4958 		event->destroy(event);
4959 
4960 	/*
4961 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4962 	 * hw.target.
4963 	 */
4964 	if (event->hw.target)
4965 		put_task_struct(event->hw.target);
4966 
4967 	/*
4968 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4969 	 * all task references must be cleaned up.
4970 	 */
4971 	if (event->ctx)
4972 		put_ctx(event->ctx);
4973 
4974 	exclusive_event_destroy(event);
4975 	module_put(event->pmu->module);
4976 
4977 	call_rcu(&event->rcu_head, free_event_rcu);
4978 }
4979 
4980 /*
4981  * Used to free events which have a known refcount of 1, such as in error paths
4982  * where the event isn't exposed yet and inherited events.
4983  */
4984 static void free_event(struct perf_event *event)
4985 {
4986 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4987 				"unexpected event refcount: %ld; ptr=%p\n",
4988 				atomic_long_read(&event->refcount), event)) {
4989 		/* leak to avoid use-after-free */
4990 		return;
4991 	}
4992 
4993 	_free_event(event);
4994 }
4995 
4996 /*
4997  * Remove user event from the owner task.
4998  */
4999 static void perf_remove_from_owner(struct perf_event *event)
5000 {
5001 	struct task_struct *owner;
5002 
5003 	rcu_read_lock();
5004 	/*
5005 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5006 	 * observe !owner it means the list deletion is complete and we can
5007 	 * indeed free this event, otherwise we need to serialize on
5008 	 * owner->perf_event_mutex.
5009 	 */
5010 	owner = READ_ONCE(event->owner);
5011 	if (owner) {
5012 		/*
5013 		 * Since delayed_put_task_struct() also drops the last
5014 		 * task reference we can safely take a new reference
5015 		 * while holding the rcu_read_lock().
5016 		 */
5017 		get_task_struct(owner);
5018 	}
5019 	rcu_read_unlock();
5020 
5021 	if (owner) {
5022 		/*
5023 		 * If we're here through perf_event_exit_task() we're already
5024 		 * holding ctx->mutex which would be an inversion wrt. the
5025 		 * normal lock order.
5026 		 *
5027 		 * However we can safely take this lock because its the child
5028 		 * ctx->mutex.
5029 		 */
5030 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5031 
5032 		/*
5033 		 * We have to re-check the event->owner field, if it is cleared
5034 		 * we raced with perf_event_exit_task(), acquiring the mutex
5035 		 * ensured they're done, and we can proceed with freeing the
5036 		 * event.
5037 		 */
5038 		if (event->owner) {
5039 			list_del_init(&event->owner_entry);
5040 			smp_store_release(&event->owner, NULL);
5041 		}
5042 		mutex_unlock(&owner->perf_event_mutex);
5043 		put_task_struct(owner);
5044 	}
5045 }
5046 
5047 static void put_event(struct perf_event *event)
5048 {
5049 	if (!atomic_long_dec_and_test(&event->refcount))
5050 		return;
5051 
5052 	_free_event(event);
5053 }
5054 
5055 /*
5056  * Kill an event dead; while event:refcount will preserve the event
5057  * object, it will not preserve its functionality. Once the last 'user'
5058  * gives up the object, we'll destroy the thing.
5059  */
5060 int perf_event_release_kernel(struct perf_event *event)
5061 {
5062 	struct perf_event_context *ctx = event->ctx;
5063 	struct perf_event *child, *tmp;
5064 	LIST_HEAD(free_list);
5065 
5066 	/*
5067 	 * If we got here through err_file: fput(event_file); we will not have
5068 	 * attached to a context yet.
5069 	 */
5070 	if (!ctx) {
5071 		WARN_ON_ONCE(event->attach_state &
5072 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5073 		goto no_ctx;
5074 	}
5075 
5076 	if (!is_kernel_event(event))
5077 		perf_remove_from_owner(event);
5078 
5079 	ctx = perf_event_ctx_lock(event);
5080 	WARN_ON_ONCE(ctx->parent_ctx);
5081 	perf_remove_from_context(event, DETACH_GROUP);
5082 
5083 	raw_spin_lock_irq(&ctx->lock);
5084 	/*
5085 	 * Mark this event as STATE_DEAD, there is no external reference to it
5086 	 * anymore.
5087 	 *
5088 	 * Anybody acquiring event->child_mutex after the below loop _must_
5089 	 * also see this, most importantly inherit_event() which will avoid
5090 	 * placing more children on the list.
5091 	 *
5092 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5093 	 * child events.
5094 	 */
5095 	event->state = PERF_EVENT_STATE_DEAD;
5096 	raw_spin_unlock_irq(&ctx->lock);
5097 
5098 	perf_event_ctx_unlock(event, ctx);
5099 
5100 again:
5101 	mutex_lock(&event->child_mutex);
5102 	list_for_each_entry(child, &event->child_list, child_list) {
5103 
5104 		/*
5105 		 * Cannot change, child events are not migrated, see the
5106 		 * comment with perf_event_ctx_lock_nested().
5107 		 */
5108 		ctx = READ_ONCE(child->ctx);
5109 		/*
5110 		 * Since child_mutex nests inside ctx::mutex, we must jump
5111 		 * through hoops. We start by grabbing a reference on the ctx.
5112 		 *
5113 		 * Since the event cannot get freed while we hold the
5114 		 * child_mutex, the context must also exist and have a !0
5115 		 * reference count.
5116 		 */
5117 		get_ctx(ctx);
5118 
5119 		/*
5120 		 * Now that we have a ctx ref, we can drop child_mutex, and
5121 		 * acquire ctx::mutex without fear of it going away. Then we
5122 		 * can re-acquire child_mutex.
5123 		 */
5124 		mutex_unlock(&event->child_mutex);
5125 		mutex_lock(&ctx->mutex);
5126 		mutex_lock(&event->child_mutex);
5127 
5128 		/*
5129 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5130 		 * state, if child is still the first entry, it didn't get freed
5131 		 * and we can continue doing so.
5132 		 */
5133 		tmp = list_first_entry_or_null(&event->child_list,
5134 					       struct perf_event, child_list);
5135 		if (tmp == child) {
5136 			perf_remove_from_context(child, DETACH_GROUP);
5137 			list_move(&child->child_list, &free_list);
5138 			/*
5139 			 * This matches the refcount bump in inherit_event();
5140 			 * this can't be the last reference.
5141 			 */
5142 			put_event(event);
5143 		}
5144 
5145 		mutex_unlock(&event->child_mutex);
5146 		mutex_unlock(&ctx->mutex);
5147 		put_ctx(ctx);
5148 		goto again;
5149 	}
5150 	mutex_unlock(&event->child_mutex);
5151 
5152 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5153 		void *var = &child->ctx->refcount;
5154 
5155 		list_del(&child->child_list);
5156 		free_event(child);
5157 
5158 		/*
5159 		 * Wake any perf_event_free_task() waiting for this event to be
5160 		 * freed.
5161 		 */
5162 		smp_mb(); /* pairs with wait_var_event() */
5163 		wake_up_var(var);
5164 	}
5165 
5166 no_ctx:
5167 	put_event(event); /* Must be the 'last' reference */
5168 	return 0;
5169 }
5170 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5171 
5172 /*
5173  * Called when the last reference to the file is gone.
5174  */
5175 static int perf_release(struct inode *inode, struct file *file)
5176 {
5177 	perf_event_release_kernel(file->private_data);
5178 	return 0;
5179 }
5180 
5181 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5182 {
5183 	struct perf_event *child;
5184 	u64 total = 0;
5185 
5186 	*enabled = 0;
5187 	*running = 0;
5188 
5189 	mutex_lock(&event->child_mutex);
5190 
5191 	(void)perf_event_read(event, false);
5192 	total += perf_event_count(event);
5193 
5194 	*enabled += event->total_time_enabled +
5195 			atomic64_read(&event->child_total_time_enabled);
5196 	*running += event->total_time_running +
5197 			atomic64_read(&event->child_total_time_running);
5198 
5199 	list_for_each_entry(child, &event->child_list, child_list) {
5200 		(void)perf_event_read(child, false);
5201 		total += perf_event_count(child);
5202 		*enabled += child->total_time_enabled;
5203 		*running += child->total_time_running;
5204 	}
5205 	mutex_unlock(&event->child_mutex);
5206 
5207 	return total;
5208 }
5209 
5210 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5211 {
5212 	struct perf_event_context *ctx;
5213 	u64 count;
5214 
5215 	ctx = perf_event_ctx_lock(event);
5216 	count = __perf_event_read_value(event, enabled, running);
5217 	perf_event_ctx_unlock(event, ctx);
5218 
5219 	return count;
5220 }
5221 EXPORT_SYMBOL_GPL(perf_event_read_value);
5222 
5223 static int __perf_read_group_add(struct perf_event *leader,
5224 					u64 read_format, u64 *values)
5225 {
5226 	struct perf_event_context *ctx = leader->ctx;
5227 	struct perf_event *sub;
5228 	unsigned long flags;
5229 	int n = 1; /* skip @nr */
5230 	int ret;
5231 
5232 	ret = perf_event_read(leader, true);
5233 	if (ret)
5234 		return ret;
5235 
5236 	raw_spin_lock_irqsave(&ctx->lock, flags);
5237 
5238 	/*
5239 	 * Since we co-schedule groups, {enabled,running} times of siblings
5240 	 * will be identical to those of the leader, so we only publish one
5241 	 * set.
5242 	 */
5243 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5244 		values[n++] += leader->total_time_enabled +
5245 			atomic64_read(&leader->child_total_time_enabled);
5246 	}
5247 
5248 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5249 		values[n++] += leader->total_time_running +
5250 			atomic64_read(&leader->child_total_time_running);
5251 	}
5252 
5253 	/*
5254 	 * Write {count,id} tuples for every sibling.
5255 	 */
5256 	values[n++] += perf_event_count(leader);
5257 	if (read_format & PERF_FORMAT_ID)
5258 		values[n++] = primary_event_id(leader);
5259 
5260 	for_each_sibling_event(sub, leader) {
5261 		values[n++] += perf_event_count(sub);
5262 		if (read_format & PERF_FORMAT_ID)
5263 			values[n++] = primary_event_id(sub);
5264 	}
5265 
5266 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5267 	return 0;
5268 }
5269 
5270 static int perf_read_group(struct perf_event *event,
5271 				   u64 read_format, char __user *buf)
5272 {
5273 	struct perf_event *leader = event->group_leader, *child;
5274 	struct perf_event_context *ctx = leader->ctx;
5275 	int ret;
5276 	u64 *values;
5277 
5278 	lockdep_assert_held(&ctx->mutex);
5279 
5280 	values = kzalloc(event->read_size, GFP_KERNEL);
5281 	if (!values)
5282 		return -ENOMEM;
5283 
5284 	values[0] = 1 + leader->nr_siblings;
5285 
5286 	/*
5287 	 * By locking the child_mutex of the leader we effectively
5288 	 * lock the child list of all siblings.. XXX explain how.
5289 	 */
5290 	mutex_lock(&leader->child_mutex);
5291 
5292 	ret = __perf_read_group_add(leader, read_format, values);
5293 	if (ret)
5294 		goto unlock;
5295 
5296 	list_for_each_entry(child, &leader->child_list, child_list) {
5297 		ret = __perf_read_group_add(child, read_format, values);
5298 		if (ret)
5299 			goto unlock;
5300 	}
5301 
5302 	mutex_unlock(&leader->child_mutex);
5303 
5304 	ret = event->read_size;
5305 	if (copy_to_user(buf, values, event->read_size))
5306 		ret = -EFAULT;
5307 	goto out;
5308 
5309 unlock:
5310 	mutex_unlock(&leader->child_mutex);
5311 out:
5312 	kfree(values);
5313 	return ret;
5314 }
5315 
5316 static int perf_read_one(struct perf_event *event,
5317 				 u64 read_format, char __user *buf)
5318 {
5319 	u64 enabled, running;
5320 	u64 values[4];
5321 	int n = 0;
5322 
5323 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5324 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5325 		values[n++] = enabled;
5326 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5327 		values[n++] = running;
5328 	if (read_format & PERF_FORMAT_ID)
5329 		values[n++] = primary_event_id(event);
5330 
5331 	if (copy_to_user(buf, values, n * sizeof(u64)))
5332 		return -EFAULT;
5333 
5334 	return n * sizeof(u64);
5335 }
5336 
5337 static bool is_event_hup(struct perf_event *event)
5338 {
5339 	bool no_children;
5340 
5341 	if (event->state > PERF_EVENT_STATE_EXIT)
5342 		return false;
5343 
5344 	mutex_lock(&event->child_mutex);
5345 	no_children = list_empty(&event->child_list);
5346 	mutex_unlock(&event->child_mutex);
5347 	return no_children;
5348 }
5349 
5350 /*
5351  * Read the performance event - simple non blocking version for now
5352  */
5353 static ssize_t
5354 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5355 {
5356 	u64 read_format = event->attr.read_format;
5357 	int ret;
5358 
5359 	/*
5360 	 * Return end-of-file for a read on an event that is in
5361 	 * error state (i.e. because it was pinned but it couldn't be
5362 	 * scheduled on to the CPU at some point).
5363 	 */
5364 	if (event->state == PERF_EVENT_STATE_ERROR)
5365 		return 0;
5366 
5367 	if (count < event->read_size)
5368 		return -ENOSPC;
5369 
5370 	WARN_ON_ONCE(event->ctx->parent_ctx);
5371 	if (read_format & PERF_FORMAT_GROUP)
5372 		ret = perf_read_group(event, read_format, buf);
5373 	else
5374 		ret = perf_read_one(event, read_format, buf);
5375 
5376 	return ret;
5377 }
5378 
5379 static ssize_t
5380 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5381 {
5382 	struct perf_event *event = file->private_data;
5383 	struct perf_event_context *ctx;
5384 	int ret;
5385 
5386 	ret = security_perf_event_read(event);
5387 	if (ret)
5388 		return ret;
5389 
5390 	ctx = perf_event_ctx_lock(event);
5391 	ret = __perf_read(event, buf, count);
5392 	perf_event_ctx_unlock(event, ctx);
5393 
5394 	return ret;
5395 }
5396 
5397 static __poll_t perf_poll(struct file *file, poll_table *wait)
5398 {
5399 	struct perf_event *event = file->private_data;
5400 	struct perf_buffer *rb;
5401 	__poll_t events = EPOLLHUP;
5402 
5403 	poll_wait(file, &event->waitq, wait);
5404 
5405 	if (is_event_hup(event))
5406 		return events;
5407 
5408 	/*
5409 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5410 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5411 	 */
5412 	mutex_lock(&event->mmap_mutex);
5413 	rb = event->rb;
5414 	if (rb)
5415 		events = atomic_xchg(&rb->poll, 0);
5416 	mutex_unlock(&event->mmap_mutex);
5417 	return events;
5418 }
5419 
5420 static void _perf_event_reset(struct perf_event *event)
5421 {
5422 	(void)perf_event_read(event, false);
5423 	local64_set(&event->count, 0);
5424 	perf_event_update_userpage(event);
5425 }
5426 
5427 /* Assume it's not an event with inherit set. */
5428 u64 perf_event_pause(struct perf_event *event, bool reset)
5429 {
5430 	struct perf_event_context *ctx;
5431 	u64 count;
5432 
5433 	ctx = perf_event_ctx_lock(event);
5434 	WARN_ON_ONCE(event->attr.inherit);
5435 	_perf_event_disable(event);
5436 	count = local64_read(&event->count);
5437 	if (reset)
5438 		local64_set(&event->count, 0);
5439 	perf_event_ctx_unlock(event, ctx);
5440 
5441 	return count;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_event_pause);
5444 
5445 /*
5446  * Holding the top-level event's child_mutex means that any
5447  * descendant process that has inherited this event will block
5448  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5449  * task existence requirements of perf_event_enable/disable.
5450  */
5451 static void perf_event_for_each_child(struct perf_event *event,
5452 					void (*func)(struct perf_event *))
5453 {
5454 	struct perf_event *child;
5455 
5456 	WARN_ON_ONCE(event->ctx->parent_ctx);
5457 
5458 	mutex_lock(&event->child_mutex);
5459 	func(event);
5460 	list_for_each_entry(child, &event->child_list, child_list)
5461 		func(child);
5462 	mutex_unlock(&event->child_mutex);
5463 }
5464 
5465 static void perf_event_for_each(struct perf_event *event,
5466 				  void (*func)(struct perf_event *))
5467 {
5468 	struct perf_event_context *ctx = event->ctx;
5469 	struct perf_event *sibling;
5470 
5471 	lockdep_assert_held(&ctx->mutex);
5472 
5473 	event = event->group_leader;
5474 
5475 	perf_event_for_each_child(event, func);
5476 	for_each_sibling_event(sibling, event)
5477 		perf_event_for_each_child(sibling, func);
5478 }
5479 
5480 static void __perf_event_period(struct perf_event *event,
5481 				struct perf_cpu_context *cpuctx,
5482 				struct perf_event_context *ctx,
5483 				void *info)
5484 {
5485 	u64 value = *((u64 *)info);
5486 	bool active;
5487 
5488 	if (event->attr.freq) {
5489 		event->attr.sample_freq = value;
5490 	} else {
5491 		event->attr.sample_period = value;
5492 		event->hw.sample_period = value;
5493 	}
5494 
5495 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5496 	if (active) {
5497 		perf_pmu_disable(ctx->pmu);
5498 		/*
5499 		 * We could be throttled; unthrottle now to avoid the tick
5500 		 * trying to unthrottle while we already re-started the event.
5501 		 */
5502 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5503 			event->hw.interrupts = 0;
5504 			perf_log_throttle(event, 1);
5505 		}
5506 		event->pmu->stop(event, PERF_EF_UPDATE);
5507 	}
5508 
5509 	local64_set(&event->hw.period_left, 0);
5510 
5511 	if (active) {
5512 		event->pmu->start(event, PERF_EF_RELOAD);
5513 		perf_pmu_enable(ctx->pmu);
5514 	}
5515 }
5516 
5517 static int perf_event_check_period(struct perf_event *event, u64 value)
5518 {
5519 	return event->pmu->check_period(event, value);
5520 }
5521 
5522 static int _perf_event_period(struct perf_event *event, u64 value)
5523 {
5524 	if (!is_sampling_event(event))
5525 		return -EINVAL;
5526 
5527 	if (!value)
5528 		return -EINVAL;
5529 
5530 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5531 		return -EINVAL;
5532 
5533 	if (perf_event_check_period(event, value))
5534 		return -EINVAL;
5535 
5536 	if (!event->attr.freq && (value & (1ULL << 63)))
5537 		return -EINVAL;
5538 
5539 	event_function_call(event, __perf_event_period, &value);
5540 
5541 	return 0;
5542 }
5543 
5544 int perf_event_period(struct perf_event *event, u64 value)
5545 {
5546 	struct perf_event_context *ctx;
5547 	int ret;
5548 
5549 	ctx = perf_event_ctx_lock(event);
5550 	ret = _perf_event_period(event, value);
5551 	perf_event_ctx_unlock(event, ctx);
5552 
5553 	return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(perf_event_period);
5556 
5557 static const struct file_operations perf_fops;
5558 
5559 static inline int perf_fget_light(int fd, struct fd *p)
5560 {
5561 	struct fd f = fdget(fd);
5562 	if (!f.file)
5563 		return -EBADF;
5564 
5565 	if (f.file->f_op != &perf_fops) {
5566 		fdput(f);
5567 		return -EBADF;
5568 	}
5569 	*p = f;
5570 	return 0;
5571 }
5572 
5573 static int perf_event_set_output(struct perf_event *event,
5574 				 struct perf_event *output_event);
5575 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5576 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5577 			  struct perf_event_attr *attr);
5578 
5579 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5580 {
5581 	void (*func)(struct perf_event *);
5582 	u32 flags = arg;
5583 
5584 	switch (cmd) {
5585 	case PERF_EVENT_IOC_ENABLE:
5586 		func = _perf_event_enable;
5587 		break;
5588 	case PERF_EVENT_IOC_DISABLE:
5589 		func = _perf_event_disable;
5590 		break;
5591 	case PERF_EVENT_IOC_RESET:
5592 		func = _perf_event_reset;
5593 		break;
5594 
5595 	case PERF_EVENT_IOC_REFRESH:
5596 		return _perf_event_refresh(event, arg);
5597 
5598 	case PERF_EVENT_IOC_PERIOD:
5599 	{
5600 		u64 value;
5601 
5602 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5603 			return -EFAULT;
5604 
5605 		return _perf_event_period(event, value);
5606 	}
5607 	case PERF_EVENT_IOC_ID:
5608 	{
5609 		u64 id = primary_event_id(event);
5610 
5611 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5612 			return -EFAULT;
5613 		return 0;
5614 	}
5615 
5616 	case PERF_EVENT_IOC_SET_OUTPUT:
5617 	{
5618 		int ret;
5619 		if (arg != -1) {
5620 			struct perf_event *output_event;
5621 			struct fd output;
5622 			ret = perf_fget_light(arg, &output);
5623 			if (ret)
5624 				return ret;
5625 			output_event = output.file->private_data;
5626 			ret = perf_event_set_output(event, output_event);
5627 			fdput(output);
5628 		} else {
5629 			ret = perf_event_set_output(event, NULL);
5630 		}
5631 		return ret;
5632 	}
5633 
5634 	case PERF_EVENT_IOC_SET_FILTER:
5635 		return perf_event_set_filter(event, (void __user *)arg);
5636 
5637 	case PERF_EVENT_IOC_SET_BPF:
5638 	{
5639 		struct bpf_prog *prog;
5640 		int err;
5641 
5642 		prog = bpf_prog_get(arg);
5643 		if (IS_ERR(prog))
5644 			return PTR_ERR(prog);
5645 
5646 		err = perf_event_set_bpf_prog(event, prog, 0);
5647 		if (err) {
5648 			bpf_prog_put(prog);
5649 			return err;
5650 		}
5651 
5652 		return 0;
5653 	}
5654 
5655 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5656 		struct perf_buffer *rb;
5657 
5658 		rcu_read_lock();
5659 		rb = rcu_dereference(event->rb);
5660 		if (!rb || !rb->nr_pages) {
5661 			rcu_read_unlock();
5662 			return -EINVAL;
5663 		}
5664 		rb_toggle_paused(rb, !!arg);
5665 		rcu_read_unlock();
5666 		return 0;
5667 	}
5668 
5669 	case PERF_EVENT_IOC_QUERY_BPF:
5670 		return perf_event_query_prog_array(event, (void __user *)arg);
5671 
5672 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5673 		struct perf_event_attr new_attr;
5674 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5675 					 &new_attr);
5676 
5677 		if (err)
5678 			return err;
5679 
5680 		return perf_event_modify_attr(event,  &new_attr);
5681 	}
5682 	default:
5683 		return -ENOTTY;
5684 	}
5685 
5686 	if (flags & PERF_IOC_FLAG_GROUP)
5687 		perf_event_for_each(event, func);
5688 	else
5689 		perf_event_for_each_child(event, func);
5690 
5691 	return 0;
5692 }
5693 
5694 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5695 {
5696 	struct perf_event *event = file->private_data;
5697 	struct perf_event_context *ctx;
5698 	long ret;
5699 
5700 	/* Treat ioctl like writes as it is likely a mutating operation. */
5701 	ret = security_perf_event_write(event);
5702 	if (ret)
5703 		return ret;
5704 
5705 	ctx = perf_event_ctx_lock(event);
5706 	ret = _perf_ioctl(event, cmd, arg);
5707 	perf_event_ctx_unlock(event, ctx);
5708 
5709 	return ret;
5710 }
5711 
5712 #ifdef CONFIG_COMPAT
5713 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5714 				unsigned long arg)
5715 {
5716 	switch (_IOC_NR(cmd)) {
5717 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5718 	case _IOC_NR(PERF_EVENT_IOC_ID):
5719 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5720 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5721 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5722 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5723 			cmd &= ~IOCSIZE_MASK;
5724 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5725 		}
5726 		break;
5727 	}
5728 	return perf_ioctl(file, cmd, arg);
5729 }
5730 #else
5731 # define perf_compat_ioctl NULL
5732 #endif
5733 
5734 int perf_event_task_enable(void)
5735 {
5736 	struct perf_event_context *ctx;
5737 	struct perf_event *event;
5738 
5739 	mutex_lock(&current->perf_event_mutex);
5740 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5741 		ctx = perf_event_ctx_lock(event);
5742 		perf_event_for_each_child(event, _perf_event_enable);
5743 		perf_event_ctx_unlock(event, ctx);
5744 	}
5745 	mutex_unlock(&current->perf_event_mutex);
5746 
5747 	return 0;
5748 }
5749 
5750 int perf_event_task_disable(void)
5751 {
5752 	struct perf_event_context *ctx;
5753 	struct perf_event *event;
5754 
5755 	mutex_lock(&current->perf_event_mutex);
5756 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5757 		ctx = perf_event_ctx_lock(event);
5758 		perf_event_for_each_child(event, _perf_event_disable);
5759 		perf_event_ctx_unlock(event, ctx);
5760 	}
5761 	mutex_unlock(&current->perf_event_mutex);
5762 
5763 	return 0;
5764 }
5765 
5766 static int perf_event_index(struct perf_event *event)
5767 {
5768 	if (event->hw.state & PERF_HES_STOPPED)
5769 		return 0;
5770 
5771 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5772 		return 0;
5773 
5774 	return event->pmu->event_idx(event);
5775 }
5776 
5777 static void calc_timer_values(struct perf_event *event,
5778 				u64 *now,
5779 				u64 *enabled,
5780 				u64 *running)
5781 {
5782 	u64 ctx_time;
5783 
5784 	*now = perf_clock();
5785 	ctx_time = event->shadow_ctx_time + *now;
5786 	__perf_update_times(event, ctx_time, enabled, running);
5787 }
5788 
5789 static void perf_event_init_userpage(struct perf_event *event)
5790 {
5791 	struct perf_event_mmap_page *userpg;
5792 	struct perf_buffer *rb;
5793 
5794 	rcu_read_lock();
5795 	rb = rcu_dereference(event->rb);
5796 	if (!rb)
5797 		goto unlock;
5798 
5799 	userpg = rb->user_page;
5800 
5801 	/* Allow new userspace to detect that bit 0 is deprecated */
5802 	userpg->cap_bit0_is_deprecated = 1;
5803 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5804 	userpg->data_offset = PAGE_SIZE;
5805 	userpg->data_size = perf_data_size(rb);
5806 
5807 unlock:
5808 	rcu_read_unlock();
5809 }
5810 
5811 void __weak arch_perf_update_userpage(
5812 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5813 {
5814 }
5815 
5816 /*
5817  * Callers need to ensure there can be no nesting of this function, otherwise
5818  * the seqlock logic goes bad. We can not serialize this because the arch
5819  * code calls this from NMI context.
5820  */
5821 void perf_event_update_userpage(struct perf_event *event)
5822 {
5823 	struct perf_event_mmap_page *userpg;
5824 	struct perf_buffer *rb;
5825 	u64 enabled, running, now;
5826 
5827 	rcu_read_lock();
5828 	rb = rcu_dereference(event->rb);
5829 	if (!rb)
5830 		goto unlock;
5831 
5832 	/*
5833 	 * compute total_time_enabled, total_time_running
5834 	 * based on snapshot values taken when the event
5835 	 * was last scheduled in.
5836 	 *
5837 	 * we cannot simply called update_context_time()
5838 	 * because of locking issue as we can be called in
5839 	 * NMI context
5840 	 */
5841 	calc_timer_values(event, &now, &enabled, &running);
5842 
5843 	userpg = rb->user_page;
5844 	/*
5845 	 * Disable preemption to guarantee consistent time stamps are stored to
5846 	 * the user page.
5847 	 */
5848 	preempt_disable();
5849 	++userpg->lock;
5850 	barrier();
5851 	userpg->index = perf_event_index(event);
5852 	userpg->offset = perf_event_count(event);
5853 	if (userpg->index)
5854 		userpg->offset -= local64_read(&event->hw.prev_count);
5855 
5856 	userpg->time_enabled = enabled +
5857 			atomic64_read(&event->child_total_time_enabled);
5858 
5859 	userpg->time_running = running +
5860 			atomic64_read(&event->child_total_time_running);
5861 
5862 	arch_perf_update_userpage(event, userpg, now);
5863 
5864 	barrier();
5865 	++userpg->lock;
5866 	preempt_enable();
5867 unlock:
5868 	rcu_read_unlock();
5869 }
5870 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5871 
5872 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5873 {
5874 	struct perf_event *event = vmf->vma->vm_file->private_data;
5875 	struct perf_buffer *rb;
5876 	vm_fault_t ret = VM_FAULT_SIGBUS;
5877 
5878 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5879 		if (vmf->pgoff == 0)
5880 			ret = 0;
5881 		return ret;
5882 	}
5883 
5884 	rcu_read_lock();
5885 	rb = rcu_dereference(event->rb);
5886 	if (!rb)
5887 		goto unlock;
5888 
5889 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5890 		goto unlock;
5891 
5892 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5893 	if (!vmf->page)
5894 		goto unlock;
5895 
5896 	get_page(vmf->page);
5897 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5898 	vmf->page->index   = vmf->pgoff;
5899 
5900 	ret = 0;
5901 unlock:
5902 	rcu_read_unlock();
5903 
5904 	return ret;
5905 }
5906 
5907 static void ring_buffer_attach(struct perf_event *event,
5908 			       struct perf_buffer *rb)
5909 {
5910 	struct perf_buffer *old_rb = NULL;
5911 	unsigned long flags;
5912 
5913 	if (event->rb) {
5914 		/*
5915 		 * Should be impossible, we set this when removing
5916 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5917 		 */
5918 		WARN_ON_ONCE(event->rcu_pending);
5919 
5920 		old_rb = event->rb;
5921 		spin_lock_irqsave(&old_rb->event_lock, flags);
5922 		list_del_rcu(&event->rb_entry);
5923 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5924 
5925 		event->rcu_batches = get_state_synchronize_rcu();
5926 		event->rcu_pending = 1;
5927 	}
5928 
5929 	if (rb) {
5930 		if (event->rcu_pending) {
5931 			cond_synchronize_rcu(event->rcu_batches);
5932 			event->rcu_pending = 0;
5933 		}
5934 
5935 		spin_lock_irqsave(&rb->event_lock, flags);
5936 		list_add_rcu(&event->rb_entry, &rb->event_list);
5937 		spin_unlock_irqrestore(&rb->event_lock, flags);
5938 	}
5939 
5940 	/*
5941 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5942 	 * before swizzling the event::rb pointer; if it's getting
5943 	 * unmapped, its aux_mmap_count will be 0 and it won't
5944 	 * restart. See the comment in __perf_pmu_output_stop().
5945 	 *
5946 	 * Data will inevitably be lost when set_output is done in
5947 	 * mid-air, but then again, whoever does it like this is
5948 	 * not in for the data anyway.
5949 	 */
5950 	if (has_aux(event))
5951 		perf_event_stop(event, 0);
5952 
5953 	rcu_assign_pointer(event->rb, rb);
5954 
5955 	if (old_rb) {
5956 		ring_buffer_put(old_rb);
5957 		/*
5958 		 * Since we detached before setting the new rb, so that we
5959 		 * could attach the new rb, we could have missed a wakeup.
5960 		 * Provide it now.
