1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 55 #include "internal.h" 56 57 #include <asm/irq_regs.h> 58 59 typedef int (*remote_function_f)(void *); 60 61 struct remote_function_call { 62 struct task_struct *p; 63 remote_function_f func; 64 void *info; 65 int ret; 66 }; 67 68 static void remote_function(void *data) 69 { 70 struct remote_function_call *tfc = data; 71 struct task_struct *p = tfc->p; 72 73 if (p) { 74 /* -EAGAIN */ 75 if (task_cpu(p) != smp_processor_id()) 76 return; 77 78 /* 79 * Now that we're on right CPU with IRQs disabled, we can test 80 * if we hit the right task without races. 81 */ 82 83 tfc->ret = -ESRCH; /* No such (running) process */ 84 if (p != current) 85 return; 86 } 87 88 tfc->ret = tfc->func(tfc->info); 89 } 90 91 /** 92 * task_function_call - call a function on the cpu on which a task runs 93 * @p: the task to evaluate 94 * @func: the function to be called 95 * @info: the function call argument 96 * 97 * Calls the function @func when the task is currently running. This might 98 * be on the current CPU, which just calls the function directly. This will 99 * retry due to any failures in smp_call_function_single(), such as if the 100 * task_cpu() goes offline concurrently. 101 * 102 * returns @func return value or -ESRCH when the process isn't running 103 */ 104 static int 105 task_function_call(struct task_struct *p, remote_function_f func, void *info) 106 { 107 struct remote_function_call data = { 108 .p = p, 109 .func = func, 110 .info = info, 111 .ret = -EAGAIN, 112 }; 113 int ret; 114 115 for (;;) { 116 ret = smp_call_function_single(task_cpu(p), remote_function, 117 &data, 1); 118 ret = !ret ? data.ret : -EAGAIN; 119 120 if (ret != -EAGAIN) 121 break; 122 123 cond_resched(); 124 } 125 126 return ret; 127 } 128 129 /** 130 * cpu_function_call - call a function on the cpu 131 * @func: the function to be called 132 * @info: the function call argument 133 * 134 * Calls the function @func on the remote cpu. 135 * 136 * returns: @func return value or -ENXIO when the cpu is offline 137 */ 138 static int cpu_function_call(int cpu, remote_function_f func, void *info) 139 { 140 struct remote_function_call data = { 141 .p = NULL, 142 .func = func, 143 .info = info, 144 .ret = -ENXIO, /* No such CPU */ 145 }; 146 147 smp_call_function_single(cpu, remote_function, &data, 1); 148 149 return data.ret; 150 } 151 152 static inline struct perf_cpu_context * 153 __get_cpu_context(struct perf_event_context *ctx) 154 { 155 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 /* 182 * On task ctx scheduling... 183 * 184 * When !ctx->nr_events a task context will not be scheduled. This means 185 * we can disable the scheduler hooks (for performance) without leaving 186 * pending task ctx state. 187 * 188 * This however results in two special cases: 189 * 190 * - removing the last event from a task ctx; this is relatively straight 191 * forward and is done in __perf_remove_from_context. 192 * 193 * - adding the first event to a task ctx; this is tricky because we cannot 194 * rely on ctx->is_active and therefore cannot use event_function_call(). 195 * See perf_install_in_context(). 196 * 197 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 198 */ 199 200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 201 struct perf_event_context *, void *); 202 203 struct event_function_struct { 204 struct perf_event *event; 205 event_f func; 206 void *data; 207 }; 208 209 static int event_function(void *info) 210 { 211 struct event_function_struct *efs = info; 212 struct perf_event *event = efs->event; 213 struct perf_event_context *ctx = event->ctx; 214 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 215 struct perf_event_context *task_ctx = cpuctx->task_ctx; 216 int ret = 0; 217 218 lockdep_assert_irqs_disabled(); 219 220 perf_ctx_lock(cpuctx, task_ctx); 221 /* 222 * Since we do the IPI call without holding ctx->lock things can have 223 * changed, double check we hit the task we set out to hit. 224 */ 225 if (ctx->task) { 226 if (ctx->task != current) { 227 ret = -ESRCH; 228 goto unlock; 229 } 230 231 /* 232 * We only use event_function_call() on established contexts, 233 * and event_function() is only ever called when active (or 234 * rather, we'll have bailed in task_function_call() or the 235 * above ctx->task != current test), therefore we must have 236 * ctx->is_active here. 237 */ 238 WARN_ON_ONCE(!ctx->is_active); 239 /* 240 * And since we have ctx->is_active, cpuctx->task_ctx must 241 * match. 242 */ 243 WARN_ON_ONCE(task_ctx != ctx); 244 } else { 245 WARN_ON_ONCE(&cpuctx->ctx != ctx); 246 } 247 248 efs->func(event, cpuctx, ctx, efs->data); 249 unlock: 250 perf_ctx_unlock(cpuctx, task_ctx); 251 252 return ret; 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 /* 305 * Similar to event_function_call() + event_function(), but hard assumes IRQs 306 * are already disabled and we're on the right CPU. 307 */ 308 static void event_function_local(struct perf_event *event, event_f func, void *data) 309 { 310 struct perf_event_context *ctx = event->ctx; 311 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 312 struct task_struct *task = READ_ONCE(ctx->task); 313 struct perf_event_context *task_ctx = NULL; 314 315 lockdep_assert_irqs_disabled(); 316 317 if (task) { 318 if (task == TASK_TOMBSTONE) 319 return; 320 321 task_ctx = ctx; 322 } 323 324 perf_ctx_lock(cpuctx, task_ctx); 325 326 task = ctx->task; 327 if (task == TASK_TOMBSTONE) 328 goto unlock; 329 330 if (task) { 331 /* 332 * We must be either inactive or active and the right task, 333 * otherwise we're screwed, since we cannot IPI to somewhere 334 * else. 335 */ 336 if (ctx->is_active) { 337 if (WARN_ON_ONCE(task != current)) 338 goto unlock; 339 340 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 341 goto unlock; 342 } 343 } else { 344 WARN_ON_ONCE(&cpuctx->ctx != ctx); 345 } 346 347 func(event, cpuctx, ctx, data); 348 unlock: 349 perf_ctx_unlock(cpuctx, task_ctx); 350 } 351 352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 353 PERF_FLAG_FD_OUTPUT |\ 354 PERF_FLAG_PID_CGROUP |\ 355 PERF_FLAG_FD_CLOEXEC) 356 357 /* 358 * branch priv levels that need permission checks 359 */ 360 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 361 (PERF_SAMPLE_BRANCH_KERNEL |\ 362 PERF_SAMPLE_BRANCH_HV) 363 364 enum event_type_t { 365 EVENT_FLEXIBLE = 0x1, 366 EVENT_PINNED = 0x2, 367 EVENT_TIME = 0x4, 368 /* see ctx_resched() for details */ 369 EVENT_CPU = 0x8, 370 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 371 }; 372 373 /* 374 * perf_sched_events : >0 events exist 375 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 376 */ 377 378 static void perf_sched_delayed(struct work_struct *work); 379 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 381 static DEFINE_MUTEX(perf_sched_mutex); 382 static atomic_t perf_sched_count; 383 384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 385 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 387 388 static atomic_t nr_mmap_events __read_mostly; 389 static atomic_t nr_comm_events __read_mostly; 390 static atomic_t nr_namespaces_events __read_mostly; 391 static atomic_t nr_task_events __read_mostly; 392 static atomic_t nr_freq_events __read_mostly; 393 static atomic_t nr_switch_events __read_mostly; 394 static atomic_t nr_ksymbol_events __read_mostly; 395 static atomic_t nr_bpf_events __read_mostly; 396 static atomic_t nr_cgroup_events __read_mostly; 397 398 static LIST_HEAD(pmus); 399 static DEFINE_MUTEX(pmus_lock); 400 static struct srcu_struct pmus_srcu; 401 static cpumask_var_t perf_online_mask; 402 403 /* 404 * perf event paranoia level: 405 * -1 - not paranoid at all 406 * 0 - disallow raw tracepoint access for unpriv 407 * 1 - disallow cpu events for unpriv 408 * 2 - disallow kernel profiling for unpriv 409 */ 410 int sysctl_perf_event_paranoid __read_mostly = 2; 411 412 /* Minimum for 512 kiB + 1 user control page */ 413 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 414 415 /* 416 * max perf event sample rate 417 */ 418 #define DEFAULT_MAX_SAMPLE_RATE 100000 419 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 420 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 421 422 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 423 424 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 425 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 426 427 static int perf_sample_allowed_ns __read_mostly = 428 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 429 430 static void update_perf_cpu_limits(void) 431 { 432 u64 tmp = perf_sample_period_ns; 433 434 tmp *= sysctl_perf_cpu_time_max_percent; 435 tmp = div_u64(tmp, 100); 436 if (!tmp) 437 tmp = 1; 438 439 WRITE_ONCE(perf_sample_allowed_ns, tmp); 440 } 441 442 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 443 444 int perf_proc_update_handler(struct ctl_table *table, int write, 445 void *buffer, size_t *lenp, loff_t *ppos) 446 { 447 int ret; 448 int perf_cpu = sysctl_perf_cpu_time_max_percent; 449 /* 450 * If throttling is disabled don't allow the write: 451 */ 452 if (write && (perf_cpu == 100 || perf_cpu == 0)) 453 return -EINVAL; 454 455 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 456 if (ret || !write) 457 return ret; 458 459 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 460 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 461 update_perf_cpu_limits(); 462 463 return 0; 464 } 465 466 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 467 468 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 469 void *buffer, size_t *lenp, loff_t *ppos) 470 { 471 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 472 473 if (ret || !write) 474 return ret; 475 476 if (sysctl_perf_cpu_time_max_percent == 100 || 477 sysctl_perf_cpu_time_max_percent == 0) { 478 printk(KERN_WARNING 479 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 480 WRITE_ONCE(perf_sample_allowed_ns, 0); 481 } else { 482 update_perf_cpu_limits(); 483 } 484 485 return 0; 486 } 487 488 /* 489 * perf samples are done in some very critical code paths (NMIs). 490 * If they take too much CPU time, the system can lock up and not 491 * get any real work done. This will drop the sample rate when 492 * we detect that events are taking too long. 493 */ 494 #define NR_ACCUMULATED_SAMPLES 128 495 static DEFINE_PER_CPU(u64, running_sample_length); 496 497 static u64 __report_avg; 498 static u64 __report_allowed; 499 500 static void perf_duration_warn(struct irq_work *w) 501 { 502 printk_ratelimited(KERN_INFO 503 "perf: interrupt took too long (%lld > %lld), lowering " 504 "kernel.perf_event_max_sample_rate to %d\n", 505 __report_avg, __report_allowed, 506 sysctl_perf_event_sample_rate); 507 } 508 509 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 510 511 void perf_sample_event_took(u64 sample_len_ns) 512 { 513 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 514 u64 running_len; 515 u64 avg_len; 516 u32 max; 517 518 if (max_len == 0) 519 return; 520 521 /* Decay the counter by 1 average sample. */ 522 running_len = __this_cpu_read(running_sample_length); 523 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 524 running_len += sample_len_ns; 525 __this_cpu_write(running_sample_length, running_len); 526 527 /* 528 * Note: this will be biased artifically low until we have 529 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 530 * from having to maintain a count. 531 */ 532 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 533 if (avg_len <= max_len) 534 return; 535 536 __report_avg = avg_len; 537 __report_allowed = max_len; 538 539 /* 540 * Compute a throttle threshold 25% below the current duration. 541 */ 542 avg_len += avg_len / 4; 543 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 544 if (avg_len < max) 545 max /= (u32)avg_len; 546 else 547 max = 1; 548 549 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 550 WRITE_ONCE(max_samples_per_tick, max); 551 552 sysctl_perf_event_sample_rate = max * HZ; 553 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 554 555 if (!irq_work_queue(&perf_duration_work)) { 556 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 557 "kernel.perf_event_max_sample_rate to %d\n", 558 __report_avg, __report_allowed, 559 sysctl_perf_event_sample_rate); 560 } 561 } 562 563 static atomic64_t perf_event_id; 564 565 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 566 enum event_type_t event_type); 567 568 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 569 enum event_type_t event_type, 570 struct task_struct *task); 571 572 static void update_context_time(struct perf_event_context *ctx); 573 static u64 perf_event_time(struct perf_event *event); 574 575 void __weak perf_event_print_debug(void) { } 576 577 extern __weak const char *perf_pmu_name(void) 578 { 579 return "pmu"; 580 } 581 582 static inline u64 perf_clock(void) 583 { 584 return local_clock(); 585 } 586 587 static inline u64 perf_event_clock(struct perf_event *event) 588 { 589 return event->clock(); 590 } 591 592 /* 593 * State based event timekeeping... 594 * 595 * The basic idea is to use event->state to determine which (if any) time 596 * fields to increment with the current delta. This means we only need to 597 * update timestamps when we change state or when they are explicitly requested 598 * (read). 599 * 600 * Event groups make things a little more complicated, but not terribly so. The 601 * rules for a group are that if the group leader is OFF the entire group is 602 * OFF, irrespecive of what the group member states are. This results in 603 * __perf_effective_state(). 604 * 605 * A futher ramification is that when a group leader flips between OFF and 606 * !OFF, we need to update all group member times. 607 * 608 * 609 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 610 * need to make sure the relevant context time is updated before we try and 611 * update our timestamps. 612 */ 613 614 static __always_inline enum perf_event_state 615 __perf_effective_state(struct perf_event *event) 616 { 617 struct perf_event *leader = event->group_leader; 618 619 if (leader->state <= PERF_EVENT_STATE_OFF) 620 return leader->state; 621 622 return event->state; 623 } 624 625 static __always_inline void 626 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 627 { 628 enum perf_event_state state = __perf_effective_state(event); 629 u64 delta = now - event->tstamp; 630 631 *enabled = event->total_time_enabled; 632 if (state >= PERF_EVENT_STATE_INACTIVE) 633 *enabled += delta; 634 635 *running = event->total_time_running; 636 if (state >= PERF_EVENT_STATE_ACTIVE) 637 *running += delta; 638 } 639 640 static void perf_event_update_time(struct perf_event *event) 641 { 642 u64 now = perf_event_time(event); 643 644 __perf_update_times(event, now, &event->total_time_enabled, 645 &event->total_time_running); 646 event->tstamp = now; 647 } 648 649 static void perf_event_update_sibling_time(struct perf_event *leader) 650 { 651 struct perf_event *sibling; 652 653 for_each_sibling_event(sibling, leader) 654 perf_event_update_time(sibling); 655 } 656 657 static void 658 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 659 { 660 if (event->state == state) 661 return; 662 663 perf_event_update_time(event); 664 /* 665 * If a group leader gets enabled/disabled all its siblings 666 * are affected too. 667 */ 668 if ((event->state < 0) ^ (state < 0)) 669 perf_event_update_sibling_time(event); 670 671 WRITE_ONCE(event->state, state); 672 } 673 674 #ifdef CONFIG_CGROUP_PERF 675 676 static inline bool 677 perf_cgroup_match(struct perf_event *event) 678 { 679 struct perf_event_context *ctx = event->ctx; 680 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 681 682 /* @event doesn't care about cgroup */ 683 if (!event->cgrp) 684 return true; 685 686 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 687 if (!cpuctx->cgrp) 688 return false; 689 690 /* 691 * Cgroup scoping is recursive. An event enabled for a cgroup is 692 * also enabled for all its descendant cgroups. If @cpuctx's 693 * cgroup is a descendant of @event's (the test covers identity 694 * case), it's a match. 695 */ 696 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 697 event->cgrp->css.cgroup); 698 } 699 700 static inline void perf_detach_cgroup(struct perf_event *event) 701 { 702 css_put(&event->cgrp->css); 703 event->cgrp = NULL; 704 } 705 706 static inline int is_cgroup_event(struct perf_event *event) 707 { 708 return event->cgrp != NULL; 709 } 710 711 static inline u64 perf_cgroup_event_time(struct perf_event *event) 712 { 713 struct perf_cgroup_info *t; 714 715 t = per_cpu_ptr(event->cgrp->info, event->cpu); 716 return t->time; 717 } 718 719 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 720 { 721 struct perf_cgroup_info *info; 722 u64 now; 723 724 now = perf_clock(); 725 726 info = this_cpu_ptr(cgrp->info); 727 728 info->time += now - info->timestamp; 729 info->timestamp = now; 730 } 731 732 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 733 { 734 struct perf_cgroup *cgrp = cpuctx->cgrp; 735 struct cgroup_subsys_state *css; 736 737 if (cgrp) { 738 for (css = &cgrp->css; css; css = css->parent) { 739 cgrp = container_of(css, struct perf_cgroup, css); 740 __update_cgrp_time(cgrp); 741 } 742 } 743 } 744 745 static inline void update_cgrp_time_from_event(struct perf_event *event) 746 { 747 struct perf_cgroup *cgrp; 748 749 /* 750 * ensure we access cgroup data only when needed and 751 * when we know the cgroup is pinned (css_get) 752 */ 753 if (!is_cgroup_event(event)) 754 return; 755 756 cgrp = perf_cgroup_from_task(current, event->ctx); 757 /* 758 * Do not update time when cgroup is not active 759 */ 760 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 761 __update_cgrp_time(event->cgrp); 762 } 763 764 static inline void 765 perf_cgroup_set_timestamp(struct task_struct *task, 766 struct perf_event_context *ctx) 767 { 768 struct perf_cgroup *cgrp; 769 struct perf_cgroup_info *info; 770 struct cgroup_subsys_state *css; 771 772 /* 773 * ctx->lock held by caller 774 * ensure we do not access cgroup data 775 * unless we have the cgroup pinned (css_get) 776 */ 777 if (!task || !ctx->nr_cgroups) 778 return; 779 780 cgrp = perf_cgroup_from_task(task, ctx); 781 782 for (css = &cgrp->css; css; css = css->parent) { 783 cgrp = container_of(css, struct perf_cgroup, css); 784 info = this_cpu_ptr(cgrp->info); 785 info->timestamp = ctx->timestamp; 786 } 787 } 788 789 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 790 791 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 792 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 793 794 /* 795 * reschedule events based on the cgroup constraint of task. 796 * 797 * mode SWOUT : schedule out everything 798 * mode SWIN : schedule in based on cgroup for next 799 */ 800 static void perf_cgroup_switch(struct task_struct *task, int mode) 801 { 802 struct perf_cpu_context *cpuctx; 803 struct list_head *list; 804 unsigned long flags; 805 806 /* 807 * Disable interrupts and preemption to avoid this CPU's 808 * cgrp_cpuctx_entry to change under us. 809 */ 810 local_irq_save(flags); 811 812 list = this_cpu_ptr(&cgrp_cpuctx_list); 813 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 814 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 815 816 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 817 perf_pmu_disable(cpuctx->ctx.pmu); 818 819 if (mode & PERF_CGROUP_SWOUT) { 820 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 821 /* 822 * must not be done before ctxswout due 823 * to event_filter_match() in event_sched_out() 824 */ 825 cpuctx->cgrp = NULL; 826 } 827 828 if (mode & PERF_CGROUP_SWIN) { 829 WARN_ON_ONCE(cpuctx->cgrp); 830 /* 831 * set cgrp before ctxsw in to allow 832 * event_filter_match() to not have to pass 833 * task around 834 * we pass the cpuctx->ctx to perf_cgroup_from_task() 835 * because cgorup events are only per-cpu 836 */ 837 cpuctx->cgrp = perf_cgroup_from_task(task, 838 &cpuctx->ctx); 839 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 840 } 841 perf_pmu_enable(cpuctx->ctx.pmu); 842 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 843 } 844 845 local_irq_restore(flags); 846 } 847 848 static inline void perf_cgroup_sched_out(struct task_struct *task, 849 struct task_struct *next) 850 { 851 struct perf_cgroup *cgrp1; 852 struct perf_cgroup *cgrp2 = NULL; 853 854 rcu_read_lock(); 855 /* 856 * we come here when we know perf_cgroup_events > 0 857 * we do not need to pass the ctx here because we know 858 * we are holding the rcu lock 859 */ 860 cgrp1 = perf_cgroup_from_task(task, NULL); 861 cgrp2 = perf_cgroup_from_task(next, NULL); 862 863 /* 864 * only schedule out current cgroup events if we know 865 * that we are switching to a different cgroup. Otherwise, 866 * do no touch the cgroup events. 867 */ 868 if (cgrp1 != cgrp2) 869 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 870 871 rcu_read_unlock(); 872 } 873 874 static inline void perf_cgroup_sched_in(struct task_struct *prev, 875 struct task_struct *task) 876 { 877 struct perf_cgroup *cgrp1; 878 struct perf_cgroup *cgrp2 = NULL; 879 880 rcu_read_lock(); 881 /* 882 * we come here when we know perf_cgroup_events > 0 883 * we do not need to pass the ctx here because we know 884 * we are holding the rcu lock 885 */ 886 cgrp1 = perf_cgroup_from_task(task, NULL); 887 cgrp2 = perf_cgroup_from_task(prev, NULL); 888 889 /* 890 * only need to schedule in cgroup events if we are changing 891 * cgroup during ctxsw. Cgroup events were not scheduled 892 * out of ctxsw out if that was not the case. 893 */ 894 if (cgrp1 != cgrp2) 895 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 896 897 rcu_read_unlock(); 898 } 899 900 static int perf_cgroup_ensure_storage(struct perf_event *event, 901 struct cgroup_subsys_state *css) 902 { 903 struct perf_cpu_context *cpuctx; 904 struct perf_event **storage; 905 int cpu, heap_size, ret = 0; 906 907 /* 908 * Allow storage to have sufficent space for an iterator for each 909 * possibly nested cgroup plus an iterator for events with no cgroup. 910 */ 911 for (heap_size = 1; css; css = css->parent) 912 heap_size++; 913 914 for_each_possible_cpu(cpu) { 915 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 916 if (heap_size <= cpuctx->heap_size) 917 continue; 918 919 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 920 GFP_KERNEL, cpu_to_node(cpu)); 921 if (!storage) { 922 ret = -ENOMEM; 923 break; 924 } 925 926 raw_spin_lock_irq(&cpuctx->ctx.lock); 927 if (cpuctx->heap_size < heap_size) { 928 swap(cpuctx->heap, storage); 929 if (storage == cpuctx->heap_default) 930 storage = NULL; 931 cpuctx->heap_size = heap_size; 932 } 933 raw_spin_unlock_irq(&cpuctx->ctx.lock); 934 935 kfree(storage); 936 } 937 938 return ret; 939 } 940 941 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 942 struct perf_event_attr *attr, 943 struct perf_event *group_leader) 944 { 945 struct perf_cgroup *cgrp; 946 struct cgroup_subsys_state *css; 947 struct fd f = fdget(fd); 948 int ret = 0; 949 950 if (!f.file) 951 return -EBADF; 952 953 css = css_tryget_online_from_dir(f.file->f_path.dentry, 954 &perf_event_cgrp_subsys); 955 if (IS_ERR(css)) { 956 ret = PTR_ERR(css); 957 goto out; 958 } 959 960 ret = perf_cgroup_ensure_storage(event, css); 961 if (ret) 962 goto out; 963 964 cgrp = container_of(css, struct perf_cgroup, css); 965 event->cgrp = cgrp; 966 967 /* 968 * all events in a group must monitor 969 * the same cgroup because a task belongs 970 * to only one perf cgroup at a time 971 */ 972 if (group_leader && group_leader->cgrp != cgrp) { 973 perf_detach_cgroup(event); 974 ret = -EINVAL; 975 } 976 out: 977 fdput(f); 978 return ret; 979 } 980 981 static inline void 982 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 983 { 984 struct perf_cgroup_info *t; 985 t = per_cpu_ptr(event->cgrp->info, event->cpu); 986 event->shadow_ctx_time = now - t->timestamp; 987 } 988 989 static inline void 990 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 /* 998 * Because cgroup events are always per-cpu events, 999 * @ctx == &cpuctx->ctx. 1000 */ 1001 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1002 1003 /* 1004 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1005 * matching the event's cgroup, we must do this for every new event, 1006 * because if the first would mismatch, the second would not try again 1007 * and we would leave cpuctx->cgrp unset. 1008 */ 1009 if (ctx->is_active && !cpuctx->cgrp) { 1010 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1011 1012 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1013 cpuctx->cgrp = cgrp; 1014 } 1015 1016 if (ctx->nr_cgroups++) 1017 return; 1018 1019 list_add(&cpuctx->cgrp_cpuctx_entry, 1020 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1021 } 1022 1023 static inline void 1024 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1025 { 1026 struct perf_cpu_context *cpuctx; 1027 1028 if (!is_cgroup_event(event)) 1029 return; 1030 1031 /* 1032 * Because cgroup events are always per-cpu events, 1033 * @ctx == &cpuctx->ctx. 1034 */ 1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1036 1037 if (--ctx->nr_cgroups) 1038 return; 1039 1040 if (ctx->is_active && cpuctx->cgrp) 1041 cpuctx->cgrp = NULL; 1042 1043 list_del(&cpuctx->cgrp_cpuctx_entry); 1044 } 1045 1046 #else /* !CONFIG_CGROUP_PERF */ 1047 1048 static inline bool 1049 perf_cgroup_match(struct perf_event *event) 1050 { 1051 return true; 1052 } 1053 1054 static inline void perf_detach_cgroup(struct perf_event *event) 1055 {} 1056 1057 static inline int is_cgroup_event(struct perf_event *event) 1058 { 1059 return 0; 1060 } 1061 1062 static inline void update_cgrp_time_from_event(struct perf_event *event) 1063 { 1064 } 1065 1066 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1067 { 1068 } 1069 1070 static inline void perf_cgroup_sched_out(struct task_struct *task, 1071 struct task_struct *next) 1072 { 1073 } 1074 1075 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1076 struct task_struct *task) 1077 { 1078 } 1079 1080 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1081 struct perf_event_attr *attr, 1082 struct perf_event *group_leader) 1083 { 1084 return -EINVAL; 1085 } 1086 1087 static inline void 1088 perf_cgroup_set_timestamp(struct task_struct *task, 1089 struct perf_event_context *ctx) 1090 { 1091 } 1092 1093 static inline void 1094 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1095 { 1096 } 1097 1098 static inline void 1099 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1100 { 1101 } 1102 1103 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1104 { 1105 return 0; 1106 } 1107 1108 static inline void 1109 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1110 { 1111 } 1112 1113 static inline void 1114 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1115 { 1116 } 1117 #endif 1118 1119 /* 1120 * set default to be dependent on timer tick just 1121 * like original code 1122 */ 1123 #define PERF_CPU_HRTIMER (1000 / HZ) 1124 /* 1125 * function must be called with interrupts disabled 1126 */ 1127 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1128 { 1129 struct perf_cpu_context *cpuctx; 1130 bool rotations; 1131 1132 lockdep_assert_irqs_disabled(); 1133 1134 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1135 rotations = perf_rotate_context(cpuctx); 1136 1137 raw_spin_lock(&cpuctx->hrtimer_lock); 1138 if (rotations) 1139 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1140 else 1141 cpuctx->hrtimer_active = 0; 1142 raw_spin_unlock(&cpuctx->hrtimer_lock); 1143 1144 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1145 } 1146 1147 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1148 { 1149 struct hrtimer *timer = &cpuctx->hrtimer; 1150 struct pmu *pmu = cpuctx->ctx.pmu; 1151 u64 interval; 1152 1153 /* no multiplexing needed for SW PMU */ 1154 if (pmu->task_ctx_nr == perf_sw_context) 1155 return; 1156 1157 /* 1158 * check default is sane, if not set then force to 1159 * default interval (1/tick) 1160 */ 1161 interval = pmu->hrtimer_interval_ms; 1162 if (interval < 1) 1163 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1164 1165 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1166 1167 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1168 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1169 timer->function = perf_mux_hrtimer_handler; 1170 } 1171 1172 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1173 { 1174 struct hrtimer *timer = &cpuctx->hrtimer; 1175 struct pmu *pmu = cpuctx->ctx.pmu; 1176 unsigned long flags; 1177 1178 /* not for SW PMU */ 1179 if (pmu->task_ctx_nr == perf_sw_context) 1180 return 0; 1181 1182 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1183 if (!cpuctx->hrtimer_active) { 1184 cpuctx->hrtimer_active = 1; 1185 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1186 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1187 } 1188 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1189 1190 return 0; 1191 } 1192 1193 void perf_pmu_disable(struct pmu *pmu) 1194 { 1195 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1196 if (!(*count)++) 1197 pmu->pmu_disable(pmu); 1198 } 1199 1200 void perf_pmu_enable(struct pmu *pmu) 1201 { 1202 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1203 if (!--(*count)) 1204 pmu->pmu_enable(pmu); 1205 } 1206 1207 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1208 1209 /* 1210 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1211 * perf_event_task_tick() are fully serialized because they're strictly cpu 1212 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1213 * disabled, while perf_event_task_tick is called from IRQ context. 1214 */ 1215 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1216 { 1217 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1218 1219 lockdep_assert_irqs_disabled(); 1220 1221 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1222 1223 list_add(&ctx->active_ctx_list, head); 1224 } 1225 1226 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1227 { 1228 lockdep_assert_irqs_disabled(); 1229 1230 WARN_ON(list_empty(&ctx->active_ctx_list)); 1231 1232 list_del_init(&ctx->active_ctx_list); 1233 } 1234 1235 static void get_ctx(struct perf_event_context *ctx) 1236 { 1237 refcount_inc(&ctx->refcount); 1238 } 1239 1240 static void free_ctx(struct rcu_head *head) 1241 { 1242 struct perf_event_context *ctx; 1243 1244 ctx = container_of(head, struct perf_event_context, rcu_head); 1245 kfree(ctx->task_ctx_data); 1246 kfree(ctx); 1247 } 1248 1249 static void put_ctx(struct perf_event_context *ctx) 1250 { 1251 if (refcount_dec_and_test(&ctx->refcount)) { 1252 if (ctx->parent_ctx) 1253 put_ctx(ctx->parent_ctx); 1254 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1255 put_task_struct(ctx->task); 1256 call_rcu(&ctx->rcu_head, free_ctx); 1257 } 1258 } 1259 1260 /* 1261 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1262 * perf_pmu_migrate_context() we need some magic. 1263 * 1264 * Those places that change perf_event::ctx will hold both 1265 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1266 * 1267 * Lock ordering is by mutex address. There are two other sites where 1268 * perf_event_context::mutex nests and those are: 1269 * 1270 * - perf_event_exit_task_context() [ child , 0 ] 1271 * perf_event_exit_event() 1272 * put_event() [ parent, 1 ] 1273 * 1274 * - perf_event_init_context() [ parent, 0 ] 1275 * inherit_task_group() 1276 * inherit_group() 1277 * inherit_event() 1278 * perf_event_alloc() 1279 * perf_init_event() 1280 * perf_try_init_event() [ child , 1 ] 1281 * 1282 * While it appears there is an obvious deadlock here -- the parent and child 1283 * nesting levels are inverted between the two. This is in fact safe because 1284 * life-time rules separate them. That is an exiting task cannot fork, and a 1285 * spawning task cannot (yet) exit. 1286 * 1287 * But remember that that these are parent<->child context relations, and 1288 * migration does not affect children, therefore these two orderings should not 1289 * interact. 1290 * 1291 * The change in perf_event::ctx does not affect children (as claimed above) 1292 * because the sys_perf_event_open() case will install a new event and break 1293 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1294 * concerned with cpuctx and that doesn't have children. 1295 * 1296 * The places that change perf_event::ctx will issue: 1297 * 1298 * perf_remove_from_context(); 1299 * synchronize_rcu(); 1300 * perf_install_in_context(); 1301 * 1302 * to affect the change. The remove_from_context() + synchronize_rcu() should 1303 * quiesce the event, after which we can install it in the new location. This 1304 * means that only external vectors (perf_fops, prctl) can perturb the event 1305 * while in transit. Therefore all such accessors should also acquire 1306 * perf_event_context::mutex to serialize against this. 1307 * 1308 * However; because event->ctx can change while we're waiting to acquire 1309 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1310 * function. 