5961 		 */
5962 		wake_up_all(&event->waitq);
5963 	}
5964 }
5965 
5966 static void ring_buffer_wakeup(struct perf_event *event)
5967 {
5968 	struct perf_buffer *rb;
5969 
5970 	rcu_read_lock();
5971 	rb = rcu_dereference(event->rb);
5972 	if (rb) {
5973 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5974 			wake_up_all(&event->waitq);
5975 	}
5976 	rcu_read_unlock();
5977 }
5978 
5979 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5980 {
5981 	struct perf_buffer *rb;
5982 
5983 	rcu_read_lock();
5984 	rb = rcu_dereference(event->rb);
5985 	if (rb) {
5986 		if (!refcount_inc_not_zero(&rb->refcount))
5987 			rb = NULL;
5988 	}
5989 	rcu_read_unlock();
5990 
5991 	return rb;
5992 }
5993 
5994 void ring_buffer_put(struct perf_buffer *rb)
5995 {
5996 	if (!refcount_dec_and_test(&rb->refcount))
5997 		return;
5998 
5999 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6000 
6001 	call_rcu(&rb->rcu_head, rb_free_rcu);
6002 }
6003 
6004 static void perf_mmap_open(struct vm_area_struct *vma)
6005 {
6006 	struct perf_event *event = vma->vm_file->private_data;
6007 
6008 	atomic_inc(&event->mmap_count);
6009 	atomic_inc(&event->rb->mmap_count);
6010 
6011 	if (vma->vm_pgoff)
6012 		atomic_inc(&event->rb->aux_mmap_count);
6013 
6014 	if (event->pmu->event_mapped)
6015 		event->pmu->event_mapped(event, vma->vm_mm);
6016 }
6017 
6018 static void perf_pmu_output_stop(struct perf_event *event);
6019 
6020 /*
6021  * A buffer can be mmap()ed multiple times; either directly through the same
6022  * event, or through other events by use of perf_event_set_output().
6023  *
6024  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6025  * the buffer here, where we still have a VM context. This means we need
6026  * to detach all events redirecting to us.
6027  */
6028 static void perf_mmap_close(struct vm_area_struct *vma)
6029 {
6030 	struct perf_event *event = vma->vm_file->private_data;
6031 	struct perf_buffer *rb = ring_buffer_get(event);
6032 	struct user_struct *mmap_user = rb->mmap_user;
6033 	int mmap_locked = rb->mmap_locked;
6034 	unsigned long size = perf_data_size(rb);
6035 	bool detach_rest = false;
6036 
6037 	if (event->pmu->event_unmapped)
6038 		event->pmu->event_unmapped(event, vma->vm_mm);
6039 
6040 	/*
6041 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6042 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6043 	 * serialize with perf_mmap here.
6044 	 */
6045 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6046 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6047 		/*
6048 		 * Stop all AUX events that are writing to this buffer,
6049 		 * so that we can free its AUX pages and corresponding PMU
6050 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6051 		 * they won't start any more (see perf_aux_output_begin()).
6052 		 */
6053 		perf_pmu_output_stop(event);
6054 
6055 		/* now it's safe to free the pages */
6056 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6057 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6058 
6059 		/* this has to be the last one */
6060 		rb_free_aux(rb);
6061 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6062 
6063 		mutex_unlock(&event->mmap_mutex);
6064 	}
6065 
6066 	if (atomic_dec_and_test(&rb->mmap_count))
6067 		detach_rest = true;
6068 
6069 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6070 		goto out_put;
6071 
6072 	ring_buffer_attach(event, NULL);
6073 	mutex_unlock(&event->mmap_mutex);
6074 
6075 	/* If there's still other mmap()s of this buffer, we're done. */
6076 	if (!detach_rest)
6077 		goto out_put;
6078 
6079 	/*
6080 	 * No other mmap()s, detach from all other events that might redirect
6081 	 * into the now unreachable buffer. Somewhat complicated by the
6082 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6083 	 */
6084 again:
6085 	rcu_read_lock();
6086 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6087 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6088 			/*
6089 			 * This event is en-route to free_event() which will
6090 			 * detach it and remove it from the list.
6091 			 */
6092 			continue;
6093 		}
6094 		rcu_read_unlock();
6095 
6096 		mutex_lock(&event->mmap_mutex);
6097 		/*
6098 		 * Check we didn't race with perf_event_set_output() which can
6099 		 * swizzle the rb from under us while we were waiting to
6100 		 * acquire mmap_mutex.
6101 		 *
6102 		 * If we find a different rb; ignore this event, a next
6103 		 * iteration will no longer find it on the list. We have to
6104 		 * still restart the iteration to make sure we're not now
6105 		 * iterating the wrong list.
6106 		 */
6107 		if (event->rb == rb)
6108 			ring_buffer_attach(event, NULL);
6109 
6110 		mutex_unlock(&event->mmap_mutex);
6111 		put_event(event);
6112 
6113 		/*
6114 		 * Restart the iteration; either we're on the wrong list or
6115 		 * destroyed its integrity by doing a deletion.
6116 		 */
6117 		goto again;
6118 	}
6119 	rcu_read_unlock();
6120 
6121 	/*
6122 	 * It could be there's still a few 0-ref events on the list; they'll
6123 	 * get cleaned up by free_event() -- they'll also still have their
6124 	 * ref on the rb and will free it whenever they are done with it.
6125 	 *
6126 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6127 	 * undo the VM accounting.
6128 	 */
6129 
6130 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6131 			&mmap_user->locked_vm);
6132 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6133 	free_uid(mmap_user);
6134 
6135 out_put:
6136 	ring_buffer_put(rb); /* could be last */
6137 }
6138 
6139 static const struct vm_operations_struct perf_mmap_vmops = {
6140 	.open		= perf_mmap_open,
6141 	.close		= perf_mmap_close, /* non mergeable */
6142 	.fault		= perf_mmap_fault,
6143 	.page_mkwrite	= perf_mmap_fault,
6144 };
6145 
6146 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6147 {
6148 	struct perf_event *event = file->private_data;
6149 	unsigned long user_locked, user_lock_limit;
6150 	struct user_struct *user = current_user();
6151 	struct perf_buffer *rb = NULL;
6152 	unsigned long locked, lock_limit;
6153 	unsigned long vma_size;
6154 	unsigned long nr_pages;
6155 	long user_extra = 0, extra = 0;
6156 	int ret = 0, flags = 0;
6157 
6158 	/*
6159 	 * Don't allow mmap() of inherited per-task counters. This would
6160 	 * create a performance issue due to all children writing to the
6161 	 * same rb.
6162 	 */
6163 	if (event->cpu == -1 && event->attr.inherit)
6164 		return -EINVAL;
6165 
6166 	if (!(vma->vm_flags & VM_SHARED))
6167 		return -EINVAL;
6168 
6169 	ret = security_perf_event_read(event);
6170 	if (ret)
6171 		return ret;
6172 
6173 	vma_size = vma->vm_end - vma->vm_start;
6174 
6175 	if (vma->vm_pgoff == 0) {
6176 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6177 	} else {
6178 		/*
6179 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6180 		 * mapped, all subsequent mappings should have the same size
6181 		 * and offset. Must be above the normal perf buffer.
6182 		 */
6183 		u64 aux_offset, aux_size;
6184 
6185 		if (!event->rb)
6186 			return -EINVAL;
6187 
6188 		nr_pages = vma_size / PAGE_SIZE;
6189 
6190 		mutex_lock(&event->mmap_mutex);
6191 		ret = -EINVAL;
6192 
6193 		rb = event->rb;
6194 		if (!rb)
6195 			goto aux_unlock;
6196 
6197 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6198 		aux_size = READ_ONCE(rb->user_page->aux_size);
6199 
6200 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6201 			goto aux_unlock;
6202 
6203 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6204 			goto aux_unlock;
6205 
6206 		/* already mapped with a different offset */
6207 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6208 			goto aux_unlock;
6209 
6210 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6211 			goto aux_unlock;
6212 
6213 		/* already mapped with a different size */
6214 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6215 			goto aux_unlock;
6216 
6217 		if (!is_power_of_2(nr_pages))
6218 			goto aux_unlock;
6219 
6220 		if (!atomic_inc_not_zero(&rb->mmap_count))
6221 			goto aux_unlock;
6222 
6223 		if (rb_has_aux(rb)) {
6224 			atomic_inc(&rb->aux_mmap_count);
6225 			ret = 0;
6226 			goto unlock;
6227 		}
6228 
6229 		atomic_set(&rb->aux_mmap_count, 1);
6230 		user_extra = nr_pages;
6231 
6232 		goto accounting;
6233 	}
6234 
6235 	/*
6236 	 * If we have rb pages ensure they're a power-of-two number, so we
6237 	 * can do bitmasks instead of modulo.
6238 	 */
6239 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6240 		return -EINVAL;
6241 
6242 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6243 		return -EINVAL;
6244 
6245 	WARN_ON_ONCE(event->ctx->parent_ctx);
6246 again:
6247 	mutex_lock(&event->mmap_mutex);
6248 	if (event->rb) {
6249 		if (event->rb->nr_pages != nr_pages) {
6250 			ret = -EINVAL;
6251 			goto unlock;
6252 		}
6253 
6254 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6255 			/*
6256 			 * Raced against perf_mmap_close() through
6257 			 * perf_event_set_output(). Try again, hope for better
6258 			 * luck.
6259 			 */
6260 			mutex_unlock(&event->mmap_mutex);
6261 			goto again;
6262 		}
6263 
6264 		goto unlock;
6265 	}
6266 
6267 	user_extra = nr_pages + 1;
6268 
6269 accounting:
6270 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6271 
6272 	/*
6273 	 * Increase the limit linearly with more CPUs:
6274 	 */
6275 	user_lock_limit *= num_online_cpus();
6276 
6277 	user_locked = atomic_long_read(&user->locked_vm);
6278 
6279 	/*
6280 	 * sysctl_perf_event_mlock may have changed, so that
6281 	 *     user->locked_vm > user_lock_limit
6282 	 */
6283 	if (user_locked > user_lock_limit)
6284 		user_locked = user_lock_limit;
6285 	user_locked += user_extra;
6286 
6287 	if (user_locked > user_lock_limit) {
6288 		/*
6289 		 * charge locked_vm until it hits user_lock_limit;
6290 		 * charge the rest from pinned_vm
6291 		 */
6292 		extra = user_locked - user_lock_limit;
6293 		user_extra -= extra;
6294 	}
6295 
6296 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6297 	lock_limit >>= PAGE_SHIFT;
6298 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6299 
6300 	if ((locked > lock_limit) && perf_is_paranoid() &&
6301 		!capable(CAP_IPC_LOCK)) {
6302 		ret = -EPERM;
6303 		goto unlock;
6304 	}
6305 
6306 	WARN_ON(!rb && event->rb);
6307 
6308 	if (vma->vm_flags & VM_WRITE)
6309 		flags |= RING_BUFFER_WRITABLE;
6310 
6311 	if (!rb) {
6312 		rb = rb_alloc(nr_pages,
6313 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6314 			      event->cpu, flags);
6315 
6316 		if (!rb) {
6317 			ret = -ENOMEM;
6318 			goto unlock;
6319 		}
6320 
6321 		atomic_set(&rb->mmap_count, 1);
6322 		rb->mmap_user = get_current_user();
6323 		rb->mmap_locked = extra;
6324 
6325 		ring_buffer_attach(event, rb);
6326 
6327 		perf_event_init_userpage(event);
6328 		perf_event_update_userpage(event);
6329 	} else {
6330 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6331 				   event->attr.aux_watermark, flags);
6332 		if (!ret)
6333 			rb->aux_mmap_locked = extra;
6334 	}
6335 
6336 unlock:
6337 	if (!ret) {
6338 		atomic_long_add(user_extra, &user->locked_vm);
6339 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6340 
6341 		atomic_inc(&event->mmap_count);
6342 	} else if (rb) {
6343 		atomic_dec(&rb->mmap_count);
6344 	}
6345 aux_unlock:
6346 	mutex_unlock(&event->mmap_mutex);
6347 
6348 	/*
6349 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6350 	 * vma.
6351 	 */
6352 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6353 	vma->vm_ops = &perf_mmap_vmops;
6354 
6355 	if (event->pmu->event_mapped)
6356 		event->pmu->event_mapped(event, vma->vm_mm);
6357 
6358 	return ret;
6359 }
6360 
6361 static int perf_fasync(int fd, struct file *filp, int on)
6362 {
6363 	struct inode *inode = file_inode(filp);
6364 	struct perf_event *event = filp->private_data;
6365 	int retval;
6366 
6367 	inode_lock(inode);
6368 	retval = fasync_helper(fd, filp, on, &event->fasync);
6369 	inode_unlock(inode);
6370 
6371 	if (retval < 0)
6372 		return retval;
6373 
6374 	return 0;
6375 }
6376 
6377 static const struct file_operations perf_fops = {
6378 	.llseek			= no_llseek,
6379 	.release		= perf_release,
6380 	.read			= perf_read,
6381 	.poll			= perf_poll,
6382 	.unlocked_ioctl		= perf_ioctl,
6383 	.compat_ioctl		= perf_compat_ioctl,
6384 	.mmap			= perf_mmap,
6385 	.fasync			= perf_fasync,
6386 };
6387 
6388 /*
6389  * Perf event wakeup
6390  *
6391  * If there's data, ensure we set the poll() state and publish everything
6392  * to user-space before waking everybody up.
6393  */
6394 
6395 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6396 {
6397 	/* only the parent has fasync state */
6398 	if (event->parent)
6399 		event = event->parent;
6400 	return &event->fasync;
6401 }
6402 
6403 void perf_event_wakeup(struct perf_event *event)
6404 {
6405 	ring_buffer_wakeup(event);
6406 
6407 	if (event->pending_kill) {
6408 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6409 		event->pending_kill = 0;
6410 	}
6411 }
6412 
6413 static void perf_sigtrap(struct perf_event *event)
6414 {
6415 	/*
6416 	 * We'd expect this to only occur if the irq_work is delayed and either
6417 	 * ctx->task or current has changed in the meantime. This can be the
6418 	 * case on architectures that do not implement arch_irq_work_raise().
6419 	 */
6420 	if (WARN_ON_ONCE(event->ctx->task != current))
6421 		return;
6422 
6423 	/*
6424 	 * perf_pending_event() can race with the task exiting.
6425 	 */
6426 	if (current->flags & PF_EXITING)
6427 		return;
6428 
6429 	force_sig_perf((void __user *)event->pending_addr,
6430 		       event->attr.type, event->attr.sig_data);
6431 }
6432 
6433 static void perf_pending_event_disable(struct perf_event *event)
6434 {
6435 	int cpu = READ_ONCE(event->pending_disable);
6436 
6437 	if (cpu < 0)
6438 		return;
6439 
6440 	if (cpu == smp_processor_id()) {
6441 		WRITE_ONCE(event->pending_disable, -1);
6442 
6443 		if (event->attr.sigtrap) {
6444 			perf_sigtrap(event);
6445 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6446 			return;
6447 		}
6448 
6449 		perf_event_disable_local(event);
6450 		return;
6451 	}
6452 
6453 	/*
6454 	 *  CPU-A			CPU-B
6455 	 *
6456 	 *  perf_event_disable_inatomic()
6457 	 *    @pending_disable = CPU-A;
6458 	 *    irq_work_queue();
6459 	 *
6460 	 *  sched-out
6461 	 *    @pending_disable = -1;
6462 	 *
6463 	 *				sched-in
6464 	 *				perf_event_disable_inatomic()
6465 	 *				  @pending_disable = CPU-B;
6466 	 *				  irq_work_queue(); // FAILS
6467 	 *
6468 	 *  irq_work_run()
6469 	 *    perf_pending_event()
6470 	 *
6471 	 * But the event runs on CPU-B and wants disabling there.
6472 	 */
6473 	irq_work_queue_on(&event->pending, cpu);
6474 }
6475 
6476 static void perf_pending_event(struct irq_work *entry)
6477 {
6478 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6479 	int rctx;
6480 
6481 	rctx = perf_swevent_get_recursion_context();
6482 	/*
6483 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6484 	 * and we won't recurse 'further'.
6485 	 */
6486 
6487 	perf_pending_event_disable(event);
6488 
6489 	if (event->pending_wakeup) {
6490 		event->pending_wakeup = 0;
6491 		perf_event_wakeup(event);
6492 	}
6493 
6494 	if (rctx >= 0)
6495 		perf_swevent_put_recursion_context(rctx);
6496 }
6497 
6498 /*
6499  * We assume there is only KVM supporting the callbacks.
6500  * Later on, we might change it to a list if there is
6501  * another virtualization implementation supporting the callbacks.
6502  */
6503 struct perf_guest_info_callbacks *perf_guest_cbs;
6504 
6505 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6506 {
6507 	perf_guest_cbs = cbs;
6508 	return 0;
6509 }
6510 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6511 
6512 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6513 {
6514 	perf_guest_cbs = NULL;
6515 	return 0;
6516 }
6517 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6518 
6519 static void
6520 perf_output_sample_regs(struct perf_output_handle *handle,
6521 			struct pt_regs *regs, u64 mask)
6522 {
6523 	int bit;
6524 	DECLARE_BITMAP(_mask, 64);
6525 
6526 	bitmap_from_u64(_mask, mask);
6527 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6528 		u64 val;
6529 
6530 		val = perf_reg_value(regs, bit);
6531 		perf_output_put(handle, val);
6532 	}
6533 }
6534 
6535 static void perf_sample_regs_user(struct perf_regs *regs_user,
6536 				  struct pt_regs *regs)
6537 {
6538 	if (user_mode(regs)) {
6539 		regs_user->abi = perf_reg_abi(current);
6540 		regs_user->regs = regs;
6541 	} else if (!(current->flags & PF_KTHREAD)) {
6542 		perf_get_regs_user(regs_user, regs);
6543 	} else {
6544 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6545 		regs_user->regs = NULL;
6546 	}
6547 }
6548 
6549 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6550 				  struct pt_regs *regs)
6551 {
6552 	regs_intr->regs = regs;
6553 	regs_intr->abi  = perf_reg_abi(current);
6554 }
6555 
6556 
6557 /*
6558  * Get remaining task size from user stack pointer.
6559  *
6560  * It'd be better to take stack vma map and limit this more
6561  * precisely, but there's no way to get it safely under interrupt,
6562  * so using TASK_SIZE as limit.
6563  */
6564 static u64 perf_ustack_task_size(struct pt_regs *regs)
6565 {
6566 	unsigned long addr = perf_user_stack_pointer(regs);
6567 
6568 	if (!addr || addr >= TASK_SIZE)
6569 		return 0;
6570 
6571 	return TASK_SIZE - addr;
6572 }
6573 
6574 static u16
6575 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6576 			struct pt_regs *regs)
6577 {
6578 	u64 task_size;
6579 
6580 	/* No regs, no stack pointer, no dump. */
6581 	if (!regs)
6582 		return 0;
6583 
6584 	/*
6585 	 * Check if we fit in with the requested stack size into the:
6586 	 * - TASK_SIZE
6587 	 *   If we don't, we limit the size to the TASK_SIZE.
6588 	 *
6589 	 * - remaining sample size
6590 	 *   If we don't, we customize the stack size to
6591 	 *   fit in to the remaining sample size.
6592 	 */
6593 
6594 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6595 	stack_size = min(stack_size, (u16) task_size);
6596 
6597 	/* Current header size plus static size and dynamic size. */
6598 	header_size += 2 * sizeof(u64);
6599 
6600 	/* Do we fit in with the current stack dump size? */
6601 	if ((u16) (header_size + stack_size) < header_size) {
6602 		/*
6603 		 * If we overflow the maximum size for the sample,
6604 		 * we customize the stack dump size to fit in.
6605 		 */
6606 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6607 		stack_size = round_up(stack_size, sizeof(u64));
6608 	}
6609 
6610 	return stack_size;
6611 }
6612 
6613 static void
6614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6615 			  struct pt_regs *regs)
6616 {
6617 	/* Case of a kernel thread, nothing to dump */
6618 	if (!regs) {
6619 		u64 size = 0;
6620 		perf_output_put(handle, size);
6621 	} else {
6622 		unsigned long sp;
6623 		unsigned int rem;
6624 		u64 dyn_size;
6625 		mm_segment_t fs;
6626 
6627 		/*
6628 		 * We dump:
6629 		 * static size
6630 		 *   - the size requested by user or the best one we can fit
6631 		 *     in to the sample max size
6632 		 * data
6633 		 *   - user stack dump data
6634 		 * dynamic size
6635 		 *   - the actual dumped size
6636 		 */
6637 
6638 		/* Static size. */
6639 		perf_output_put(handle, dump_size);
6640 
6641 		/* Data. */
6642 		sp = perf_user_stack_pointer(regs);
6643 		fs = force_uaccess_begin();
6644 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6645 		force_uaccess_end(fs);
6646 		dyn_size = dump_size - rem;
6647 
6648 		perf_output_skip(handle, rem);
6649 
6650 		/* Dynamic size. */
6651 		perf_output_put(handle, dyn_size);
6652 	}
6653 }
6654 
6655 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6656 					  struct perf_sample_data *data,
6657 					  size_t size)
6658 {
6659 	struct perf_event *sampler = event->aux_event;
6660 	struct perf_buffer *rb;
6661 
6662 	data->aux_size = 0;
6663 
6664 	if (!sampler)
6665 		goto out;
6666 
6667 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6668 		goto out;
6669 
6670 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6671 		goto out;
6672 
6673 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6674 	if (!rb)
6675 		goto out;
6676 
6677 	/*
6678 	 * If this is an NMI hit inside sampling code, don't take
6679 	 * the sample. See also perf_aux_sample_output().
6680 	 */
6681 	if (READ_ONCE(rb->aux_in_sampling)) {
6682 		data->aux_size = 0;
6683 	} else {
6684 		size = min_t(size_t, size, perf_aux_size(rb));
6685 		data->aux_size = ALIGN(size, sizeof(u64));
6686 	}
6687 	ring_buffer_put(rb);
6688 
6689 out:
6690 	return data->aux_size;
6691 }
6692 
6693 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6694                                  struct perf_event *event,
6695                                  struct perf_output_handle *handle,
6696                                  unsigned long size)
6697 {
6698 	unsigned long flags;
6699 	long ret;
6700 
6701 	/*
6702 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6703 	 * paths. If we start calling them in NMI context, they may race with
6704 	 * the IRQ ones, that is, for example, re-starting an event that's just
6705 	 * been stopped, which is why we're using a separate callback that
6706 	 * doesn't change the event state.
6707 	 *
6708 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6709 	 */
6710 	local_irq_save(flags);
6711 	/*
6712 	 * Guard against NMI hits inside the critical section;
6713 	 * see also perf_prepare_sample_aux().
6714 	 */
6715 	WRITE_ONCE(rb->aux_in_sampling, 1);
6716 	barrier();
6717 
6718 	ret = event->pmu->snapshot_aux(event, handle, size);
6719 
6720 	barrier();
6721 	WRITE_ONCE(rb->aux_in_sampling, 0);
6722 	local_irq_restore(flags);
6723 
6724 	return ret;
6725 }
6726 
6727 static void perf_aux_sample_output(struct perf_event *event,
6728 				   struct perf_output_handle *handle,
6729 				   struct perf_sample_data *data)
6730 {
6731 	struct perf_event *sampler = event->aux_event;
6732 	struct perf_buffer *rb;
6733 	unsigned long pad;
6734 	long size;
6735 
6736 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6737 		return;
6738 
6739 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6740 	if (!rb)
6741 		return;
6742 
6743 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6744 
6745 	/*
6746 	 * An error here means that perf_output_copy() failed (returned a
6747 	 * non-zero surplus that it didn't copy), which in its current
6748 	 * enlightened implementation is not possible. If that changes, we'd
6749 	 * like to know.
6750 	 */
6751 	if (WARN_ON_ONCE(size < 0))
6752 		goto out_put;
6753 
6754 	/*
6755 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6756 	 * perf_prepare_sample_aux(), so should not be more than that.
6757 	 */
6758 	pad = data->aux_size - size;
6759 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6760 		pad = 8;
6761 
6762 	if (pad) {
6763 		u64 zero = 0;
6764 		perf_output_copy(handle, &zero, pad);
6765 	}
6766 
6767 out_put:
6768 	ring_buffer_put(rb);
6769 }
6770 
6771 static void __perf_event_header__init_id(struct perf_event_header *header,
6772 					 struct perf_sample_data *data,
6773 					 struct perf_event *event)
6774 {
6775 	u64 sample_type = event->attr.sample_type;
6776 
6777 	data->type = sample_type;
6778 	header->size += event->id_header_size;
6779 
6780 	if (sample_type & PERF_SAMPLE_TID) {
6781 		/* namespace issues */
6782 		data->tid_entry.pid = perf_event_pid(event, current);
6783 		data->tid_entry.tid = perf_event_tid(event, current);
6784 	}
6785 
6786 	if (sample_type & PERF_SAMPLE_TIME)
6787 		data->time = perf_event_clock(event);
6788 
6789 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6790 		data->id = primary_event_id(event);
6791 
6792 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6793 		data->stream_id = event->id;
6794 
6795 	if (sample_type & PERF_SAMPLE_CPU) {
6796 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6797 		data->cpu_entry.reserved = 0;
6798 	}
6799 }
6800 
6801 void perf_event_header__init_id(struct perf_event_header *header,
6802 				struct perf_sample_data *data,
6803 				struct perf_event *event)
6804 {
6805 	if (event->attr.sample_id_all)
6806 		__perf_event_header__init_id(header, data, event);
6807 }
6808 
6809 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6810 					   struct perf_sample_data *data)
6811 {
6812 	u64 sample_type = data->type;
6813 
6814 	if (sample_type & PERF_SAMPLE_TID)
6815 		perf_output_put(handle, data->tid_entry);
6816 
6817 	if (sample_type & PERF_SAMPLE_TIME)
6818 		perf_output_put(handle, data->time);
6819 
6820 	if (sample_type & PERF_SAMPLE_ID)
6821 		perf_output_put(handle, data->id);
6822 
6823 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6824 		perf_output_put(handle, data->stream_id);
6825 
6826 	if (sample_type & PERF_SAMPLE_CPU)
6827 		perf_output_put(handle, data->cpu_entry);
6828 
6829 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6830 		perf_output_put(handle, data->id);
6831 }
6832 
6833 void perf_event__output_id_sample(struct perf_event *event,
6834 				  struct perf_output_handle *handle,
6835 				  struct perf_sample_data *sample)
6836 {
6837 	if (event->attr.sample_id_all)
6838 		__perf_event__output_id_sample(handle, sample);
6839 }
6840 
6841 static void perf_output_read_one(struct perf_output_handle *handle,
6842 				 struct perf_event *event,
6843 				 u64 enabled, u64 running)
6844 {
6845 	u64 read_format = event->attr.read_format;
6846 	u64 values[4];
6847 	int n = 0;
6848 
6849 	values[n++] = perf_event_count(event);
6850 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6851 		values[n++] = enabled +
6852 			atomic64_read(&event->child_total_time_enabled);
6853 	}
6854 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6855 		values[n++] = running +
6856 			atomic64_read(&event->child_total_time_running);
6857 	}
6858 	if (read_format & PERF_FORMAT_ID)
6859 		values[n++] = primary_event_id(event);
6860 
6861 	__output_copy(handle, values, n * sizeof(u64));
6862 }
6863 
6864 static void perf_output_read_group(struct perf_output_handle *handle,
6865 			    struct perf_event *event,
6866 			    u64 enabled, u64 running)
6867 {
6868 	struct perf_event *leader = event->group_leader, *sub;
6869 	u64 read_format = event->attr.read_format;
6870 	u64 values[5];
6871 	int n = 0;
6872 
6873 	values[n++] = 1 + leader->nr_siblings;
6874 
6875 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6876 		values[n++] = enabled;
6877 
6878 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6879 		values[n++] = running;
6880 
6881 	if ((leader != event) &&
6882 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6883 		leader->pmu->read(leader);
6884 
6885 	values[n++] = perf_event_count(leader);
6886 	if (read_format & PERF_FORMAT_ID)
6887 		values[n++] = primary_event_id(leader);
6888 
6889 	__output_copy(handle, values, n * sizeof(u64));
6890 
6891 	for_each_sibling_event(sub, leader) {
6892 		n = 0;
6893 
6894 		if ((sub != event) &&
6895 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6896 			sub->pmu->read(sub);
6897 
6898 		values[n++] = perf_event_count(sub);
6899 		if (read_format & PERF_FORMAT_ID)
6900 			values[n++] = primary_event_id(sub);
6901 
6902 		__output_copy(handle, values, n * sizeof(u64));
6903 	}
6904 }
6905 
6906 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6907 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6908 
6909 /*
6910  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6911  *
6912  * The problem is that its both hard and excessively expensive to iterate the
6913  * child list, not to mention that its impossible to IPI the children running
6914  * on another CPU, from interrupt/NMI context.
6915  */
6916 static void perf_output_read(struct perf_output_handle *handle,
6917 			     struct perf_event *event)
6918 {
6919 	u64 enabled = 0, running = 0, now;
6920 	u64 read_format = event->attr.read_format;
6921 
6922 	/*
6923 	 * compute total_time_enabled, total_time_running
6924 	 * based on snapshot values taken when the event
6925 	 * was last scheduled in.
6926 	 *
6927 	 * we cannot simply called update_context_time()
6928 	 * because of locking issue as we are called in
6929 	 * NMI context
6930 	 */
6931 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6932 		calc_timer_values(event, &now, &enabled, &running);
6933 
6934 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6935 		perf_output_read_group(handle, event, enabled, running);
6936 	else
6937 		perf_output_read_one(handle, event, enabled, running);
6938 }
6939 
6940 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6941 {
6942 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6943 }
6944 
6945 void perf_output_sample(struct perf_output_handle *handle,
6946 			struct perf_event_header *header,
6947 			struct perf_sample_data *data,
6948 			struct perf_event *event)
6949 {
6950 	u64 sample_type = data->type;
6951 
6952 	perf_output_put(handle, *header);
6953 
6954 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6955 		perf_output_put(handle, data->id);
6956 
6957 	if (sample_type & PERF_SAMPLE_IP)
6958 		perf_output_put(handle, data->ip);
6959 
6960 	if (sample_type & PERF_SAMPLE_TID)
6961 		perf_output_put(handle, data->tid_entry);
6962 
6963 	if (sample_type & PERF_SAMPLE_TIME)
6964 		perf_output_put(handle, data->time);
6965 
6966 	if (sample_type & PERF_SAMPLE_ADDR)
6967 		perf_output_put(handle, data->addr);
6968 
6969 	if (sample_type & PERF_SAMPLE_ID)
6970 		perf_output_put(handle, data->id);
6971 
6972 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6973 		perf_output_put(handle, data->stream_id);
6974 
6975 	if (sample_type & PERF_SAMPLE_CPU)
6976 		perf_output_put(handle, data->cpu_entry);
6977 
6978 	if (sample_type & PERF_SAMPLE_PERIOD)
6979 		perf_output_put(handle, data->period);
6980 
6981 	if (sample_type & PERF_SAMPLE_READ)
6982 		perf_output_read(handle, event);
6983 
6984 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6985 		int size = 1;
6986 
6987 		size += data->callchain->nr;
6988 		size *= sizeof(u64);
6989 		__output_copy(handle, data->callchain, size);
6990 	}
6991 
6992 	if (sample_type & PERF_SAMPLE_RAW) {
6993 		struct perf_raw_record *raw = data->raw;
6994 
6995 		if (raw) {
6996 			struct perf_raw_frag *frag = &raw->frag;
6997 
6998 			perf_output_put(handle, raw->size);
6999 			do {
7000 				if (frag->copy) {
7001 					__output_custom(handle, frag->copy,
7002 							frag->data, frag->size);
7003 				} else {
7004 					__output_copy(handle, frag->data,
7005 						      frag->size);
7006 				}
7007 				if (perf_raw_frag_last(frag))
7008 					break;
7009 				frag = frag->next;
7010 			} while (1);
7011 			if (frag->pad)
7012 				__output_skip(handle, NULL, frag->pad);
7013 		} else {
7014 			struct {
7015 				u32	size;
7016 				u32	data;
7017 			} raw = {
7018 				.size = sizeof(u32),
7019 				.data = 0,
7020 			};
7021 			perf_output_put(handle, raw);
7022 		}
7023 	}
7024 
7025 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026 		if (data->br_stack) {
7027 			size_t size;
7028 
7029 			size = data->br_stack->nr
7030 			     * sizeof(struct perf_branch_entry);
7031 
7032 			perf_output_put(handle, data->br_stack->nr);
7033 			if (perf_sample_save_hw_index(event))
7034 				perf_output_put(handle, data->br_stack->hw_idx);
7035 			perf_output_copy(handle, data->br_stack->entries, size);
7036 		} else {
7037 			/*
7038 			 * we always store at least the value of nr
7039 			 */
7040 			u64 nr = 0;
7041 			perf_output_put(handle, nr);
7042 		}
7043 	}
7044 
7045 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7046 		u64 abi = data->regs_user.abi;
7047 
7048 		/*
7049 		 * If there are no regs to dump, notice it through
7050 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7051 		 */
7052 		perf_output_put(handle, abi);
7053 
7054 		if (abi) {
7055 			u64 mask = event->attr.sample_regs_user;
7056 			perf_output_sample_regs(handle,
7057 						data->regs_user.regs,
7058 						mask);
7059 		}
7060 	}
7061 
7062 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7063 		perf_output_sample_ustack(handle,
7064 					  data->stack_user_size,
7065 					  data->regs_user.regs);
7066 	}
7067 
7068 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7069 		perf_output_put(handle, data->weight.full);
7070 
7071 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7072 		perf_output_put(handle, data->data_src.val);
7073 
7074 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7075 		perf_output_put(handle, data->txn);
7076 
7077 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7078 		u64 abi = data->regs_intr.abi;
7079 		/*
7080 		 * If there are no regs to dump, notice it through
7081 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7082 		 */
7083 		perf_output_put(handle, abi);
7084 
7085 		if (abi) {
7086 			u64 mask = event->attr.sample_regs_intr;
7087 
7088 			perf_output_sample_regs(handle,
7089 						data->regs_intr.regs,
7090 						mask);
7091 		}
7092 	}
7093 
7094 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7095 		perf_output_put(handle, data->phys_addr);
7096 
7097 	if (sample_type & PERF_SAMPLE_CGROUP)
7098 		perf_output_put(handle, data->cgroup);
7099 
7100 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7101 		perf_output_put(handle, data->data_page_size);
7102 
7103 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7104 		perf_output_put(handle, data->code_page_size);
7105 
7106 	if (sample_type & PERF_SAMPLE_AUX) {
7107 		perf_output_put(handle, data->aux_size);
7108 
7109 		if (data->aux_size)
7110 			perf_aux_sample_output(event, handle, data);
7111 	}
7112 
7113 	if (!event->attr.watermark) {
7114 		int wakeup_events = event->attr.wakeup_events;
7115 
7116 		if (wakeup_events) {
7117 			struct perf_buffer *rb = handle->rb;
7118 			int events = local_inc_return(&rb->events);
7119 
7120 			if (events >= wakeup_events) {
7121 				local_sub(wakeup_events, &rb->events);
7122 				local_inc(&rb->wakeup);
7123 			}
7124 		}
7125 	}
7126 }
7127 
7128 static u64 perf_virt_to_phys(u64 virt)
7129 {
7130 	u64 phys_addr = 0;
7131 	struct page *p = NULL;
7132 
7133 	if (!virt)
7134 		return 0;
7135 
7136 	if (virt >= TASK_SIZE) {
7137 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7138 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7139 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7140 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7141 	} else {
7142 		/*
7143 		 * Walking the pages tables for user address.