1311 * 1312 * Lock order: 1313 * exec_update_mutex 1314 * task_struct::perf_event_mutex 1315 * perf_event_context::mutex 1316 * perf_event::child_mutex; 1317 * perf_event_context::lock 1318 * perf_event::mmap_mutex 1319 * mmap_lock 1320 * perf_addr_filters_head::lock 1321 * 1322 * cpu_hotplug_lock 1323 * pmus_lock 1324 * cpuctx->mutex / perf_event_context::mutex 1325 */ 1326 static struct perf_event_context * 1327 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1328 { 1329 struct perf_event_context *ctx; 1330 1331 again: 1332 rcu_read_lock(); 1333 ctx = READ_ONCE(event->ctx); 1334 if (!refcount_inc_not_zero(&ctx->refcount)) { 1335 rcu_read_unlock(); 1336 goto again; 1337 } 1338 rcu_read_unlock(); 1339 1340 mutex_lock_nested(&ctx->mutex, nesting); 1341 if (event->ctx != ctx) { 1342 mutex_unlock(&ctx->mutex); 1343 put_ctx(ctx); 1344 goto again; 1345 } 1346 1347 return ctx; 1348 } 1349 1350 static inline struct perf_event_context * 1351 perf_event_ctx_lock(struct perf_event *event) 1352 { 1353 return perf_event_ctx_lock_nested(event, 0); 1354 } 1355 1356 static void perf_event_ctx_unlock(struct perf_event *event, 1357 struct perf_event_context *ctx) 1358 { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 } 1362 1363 /* 1364 * This must be done under the ctx->lock, such as to serialize against 1365 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1366 * calling scheduler related locks and ctx->lock nests inside those. 1367 */ 1368 static __must_check struct perf_event_context * 1369 unclone_ctx(struct perf_event_context *ctx) 1370 { 1371 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1372 1373 lockdep_assert_held(&ctx->lock); 1374 1375 if (parent_ctx) 1376 ctx->parent_ctx = NULL; 1377 ctx->generation++; 1378 1379 return parent_ctx; 1380 } 1381 1382 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1383 enum pid_type type) 1384 { 1385 u32 nr; 1386 /* 1387 * only top level events have the pid namespace they were created in 1388 */ 1389 if (event->parent) 1390 event = event->parent; 1391 1392 nr = __task_pid_nr_ns(p, type, event->ns); 1393 /* avoid -1 if it is idle thread or runs in another ns */ 1394 if (!nr && !pid_alive(p)) 1395 nr = -1; 1396 return nr; 1397 } 1398 1399 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1400 { 1401 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1402 } 1403 1404 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1405 { 1406 return perf_event_pid_type(event, p, PIDTYPE_PID); 1407 } 1408 1409 /* 1410 * If we inherit events we want to return the parent event id 1411 * to userspace. 1412 */ 1413 static u64 primary_event_id(struct perf_event *event) 1414 { 1415 u64 id = event->id; 1416 1417 if (event->parent) 1418 id = event->parent->id; 1419 1420 return id; 1421 } 1422 1423 /* 1424 * Get the perf_event_context for a task and lock it. 1425 * 1426 * This has to cope with with the fact that until it is locked, 1427 * the context could get moved to another task. 1428 */ 1429 static struct perf_event_context * 1430 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1431 { 1432 struct perf_event_context *ctx; 1433 1434 retry: 1435 /* 1436 * One of the few rules of preemptible RCU is that one cannot do 1437 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1438 * part of the read side critical section was irqs-enabled -- see 1439 * rcu_read_unlock_special(). 1440 * 1441 * Since ctx->lock nests under rq->lock we must ensure the entire read 1442 * side critical section has interrupts disabled. 1443 */ 1444 local_irq_save(*flags); 1445 rcu_read_lock(); 1446 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1447 if (ctx) { 1448 /* 1449 * If this context is a clone of another, it might 1450 * get swapped for another underneath us by 1451 * perf_event_task_sched_out, though the 1452 * rcu_read_lock() protects us from any context 1453 * getting freed. Lock the context and check if it 1454 * got swapped before we could get the lock, and retry 1455 * if so. If we locked the right context, then it 1456 * can't get swapped on us any more. 1457 */ 1458 raw_spin_lock(&ctx->lock); 1459 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1460 raw_spin_unlock(&ctx->lock); 1461 rcu_read_unlock(); 1462 local_irq_restore(*flags); 1463 goto retry; 1464 } 1465 1466 if (ctx->task == TASK_TOMBSTONE || 1467 !refcount_inc_not_zero(&ctx->refcount)) { 1468 raw_spin_unlock(&ctx->lock); 1469 ctx = NULL; 1470 } else { 1471 WARN_ON_ONCE(ctx->task != task); 1472 } 1473 } 1474 rcu_read_unlock(); 1475 if (!ctx) 1476 local_irq_restore(*flags); 1477 return ctx; 1478 } 1479 1480 /* 1481 * Get the context for a task and increment its pin_count so it 1482 * can't get swapped to another task. This also increments its 1483 * reference count so that the context can't get freed. 1484 */ 1485 static struct perf_event_context * 1486 perf_pin_task_context(struct task_struct *task, int ctxn) 1487 { 1488 struct perf_event_context *ctx; 1489 unsigned long flags; 1490 1491 ctx = perf_lock_task_context(task, ctxn, &flags); 1492 if (ctx) { 1493 ++ctx->pin_count; 1494 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1495 } 1496 return ctx; 1497 } 1498 1499 static void perf_unpin_context(struct perf_event_context *ctx) 1500 { 1501 unsigned long flags; 1502 1503 raw_spin_lock_irqsave(&ctx->lock, flags); 1504 --ctx->pin_count; 1505 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1506 } 1507 1508 /* 1509 * Update the record of the current time in a context. 1510 */ 1511 static void update_context_time(struct perf_event_context *ctx) 1512 { 1513 u64 now = perf_clock(); 1514 1515 ctx->time += now - ctx->timestamp; 1516 ctx->timestamp = now; 1517 } 1518 1519 static u64 perf_event_time(struct perf_event *event) 1520 { 1521 struct perf_event_context *ctx = event->ctx; 1522 1523 if (is_cgroup_event(event)) 1524 return perf_cgroup_event_time(event); 1525 1526 return ctx ? ctx->time : 0; 1527 } 1528 1529 static enum event_type_t get_event_type(struct perf_event *event) 1530 { 1531 struct perf_event_context *ctx = event->ctx; 1532 enum event_type_t event_type; 1533 1534 lockdep_assert_held(&ctx->lock); 1535 1536 /* 1537 * It's 'group type', really, because if our group leader is 1538 * pinned, so are we. 1539 */ 1540 if (event->group_leader != event) 1541 event = event->group_leader; 1542 1543 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1544 if (!ctx->task) 1545 event_type |= EVENT_CPU; 1546 1547 return event_type; 1548 } 1549 1550 /* 1551 * Helper function to initialize event group nodes. 1552 */ 1553 static void init_event_group(struct perf_event *event) 1554 { 1555 RB_CLEAR_NODE(&event->group_node); 1556 event->group_index = 0; 1557 } 1558 1559 /* 1560 * Extract pinned or flexible groups from the context 1561 * based on event attrs bits. 1562 */ 1563 static struct perf_event_groups * 1564 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1565 { 1566 if (event->attr.pinned) 1567 return &ctx->pinned_groups; 1568 else 1569 return &ctx->flexible_groups; 1570 } 1571 1572 /* 1573 * Helper function to initializes perf_event_group trees. 1574 */ 1575 static void perf_event_groups_init(struct perf_event_groups *groups) 1576 { 1577 groups->tree = RB_ROOT; 1578 groups->index = 0; 1579 } 1580 1581 /* 1582 * Compare function for event groups; 1583 * 1584 * Implements complex key that first sorts by CPU and then by virtual index 1585 * which provides ordering when rotating groups for the same CPU. 1586 */ 1587 static bool 1588 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1589 { 1590 if (left->cpu < right->cpu) 1591 return true; 1592 if (left->cpu > right->cpu) 1593 return false; 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 if (left->cgrp != right->cgrp) { 1597 if (!left->cgrp || !left->cgrp->css.cgroup) { 1598 /* 1599 * Left has no cgroup but right does, no cgroups come 1600 * first. 1601 */ 1602 return true; 1603 } 1604 if (!right->cgrp || !right->cgrp->css.cgroup) { 1605 /* 1606 * Right has no cgroup but left does, no cgroups come 1607 * first. 1608 */ 1609 return false; 1610 } 1611 /* Two dissimilar cgroups, order by id. */ 1612 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1613 return true; 1614 1615 return false; 1616 } 1617 #endif 1618 1619 if (left->group_index < right->group_index) 1620 return true; 1621 if (left->group_index > right->group_index) 1622 return false; 1623 1624 return false; 1625 } 1626 1627 /* 1628 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1629 * key (see perf_event_groups_less). This places it last inside the CPU 1630 * subtree. 1631 */ 1632 static void 1633 perf_event_groups_insert(struct perf_event_groups *groups, 1634 struct perf_event *event) 1635 { 1636 struct perf_event *node_event; 1637 struct rb_node *parent; 1638 struct rb_node **node; 1639 1640 event->group_index = ++groups->index; 1641 1642 node = &groups->tree.rb_node; 1643 parent = *node; 1644 1645 while (*node) { 1646 parent = *node; 1647 node_event = container_of(*node, struct perf_event, group_node); 1648 1649 if (perf_event_groups_less(event, node_event)) 1650 node = &parent->rb_left; 1651 else 1652 node = &parent->rb_right; 1653 } 1654 1655 rb_link_node(&event->group_node, parent, node); 1656 rb_insert_color(&event->group_node, &groups->tree); 1657 } 1658 1659 /* 1660 * Helper function to insert event into the pinned or flexible groups. 1661 */ 1662 static void 1663 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 struct perf_event_groups *groups; 1666 1667 groups = get_event_groups(event, ctx); 1668 perf_event_groups_insert(groups, event); 1669 } 1670 1671 /* 1672 * Delete a group from a tree. 1673 */ 1674 static void 1675 perf_event_groups_delete(struct perf_event_groups *groups, 1676 struct perf_event *event) 1677 { 1678 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1679 RB_EMPTY_ROOT(&groups->tree)); 1680 1681 rb_erase(&event->group_node, &groups->tree); 1682 init_event_group(event); 1683 } 1684 1685 /* 1686 * Helper function to delete event from its groups. 1687 */ 1688 static void 1689 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1690 { 1691 struct perf_event_groups *groups; 1692 1693 groups = get_event_groups(event, ctx); 1694 perf_event_groups_delete(groups, event); 1695 } 1696 1697 /* 1698 * Get the leftmost event in the cpu/cgroup subtree. 1699 */ 1700 static struct perf_event * 1701 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1702 struct cgroup *cgrp) 1703 { 1704 struct perf_event *node_event = NULL, *match = NULL; 1705 struct rb_node *node = groups->tree.rb_node; 1706 #ifdef CONFIG_CGROUP_PERF 1707 u64 node_cgrp_id, cgrp_id = 0; 1708 1709 if (cgrp) 1710 cgrp_id = cgrp->kn->id; 1711 #endif 1712 1713 while (node) { 1714 node_event = container_of(node, struct perf_event, group_node); 1715 1716 if (cpu < node_event->cpu) { 1717 node = node->rb_left; 1718 continue; 1719 } 1720 if (cpu > node_event->cpu) { 1721 node = node->rb_right; 1722 continue; 1723 } 1724 #ifdef CONFIG_CGROUP_PERF 1725 node_cgrp_id = 0; 1726 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1727 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1728 1729 if (cgrp_id < node_cgrp_id) { 1730 node = node->rb_left; 1731 continue; 1732 } 1733 if (cgrp_id > node_cgrp_id) { 1734 node = node->rb_right; 1735 continue; 1736 } 1737 #endif 1738 match = node_event; 1739 node = node->rb_left; 1740 } 1741 1742 return match; 1743 } 1744 1745 /* 1746 * Like rb_entry_next_safe() for the @cpu subtree. 1747 */ 1748 static struct perf_event * 1749 perf_event_groups_next(struct perf_event *event) 1750 { 1751 struct perf_event *next; 1752 #ifdef CONFIG_CGROUP_PERF 1753 u64 curr_cgrp_id = 0; 1754 u64 next_cgrp_id = 0; 1755 #endif 1756 1757 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1758 if (next == NULL || next->cpu != event->cpu) 1759 return NULL; 1760 1761 #ifdef CONFIG_CGROUP_PERF 1762 if (event->cgrp && event->cgrp->css.cgroup) 1763 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1764 1765 if (next->cgrp && next->cgrp->css.cgroup) 1766 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1767 1768 if (curr_cgrp_id != next_cgrp_id) 1769 return NULL; 1770 #endif 1771 return next; 1772 } 1773 1774 /* 1775 * Iterate through the whole groups tree. 1776 */ 1777 #define perf_event_groups_for_each(event, groups) \ 1778 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1779 typeof(*event), group_node); event; \ 1780 event = rb_entry_safe(rb_next(&event->group_node), \ 1781 typeof(*event), group_node)) 1782 1783 /* 1784 * Add an event from the lists for its context. 1785 * Must be called with ctx->mutex and ctx->lock held. 1786 */ 1787 static void 1788 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1789 { 1790 lockdep_assert_held(&ctx->lock); 1791 1792 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1793 event->attach_state |= PERF_ATTACH_CONTEXT; 1794 1795 event->tstamp = perf_event_time(event); 1796 1797 /* 1798 * If we're a stand alone event or group leader, we go to the context 1799 * list, group events are kept attached to the group so that 1800 * perf_group_detach can, at all times, locate all siblings. 1801 */ 1802 if (event->group_leader == event) { 1803 event->group_caps = event->event_caps; 1804 add_event_to_groups(event, ctx); 1805 } 1806 1807 list_add_rcu(&event->event_entry, &ctx->event_list); 1808 ctx->nr_events++; 1809 if (event->attr.inherit_stat) 1810 ctx->nr_stat++; 1811 1812 if (event->state > PERF_EVENT_STATE_OFF) 1813 perf_cgroup_event_enable(event, ctx); 1814 1815 ctx->generation++; 1816 } 1817 1818 /* 1819 * Initialize event state based on the perf_event_attr::disabled. 1820 */ 1821 static inline void perf_event__state_init(struct perf_event *event) 1822 { 1823 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1824 PERF_EVENT_STATE_INACTIVE; 1825 } 1826 1827 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1828 { 1829 int entry = sizeof(u64); /* value */ 1830 int size = 0; 1831 int nr = 1; 1832 1833 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1834 size += sizeof(u64); 1835 1836 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1837 size += sizeof(u64); 1838 1839 if (event->attr.read_format & PERF_FORMAT_ID) 1840 entry += sizeof(u64); 1841 1842 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1843 nr += nr_siblings; 1844 size += sizeof(u64); 1845 } 1846 1847 size += entry * nr; 1848 event->read_size = size; 1849 } 1850 1851 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1852 { 1853 struct perf_sample_data *data; 1854 u16 size = 0; 1855 1856 if (sample_type & PERF_SAMPLE_IP) 1857 size += sizeof(data->ip); 1858 1859 if (sample_type & PERF_SAMPLE_ADDR) 1860 size += sizeof(data->addr); 1861 1862 if (sample_type & PERF_SAMPLE_PERIOD) 1863 size += sizeof(data->period); 1864 1865 if (sample_type & PERF_SAMPLE_WEIGHT) 1866 size += sizeof(data->weight); 1867 1868 if (sample_type & PERF_SAMPLE_READ) 1869 size += event->read_size; 1870 1871 if (sample_type & PERF_SAMPLE_DATA_SRC) 1872 size += sizeof(data->data_src.val); 1873 1874 if (sample_type & PERF_SAMPLE_TRANSACTION) 1875 size += sizeof(data->txn); 1876 1877 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1878 size += sizeof(data->phys_addr); 1879 1880 if (sample_type & PERF_SAMPLE_CGROUP) 1881 size += sizeof(data->cgroup); 1882 1883 event->header_size = size; 1884 } 1885 1886 /* 1887 * Called at perf_event creation and when events are attached/detached from a 1888 * group. 1889 */ 1890 static void perf_event__header_size(struct perf_event *event) 1891 { 1892 __perf_event_read_size(event, 1893 event->group_leader->nr_siblings); 1894 __perf_event_header_size(event, event->attr.sample_type); 1895 } 1896 1897 static void perf_event__id_header_size(struct perf_event *event) 1898 { 1899 struct perf_sample_data *data; 1900 u64 sample_type = event->attr.sample_type; 1901 u16 size = 0; 1902 1903 if (sample_type & PERF_SAMPLE_TID) 1904 size += sizeof(data->tid_entry); 1905 1906 if (sample_type & PERF_SAMPLE_TIME) 1907 size += sizeof(data->time); 1908 1909 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1910 size += sizeof(data->id); 1911 1912 if (sample_type & PERF_SAMPLE_ID) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_STREAM_ID) 1916 size += sizeof(data->stream_id); 1917 1918 if (sample_type & PERF_SAMPLE_CPU) 1919 size += sizeof(data->cpu_entry); 1920 1921 event->id_header_size = size; 1922 } 1923 1924 static bool perf_event_validate_size(struct perf_event *event) 1925 { 1926 /* 1927 * The values computed here will be over-written when we actually 1928 * attach the event. 1929 */ 1930 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1931 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1932 perf_event__id_header_size(event); 1933 1934 /* 1935 * Sum the lot; should not exceed the 64k limit we have on records. 1936 * Conservative limit to allow for callchains and other variable fields. 1937 */ 1938 if (event->read_size + event->header_size + 1939 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1940 return false; 1941 1942 return true; 1943 } 1944 1945 static void perf_group_attach(struct perf_event *event) 1946 { 1947 struct perf_event *group_leader = event->group_leader, *pos; 1948 1949 lockdep_assert_held(&event->ctx->lock); 1950 1951 /* 1952 * We can have double attach due to group movement in perf_event_open. 1953 */ 1954 if (event->attach_state & PERF_ATTACH_GROUP) 1955 return; 1956 1957 event->attach_state |= PERF_ATTACH_GROUP; 1958 1959 if (group_leader == event) 1960 return; 1961 1962 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1963 1964 group_leader->group_caps &= event->event_caps; 1965 1966 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1967 group_leader->nr_siblings++; 1968 1969 perf_event__header_size(group_leader); 1970 1971 for_each_sibling_event(pos, group_leader) 1972 perf_event__header_size(pos); 1973 } 1974 1975 /* 1976 * Remove an event from the lists for its context. 1977 * Must be called with ctx->mutex and ctx->lock held. 1978 */ 1979 static void 1980 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1981 { 1982 WARN_ON_ONCE(event->ctx != ctx); 1983 lockdep_assert_held(&ctx->lock); 1984 1985 /* 1986 * We can have double detach due to exit/hot-unplug + close. 1987 */ 1988 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1989 return; 1990 1991 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1992 1993 ctx->nr_events--; 1994 if (event->attr.inherit_stat) 1995 ctx->nr_stat--; 1996 1997 list_del_rcu(&event->event_entry); 1998 1999 if (event->group_leader == event) 2000 del_event_from_groups(event, ctx); 2001 2002 /* 2003 * If event was in error state, then keep it 2004 * that way, otherwise bogus counts will be 2005 * returned on read(). The only way to get out 2006 * of error state is by explicit re-enabling 2007 * of the event 2008 */ 2009 if (event->state > PERF_EVENT_STATE_OFF) { 2010 perf_cgroup_event_disable(event, ctx); 2011 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2012 } 2013 2014 ctx->generation++; 2015 } 2016 2017 static int 2018 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2019 { 2020 if (!has_aux(aux_event)) 2021 return 0; 2022 2023 if (!event->pmu->aux_output_match) 2024 return 0; 2025 2026 return event->pmu->aux_output_match(aux_event); 2027 } 2028 2029 static void put_event(struct perf_event *event); 2030 static void event_sched_out(struct perf_event *event, 2031 struct perf_cpu_context *cpuctx, 2032 struct perf_event_context *ctx); 2033 2034 static void perf_put_aux_event(struct perf_event *event) 2035 { 2036 struct perf_event_context *ctx = event->ctx; 2037 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2038 struct perf_event *iter; 2039 2040 /* 2041 * If event uses aux_event tear down the link 2042 */ 2043 if (event->aux_event) { 2044 iter = event->aux_event; 2045 event->aux_event = NULL; 2046 put_event(iter); 2047 return; 2048 } 2049 2050 /* 2051 * If the event is an aux_event, tear down all links to 2052 * it from other events. 2053 */ 2054 for_each_sibling_event(iter, event->group_leader) { 2055 if (iter->aux_event != event) 2056 continue; 2057 2058 iter->aux_event = NULL; 2059 put_event(event); 2060 2061 /* 2062 * If it's ACTIVE, schedule it out and put it into ERROR 2063 * state so that we don't try to schedule it again. Note 2064 * that perf_event_enable() will clear the ERROR status. 2065 */ 2066 event_sched_out(iter, cpuctx, ctx); 2067 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2068 } 2069 } 2070 2071 static bool perf_need_aux_event(struct perf_event *event) 2072 { 2073 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2074 } 2075 2076 static int perf_get_aux_event(struct perf_event *event, 2077 struct perf_event *group_leader) 2078 { 2079 /* 2080 * Our group leader must be an aux event if we want to be 2081 * an aux_output. This way, the aux event will precede its 2082 * aux_output events in the group, and therefore will always 2083 * schedule first. 2084 */ 2085 if (!group_leader) 2086 return 0; 2087 2088 /* 2089 * aux_output and aux_sample_size are mutually exclusive. 2090 */ 2091 if (event->attr.aux_output && event->attr.aux_sample_size) 2092 return 0; 2093 2094 if (event->attr.aux_output && 2095 !perf_aux_output_match(event, group_leader)) 2096 return 0; 2097 2098 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2099 return 0; 2100 2101 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2102 return 0; 2103 2104 /* 2105 * Link aux_outputs to their aux event; this is undone in 2106 * perf_group_detach() by perf_put_aux_event(). When the 2107 * group in torn down, the aux_output events loose their 2108 * link to the aux_event and can't schedule any more. 2109 */ 2110 event->aux_event = group_leader; 2111 2112 return 1; 2113 } 2114 2115 static inline struct list_head *get_event_list(struct perf_event *event) 2116 { 2117 struct perf_event_context *ctx = event->ctx; 2118 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2119 } 2120 2121 static void perf_group_detach(struct perf_event *event) 2122 { 2123 struct perf_event *sibling, *tmp; 2124 struct perf_event_context *ctx = event->ctx; 2125 2126 lockdep_assert_held(&ctx->lock); 2127 2128 /* 2129 * We can have double detach due to exit/hot-unplug + close. 2130 */ 2131 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2132 return; 2133 2134 event->attach_state &= ~PERF_ATTACH_GROUP; 2135 2136 perf_put_aux_event(event); 2137 2138 /* 2139 * If this is a sibling, remove it from its group. 2140 */ 2141 if (event->group_leader != event) { 2142 list_del_init(&event->sibling_list); 2143 event->group_leader->nr_siblings--; 2144 goto out; 2145 } 2146 2147 /* 2148 * If this was a group event with sibling events then 2149 * upgrade the siblings to singleton events by adding them 2150 * to whatever list we are on. 2151 */ 2152 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2153 2154 sibling->group_leader = sibling; 2155 list_del_init(&sibling->sibling_list); 2156 2157 /* Inherit group flags from the previous leader */ 2158 sibling->group_caps = event->group_caps; 2159 2160 if (!RB_EMPTY_NODE(&event->group_node)) { 2161 add_event_to_groups(sibling, event->ctx); 2162 2163 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2164 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2165 } 2166 2167 WARN_ON_ONCE(sibling->ctx != event->ctx); 2168 } 2169 2170 out: 2171 perf_event__header_size(event->group_leader); 2172 2173 for_each_sibling_event(tmp, event->group_leader) 2174 perf_event__header_size(tmp); 2175 } 2176 2177 static bool is_orphaned_event(struct perf_event *event) 2178 { 2179 return event->state == PERF_EVENT_STATE_DEAD; 2180 } 2181 2182 static inline int __pmu_filter_match(struct perf_event *event) 2183 { 2184 struct pmu *pmu = event->pmu; 2185 return pmu->filter_match ? pmu->filter_match(event) : 1; 2186 } 2187 2188 /* 2189 * Check whether we should attempt to schedule an event group based on 2190 * PMU-specific filtering. An event group can consist of HW and SW events, 2191 * potentially with a SW leader, so we must check all the filters, to 2192 * determine whether a group is schedulable: 2193 */ 2194 static inline int pmu_filter_match(struct perf_event *event) 2195 { 2196 struct perf_event *sibling; 2197 2198 if (!__pmu_filter_match(event)) 2199 return 0; 2200 2201 for_each_sibling_event(sibling, event) { 2202 if (!__pmu_filter_match(sibling)) 2203 return 0; 2204 } 2205 2206 return 1; 2207 } 2208 2209 static inline int 2210 event_filter_match(struct perf_event *event) 2211 { 2212 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2213 perf_cgroup_match(event) && pmu_filter_match(event); 2214 } 2215 2216 static void 2217 event_sched_out(struct perf_event *event, 2218 struct perf_cpu_context *cpuctx, 2219 struct perf_event_context *ctx) 2220 { 2221 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2222 2223 WARN_ON_ONCE(event->ctx != ctx); 2224 lockdep_assert_held(&ctx->lock); 2225 2226 if (event->state != PERF_EVENT_STATE_ACTIVE) 2227 return; 2228 2229 /* 2230 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2231 * we can schedule events _OUT_ individually through things like 2232 * __perf_remove_from_context(). 2233 */ 2234 list_del_init(&event->active_list); 2235 2236 perf_pmu_disable(event->pmu); 2237 2238 event->pmu->del(event, 0); 2239 event->oncpu = -1; 2240 2241 if (READ_ONCE(event->pending_disable) >= 0) { 2242 WRITE_ONCE(event->pending_disable, -1); 2243 perf_cgroup_event_disable(event, ctx); 2244 state = PERF_EVENT_STATE_OFF; 2245 } 2246 perf_event_set_state(event, state); 2247 2248 if (!is_software_event(event)) 2249 cpuctx->active_oncpu--; 2250 if (!--ctx->nr_active) 2251 perf_event_ctx_deactivate(ctx); 2252 if (event->attr.freq && event->attr.sample_freq) 2253 ctx->nr_freq--; 2254 if (event->attr.exclusive || !cpuctx->active_oncpu) 2255 cpuctx->exclusive = 0; 2256 2257 perf_pmu_enable(event->pmu); 2258 } 2259 2260 static void 2261 group_sched_out(struct perf_event *group_event, 2262 struct perf_cpu_context *cpuctx, 2263 struct perf_event_context *ctx) 2264 { 2265 struct perf_event *event; 2266 2267 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2268 return; 2269 2270 perf_pmu_disable(ctx->pmu); 2271 2272 event_sched_out(group_event, cpuctx, ctx); 2273 2274 /* 2275 * Schedule out siblings (if any): 2276 */ 2277 for_each_sibling_event(event, group_event) 2278 event_sched_out(event, cpuctx, ctx); 2279 2280 perf_pmu_enable(ctx->pmu); 2281 2282 if (group_event->attr.exclusive) 2283 cpuctx->exclusive = 0; 2284 } 2285 2286 #define DETACH_GROUP 0x01UL 2287 2288 /* 2289 * Cross CPU call to remove a performance event 2290 * 2291 * We disable the event on the hardware level first. After that we 2292 * remove it from the context list. 2293 */ 2294 static void 2295 __perf_remove_from_context(struct perf_event *event, 2296 struct perf_cpu_context *cpuctx, 2297 struct perf_event_context *ctx, 2298 void *info) 2299 { 2300 unsigned long flags = (unsigned long)info; 2301 2302 if (ctx->is_active & EVENT_TIME) { 2303 update_context_time(ctx); 2304 update_cgrp_time_from_cpuctx(cpuctx); 2305 } 2306 2307 event_sched_out(event, cpuctx, ctx); 2308 if (flags & DETACH_GROUP) 2309 perf_group_detach(event); 2310 list_del_event(event, ctx); 2311 2312 if (!ctx->nr_events && ctx->is_active) { 2313 ctx->is_active = 0; 2314 ctx->rotate_necessary = 0; 2315 if (ctx->task) { 2316 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2317 cpuctx->task_ctx = NULL; 2318 } 2319 } 2320 } 2321 2322 /* 2323 * Remove the event from a task's (or a CPU's) list of events. 2324 * 2325 * If event->ctx is a cloned context, callers must make sure that 2326 * every task struct that event->ctx->task could possibly point to 2327 * remains valid. This is OK when called from perf_release since 2328 * that only calls us on the top-level context, which can't be a clone. 2329 * When called from perf_event_exit_task, it's OK because the 2330 * context has been detached from its task. 2331 */ 2332 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2333 { 2334 struct perf_event_context *ctx = event->ctx; 2335 2336 lockdep_assert_held(&ctx->mutex); 2337 2338 event_function_call(event, __perf_remove_from_context, (void *)flags); 2339 2340 /* 2341 * The above event_function_call() can NO-OP when it hits 2342 * TASK_TOMBSTONE. In that case we must already have been detached 2343 * from the context (by perf_event_exit_event()) but the grouping 2344 * might still be in-tact. 2345 */ 2346 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2347 if ((flags & DETACH_GROUP) && 2348 (event->attach_state & PERF_ATTACH_GROUP)) { 2349 /* 2350 * Since in that case we cannot possibly be scheduled, simply 2351 * detach now. 2352 */ 2353 raw_spin_lock_irq(&ctx->lock); 2354 perf_group_detach(event); 2355 raw_spin_unlock_irq(&ctx->lock); 2356 } 2357 } 2358 2359 /* 2360 * Cross CPU call to disable a performance event 2361 */ 2362 static void __perf_event_disable(struct perf_event *event, 2363 struct perf_cpu_context *cpuctx, 2364 struct perf_event_context *ctx, 2365 void *info) 2366 { 2367 if (event->state < PERF_EVENT_STATE_INACTIVE) 2368 return; 2369 2370 if (ctx->is_active & EVENT_TIME) { 2371 update_context_time(ctx); 2372 update_cgrp_time_from_event(event); 2373 } 2374 2375 if (event == event->group_leader) 2376 group_sched_out(event, cpuctx, ctx); 2377 else 2378 event_sched_out(event, cpuctx, ctx); 2379 2380 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2381 perf_cgroup_event_disable(event, ctx); 2382 } 2383 2384 /* 2385 * Disable an event. 2386 * 2387 * If event->ctx is a cloned context, callers must make sure that 2388 * every task struct that event->ctx->task could possibly point to 2389 * remains valid. This condition is satisfied when called through 2390 * perf_event_for_each_child or perf_event_for_each because they 2391 * hold the top-level event's child_mutex, so any descendant that 2392 * goes to exit will block in perf_event_exit_event(). 2393 * 2394 * When called from perf_pending_event it's OK because event->ctx 2395 * is the current context on this CPU and preemption is disabled, 2396 * hence we can't get into perf_event_task_sched_out for this context. 2397 */ 2398 static void _perf_event_disable(struct perf_event *event) 2399 { 2400 struct perf_event_context *ctx = event->ctx; 2401 2402 raw_spin_lock_irq(&ctx->lock); 2403 if (event->state <= PERF_EVENT_STATE_OFF) { 2404 raw_spin_unlock_irq(&ctx->lock); 2405 return; 2406 } 2407 raw_spin_unlock_irq(&ctx->lock); 2408 2409 event_function_call(event, __perf_event_disable, NULL); 2410 } 2411 2412 void perf_event_disable_local(struct perf_event *event) 2413 { 2414 event_function_local(event, __perf_event_disable, NULL); 2415 } 2416 2417 /* 2418 * Strictly speaking kernel users cannot create groups and therefore this 2419 * interface does not need the perf_event_ctx_lock() magic. 2420 */ 2421 void perf_event_disable(struct perf_event *event) 2422 { 2423 struct perf_event_context *ctx; 2424 2425 ctx = perf_event_ctx_lock(event); 2426 _perf_event_disable(event); 2427 perf_event_ctx_unlock(event, ctx); 2428 } 2429 EXPORT_SYMBOL_GPL(perf_event_disable); 2430 2431 void perf_event_disable_inatomic(struct perf_event *event) 2432 { 2433 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2434 /* can fail, see perf_pending_event_disable() */ 2435 irq_work_queue(&event->pending); 2436 } 2437 2438 static void perf_set_shadow_time(struct perf_event *event, 2439 struct perf_event_context *ctx) 2440 { 2441 /* 2442 * use the correct time source for the time snapshot 2443 * 2444 * We could get by without this by leveraging the 2445 * fact that to get to this function, the caller 2446 * has most likely already called update_context_time() 2447 * and update_cgrp_time_xx() and thus both timestamp 2448 * are identical (or very close). Given that tstamp is, 2449 * already adjusted for cgroup, we could say that: 2450 * tstamp - ctx->timestamp 2451 * is equivalent to 2452 * tstamp - cgrp->timestamp. 2453 * 2454 * Then, in perf_output_read(), the calculation would 2455 * work with no changes because: 2456 * - event is guaranteed scheduled in 2457 * - no scheduled out in between 2458 * - thus the timestamp would be the same 2459 * 2460 * But this is a bit hairy. 2461 * 2462 * So instead, we have an explicit cgroup call to remain 2463 * within the time time source all along. We believe it 2464 * is cleaner and simpler to understand. 2465 */ 2466 if (is_cgroup_event(event)) 2467 perf_cgroup_set_shadow_time(event, event->tstamp); 2468 else 2469 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2470 } 2471 2472 #define MAX_INTERRUPTS (~0ULL) 2473 2474 static void perf_log_throttle(struct perf_event *event, int enable); 2475 static void perf_log_itrace_start(struct perf_event *event); 2476 2477 static int 2478 event_sched_in(struct perf_event *event, 2479 struct perf_cpu_context *cpuctx, 2480 struct perf_event_context *ctx) 2481 { 2482 int ret = 0; 2483 2484 WARN_ON_ONCE(event->ctx != ctx); 2485 2486 lockdep_assert_held(&ctx->lock); 2487 2488 if (event->state <= PERF_EVENT_STATE_OFF) 2489 return 0; 2490 2491 WRITE_ONCE(event->oncpu, smp_processor_id()); 2492 /* 2493 * Order event::oncpu write to happen before the ACTIVE state is 2494 * visible. This allows perf_event_{stop,read}() to observe the correct 2495 * ->oncpu if it sees ACTIVE. 