7144 		 * Interrupts are disabled, so it prevents any tear down
7145 		 * of the page tables.
7146 		 * Try IRQ-safe get_user_page_fast_only first.
7147 		 * If failed, leave phys_addr as 0.
7148 		 */
7149 		if (current->mm != NULL) {
7150 			pagefault_disable();
7151 			if (get_user_page_fast_only(virt, 0, &p))
7152 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7153 			pagefault_enable();
7154 		}
7155 
7156 		if (p)
7157 			put_page(p);
7158 	}
7159 
7160 	return phys_addr;
7161 }
7162 
7163 /*
7164  * Return the pagetable size of a given virtual address.
7165  */
7166 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7167 {
7168 	u64 size = 0;
7169 
7170 #ifdef CONFIG_HAVE_FAST_GUP
7171 	pgd_t *pgdp, pgd;
7172 	p4d_t *p4dp, p4d;
7173 	pud_t *pudp, pud;
7174 	pmd_t *pmdp, pmd;
7175 	pte_t *ptep, pte;
7176 
7177 	pgdp = pgd_offset(mm, addr);
7178 	pgd = READ_ONCE(*pgdp);
7179 	if (pgd_none(pgd))
7180 		return 0;
7181 
7182 	if (pgd_leaf(pgd))
7183 		return pgd_leaf_size(pgd);
7184 
7185 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7186 	p4d = READ_ONCE(*p4dp);
7187 	if (!p4d_present(p4d))
7188 		return 0;
7189 
7190 	if (p4d_leaf(p4d))
7191 		return p4d_leaf_size(p4d);
7192 
7193 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7194 	pud = READ_ONCE(*pudp);
7195 	if (!pud_present(pud))
7196 		return 0;
7197 
7198 	if (pud_leaf(pud))
7199 		return pud_leaf_size(pud);
7200 
7201 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7202 	pmd = READ_ONCE(*pmdp);
7203 	if (!pmd_present(pmd))
7204 		return 0;
7205 
7206 	if (pmd_leaf(pmd))
7207 		return pmd_leaf_size(pmd);
7208 
7209 	ptep = pte_offset_map(&pmd, addr);
7210 	pte = ptep_get_lockless(ptep);
7211 	if (pte_present(pte))
7212 		size = pte_leaf_size(pte);
7213 	pte_unmap(ptep);
7214 #endif /* CONFIG_HAVE_FAST_GUP */
7215 
7216 	return size;
7217 }
7218 
7219 static u64 perf_get_page_size(unsigned long addr)
7220 {
7221 	struct mm_struct *mm;
7222 	unsigned long flags;
7223 	u64 size;
7224 
7225 	if (!addr)
7226 		return 0;
7227 
7228 	/*
7229 	 * Software page-table walkers must disable IRQs,
7230 	 * which prevents any tear down of the page tables.
7231 	 */
7232 	local_irq_save(flags);
7233 
7234 	mm = current->mm;
7235 	if (!mm) {
7236 		/*
7237 		 * For kernel threads and the like, use init_mm so that
7238 		 * we can find kernel memory.
7239 		 */
7240 		mm = &init_mm;
7241 	}
7242 
7243 	size = perf_get_pgtable_size(mm, addr);
7244 
7245 	local_irq_restore(flags);
7246 
7247 	return size;
7248 }
7249 
7250 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7251 
7252 struct perf_callchain_entry *
7253 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7254 {
7255 	bool kernel = !event->attr.exclude_callchain_kernel;
7256 	bool user   = !event->attr.exclude_callchain_user;
7257 	/* Disallow cross-task user callchains. */
7258 	bool crosstask = event->ctx->task && event->ctx->task != current;
7259 	const u32 max_stack = event->attr.sample_max_stack;
7260 	struct perf_callchain_entry *callchain;
7261 
7262 	if (!kernel && !user)
7263 		return &__empty_callchain;
7264 
7265 	callchain = get_perf_callchain(regs, 0, kernel, user,
7266 				       max_stack, crosstask, true);
7267 	return callchain ?: &__empty_callchain;
7268 }
7269 
7270 void perf_prepare_sample(struct perf_event_header *header,
7271 			 struct perf_sample_data *data,
7272 			 struct perf_event *event,
7273 			 struct pt_regs *regs)
7274 {
7275 	u64 sample_type = event->attr.sample_type;
7276 
7277 	header->type = PERF_RECORD_SAMPLE;
7278 	header->size = sizeof(*header) + event->header_size;
7279 
7280 	header->misc = 0;
7281 	header->misc |= perf_misc_flags(regs);
7282 
7283 	__perf_event_header__init_id(header, data, event);
7284 
7285 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7286 		data->ip = perf_instruction_pointer(regs);
7287 
7288 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7289 		int size = 1;
7290 
7291 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7292 			data->callchain = perf_callchain(event, regs);
7293 
7294 		size += data->callchain->nr;
7295 
7296 		header->size += size * sizeof(u64);
7297 	}
7298 
7299 	if (sample_type & PERF_SAMPLE_RAW) {
7300 		struct perf_raw_record *raw = data->raw;
7301 		int size;
7302 
7303 		if (raw) {
7304 			struct perf_raw_frag *frag = &raw->frag;
7305 			u32 sum = 0;
7306 
7307 			do {
7308 				sum += frag->size;
7309 				if (perf_raw_frag_last(frag))
7310 					break;
7311 				frag = frag->next;
7312 			} while (1);
7313 
7314 			size = round_up(sum + sizeof(u32), sizeof(u64));
7315 			raw->size = size - sizeof(u32);
7316 			frag->pad = raw->size - sum;
7317 		} else {
7318 			size = sizeof(u64);
7319 		}
7320 
7321 		header->size += size;
7322 	}
7323 
7324 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7325 		int size = sizeof(u64); /* nr */
7326 		if (data->br_stack) {
7327 			if (perf_sample_save_hw_index(event))
7328 				size += sizeof(u64);
7329 
7330 			size += data->br_stack->nr
7331 			      * sizeof(struct perf_branch_entry);
7332 		}
7333 		header->size += size;
7334 	}
7335 
7336 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7337 		perf_sample_regs_user(&data->regs_user, regs);
7338 
7339 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7340 		/* regs dump ABI info */
7341 		int size = sizeof(u64);
7342 
7343 		if (data->regs_user.regs) {
7344 			u64 mask = event->attr.sample_regs_user;
7345 			size += hweight64(mask) * sizeof(u64);
7346 		}
7347 
7348 		header->size += size;
7349 	}
7350 
7351 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7352 		/*
7353 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7354 		 * processed as the last one or have additional check added
7355 		 * in case new sample type is added, because we could eat
7356 		 * up the rest of the sample size.
7357 		 */
7358 		u16 stack_size = event->attr.sample_stack_user;
7359 		u16 size = sizeof(u64);
7360 
7361 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7362 						     data->regs_user.regs);
7363 
7364 		/*
7365 		 * If there is something to dump, add space for the dump
7366 		 * itself and for the field that tells the dynamic size,
7367 		 * which is how many have been actually dumped.
7368 		 */
7369 		if (stack_size)
7370 			size += sizeof(u64) + stack_size;
7371 
7372 		data->stack_user_size = stack_size;
7373 		header->size += size;
7374 	}
7375 
7376 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7377 		/* regs dump ABI info */
7378 		int size = sizeof(u64);
7379 
7380 		perf_sample_regs_intr(&data->regs_intr, regs);
7381 
7382 		if (data->regs_intr.regs) {
7383 			u64 mask = event->attr.sample_regs_intr;
7384 
7385 			size += hweight64(mask) * sizeof(u64);
7386 		}
7387 
7388 		header->size += size;
7389 	}
7390 
7391 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7392 		data->phys_addr = perf_virt_to_phys(data->addr);
7393 
7394 #ifdef CONFIG_CGROUP_PERF
7395 	if (sample_type & PERF_SAMPLE_CGROUP) {
7396 		struct cgroup *cgrp;
7397 
7398 		/* protected by RCU */
7399 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7400 		data->cgroup = cgroup_id(cgrp);
7401 	}
7402 #endif
7403 
7404 	/*
7405 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7406 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7407 	 * but the value will not dump to the userspace.
7408 	 */
7409 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7410 		data->data_page_size = perf_get_page_size(data->addr);
7411 
7412 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7413 		data->code_page_size = perf_get_page_size(data->ip);
7414 
7415 	if (sample_type & PERF_SAMPLE_AUX) {
7416 		u64 size;
7417 
7418 		header->size += sizeof(u64); /* size */
7419 
7420 		/*
7421 		 * Given the 16bit nature of header::size, an AUX sample can
7422 		 * easily overflow it, what with all the preceding sample bits.
7423 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7424 		 * per sample in total (rounded down to 8 byte boundary).
7425 		 */
7426 		size = min_t(size_t, U16_MAX - header->size,
7427 			     event->attr.aux_sample_size);
7428 		size = rounddown(size, 8);
7429 		size = perf_prepare_sample_aux(event, data, size);
7430 
7431 		WARN_ON_ONCE(size + header->size > U16_MAX);
7432 		header->size += size;
7433 	}
7434 	/*
7435 	 * If you're adding more sample types here, you likely need to do
7436 	 * something about the overflowing header::size, like repurpose the
7437 	 * lowest 3 bits of size, which should be always zero at the moment.
7438 	 * This raises a more important question, do we really need 512k sized
7439 	 * samples and why, so good argumentation is in order for whatever you
7440 	 * do here next.
7441 	 */
7442 	WARN_ON_ONCE(header->size & 7);
7443 }
7444 
7445 static __always_inline int
7446 __perf_event_output(struct perf_event *event,
7447 		    struct perf_sample_data *data,
7448 		    struct pt_regs *regs,
7449 		    int (*output_begin)(struct perf_output_handle *,
7450 					struct perf_sample_data *,
7451 					struct perf_event *,
7452 					unsigned int))
7453 {
7454 	struct perf_output_handle handle;
7455 	struct perf_event_header header;
7456 	int err;
7457 
7458 	/* protect the callchain buffers */
7459 	rcu_read_lock();
7460 
7461 	perf_prepare_sample(&header, data, event, regs);
7462 
7463 	err = output_begin(&handle, data, event, header.size);
7464 	if (err)
7465 		goto exit;
7466 
7467 	perf_output_sample(&handle, &header, data, event);
7468 
7469 	perf_output_end(&handle);
7470 
7471 exit:
7472 	rcu_read_unlock();
7473 	return err;
7474 }
7475 
7476 void
7477 perf_event_output_forward(struct perf_event *event,
7478 			 struct perf_sample_data *data,
7479 			 struct pt_regs *regs)
7480 {
7481 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7482 }
7483 
7484 void
7485 perf_event_output_backward(struct perf_event *event,
7486 			   struct perf_sample_data *data,
7487 			   struct pt_regs *regs)
7488 {
7489 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7490 }
7491 
7492 int
7493 perf_event_output(struct perf_event *event,
7494 		  struct perf_sample_data *data,
7495 		  struct pt_regs *regs)
7496 {
7497 	return __perf_event_output(event, data, regs, perf_output_begin);
7498 }
7499 
7500 /*
7501  * read event_id
7502  */
7503 
7504 struct perf_read_event {
7505 	struct perf_event_header	header;
7506 
7507 	u32				pid;
7508 	u32				tid;
7509 };
7510 
7511 static void
7512 perf_event_read_event(struct perf_event *event,
7513 			struct task_struct *task)
7514 {
7515 	struct perf_output_handle handle;
7516 	struct perf_sample_data sample;
7517 	struct perf_read_event read_event = {
7518 		.header = {
7519 			.type = PERF_RECORD_READ,
7520 			.misc = 0,
7521 			.size = sizeof(read_event) + event->read_size,
7522 		},
7523 		.pid = perf_event_pid(event, task),
7524 		.tid = perf_event_tid(event, task),
7525 	};
7526 	int ret;
7527 
7528 	perf_event_header__init_id(&read_event.header, &sample, event);
7529 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7530 	if (ret)
7531 		return;
7532 
7533 	perf_output_put(&handle, read_event);
7534 	perf_output_read(&handle, event);
7535 	perf_event__output_id_sample(event, &handle, &sample);
7536 
7537 	perf_output_end(&handle);
7538 }
7539 
7540 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7541 
7542 static void
7543 perf_iterate_ctx(struct perf_event_context *ctx,
7544 		   perf_iterate_f output,
7545 		   void *data, bool all)
7546 {
7547 	struct perf_event *event;
7548 
7549 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7550 		if (!all) {
7551 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7552 				continue;
7553 			if (!event_filter_match(event))
7554 				continue;
7555 		}
7556 
7557 		output(event, data);
7558 	}
7559 }
7560 
7561 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7562 {
7563 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7564 	struct perf_event *event;
7565 
7566 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7567 		/*
7568 		 * Skip events that are not fully formed yet; ensure that
7569 		 * if we observe event->ctx, both event and ctx will be
7570 		 * complete enough. See perf_install_in_context().
7571 		 */
7572 		if (!smp_load_acquire(&event->ctx))
7573 			continue;
7574 
7575 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7576 			continue;
7577 		if (!event_filter_match(event))
7578 			continue;
7579 		output(event, data);
7580 	}
7581 }
7582 
7583 /*
7584  * Iterate all events that need to receive side-band events.
7585  *
7586  * For new callers; ensure that account_pmu_sb_event() includes
7587  * your event, otherwise it might not get delivered.
7588  */
7589 static void
7590 perf_iterate_sb(perf_iterate_f output, void *data,
7591 	       struct perf_event_context *task_ctx)
7592 {
7593 	struct perf_event_context *ctx;
7594 	int ctxn;
7595 
7596 	rcu_read_lock();
7597 	preempt_disable();
7598 
7599 	/*
7600 	 * If we have task_ctx != NULL we only notify the task context itself.
7601 	 * The task_ctx is set only for EXIT events before releasing task
7602 	 * context.
7603 	 */
7604 	if (task_ctx) {
7605 		perf_iterate_ctx(task_ctx, output, data, false);
7606 		goto done;
7607 	}
7608 
7609 	perf_iterate_sb_cpu(output, data);
7610 
7611 	for_each_task_context_nr(ctxn) {
7612 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7613 		if (ctx)
7614 			perf_iterate_ctx(ctx, output, data, false);
7615 	}
7616 done:
7617 	preempt_enable();
7618 	rcu_read_unlock();
7619 }
7620 
7621 /*
7622  * Clear all file-based filters at exec, they'll have to be
7623  * re-instated when/if these objects are mmapped again.
7624  */
7625 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7626 {
7627 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7628 	struct perf_addr_filter *filter;
7629 	unsigned int restart = 0, count = 0;
7630 	unsigned long flags;
7631 
7632 	if (!has_addr_filter(event))
7633 		return;
7634 
7635 	raw_spin_lock_irqsave(&ifh->lock, flags);
7636 	list_for_each_entry(filter, &ifh->list, entry) {
7637 		if (filter->path.dentry) {
7638 			event->addr_filter_ranges[count].start = 0;
7639 			event->addr_filter_ranges[count].size = 0;
7640 			restart++;
7641 		}
7642 
7643 		count++;
7644 	}
7645 
7646 	if (restart)
7647 		event->addr_filters_gen++;
7648 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7649 
7650 	if (restart)
7651 		perf_event_stop(event, 1);
7652 }
7653 
7654 void perf_event_exec(void)
7655 {
7656 	struct perf_event_context *ctx;
7657 	int ctxn;
7658 
7659 	for_each_task_context_nr(ctxn) {
7660 		perf_event_enable_on_exec(ctxn);
7661 		perf_event_remove_on_exec(ctxn);
7662 
7663 		rcu_read_lock();
7664 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7665 		if (ctx) {
7666 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7667 					 NULL, true);
7668 		}
7669 		rcu_read_unlock();
7670 	}
7671 }
7672 
7673 struct remote_output {
7674 	struct perf_buffer	*rb;
7675 	int			err;
7676 };
7677 
7678 static void __perf_event_output_stop(struct perf_event *event, void *data)
7679 {
7680 	struct perf_event *parent = event->parent;
7681 	struct remote_output *ro = data;
7682 	struct perf_buffer *rb = ro->rb;
7683 	struct stop_event_data sd = {
7684 		.event	= event,
7685 	};
7686 
7687 	if (!has_aux(event))
7688 		return;
7689 
7690 	if (!parent)
7691 		parent = event;
7692 
7693 	/*
7694 	 * In case of inheritance, it will be the parent that links to the
7695 	 * ring-buffer, but it will be the child that's actually using it.
7696 	 *
7697 	 * We are using event::rb to determine if the event should be stopped,
7698 	 * however this may race with ring_buffer_attach() (through set_output),
7699 	 * which will make us skip the event that actually needs to be stopped.
7700 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7701 	 * its rb pointer.
7702 	 */
7703 	if (rcu_dereference(parent->rb) == rb)
7704 		ro->err = __perf_event_stop(&sd);
7705 }
7706 
7707 static int __perf_pmu_output_stop(void *info)
7708 {
7709 	struct perf_event *event = info;
7710 	struct pmu *pmu = event->ctx->pmu;
7711 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7712 	struct remote_output ro = {
7713 		.rb	= event->rb,
7714 	};
7715 
7716 	rcu_read_lock();
7717 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7718 	if (cpuctx->task_ctx)
7719 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7720 				   &ro, false);
7721 	rcu_read_unlock();
7722 
7723 	return ro.err;
7724 }
7725 
7726 static void perf_pmu_output_stop(struct perf_event *event)
7727 {
7728 	struct perf_event *iter;
7729 	int err, cpu;
7730 
7731 restart:
7732 	rcu_read_lock();
7733 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7734 		/*
7735 		 * For per-CPU events, we need to make sure that neither they
7736 		 * nor their children are running; for cpu==-1 events it's
7737 		 * sufficient to stop the event itself if it's active, since
7738 		 * it can't have children.
7739 		 */
7740 		cpu = iter->cpu;
7741 		if (cpu == -1)
7742 			cpu = READ_ONCE(iter->oncpu);
7743 
7744 		if (cpu == -1)
7745 			continue;
7746 
7747 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7748 		if (err == -EAGAIN) {
7749 			rcu_read_unlock();
7750 			goto restart;
7751 		}
7752 	}
7753 	rcu_read_unlock();
7754 }
7755 
7756 /*
7757  * task tracking -- fork/exit
7758  *
7759  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7760  */
7761 
7762 struct perf_task_event {
7763 	struct task_struct		*task;
7764 	struct perf_event_context	*task_ctx;
7765 
7766 	struct {
7767 		struct perf_event_header	header;
7768 
7769 		u32				pid;
7770 		u32				ppid;
7771 		u32				tid;
7772 		u32				ptid;
7773 		u64				time;
7774 	} event_id;
7775 };
7776 
7777 static int perf_event_task_match(struct perf_event *event)
7778 {
7779 	return event->attr.comm  || event->attr.mmap ||
7780 	       event->attr.mmap2 || event->attr.mmap_data ||
7781 	       event->attr.task;
7782 }
7783 
7784 static void perf_event_task_output(struct perf_event *event,
7785 				   void *data)
7786 {
7787 	struct perf_task_event *task_event = data;
7788 	struct perf_output_handle handle;
7789 	struct perf_sample_data	sample;
7790 	struct task_struct *task = task_event->task;
7791 	int ret, size = task_event->event_id.header.size;
7792 
7793 	if (!perf_event_task_match(event))
7794 		return;
7795 
7796 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7797 
7798 	ret = perf_output_begin(&handle, &sample, event,
7799 				task_event->event_id.header.size);
7800 	if (ret)
7801 		goto out;
7802 
7803 	task_event->event_id.pid = perf_event_pid(event, task);
7804 	task_event->event_id.tid = perf_event_tid(event, task);
7805 
7806 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7807 		task_event->event_id.ppid = perf_event_pid(event,
7808 							task->real_parent);
7809 		task_event->event_id.ptid = perf_event_pid(event,
7810 							task->real_parent);
7811 	} else {  /* PERF_RECORD_FORK */
7812 		task_event->event_id.ppid = perf_event_pid(event, current);
7813 		task_event->event_id.ptid = perf_event_tid(event, current);
7814 	}
7815 
7816 	task_event->event_id.time = perf_event_clock(event);
7817 
7818 	perf_output_put(&handle, task_event->event_id);
7819 
7820 	perf_event__output_id_sample(event, &handle, &sample);
7821 
7822 	perf_output_end(&handle);
7823 out:
7824 	task_event->event_id.header.size = size;
7825 }
7826 
7827 static void perf_event_task(struct task_struct *task,
7828 			      struct perf_event_context *task_ctx,
7829 			      int new)
7830 {
7831 	struct perf_task_event task_event;
7832 
7833 	if (!atomic_read(&nr_comm_events) &&
7834 	    !atomic_read(&nr_mmap_events) &&
7835 	    !atomic_read(&nr_task_events))
7836 		return;
7837 
7838 	task_event = (struct perf_task_event){
7839 		.task	  = task,
7840 		.task_ctx = task_ctx,
7841 		.event_id    = {
7842 			.header = {
7843 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7844 				.misc = 0,
7845 				.size = sizeof(task_event.event_id),
7846 			},
7847 			/* .pid  */
7848 			/* .ppid */
7849 			/* .tid  */
7850 			/* .ptid */
7851 			/* .time */
7852 		},
7853 	};
7854 
7855 	perf_iterate_sb(perf_event_task_output,
7856 		       &task_event,
7857 		       task_ctx);
7858 }
7859 
7860 void perf_event_fork(struct task_struct *task)
7861 {
7862 	perf_event_task(task, NULL, 1);
7863 	perf_event_namespaces(task);
7864 }
7865 
7866 /*
7867  * comm tracking
7868  */
7869 
7870 struct perf_comm_event {
7871 	struct task_struct	*task;
7872 	char			*comm;
7873 	int			comm_size;
7874 
7875 	struct {
7876 		struct perf_event_header	header;
7877 
7878 		u32				pid;
7879 		u32				tid;
7880 	} event_id;
7881 };
7882 
7883 static int perf_event_comm_match(struct perf_event *event)
7884 {
7885 	return event->attr.comm;
7886 }
7887 
7888 static void perf_event_comm_output(struct perf_event *event,
7889 				   void *data)
7890 {
7891 	struct perf_comm_event *comm_event = data;
7892 	struct perf_output_handle handle;
7893 	struct perf_sample_data sample;
7894 	int size = comm_event->event_id.header.size;
7895 	int ret;
7896 
7897 	if (!perf_event_comm_match(event))
7898 		return;
7899 
7900 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7901 	ret = perf_output_begin(&handle, &sample, event,
7902 				comm_event->event_id.header.size);
7903 
7904 	if (ret)
7905 		goto out;
7906 
7907 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7908 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7909 
7910 	perf_output_put(&handle, comm_event->event_id);
7911 	__output_copy(&handle, comm_event->comm,
7912 				   comm_event->comm_size);
7913 
7914 	perf_event__output_id_sample(event, &handle, &sample);
7915 
7916 	perf_output_end(&handle);
7917 out:
7918 	comm_event->event_id.header.size = size;
7919 }
7920 
7921 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7922 {
7923 	char comm[TASK_COMM_LEN];
7924 	unsigned int size;
7925 
7926 	memset(comm, 0, sizeof(comm));
7927 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7928 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7929 
7930 	comm_event->comm = comm;
7931 	comm_event->comm_size = size;
7932 
7933 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7934 
7935 	perf_iterate_sb(perf_event_comm_output,
7936 		       comm_event,
7937 		       NULL);
7938 }
7939 
7940 void perf_event_comm(struct task_struct *task, bool exec)
7941 {
7942 	struct perf_comm_event comm_event;
7943 
7944 	if (!atomic_read(&nr_comm_events))
7945 		return;
7946 
7947 	comm_event = (struct perf_comm_event){
7948 		.task	= task,
7949 		/* .comm      */
7950 		/* .comm_size */
7951 		.event_id  = {
7952 			.header = {
7953 				.type = PERF_RECORD_COMM,
7954 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7955 				/* .size */
7956 			},
7957 			/* .pid */
7958 			/* .tid */
7959 		},
7960 	};
7961 
7962 	perf_event_comm_event(&comm_event);
7963 }
7964 
7965 /*
7966  * namespaces tracking
7967  */
7968 
7969 struct perf_namespaces_event {
7970 	struct task_struct		*task;
7971 
7972 	struct {
7973 		struct perf_event_header	header;
7974 
7975 		u32				pid;
7976 		u32				tid;
7977 		u64				nr_namespaces;
7978 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7979 	} event_id;
7980 };
7981 
7982 static int perf_event_namespaces_match(struct perf_event *event)
7983 {
7984 	return event->attr.namespaces;
7985 }
7986 
7987 static void perf_event_namespaces_output(struct perf_event *event,
7988 					 void *data)
7989 {
7990 	struct perf_namespaces_event *namespaces_event = data;
7991 	struct perf_output_handle handle;
7992 	struct perf_sample_data sample;
7993 	u16 header_size = namespaces_event->event_id.header.size;
7994 	int ret;
7995 
7996 	if (!perf_event_namespaces_match(event))
7997 		return;
7998 
7999 	perf_event_header__init_id(&namespaces_event->event_id.header,
8000 				   &sample, event);
8001 	ret = perf_output_begin(&handle, &sample, event,
8002 				namespaces_event->event_id.header.size);
8003 	if (ret)
8004 		goto out;
8005 
8006 	namespaces_event->event_id.pid = perf_event_pid(event,
8007 							namespaces_event->task);
8008 	namespaces_event->event_id.tid = perf_event_tid(event,
8009 							namespaces_event->task);
8010 
8011 	perf_output_put(&handle, namespaces_event->event_id);
8012 
8013 	perf_event__output_id_sample(event, &handle, &sample);
8014 
8015 	perf_output_end(&handle);
8016 out:
8017 	namespaces_event->event_id.header.size = header_size;
8018 }
8019 
8020 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8021 				   struct task_struct *task,
8022 				   const struct proc_ns_operations *ns_ops)
8023 {
8024 	struct path ns_path;
8025 	struct inode *ns_inode;
8026 	int error;
8027 
8028 	error = ns_get_path(&ns_path, task, ns_ops);
8029 	if (!error) {
8030 		ns_inode = ns_path.dentry->d_inode;
8031 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8032 		ns_link_info->ino = ns_inode->i_ino;
8033 		path_put(&ns_path);
8034 	}
8035 }
8036 
8037 void perf_event_namespaces(struct task_struct *task)
8038 {
8039 	struct perf_namespaces_event namespaces_event;
8040 	struct perf_ns_link_info *ns_link_info;
8041 
8042 	if (!atomic_read(&nr_namespaces_events))
8043 		return;
8044 
8045 	namespaces_event = (struct perf_namespaces_event){
8046 		.task	= task,
8047 		.event_id  = {
8048 			.header = {
8049 				.type = PERF_RECORD_NAMESPACES,
8050 				.misc = 0,
8051 				.size = sizeof(namespaces_event.event_id),
8052 			},
8053 			/* .pid */
8054 			/* .tid */
8055 			.nr_namespaces = NR_NAMESPACES,
8056 			/* .link_info[NR_NAMESPACES] */
8057 		},
8058 	};
8059 
8060 	ns_link_info = namespaces_event.event_id.link_info;
8061 
8062 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8063 			       task, &mntns_operations);
8064 
8065 #ifdef CONFIG_USER_NS
8066 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8067 			       task, &userns_operations);
8068 #endif
8069 #ifdef CONFIG_NET_NS
8070 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8071 			       task, &netns_operations);
8072 #endif
8073 #ifdef CONFIG_UTS_NS
8074 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8075 			       task, &utsns_operations);
8076 #endif
8077 #ifdef CONFIG_IPC_NS
8078 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8079 			       task, &ipcns_operations);
8080 #endif
8081 #ifdef CONFIG_PID_NS
8082 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8083 			       task, &pidns_operations);
8084 #endif
8085 #ifdef CONFIG_CGROUPS
8086 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8087 			       task, &cgroupns_operations);
8088 #endif
8089 
8090 	perf_iterate_sb(perf_event_namespaces_output,
8091 			&namespaces_event,
8092 			NULL);
8093 }
8094 
8095 /*
8096  * cgroup tracking
8097  */
8098 #ifdef CONFIG_CGROUP_PERF
8099 
8100 struct perf_cgroup_event {
8101 	char				*path;
8102 	int				path_size;
8103 	struct {
8104 		struct perf_event_header	header;
8105 		u64				id;
8106 		char				path[];
8107 	} event_id;
8108 };
8109 
8110 static int perf_event_cgroup_match(struct perf_event *event)
8111 {
8112 	return event->attr.cgroup;
8113 }
8114 
8115 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8116 {
8117 	struct perf_cgroup_event *cgroup_event = data;
8118 	struct perf_output_handle handle;
8119 	struct perf_sample_data sample;
8120 	u16 header_size = cgroup_event->event_id.header.size;
8121 	int ret;
8122 
8123 	if (!perf_event_cgroup_match(event))
8124 		return;
8125 
8126 	perf_event_header__init_id(&cgroup_event->event_id.header,
8127 				   &sample, event);
8128 	ret = perf_output_begin(&handle, &sample, event,
8129 				cgroup_event->event_id.header.size);
8130 	if (ret)
8131 		goto out;
8132 
8133 	perf_output_put(&handle, cgroup_event->event_id);
8134 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8135 
8136 	perf_event__output_id_sample(event, &handle, &sample);
8137 
8138 	perf_output_end(&handle);
8139 out:
8140 	cgroup_event->event_id.header.size = header_size;
8141 }
8142 
8143 static void perf_event_cgroup(struct cgroup *cgrp)
8144 {
8145 	struct perf_cgroup_event cgroup_event;
8146 	char path_enomem[16] = "//enomem";
8147 	char *pathname;
8148 	size_t size;
8149 
8150 	if (!atomic_read(&nr_cgroup_events))
8151 		return;
8152 
8153 	cgroup_event = (struct perf_cgroup_event){
8154 		.event_id  = {
8155 			.header = {
8156 				.type = PERF_RECORD_CGROUP,
8157 				.misc = 0,
8158 				.size = sizeof(cgroup_event.event_id),
8159 			},
8160 			.id = cgroup_id(cgrp),
8161 		},
8162 	};
8163 
8164 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8165 	if (pathname == NULL) {
8166 		cgroup_event.path = path_enomem;
8167 	} else {
8168 		/* just to be sure to have enough space for alignment */
8169 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8170 		cgroup_event.path = pathname;
8171 	}
8172 
8173 	/*
8174 	 * Since our buffer works in 8 byte units we need to align our string
8175 	 * size to a multiple of 8. However, we must guarantee the tail end is
8176 	 * zero'd out to avoid leaking random bits to userspace.
8177 	 */
8178 	size = strlen(cgroup_event.path) + 1;
8179 	while (!IS_ALIGNED(size, sizeof(u64)))
8180 		cgroup_event.path[size++] = '\0';
8181 
8182 	cgroup_event.event_id.header.size += size;
8183 	cgroup_event.path_size = size;
8184 
8185 	perf_iterate_sb(perf_event_cgroup_output,
8186 			&cgroup_event,
8187 			NULL);
8188 
8189 	kfree(pathname);
8190 }
8191 
8192 #endif
8193 
8194 /*
8195  * mmap tracking
8196  */
8197 
8198 struct perf_mmap_event {
8199 	struct vm_area_struct	*vma;
8200 
8201 	const char		*file_name;
8202 	int			file_size;
8203 	int			maj, min;
8204 	u64			ino;
8205 	u64			ino_generation;
8206 	u32			prot, flags;
8207 	u8			build_id[BUILD_ID_SIZE_MAX];
8208 	u32			build_id_size;
8209 
8210 	struct {
8211 		struct perf_event_header	header;
8212 
8213 		u32				pid;
8214 		u32				tid;
8215 		u64				start;
8216 		u64				len;
8217 		u64				pgoff;
8218 	} event_id;
8219 };
8220 
8221 static int perf_event_mmap_match(struct perf_event *event,
8222 				 void *data)
8223 {
8224 	struct perf_mmap_event *mmap_event = data;
8225 	struct vm_area_struct *vma = mmap_event->vma;
8226 	int executable = vma->vm_flags & VM_EXEC;
8227 
8228 	return (!executable && event->attr.mmap_data) ||
8229 	       (executable && (event->attr.mmap || event->attr.mmap2));
8230 }
8231 
8232 static void perf_event_mmap_output(struct perf_event *event,
8233 				   void *data)
8234 {
8235 	struct perf_mmap_event *mmap_event = data;
8236 	struct perf_output_handle handle;
8237 	struct perf_sample_data sample;
8238 	int size = mmap_event->event_id.header.size;
8239 	u32 type = mmap_event->event_id.header.type;
8240 	bool use_build_id;
8241 	int ret;
8242 
8243 	if (!perf_event_mmap_match(event, data))
8244 		return;
8245 
8246 	if (event->attr.mmap2) {
8247 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8248 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8249 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8250 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8251 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8252 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8253 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8254 	}
8255 
8256 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8257 	ret = perf_output_begin(&handle, &sample, event,
8258 				mmap_event->event_id.header.size);
8259 	if (ret)
8260 		goto out;
8261 
8262 	mmap_event->event_id.pid = perf_event_pid(event, current);
8263 	mmap_event->event_id.tid = perf_event_tid(event, current);
8264 
8265 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8266 
8267 	if (event->attr.mmap2 && use_build_id)
8268 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8269 
8270 	perf_output_put(&handle, mmap_event->event_id);
8271 
8272 	if (event->attr.mmap2) {
8273 		if (use_build_id) {
8274 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8275 
8276 			__output_copy(&handle, size, 4);
8277 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8278 		} else {
8279 			perf_output_put(&handle, mmap_event->maj);
8280 			perf_output_put(&handle, mmap_event->min);
8281 			perf_output_put(&handle, mmap_event->ino);
8282 			perf_output_put(&handle, mmap_event->ino_generation);
8283 		}
8284 		perf_output_put(&handle, mmap_event->prot);
8285 		perf_output_put(&handle, mmap_event->flags);
8286 	}
8287 
8288 	__output_copy(&handle, mmap_event->file_name,
8289 				   mmap_event->file_size);
8290 
8291 	perf_event__output_id_sample(event, &handle, &sample);
8292 
8293 	perf_output_end(&handle);
8294 out:
8295 	mmap_event->event_id.header.size = size;
8296 	mmap_event->event_id.header.type = type;
8297 }
8298 
8299 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8300 {
8301 	struct vm_area_struct *vma = mmap_event->vma;
8302 	struct file *file = vma->vm_file;
8303 	int maj = 0, min = 0;
8304 	u64 ino = 0, gen = 0;
8305 	u32 prot = 0, flags = 0;
8306 	unsigned int size;
8307 	char tmp[16];
8308 	char *buf = NULL;
8309 	char *name;
8310 
8311 	if (vma->vm_flags & VM_READ)
8312 		prot |= PROT_READ;
8313 	if (vma->vm_flags & VM_WRITE)
8314 		prot |= PROT_WRITE;
8315 	if (vma->vm_flags & VM_EXEC)
8316 		prot |= PROT_EXEC;
8317 
8318 	if (vma->vm_flags & VM_MAYSHARE)
8319 		flags = MAP_SHARED;
8320 	else
8321 		flags = MAP_PRIVATE;
8322 
8323 	if (vma->vm_flags & VM_LOCKED)
8324 		flags |= MAP_LOCKED;
8325 	if (is_vm_hugetlb_page(vma))
8326 		flags |= MAP_HUGETLB;
8327 
8328 	if (file) {
8329 		struct inode *inode;
8330 		dev_t dev;
8331 
8332 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8333 		if (!buf) {
8334 			name = "//enomem";
8335 			goto cpy_name;
8336 		}
8337 		/*
8338 		 * d_path() works from the end of the rb backwards, so we
8339 		 * need to add enough zero bytes after the string to handle
8340 		 * the 64bit alignment we do later.
8341 		 */
8342 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8343 		if (IS_ERR(name)) {
8344 			name = "//toolong";
8345 			goto cpy_name;
8346 		}
8347 		inode = file_inode(vma->vm_file);
8348 		dev = inode->i_sb->s_dev;
8349 		ino = inode->i_ino;
8350 		gen = inode->i_generation;
8351 		maj = MAJOR(dev);
8352 		min = MINOR(dev);
8353 
8354 		goto got_name;
8355 	} else {
8356 		if (vma->vm_ops && vma->vm_ops->name) {
8357 			name = (char *) vma->vm_ops->name(vma);
8358 			if (name)
8359 				goto cpy_name;
8360 		}
8361 
8362 		name = (char *)arch_vma_name(vma);
8363 		if (name)
8364 			goto cpy_name;
8365 
8366 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8367 				vma->vm_end >= vma->vm_mm->brk) {
8368 			name = "[heap]";
8369 			goto cpy_name;
8370 		}
8371 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8372 				vma->vm_end >= vma->vm_mm->start_stack) {
8373 			name = "[stack]";
8374 			goto cpy_name;
8375 		}
8376 
8377 		name = "//anon";
8378 		goto cpy_name;
8379 	}
8380 
8381 cpy_name:
8382 	strlcpy(tmp, name, sizeof(tmp));
8383 	name = tmp;
8384 got_name:
8385 	/*
8386 	 * Since our buffer works in 8 byte units we need to align our string
8387 	 * size to a multiple of 8. However, we must guarantee the tail end is
8388 	 * zero'd out to avoid leaking random bits to userspace.
8389 	 */
8390 	size = strlen(name)+1;
8391 	while (!IS_ALIGNED(size, sizeof(u64)))
8392 		name[size++] = '\0';
8393 
8394 	mmap_event->file_name = name;
8395 	mmap_event->file_size = size;
8396 	mmap_event->maj = maj;
8397 	mmap_event->min = min;
8398 	mmap_event->ino = ino;
8399 	mmap_event->ino_generation = gen;
8400 	mmap_event->prot = prot;
8401 	mmap_event->flags = flags;
8402 
8403 	if (!(vma->vm_flags & VM_EXEC))
8404 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8405 
8406 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8407 
8408 	if (atomic_read(&nr_build_id_events))
8409 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8410 
8411 	perf_iterate_sb(perf_event_mmap_output,
8412 		       mmap_event,
8413 		       NULL);
8414 
8415 	kfree(buf);
8416 }
8417 
8418 /*
8419  * Check whether inode and address range match filter criteria.
8420  */
8421 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8422 				     struct file *file, unsigned long offset,
8423 				     unsigned long size)
8424 {
8425 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8426 	if (!filter->path.dentry)
8427 		return false;
8428 
8429 	if (d_inode(filter->path.dentry) != file_inode(file))
8430 		return false;
8431 
8432 	if (filter->offset > offset + size)
8433 		return false;
8434 
8435 	if (filter->offset + filter->size < offset)
8436 		return false;
8437 
8438 	return true;
8439 }
8440 
8441 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8442 					struct vm_area_struct *vma,
8443 					struct perf_addr_filter_range *fr)
8444 {
8445 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8446 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8447 	struct file *file = vma->vm_file;
8448 
8449 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8450 		return false;
8451 
8452 	if (filter->offset < off) {
8453 		fr->start = vma->vm_start;
8454 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8455 	} else {
8456 		fr->start = vma->vm_start + filter->offset - off;
8457 		fr->size = min(vma->vm_end - fr->start, filter->size);
8458 	}
8459 
8460 	return true;
8461 }
8462 
8463 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8464 {
8465 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8466 	struct vm_area_struct *vma = data;
8467 	struct perf_addr_filter *filter;
8468 	unsigned int restart = 0, count = 0;
8469 	unsigned long flags;
8470 
8471 	if (!has_addr_filter(event))
8472 		return;
8473 
8474 	if (!vma->vm_file)
8475 		return;
8476 
8477 	raw_spin_lock_irqsave(&ifh->lock, flags);
8478 	list_for_each_entry(filter, &ifh->list, entry) {
8479 		if (perf_addr_filter_vma_adjust(filter, vma,
8480 						&event->addr_filter_ranges[count]))
8481 			restart++;
8482 
8483 		count++;
8484 	}
8485 
8486 	if (restart)
8487 		event->addr_filters_gen++;
8488 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8489 
8490 	if (restart)
8491 		perf_event_stop(event, 1);
8492 }
8493 
8494 /*
8495  * Adjust all task's events' filters to the new vma
8496  */
8497 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8498 {
8499 	struct perf_event_context *ctx;
8500 	int ctxn;
8501 
8502 	/*
8503 	 * Data tracing isn't supported yet and as such there is no need
8504 	 * to keep track of anything that isn't related to executable code:
8505 	 */
8506 	if (!(vma->vm_flags & VM_EXEC))
8507 		return;
8508 
8509 	rcu_read_lock();
8510 	for_each_task_context_nr(ctxn) {
8511 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8512 		if (!ctx)
8513 			continue;
8514 
8515 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8516 	}
8517 	rcu_read_unlock();
8518 }
8519 
8520 void perf_event_mmap(struct vm_area_struct *vma)
8521 {
8522 	struct perf_mmap_event mmap_event;
8523 
8524 	if (!atomic_read(&nr_mmap_events))
8525 		return;
8526 
8527 	mmap_event = (struct perf_mmap_event){
8528 		.vma	= vma,
8529 		/* .file_name */
8530 		/* .file_size */
8531 		.event_id  = {
8532 			.header = {
8533 				.type = PERF_RECORD_MMAP,
8534 				.misc = PERF_RECORD_MISC_USER,
8535 				/* .size */
8536 			},
8537 			/* .pid */
8538 			/* .tid */
8539 			.start  = vma->vm_start,
8540 			.len    = vma->vm_end - vma->vm_start,
8541 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8542 		},
8543 		/* .maj (attr_mmap2 only) */
8544 		/* .min (attr_mmap2 only) */
8545 		/* .ino (attr_mmap2 only) */
8546 		/* .ino_generation (attr_mmap2 only) */
8547 		/* .prot (attr_mmap2 only) */
8548 		/* .flags (attr_mmap2 only) */
8549 	};
8550 
8551 	perf_addr_filters_adjust(vma);
8552 	perf_event_mmap_event(&mmap_event);
8553 }
8554 
8555 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8556 			  unsigned long size, u64 flags)
8557 {
8558 	struct perf_output_handle handle;
8559 	struct perf_sample_data sample;
8560 	struct perf_aux_event {
8561 		struct perf_event_header	header;
8562 		u64				offset;
8563 		u64				size;
8564 		u64				flags;
8565 	} rec = {
8566 		.header = {
8567 			.type = PERF_RECORD_AUX,
8568 			.misc = 0,
8569 			.size = sizeof(rec),
8570 		},
8571 		.offset		= head,
8572 		.size		= size,
8573 		.flags		= flags,
8574 	};
8575 	int ret;
8576 
8577 	perf_event_header__init_id(&rec.header, &sample, event);
8578 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8579 
8580 	if (ret)
8581 		return;
8582 
8583 	perf_output_put(&handle, rec);
8584 	perf_event__output_id_sample(event, &handle, &sample);
8585 
8586 	perf_output_end(&handle);
8587 }
8588 
8589 /*
8590  * Lost/dropped samples logging
8591  */
8592 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8593 {
8594 	struct perf_output_handle handle;
8595 	struct perf_sample_data sample;
8596 	int ret;
8597 
8598 	struct {
8599 		struct perf_event_header	header;
8600 		u64				lost;
8601 	} lost_samples_event = {
8602 		.header = {
8603 			.type = PERF_RECORD_LOST_SAMPLES,
8604 			.misc = 0,
8605 			.size = sizeof(lost_samples_event),
8606 		},
8607 		.lost		= lost,
8608 	};
8609 
8610 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8611 
8612 	ret = perf_output_begin(&handle, &sample, event,
8613 				lost_samples_event.header.size);
8614 	if (ret)
8615 		return;
8616 
8617 	perf_output_put(&handle, lost_samples_event);
8618 	perf_event__output_id_sample(event, &handle, &sample);
8619 	perf_output_end(&handle);
8620 }
8621 
8622 /*
8623  * context_switch tracking
8624  */
8625 
8626 struct perf_switch_event {
8627 	struct task_struct	*task;
8628 	struct task_struct	*next_prev;
8629 
8630 	struct {
8631 		struct perf_event_header	header;
8632 		u32				next_prev_pid;
8633 		u32				next_prev_tid;
8634 	} event_id;
8635 };
8636 
8637 static int perf_event_switch_match(struct perf_event *event)
8638 {
8639 	return event->attr.context_switch;
8640 }
8641 
8642 static void perf_event_switch_output(struct perf_event *event, void *data)
8643 {
8644 	struct perf_switch_event *se = data;
8645 	struct perf_output_handle handle;
8646 	struct perf_sample_data sample;
8647 	int ret;
8648 
8649 	if (!perf_event_switch_match(event))
8650 		return;
8651 
8652 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8653 	if (event->ctx->task) {
8654 		se->event_id.header.type = PERF_RECORD_SWITCH;
8655 		se->event_id.header.size = sizeof(se->event_id.header);
8656 	} else {
8657 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8658 		se->event_id.header.size = sizeof(se->event_id);
8659 		se->event_id.next_prev_pid =
8660 					perf_event_pid(event, se->next_prev);
8661 		se->event_id.next_prev_tid =
8662 					perf_event_tid(event, se->next_prev);
8663 	}
8664 
8665 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8666 
8667 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8668 	if (ret)
8669 		return;
8670 
8671 	if (event->ctx->task)
8672 		perf_output_put(&handle, se->event_id.header);
8673 	else
8674 		perf_output_put(&handle, se->event_id);
8675 
8676 	perf_event__output_id_sample(event, &handle, &sample);
8677 
8678 	perf_output_end(&handle);
8679 }
8680 
8681 static void perf_event_switch(struct task_struct *task,
8682 			      struct task_struct *next_prev, bool sched_in)
8683 {
8684 	struct perf_switch_event switch_event;
8685 
8686 	/* N.B. caller checks nr_switch_events != 0 */
8687 
8688 	switch_event = (struct perf_switch_event){
8689 		.task		= task,
8690 		.next_prev	= next_prev,
8691 		.event_id	= {
8692 			.header = {
8693 				/* .type */
8694 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8695 				/* .size */
8696 			},
8697 			/* .next_prev_pid */
8698 			/* .next_prev_tid */
8699 		},
8700 	};
8701 
8702 	if (!sched_in && task->on_rq) {
8703 		switch_event.event_id.header.misc |=
8704 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8705 	}
8706 
8707 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8708 }
8709 
8710 /*
8711  * IRQ throttle logging
8712  */
8713 
8714 static void perf_log_throttle(struct perf_event *event, int enable)
8715 {
8716 	struct perf_output_handle handle;
8717 	struct perf_sample_data sample;
8718 	int ret;
8719 
8720 	struct {
8721 		struct perf_event_header	header;
8722 		u64				time;
8723 		u64				id;
8724 		u64				stream_id;
8725 	} throttle_event = {
8726 		.header = {
8727 			.type = PERF_RECORD_THROTTLE,
8728 			.misc = 0,
8729 			.size = sizeof(throttle_event),
8730 		},
8731 		.time		= perf_event_clock(event),
8732 		.id		= primary_event_id(event),
8733 		.stream_id	= event->id,
8734 	};
8735 
8736 	if (enable)
8737 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8738 
8739 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8740 
8741 	ret = perf_output_begin(&handle, &sample, event,
8742 				throttle_event.header.size);
8743 	if (ret)
8744 		return;
8745 
8746 	perf_output_put(&handle, throttle_event);
8747 	perf_event__output_id_sample(event, &handle, &sample);
8748 	perf_output_end(&handle);
8749 }
8750 
8751 /*
8752  * ksymbol register/unregister tracking
8753  */
8754 
8755 struct perf_ksymbol_event {
8756 	const char	*name;
8757 	int		name_len;
8758 	struct {
8759 		struct perf_event_header        header;
8760 		u64				addr;
8761 		u32				len;
8762 		u16				ksym_type;
8763 		u16				flags;
8764 	} event_id;
8765 };
8766 
8767 static int perf_event_ksymbol_match(struct perf_event *event)
8768 {
8769 	return event->attr.ksymbol;
8770 }
8771 
8772 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8773 {
8774 	struct perf_ksymbol_event *ksymbol_event = data;
8775 	struct perf_output_handle handle;
8776 	struct perf_sample_data sample;
8777 	int ret;
8778 
8779 	if (!perf_event_ksymbol_match(event))
8780 		return;
8781 
8782 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8783 				   &sample, event);
8784 	ret = perf_output_begin(&handle, &sample, event,
8785 				ksymbol_event->event_id.header.size);
8786 	if (ret)
8787 		return;
8788 
8789 	perf_output_put(&handle, ksymbol_event->event_id);
8790 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8791 	perf_event__output_id_sample(event, &handle, &sample);
8792 
8793 	perf_output_end(&handle);
8794 }
8795 
8796 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8797 			const char *sym)
8798 {
8799 	struct perf_ksymbol_event ksymbol_event;
8800 	char name[KSYM_NAME_LEN];
8801 	u16 flags = 0;
8802 	int name_len;
8803 
8804 	if (!atomic_read(&nr_ksymbol_events))
8805 		return;
8806 
8807 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8808 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8809 		goto err;
8810 
8811 	strlcpy(name, sym, KSYM_NAME_LEN);
8812 	name_len = strlen(name) + 1;
8813 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8814 		name[name_len++] = '\0';
8815 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8816 
8817 	if (unregister)
8818 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8819 
8820 	ksymbol_event = (struct perf_ksymbol_event){
8821 		.name = name,
8822 		.name_len = name_len,
8823 		.event_id = {
8824 			.header = {
8825 				.type = PERF_RECORD_KSYMBOL,
8826 				.size = sizeof(ksymbol_event.event_id) +
8827 					name_len,
8828 			},
8829 			.addr = addr,
8830 			.len = len,
8831 			.ksym_type = ksym_type,
8832 			.flags = flags,
8833 		},
8834 	};
8835 
8836 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8837 	return;
8838 err:
8839 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8840 }
8841 
8842 /*
8843  * bpf program load/unload tracking
8844  */
8845 
8846 struct perf_bpf_event {
8847 	struct bpf_prog	*prog;
8848 	struct {
8849 		struct perf_event_header        header;
8850 		u16				type;
8851 		u16				flags;
8852 		u32				id;
8853 		u8				tag[BPF_TAG_SIZE];
8854 	} event_id;
8855 };
8856 
8857 static int perf_event_bpf_match(struct perf_event *event)
8858 {
8859 	return event->attr.bpf_event;
8860 }
8861 
8862 static void perf_event_bpf_output(struct perf_event *event, void *data)
8863 {
8864 	struct perf_bpf_event *bpf_event = data;
8865 	struct perf_output_handle handle;
8866 	struct perf_sample_data sample;
8867 	int ret;
8868 
8869 	if (!perf_event_bpf_match(event))
8870 		return;
8871 
8872 	perf_event_header__init_id(&bpf_event->event_id.header,
8873 				   &sample, event);
8874 	ret = perf_output_begin(&handle, data, event,
8875 				bpf_event->event_id.header.size);
8876 	if (ret)
8877 		return;
8878 
8879 	perf_output_put(&handle, bpf_event->event_id);
8880 	perf_event__output_id_sample(event, &handle, &sample);
8881 
8882 	perf_output_end(&handle);
8883 }
8884 
8885 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8886 					 enum perf_bpf_event_type type)
8887 {
8888 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8889 	int i;
8890 
8891 	if (prog->aux->func_cnt == 0) {
8892 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8893 				   (u64)(unsigned long)prog->bpf_func,
8894 				   prog->jited_len, unregister,
8895 				   prog->aux->ksym.name);
8896 	} else {
8897 		for (i = 0; i < prog->aux->func_cnt; i++) {
8898 			struct bpf_prog *subprog = prog->aux->func[i];
8899 
8900 			perf_event_ksymbol(
8901 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8902 				(u64)(unsigned long)subprog->bpf_func,
8903 				subprog->jited_len, unregister,
8904 				prog->aux->ksym.name);
8905 		}
8906 	}
8907 }
8908 
8909 void perf_event_bpf_event(struct bpf_prog *prog,
8910 			  enum perf_bpf_event_type type,
8911 			  u16 flags)
8912 {
8913 	struct perf_bpf_event bpf_event;
8914 
8915 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8916 	    type >= PERF_BPF_EVENT_MAX)
8917 		return;
8918 
8919 	switch (type) {
8920 	case PERF_BPF_EVENT_PROG_LOAD:
8921 	case PERF_BPF_EVENT_PROG_UNLOAD:
8922 		if (atomic_read(&nr_ksymbol_events))
8923 			perf_event_bpf_emit_ksymbols(prog, type);
8924 		break;
8925 	default:
8926 		break;
8927 	}
8928 
8929 	if (!atomic_read(&nr_bpf_events))
8930 		return;
8931 
8932 	bpf_event = (struct perf_bpf_event){
8933 		.prog = prog,
8934 		.event_id = {
8935 			.header = {
8936 				.type = PERF_RECORD_BPF_EVENT,
8937 				.size = sizeof(bpf_event.event_id),
8938 			},
8939 			.type = type,
8940 			.flags = flags,
8941 			.id = prog->aux->id,
8942 		},
8943 	};
8944 
8945 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8946 
8947 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8948 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8949 }
8950 
8951 struct perf_text_poke_event {
8952 	const void		*old_bytes;
8953 	const void		*new_bytes;
8954 	size_t			pad;
8955 	u16			old_len;
8956 	u16			new_len;
8957 
8958 	struct {
8959 		struct perf_event_header	header;
8960 
8961 		u64				addr;
8962 	} event_id;
8963 };
8964 
8965 static int perf_event_text_poke_match(struct perf_event *event)
8966 {
8967 	return event->attr.text_poke;
8968 }
8969 
8970 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8971 {
8972 	struct perf_text_poke_event *text_poke_event = data;
8973 	struct perf_output_handle handle;
8974 	struct perf_sample_data sample;
8975 	u64 padding = 0;
8976 	int ret;
8977 
8978 	if (!perf_event_text_poke_match(event))
8979 		return;
8980 
8981 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8982 
8983 	ret = perf_output_begin(&handle, &sample, event,
8984 				text_poke_event->event_id.header.size);
8985 	if (ret)
8986 		return;
8987 
8988 	perf_output_put(&handle, text_poke_event->event_id);
8989 	perf_output_put(&handle, text_poke_event->old_len);
8990 	perf_output_put(&handle, text_poke_event->new_len);
8991 
8992 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8993 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8994 
8995 	if (text_poke_event->pad)
8996 		__output_copy(&handle, &padding, text_poke_event->pad);
8997 
8998 	perf_event__output_id_sample(event, &handle, &sample);
8999 
9000 	perf_output_end(&handle);
9001 }
9002 
9003 void perf_event_text_poke(const void *addr, const void *old_bytes,
9004 			  size_t old_len, const void *new_bytes, size_t new_len)
9005 {
9006 	struct perf_text_poke_event text_poke_event;
9007 	size_t tot, pad;
9008 
9009 	if (!atomic_read(&nr_text_poke_events))
9010 		return;
9011 
9012 	tot  = sizeof(text_poke_event.old_len) + old_len;
9013 	tot += sizeof(text_poke_event.new_len) + new_len;
9014 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9015 
9016 	text_poke_event = (struct perf_text_poke_event){
9017 		.old_bytes    = old_bytes,
9018 		.new_bytes    = new_bytes,
9019 		.pad          = pad,
9020 		.old_len      = old_len,
9021 		.new_len      = new_len,
9022 		.event_id  = {
9023 			.header = {
9024 				.type = PERF_RECORD_TEXT_POKE,
9025 				.misc = PERF_RECORD_MISC_KERNEL,
9026 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9027 			},
9028 			.addr = (unsigned long)addr,
9029 		},
9030 	};
9031 
9032 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9033 }
9034 
9035 void perf_event_itrace_started(struct perf_event *event)
9036 {
9037 	event->attach_state |= PERF_ATTACH_ITRACE;
9038 }
9039 
9040 static void perf_log_itrace_start(struct perf_event *event)
9041 {
9042 	struct perf_output_handle handle;
9043 	struct perf_sample_data sample;
9044 	struct perf_aux_event {
9045 		struct perf_event_header        header;
9046 		u32				pid;
9047 		u32				tid;
9048 	} rec;
9049 	int ret;
9050 
9051 	if (event->parent)
9052 		event = event->parent;
9053 
9054 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9055 	    event->attach_state & PERF_ATTACH_ITRACE)
9056 		return;
9057 
9058 	rec.header.type	= PERF_RECORD_ITRACE_START;
9059 	rec.header.misc	= 0;
9060 	rec.header.size	= sizeof(rec);
9061 	rec.pid	= perf_event_pid(event, current);
9062 	rec.tid	= perf_event_tid(event, current);
9063 
9064 	perf_event_header__init_id(&rec.header, &sample, event);
9065 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9066 
9067 	if (ret)
9068 		return;
9069 
9070 	perf_output_put(&handle, rec);
9071 	perf_event__output_id_sample(event, &handle, &sample);
9072 
9073 	perf_output_end(&handle);
9074 }
9075 
9076 static int
9077 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9078 {
9079 	struct hw_perf_event *hwc = &event->hw;
9080 	int ret = 0;
9081 	u64 seq;
9082 
9083 	seq = __this_cpu_read(perf_throttled_seq);
9084 	if (seq != hwc->interrupts_seq) {
9085 		hwc->interrupts_seq = seq;
9086 		hwc->interrupts = 1;
9087 	} else {
9088 		hwc->interrupts++;
9089 		if (unlikely(throttle
9090 			     && hwc->interrupts >= max_samples_per_tick)) {
9091 			__this_cpu_inc(perf_throttled_count);
9092 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9093 			hwc->interrupts = MAX_INTERRUPTS;
9094 			perf_log_throttle(event, 0);
9095 			ret = 1;
9096 		}
9097 	}
9098 
9099 	if (event->attr.freq) {
9100 		u64 now = perf_clock();
9101 		s64 delta = now - hwc->freq_time_stamp;
9102 
9103 		hwc->freq_time_stamp = now;
9104 
9105 		if (delta > 0 && delta < 2*TICK_NSEC)
9106 			perf_adjust_period(event, delta, hwc->last_period, true);
9107 	}
9108 
9109 	return ret;
9110 }
9111 
9112 int perf_event_account_interrupt(struct perf_event *event)
9113 {
9114 	return __perf_event_account_interrupt(event, 1);
9115 }
9116 
9117 /*
9118  * Generic event overflow handling, sampling.
9119  */
9120 
9121 static int __perf_event_overflow(struct perf_event *event,
9122 				   int throttle, struct perf_sample_data *data,
9123 				   struct pt_regs *regs)
9124 {
9125 	int events = atomic_read(&event->event_limit);
9126 	int ret = 0;
9127 
9128 	/*
9129 	 * Non-sampling counters might still use the PMI to fold short
9130 	 * hardware counters, ignore those.
9131 	 */
9132 	if (unlikely(!is_sampling_event(event)))
9133 		return 0;
9134 
9135 	ret = __perf_event_account_interrupt(event, throttle);
9136 
9137 	/*
9138 	 * XXX event_limit might not quite work as expected on inherited
9139 	 * events
9140 	 */
9141 
9142 	event->pending_kill = POLL_IN;
9143 	if (events && atomic_dec_and_test(&event->event_limit)) {
9144 		ret = 1;
9145 		event->pending_kill = POLL_HUP;
9146 		event->pending_addr = data->addr;
9147 
9148 		perf_event_disable_inatomic(event);
9149 	}
9150 
9151 	READ_ONCE(event->overflow_handler)(event, data, regs);
9152 
9153 	if (*perf_event_fasync(event) && event->pending_kill) {
9154 		event->pending_wakeup = 1;
9155 		irq_work_queue(&event->pending);
9156 	}
9157 
9158 	return ret;
9159 }
9160 
9161 int perf_event_overflow(struct perf_event *event,
9162 			  struct perf_sample_data *data,
9163 			  struct pt_regs *regs)
9164 {
9165 	return __perf_event_overflow(event, 1, data, regs);
9166 }
9167 
9168 /*
9169  * Generic software event infrastructure
9170  */
9171 
9172 struct swevent_htable {
9173 	struct swevent_hlist		*swevent_hlist;
9174 	struct mutex			hlist_mutex;
9175 	int				hlist_refcount;
9176 
9177 	/* Recursion avoidance in each contexts */
9178 	int				recursion[PERF_NR_CONTEXTS];
9179 };
9180 
9181 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9182 
9183 /*
9184  * We directly increment event->count and keep a second value in
9185  * event->hw.period_left to count intervals. This period event
9186  * is kept in the range [-sample_period, 0] so that we can use the
9187  * sign as trigger.