2496 */ 2497 smp_wmb(); 2498 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2499 2500 /* 2501 * Unthrottle events, since we scheduled we might have missed several 2502 * ticks already, also for a heavily scheduling task there is little 2503 * guarantee it'll get a tick in a timely manner. 2504 */ 2505 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2506 perf_log_throttle(event, 1); 2507 event->hw.interrupts = 0; 2508 } 2509 2510 perf_pmu_disable(event->pmu); 2511 2512 perf_set_shadow_time(event, ctx); 2513 2514 perf_log_itrace_start(event); 2515 2516 if (event->pmu->add(event, PERF_EF_START)) { 2517 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2518 event->oncpu = -1; 2519 ret = -EAGAIN; 2520 goto out; 2521 } 2522 2523 if (!is_software_event(event)) 2524 cpuctx->active_oncpu++; 2525 if (!ctx->nr_active++) 2526 perf_event_ctx_activate(ctx); 2527 if (event->attr.freq && event->attr.sample_freq) 2528 ctx->nr_freq++; 2529 2530 if (event->attr.exclusive) 2531 cpuctx->exclusive = 1; 2532 2533 out: 2534 perf_pmu_enable(event->pmu); 2535 2536 return ret; 2537 } 2538 2539 static int 2540 group_sched_in(struct perf_event *group_event, 2541 struct perf_cpu_context *cpuctx, 2542 struct perf_event_context *ctx) 2543 { 2544 struct perf_event *event, *partial_group = NULL; 2545 struct pmu *pmu = ctx->pmu; 2546 2547 if (group_event->state == PERF_EVENT_STATE_OFF) 2548 return 0; 2549 2550 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2551 2552 if (event_sched_in(group_event, cpuctx, ctx)) { 2553 pmu->cancel_txn(pmu); 2554 perf_mux_hrtimer_restart(cpuctx); 2555 return -EAGAIN; 2556 } 2557 2558 /* 2559 * Schedule in siblings as one group (if any): 2560 */ 2561 for_each_sibling_event(event, group_event) { 2562 if (event_sched_in(event, cpuctx, ctx)) { 2563 partial_group = event; 2564 goto group_error; 2565 } 2566 } 2567 2568 if (!pmu->commit_txn(pmu)) 2569 return 0; 2570 2571 group_error: 2572 /* 2573 * Groups can be scheduled in as one unit only, so undo any 2574 * partial group before returning: 2575 * The events up to the failed event are scheduled out normally. 2576 */ 2577 for_each_sibling_event(event, group_event) { 2578 if (event == partial_group) 2579 break; 2580 2581 event_sched_out(event, cpuctx, ctx); 2582 } 2583 event_sched_out(group_event, cpuctx, ctx); 2584 2585 pmu->cancel_txn(pmu); 2586 2587 perf_mux_hrtimer_restart(cpuctx); 2588 2589 return -EAGAIN; 2590 } 2591 2592 /* 2593 * Work out whether we can put this event group on the CPU now. 2594 */ 2595 static int group_can_go_on(struct perf_event *event, 2596 struct perf_cpu_context *cpuctx, 2597 int can_add_hw) 2598 { 2599 /* 2600 * Groups consisting entirely of software events can always go on. 2601 */ 2602 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2603 return 1; 2604 /* 2605 * If an exclusive group is already on, no other hardware 2606 * events can go on. 2607 */ 2608 if (cpuctx->exclusive) 2609 return 0; 2610 /* 2611 * If this group is exclusive and there are already 2612 * events on the CPU, it can't go on. 2613 */ 2614 if (event->attr.exclusive && cpuctx->active_oncpu) 2615 return 0; 2616 /* 2617 * Otherwise, try to add it if all previous groups were able 2618 * to go on. 2619 */ 2620 return can_add_hw; 2621 } 2622 2623 static void add_event_to_ctx(struct perf_event *event, 2624 struct perf_event_context *ctx) 2625 { 2626 list_add_event(event, ctx); 2627 perf_group_attach(event); 2628 } 2629 2630 static void ctx_sched_out(struct perf_event_context *ctx, 2631 struct perf_cpu_context *cpuctx, 2632 enum event_type_t event_type); 2633 static void 2634 ctx_sched_in(struct perf_event_context *ctx, 2635 struct perf_cpu_context *cpuctx, 2636 enum event_type_t event_type, 2637 struct task_struct *task); 2638 2639 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 enum event_type_t event_type) 2642 { 2643 if (!cpuctx->task_ctx) 2644 return; 2645 2646 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2647 return; 2648 2649 ctx_sched_out(ctx, cpuctx, event_type); 2650 } 2651 2652 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2653 struct perf_event_context *ctx, 2654 struct task_struct *task) 2655 { 2656 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2657 if (ctx) 2658 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2659 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2660 if (ctx) 2661 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2662 } 2663 2664 /* 2665 * We want to maintain the following priority of scheduling: 2666 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2667 * - task pinned (EVENT_PINNED) 2668 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2669 * - task flexible (EVENT_FLEXIBLE). 2670 * 2671 * In order to avoid unscheduling and scheduling back in everything every 2672 * time an event is added, only do it for the groups of equal priority and 2673 * below. 2674 * 2675 * This can be called after a batch operation on task events, in which case 2676 * event_type is a bit mask of the types of events involved. For CPU events, 2677 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2678 */ 2679 static void ctx_resched(struct perf_cpu_context *cpuctx, 2680 struct perf_event_context *task_ctx, 2681 enum event_type_t event_type) 2682 { 2683 enum event_type_t ctx_event_type; 2684 bool cpu_event = !!(event_type & EVENT_CPU); 2685 2686 /* 2687 * If pinned groups are involved, flexible groups also need to be 2688 * scheduled out. 2689 */ 2690 if (event_type & EVENT_PINNED) 2691 event_type |= EVENT_FLEXIBLE; 2692 2693 ctx_event_type = event_type & EVENT_ALL; 2694 2695 perf_pmu_disable(cpuctx->ctx.pmu); 2696 if (task_ctx) 2697 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2698 2699 /* 2700 * Decide which cpu ctx groups to schedule out based on the types 2701 * of events that caused rescheduling: 2702 * - EVENT_CPU: schedule out corresponding groups; 2703 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2704 * - otherwise, do nothing more. 2705 */ 2706 if (cpu_event) 2707 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2708 else if (ctx_event_type & EVENT_PINNED) 2709 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2710 2711 perf_event_sched_in(cpuctx, task_ctx, current); 2712 perf_pmu_enable(cpuctx->ctx.pmu); 2713 } 2714 2715 void perf_pmu_resched(struct pmu *pmu) 2716 { 2717 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2718 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2719 2720 perf_ctx_lock(cpuctx, task_ctx); 2721 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2722 perf_ctx_unlock(cpuctx, task_ctx); 2723 } 2724 2725 /* 2726 * Cross CPU call to install and enable a performance event 2727 * 2728 * Very similar to remote_function() + event_function() but cannot assume that 2729 * things like ctx->is_active and cpuctx->task_ctx are set. 2730 */ 2731 static int __perf_install_in_context(void *info) 2732 { 2733 struct perf_event *event = info; 2734 struct perf_event_context *ctx = event->ctx; 2735 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2736 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2737 bool reprogram = true; 2738 int ret = 0; 2739 2740 raw_spin_lock(&cpuctx->ctx.lock); 2741 if (ctx->task) { 2742 raw_spin_lock(&ctx->lock); 2743 task_ctx = ctx; 2744 2745 reprogram = (ctx->task == current); 2746 2747 /* 2748 * If the task is running, it must be running on this CPU, 2749 * otherwise we cannot reprogram things. 2750 * 2751 * If its not running, we don't care, ctx->lock will 2752 * serialize against it becoming runnable. 2753 */ 2754 if (task_curr(ctx->task) && !reprogram) { 2755 ret = -ESRCH; 2756 goto unlock; 2757 } 2758 2759 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2760 } else if (task_ctx) { 2761 raw_spin_lock(&task_ctx->lock); 2762 } 2763 2764 #ifdef CONFIG_CGROUP_PERF 2765 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2766 /* 2767 * If the current cgroup doesn't match the event's 2768 * cgroup, we should not try to schedule it. 2769 */ 2770 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2771 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2772 event->cgrp->css.cgroup); 2773 } 2774 #endif 2775 2776 if (reprogram) { 2777 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2778 add_event_to_ctx(event, ctx); 2779 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2780 } else { 2781 add_event_to_ctx(event, ctx); 2782 } 2783 2784 unlock: 2785 perf_ctx_unlock(cpuctx, task_ctx); 2786 2787 return ret; 2788 } 2789 2790 static bool exclusive_event_installable(struct perf_event *event, 2791 struct perf_event_context *ctx); 2792 2793 /* 2794 * Attach a performance event to a context. 2795 * 2796 * Very similar to event_function_call, see comment there. 2797 */ 2798 static void 2799 perf_install_in_context(struct perf_event_context *ctx, 2800 struct perf_event *event, 2801 int cpu) 2802 { 2803 struct task_struct *task = READ_ONCE(ctx->task); 2804 2805 lockdep_assert_held(&ctx->mutex); 2806 2807 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2808 2809 if (event->cpu != -1) 2810 event->cpu = cpu; 2811 2812 /* 2813 * Ensures that if we can observe event->ctx, both the event and ctx 2814 * will be 'complete'. See perf_iterate_sb_cpu(). 2815 */ 2816 smp_store_release(&event->ctx, ctx); 2817 2818 /* 2819 * perf_event_attr::disabled events will not run and can be initialized 2820 * without IPI. Except when this is the first event for the context, in 2821 * that case we need the magic of the IPI to set ctx->is_active. 2822 * 2823 * The IOC_ENABLE that is sure to follow the creation of a disabled 2824 * event will issue the IPI and reprogram the hardware. 2825 */ 2826 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2827 raw_spin_lock_irq(&ctx->lock); 2828 if (ctx->task == TASK_TOMBSTONE) { 2829 raw_spin_unlock_irq(&ctx->lock); 2830 return; 2831 } 2832 add_event_to_ctx(event, ctx); 2833 raw_spin_unlock_irq(&ctx->lock); 2834 return; 2835 } 2836 2837 if (!task) { 2838 cpu_function_call(cpu, __perf_install_in_context, event); 2839 return; 2840 } 2841 2842 /* 2843 * Should not happen, we validate the ctx is still alive before calling. 2844 */ 2845 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2846 return; 2847 2848 /* 2849 * Installing events is tricky because we cannot rely on ctx->is_active 2850 * to be set in case this is the nr_events 0 -> 1 transition. 2851 * 2852 * Instead we use task_curr(), which tells us if the task is running. 2853 * However, since we use task_curr() outside of rq::lock, we can race 2854 * against the actual state. This means the result can be wrong. 2855 * 2856 * If we get a false positive, we retry, this is harmless. 2857 * 2858 * If we get a false negative, things are complicated. If we are after 2859 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2860 * value must be correct. If we're before, it doesn't matter since 2861 * perf_event_context_sched_in() will program the counter. 2862 * 2863 * However, this hinges on the remote context switch having observed 2864 * our task->perf_event_ctxp[] store, such that it will in fact take 2865 * ctx::lock in perf_event_context_sched_in(). 2866 * 2867 * We do this by task_function_call(), if the IPI fails to hit the task 2868 * we know any future context switch of task must see the 2869 * perf_event_ctpx[] store. 2870 */ 2871 2872 /* 2873 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2874 * task_cpu() load, such that if the IPI then does not find the task 2875 * running, a future context switch of that task must observe the 2876 * store. 2877 */ 2878 smp_mb(); 2879 again: 2880 if (!task_function_call(task, __perf_install_in_context, event)) 2881 return; 2882 2883 raw_spin_lock_irq(&ctx->lock); 2884 task = ctx->task; 2885 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2886 /* 2887 * Cannot happen because we already checked above (which also 2888 * cannot happen), and we hold ctx->mutex, which serializes us 2889 * against perf_event_exit_task_context(). 2890 */ 2891 raw_spin_unlock_irq(&ctx->lock); 2892 return; 2893 } 2894 /* 2895 * If the task is not running, ctx->lock will avoid it becoming so, 2896 * thus we can safely install the event. 2897 */ 2898 if (task_curr(task)) { 2899 raw_spin_unlock_irq(&ctx->lock); 2900 goto again; 2901 } 2902 add_event_to_ctx(event, ctx); 2903 raw_spin_unlock_irq(&ctx->lock); 2904 } 2905 2906 /* 2907 * Cross CPU call to enable a performance event 2908 */ 2909 static void __perf_event_enable(struct perf_event *event, 2910 struct perf_cpu_context *cpuctx, 2911 struct perf_event_context *ctx, 2912 void *info) 2913 { 2914 struct perf_event *leader = event->group_leader; 2915 struct perf_event_context *task_ctx; 2916 2917 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2918 event->state <= PERF_EVENT_STATE_ERROR) 2919 return; 2920 2921 if (ctx->is_active) 2922 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2923 2924 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2925 perf_cgroup_event_enable(event, ctx); 2926 2927 if (!ctx->is_active) 2928 return; 2929 2930 if (!event_filter_match(event)) { 2931 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2932 return; 2933 } 2934 2935 /* 2936 * If the event is in a group and isn't the group leader, 2937 * then don't put it on unless the group is on. 2938 */ 2939 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2940 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2941 return; 2942 } 2943 2944 task_ctx = cpuctx->task_ctx; 2945 if (ctx->task) 2946 WARN_ON_ONCE(task_ctx != ctx); 2947 2948 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2949 } 2950 2951 /* 2952 * Enable an event. 2953 * 2954 * If event->ctx is a cloned context, callers must make sure that 2955 * every task struct that event->ctx->task could possibly point to 2956 * remains valid. This condition is satisfied when called through 2957 * perf_event_for_each_child or perf_event_for_each as described 2958 * for perf_event_disable. 2959 */ 2960 static void _perf_event_enable(struct perf_event *event) 2961 { 2962 struct perf_event_context *ctx = event->ctx; 2963 2964 raw_spin_lock_irq(&ctx->lock); 2965 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2966 event->state < PERF_EVENT_STATE_ERROR) { 2967 raw_spin_unlock_irq(&ctx->lock); 2968 return; 2969 } 2970 2971 /* 2972 * If the event is in error state, clear that first. 2973 * 2974 * That way, if we see the event in error state below, we know that it 2975 * has gone back into error state, as distinct from the task having 2976 * been scheduled away before the cross-call arrived. 2977 */ 2978 if (event->state == PERF_EVENT_STATE_ERROR) 2979 event->state = PERF_EVENT_STATE_OFF; 2980 raw_spin_unlock_irq(&ctx->lock); 2981 2982 event_function_call(event, __perf_event_enable, NULL); 2983 } 2984 2985 /* 2986 * See perf_event_disable(); 2987 */ 2988 void perf_event_enable(struct perf_event *event) 2989 { 2990 struct perf_event_context *ctx; 2991 2992 ctx = perf_event_ctx_lock(event); 2993 _perf_event_enable(event); 2994 perf_event_ctx_unlock(event, ctx); 2995 } 2996 EXPORT_SYMBOL_GPL(perf_event_enable); 2997 2998 struct stop_event_data { 2999 struct perf_event *event; 3000 unsigned int restart; 3001 }; 3002 3003 static int __perf_event_stop(void *info) 3004 { 3005 struct stop_event_data *sd = info; 3006 struct perf_event *event = sd->event; 3007 3008 /* if it's already INACTIVE, do nothing */ 3009 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3010 return 0; 3011 3012 /* matches smp_wmb() in event_sched_in() */ 3013 smp_rmb(); 3014 3015 /* 3016 * There is a window with interrupts enabled before we get here, 3017 * so we need to check again lest we try to stop another CPU's event. 3018 */ 3019 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3020 return -EAGAIN; 3021 3022 event->pmu->stop(event, PERF_EF_UPDATE); 3023 3024 /* 3025 * May race with the actual stop (through perf_pmu_output_stop()), 3026 * but it is only used for events with AUX ring buffer, and such 3027 * events will refuse to restart because of rb::aux_mmap_count==0, 3028 * see comments in perf_aux_output_begin(). 3029 * 3030 * Since this is happening on an event-local CPU, no trace is lost 3031 * while restarting. 