9188  */
9189 
9190 u64 perf_swevent_set_period(struct perf_event *event)
9191 {
9192 	struct hw_perf_event *hwc = &event->hw;
9193 	u64 period = hwc->last_period;
9194 	u64 nr, offset;
9195 	s64 old, val;
9196 
9197 	hwc->last_period = hwc->sample_period;
9198 
9199 again:
9200 	old = val = local64_read(&hwc->period_left);
9201 	if (val < 0)
9202 		return 0;
9203 
9204 	nr = div64_u64(period + val, period);
9205 	offset = nr * period;
9206 	val -= offset;
9207 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9208 		goto again;
9209 
9210 	return nr;
9211 }
9212 
9213 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9214 				    struct perf_sample_data *data,
9215 				    struct pt_regs *regs)
9216 {
9217 	struct hw_perf_event *hwc = &event->hw;
9218 	int throttle = 0;
9219 
9220 	if (!overflow)
9221 		overflow = perf_swevent_set_period(event);
9222 
9223 	if (hwc->interrupts == MAX_INTERRUPTS)
9224 		return;
9225 
9226 	for (; overflow; overflow--) {
9227 		if (__perf_event_overflow(event, throttle,
9228 					    data, regs)) {
9229 			/*
9230 			 * We inhibit the overflow from happening when
9231 			 * hwc->interrupts == MAX_INTERRUPTS.
9232 			 */
9233 			break;
9234 		}
9235 		throttle = 1;
9236 	}
9237 }
9238 
9239 static void perf_swevent_event(struct perf_event *event, u64 nr,
9240 			       struct perf_sample_data *data,
9241 			       struct pt_regs *regs)
9242 {
9243 	struct hw_perf_event *hwc = &event->hw;
9244 
9245 	local64_add(nr, &event->count);
9246 
9247 	if (!regs)
9248 		return;
9249 
9250 	if (!is_sampling_event(event))
9251 		return;
9252 
9253 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9254 		data->period = nr;
9255 		return perf_swevent_overflow(event, 1, data, regs);
9256 	} else
9257 		data->period = event->hw.last_period;
9258 
9259 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9260 		return perf_swevent_overflow(event, 1, data, regs);
9261 
9262 	if (local64_add_negative(nr, &hwc->period_left))
9263 		return;
9264 
9265 	perf_swevent_overflow(event, 0, data, regs);
9266 }
9267 
9268 static int perf_exclude_event(struct perf_event *event,
9269 			      struct pt_regs *regs)
9270 {
9271 	if (event->hw.state & PERF_HES_STOPPED)
9272 		return 1;
9273 
9274 	if (regs) {
9275 		if (event->attr.exclude_user && user_mode(regs))
9276 			return 1;
9277 
9278 		if (event->attr.exclude_kernel && !user_mode(regs))
9279 			return 1;
9280 	}
9281 
9282 	return 0;
9283 }
9284 
9285 static int perf_swevent_match(struct perf_event *event,
9286 				enum perf_type_id type,
9287 				u32 event_id,
9288 				struct perf_sample_data *data,
9289 				struct pt_regs *regs)
9290 {
9291 	if (event->attr.type != type)
9292 		return 0;
9293 
9294 	if (event->attr.config != event_id)
9295 		return 0;
9296 
9297 	if (perf_exclude_event(event, regs))
9298 		return 0;
9299 
9300 	return 1;
9301 }
9302 
9303 static inline u64 swevent_hash(u64 type, u32 event_id)
9304 {
9305 	u64 val = event_id | (type << 32);
9306 
9307 	return hash_64(val, SWEVENT_HLIST_BITS);
9308 }
9309 
9310 static inline struct hlist_head *
9311 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9312 {
9313 	u64 hash = swevent_hash(type, event_id);
9314 
9315 	return &hlist->heads[hash];
9316 }
9317 
9318 /* For the read side: events when they trigger */
9319 static inline struct hlist_head *
9320 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9321 {
9322 	struct swevent_hlist *hlist;
9323 
9324 	hlist = rcu_dereference(swhash->swevent_hlist);
9325 	if (!hlist)
9326 		return NULL;
9327 
9328 	return __find_swevent_head(hlist, type, event_id);
9329 }
9330 
9331 /* For the event head insertion and removal in the hlist */
9332 static inline struct hlist_head *
9333 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9334 {
9335 	struct swevent_hlist *hlist;
9336 	u32 event_id = event->attr.config;
9337 	u64 type = event->attr.type;
9338 
9339 	/*
9340 	 * Event scheduling is always serialized against hlist allocation
9341 	 * and release. Which makes the protected version suitable here.
9342 	 * The context lock guarantees that.
9343 	 */
9344 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9345 					  lockdep_is_held(&event->ctx->lock));
9346 	if (!hlist)
9347 		return NULL;
9348 
9349 	return __find_swevent_head(hlist, type, event_id);
9350 }
9351 
9352 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9353 				    u64 nr,
9354 				    struct perf_sample_data *data,
9355 				    struct pt_regs *regs)
9356 {
9357 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9358 	struct perf_event *event;
9359 	struct hlist_head *head;
9360 
9361 	rcu_read_lock();
9362 	head = find_swevent_head_rcu(swhash, type, event_id);
9363 	if (!head)
9364 		goto end;
9365 
9366 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9367 		if (perf_swevent_match(event, type, event_id, data, regs))
9368 			perf_swevent_event(event, nr, data, regs);
9369 	}
9370 end:
9371 	rcu_read_unlock();
9372 }
9373 
9374 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9375 
9376 int perf_swevent_get_recursion_context(void)
9377 {
9378 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9379 
9380 	return get_recursion_context(swhash->recursion);
9381 }
9382 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9383 
9384 void perf_swevent_put_recursion_context(int rctx)
9385 {
9386 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9387 
9388 	put_recursion_context(swhash->recursion, rctx);
9389 }
9390 
9391 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9392 {
9393 	struct perf_sample_data data;
9394 
9395 	if (WARN_ON_ONCE(!regs))
9396 		return;
9397 
9398 	perf_sample_data_init(&data, addr, 0);
9399 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9400 }
9401 
9402 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9403 {
9404 	int rctx;
9405 
9406 	preempt_disable_notrace();
9407 	rctx = perf_swevent_get_recursion_context();
9408 	if (unlikely(rctx < 0))
9409 		goto fail;
9410 
9411 	___perf_sw_event(event_id, nr, regs, addr);
9412 
9413 	perf_swevent_put_recursion_context(rctx);
9414 fail:
9415 	preempt_enable_notrace();
9416 }
9417 
9418 static void perf_swevent_read(struct perf_event *event)
9419 {
9420 }
9421 
9422 static int perf_swevent_add(struct perf_event *event, int flags)
9423 {
9424 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9425 	struct hw_perf_event *hwc = &event->hw;
9426 	struct hlist_head *head;
9427 
9428 	if (is_sampling_event(event)) {
9429 		hwc->last_period = hwc->sample_period;
9430 		perf_swevent_set_period(event);
9431 	}
9432 
9433 	hwc->state = !(flags & PERF_EF_START);
9434 
9435 	head = find_swevent_head(swhash, event);
9436 	if (WARN_ON_ONCE(!head))
9437 		return -EINVAL;
9438 
9439 	hlist_add_head_rcu(&event->hlist_entry, head);
9440 	perf_event_update_userpage(event);
9441 
9442 	return 0;
9443 }
9444 
9445 static void perf_swevent_del(struct perf_event *event, int flags)
9446 {
9447 	hlist_del_rcu(&event->hlist_entry);
9448 }
9449 
9450 static void perf_swevent_start(struct perf_event *event, int flags)
9451 {
9452 	event->hw.state = 0;
9453 }
9454 
9455 static void perf_swevent_stop(struct perf_event *event, int flags)
9456 {
9457 	event->hw.state = PERF_HES_STOPPED;
9458 }
9459 
9460 /* Deref the hlist from the update side */
9461 static inline struct swevent_hlist *
9462 swevent_hlist_deref(struct swevent_htable *swhash)
9463 {
9464 	return rcu_dereference_protected(swhash->swevent_hlist,
9465 					 lockdep_is_held(&swhash->hlist_mutex));
9466 }
9467 
9468 static void swevent_hlist_release(struct swevent_htable *swhash)
9469 {
9470 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9471 
9472 	if (!hlist)
9473 		return;
9474 
9475 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9476 	kfree_rcu(hlist, rcu_head);
9477 }
9478 
9479 static void swevent_hlist_put_cpu(int cpu)
9480 {
9481 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9482 
9483 	mutex_lock(&swhash->hlist_mutex);
9484 
9485 	if (!--swhash->hlist_refcount)
9486 		swevent_hlist_release(swhash);
9487 
9488 	mutex_unlock(&swhash->hlist_mutex);
9489 }
9490 
9491 static void swevent_hlist_put(void)
9492 {
9493 	int cpu;
9494 
9495 	for_each_possible_cpu(cpu)
9496 		swevent_hlist_put_cpu(cpu);
9497 }
9498 
9499 static int swevent_hlist_get_cpu(int cpu)
9500 {
9501 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9502 	int err = 0;
9503 
9504 	mutex_lock(&swhash->hlist_mutex);
9505 	if (!swevent_hlist_deref(swhash) &&
9506 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9507 		struct swevent_hlist *hlist;
9508 
9509 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9510 		if (!hlist) {
9511 			err = -ENOMEM;
9512 			goto exit;
9513 		}
9514 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9515 	}
9516 	swhash->hlist_refcount++;
9517 exit:
9518 	mutex_unlock(&swhash->hlist_mutex);
9519 
9520 	return err;
9521 }
9522 
9523 static int swevent_hlist_get(void)
9524 {
9525 	int err, cpu, failed_cpu;
9526 
9527 	mutex_lock(&pmus_lock);
9528 	for_each_possible_cpu(cpu) {
9529 		err = swevent_hlist_get_cpu(cpu);
9530 		if (err) {
9531 			failed_cpu = cpu;
9532 			goto fail;
9533 		}
9534 	}
9535 	mutex_unlock(&pmus_lock);
9536 	return 0;
9537 fail:
9538 	for_each_possible_cpu(cpu) {
9539 		if (cpu == failed_cpu)
9540 			break;
9541 		swevent_hlist_put_cpu(cpu);
9542 	}
9543 	mutex_unlock(&pmus_lock);
9544 	return err;
9545 }
9546 
9547 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9548 
9549 static void sw_perf_event_destroy(struct perf_event *event)
9550 {
9551 	u64 event_id = event->attr.config;
9552 
9553 	WARN_ON(event->parent);
9554 
9555 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9556 	swevent_hlist_put();
9557 }
9558 
9559 static int perf_swevent_init(struct perf_event *event)
9560 {
9561 	u64 event_id = event->attr.config;
9562 
9563 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9564 		return -ENOENT;
9565 
9566 	/*
9567 	 * no branch sampling for software events
9568 	 */
9569 	if (has_branch_stack(event))
9570 		return -EOPNOTSUPP;
9571 
9572 	switch (event_id) {
9573 	case PERF_COUNT_SW_CPU_CLOCK:
9574 	case PERF_COUNT_SW_TASK_CLOCK:
9575 		return -ENOENT;
9576 
9577 	default:
9578 		break;
9579 	}
9580 
9581 	if (event_id >= PERF_COUNT_SW_MAX)
9582 		return -ENOENT;
9583 
9584 	if (!event->parent) {
9585 		int err;
9586 
9587 		err = swevent_hlist_get();
9588 		if (err)
9589 			return err;
9590 
9591 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9592 		event->destroy = sw_perf_event_destroy;
9593 	}
9594 
9595 	return 0;
9596 }
9597 
9598 static struct pmu perf_swevent = {
9599 	.task_ctx_nr	= perf_sw_context,
9600 
9601 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9602 
9603 	.event_init	= perf_swevent_init,
9604 	.add		= perf_swevent_add,
9605 	.del		= perf_swevent_del,
9606 	.start		= perf_swevent_start,
9607 	.stop		= perf_swevent_stop,
9608 	.read		= perf_swevent_read,
9609 };
9610 
9611 #ifdef CONFIG_EVENT_TRACING
9612 
9613 static int perf_tp_filter_match(struct perf_event *event,
9614 				struct perf_sample_data *data)
9615 {
9616 	void *record = data->raw->frag.data;
9617 
9618 	/* only top level events have filters set */
9619 	if (event->parent)
9620 		event = event->parent;
9621 
9622 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9623 		return 1;
9624 	return 0;
9625 }
9626 
9627 static int perf_tp_event_match(struct perf_event *event,
9628 				struct perf_sample_data *data,
9629 				struct pt_regs *regs)
9630 {
9631 	if (event->hw.state & PERF_HES_STOPPED)
9632 		return 0;
9633 	/*
9634 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9635 	 */
9636 	if (event->attr.exclude_kernel && !user_mode(regs))
9637 		return 0;
9638 
9639 	if (!perf_tp_filter_match(event, data))
9640 		return 0;
9641 
9642 	return 1;
9643 }
9644 
9645 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9646 			       struct trace_event_call *call, u64 count,
9647 			       struct pt_regs *regs, struct hlist_head *head,
9648 			       struct task_struct *task)
9649 {
9650 	if (bpf_prog_array_valid(call)) {
9651 		*(struct pt_regs **)raw_data = regs;
9652 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9653 			perf_swevent_put_recursion_context(rctx);
9654 			return;
9655 		}
9656 	}
9657 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9658 		      rctx, task);
9659 }
9660 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9661 
9662 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9663 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9664 		   struct task_struct *task)
9665 {
9666 	struct perf_sample_data data;
9667 	struct perf_event *event;
9668 
9669 	struct perf_raw_record raw = {
9670 		.frag = {
9671 			.size = entry_size,
9672 			.data = record,
9673 		},
9674 	};
9675 
9676 	perf_sample_data_init(&data, 0, 0);
9677 	data.raw = &raw;
9678 
9679 	perf_trace_buf_update(record, event_type);
9680 
9681 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9682 		if (perf_tp_event_match(event, &data, regs))
9683 			perf_swevent_event(event, count, &data, regs);
9684 	}
9685 
9686 	/*
9687 	 * If we got specified a target task, also iterate its context and
9688 	 * deliver this event there too.
9689 	 */
9690 	if (task && task != current) {
9691 		struct perf_event_context *ctx;
9692 		struct trace_entry *entry = record;
9693 
9694 		rcu_read_lock();
9695 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9696 		if (!ctx)
9697 			goto unlock;
9698 
9699 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9700 			if (event->cpu != smp_processor_id())
9701 				continue;
9702 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9703 				continue;
9704 			if (event->attr.config != entry->type)
9705 				continue;
9706 			if (perf_tp_event_match(event, &data, regs))
9707 				perf_swevent_event(event, count, &data, regs);
9708 		}
9709 unlock:
9710 		rcu_read_unlock();
9711 	}
9712 
9713 	perf_swevent_put_recursion_context(rctx);
9714 }
9715 EXPORT_SYMBOL_GPL(perf_tp_event);
9716 
9717 static void tp_perf_event_destroy(struct perf_event *event)
9718 {
9719 	perf_trace_destroy(event);
9720 }
9721 
9722 static int perf_tp_event_init(struct perf_event *event)
9723 {
9724 	int err;
9725 
9726 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9727 		return -ENOENT;
9728 
9729 	/*
9730 	 * no branch sampling for tracepoint events
9731 	 */
9732 	if (has_branch_stack(event))
9733 		return -EOPNOTSUPP;
9734 
9735 	err = perf_trace_init(event);
9736 	if (err)
9737 		return err;
9738 
9739 	event->destroy = tp_perf_event_destroy;
9740 
9741 	return 0;
9742 }
9743 
9744 static struct pmu perf_tracepoint = {
9745 	.task_ctx_nr	= perf_sw_context,
9746 
9747 	.event_init	= perf_tp_event_init,
9748 	.add		= perf_trace_add,
9749 	.del		= perf_trace_del,
9750 	.start		= perf_swevent_start,
9751 	.stop		= perf_swevent_stop,
9752 	.read		= perf_swevent_read,
9753 };
9754 
9755 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9756 /*
9757  * Flags in config, used by dynamic PMU kprobe and uprobe
9758  * The flags should match following PMU_FORMAT_ATTR().
9759  *
9760  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9761  *                               if not set, create kprobe/uprobe
9762  *
9763  * The following values specify a reference counter (or semaphore in the
9764  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9765  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9766  *
9767  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9768  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9769  */
9770 enum perf_probe_config {
9771 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9772 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9773 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9774 };
9775 
9776 PMU_FORMAT_ATTR(retprobe, "config:0");
9777 #endif
9778 
9779 #ifdef CONFIG_KPROBE_EVENTS
9780 static struct attribute *kprobe_attrs[] = {
9781 	&format_attr_retprobe.attr,
9782 	NULL,
9783 };
9784 
9785 static struct attribute_group kprobe_format_group = {
9786 	.name = "format",
9787 	.attrs = kprobe_attrs,
9788 };
9789 
9790 static const struct attribute_group *kprobe_attr_groups[] = {
9791 	&kprobe_format_group,
9792 	NULL,
9793 };
9794 
9795 static int perf_kprobe_event_init(struct perf_event *event);
9796 static struct pmu perf_kprobe = {
9797 	.task_ctx_nr	= perf_sw_context,
9798 	.event_init	= perf_kprobe_event_init,
9799 	.add		= perf_trace_add,
9800 	.del		= perf_trace_del,
9801 	.start		= perf_swevent_start,
9802 	.stop		= perf_swevent_stop,
9803 	.read		= perf_swevent_read,
9804 	.attr_groups	= kprobe_attr_groups,
9805 };
9806 
9807 static int perf_kprobe_event_init(struct perf_event *event)
9808 {
9809 	int err;
9810 	bool is_retprobe;
9811 
9812 	if (event->attr.type != perf_kprobe.type)
9813 		return -ENOENT;
9814 
9815 	if (!perfmon_capable())
9816 		return -EACCES;
9817 
9818 	/*
9819 	 * no branch sampling for probe events
9820 	 */
9821 	if (has_branch_stack(event))
9822 		return -EOPNOTSUPP;
9823 
9824 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9825 	err = perf_kprobe_init(event, is_retprobe);
9826 	if (err)
9827 		return err;
9828 
9829 	event->destroy = perf_kprobe_destroy;
9830 
9831 	return 0;
9832 }
9833 #endif /* CONFIG_KPROBE_EVENTS */
9834 
9835 #ifdef CONFIG_UPROBE_EVENTS
9836 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9837 
9838 static struct attribute *uprobe_attrs[] = {
9839 	&format_attr_retprobe.attr,
9840 	&format_attr_ref_ctr_offset.attr,
9841 	NULL,
9842 };
9843 
9844 static struct attribute_group uprobe_format_group = {
9845 	.name = "format",
9846 	.attrs = uprobe_attrs,
9847 };
9848 
9849 static const struct attribute_group *uprobe_attr_groups[] = {
9850 	&uprobe_format_group,
9851 	NULL,
9852 };
9853 
9854 static int perf_uprobe_event_init(struct perf_event *event);
9855 static struct pmu perf_uprobe = {
9856 	.task_ctx_nr	= perf_sw_context,
9857 	.event_init	= perf_uprobe_event_init,
9858 	.add		= perf_trace_add,
9859 	.del		= perf_trace_del,
9860 	.start		= perf_swevent_start,
9861 	.stop		= perf_swevent_stop,
9862 	.read		= perf_swevent_read,
9863 	.attr_groups	= uprobe_attr_groups,
9864 };
9865 
9866 static int perf_uprobe_event_init(struct perf_event *event)
9867 {
9868 	int err;
9869 	unsigned long ref_ctr_offset;
9870 	bool is_retprobe;
9871 
9872 	if (event->attr.type != perf_uprobe.type)
9873 		return -ENOENT;
9874 
9875 	if (!perfmon_capable())
9876 		return -EACCES;
9877 
9878 	/*
9879 	 * no branch sampling for probe events
9880 	 */
9881 	if (has_branch_stack(event))
9882 		return -EOPNOTSUPP;
9883 
9884 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9885 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9886 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9887 	if (err)
9888 		return err;
9889 
9890 	event->destroy = perf_uprobe_destroy;
9891 
9892 	return 0;
9893 }
9894 #endif /* CONFIG_UPROBE_EVENTS */
9895 
9896 static inline void perf_tp_register(void)
9897 {
9898 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9899 #ifdef CONFIG_KPROBE_EVENTS
9900 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9901 #endif
9902 #ifdef CONFIG_UPROBE_EVENTS
9903 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9904 #endif
9905 }
9906 
9907 static void perf_event_free_filter(struct perf_event *event)
9908 {
9909 	ftrace_profile_free_filter(event);
9910 }
9911 
9912 #ifdef CONFIG_BPF_SYSCALL
9913 static void bpf_overflow_handler(struct perf_event *event,
9914 				 struct perf_sample_data *data,
9915 				 struct pt_regs *regs)
9916 {
9917 	struct bpf_perf_event_data_kern ctx = {
9918 		.data = data,
9919 		.event = event,
9920 	};
9921 	struct bpf_prog *prog;
9922 	int ret = 0;
9923 
9924 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9925 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9926 		goto out;
9927 	rcu_read_lock();
9928 	prog = READ_ONCE(event->prog);
9929 	if (prog)
9930 		ret = bpf_prog_run(prog, &ctx);
9931 	rcu_read_unlock();
9932 out:
9933 	__this_cpu_dec(bpf_prog_active);
9934 	if (!ret)
9935 		return;
9936 
9937 	event->orig_overflow_handler(event, data, regs);
9938 }
9939 
9940 static int perf_event_set_bpf_handler(struct perf_event *event,
9941 				      struct bpf_prog *prog,
9942 				      u64 bpf_cookie)
9943 {
9944 	if (event->overflow_handler_context)
9945 		/* hw breakpoint or kernel counter */
9946 		return -EINVAL;
9947 
9948 	if (event->prog)
9949 		return -EEXIST;
9950 
9951 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9952 		return -EINVAL;
9953 
9954 	if (event->attr.precise_ip &&
9955 	    prog->call_get_stack &&
9956 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9957 	     event->attr.exclude_callchain_kernel ||
9958 	     event->attr.exclude_callchain_user)) {
9959 		/*
9960 		 * On perf_event with precise_ip, calling bpf_get_stack()
9961 		 * may trigger unwinder warnings and occasional crashes.
9962 		 * bpf_get_[stack|stackid] works around this issue by using
9963 		 * callchain attached to perf_sample_data. If the
9964 		 * perf_event does not full (kernel and user) callchain
9965 		 * attached to perf_sample_data, do not allow attaching BPF
9966 		 * program that calls bpf_get_[stack|stackid].
9967 		 */
9968 		return -EPROTO;
9969 	}
9970 
9971 	event->prog = prog;
9972 	event->bpf_cookie = bpf_cookie;
9973 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9974 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9975 	return 0;
9976 }
9977 
9978 static void perf_event_free_bpf_handler(struct perf_event *event)
9979 {
9980 	struct bpf_prog *prog = event->prog;
9981 
9982 	if (!prog)
9983 		return;
9984 
9985 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9986 	event->prog = NULL;
9987 	bpf_prog_put(prog);
9988 }
9989 #else
9990 static int perf_event_set_bpf_handler(struct perf_event *event,
9991 				      struct bpf_prog *prog,
9992 				      u64 bpf_cookie)
9993 {
9994 	return -EOPNOTSUPP;
9995 }
9996 static void perf_event_free_bpf_handler(struct perf_event *event)
9997 {
9998 }
9999 #endif
10000 
10001 /*
10002  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10003  * with perf_event_open()
10004  */
10005 static inline bool perf_event_is_tracing(struct perf_event *event)
10006 {
10007 	if (event->pmu == &perf_tracepoint)
10008 		return true;
10009 #ifdef CONFIG_KPROBE_EVENTS
10010 	if (event->pmu == &perf_kprobe)
10011 		return true;
10012 #endif
10013 #ifdef CONFIG_UPROBE_EVENTS
10014 	if (event->pmu == &perf_uprobe)
10015 		return true;
10016 #endif
10017 	return false;
10018 }
10019 
10020 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10021 			    u64 bpf_cookie)
10022 {
10023 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10024 
10025 	if (!perf_event_is_tracing(event))
10026 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10027 
10028 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10029 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10030 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10031 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10032 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10033 		return -EINVAL;
10034 
10035 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10036 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10037 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10038 		return -EINVAL;
10039 
10040 	/* Kprobe override only works for kprobes, not uprobes. */
10041 	if (prog->kprobe_override &&
10042 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10043 		return -EINVAL;
10044 
10045 	if (is_tracepoint || is_syscall_tp) {
10046 		int off = trace_event_get_offsets(event->tp_event);
10047 
10048 		if (prog->aux->max_ctx_offset > off)
10049 			return -EACCES;
10050 	}
10051 
10052 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10053 }
10054 
10055 void perf_event_free_bpf_prog(struct perf_event *event)
10056 {
10057 	if (!perf_event_is_tracing(event)) {
10058 		perf_event_free_bpf_handler(event);
10059 		return;
10060 	}
10061 	perf_event_detach_bpf_prog(event);
10062 }
10063 
10064 #else
10065 
10066 static inline void perf_tp_register(void)
10067 {
10068 }
10069 
10070 static void perf_event_free_filter(struct perf_event *event)
10071 {
10072 }
10073 
10074 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10075 			    u64 bpf_cookie)
10076 {
10077 	return -ENOENT;
10078 }
10079 
10080 void perf_event_free_bpf_prog(struct perf_event *event)
10081 {
10082 }
10083 #endif /* CONFIG_EVENT_TRACING */
10084 
10085 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10086 void perf_bp_event(struct perf_event *bp, void *data)
10087 {
10088 	struct perf_sample_data sample;
10089 	struct pt_regs *regs = data;
10090 
10091 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10092 
10093 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10094 		perf_swevent_event(bp, 1, &sample, regs);
10095 }
10096 #endif
10097 
10098 /*
10099  * Allocate a new address filter
10100  */
10101 static struct perf_addr_filter *
10102 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10103 {
10104 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10105 	struct perf_addr_filter *filter;
10106 
10107 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10108 	if (!filter)
10109 		return NULL;
10110 
10111 	INIT_LIST_HEAD(&filter->entry);
10112 	list_add_tail(&filter->entry, filters);
10113 
10114 	return filter;
10115 }
10116 
10117 static void free_filters_list(struct list_head *filters)
10118 {
10119 	struct perf_addr_filter *filter, *iter;
10120 
10121 	list_for_each_entry_safe(filter, iter, filters, entry) {
10122 		path_put(&filter->path);
10123 		list_del(&filter->entry);
10124 		kfree(filter);
10125 	}
10126 }
10127 
10128 /*
10129  * Free existing address filters and optionally install new ones
10130  */
10131 static void perf_addr_filters_splice(struct perf_event *event,
10132 				     struct list_head *head)
10133 {
10134 	unsigned long flags;
10135 	LIST_HEAD(list);
10136 
10137 	if (!has_addr_filter(event))
10138 		return;
10139 
10140 	/* don't bother with children, they don't have their own filters */
10141 	if (event->parent)
10142 		return;
10143 
10144 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10145 
10146 	list_splice_init(&event->addr_filters.list, &list);
10147 	if (head)
10148 		list_splice(head, &event->addr_filters.list);
10149 
10150 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10151 
10152 	free_filters_list(&list);
10153 }
10154 
10155 /*
10156  * Scan through mm's vmas and see if one of them matches the
10157  * @filter; if so, adjust filter's address range.
10158  * Called with mm::mmap_lock down for reading.
10159  */
10160 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10161 				   struct mm_struct *mm,
10162 				   struct perf_addr_filter_range *fr)
10163 {
10164 	struct vm_area_struct *vma;
10165 
10166 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10167 		if (!vma->vm_file)
10168 			continue;
10169 
10170 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10171 			return;
10172 	}
10173 }
10174 
10175 /*
10176  * Update event's address range filters based on the
10177  * task's existing mappings, if any.
10178  */
10179 static void perf_event_addr_filters_apply(struct perf_event *event)
10180 {
10181 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10182 	struct task_struct *task = READ_ONCE(event->ctx->task);
10183 	struct perf_addr_filter *filter;
10184 	struct mm_struct *mm = NULL;
10185 	unsigned int count = 0;
10186 	unsigned long flags;
10187 
10188 	/*
10189 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10190 	 * will stop on the parent's child_mutex that our caller is also holding
10191 	 */
10192 	if (task == TASK_TOMBSTONE)
10193 		return;
10194 
10195 	if (ifh->nr_file_filters) {
10196 		mm = get_task_mm(event->ctx->task);
10197 		if (!mm)
10198 			goto restart;
10199 
10200 		mmap_read_lock(mm);
10201 	}
10202 
10203 	raw_spin_lock_irqsave(&ifh->lock, flags);
10204 	list_for_each_entry(filter, &ifh->list, entry) {
10205 		if (filter->path.dentry) {
10206 			/*
10207 			 * Adjust base offset if the filter is associated to a
10208 			 * binary that needs to be mapped:
10209 			 */
10210 			event->addr_filter_ranges[count].start = 0;
10211 			event->addr_filter_ranges[count].size = 0;
10212 
10213 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10214 		} else {
10215 			event->addr_filter_ranges[count].start = filter->offset;
10216 			event->addr_filter_ranges[count].size  = filter->size;
10217 		}
10218 
10219 		count++;
10220 	}
10221 
10222 	event->addr_filters_gen++;
10223 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10224 
10225 	if (ifh->nr_file_filters) {
10226 		mmap_read_unlock(mm);
10227 
10228 		mmput(mm);
10229 	}
10230 
10231 restart:
10232 	perf_event_stop(event, 1);
10233 }
10234 
10235 /*
10236  * Address range filtering: limiting the data to certain
10237  * instruction address ranges. Filters are ioctl()ed to us from
10238  * userspace as ascii strings.
10239  *
10240  * Filter string format:
10241  *
10242  * ACTION RANGE_SPEC
10243  * where ACTION is one of the
10244  *  * "filter": limit the trace to this region
10245  *  * "start": start tracing from this address
10246  *  * "stop": stop tracing at this address/region;
10247  * RANGE_SPEC is
10248  *  * for kernel addresses: <start address>[/<size>]
10249  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10250  *
10251  * if <size> is not specified or is zero, the range is treated as a single
10252  * address; not valid for ACTION=="filter".
10253  */
10254 enum {
10255 	IF_ACT_NONE = -1,
10256 	IF_ACT_FILTER,
10257 	IF_ACT_START,
10258 	IF_ACT_STOP,
10259 	IF_SRC_FILE,
10260 	IF_SRC_KERNEL,
10261 	IF_SRC_FILEADDR,
10262 	IF_SRC_KERNELADDR,
10263 };
10264 
10265 enum {
10266 	IF_STATE_ACTION = 0,
10267 	IF_STATE_SOURCE,
10268 	IF_STATE_END,
10269 };
10270 
10271 static const match_table_t if_tokens = {
10272 	{ IF_ACT_FILTER,	"filter" },
10273 	{ IF_ACT_START,		"start" },
10274 	{ IF_ACT_STOP,		"stop" },
10275 	{ IF_SRC_FILE,		"%u/%u@%s" },
10276 	{ IF_SRC_KERNEL,	"%u/%u" },
10277 	{ IF_SRC_FILEADDR,	"%u@%s" },
10278 	{ IF_SRC_KERNELADDR,	"%u" },
10279 	{ IF_ACT_NONE,		NULL },
10280 };
10281 
10282 /*
10283  * Address filter string parser
10284  */
10285 static int
10286 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10287 			     struct list_head *filters)
10288 {
10289 	struct perf_addr_filter *filter = NULL;
10290 	char *start, *orig, *filename = NULL;
10291 	substring_t args[MAX_OPT_ARGS];
10292 	int state = IF_STATE_ACTION, token;
10293 	unsigned int kernel = 0;
10294 	int ret = -EINVAL;
10295 
10296 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10297 	if (!fstr)
10298 		return -ENOMEM;
10299 
10300 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10301 		static const enum perf_addr_filter_action_t actions[] = {
10302 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10303 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10304 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10305 		};
10306 		ret = -EINVAL;
10307 
10308 		if (!*start)
10309 			continue;
10310 
10311 		/* filter definition begins */
10312 		if (state == IF_STATE_ACTION) {
10313 			filter = perf_addr_filter_new(event, filters);
10314 			if (!filter)
10315 				goto fail;
10316 		}
10317 
10318 		token = match_token(start, if_tokens, args);
10319 		switch (token) {
10320 		case IF_ACT_FILTER:
10321 		case IF_ACT_START:
10322 		case IF_ACT_STOP:
10323 			if (state != IF_STATE_ACTION)
10324 				goto fail;
10325 
10326 			filter->action = actions[token];
10327 			state = IF_STATE_SOURCE;
10328 			break;
10329 
10330 		case IF_SRC_KERNELADDR:
10331 		case IF_SRC_KERNEL:
10332 			kernel = 1;
10333 			fallthrough;
10334 
10335 		case IF_SRC_FILEADDR:
10336 		case IF_SRC_FILE:
10337 			if (state != IF_STATE_SOURCE)
10338 				goto fail;
10339 
10340 			*args[0].to = 0;
10341 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10342 			if (ret)
10343 				goto fail;
10344 
10345 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10346 				*args[1].to = 0;
10347 				ret = kstrtoul(args[1].from, 0, &filter->size);
10348 				if (ret)
10349 					goto fail;
10350 			}
10351 
10352 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10353 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10354 
10355 				kfree(filename);
10356 				filename = match_strdup(&args[fpos]);
10357 				if (!filename) {
10358 					ret = -ENOMEM;
10359 					goto fail;
10360 				}
10361 			}
10362 
10363 			state = IF_STATE_END;
10364 			break;
10365 
10366 		default:
10367 			goto fail;
10368 		}
10369 
10370 		/*
10371 		 * Filter definition is fully parsed, validate and install it.
10372 		 * Make sure that it doesn't contradict itself or the event's
10373 		 * attribute.
10374 		 */
10375 		if (state == IF_STATE_END) {
10376 			ret = -EINVAL;
10377 			if (kernel && event->attr.exclude_kernel)
10378 				goto fail;
10379 
10380 			/*
10381 			 * ACTION "filter" must have a non-zero length region
10382 			 * specified.
10383 			 */
10384 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10385 			    !filter->size)
10386 				goto fail;
10387 
10388 			if (!kernel) {
10389 				if (!filename)
10390 					goto fail;
10391 
10392 				/*
10393 				 * For now, we only support file-based filters
10394 				 * in per-task events; doing so for CPU-wide
10395 				 * events requires additional context switching
10396 				 * trickery, since same object code will be
10397 				 * mapped at different virtual addresses in
10398 				 * different processes.
10399 				 */
10400 				ret = -EOPNOTSUPP;
10401 				if (!event->ctx->task)
10402 					goto fail;
10403 
10404 				/* look up the path and grab its inode */
10405 				ret = kern_path(filename, LOOKUP_FOLLOW,
10406 						&filter->path);
10407 				if (ret)
10408 					goto fail;
10409 
10410 				ret = -EINVAL;
10411 				if (!filter->path.dentry ||
10412 				    !S_ISREG(d_inode(filter->path.dentry)
10413 					     ->i_mode))
10414 					goto fail;
10415 
10416 				event->addr_filters.nr_file_filters++;
10417 			}
10418 
10419 			/* ready to consume more filters */
10420 			state = IF_STATE_ACTION;
10421 			filter = NULL;
10422 		}
10423 	}
10424 
10425 	if (state != IF_STATE_ACTION)
10426 		goto fail;
10427 
10428 	kfree(filename);
10429 	kfree(orig);
10430 
10431 	return 0;
10432 
10433 fail:
10434 	kfree(filename);
10435 	free_filters_list(filters);
10436 	kfree(orig);
10437 
10438 	return ret;
10439 }
10440 
10441 static int
10442 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10443 {
10444 	LIST_HEAD(filters);
10445 	int ret;
10446 
10447 	/*
10448 	 * Since this is called in perf_ioctl() path, we're already holding
10449 	 * ctx::mutex.
10450 	 */
10451 	lockdep_assert_held(&event->ctx->mutex);
10452 
10453 	if (WARN_ON_ONCE(event->parent))
10454 		return -EINVAL;
10455 
10456 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10457 	if (ret)
10458 		goto fail_clear_files;
10459 
10460 	ret = event->pmu->addr_filters_validate(&filters);
10461 	if (ret)
10462 		goto fail_free_filters;
10463 
10464 	/* remove existing filters, if any */
10465 	perf_addr_filters_splice(event, &filters);
10466 
10467 	/* install new filters */
10468 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10469 
10470 	return ret;
10471 
10472 fail_free_filters:
10473 	free_filters_list(&filters);
10474 
10475 fail_clear_files:
10476 	event->addr_filters.nr_file_filters = 0;
10477 
10478 	return ret;
10479 }
10480 
10481 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10482 {
10483 	int ret = -EINVAL;
10484 	char *filter_str;
10485 
10486 	filter_str = strndup_user(arg, PAGE_SIZE);
10487 	if (IS_ERR(filter_str))
10488 		return PTR_ERR(filter_str);
10489 
10490 #ifdef CONFIG_EVENT_TRACING
10491 	if (perf_event_is_tracing(event)) {
10492 		struct perf_event_context *ctx = event->ctx;
10493 
10494 		/*
10495 		 * Beware, here be dragons!!
10496 		 *
10497 		 * the tracepoint muck will deadlock against ctx->mutex, but
10498 		 * the tracepoint stuff does not actually need it. So
10499 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10500 		 * already have a reference on ctx.
10501 		 *
10502 		 * This can result in event getting moved to a different ctx,
10503 		 * but that does not affect the tracepoint state.
10504 		 */
10505 		mutex_unlock(&ctx->mutex);
10506 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10507 		mutex_lock(&ctx->mutex);
10508 	} else
10509 #endif
10510 	if (has_addr_filter(event))
10511 		ret = perf_event_set_addr_filter(event, filter_str);
10512 
10513 	kfree(filter_str);
10514 	return ret;
10515 }
10516 
10517 /*
10518  * hrtimer based swevent callback
10519  */
10520 
10521 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10522 {
10523 	enum hrtimer_restart ret = HRTIMER_RESTART;
10524 	struct perf_sample_data data;
10525 	struct pt_regs *regs;
10526 	struct perf_event *event;
10527 	u64 period;
10528 
10529 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10530 
10531 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10532 		return HRTIMER_NORESTART;
10533 
10534 	event->pmu->read(event);
10535 
10536 	perf_sample_data_init(&data, 0, event->hw.last_period);
10537 	regs = get_irq_regs();
10538 
10539 	if (regs && !perf_exclude_event(event, regs)) {
10540 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10541 			if (__perf_event_overflow(event, 1, &data, regs))
10542 				ret = HRTIMER_NORESTART;
10543 	}
10544 
10545 	period = max_t(u64, 10000, event->hw.sample_period);
10546 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10547 
10548 	return ret;
10549 }
10550 
10551 static void perf_swevent_start_hrtimer(struct perf_event *event)
10552 {
10553 	struct hw_perf_event *hwc = &event->hw;
10554 	s64 period;
10555 
10556 	if (!is_sampling_event(event))
10557 		return;
10558 
10559 	period = local64_read(&hwc->period_left);
10560 	if (period) {
10561 		if (period < 0)
10562 			period = 10000;
10563 
10564 		local64_set(&hwc->period_left, 0);
10565 	} else {
10566 		period = max_t(u64, 10000, hwc->sample_period);
10567 	}
10568 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10569 		      HRTIMER_MODE_REL_PINNED_HARD);
10570 }
10571 
10572 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10573 {
10574 	struct hw_perf_event *hwc = &event->hw;
10575 
10576 	if (is_sampling_event(event)) {
10577 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10578 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10579 
10580 		hrtimer_cancel(&hwc->hrtimer);
10581 	}
10582 }
10583 
10584 static void perf_swevent_init_hrtimer(struct perf_event *event)
10585 {
10586 	struct hw_perf_event *hwc = &event->hw;
10587 
10588 	if (!is_sampling_event(event))
10589 		return;
10590 
10591 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10592 	hwc->hrtimer.function = perf_swevent_hrtimer;
10593 
10594 	/*
10595 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10596 	 * mapping and avoid the whole period adjust feedback stuff.
10597 	 */
10598 	if (event->attr.freq) {
10599 		long freq = event->attr.sample_freq;
10600 
10601 		event->attr.sample_period = NSEC_PER_SEC / freq;
10602 		hwc->sample_period = event->attr.sample_period;
10603 		local64_set(&hwc->period_left, hwc->sample_period);
10604 		hwc->last_period = hwc->sample_period;
10605 		event->attr.freq = 0;
10606 	}
10607 }
10608 
10609 /*
10610  * Software event: cpu wall time clock
10611  */
10612 
10613 static void cpu_clock_event_update(struct perf_event *event)
10614 {
10615 	s64 prev;
10616 	u64 now;
10617 
10618 	now = local_clock();
10619 	prev = local64_xchg(&event->hw.prev_count, now);
10620 	local64_add(now - prev, &event->count);
10621 }
10622 
10623 static void cpu_clock_event_start(struct perf_event *event, int flags)
10624 {
10625 	local64_set(&event->hw.prev_count, local_clock());
10626 	perf_swevent_start_hrtimer(event);
10627 }
10628 
10629 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10630 {
10631 	perf_swevent_cancel_hrtimer(event);
10632 	cpu_clock_event_update(event);
10633 }
10634 
10635 static int cpu_clock_event_add(struct perf_event *event, int flags)
10636 {
10637 	if (flags & PERF_EF_START)
10638 		cpu_clock_event_start(event, flags);
10639 	perf_event_update_userpage(event);
10640 
10641 	return 0;
10642 }
10643 
10644 static void cpu_clock_event_del(struct perf_event *event, int flags)
10645 {
10646 	cpu_clock_event_stop(event, flags);
10647 }
10648 
10649 static void cpu_clock_event_read(struct perf_event *event)
10650 {
10651 	cpu_clock_event_update(event);
10652 }
10653 
10654 static int cpu_clock_event_init(struct perf_event *event)
10655 {
10656 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10657 		return -ENOENT;
10658 
10659 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10660 		return -ENOENT;
10661 
10662 	/*
10663 	 * no branch sampling for software events
10664 	 */
10665 	if (has_branch_stack(event))
10666 		return -EOPNOTSUPP;
10667 
10668 	perf_swevent_init_hrtimer(event);
10669 
10670 	return 0;
10671 }
10672 
10673 static struct pmu perf_cpu_clock = {
10674 	.task_ctx_nr	= perf_sw_context,
10675 
10676 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10677 
10678 	.event_init	= cpu_clock_event_init,
10679 	.add		= cpu_clock_event_add,
10680 	.del		= cpu_clock_event_del,
10681 	.start		= cpu_clock_event_start,
10682 	.stop		= cpu_clock_event_stop,
10683 	.read		= cpu_clock_event_read,
10684 };
10685 
10686 /*
10687  * Software event: task time clock
10688  */
10689 
10690 static void task_clock_event_update(struct perf_event *event, u64 now)
10691 {
10692 	u64 prev;
10693 	s64 delta;
10694 
10695 	prev = local64_xchg(&event->hw.prev_count, now);
10696 	delta = now - prev;
10697 	local64_add(delta, &event->count);
10698 }
10699 
10700 static void task_clock_event_start(struct perf_event *event, int flags)
10701 {
10702 	local64_set(&event->hw.prev_count, event->ctx->time);
10703 	perf_swevent_start_hrtimer(event);
10704 }
10705 
10706 static void task_clock_event_stop(struct perf_event *event, int flags)
10707 {
10708 	perf_swevent_cancel_hrtimer(event);
10709 	task_clock_event_update(event, event->ctx->time);
10710 }
10711 
10712 static int task_clock_event_add(struct perf_event *event, int flags)
10713 {
10714 	if (flags & PERF_EF_START)
10715 		task_clock_event_start(event, flags);
10716 	perf_event_update_userpage(event);
10717 
10718 	return 0;
10719 }
10720 
10721 static void task_clock_event_del(struct perf_event *event, int flags)
10722 {
10723 	task_clock_event_stop(event, PERF_EF_UPDATE);
10724 }
10725 
10726 static void task_clock_event_read(struct perf_event *event)
10727 {
10728 	u64 now = perf_clock();
10729 	u64 delta = now - event->ctx->timestamp;
10730 	u64 time = event->ctx->time + delta;
10731 
10732 	task_clock_event_update(event, time);
10733 }
10734 
10735 static int task_clock_event_init(struct perf_event *event)
10736 {
10737 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10738 		return -ENOENT;
10739 
10740 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10741 		return -ENOENT;
10742 
10743 	/*
10744 	 * no branch sampling for software events
10745 	 */
10746 	if (has_branch_stack(event))
10747 		return -EOPNOTSUPP;
10748 
10749 	perf_swevent_init_hrtimer(event);
10750 
10751 	return 0;
10752 }
10753 
10754 static struct pmu perf_task_clock = {
10755 	.task_ctx_nr	= perf_sw_context,
10756 
10757 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10758 
10759 	.event_init	= task_clock_event_init,
10760 	.add		= task_clock_event_add,
10761 	.del		= task_clock_event_del,
10762 	.start		= task_clock_event_start,
10763 	.stop		= task_clock_event_stop,
10764 	.read		= task_clock_event_read,
10765 };
10766 
10767 static void perf_pmu_nop_void(struct pmu *pmu)
10768 {
10769 }
10770 
10771 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10772 {
10773 }
10774 
10775 static int perf_pmu_nop_int(struct pmu *pmu)
10776 {
10777 	return 0;
10778 }
10779 
10780 static int perf_event_nop_int(struct perf_event *event, u64 value)
10781 {
10782 	return 0;
10783 }
10784 
10785 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10786 
10787 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10788 {
10789 	__this_cpu_write(nop_txn_flags, flags);
10790 
10791 	if (flags & ~PERF_PMU_TXN_ADD)
10792 		return;
10793 
10794 	perf_pmu_disable(pmu);
10795 }
10796 
10797 static int perf_pmu_commit_txn(struct pmu *pmu)
10798 {
10799 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10800 
10801 	__this_cpu_write(nop_txn_flags, 0);
10802 
10803 	if (flags & ~PERF_PMU_TXN_ADD)
10804 		return 0;
10805 
10806 	perf_pmu_enable(pmu);
10807 	return 0;
10808 }
10809 
10810 static void perf_pmu_cancel_txn(struct pmu *pmu)
10811 {
10812 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10813 
10814 	__this_cpu_write(nop_txn_flags, 0);
10815 
10816 	if (flags & ~PERF_PMU_TXN_ADD)
10817 		return;
10818 
10819 	perf_pmu_enable(pmu);
10820 }
10821 
10822 static int perf_event_idx_default(struct perf_event *event)
10823 {
10824 	return 0;
10825 }
10826 
10827 /*
10828  * Ensures all contexts with the same task_ctx_nr have the same
10829  * pmu_cpu_context too.
10830  */
10831 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10832 {
10833 	struct pmu *pmu;
10834 
10835 	if (ctxn < 0)
10836 		return NULL;
10837 
10838 	list_for_each_entry(pmu, &pmus, entry) {
10839 		if (pmu->task_ctx_nr == ctxn)
10840 			return pmu->pmu_cpu_context;
10841 	}
10842 
10843 	return NULL;
10844 }
10845 
10846 static void free_pmu_context(struct pmu *pmu)
10847 {
10848 	/*
10849 	 * Static contexts such as perf_sw_context have a global lifetime
10850 	 * and may be shared between different PMUs. Avoid freeing them
10851 	 * when a single PMU is going away.
10852 	 */
10853 	if (pmu->task_ctx_nr > perf_invalid_context)
10854 		return;
10855 
10856 	free_percpu(pmu->pmu_cpu_context);
10857 }
10858 
10859 /*
10860  * Let userspace know that this PMU supports address range filtering:
10861  */
10862 static ssize_t nr_addr_filters_show(struct device *dev,
10863 				    struct device_attribute *attr,
10864 				    char *page)
10865 {
10866 	struct pmu *pmu = dev_get_drvdata(dev);
10867 
10868 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10869 }
10870 DEVICE_ATTR_RO(nr_addr_filters);
10871 
10872 static struct idr pmu_idr;
10873 
10874 static ssize_t
10875 type_show(struct device *dev, struct device_attribute *attr, char *page)
10876 {
10877 	struct pmu *pmu = dev_get_drvdata(dev);
10878 
10879 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10880 }
10881 static DEVICE_ATTR_RO(type);
10882 
10883 static ssize_t
10884 perf_event_mux_interval_ms_show(struct device *dev,
10885 				struct device_attribute *attr,
10886 				char *page)
10887 {
10888 	struct pmu *pmu = dev_get_drvdata(dev);
10889 
10890 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10891 }
10892 
10893 static DEFINE_MUTEX(mux_interval_mutex);
10894 
10895 static ssize_t
10896 perf_event_mux_interval_ms_store(struct device *dev,
10897 				 struct device_attribute *attr,
10898 				 const char *buf, size_t count)
10899 {
10900 	struct pmu *pmu = dev_get_drvdata(dev);
10901 	int timer, cpu, ret;
10902 
10903 	ret = kstrtoint(buf, 0, &timer);
10904 	if (ret)
10905 		return ret;
10906 
10907 	if (timer < 1)
10908 		return -EINVAL;
10909 
10910 	/* same value, noting to do */
10911 	if (timer == pmu->hrtimer_interval_ms)
10912 		return count;
10913 
10914 	mutex_lock(&mux_interval_mutex);
10915 	pmu->hrtimer_interval_ms = timer;
10916 
10917 	/* update all cpuctx for this PMU */
10918 	cpus_read_lock();
10919 	for_each_online_cpu(cpu) {
10920 		struct perf_cpu_context *cpuctx;
10921 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10922 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10923 
10924 		cpu_function_call(cpu,
10925 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10926 	}
10927 	cpus_read_unlock();
10928 	mutex_unlock(&mux_interval_mutex);
10929 
10930 	return count;
10931 }
10932 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10933 
10934 static struct attribute *pmu_dev_attrs[] = {
10935 	&dev_attr_type.attr,
10936 	&dev_attr_perf_event_mux_interval_ms.attr,
10937 	NULL,
10938 };
10939 ATTRIBUTE_GROUPS(pmu_dev);
10940 
10941 static int pmu_bus_running;
10942 static struct bus_type pmu_bus = {
10943 	.name		= "event_source",
10944 	.dev_groups	= pmu_dev_groups,
10945 };
10946 
10947 static void pmu_dev_release(struct device *dev)
10948 {
10949 	kfree(dev);
10950 }
10951 
10952 static int pmu_dev_alloc(struct pmu *pmu)
10953 {
10954 	int ret = -ENOMEM;
10955 
10956 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10957 	if (!pmu->dev)
10958 		goto out;
10959 
10960 	pmu->dev->groups = pmu->attr_groups;
10961 	device_initialize(pmu->dev);
10962 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10963 	if (ret)
10964 		goto free_dev;
10965 
10966 	dev_set_drvdata(pmu->dev, pmu);
10967 	pmu->dev->bus = &pmu_bus;
10968 	pmu->dev->release = pmu_dev_release;
10969 	ret = device_add(pmu->dev);
10970 	if (ret)
10971 		goto free_dev;
10972 
10973 	/* For PMUs with address filters, throw in an extra attribute: */
10974 	if (pmu->nr_addr_filters)
10975 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10976 
10977 	if (ret)
10978 		goto del_dev;
10979 
10980 	if (pmu->attr_update)
10981 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10982 
10983 	if (ret)
10984 		goto del_dev;
10985 
10986 out:
10987 	return ret;
10988 
10989 del_dev:
10990 	device_del(pmu->dev);
10991 
10992 free_dev:
10993 	put_device(pmu->dev);
10994 	goto out;
10995 }
10996 
10997 static struct lock_class_key cpuctx_mutex;
10998 static struct lock_class_key cpuctx_lock;
10999 
11000 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11001 {
11002 	int cpu, ret, max = PERF_TYPE_MAX;
11003 
11004 	mutex_lock(&pmus_lock);
11005 	ret = -ENOMEM;
11006 	pmu->pmu_disable_count = alloc_percpu(int);
11007 	if (!pmu->pmu_disable_count)
11008 		goto unlock;
11009 
11010 	pmu->type = -1;
11011 	if (!name)
11012 		goto skip_type;
11013 	pmu->name = name;
11014 
11015 	if (type != PERF_TYPE_SOFTWARE) {
11016 		if (type >= 0)
11017 			max = type;
11018 
11019 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11020 		if (ret < 0)
11021 			goto free_pdc;
11022 
11023 		WARN_ON(type >= 0 && ret != type);
11024 
11025 		type = ret;
11026 	}
11027 	pmu->type = type;
11028 
11029 	if (pmu_bus_running) {
11030 		ret = pmu_dev_alloc(pmu);
11031 		if (ret)
11032 			goto free_idr;
11033 	}
11034 
11035 skip_type:
11036 	if (pmu->task_ctx_nr == perf_hw_context) {
11037 		static int hw_context_taken = 0;
11038 
11039 		/*
11040 		 * Other than systems with heterogeneous CPUs, it never makes
11041 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11042 		 * uncore must use perf_invalid_context.
11043 		 */
11044 		if (WARN_ON_ONCE(hw_context_taken &&
11045 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11046 			pmu->task_ctx_nr = perf_invalid_context;
11047 
11048 		hw_context_taken = 1;
11049 	}
11050 
11051 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11052 	if (pmu->pmu_cpu_context)
11053 		goto got_cpu_context;
11054 
11055 	ret = -ENOMEM;
11056 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11057 	if (!pmu->pmu_cpu_context)
11058 		goto free_dev;
11059 
11060 	for_each_possible_cpu(cpu) {
11061 		struct perf_cpu_context *cpuctx;
11062 
11063 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11064 		__perf_event_init_context(&cpuctx->ctx);
11065 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11066 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11067 		cpuctx->ctx.pmu = pmu;
11068 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11069 
11070 		__perf_mux_hrtimer_init(cpuctx, cpu);
11071 
11072 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11073 		cpuctx->heap = cpuctx->heap_default;
11074 	}
11075 
11076 got_cpu_context:
11077 	if (!pmu->start_txn) {
11078 		if (pmu->pmu_enable) {
11079 			/*
11080 			 * If we have pmu_enable/pmu_disable calls, install
11081 			 * transaction stubs that use that to try and batch
11082 			 * hardware accesses.
11083 			 */
11084 			pmu->start_txn  = perf_pmu_start_txn;
11085 			pmu->commit_txn = perf_pmu_commit_txn;
11086 			pmu->cancel_txn = perf_pmu_cancel_txn;
11087 		} else {
11088 			pmu->start_txn  = perf_pmu_nop_txn;
11089 			pmu->commit_txn = perf_pmu_nop_int;
11090 			pmu->cancel_txn = perf_pmu_nop_void;
11091 		}
11092 	}
11093 
11094 	if (!pmu->pmu_enable) {
11095 		pmu->pmu_enable  = perf_pmu_nop_void;
11096 		pmu->pmu_disable = perf_pmu_nop_void;
11097 	}
11098 
11099 	if (!pmu->check_period)
11100 		pmu->check_period = perf_event_nop_int;
11101 
11102 	if (!pmu->event_idx)
11103 		pmu->event_idx = perf_event_idx_default;
11104 
11105 	/*
11106 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11107 	 * since these cannot be in the IDR. This way the linear search
11108 	 * is fast, provided a valid software event is provided.
11109 	 */
11110 	if (type == PERF_TYPE_SOFTWARE || !name)
11111 		list_add_rcu(&pmu->entry, &pmus);
11112 	else
11113 		list_add_tail_rcu(&pmu->entry, &pmus);
11114 
11115 	atomic_set(&pmu->exclusive_cnt, 0);
11116 	ret = 0;
11117 unlock:
11118 	mutex_unlock(&pmus_lock);
11119 
11120 	return ret;
11121 
11122 free_dev:
11123 	device_del(pmu->dev);
11124 	put_device(pmu->dev);
11125 
11126 free_idr:
11127 	if (pmu->type != PERF_TYPE_SOFTWARE)
11128 		idr_remove(&pmu_idr, pmu->type);
11129 
11130 free_pdc:
11131 	free_percpu(pmu->pmu_disable_count);
11132 	goto unlock;
11133 }
11134 EXPORT_SYMBOL_GPL(perf_pmu_register);
11135 
11136 void perf_pmu_unregister(struct pmu *pmu)
11137 {
11138 	mutex_lock(&pmus_lock);
11139 	list_del_rcu(&pmu->entry);
11140 
11141 	/*
11142 	 * We dereference the pmu list under both SRCU and regular RCU, so
11143 	 * synchronize against both of those.
11144 	 */
11145 	synchronize_srcu(&pmus_srcu);
11146 	synchronize_rcu();
11147 
11148 	free_percpu(pmu->pmu_disable_count);
11149 	if (pmu->type != PERF_TYPE_SOFTWARE)
11150 		idr_remove(&pmu_idr, pmu->type);
11151 	if (pmu_bus_running) {
11152 		if (pmu->nr_addr_filters)
11153 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11154 		device_del(pmu->dev);
11155 		put_device(pmu->dev);
11156 	}
11157 	free_pmu_context(pmu);
11158 	mutex_unlock(&pmus_lock);
11159 }
11160 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11161 
11162 static inline bool has_extended_regs(struct perf_event *event)
11163 {
11164 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11165 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11166 }
11167 
11168 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11169 {
11170 	struct perf_event_context *ctx = NULL;
11171 	int ret;
11172 
11173 	if (!try_module_get(pmu->module))
11174 		return -ENODEV;
11175 
11176 	/*
11177 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11178 	 * for example, validate if the group fits on the PMU. Therefore,
11179 	 * if this is a sibling event, acquire the ctx->mutex to protect
11180 	 * the sibling_list.
11181 	 */
11182 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11183 		/*
11184 		 * This ctx->mutex can nest when we're called through
11185 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11186 		 */
11187 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11188 						 SINGLE_DEPTH_NESTING);
11189 		BUG_ON(!ctx);
11190 	}
11191 
11192 	event->pmu = pmu;
11193 	ret = pmu->event_init(event);
11194 
11195 	if (ctx)
11196 		perf_event_ctx_unlock(event->group_leader, ctx);
11197 
11198 	if (!ret) {
11199 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11200 		    has_extended_regs(event))
11201 			ret = -EOPNOTSUPP;
11202 
11203 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11204 		    event_has_any_exclude_flag(event))
11205 			ret = -EINVAL;
11206 
11207 		if (ret && event->destroy)
11208 			event->destroy(event);
11209 	}
11210 
11211 	if (ret)
11212 		module_put(pmu->module);
11213 
11214 	return ret;
11215 }
11216 
11217 static struct pmu *perf_init_event(struct perf_event *event)
11218 {
11219 	bool extended_type = false;
11220 	int idx, type, ret;
11221 	struct pmu *pmu;
11222 
11223 	idx = srcu_read_lock(&pmus_srcu);
11224 
11225 	/* Try parent's PMU first: */
11226 	if (event->parent && event->parent->pmu) {
11227 		pmu = event->parent->pmu;
11228 		ret = perf_try_init_event(pmu, event);
11229 		if (!ret)
11230 			goto unlock;
11231 	}
11232 
11233 	/*
11234 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11235 	 * are often aliases for PERF_TYPE_RAW.
11236 	 */
11237 	type = event->attr.type;
11238 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11239 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11240 		if (!type) {
11241 			type = PERF_TYPE_RAW;
11242 		} else {
11243 			extended_type = true;
11244 			event->attr.config &= PERF_HW_EVENT_MASK;
11245 		}
11246 	}
11247 
11248 again:
11249 	rcu_read_lock();
11250 	pmu = idr_find(&pmu_idr, type);
11251 	rcu_read_unlock();
11252 	if (pmu) {
11253 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11254 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11255 			goto fail;
11256 
11257 		ret = perf_try_init_event(pmu, event);
11258 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11259 			type = event->attr.type;
11260 			goto again;
11261 		}
11262 
11263 		if (ret)
11264 			pmu = ERR_PTR(ret);
11265 
11266 		goto unlock;
11267 	}
11268 
11269 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11270 		ret = perf_try_init_event(pmu, event);
11271 		if (!ret)
11272 			goto unlock;
11273 
11274 		if (ret != -ENOENT) {
11275 			pmu = ERR_PTR(ret);
11276 			goto unlock;
11277 		}
11278 	}
11279 fail:
11280 	pmu = ERR_PTR(-ENOENT);
11281 unlock:
11282 	srcu_read_unlock(&pmus_srcu, idx);
11283 
11284 	return pmu;
11285 }
11286 
11287 static void attach_sb_event(struct perf_event *event)
11288 {
11289 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11290 
11291 	raw_spin_lock(&pel->lock);
11292 	list_add_rcu(&event->sb_list, &pel->list);
11293 	raw_spin_unlock(&pel->lock);
11294 }
11295 
11296 /*
11297  * We keep a list of all !task (and therefore per-cpu) events
11298  * that need to receive side-band records.
11299  *
11300  * This avoids having to scan all the various PMU per-cpu contexts
11301  * looking for them.
11302  */
11303 static void account_pmu_sb_event(struct perf_event *event)
11304 {
11305 	if (is_sb_event(event))
11306 		attach_sb_event(event);
11307 }
11308 
11309 static void account_event_cpu(struct perf_event *event, int cpu)
11310 {
11311 	if (event->parent)
11312 		return;
11313 
11314 	if (is_cgroup_event(event))
11315 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11316 }
11317 
11318 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11319 static void account_freq_event_nohz(void)
11320 {
11321 #ifdef CONFIG_NO_HZ_FULL
11322 	/* Lock so we don't race with concurrent unaccount */
11323 	spin_lock(&nr_freq_lock);
11324 	if (atomic_inc_return(&nr_freq_events) == 1)
11325 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11326 	spin_unlock(&nr_freq_lock);
11327 #endif
11328 }
11329 
11330 static void account_freq_event(void)
11331 {
11332 	if (tick_nohz_full_enabled())
11333 		account_freq_event_nohz();
11334 	else
11335 		atomic_inc(&nr_freq_events);
11336 }
11337 
11338 
11339 static void account_event(struct perf_event *event)
11340 {
11341 	bool inc = false;
11342 
11343 	if (event->parent)
11344 		return;
11345 
11346 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11347 		inc = true;
11348 	if (event->attr.mmap || event->attr.mmap_data)
11349 		atomic_inc(&nr_mmap_events);
11350 	if (event->attr.build_id)
11351 		atomic_inc(&nr_build_id_events);
11352 	if (event->attr.comm)
11353 		atomic_inc(&nr_comm_events);
11354 	if (event->attr.namespaces)
11355 		atomic_inc(&nr_namespaces_events);
11356 	if (event->attr.cgroup)
11357 		atomic_inc(&nr_cgroup_events);
11358 	if (event->attr.task)
11359 		atomic_inc(&nr_task_events);
11360 	if (event->attr.freq)
11361 		account_freq_event();
11362 	if (event->attr.context_switch) {
11363 		atomic_inc(&nr_switch_events);
11364 		inc = true;
11365 	}
11366 	if (has_branch_stack(event))
11367 		inc = true;
11368 	if (is_cgroup_event(event))
11369 		inc = true;
11370 	if (event->attr.ksymbol)
11371 		atomic_inc(&nr_ksymbol_events);
11372 	if (event->attr.bpf_event)
11373 		atomic_inc(&nr_bpf_events);
11374 	if (event->attr.text_poke)
11375 		atomic_inc(&nr_text_poke_events);
11376 
11377 	if (inc) {
11378 		/*
11379 		 * We need the mutex here because static_branch_enable()
11380 		 * must complete *before* the perf_sched_count increment
11381 		 * becomes visible.