3032 */ 3033 if (sd->restart) 3034 event->pmu->start(event, 0); 3035 3036 return 0; 3037 } 3038 3039 static int perf_event_stop(struct perf_event *event, int restart) 3040 { 3041 struct stop_event_data sd = { 3042 .event = event, 3043 .restart = restart, 3044 }; 3045 int ret = 0; 3046 3047 do { 3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3049 return 0; 3050 3051 /* matches smp_wmb() in event_sched_in() */ 3052 smp_rmb(); 3053 3054 /* 3055 * We only want to restart ACTIVE events, so if the event goes 3056 * inactive here (event->oncpu==-1), there's nothing more to do; 3057 * fall through with ret==-ENXIO. 3058 */ 3059 ret = cpu_function_call(READ_ONCE(event->oncpu), 3060 __perf_event_stop, &sd); 3061 } while (ret == -EAGAIN); 3062 3063 return ret; 3064 } 3065 3066 /* 3067 * In order to contain the amount of racy and tricky in the address filter 3068 * configuration management, it is a two part process: 3069 * 3070 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3071 * we update the addresses of corresponding vmas in 3072 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3073 * (p2) when an event is scheduled in (pmu::add), it calls 3074 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3075 * if the generation has changed since the previous call. 3076 * 3077 * If (p1) happens while the event is active, we restart it to force (p2). 3078 * 3079 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3080 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3081 * ioctl; 3082 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3083 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3084 * for reading; 3085 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3086 * of exec. 3087 */ 3088 void perf_event_addr_filters_sync(struct perf_event *event) 3089 { 3090 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3091 3092 if (!has_addr_filter(event)) 3093 return; 3094 3095 raw_spin_lock(&ifh->lock); 3096 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3097 event->pmu->addr_filters_sync(event); 3098 event->hw.addr_filters_gen = event->addr_filters_gen; 3099 } 3100 raw_spin_unlock(&ifh->lock); 3101 } 3102 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3103 3104 static int _perf_event_refresh(struct perf_event *event, int refresh) 3105 { 3106 /* 3107 * not supported on inherited events 3108 */ 3109 if (event->attr.inherit || !is_sampling_event(event)) 3110 return -EINVAL; 3111 3112 atomic_add(refresh, &event->event_limit); 3113 _perf_event_enable(event); 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * See perf_event_disable() 3120 */ 3121 int perf_event_refresh(struct perf_event *event, int refresh) 3122 { 3123 struct perf_event_context *ctx; 3124 int ret; 3125 3126 ctx = perf_event_ctx_lock(event); 3127 ret = _perf_event_refresh(event, refresh); 3128 perf_event_ctx_unlock(event, ctx); 3129 3130 return ret; 3131 } 3132 EXPORT_SYMBOL_GPL(perf_event_refresh); 3133 3134 static int perf_event_modify_breakpoint(struct perf_event *bp, 3135 struct perf_event_attr *attr) 3136 { 3137 int err; 3138 3139 _perf_event_disable(bp); 3140 3141 err = modify_user_hw_breakpoint_check(bp, attr, true); 3142 3143 if (!bp->attr.disabled) 3144 _perf_event_enable(bp); 3145 3146 return err; 3147 } 3148 3149 static int perf_event_modify_attr(struct perf_event *event, 3150 struct perf_event_attr *attr) 3151 { 3152 if (event->attr.type != attr->type) 3153 return -EINVAL; 3154 3155 switch (event->attr.type) { 3156 case PERF_TYPE_BREAKPOINT: 3157 return perf_event_modify_breakpoint(event, attr); 3158 default: 3159 /* Place holder for future additions. */ 3160 return -EOPNOTSUPP; 3161 } 3162 } 3163 3164 static void ctx_sched_out(struct perf_event_context *ctx, 3165 struct perf_cpu_context *cpuctx, 3166 enum event_type_t event_type) 3167 { 3168 struct perf_event *event, *tmp; 3169 int is_active = ctx->is_active; 3170 3171 lockdep_assert_held(&ctx->lock); 3172 3173 if (likely(!ctx->nr_events)) { 3174 /* 3175 * See __perf_remove_from_context(). 3176 */ 3177 WARN_ON_ONCE(ctx->is_active); 3178 if (ctx->task) 3179 WARN_ON_ONCE(cpuctx->task_ctx); 3180 return; 3181 } 3182 3183 ctx->is_active &= ~event_type; 3184 if (!(ctx->is_active & EVENT_ALL)) 3185 ctx->is_active = 0; 3186 3187 if (ctx->task) { 3188 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3189 if (!ctx->is_active) 3190 cpuctx->task_ctx = NULL; 3191 } 3192 3193 /* 3194 * Always update time if it was set; not only when it changes. 3195 * Otherwise we can 'forget' to update time for any but the last 3196 * context we sched out. For example: 3197 * 3198 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3199 * ctx_sched_out(.event_type = EVENT_PINNED) 3200 * 3201 * would only update time for the pinned events. 3202 */ 3203 if (is_active & EVENT_TIME) { 3204 /* update (and stop) ctx time */ 3205 update_context_time(ctx); 3206 update_cgrp_time_from_cpuctx(cpuctx); 3207 } 3208 3209 is_active ^= ctx->is_active; /* changed bits */ 3210 3211 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3212 return; 3213 3214 perf_pmu_disable(ctx->pmu); 3215 if (is_active & EVENT_PINNED) { 3216 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3217 group_sched_out(event, cpuctx, ctx); 3218 } 3219 3220 if (is_active & EVENT_FLEXIBLE) { 3221 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3222 group_sched_out(event, cpuctx, ctx); 3223 3224 /* 3225 * Since we cleared EVENT_FLEXIBLE, also clear 3226 * rotate_necessary, is will be reset by 3227 * ctx_flexible_sched_in() when needed. 3228 */ 3229 ctx->rotate_necessary = 0; 3230 } 3231 perf_pmu_enable(ctx->pmu); 3232 } 3233 3234 /* 3235 * Test whether two contexts are equivalent, i.e. whether they have both been 3236 * cloned from the same version of the same context. 3237 * 3238 * Equivalence is measured using a generation number in the context that is 3239 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3240 * and list_del_event(). 3241 */ 3242 static int context_equiv(struct perf_event_context *ctx1, 3243 struct perf_event_context *ctx2) 3244 { 3245 lockdep_assert_held(&ctx1->lock); 3246 lockdep_assert_held(&ctx2->lock); 3247 3248 /* Pinning disables the swap optimization */ 3249 if (ctx1->pin_count || ctx2->pin_count) 3250 return 0; 3251 3252 /* If ctx1 is the parent of ctx2 */ 3253 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3254 return 1; 3255 3256 /* If ctx2 is the parent of ctx1 */ 3257 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3258 return 1; 3259 3260 /* 3261 * If ctx1 and ctx2 have the same parent; we flatten the parent 3262 * hierarchy, see perf_event_init_context(). 3263 */ 3264 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3265 ctx1->parent_gen == ctx2->parent_gen) 3266 return 1; 3267 3268 /* Unmatched */ 3269 return 0; 3270 } 3271 3272 static void __perf_event_sync_stat(struct perf_event *event, 3273 struct perf_event *next_event) 3274 { 3275 u64 value; 3276 3277 if (!event->attr.inherit_stat) 3278 return; 3279 3280 /* 3281 * Update the event value, we cannot use perf_event_read() 3282 * because we're in the middle of a context switch and have IRQs 3283 * disabled, which upsets smp_call_function_single(), however 3284 * we know the event must be on the current CPU, therefore we 3285 * don't need to use it. 3286 */ 3287 if (event->state == PERF_EVENT_STATE_ACTIVE) 3288 event->pmu->read(event); 3289 3290 perf_event_update_time(event); 3291 3292 /* 3293 * In order to keep per-task stats reliable we need to flip the event 3294 * values when we flip the contexts. 3295 */ 3296 value = local64_read(&next_event->count); 3297 value = local64_xchg(&event->count, value); 3298 local64_set(&next_event->count, value); 3299 3300 swap(event->total_time_enabled, next_event->total_time_enabled); 3301 swap(event->total_time_running, next_event->total_time_running); 3302 3303 /* 3304 * Since we swizzled the values, update the user visible data too. 3305 */ 3306 perf_event_update_userpage(event); 3307 perf_event_update_userpage(next_event); 3308 } 3309 3310 static void perf_event_sync_stat(struct perf_event_context *ctx, 3311 struct perf_event_context *next_ctx) 3312 { 3313 struct perf_event *event, *next_event; 3314 3315 if (!ctx->nr_stat) 3316 return; 3317 3318 update_context_time(ctx); 3319 3320 event = list_first_entry(&ctx->event_list, 3321 struct perf_event, event_entry); 3322 3323 next_event = list_first_entry(&next_ctx->event_list, 3324 struct perf_event, event_entry); 3325 3326 while (&event->event_entry != &ctx->event_list && 3327 &next_event->event_entry != &next_ctx->event_list) { 3328 3329 __perf_event_sync_stat(event, next_event); 3330 3331 event = list_next_entry(event, event_entry); 3332 next_event = list_next_entry(next_event, event_entry); 3333 } 3334 } 3335 3336 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3337 struct task_struct *next) 3338 { 3339 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3340 struct perf_event_context *next_ctx; 3341 struct perf_event_context *parent, *next_parent; 3342 struct perf_cpu_context *cpuctx; 3343 int do_switch = 1; 3344 3345 if (likely(!ctx)) 3346 return; 3347 3348 cpuctx = __get_cpu_context(ctx); 3349 if (!cpuctx->task_ctx) 3350 return; 3351 3352 rcu_read_lock(); 3353 next_ctx = next->perf_event_ctxp[ctxn]; 3354 if (!next_ctx) 3355 goto unlock; 3356 3357 parent = rcu_dereference(ctx->parent_ctx); 3358 next_parent = rcu_dereference(next_ctx->parent_ctx); 3359 3360 /* If neither context have a parent context; they cannot be clones. */ 3361 if (!parent && !next_parent) 3362 goto unlock; 3363 3364 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3365 /* 3366 * Looks like the two contexts are clones, so we might be 3367 * able to optimize the context switch. We lock both 3368 * contexts and check that they are clones under the 3369 * lock (including re-checking that neither has been 3370 * uncloned in the meantime). It doesn't matter which 3371 * order we take the locks because no other cpu could 3372 * be trying to lock both of these tasks. 3373 */ 3374 raw_spin_lock(&ctx->lock); 3375 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3376 if (context_equiv(ctx, next_ctx)) { 3377 struct pmu *pmu = ctx->pmu; 3378 3379 WRITE_ONCE(ctx->task, next); 3380 WRITE_ONCE(next_ctx->task, task); 3381 3382 /* 3383 * PMU specific parts of task perf context can require 3384 * additional synchronization. As an example of such 3385 * synchronization see implementation details of Intel 3386 * LBR call stack data profiling; 3387 */ 3388 if (pmu->swap_task_ctx) 3389 pmu->swap_task_ctx(ctx, next_ctx); 3390 else 3391 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3392 3393 /* 3394 * RCU_INIT_POINTER here is safe because we've not 3395 * modified the ctx and the above modification of 3396 * ctx->task and ctx->task_ctx_data are immaterial 3397 * since those values are always verified under 3398 * ctx->lock which we're now holding. 3399 */ 3400 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3401 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3402 3403 do_switch = 0; 3404 3405 perf_event_sync_stat(ctx, next_ctx); 3406 } 3407 raw_spin_unlock(&next_ctx->lock); 3408 raw_spin_unlock(&ctx->lock); 3409 } 3410 unlock: 3411 rcu_read_unlock(); 3412 3413 if (do_switch) { 3414 raw_spin_lock(&ctx->lock); 3415 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3416 raw_spin_unlock(&ctx->lock); 3417 } 3418 } 3419 3420 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3421 3422 void perf_sched_cb_dec(struct pmu *pmu) 3423 { 3424 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3425 3426 this_cpu_dec(perf_sched_cb_usages); 3427 3428 if (!--cpuctx->sched_cb_usage) 3429 list_del(&cpuctx->sched_cb_entry); 3430 } 3431 3432 3433 void perf_sched_cb_inc(struct pmu *pmu) 3434 { 3435 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3436 3437 if (!cpuctx->sched_cb_usage++) 3438 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3439 3440 this_cpu_inc(perf_sched_cb_usages); 3441 } 3442 3443 /* 3444 * This function provides the context switch callback to the lower code 3445 * layer. It is invoked ONLY when the context switch callback is enabled. 3446 * 3447 * This callback is relevant even to per-cpu events; for example multi event 3448 * PEBS requires this to provide PID/TID information. This requires we flush 3449 * all queued PEBS records before we context switch to a new task. 3450 */ 3451 static void perf_pmu_sched_task(struct task_struct *prev, 3452 struct task_struct *next, 3453 bool sched_in) 3454 { 3455 struct perf_cpu_context *cpuctx; 3456 struct pmu *pmu; 3457 3458 if (prev == next) 3459 return; 3460 3461 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3462 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3463 3464 if (WARN_ON_ONCE(!pmu->sched_task)) 3465 continue; 3466 3467 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3468 perf_pmu_disable(pmu); 3469 3470 pmu->sched_task(cpuctx->task_ctx, sched_in); 3471 3472 perf_pmu_enable(pmu); 3473 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3474 } 3475 } 3476 3477 static void perf_event_switch(struct task_struct *task, 3478 struct task_struct *next_prev, bool sched_in); 3479 3480 #define for_each_task_context_nr(ctxn) \ 3481 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3482 3483 /* 3484 * Called from scheduler to remove the events of the current task, 3485 * with interrupts disabled. 3486 * 3487 * We stop each event and update the event value in event->count. 3488 * 3489 * This does not protect us against NMI, but disable() 3490 * sets the disabled bit in the control field of event _before_ 3491 * accessing the event control register. If a NMI hits, then it will 3492 * not restart the event. 3493 */ 3494 void __perf_event_task_sched_out(struct task_struct *task, 3495 struct task_struct *next) 3496 { 3497 int ctxn; 3498 3499 if (__this_cpu_read(perf_sched_cb_usages)) 3500 perf_pmu_sched_task(task, next, false); 3501 3502 if (atomic_read(&nr_switch_events)) 3503 perf_event_switch(task, next, false); 3504 3505 for_each_task_context_nr(ctxn) 3506 perf_event_context_sched_out(task, ctxn, next); 3507 3508 /* 3509 * if cgroup events exist on this CPU, then we need 3510 * to check if we have to switch out PMU state. 