11382 		 */
11383 		if (atomic_inc_not_zero(&perf_sched_count))
11384 			goto enabled;
11385 
11386 		mutex_lock(&perf_sched_mutex);
11387 		if (!atomic_read(&perf_sched_count)) {
11388 			static_branch_enable(&perf_sched_events);
11389 			/*
11390 			 * Guarantee that all CPUs observe they key change and
11391 			 * call the perf scheduling hooks before proceeding to
11392 			 * install events that need them.
11393 			 */
11394 			synchronize_rcu();
11395 		}
11396 		/*
11397 		 * Now that we have waited for the sync_sched(), allow further
11398 		 * increments to by-pass the mutex.
11399 		 */
11400 		atomic_inc(&perf_sched_count);
11401 		mutex_unlock(&perf_sched_mutex);
11402 	}
11403 enabled:
11404 
11405 	account_event_cpu(event, event->cpu);
11406 
11407 	account_pmu_sb_event(event);
11408 }
11409 
11410 /*
11411  * Allocate and initialize an event structure
11412  */
11413 static struct perf_event *
11414 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11415 		 struct task_struct *task,
11416 		 struct perf_event *group_leader,
11417 		 struct perf_event *parent_event,
11418 		 perf_overflow_handler_t overflow_handler,
11419 		 void *context, int cgroup_fd)
11420 {
11421 	struct pmu *pmu;
11422 	struct perf_event *event;
11423 	struct hw_perf_event *hwc;
11424 	long err = -EINVAL;
11425 	int node;
11426 
11427 	if ((unsigned)cpu >= nr_cpu_ids) {
11428 		if (!task || cpu != -1)
11429 			return ERR_PTR(-EINVAL);
11430 	}
11431 	if (attr->sigtrap && !task) {
11432 		/* Requires a task: avoid signalling random tasks. */
11433 		return ERR_PTR(-EINVAL);
11434 	}
11435 
11436 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11437 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11438 				      node);
11439 	if (!event)
11440 		return ERR_PTR(-ENOMEM);
11441 
11442 	/*
11443 	 * Single events are their own group leaders, with an
11444 	 * empty sibling list:
11445 	 */
11446 	if (!group_leader)
11447 		group_leader = event;
11448 
11449 	mutex_init(&event->child_mutex);
11450 	INIT_LIST_HEAD(&event->child_list);
11451 
11452 	INIT_LIST_HEAD(&event->event_entry);
11453 	INIT_LIST_HEAD(&event->sibling_list);
11454 	INIT_LIST_HEAD(&event->active_list);
11455 	init_event_group(event);
11456 	INIT_LIST_HEAD(&event->rb_entry);
11457 	INIT_LIST_HEAD(&event->active_entry);
11458 	INIT_LIST_HEAD(&event->addr_filters.list);
11459 	INIT_HLIST_NODE(&event->hlist_entry);
11460 
11461 
11462 	init_waitqueue_head(&event->waitq);
11463 	event->pending_disable = -1;
11464 	init_irq_work(&event->pending, perf_pending_event);
11465 
11466 	mutex_init(&event->mmap_mutex);
11467 	raw_spin_lock_init(&event->addr_filters.lock);
11468 
11469 	atomic_long_set(&event->refcount, 1);
11470 	event->cpu		= cpu;
11471 	event->attr		= *attr;
11472 	event->group_leader	= group_leader;
11473 	event->pmu		= NULL;
11474 	event->oncpu		= -1;
11475 
11476 	event->parent		= parent_event;
11477 
11478 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11479 	event->id		= atomic64_inc_return(&perf_event_id);
11480 
11481 	event->state		= PERF_EVENT_STATE_INACTIVE;
11482 
11483 	if (event->attr.sigtrap)
11484 		atomic_set(&event->event_limit, 1);
11485 
11486 	if (task) {
11487 		event->attach_state = PERF_ATTACH_TASK;
11488 		/*
11489 		 * XXX pmu::event_init needs to know what task to account to
11490 		 * and we cannot use the ctx information because we need the
11491 		 * pmu before we get a ctx.
11492 		 */
11493 		event->hw.target = get_task_struct(task);
11494 	}
11495 
11496 	event->clock = &local_clock;
11497 	if (parent_event)
11498 		event->clock = parent_event->clock;
11499 
11500 	if (!overflow_handler && parent_event) {
11501 		overflow_handler = parent_event->overflow_handler;
11502 		context = parent_event->overflow_handler_context;
11503 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11504 		if (overflow_handler == bpf_overflow_handler) {
11505 			struct bpf_prog *prog = parent_event->prog;
11506 
11507 			bpf_prog_inc(prog);
11508 			event->prog = prog;
11509 			event->orig_overflow_handler =
11510 				parent_event->orig_overflow_handler;
11511 		}
11512 #endif
11513 	}
11514 
11515 	if (overflow_handler) {
11516 		event->overflow_handler	= overflow_handler;
11517 		event->overflow_handler_context = context;
11518 	} else if (is_write_backward(event)){
11519 		event->overflow_handler = perf_event_output_backward;
11520 		event->overflow_handler_context = NULL;
11521 	} else {
11522 		event->overflow_handler = perf_event_output_forward;
11523 		event->overflow_handler_context = NULL;
11524 	}
11525 
11526 	perf_event__state_init(event);
11527 
11528 	pmu = NULL;
11529 
11530 	hwc = &event->hw;
11531 	hwc->sample_period = attr->sample_period;
11532 	if (attr->freq && attr->sample_freq)
11533 		hwc->sample_period = 1;
11534 	hwc->last_period = hwc->sample_period;
11535 
11536 	local64_set(&hwc->period_left, hwc->sample_period);
11537 
11538 	/*
11539 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11540 	 * See perf_output_read().
11541 	 */
11542 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11543 		goto err_ns;
11544 
11545 	if (!has_branch_stack(event))
11546 		event->attr.branch_sample_type = 0;
11547 
11548 	pmu = perf_init_event(event);
11549 	if (IS_ERR(pmu)) {
11550 		err = PTR_ERR(pmu);
11551 		goto err_ns;
11552 	}
11553 
11554 	/*
11555 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11556 	 * be different on other CPUs in the uncore mask.
11557 	 */
11558 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11559 		err = -EINVAL;
11560 		goto err_pmu;
11561 	}
11562 
11563 	if (event->attr.aux_output &&
11564 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11565 		err = -EOPNOTSUPP;
11566 		goto err_pmu;
11567 	}
11568 
11569 	if (cgroup_fd != -1) {
11570 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11571 		if (err)
11572 			goto err_pmu;
11573 	}
11574 
11575 	err = exclusive_event_init(event);
11576 	if (err)
11577 		goto err_pmu;
11578 
11579 	if (has_addr_filter(event)) {
11580 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11581 						    sizeof(struct perf_addr_filter_range),
11582 						    GFP_KERNEL);
11583 		if (!event->addr_filter_ranges) {
11584 			err = -ENOMEM;
11585 			goto err_per_task;
11586 		}
11587 
11588 		/*
11589 		 * Clone the parent's vma offsets: they are valid until exec()
11590 		 * even if the mm is not shared with the parent.
11591 		 */
11592 		if (event->parent) {
11593 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11594 
11595 			raw_spin_lock_irq(&ifh->lock);
11596 			memcpy(event->addr_filter_ranges,
11597 			       event->parent->addr_filter_ranges,
11598 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11599 			raw_spin_unlock_irq(&ifh->lock);
11600 		}
11601 
11602 		/* force hw sync on the address filters */
11603 		event->addr_filters_gen = 1;
11604 	}
11605 
11606 	if (!event->parent) {
11607 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11608 			err = get_callchain_buffers(attr->sample_max_stack);
11609 			if (err)
11610 				goto err_addr_filters;
11611 		}
11612 	}
11613 
11614 	err = security_perf_event_alloc(event);
11615 	if (err)
11616 		goto err_callchain_buffer;
11617 
11618 	/* symmetric to unaccount_event() in _free_event() */
11619 	account_event(event);
11620 
11621 	return event;
11622 
11623 err_callchain_buffer:
11624 	if (!event->parent) {
11625 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11626 			put_callchain_buffers();
11627 	}
11628 err_addr_filters:
11629 	kfree(event->addr_filter_ranges);
11630 
11631 err_per_task:
11632 	exclusive_event_destroy(event);
11633 
11634 err_pmu:
11635 	if (is_cgroup_event(event))
11636 		perf_detach_cgroup(event);
11637 	if (event->destroy)
11638 		event->destroy(event);
11639 	module_put(pmu->module);
11640 err_ns:
11641 	if (event->ns)
11642 		put_pid_ns(event->ns);
11643 	if (event->hw.target)
11644 		put_task_struct(event->hw.target);
11645 	kmem_cache_free(perf_event_cache, event);
11646 
11647 	return ERR_PTR(err);
11648 }
11649 
11650 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11651 			  struct perf_event_attr *attr)
11652 {
11653 	u32 size;
11654 	int ret;
11655 
11656 	/* Zero the full structure, so that a short copy will be nice. */
11657 	memset(attr, 0, sizeof(*attr));
11658 
11659 	ret = get_user(size, &uattr->size);
11660 	if (ret)
11661 		return ret;
11662 
11663 	/* ABI compatibility quirk: */
11664 	if (!size)
11665 		size = PERF_ATTR_SIZE_VER0;
11666 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11667 		goto err_size;
11668 
11669 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11670 	if (ret) {
11671 		if (ret == -E2BIG)
11672 			goto err_size;
11673 		return ret;
11674 	}
11675 
11676 	attr->size = size;
11677 
11678 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11679 		return -EINVAL;
11680 
11681 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11682 		return -EINVAL;
11683 
11684 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11685 		return -EINVAL;
11686 
11687 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11688 		u64 mask = attr->branch_sample_type;
11689 
11690 		/* only using defined bits */
11691 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11692 			return -EINVAL;
11693 
11694 		/* at least one branch bit must be set */
11695 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11696 			return -EINVAL;
11697 
11698 		/* propagate priv level, when not set for branch */
11699 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11700 
11701 			/* exclude_kernel checked on syscall entry */
11702 			if (!attr->exclude_kernel)
11703 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11704 
11705 			if (!attr->exclude_user)
11706 				mask |= PERF_SAMPLE_BRANCH_USER;
11707 
11708 			if (!attr->exclude_hv)
11709 				mask |= PERF_SAMPLE_BRANCH_HV;
11710 			/*
11711 			 * adjust user setting (for HW filter setup)
11712 			 */
11713 			attr->branch_sample_type = mask;
11714 		}
11715 		/* privileged levels capture (kernel, hv): check permissions */
11716 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11717 			ret = perf_allow_kernel(attr);
11718 			if (ret)
11719 				return ret;
11720 		}
11721 	}
11722 
11723 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11724 		ret = perf_reg_validate(attr->sample_regs_user);
11725 		if (ret)
11726 			return ret;
11727 	}
11728 
11729 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11730 		if (!arch_perf_have_user_stack_dump())
11731 			return -ENOSYS;
11732 
11733 		/*
11734 		 * We have __u32 type for the size, but so far
11735 		 * we can only use __u16 as maximum due to the
11736 		 * __u16 sample size limit.
11737 		 */
11738 		if (attr->sample_stack_user >= USHRT_MAX)
11739 			return -EINVAL;
11740 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11741 			return -EINVAL;
11742 	}
11743 
11744 	if (!attr->sample_max_stack)
11745 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11746 
11747 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11748 		ret = perf_reg_validate(attr->sample_regs_intr);
11749 
11750 #ifndef CONFIG_CGROUP_PERF
11751 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11752 		return -EINVAL;
11753 #endif
11754 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11755 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11756 		return -EINVAL;
11757 
11758 	if (!attr->inherit && attr->inherit_thread)
11759 		return -EINVAL;
11760 
11761 	if (attr->remove_on_exec && attr->enable_on_exec)
11762 		return -EINVAL;
11763 
11764 	if (attr->sigtrap && !attr->remove_on_exec)
11765 		return -EINVAL;
11766 
11767 out:
11768 	return ret;
11769 
11770 err_size:
11771 	put_user(sizeof(*attr), &uattr->size);
11772 	ret = -E2BIG;
11773 	goto out;
11774 }
11775 
11776 static int
11777 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11778 {
11779 	struct perf_buffer *rb = NULL;
11780 	int ret = -EINVAL;
11781 
11782 	if (!output_event)
11783 		goto set;
11784 
11785 	/* don't allow circular references */
11786 	if (event == output_event)
11787 		goto out;
11788 
11789 	/*
11790 	 * Don't allow cross-cpu buffers
11791 	 */
11792 	if (output_event->cpu != event->cpu)
11793 		goto out;
11794 
11795 	/*
11796 	 * If its not a per-cpu rb, it must be the same task.
11797 	 */
11798 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11799 		goto out;
11800 
11801 	/*
11802 	 * Mixing clocks in the same buffer is trouble you don't need.
11803 	 */
11804 	if (output_event->clock != event->clock)
11805 		goto out;
11806 
11807 	/*
11808 	 * Either writing ring buffer from beginning or from end.
11809 	 * Mixing is not allowed.
11810 	 */
11811 	if (is_write_backward(output_event) != is_write_backward(event))
11812 		goto out;
11813 
11814 	/*
11815 	 * If both events generate aux data, they must be on the same PMU
11816 	 */
11817 	if (has_aux(event) && has_aux(output_event) &&
11818 	    event->pmu != output_event->pmu)
11819 		goto out;
11820 
11821 set:
11822 	mutex_lock(&event->mmap_mutex);
11823 	/* Can't redirect output if we've got an active mmap() */
11824 	if (atomic_read(&event->mmap_count))
11825 		goto unlock;
11826 
11827 	if (output_event) {
11828 		/* get the rb we want to redirect to */
11829 		rb = ring_buffer_get(output_event);
11830 		if (!rb)
11831 			goto unlock;
11832 	}
11833 
11834 	ring_buffer_attach(event, rb);
11835 
11836 	ret = 0;
11837 unlock:
11838 	mutex_unlock(&event->mmap_mutex);
11839 
11840 out:
11841 	return ret;
11842 }
11843 
11844 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11845 {
11846 	if (b < a)
11847 		swap(a, b);
11848 
11849 	mutex_lock(a);
11850 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11851 }
11852 
11853 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11854 {
11855 	bool nmi_safe = false;
11856 
11857 	switch (clk_id) {
11858 	case CLOCK_MONOTONIC:
11859 		event->clock = &ktime_get_mono_fast_ns;
11860 		nmi_safe = true;
11861 		break;
11862 
11863 	case CLOCK_MONOTONIC_RAW:
11864 		event->clock = &ktime_get_raw_fast_ns;
11865 		nmi_safe = true;
11866 		break;
11867 
11868 	case CLOCK_REALTIME:
11869 		event->clock = &ktime_get_real_ns;
11870 		break;
11871 
11872 	case CLOCK_BOOTTIME:
11873 		event->clock = &ktime_get_boottime_ns;
11874 		break;
11875 
11876 	case CLOCK_TAI:
11877 		event->clock = &ktime_get_clocktai_ns;
11878 		break;
11879 
11880 	default:
11881 		return -EINVAL;
11882 	}
11883 
11884 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11885 		return -EINVAL;
11886 
11887 	return 0;
11888 }
11889 
11890 /*
11891  * Variation on perf_event_ctx_lock_nested(), except we take two context
11892  * mutexes.
11893  */
11894 static struct perf_event_context *
11895 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11896 			     struct perf_event_context *ctx)
11897 {
11898 	struct perf_event_context *gctx;
11899 
11900 again:
11901 	rcu_read_lock();
11902 	gctx = READ_ONCE(group_leader->ctx);
11903 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11904 		rcu_read_unlock();
11905 		goto again;
11906 	}
11907 	rcu_read_unlock();
11908 
11909 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11910 
11911 	if (group_leader->ctx != gctx) {
11912 		mutex_unlock(&ctx->mutex);
11913 		mutex_unlock(&gctx->mutex);
11914 		put_ctx(gctx);
11915 		goto again;
11916 	}
11917 
11918 	return gctx;
11919 }
11920 
11921 static bool
11922 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11923 {
11924 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11925 	bool is_capable = perfmon_capable();
11926 
11927 	if (attr->sigtrap) {
11928 		/*
11929 		 * perf_event_attr::sigtrap sends signals to the other task.
11930 		 * Require the current task to also have CAP_KILL.
11931 		 */
11932 		rcu_read_lock();
11933 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11934 		rcu_read_unlock();
11935 
11936 		/*
11937 		 * If the required capabilities aren't available, checks for
11938 		 * ptrace permissions: upgrade to ATTACH, since sending signals
11939 		 * can effectively change the target task.
11940 		 */
11941 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11942 	}
11943 
11944 	/*
11945 	 * Preserve ptrace permission check for backwards compatibility. The
11946 	 * ptrace check also includes checks that the current task and other
11947 	 * task have matching uids, and is therefore not done here explicitly.
11948 	 */
11949 	return is_capable || ptrace_may_access(task, ptrace_mode);
11950 }
11951 
11952 /**
11953  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11954  *
11955  * @attr_uptr:	event_id type attributes for monitoring/sampling
11956  * @pid:		target pid
11957  * @cpu:		target cpu
11958  * @group_fd:		group leader event fd
11959  * @flags:		perf event open flags
11960  */
11961 SYSCALL_DEFINE5(perf_event_open,
11962 		struct perf_event_attr __user *, attr_uptr,
11963 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11964 {
11965 	struct perf_event *group_leader = NULL, *output_event = NULL;
11966 	struct perf_event *event, *sibling;
11967 	struct perf_event_attr attr;
11968 	struct perf_event_context *ctx, *gctx;
11969 	struct file *event_file = NULL;
11970 	struct fd group = {NULL, 0};
11971 	struct task_struct *task = NULL;
11972 	struct pmu *pmu;
11973 	int event_fd;
11974 	int move_group = 0;
11975 	int err;
11976 	int f_flags = O_RDWR;
11977 	int cgroup_fd = -1;
11978 
11979 	/* for future expandability... */
11980 	if (flags & ~PERF_FLAG_ALL)
11981 		return -EINVAL;
11982 
11983 	/* Do we allow access to perf_event_open(2) ? */
11984 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11985 	if (err)
11986 		return err;
11987 
11988 	err = perf_copy_attr(attr_uptr, &attr);
11989 	if (err)
11990 		return err;
11991 
11992 	if (!attr.exclude_kernel) {
11993 		err = perf_allow_kernel(&attr);
11994 		if (err)
11995 			return err;
11996 	}
11997 
11998 	if (attr.namespaces) {
11999 		if (!perfmon_capable())
12000 			return -EACCES;
12001 	}
12002 
12003 	if (attr.freq) {
12004 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12005 			return -EINVAL;
12006 	} else {
12007 		if (attr.sample_period & (1ULL << 63))
12008 			return -EINVAL;
12009 	}
12010 
12011 	/* Only privileged users can get physical addresses */
12012 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12013 		err = perf_allow_kernel(&attr);
12014 		if (err)
12015 			return err;
12016 	}
12017 
12018 	/* REGS_INTR can leak data, lockdown must prevent this */
12019 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12020 		err = security_locked_down(LOCKDOWN_PERF);
12021 		if (err)
12022 			return err;
12023 	}
12024 
12025 	/*
12026 	 * In cgroup mode, the pid argument is used to pass the fd
12027 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12028 	 * designates the cpu on which to monitor threads from that
12029 	 * cgroup.
12030 	 */
12031 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12032 		return -EINVAL;
12033 
12034 	if (flags & PERF_FLAG_FD_CLOEXEC)
12035 		f_flags |= O_CLOEXEC;
12036 
12037 	event_fd = get_unused_fd_flags(f_flags);
12038 	if (event_fd < 0)
12039 		return event_fd;
12040 
12041 	if (group_fd != -1) {
12042 		err = perf_fget_light(group_fd, &group);
12043 		if (err)
12044 			goto err_fd;
12045 		group_leader = group.file->private_data;
12046 		if (flags & PERF_FLAG_FD_OUTPUT)
12047 			output_event = group_leader;
12048 		if (flags & PERF_FLAG_FD_NO_GROUP)
12049 			group_leader = NULL;
12050 	}
12051 
12052 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12053 		task = find_lively_task_by_vpid(pid);
12054 		if (IS_ERR(task)) {
12055 			err = PTR_ERR(task);
12056 			goto err_group_fd;
12057 		}
12058 	}
12059 
12060 	if (task && group_leader &&
12061 	    group_leader->attr.inherit != attr.inherit) {
12062 		err = -EINVAL;
12063 		goto err_task;
12064 	}
12065 
12066 	if (flags & PERF_FLAG_PID_CGROUP)
12067 		cgroup_fd = pid;
12068 
12069 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12070 				 NULL, NULL, cgroup_fd);
12071 	if (IS_ERR(event)) {
12072 		err = PTR_ERR(event);
12073 		goto err_task;
12074 	}
12075 
12076 	if (is_sampling_event(event)) {
12077 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12078 			err = -EOPNOTSUPP;
12079 			goto err_alloc;
12080 		}
12081 	}
12082 
12083 	/*
12084 	 * Special case software events and allow them to be part of
12085 	 * any hardware group.
12086 	 */
12087 	pmu = event->pmu;
12088 
12089 	if (attr.use_clockid) {
12090 		err = perf_event_set_clock(event, attr.clockid);
12091 		if (err)
12092 			goto err_alloc;
12093 	}
12094 
12095 	if (pmu->task_ctx_nr == perf_sw_context)
12096 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12097 
12098 	if (group_leader) {
12099 		if (is_software_event(event) &&
12100 		    !in_software_context(group_leader)) {
12101 			/*
12102 			 * If the event is a sw event, but the group_leader
12103 			 * is on hw context.
12104 			 *
12105 			 * Allow the addition of software events to hw
12106 			 * groups, this is safe because software events
12107 			 * never fail to schedule.
12108 			 */
12109 			pmu = group_leader->ctx->pmu;
12110 		} else if (!is_software_event(event) &&
12111 			   is_software_event(group_leader) &&
12112 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12113 			/*
12114 			 * In case the group is a pure software group, and we
12115 			 * try to add a hardware event, move the whole group to
12116 			 * the hardware context.
12117 			 */
12118 			move_group = 1;
12119 		}
12120 	}
12121 
12122 	/*
12123 	 * Get the target context (task or percpu):
12124 	 */
12125 	ctx = find_get_context(pmu, task, event);
12126 	if (IS_ERR(ctx)) {
12127 		err = PTR_ERR(ctx);
12128 		goto err_alloc;
12129 	}
12130 
12131 	/*
12132 	 * Look up the group leader (we will attach this event to it):
12133 	 */
12134 	if (group_leader) {
12135 		err = -EINVAL;
12136 
12137 		/*
12138 		 * Do not allow a recursive hierarchy (this new sibling
12139 		 * becoming part of another group-sibling):
12140 		 */
12141 		if (group_leader->group_leader != group_leader)
12142 			goto err_context;
12143 
12144 		/* All events in a group should have the same clock */
12145 		if (group_leader->clock != event->clock)
12146 			goto err_context;
12147 
12148 		/*
12149 		 * Make sure we're both events for the same CPU;
12150 		 * grouping events for different CPUs is broken; since
12151 		 * you can never concurrently schedule them anyhow.
12152 		 */
12153 		if (group_leader->cpu != event->cpu)
12154 			goto err_context;
12155 
12156 		/*
12157 		 * Make sure we're both on the same task, or both
12158 		 * per-CPU events.
12159 		 */
12160 		if (group_leader->ctx->task != ctx->task)
12161 			goto err_context;
12162 
12163 		/*
12164 		 * Do not allow to attach to a group in a different task
12165 		 * or CPU context. If we're moving SW events, we'll fix
12166 		 * this up later, so allow that.
12167 		 */
12168 		if (!move_group && group_leader->ctx != ctx)
12169 			goto err_context;
12170 
12171 		/*
12172 		 * Only a group leader can be exclusive or pinned
12173 		 */
12174 		if (attr.exclusive || attr.pinned)
12175 			goto err_context;
12176 	}
12177 
12178 	if (output_event) {
12179 		err = perf_event_set_output(event, output_event);
12180 		if (err)
12181 			goto err_context;
12182 	}
12183 
12184 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12185 					f_flags);
12186 	if (IS_ERR(event_file)) {
12187 		err = PTR_ERR(event_file);
12188 		event_file = NULL;
12189 		goto err_context;
12190 	}
12191 
12192 	if (task) {
12193 		err = down_read_interruptible(&task->signal->exec_update_lock);
12194 		if (err)
12195 			goto err_file;
12196 
12197 		/*
12198 		 * We must hold exec_update_lock across this and any potential
12199 		 * perf_install_in_context() call for this new event to
12200 		 * serialize against exec() altering our credentials (and the
12201 		 * perf_event_exit_task() that could imply).
12202 		 */
12203 		err = -EACCES;
12204 		if (!perf_check_permission(&attr, task))
12205 			goto err_cred;
12206 	}
12207 
12208 	if (move_group) {
12209 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12210 
12211 		if (gctx->task == TASK_TOMBSTONE) {
12212 			err = -ESRCH;
12213 			goto err_locked;
12214 		}
12215 
12216 		/*
12217 		 * Check if we raced against another sys_perf_event_open() call
12218 		 * moving the software group underneath us.
12219 		 */
12220 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12221 			/*
12222 			 * If someone moved the group out from under us, check
12223 			 * if this new event wound up on the same ctx, if so
12224 			 * its the regular !move_group case, otherwise fail.
12225 			 */
12226 			if (gctx != ctx) {
12227 				err = -EINVAL;
12228 				goto err_locked;
12229 			} else {
12230 				perf_event_ctx_unlock(group_leader, gctx);
12231 				move_group = 0;
12232 			}
12233 		}
12234 
12235 		/*
12236 		 * Failure to create exclusive events returns -EBUSY.
12237 		 */
12238 		err = -EBUSY;
12239 		if (!exclusive_event_installable(group_leader, ctx))
12240 			goto err_locked;
12241 
12242 		for_each_sibling_event(sibling, group_leader) {
12243 			if (!exclusive_event_installable(sibling, ctx))
12244 				goto err_locked;
12245 		}
12246 	} else {
12247 		mutex_lock(&ctx->mutex);
12248 	}
12249 
12250 	if (ctx->task == TASK_TOMBSTONE) {
12251 		err = -ESRCH;
12252 		goto err_locked;
12253 	}
12254 
12255 	if (!perf_event_validate_size(event)) {
12256 		err = -E2BIG;
12257 		goto err_locked;
12258 	}
12259 
12260 	if (!task) {
12261 		/*
12262 		 * Check if the @cpu we're creating an event for is online.
12263 		 *
12264 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12265 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12266 		 */
12267 		struct perf_cpu_context *cpuctx =
12268 			container_of(ctx, struct perf_cpu_context, ctx);
12269 
12270 		if (!cpuctx->online) {
12271 			err = -ENODEV;
12272 			goto err_locked;
12273 		}
12274 	}
12275 
12276 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12277 		err = -EINVAL;
12278 		goto err_locked;
12279 	}
12280 
12281 	/*
12282 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12283 	 * because we need to serialize with concurrent event creation.
12284 	 */
12285 	if (!exclusive_event_installable(event, ctx)) {
12286 		err = -EBUSY;
12287 		goto err_locked;
12288 	}
12289 
12290 	WARN_ON_ONCE(ctx->parent_ctx);
12291 
12292 	/*
12293 	 * This is the point on no return; we cannot fail hereafter. This is
12294 	 * where we start modifying current state.
12295 	 */
12296 
12297 	if (move_group) {
12298 		/*
12299 		 * See perf_event_ctx_lock() for comments on the details
12300 		 * of swizzling perf_event::ctx.
12301 		 */
12302 		perf_remove_from_context(group_leader, 0);
12303 		put_ctx(gctx);
12304 
12305 		for_each_sibling_event(sibling, group_leader) {
12306 			perf_remove_from_context(sibling, 0);
12307 			put_ctx(gctx);
12308 		}
12309 
12310 		/*
12311 		 * Wait for everybody to stop referencing the events through
12312 		 * the old lists, before installing it on new lists.
12313 		 */
12314 		synchronize_rcu();
12315 
12316 		/*
12317 		 * Install the group siblings before the group leader.
12318 		 *
12319 		 * Because a group leader will try and install the entire group
12320 		 * (through the sibling list, which is still in-tact), we can
12321 		 * end up with siblings installed in the wrong context.
12322 		 *
12323 		 * By installing siblings first we NO-OP because they're not
12324 		 * reachable through the group lists.
12325 		 */
12326 		for_each_sibling_event(sibling, group_leader) {
12327 			perf_event__state_init(sibling);
12328 			perf_install_in_context(ctx, sibling, sibling->cpu);
12329 			get_ctx(ctx);
12330 		}
12331 
12332 		/*
12333 		 * Removing from the context ends up with disabled
12334 		 * event. What we want here is event in the initial
12335 		 * startup state, ready to be add into new context.
12336 		 */
12337 		perf_event__state_init(group_leader);
12338 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12339 		get_ctx(ctx);
12340 	}
12341 
12342 	/*
12343 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12344 	 * that we're serialized against further additions and before
12345 	 * perf_install_in_context() which is the point the event is active and
12346 	 * can use these values.
12347 	 */
12348 	perf_event__header_size(event);
12349 	perf_event__id_header_size(event);
12350 
12351 	event->owner = current;
12352 
12353 	perf_install_in_context(ctx, event, event->cpu);
12354 	perf_unpin_context(ctx);
12355 
12356 	if (move_group)
12357 		perf_event_ctx_unlock(group_leader, gctx);
12358 	mutex_unlock(&ctx->mutex);
12359 
12360 	if (task) {
12361 		up_read(&task->signal->exec_update_lock);
12362 		put_task_struct(task);
12363 	}
12364 
12365 	mutex_lock(&current->perf_event_mutex);
12366 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12367 	mutex_unlock(&current->perf_event_mutex);
12368 
12369 	/*
12370 	 * Drop the reference on the group_event after placing the
12371 	 * new event on the sibling_list. This ensures destruction
12372 	 * of the group leader will find the pointer to itself in
12373 	 * perf_group_detach().
12374 	 */
12375 	fdput(group);
12376 	fd_install(event_fd, event_file);
12377 	return event_fd;
12378 
12379 err_locked:
12380 	if (move_group)
12381 		perf_event_ctx_unlock(group_leader, gctx);
12382 	mutex_unlock(&ctx->mutex);
12383 err_cred:
12384 	if (task)
12385 		up_read(&task->signal->exec_update_lock);
12386 err_file:
12387 	fput(event_file);
12388 err_context:
12389 	perf_unpin_context(ctx);
12390 	put_ctx(ctx);
12391 err_alloc:
12392 	/*
12393 	 * If event_file is set, the fput() above will have called ->release()
12394 	 * and that will take care of freeing the event.
12395 	 */
12396 	if (!event_file)
12397 		free_event(event);
12398 err_task:
12399 	if (task)
12400 		put_task_struct(task);
12401 err_group_fd:
12402 	fdput(group);
12403 err_fd:
12404 	put_unused_fd(event_fd);
12405 	return err;
12406 }
12407 
12408 /**
12409  * perf_event_create_kernel_counter
12410  *
12411  * @attr: attributes of the counter to create
12412  * @cpu: cpu in which the counter is bound
12413  * @task: task to profile (NULL for percpu)
12414  * @overflow_handler: callback to trigger when we hit the event
12415  * @context: context data could be used in overflow_handler callback
12416  */
12417 struct perf_event *
12418 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12419 				 struct task_struct *task,
12420 				 perf_overflow_handler_t overflow_handler,
12421 				 void *context)
12422 {
12423 	struct perf_event_context *ctx;
12424 	struct perf_event *event;
12425 	int err;
12426 
12427 	/*
12428 	 * Grouping is not supported for kernel events, neither is 'AUX',
12429 	 * make sure the caller's intentions are adjusted.
12430 	 */
12431 	if (attr->aux_output)
12432 		return ERR_PTR(-EINVAL);
12433 
12434 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12435 				 overflow_handler, context, -1);
12436 	if (IS_ERR(event)) {
12437 		err = PTR_ERR(event);
12438 		goto err;
12439 	}
12440 
12441 	/* Mark owner so we could distinguish it from user events. */
12442 	event->owner = TASK_TOMBSTONE;
12443 
12444 	/*
12445 	 * Get the target context (task or percpu):
12446 	 */
12447 	ctx = find_get_context(event->pmu, task, event);
12448 	if (IS_ERR(ctx)) {
12449 		err = PTR_ERR(ctx);
12450 		goto err_free;
12451 	}
12452 
12453 	WARN_ON_ONCE(ctx->parent_ctx);
12454 	mutex_lock(&ctx->mutex);
12455 	if (ctx->task == TASK_TOMBSTONE) {
12456 		err = -ESRCH;
12457 		goto err_unlock;
12458 	}
12459 
12460 	if (!task) {
12461 		/*
12462 		 * Check if the @cpu we're creating an event for is online.
12463 		 *
12464 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12465 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12466 		 */
12467 		struct perf_cpu_context *cpuctx =
12468 			container_of(ctx, struct perf_cpu_context, ctx);
12469 		if (!cpuctx->online) {
12470 			err = -ENODEV;
12471 			goto err_unlock;
12472 		}
12473 	}
12474 
12475 	if (!exclusive_event_installable(event, ctx)) {
12476 		err = -EBUSY;
12477 		goto err_unlock;
12478 	}
12479 
12480 	perf_install_in_context(ctx, event, event->cpu);
12481 	perf_unpin_context(ctx);
12482 	mutex_unlock(&ctx->mutex);
12483 
12484 	return event;
12485 
12486 err_unlock:
12487 	mutex_unlock(&ctx->mutex);
12488 	perf_unpin_context(ctx);
12489 	put_ctx(ctx);
12490 err_free:
12491 	free_event(event);
12492 err:
12493 	return ERR_PTR(err);
12494 }
12495 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12496 
12497 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12498 {
12499 	struct perf_event_context *src_ctx;
12500 	struct perf_event_context *dst_ctx;
12501 	struct perf_event *event, *tmp;
12502 	LIST_HEAD(events);
12503 
12504 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12505 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12506 
12507 	/*
12508 	 * See perf_event_ctx_lock() for comments on the details
12509 	 * of swizzling perf_event::ctx.
12510 	 */
12511 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12512 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12513 				 event_entry) {
12514 		perf_remove_from_context(event, 0);
12515 		unaccount_event_cpu(event, src_cpu);
12516 		put_ctx(src_ctx);
12517 		list_add(&event->migrate_entry, &events);
12518 	}
12519 
12520 	/*
12521 	 * Wait for the events to quiesce before re-instating them.
12522 	 */
12523 	synchronize_rcu();
12524 
12525 	/*
12526 	 * Re-instate events in 2 passes.
12527 	 *
12528 	 * Skip over group leaders and only install siblings on this first
12529 	 * pass, siblings will not get enabled without a leader, however a
12530 	 * leader will enable its siblings, even if those are still on the old
12531 	 * context.
12532 	 */
12533 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12534 		if (event->group_leader == event)
12535 			continue;
12536 
12537 		list_del(&event->migrate_entry);
12538 		if (event->state >= PERF_EVENT_STATE_OFF)
12539 			event->state = PERF_EVENT_STATE_INACTIVE;
12540 		account_event_cpu(event, dst_cpu);
12541 		perf_install_in_context(dst_ctx, event, dst_cpu);
12542 		get_ctx(dst_ctx);
12543 	}
12544 
12545 	/*
12546 	 * Once all the siblings are setup properly, install the group leaders
12547 	 * to make it go.
12548 	 */
12549 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12550 		list_del(&event->migrate_entry);
12551 		if (event->state >= PERF_EVENT_STATE_OFF)
12552 			event->state = PERF_EVENT_STATE_INACTIVE;
12553 		account_event_cpu(event, dst_cpu);
12554 		perf_install_in_context(dst_ctx, event, dst_cpu);
12555 		get_ctx(dst_ctx);
12556 	}
12557 	mutex_unlock(&dst_ctx->mutex);
12558 	mutex_unlock(&src_ctx->mutex);
12559 }
12560 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12561 
12562 static void sync_child_event(struct perf_event *child_event)
12563 {
12564 	struct perf_event *parent_event = child_event->parent;
12565 	u64 child_val;
12566 
12567 	if (child_event->attr.inherit_stat) {
12568 		struct task_struct *task = child_event->ctx->task;
12569 
12570 		if (task && task != TASK_TOMBSTONE)
12571 			perf_event_read_event(child_event, task);
12572 	}
12573 
12574 	child_val = perf_event_count(child_event);
12575 
12576 	/*
12577 	 * Add back the child's count to the parent's count:
12578 	 */
12579 	atomic64_add(child_val, &parent_event->child_count);
12580 	atomic64_add(child_event->total_time_enabled,
12581 		     &parent_event->child_total_time_enabled);
12582 	atomic64_add(child_event->total_time_running,
12583 		     &parent_event->child_total_time_running);
12584 }
12585 
12586 static void
12587 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12588 {
12589 	struct perf_event *parent_event = event->parent;
12590 	unsigned long detach_flags = 0;
12591 
12592 	if (parent_event) {
12593 		/*
12594 		 * Do not destroy the 'original' grouping; because of the
12595 		 * context switch optimization the original events could've
12596 		 * ended up in a random child task.
12597 		 *
12598 		 * If we were to destroy the original group, all group related
12599 		 * operations would cease to function properly after this
12600 		 * random child dies.
12601 		 *
12602 		 * Do destroy all inherited groups, we don't care about those
12603 		 * and being thorough is better.
12604 		 */
12605 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12606 		mutex_lock(&parent_event->child_mutex);
12607 	}
12608 
12609 	perf_remove_from_context(event, detach_flags);
12610 
12611 	raw_spin_lock_irq(&ctx->lock);
12612 	if (event->state > PERF_EVENT_STATE_EXIT)
12613 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12614 	raw_spin_unlock_irq(&ctx->lock);
12615 
12616 	/*
12617 	 * Child events can be freed.
12618 	 */
12619 	if (parent_event) {
12620 		mutex_unlock(&parent_event->child_mutex);
12621 		/*
12622 		 * Kick perf_poll() for is_event_hup();
12623 		 */
12624 		perf_event_wakeup(parent_event);
12625 		free_event(event);
12626 		put_event(parent_event);
12627 		return;
12628 	}
12629 
12630 	/*
12631 	 * Parent events are governed by their filedesc, retain them.
12632 	 */
12633 	perf_event_wakeup(event);
12634 }
12635 
12636 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12637 {
12638 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12639 	struct perf_event *child_event, *next;
12640 
12641 	WARN_ON_ONCE(child != current);
12642 
12643 	child_ctx = perf_pin_task_context(child, ctxn);
12644 	if (!child_ctx)
12645 		return;
12646 
12647 	/*
12648 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12649 	 * ctx::mutex over the entire thing. This serializes against almost
12650 	 * everything that wants to access the ctx.
12651 	 *
12652 	 * The exception is sys_perf_event_open() /
12653 	 * perf_event_create_kernel_count() which does find_get_context()
12654 	 * without ctx::mutex (it cannot because of the move_group double mutex
12655 	 * lock thing). See the comments in perf_install_in_context().
12656 	 */
12657 	mutex_lock(&child_ctx->mutex);
12658 
12659 	/*
12660 	 * In a single ctx::lock section, de-schedule the events and detach the
12661 	 * context from the task such that we cannot ever get it scheduled back
12662 	 * in.
12663 	 */
12664 	raw_spin_lock_irq(&child_ctx->lock);
12665 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12666 
12667 	/*
12668 	 * Now that the context is inactive, destroy the task <-> ctx relation
12669 	 * and mark the context dead.
12670 	 */
12671 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12672 	put_ctx(child_ctx); /* cannot be last */
12673 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12674 	put_task_struct(current); /* cannot be last */
12675 
12676 	clone_ctx = unclone_ctx(child_ctx);
12677 	raw_spin_unlock_irq(&child_ctx->lock);
12678 
12679 	if (clone_ctx)
12680 		put_ctx(clone_ctx);
12681 
12682 	/*
12683 	 * Report the task dead after unscheduling the events so that we
12684 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12685 	 * get a few PERF_RECORD_READ events.
12686 	 */
12687 	perf_event_task(child, child_ctx, 0);
12688 
12689 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12690 		perf_event_exit_event(child_event, child_ctx);
12691 
12692 	mutex_unlock(&child_ctx->mutex);
12693 
12694 	put_ctx(child_ctx);
12695 }
12696 
12697 /*
12698  * When a child task exits, feed back event values to parent events.
12699  *
12700  * Can be called with exec_update_lock held when called from
12701  * setup_new_exec().
12702  */
12703 void perf_event_exit_task(struct task_struct *child)
12704 {
12705 	struct perf_event *event, *tmp;
12706 	int ctxn;
12707 
12708 	mutex_lock(&child->perf_event_mutex);
12709 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12710 				 owner_entry) {
12711 		list_del_init(&event->owner_entry);
12712 
12713 		/*
12714 		 * Ensure the list deletion is visible before we clear
12715 		 * the owner, closes a race against perf_release() where
12716 		 * we need to serialize on the owner->perf_event_mutex.
12717 		 */
12718 		smp_store_release(&event->owner, NULL);
12719 	}
12720 	mutex_unlock(&child->perf_event_mutex);
12721 
12722 	for_each_task_context_nr(ctxn)
12723 		perf_event_exit_task_context(child, ctxn);
12724 
12725 	/*
12726 	 * The perf_event_exit_task_context calls perf_event_task
12727 	 * with child's task_ctx, which generates EXIT events for
12728 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12729 	 * At this point we need to send EXIT events to cpu contexts.
12730 	 */
12731 	perf_event_task(child, NULL, 0);
12732 }
12733 
12734 static void perf_free_event(struct perf_event *event,
12735 			    struct perf_event_context *ctx)
12736 {
12737 	struct perf_event *parent = event->parent;
12738 
12739 	if (WARN_ON_ONCE(!parent))
12740 		return;
12741 
12742 	mutex_lock(&parent->child_mutex);
12743 	list_del_init(&event->child_list);
12744 	mutex_unlock(&parent->child_mutex);
12745 
12746 	put_event(parent);
12747 
12748 	raw_spin_lock_irq(&ctx->lock);
12749 	perf_group_detach(event);
12750 	list_del_event(event, ctx);
12751 	raw_spin_unlock_irq(&ctx->lock);
12752 	free_event(event);
12753 }
12754 
12755 /*
12756  * Free a context as created by inheritance by perf_event_init_task() below,
12757  * used by fork() in case of fail.
12758  *
12759  * Even though the task has never lived, the context and events have been
12760  * exposed through the child_list, so we must take care tearing it all down.
12761  */
12762 void perf_event_free_task(struct task_struct *task)
12763 {
12764 	struct perf_event_context *ctx;
12765 	struct perf_event *event, *tmp;
12766 	int ctxn;
12767 
12768 	for_each_task_context_nr(ctxn) {
12769 		ctx = task->perf_event_ctxp[ctxn];
12770 		if (!ctx)
12771 			continue;
12772 
12773 		mutex_lock(&ctx->mutex);
12774 		raw_spin_lock_irq(&ctx->lock);
12775 		/*
12776 		 * Destroy the task <-> ctx relation and mark the context dead.
12777 		 *
12778 		 * This is important because even though the task hasn't been
12779 		 * exposed yet the context has been (through child_list).
12780 		 */
12781 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12782 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12783 		put_task_struct(task); /* cannot be last */
12784 		raw_spin_unlock_irq(&ctx->lock);
12785 
12786 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12787 			perf_free_event(event, ctx);
12788 
12789 		mutex_unlock(&ctx->mutex);
12790 
12791 		/*
12792 		 * perf_event_release_kernel() could've stolen some of our
12793 		 * child events and still have them on its free_list. In that
12794 		 * case we must wait for these events to have been freed (in
12795 		 * particular all their references to this task must've been
12796 		 * dropped).
12797 		 *
12798 		 * Without this copy_process() will unconditionally free this
12799 		 * task (irrespective of its reference count) and
12800 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12801 		 * use-after-free.
12802 		 *
12803 		 * Wait for all events to drop their context reference.
12804 		 */
12805 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12806 		put_ctx(ctx); /* must be last */
12807 	}
12808 }
12809 
12810 void perf_event_delayed_put(struct task_struct *task)
12811 {
12812 	int ctxn;
12813 
12814 	for_each_task_context_nr(ctxn)
12815 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12816 }
12817 
12818 struct file *perf_event_get(unsigned int fd)
12819 {
12820 	struct file *file = fget(fd);
12821 	if (!file)
12822 		return ERR_PTR(-EBADF);
12823 
12824 	if (file->f_op != &perf_fops) {
12825 		fput(file);
12826 		return ERR_PTR(-EBADF);
12827 	}
12828 
12829 	return file;
12830 }
12831 
12832 const struct perf_event *perf_get_event(struct file *file)
12833 {
12834 	if (file->f_op != &perf_fops)
12835 		return ERR_PTR(-EINVAL);
12836 
12837 	return file->private_data;
12838 }
12839 
12840 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12841 {
12842 	if (!event)
12843 		return ERR_PTR(-EINVAL);
12844 
12845 	return &event->attr;
12846 }
12847 
12848 /*
12849  * Inherit an event from parent task to child task.
12850  *
12851  * Returns:
12852  *  - valid pointer on success
12853  *  - NULL for orphaned events
12854  *  - IS_ERR() on error
12855  */
12856 static struct perf_event *
12857 inherit_event(struct perf_event *parent_event,
12858 	      struct task_struct *parent,
12859 	      struct perf_event_context *parent_ctx,
12860 	      struct task_struct *child,
12861 	      struct perf_event *group_leader,
12862 	      struct perf_event_context *child_ctx)
12863 {
12864 	enum perf_event_state parent_state = parent_event->state;
12865 	struct perf_event *child_event;
12866 	unsigned long flags;
12867 
12868 	/*
12869 	 * Instead of creating recursive hierarchies of events,
12870 	 * we link inherited events back to the original parent,
12871 	 * which has a filp for sure, which we use as the reference
12872 	 * count:
12873 	 */
12874 	if (parent_event->parent)
12875 		parent_event = parent_event->parent;
12876 
12877 	child_event = perf_event_alloc(&parent_event->attr,
12878 					   parent_event->cpu,
12879 					   child,
12880 					   group_leader, parent_event,
12881 					   NULL, NULL, -1);
12882 	if (IS_ERR(child_event))
12883 		return child_event;
12884 
12885 
12886 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12887 	    !child_ctx->task_ctx_data) {
12888 		struct pmu *pmu = child_event->pmu;
12889 
12890 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12891 		if (!child_ctx->task_ctx_data) {
12892 			free_event(child_event);
12893 			return ERR_PTR(-ENOMEM);
12894 		}
12895 	}
12896 
12897 	/*
12898 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12899 	 * must be under the same lock in order to serialize against
12900 	 * perf_event_release_kernel(), such that either we must observe
12901 	 * is_orphaned_event() or they will observe us on the child_list.
12902 	 */
12903 	mutex_lock(&parent_event->child_mutex);
12904 	if (is_orphaned_event(parent_event) ||
12905 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12906 		mutex_unlock(&parent_event->child_mutex);
12907 		/* task_ctx_data is freed with child_ctx */
12908 		free_event(child_event);
12909 		return NULL;
12910 	}
12911 
12912 	get_ctx(child_ctx);
12913 
12914 	/*
12915 	 * Make the child state follow the state of the parent event,
12916 	 * not its attr.disabled bit.  We hold the parent's mutex,
12917 	 * so we won't race with perf_event_{en, dis}able_family.
12918 	 */
12919 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12920 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12921 	else
12922 		child_event->state = PERF_EVENT_STATE_OFF;
12923 
12924 	if (parent_event->attr.freq) {
12925 		u64 sample_period = parent_event->hw.sample_period;
12926 		struct hw_perf_event *hwc = &child_event->hw;
12927 
12928 		hwc->sample_period = sample_period;
12929 		hwc->last_period   = sample_period;
12930 
12931 		local64_set(&hwc->period_left, sample_period);
12932 	}
12933 
12934 	child_event->ctx = child_ctx;
12935 	child_event->overflow_handler = parent_event->overflow_handler;
12936 	child_event->overflow_handler_context
12937 		= parent_event->overflow_handler_context;
12938 
12939 	/*
12940 	 * Precalculate sample_data sizes
12941 	 */
12942 	perf_event__header_size(child_event);
12943 	perf_event__id_header_size(child_event);
12944 
12945 	/*
12946 	 * Link it up in the child's context:
12947 	 */
12948 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12949 	add_event_to_ctx(child_event, child_ctx);
12950 	child_event->attach_state |= PERF_ATTACH_CHILD;
12951 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12952 
12953 	/*
12954 	 * Link this into the parent event's child list
12955 	 */
12956 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12957 	mutex_unlock(&parent_event->child_mutex);
12958 
12959 	return child_event;
12960 }
12961 
12962 /*
12963  * Inherits an event group.
12964  *
12965  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12966  * This matches with perf_event_release_kernel() removing all child events.
12967  *
12968  * Returns:
12969  *  - 0 on success
12970  *  - <0 on error
12971  */
12972 static int inherit_group(struct perf_event *parent_event,
12973 	      struct task_struct *parent,
12974 	      struct perf_event_context *parent_ctx,
12975 	      struct task_struct *child,
12976 	      struct perf_event_context *child_ctx)
12977 {
12978 	struct perf_event *leader;
12979 	struct perf_event *sub;
12980 	struct perf_event *child_ctr;
12981 
12982 	leader = inherit_event(parent_event, parent, parent_ctx,
12983 				 child, NULL, child_ctx);
12984 	if (IS_ERR(leader))
12985 		return PTR_ERR(leader);
12986 	/*
12987 	 * @leader can be NULL here because of is_orphaned_event(). In this
12988 	 * case inherit_event() will create individual events, similar to what
12989 	 * perf_group_detach() would do anyway.
12990 	 */
12991 	for_each_sibling_event(sub, parent_event) {
12992 		child_ctr = inherit_event(sub, parent, parent_ctx,
12993 					    child, leader, child_ctx);
12994 		if (IS_ERR(child_ctr))
12995 			return PTR_ERR(child_ctr);
12996 
12997 		if (sub->aux_event == parent_event && child_ctr &&
12998 		    !perf_get_aux_event(child_ctr, leader))
12999 			return -EINVAL;
13000 	}
13001 	return 0;
13002 }
13003 
13004 /*
13005  * Creates the child task context and tries to inherit the event-group.
13006  *
13007  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13008  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13009  * consistent with perf_event_release_kernel() removing all child events.
13010  *
13011  * Returns:
13012  *  - 0 on success
13013  *  - <0 on error
13014  */
13015 static int
13016 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13017 		   struct perf_event_context *parent_ctx,
13018 		   struct task_struct *child, int ctxn,
13019 		   u64 clone_flags, int *inherited_all)
13020 {
13021 	int ret;
13022 	struct perf_event_context *child_ctx;
13023 
13024 	if (!event->attr.inherit ||
13025 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13026 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13027 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13028 		*inherited_all = 0;
13029 		return 0;
13030 	}
13031 
13032 	child_ctx = child->perf_event_ctxp[ctxn];
13033 	if (!child_ctx) {
13034 		/*
13035 		 * This is executed from the parent task context, so
13036 		 * inherit events that have been marked for cloning.
13037 		 * First allocate and initialize a context for the
13038 		 * child.
13039 		 */
13040 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13041 		if (!child_ctx)
13042 			return -ENOMEM;
13043 
13044 		child->perf_event_ctxp[ctxn] = child_ctx;
13045 	}
13046 
13047 	ret = inherit_group(event, parent, parent_ctx,
13048 			    child, child_ctx);
13049 
13050 	if (ret)
13051 		*inherited_all = 0;
13052 
13053 	return ret;
13054 }
13055 
13056 /*
13057  * Initialize the perf_event context in task_struct
13058  */
13059 static int perf_event_init_context(struct task_struct *child, int ctxn,
13060 				   u64 clone_flags)
13061 {
13062 	struct perf_event_context *child_ctx, *parent_ctx;
13063 	struct perf_event_context *cloned_ctx;
13064 	struct perf_event *event;
13065 	struct task_struct *parent = current;
13066 	int inherited_all = 1;
13067 	unsigned long flags;
13068 	int ret = 0;
13069 
13070 	if (likely(!parent->perf_event_ctxp[ctxn]))
13071 		return 0;
13072 
13073 	/*
13074 	 * If the parent's context is a clone, pin it so it won't get
13075 	 * swapped under us.
13076 	 */
13077 	parent_ctx = perf_pin_task_context(parent, ctxn);
13078 	if (!parent_ctx)
13079 		return 0;
13080 
13081 	/*
13082 	 * No need to check if parent_ctx != NULL here; since we saw
13083 	 * it non-NULL earlier, the only reason for it to become NULL
13084 	 * is if we exit, and since we're currently in the middle of
13085 	 * a fork we can't be exiting at the same time.
13086 	 */
13087 
13088 	/*
13089 	 * Lock the parent list. No need to lock the child - not PID
13090 	 * hashed yet and not running, so nobody can access it.
13091 	 */
13092 	mutex_lock(&parent_ctx->mutex);
13093 
13094 	/*
13095 	 * We dont have to disable NMIs - we are only looking at
13096 	 * the list, not manipulating it:
13097 	 */
13098 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13099 		ret = inherit_task_group(event, parent, parent_ctx,
13100 					 child, ctxn, clone_flags,
13101 					 &inherited_all);
13102 		if (ret)
13103 			goto out_unlock;
13104 	}
13105 
13106 	/*
13107 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13108 	 * to allocations, but we need to prevent rotation because
13109 	 * rotate_ctx() will change the list from interrupt context.
13110 	 */
13111 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13112 	parent_ctx->rotate_disable = 1;
13113 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13114 
13115 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13116 		ret = inherit_task_group(event, parent, parent_ctx,
13117 					 child, ctxn, clone_flags,
13118 					 &inherited_all);
13119 		if (ret)
13120 			goto out_unlock;
13121 	}
13122 
13123 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13124 	parent_ctx->rotate_disable = 0;
13125 
13126 	child_ctx = child->perf_event_ctxp[ctxn];
13127 
13128 	if (child_ctx && inherited_all) {
13129 		/*
13130 		 * Mark the child context as a clone of the parent
13131 		 * context, or of whatever the parent is a clone of.
13132 		 *
13133 		 * Note that if the parent is a clone, the holding of
13134 		 * parent_ctx->lock avoids it from being uncloned.
13135 		 */
13136 		cloned_ctx = parent_ctx->parent_ctx;
13137 		if (cloned_ctx) {
13138 			child_ctx->parent_ctx = cloned_ctx;
13139 			child_ctx->parent_gen = parent_ctx->parent_gen;
13140 		} else {
13141 			child_ctx->parent_ctx = parent_ctx;
13142 			child_ctx->parent_gen = parent_ctx->generation;
13143 		}
13144 		get_ctx(child_ctx->parent_ctx);
13145 	}
13146 
13147 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13148 out_unlock:
13149 	mutex_unlock(&parent_ctx->mutex);
13150 
13151 	perf_unpin_context(parent_ctx);
13152 	put_ctx(parent_ctx);
13153 
13154 	return ret;
13155 }
13156 
13157 /*
13158  * Initialize the perf_event context in task_struct
13159  */
13160 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13161 {
13162 	int ctxn, ret;
13163 
13164 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13165 	mutex_init(&child->perf_event_mutex);
13166 	INIT_LIST_HEAD(&child->perf_event_list);
13167 
13168 	for_each_task_context_nr(ctxn) {
13169 		ret = perf_event_init_context(child, ctxn, clone_flags);
13170 		if (ret) {
13171 			perf_event_free_task(child);
13172 			return ret;
13173 		}
13174 	}
13175 
13176 	return 0;
13177 }
13178 
13179 static void __init perf_event_init_all_cpus(void)
13180 {
13181 	struct swevent_htable *swhash;
13182 	int cpu;
13183 
13184 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13185 
13186 	for_each_possible_cpu(cpu) {
13187 		swhash = &per_cpu(swevent_htable, cpu);
13188 		mutex_init(&swhash->hlist_mutex);
13189 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13190 
13191 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13192 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13193 
13194 #ifdef CONFIG_CGROUP_PERF
13195 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13196 #endif
13197 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13198 	}
13199 }
13200 
13201 static void perf_swevent_init_cpu(unsigned int cpu)
13202 {
13203 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13204 
13205 	mutex_lock(&swhash->hlist_mutex);
13206 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13207 		struct swevent_hlist *hlist;
13208 
13209 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13210 		WARN_ON(!hlist);
13211 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13212 	}
13213 	mutex_unlock(&swhash->hlist_mutex);
13214 }
13215 
13216 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13217 static void __perf_event_exit_context(void *__info)
13218 {
13219 	struct perf_event_context *ctx = __info;
13220 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13221 	struct perf_event *event;
13222 
13223 	raw_spin_lock(&ctx->lock);
13224 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13225 	list_for_each_entry(event, &ctx->event_list, event_entry)
13226 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13227 	raw_spin_unlock(&ctx->lock);
13228 }
13229 
13230 static void perf_event_exit_cpu_context(int cpu)
13231 {
13232 	struct perf_cpu_context *cpuctx;
13233 	struct perf_event_context *ctx;
13234 	struct pmu *pmu;
13235 
13236 	mutex_lock(&pmus_lock);
13237 	list_for_each_entry(pmu, &pmus, entry) {
13238 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13239 		ctx = &cpuctx->ctx;
13240 
13241 		mutex_lock(&ctx->mutex);
13242 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13243 		cpuctx->online = 0;
13244 		mutex_unlock(&ctx->mutex);
13245 	}
13246 	cpumask_clear_cpu(cpu, perf_online_mask);
13247 	mutex_unlock(&pmus_lock);
13248 }
13249 #else
13250 
13251 static void perf_event_exit_cpu_context(int cpu) { }
13252 
13253 #endif
13254 
13255 int perf_event_init_cpu(unsigned int cpu)
13256 {
13257 	struct perf_cpu_context *cpuctx;
13258 	struct perf_event_context *ctx;
13259 	struct pmu *pmu;
13260 
13261 	perf_swevent_init_cpu(cpu);
13262 
13263 	mutex_lock(&pmus_lock);
13264 	cpumask_set_cpu(cpu, perf_online_mask);
13265 	list_for_each_entry(pmu, &pmus, entry) {
13266 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13267 		ctx = &cpuctx->ctx;
13268 
13269 		mutex_lock(&ctx->mutex);
13270 		cpuctx->online = 1;
13271 		mutex_unlock(&ctx->mutex);
13272 	}
13273 	mutex_unlock(&pmus_lock);
13274 
13275 	return 0;
13276 }
13277 
13278 int perf_event_exit_cpu(unsigned int cpu)
13279 {
13280 	perf_event_exit_cpu_context(cpu);
13281 	return 0;
13282 }
13283 
13284 static int
13285 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13286 {
13287 	int cpu;
13288 
13289 	for_each_online_cpu(cpu)
13290 		perf_event_exit_cpu(cpu);
13291 
13292 	return NOTIFY_OK;
13293 }
13294 
13295 /*
13296  * Run the perf reboot notifier at the very last possible moment so that
13297  * the generic watchdog code runs as long as possible.
13298  */
13299 static struct notifier_block perf_reboot_notifier = {
13300 	.notifier_call = perf_reboot,
13301 	.priority = INT_MIN,
13302 };
13303 
13304 void __init perf_event_init(void)
13305 {
13306 	int ret;
13307 
13308 	idr_init(&pmu_idr);
13309 
13310 	perf_event_init_all_cpus();
13311 	init_srcu_struct(&pmus_srcu);
13312 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13313 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13314 	perf_pmu_register(&perf_task_clock, NULL, -1);
13315 	perf_tp_register();
13316 	perf_event_init_cpu(smp_processor_id());
13317 	register_reboot_notifier(&perf_reboot_notifier);
13318 
13319 	ret = init_hw_breakpoint();
13320 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13321 
13322 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13323 
13324 	/*
13325 	 * Build time assertion that we keep the data_head at the intended
13326 	 * location.  IOW, validation we got the __reserved[] size right.
13327 	 */
13328 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13329 		     != 1024);
13330 }
13331 
13332 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13333 			      char *page)
13334 {
13335 	struct perf_pmu_events_attr *pmu_attr =
13336 		container_of(attr, struct perf_pmu_events_attr, attr);
13337 
13338 	if (pmu_attr->event_str)
13339 		return sprintf(page, "%s\n", pmu_attr->event_str);
13340 
13341 	return 0;
13342 }
13343 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13344 
13345 static int __init perf_event_sysfs_init(void)
13346 {
13347 	struct pmu *pmu;
13348 	int ret;
13349 
13350 	mutex_lock(&pmus_lock);
13351 
13352 	ret = bus_register(&pmu_bus);
13353 	if (ret)
13354 		goto unlock;
13355 
13356 	list_for_each_entry(pmu, &pmus, entry) {
13357 		if (!pmu->name || pmu->type < 0)
13358 			continue;
13359 
13360 		ret = pmu_dev_alloc(pmu);
13361 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13362 	}
13363 	pmu_bus_running = 1;
13364 	ret = 0;
13365 
13366 unlock:
13367 	mutex_unlock(&pmus_lock);
13368 
13369 	return ret;
13370 }
13371 device_initcall(perf_event_sysfs_init);
13372 
13373 #ifdef CONFIG_CGROUP_PERF
13374 static struct cgroup_subsys_state *
13375 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13376 {
13377 	struct perf_cgroup *jc;
13378 
13379 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13380 	if (!jc)
13381 		return ERR_PTR(-ENOMEM);
13382 
13383 	jc->info = alloc_percpu(struct perf_cgroup_info);
13384 	if (!jc->info) {
13385 		kfree(jc);
13386 		return ERR_PTR(-ENOMEM);
13387 	}
13388 
13389 	return &jc->css;
13390 }
13391 
13392 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13393 {
13394 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13395 
13396 	free_percpu(jc->info);
13397 	kfree(jc);
13398 }
13399 
13400 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13401 {
13402 	perf_event_cgroup(css->cgroup);
13403 	return 0;
13404 }
13405 
13406 static int __perf_cgroup_move(void *info)
13407 {
13408 	struct task_struct *task = info;
13409 	rcu_read_lock();
13410 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13411 	rcu_read_unlock();
13412 	return 0;
13413 }
13414 
13415 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13416 {
13417 	struct task_struct *task;
13418 	struct cgroup_subsys_state *css;
13419 
13420 	cgroup_taskset_for_each(task, css, tset)
13421 		task_function_call(task, __perf_cgroup_move, task);
13422 }
13423 
13424 struct cgroup_subsys perf_event_cgrp_subsys = {
13425 	.css_alloc	= perf_cgroup_css_alloc,
13426 	.css_free	= perf_cgroup_css_free,
13427 	.css_online	= perf_cgroup_css_online,
13428 	.attach		= perf_cgroup_attach,
13429 	/*
13430 	 * Implicitly enable on dfl hierarchy so that perf events can
13431 	 * always be filtered by cgroup2 path as long as perf_event
13432 	 * controller is not mounted on a legacy hierarchy.
13433 	 */
13434 	.implicit_on_dfl = true,
13435 	.threaded	= true,
13436 };
13437 #endif /* CONFIG_CGROUP_PERF */
13438