3511 * cgroup event are system-wide mode only 3512 */ 3513 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3514 perf_cgroup_sched_out(task, next); 3515 } 3516 3517 /* 3518 * Called with IRQs disabled 3519 */ 3520 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3521 enum event_type_t event_type) 3522 { 3523 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3524 } 3525 3526 static bool perf_less_group_idx(const void *l, const void *r) 3527 { 3528 const struct perf_event *le = *(const struct perf_event **)l; 3529 const struct perf_event *re = *(const struct perf_event **)r; 3530 3531 return le->group_index < re->group_index; 3532 } 3533 3534 static void swap_ptr(void *l, void *r) 3535 { 3536 void **lp = l, **rp = r; 3537 3538 swap(*lp, *rp); 3539 } 3540 3541 static const struct min_heap_callbacks perf_min_heap = { 3542 .elem_size = sizeof(struct perf_event *), 3543 .less = perf_less_group_idx, 3544 .swp = swap_ptr, 3545 }; 3546 3547 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3548 { 3549 struct perf_event **itrs = heap->data; 3550 3551 if (event) { 3552 itrs[heap->nr] = event; 3553 heap->nr++; 3554 } 3555 } 3556 3557 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3558 struct perf_event_groups *groups, int cpu, 3559 int (*func)(struct perf_event *, void *), 3560 void *data) 3561 { 3562 #ifdef CONFIG_CGROUP_PERF 3563 struct cgroup_subsys_state *css = NULL; 3564 #endif 3565 /* Space for per CPU and/or any CPU event iterators. */ 3566 struct perf_event *itrs[2]; 3567 struct min_heap event_heap; 3568 struct perf_event **evt; 3569 int ret; 3570 3571 if (cpuctx) { 3572 event_heap = (struct min_heap){ 3573 .data = cpuctx->heap, 3574 .nr = 0, 3575 .size = cpuctx->heap_size, 3576 }; 3577 3578 lockdep_assert_held(&cpuctx->ctx.lock); 3579 3580 #ifdef CONFIG_CGROUP_PERF 3581 if (cpuctx->cgrp) 3582 css = &cpuctx->cgrp->css; 3583 #endif 3584 } else { 3585 event_heap = (struct min_heap){ 3586 .data = itrs, 3587 .nr = 0, 3588 .size = ARRAY_SIZE(itrs), 3589 }; 3590 /* Events not within a CPU context may be on any CPU. */ 3591 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3592 } 3593 evt = event_heap.data; 3594 3595 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3596 3597 #ifdef CONFIG_CGROUP_PERF 3598 for (; css; css = css->parent) 3599 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3600 #endif 3601 3602 min_heapify_all(&event_heap, &perf_min_heap); 3603 3604 while (event_heap.nr) { 3605 ret = func(*evt, data); 3606 if (ret) 3607 return ret; 3608 3609 *evt = perf_event_groups_next(*evt); 3610 if (*evt) 3611 min_heapify(&event_heap, 0, &perf_min_heap); 3612 else 3613 min_heap_pop(&event_heap, &perf_min_heap); 3614 } 3615 3616 return 0; 3617 } 3618 3619 static int merge_sched_in(struct perf_event *event, void *data) 3620 { 3621 struct perf_event_context *ctx = event->ctx; 3622 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3623 int *can_add_hw = data; 3624 3625 if (event->state <= PERF_EVENT_STATE_OFF) 3626 return 0; 3627 3628 if (!event_filter_match(event)) 3629 return 0; 3630 3631 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3632 if (!group_sched_in(event, cpuctx, ctx)) 3633 list_add_tail(&event->active_list, get_event_list(event)); 3634 } 3635 3636 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3637 if (event->attr.pinned) { 3638 perf_cgroup_event_disable(event, ctx); 3639 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3640 } 3641 3642 *can_add_hw = 0; 3643 ctx->rotate_necessary = 1; 3644 } 3645 3646 return 0; 3647 } 3648 3649 static void 3650 ctx_pinned_sched_in(struct perf_event_context *ctx, 3651 struct perf_cpu_context *cpuctx) 3652 { 3653 int can_add_hw = 1; 3654 3655 if (ctx != &cpuctx->ctx) 3656 cpuctx = NULL; 3657 3658 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3659 smp_processor_id(), 3660 merge_sched_in, &can_add_hw); 3661 } 3662 3663 static void 3664 ctx_flexible_sched_in(struct perf_event_context *ctx, 3665 struct perf_cpu_context *cpuctx) 3666 { 3667 int can_add_hw = 1; 3668 3669 if (ctx != &cpuctx->ctx) 3670 cpuctx = NULL; 3671 3672 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3673 smp_processor_id(), 3674 merge_sched_in, &can_add_hw); 3675 } 3676 3677 static void 3678 ctx_sched_in(struct perf_event_context *ctx, 3679 struct perf_cpu_context *cpuctx, 3680 enum event_type_t event_type, 3681 struct task_struct *task) 3682 { 3683 int is_active = ctx->is_active; 3684 u64 now; 3685 3686 lockdep_assert_held(&ctx->lock); 3687 3688 if (likely(!ctx->nr_events)) 3689 return; 3690 3691 ctx->is_active |= (event_type | EVENT_TIME); 3692 if (ctx->task) { 3693 if (!is_active) 3694 cpuctx->task_ctx = ctx; 3695 else 3696 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3697 } 3698 3699 is_active ^= ctx->is_active; /* changed bits */ 3700 3701 if (is_active & EVENT_TIME) { 3702 /* start ctx time */ 3703 now = perf_clock(); 3704 ctx->timestamp = now; 3705 perf_cgroup_set_timestamp(task, ctx); 3706 } 3707 3708 /* 3709 * First go through the list and put on any pinned groups 3710 * in order to give them the best chance of going on. 3711 */ 3712 if (is_active & EVENT_PINNED) 3713 ctx_pinned_sched_in(ctx, cpuctx); 3714 3715 /* Then walk through the lower prio flexible groups */ 3716 if (is_active & EVENT_FLEXIBLE) 3717 ctx_flexible_sched_in(ctx, cpuctx); 3718 } 3719 3720 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3721 enum event_type_t event_type, 3722 struct task_struct *task) 3723 { 3724 struct perf_event_context *ctx = &cpuctx->ctx; 3725 3726 ctx_sched_in(ctx, cpuctx, event_type, task); 3727 } 3728 3729 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3730 struct task_struct *task) 3731 { 3732 struct perf_cpu_context *cpuctx; 3733 3734 cpuctx = __get_cpu_context(ctx); 3735 if (cpuctx->task_ctx == ctx) 3736 return; 3737 3738 perf_ctx_lock(cpuctx, ctx); 3739 /* 3740 * We must check ctx->nr_events while holding ctx->lock, such 3741 * that we serialize against perf_install_in_context(). 3742 */ 3743 if (!ctx->nr_events) 3744 goto unlock; 3745 3746 perf_pmu_disable(ctx->pmu); 3747 /* 3748 * We want to keep the following priority order: 3749 * cpu pinned (that don't need to move), task pinned, 3750 * cpu flexible, task flexible. 3751 * 3752 * However, if task's ctx is not carrying any pinned 3753 * events, no need to flip the cpuctx's events around. 3754 */ 3755 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3756 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3757 perf_event_sched_in(cpuctx, ctx, task); 3758 perf_pmu_enable(ctx->pmu); 3759 3760 unlock: 3761 perf_ctx_unlock(cpuctx, ctx); 3762 } 3763 3764 /* 3765 * Called from scheduler to add the events of the current task 3766 * with interrupts disabled. 3767 * 3768 * We restore the event value and then enable it. 3769 * 3770 * This does not protect us against NMI, but enable() 3771 * sets the enabled bit in the control field of event _before_ 3772 * accessing the event control register. If a NMI hits, then it will 3773 * keep the event running. 3774 */ 3775 void __perf_event_task_sched_in(struct task_struct *prev, 3776 struct task_struct *task) 3777 { 3778 struct perf_event_context *ctx; 3779 int ctxn; 3780 3781 /* 3782 * If cgroup events exist on this CPU, then we need to check if we have 3783 * to switch in PMU state; cgroup event are system-wide mode only. 3784 * 3785 * Since cgroup events are CPU events, we must schedule these in before 3786 * we schedule in the task events. 3787 */ 3788 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3789 perf_cgroup_sched_in(prev, task); 3790 3791 for_each_task_context_nr(ctxn) { 3792 ctx = task->perf_event_ctxp[ctxn]; 3793 if (likely(!ctx)) 3794 continue; 3795 3796 perf_event_context_sched_in(ctx, task); 3797 } 3798 3799 if (atomic_read(&nr_switch_events)) 3800 perf_event_switch(task, prev, true); 3801 3802 if (__this_cpu_read(perf_sched_cb_usages)) 3803 perf_pmu_sched_task(prev, task, true); 3804 } 3805 3806 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3807 { 3808 u64 frequency = event->attr.sample_freq; 3809 u64 sec = NSEC_PER_SEC; 3810 u64 divisor, dividend; 3811 3812 int count_fls, nsec_fls, frequency_fls, sec_fls; 3813 3814 count_fls = fls64(count); 3815 nsec_fls = fls64(nsec); 3816 frequency_fls = fls64(frequency); 3817 sec_fls = 30; 3818 3819 /* 3820 * We got @count in @nsec, with a target of sample_freq HZ 3821 * the target period becomes: 3822 * 3823 * @count * 10^9 3824 * period = ------------------- 3825 * @nsec * sample_freq 3826 * 3827 */ 3828 3829 /* 3830 * Reduce accuracy by one bit such that @a and @b converge 3831 * to a similar magnitude. 3832 */ 3833 #define REDUCE_FLS(a, b) \ 3834 do { \ 3835 if (a##_fls > b##_fls) { \ 3836 a >>= 1; \ 3837 a##_fls--; \ 3838 } else { \ 3839 b >>= 1; \ 3840 b##_fls--; \ 3841 } \ 3842 } while (0) 3843 3844 /* 3845 * Reduce accuracy until either term fits in a u64, then proceed with 3846 * the other, so that finally we can do a u64/u64 division. 3847 */ 3848 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3849 REDUCE_FLS(nsec, frequency); 3850 REDUCE_FLS(sec, count); 3851 } 3852 3853 if (count_fls + sec_fls > 64) { 3854 divisor = nsec * frequency; 3855 3856 while (count_fls + sec_fls > 64) { 3857 REDUCE_FLS(count, sec); 3858 divisor >>= 1; 3859 } 3860 3861 dividend = count * sec; 3862 } else { 3863 dividend = count * sec; 3864 3865 while (nsec_fls + frequency_fls > 64) { 3866 REDUCE_FLS(nsec, frequency); 3867 dividend >>= 1; 3868 } 3869 3870 divisor = nsec * frequency; 3871 } 3872 3873 if (!divisor) 3874 return dividend; 3875 3876 return div64_u64(dividend, divisor); 3877 } 3878 3879 static DEFINE_PER_CPU(int, perf_throttled_count); 3880 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3881 3882 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3883 { 3884 struct hw_perf_event *hwc = &event->hw; 3885 s64 period, sample_period; 3886 s64 delta; 3887 3888 period = perf_calculate_period(event, nsec, count); 3889 3890 delta = (s64)(period - hwc->sample_period); 3891 delta = (delta + 7) / 8; /* low pass filter */ 3892 3893 sample_period = hwc->sample_period + delta; 3894 3895 if (!sample_period) 3896 sample_period = 1; 3897 3898 hwc->sample_period = sample_period; 3899 3900 if (local64_read(&hwc->period_left) > 8*sample_period) { 3901 if (disable) 3902 event->pmu->stop(event, PERF_EF_UPDATE); 3903 3904 local64_set(&hwc->period_left, 0); 3905 3906 if (disable) 3907 event->pmu->start(event, PERF_EF_RELOAD); 3908 } 3909 } 3910 3911 /* 3912 * combine freq adjustment with unthrottling to avoid two passes over the 3913 * events. At the same time, make sure, having freq events does not change 3914 * the rate of unthrottling as that would introduce bias. 3915 */ 3916 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3917 int needs_unthr) 3918 { 3919 struct perf_event *event; 3920 struct hw_perf_event *hwc; 3921 u64 now, period = TICK_NSEC; 3922 s64 delta; 3923 3924 /* 3925 * only need to iterate over all events iff: 3926 * - context have events in frequency mode (needs freq adjust) 3927 * - there are events to unthrottle on this cpu 3928 */ 3929 if (!(ctx->nr_freq || needs_unthr)) 3930 return; 3931 3932 raw_spin_lock(&ctx->lock); 3933 perf_pmu_disable(ctx->pmu); 3934 3935 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3936 if (event->state != PERF_EVENT_STATE_ACTIVE) 3937 continue; 3938 3939 if (!event_filter_match(event)) 3940 continue; 3941 3942 perf_pmu_disable(event->pmu); 3943 3944 hwc = &event->hw; 3945 3946 if (hwc->interrupts == MAX_INTERRUPTS) { 3947 hwc->interrupts = 0; 3948 perf_log_throttle(event, 1); 3949 event->pmu->start(event, 0); 3950 } 3951 3952 if (!event->attr.freq || !event->attr.sample_freq) 3953 goto next; 3954 3955 /* 3956 * stop the event and update event->count 3957 */ 3958 event->pmu->stop(event, PERF_EF_UPDATE); 3959 3960 now = local64_read(&event->count); 3961 delta = now - hwc->freq_count_stamp; 3962 hwc->freq_count_stamp = now; 3963 3964 /* 3965 * restart the event 3966 * reload only if value has changed 3967 * we have stopped the event so tell that 3968 * to perf_adjust_period() to avoid stopping it 3969 * twice. 3970 */ 3971 if (delta > 0) 3972 perf_adjust_period(event, period, delta, false); 3973 3974 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3975 next: 3976 perf_pmu_enable(event->pmu); 3977 } 3978 3979 perf_pmu_enable(ctx->pmu); 3980 raw_spin_unlock(&ctx->lock); 3981 } 3982 3983 /* 3984 * Move @event to the tail of the @ctx's elegible events. 3985 */ 3986 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3987 { 3988 /* 3989 * Rotate the first entry last of non-pinned groups. Rotation might be 3990 * disabled by the inheritance code. 3991 */ 3992 if (ctx->rotate_disable) 3993 return; 3994 3995 perf_event_groups_delete(&ctx->flexible_groups, event); 3996 perf_event_groups_insert(&ctx->flexible_groups, event); 3997 } 3998 3999 /* pick an event from the flexible_groups to rotate */ 4000 static inline struct perf_event * 4001 ctx_event_to_rotate(struct perf_event_context *ctx) 4002 { 4003 struct perf_event *event; 4004 4005 /* pick the first active flexible event */ 4006 event = list_first_entry_or_null(&ctx->flexible_active, 4007 struct perf_event, active_list); 4008 4009 /* if no active flexible event, pick the first event */ 4010 if (!event) { 4011 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4012 typeof(*event), group_node); 4013 } 4014 4015 /* 4016 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4017 * finds there are unschedulable events, it will set it again. 4018 */ 4019 ctx->rotate_necessary = 0; 4020 4021 return event; 4022 } 4023 4024 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4025 { 4026 struct perf_event *cpu_event = NULL, *task_event = NULL; 4027 struct perf_event_context *task_ctx = NULL; 4028 int cpu_rotate, task_rotate; 4029 4030 /* 4031 * Since we run this from IRQ context, nobody can install new 4032 * events, thus the event count values are stable. 4033 */ 4034 4035 cpu_rotate = cpuctx->ctx.rotate_necessary; 4036 task_ctx = cpuctx->task_ctx; 4037 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4038 4039 if (!(cpu_rotate || task_rotate)) 4040 return false; 4041 4042 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4043 perf_pmu_disable(cpuctx->ctx.pmu); 4044 4045 if (task_rotate) 4046 task_event = ctx_event_to_rotate(task_ctx); 4047 if (cpu_rotate) 4048 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4049 4050 /* 4051 * As per the order given at ctx_resched() first 'pop' task flexible 4052 * and then, if needed CPU flexible. 4053 */ 4054 if (task_event || (task_ctx && cpu_event)) 4055 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4056 if (cpu_event) 4057 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4058 4059 if (task_event) 4060 rotate_ctx(task_ctx, task_event); 4061 if (cpu_event) 4062 rotate_ctx(&cpuctx->ctx, cpu_event); 4063 4064 perf_event_sched_in(cpuctx, task_ctx, current); 4065 4066 perf_pmu_enable(cpuctx->ctx.pmu); 4067 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4068 4069 return true; 4070 } 4071 4072 void perf_event_task_tick(void) 4073 { 4074 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4075 struct perf_event_context *ctx, *tmp; 4076 int throttled; 4077 4078 lockdep_assert_irqs_disabled(); 4079 4080 __this_cpu_inc(perf_throttled_seq); 4081 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4082 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4083 4084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4085 perf_adjust_freq_unthr_context(ctx, throttled); 4086 } 4087 4088 static int event_enable_on_exec(struct perf_event *event, 4089 struct perf_event_context *ctx) 4090 { 4091 if (!event->attr.enable_on_exec) 4092 return 0; 4093 4094 event->attr.enable_on_exec = 0; 4095 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4096 return 0; 4097 4098 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4099 4100 return 1; 4101 } 4102 4103 /* 4104 * Enable all of a task's events that have been marked enable-on-exec. 4105 * This expects task == current. 4106 */ 4107 static void perf_event_enable_on_exec(int ctxn) 4108 { 4109 struct perf_event_context *ctx, *clone_ctx = NULL; 4110 enum event_type_t event_type = 0; 4111 struct perf_cpu_context *cpuctx; 4112 struct perf_event *event; 4113 unsigned long flags; 4114 int enabled = 0; 4115 4116 local_irq_save(flags); 4117 ctx = current->perf_event_ctxp[ctxn]; 4118 if (!ctx || !ctx->nr_events) 4119 goto out; 4120 4121 cpuctx = __get_cpu_context(ctx); 4122 perf_ctx_lock(cpuctx, ctx); 4123 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4124 list_for_each_entry(event, &ctx->event_list, event_entry) { 4125 enabled |= event_enable_on_exec(event, ctx); 4126 event_type |= get_event_type(event); 4127 } 4128 4129 /* 4130 * Unclone and reschedule this context if we enabled any event. 4131 */ 4132 if (enabled) { 4133 clone_ctx = unclone_ctx(ctx); 4134 ctx_resched(cpuctx, ctx, event_type); 4135 } else { 4136 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4137 } 4138 perf_ctx_unlock(cpuctx, ctx); 4139 4140 out: 4141 local_irq_restore(flags); 4142 4143 if (clone_ctx) 4144 put_ctx(clone_ctx); 4145 } 4146 4147 struct perf_read_data { 4148 struct perf_event *event; 4149 bool group; 4150 int ret; 4151 }; 4152 4153 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4154 { 4155 u16 local_pkg, event_pkg; 4156 4157 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4158 int local_cpu = smp_processor_id(); 4159 4160 event_pkg = topology_physical_package_id(event_cpu); 4161 local_pkg = topology_physical_package_id(local_cpu); 4162 4163 if (event_pkg == local_pkg) 4164 return local_cpu; 4165 } 4166 4167 return event_cpu; 4168 } 4169 4170 /* 4171 * Cross CPU call to read the hardware event 4172 */ 4173 static void __perf_event_read(void *info) 4174 { 4175 struct perf_read_data *data = info; 4176 struct perf_event *sub, *event = data->event; 4177 struct perf_event_context *ctx = event->ctx; 4178 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4179 struct pmu *pmu = event->pmu; 4180 4181 /* 4182 * If this is a task context, we need to check whether it is 4183 * the current task context of this cpu. If not it has been 4184 * scheduled out before the smp call arrived. In that case 4185 * event->count would have been updated to a recent sample 4186 * when the event was scheduled out. 4187 */ 4188 if (ctx->task && cpuctx->task_ctx != ctx) 4189 return; 4190 4191 raw_spin_lock(&ctx->lock); 4192 if (ctx->is_active & EVENT_TIME) { 4193 update_context_time(ctx); 4194 update_cgrp_time_from_event(event); 4195 } 4196 4197 perf_event_update_time(event); 4198 if (data->group) 4199 perf_event_update_sibling_time(event); 4200 4201 if (event->state != PERF_EVENT_STATE_ACTIVE) 4202 goto unlock; 4203 4204 if (!data->group) { 4205 pmu->read(event); 4206 data->ret = 0; 4207 goto unlock; 4208 } 4209 4210 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4211 4212 pmu->read(event); 4213 4214 for_each_sibling_event(sub, event) { 4215 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4216 /* 4217 * Use sibling's PMU rather than @event's since 4218 * sibling could be on different (eg: software) PMU. 4219 */ 4220 sub->pmu->read(sub); 4221 } 4222 } 4223 4224 data->ret = pmu->commit_txn(pmu); 4225 4226 unlock: 4227 raw_spin_unlock(&ctx->lock); 4228 } 4229 4230 static inline u64 perf_event_count(struct perf_event *event) 4231 { 4232 return local64_read(&event->count) + atomic64_read(&event->child_count); 4233 } 4234 4235 /* 4236 * NMI-safe method to read a local event, that is an event that 4237 * is: 4238 * - either for the current task, or for this CPU 4239 * - does not have inherit set, for inherited task events 4240 * will not be local and we cannot read them atomically 4241 * - must not have a pmu::count method 4242 */ 4243 int perf_event_read_local(struct perf_event *event, u64 *value, 4244 u64 *enabled, u64 *running) 4245 { 4246 unsigned long flags; 4247 int ret = 0; 4248 4249 /* 4250 * Disabling interrupts avoids all counter scheduling (context 4251 * switches, timer based rotation and IPIs). 4252 */ 4253 local_irq_save(flags); 4254 4255 /* 4256 * It must not be an event with inherit set, we cannot read 4257 * all child counters from atomic context. 4258 */ 4259 if (event->attr.inherit) { 4260 ret = -EOPNOTSUPP; 4261 goto out; 4262 } 4263 4264 /* If this is a per-task event, it must be for current */ 4265 if ((event->attach_state & PERF_ATTACH_TASK) && 4266 event->hw.target != current) { 4267 ret = -EINVAL; 4268 goto out; 4269 } 4270 4271 /* If this is a per-CPU event, it must be for this CPU */ 4272 if (!(event->attach_state & PERF_ATTACH_TASK) && 4273 event->cpu != smp_processor_id()) { 4274 ret = -EINVAL; 4275 goto out; 4276 } 4277 4278 /* If this is a pinned event it must be running on this CPU */ 4279 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4280 ret = -EBUSY; 4281 goto out; 4282 } 4283 4284 /* 4285 * If the event is currently on this CPU, its either a per-task event, 4286 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4287 * oncpu == -1). 4288 */ 4289 if (event->oncpu == smp_processor_id()) 4290 event->pmu->read(event); 4291 4292 *value = local64_read(&event->count); 4293 if (enabled || running) { 4294 u64 now = event->shadow_ctx_time + perf_clock(); 4295 u64 __enabled, __running; 4296 4297 __perf_update_times(event, now, &__enabled, &__running); 4298 if (enabled) 4299 *enabled = __enabled; 4300 if (running) 4301 *running = __running; 4302 } 4303 out: 4304 local_irq_restore(flags); 4305 4306 return ret; 4307 } 4308 4309 static int perf_event_read(struct perf_event *event, bool group) 4310 { 4311 enum perf_event_state state = READ_ONCE(event->state); 4312 int event_cpu, ret = 0; 4313 4314 /* 4315 * If event is enabled and currently active on a CPU, update the 4316 * value in the event structure: 4317 */ 4318 again: 4319 if (state == PERF_EVENT_STATE_ACTIVE) { 4320 struct perf_read_data data; 4321 4322 /* 4323 * Orders the ->state and ->oncpu loads such that if we see 4324 * ACTIVE we must also see the right ->oncpu. 4325 * 4326 * Matches the smp_wmb() from event_sched_in(). 4327 */ 4328 smp_rmb(); 4329 4330 event_cpu = READ_ONCE(event->oncpu); 4331 if ((unsigned)event_cpu >= nr_cpu_ids) 4332 return 0; 4333 4334 data = (struct perf_read_data){ 4335 .event = event, 4336 .group = group, 4337 .ret = 0, 4338 }; 4339 4340 preempt_disable(); 4341 event_cpu = __perf_event_read_cpu(event, event_cpu); 4342 4343 /* 4344 * Purposely ignore the smp_call_function_single() return 4345 * value. 4346 * 4347 * If event_cpu isn't a valid CPU it means the event got 4348 * scheduled out and that will have updated the event count. 4349 * 4350 * Therefore, either way, we'll have an up-to-date event count 4351 * after this. 4352 */ 4353 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4354 preempt_enable(); 4355 ret = data.ret; 4356 4357 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4358 struct perf_event_context *ctx = event->ctx; 4359 unsigned long flags; 4360 4361 raw_spin_lock_irqsave(&ctx->lock, flags); 4362 state = event->state; 4363 if (state != PERF_EVENT_STATE_INACTIVE) { 4364 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4365 goto again; 4366 } 4367 4368 /* 4369 * May read while context is not active (e.g., thread is 4370 * blocked), in that case we cannot update context time 4371 */ 4372 if (ctx->is_active & EVENT_TIME) { 4373 update_context_time(ctx); 4374 update_cgrp_time_from_event(event); 4375 } 4376 4377 perf_event_update_time(event); 4378 if (group) 4379 perf_event_update_sibling_time(event); 4380 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4381 } 4382 4383 return ret; 4384 } 4385 4386 /* 4387 * Initialize the perf_event context in a task_struct: 4388 */ 4389 static void __perf_event_init_context(struct perf_event_context *ctx) 4390 { 4391 raw_spin_lock_init(&ctx->lock); 4392 mutex_init(&ctx->mutex); 4393 INIT_LIST_HEAD(&ctx->active_ctx_list); 4394 perf_event_groups_init(&ctx->pinned_groups); 4395 perf_event_groups_init(&ctx->flexible_groups); 4396 INIT_LIST_HEAD(&ctx->event_list); 4397 INIT_LIST_HEAD(&ctx->pinned_active); 4398 INIT_LIST_HEAD(&ctx->flexible_active); 4399 refcount_set(&ctx->refcount, 1); 4400 } 4401 4402 static struct perf_event_context * 4403 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4404 { 4405 struct perf_event_context *ctx; 4406 4407 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4408 if (!ctx) 4409 return NULL; 4410 4411 __perf_event_init_context(ctx); 4412 if (task) 4413 ctx->task = get_task_struct(task); 4414 ctx->pmu = pmu; 4415 4416 return ctx; 4417 } 4418 4419 static struct task_struct * 4420 find_lively_task_by_vpid(pid_t vpid) 4421 { 4422 struct task_struct *task; 4423 4424 rcu_read_lock(); 4425 if (!vpid) 4426 task = current; 4427 else 4428 task = find_task_by_vpid(vpid); 4429 if (task) 4430 get_task_struct(task); 4431 rcu_read_unlock(); 4432 4433 if (!task) 4434 return ERR_PTR(-ESRCH); 4435 4436 return task; 4437 } 4438 4439 /* 4440 * Returns a matching context with refcount and pincount. 4441 */ 4442 static struct perf_event_context * 4443 find_get_context(struct pmu *pmu, struct task_struct *task, 4444 struct perf_event *event) 4445 { 4446 struct perf_event_context *ctx, *clone_ctx = NULL; 4447 struct perf_cpu_context *cpuctx; 4448 void *task_ctx_data = NULL; 4449 unsigned long flags; 4450 int ctxn, err; 4451 int cpu = event->cpu; 4452 4453 if (!task) { 4454 /* Must be root to operate on a CPU event: */ 4455 err = perf_allow_cpu(&event->attr); 4456 if (err) 4457 return ERR_PTR(err); 4458 4459 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4460 ctx = &cpuctx->ctx; 4461 get_ctx(ctx); 4462 ++ctx->pin_count; 4463 4464 return ctx; 4465 } 4466 4467 err = -EINVAL; 4468 ctxn = pmu->task_ctx_nr; 4469 if (ctxn < 0) 4470 goto errout; 4471 4472 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4473 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4474 if (!task_ctx_data) { 4475 err = -ENOMEM; 4476 goto errout; 4477 } 4478 } 4479 4480 retry: 4481 ctx = perf_lock_task_context(task, ctxn, &flags); 4482 if (ctx) { 4483 clone_ctx = unclone_ctx(ctx); 4484 ++ctx->pin_count; 4485 4486 if (task_ctx_data && !ctx->task_ctx_data) { 4487 ctx->task_ctx_data = task_ctx_data; 4488 task_ctx_data = NULL; 4489 } 4490 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4491 4492 if (clone_ctx) 4493 put_ctx(clone_ctx); 4494 } else { 4495 ctx = alloc_perf_context(pmu, task); 4496 err = -ENOMEM; 4497 if (!ctx) 4498 goto errout; 4499 4500 if (task_ctx_data) { 4501 ctx->task_ctx_data = task_ctx_data; 4502 task_ctx_data = NULL; 4503 } 4504 4505 err = 0; 4506 mutex_lock(&task->perf_event_mutex); 4507 /* 4508 * If it has already passed perf_event_exit_task(). 4509 * we must see PF_EXITING, it takes this mutex too. 4510 */ 4511 if (task->flags & PF_EXITING) 4512 err = -ESRCH; 4513 else if (task->perf_event_ctxp[ctxn]) 4514 err = -EAGAIN; 4515 else { 4516 get_ctx(ctx); 4517 ++ctx->pin_count; 4518 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4519 } 4520 mutex_unlock(&task->perf_event_mutex); 4521 4522 if (unlikely(err)) { 4523 put_ctx(ctx); 4524 4525 if (err == -EAGAIN) 4526 goto retry; 4527 goto errout; 4528 } 4529 } 4530 4531 kfree(task_ctx_data); 4532 return ctx; 4533 4534 errout: 4535 kfree(task_ctx_data); 4536 return ERR_PTR(err); 4537 } 4538 4539 static void perf_event_free_filter(struct perf_event *event); 4540 static void perf_event_free_bpf_prog(struct perf_event *event); 4541 4542 static void free_event_rcu(struct rcu_head *head) 4543 { 4544 struct perf_event *event; 4545 4546 event = container_of(head, struct perf_event, rcu_head); 4547 if (event->ns) 4548 put_pid_ns(event->ns); 4549 perf_event_free_filter(event); 4550 kfree(event); 4551 } 4552 4553 static void ring_buffer_attach(struct perf_event *event, 4554 struct perf_buffer *rb); 4555 4556 static void detach_sb_event(struct perf_event *event) 4557 { 4558 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4559 4560 raw_spin_lock(&pel->lock); 4561 list_del_rcu(&event->sb_list); 4562 raw_spin_unlock(&pel->lock); 4563 } 4564 4565 static bool is_sb_event(struct perf_event *event) 4566 { 4567 struct perf_event_attr *attr = &event->attr; 4568 4569 if (event->parent) 4570 return false; 4571 4572 if (event->attach_state & PERF_ATTACH_TASK) 4573 return false; 4574 4575 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4576 attr->comm || attr->comm_exec || 4577 attr->task || attr->ksymbol || 4578 attr->context_switch || 4579 attr->bpf_event) 4580 return true; 4581 return false; 4582 } 4583 4584 static void unaccount_pmu_sb_event(struct perf_event *event) 4585 { 4586 if (is_sb_event(event)) 4587 detach_sb_event(event); 4588 } 4589 4590 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4591 { 4592 if (event->parent) 4593 return; 4594 4595 if (is_cgroup_event(event)) 4596 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4597 } 4598 4599 #ifdef CONFIG_NO_HZ_FULL 4600 static DEFINE_SPINLOCK(nr_freq_lock); 4601 #endif 4602 4603 static void unaccount_freq_event_nohz(void) 4604 { 4605 #ifdef CONFIG_NO_HZ_FULL 4606 spin_lock(&nr_freq_lock); 4607 if (atomic_dec_and_test(&nr_freq_events)) 4608 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4609 spin_unlock(&nr_freq_lock); 4610 #endif 4611 } 4612 4613 static void unaccount_freq_event(void) 4614 { 4615 if (tick_nohz_full_enabled()) 4616 unaccount_freq_event_nohz(); 4617 else 4618 atomic_dec(&nr_freq_events); 4619 } 4620 4621 static void unaccount_event(struct perf_event *event) 4622 { 4623 bool dec = false; 4624 4625 if (event->parent) 4626 return; 4627 4628 if (event->attach_state & PERF_ATTACH_TASK) 4629 dec = true; 4630 if (event->attr.mmap || event->attr.mmap_data) 4631 atomic_dec(&nr_mmap_events); 4632 if (event->attr.comm) 4633 atomic_dec(&nr_comm_events); 4634 if (event->attr.namespaces) 4635 atomic_dec(&nr_namespaces_events); 4636 if (event->attr.cgroup) 4637 atomic_dec(&nr_cgroup_events); 4638 if (event->attr.task) 4639 atomic_dec(&nr_task_events); 4640 if (event->attr.freq) 4641 unaccount_freq_event(); 4642 if (event->attr.context_switch) { 4643 dec = true; 4644 atomic_dec(&nr_switch_events); 4645 } 4646 if (is_cgroup_event(event)) 4647 dec = true; 4648 if (has_branch_stack(event)) 4649 dec = true; 4650 if (event->attr.ksymbol) 4651 atomic_dec(&nr_ksymbol_events); 4652 if (event->attr.bpf_event) 4653 atomic_dec(&nr_bpf_events); 4654 4655 if (dec) { 4656 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4657 schedule_delayed_work(&perf_sched_work, HZ); 4658 } 4659 4660 unaccount_event_cpu(event, event->cpu); 4661 4662 unaccount_pmu_sb_event(event); 4663 } 4664 4665 static void perf_sched_delayed(struct work_struct *work) 4666 { 4667 mutex_lock(&perf_sched_mutex); 4668 if (atomic_dec_and_test(&perf_sched_count)) 4669 static_branch_disable(&perf_sched_events); 4670 mutex_unlock(&perf_sched_mutex); 4671 } 4672 4673 /* 4674 * The following implement mutual exclusion of events on "exclusive" pmus 4675 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4676 * at a time, so we disallow creating events that might conflict, namely: 4677 * 4678 * 1) cpu-wide events in the presence of per-task events, 4679 * 2) per-task events in the presence of cpu-wide events, 4680 * 3) two matching events on the same context. 4681 * 4682 * The former two cases are handled in the allocation path (perf_event_alloc(), 4683 * _free_event()), the latter -- before the first perf_install_in_context(). 4684 */ 4685 static int exclusive_event_init(struct perf_event *event) 4686 { 4687 struct pmu *pmu = event->pmu; 4688 4689 if (!is_exclusive_pmu(pmu)) 4690 return 0; 4691 4692 /* 4693 * Prevent co-existence of per-task and cpu-wide events on the 4694 * same exclusive pmu. 4695 * 4696 * Negative pmu::exclusive_cnt means there are cpu-wide 4697 * events on this "exclusive" pmu, positive means there are 4698 * per-task events. 4699 * 4700 * Since this is called in perf_event_alloc() path, event::ctx 4701 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4702 * to mean "per-task event", because unlike other attach states it 4703 * never gets cleared. 4704 */ 4705 if (event->attach_state & PERF_ATTACH_TASK) { 4706 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4707 return -EBUSY; 4708 } else { 4709 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4710 return -EBUSY; 4711 } 4712 4713 return 0; 4714 } 4715 4716 static void exclusive_event_destroy(struct perf_event *event) 4717 { 4718 struct pmu *pmu = event->pmu; 4719 4720 if (!is_exclusive_pmu(pmu)) 4721 return; 4722 4723 /* see comment in exclusive_event_init() */ 4724 if (event->attach_state & PERF_ATTACH_TASK) 4725 atomic_dec(&pmu->exclusive_cnt); 4726 else 4727 atomic_inc(&pmu->exclusive_cnt); 4728 } 4729 4730 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4731 { 4732 if ((e1->pmu == e2->pmu) && 4733 (e1->cpu == e2->cpu || 4734 e1->cpu == -1 || 4735 e2->cpu == -1)) 4736 return true; 4737 return false; 4738 } 4739 4740 static bool exclusive_event_installable(struct perf_event *event, 4741 struct perf_event_context *ctx) 4742 { 4743 struct perf_event *iter_event; 4744 struct pmu *pmu = event->pmu; 4745 4746 lockdep_assert_held(&ctx->mutex); 4747 4748 if (!is_exclusive_pmu(pmu)) 4749 return true; 4750 4751 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4752 if (exclusive_event_match(iter_event, event)) 4753 return false; 4754 } 4755 4756 return true; 4757 } 4758 4759 static void perf_addr_filters_splice(struct perf_event *event, 4760 struct list_head *head); 4761 4762 static void _free_event(struct perf_event *event) 4763 { 4764 irq_work_sync(&event->pending); 4765 4766 unaccount_event(event); 4767 4768 security_perf_event_free(event); 4769 4770 if (event->rb) { 4771 /* 4772 * Can happen when we close an event with re-directed output. 4773 * 4774 * Since we have a 0 refcount, perf_mmap_close() will skip 4775 * over us; possibly making our ring_buffer_put() the last. 4776 */ 4777 mutex_lock(&event->mmap_mutex); 4778 ring_buffer_attach(event, NULL); 4779 mutex_unlock(&event->mmap_mutex); 4780 } 4781 4782 if (is_cgroup_event(event)) 4783 perf_detach_cgroup(event); 4784 4785 if (!event->parent) { 4786 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4787 put_callchain_buffers(); 4788 } 4789 4790 perf_event_free_bpf_prog(event); 4791 perf_addr_filters_splice(event, NULL); 4792 kfree(event->addr_filter_ranges); 4793 4794 if (event->destroy) 4795 event->destroy(event); 4796 4797 /* 4798 * Must be after ->destroy(), due to uprobe_perf_close() using 4799 * hw.target. 4800 */ 4801 if (event->hw.target) 4802 put_task_struct(event->hw.target); 4803 4804 /* 4805 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4806 * all task references must be cleaned up. 4807 */ 4808 if (event->ctx) 4809 put_ctx(event->ctx); 4810 4811 exclusive_event_destroy(event); 4812 module_put(event->pmu->module); 4813 4814 call_rcu(&event->rcu_head, free_event_rcu); 4815 } 4816 4817 /* 4818 * Used to free events which have a known refcount of 1, such as in error paths 4819 * where the event isn't exposed yet and inherited events. 4820 */ 4821 static void free_event(struct perf_event *event) 4822 { 4823 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4824 "unexpected event refcount: %ld; ptr=%p\n", 4825 atomic_long_read(&event->refcount), event)) { 4826 /* leak to avoid use-after-free */ 4827 return; 4828 } 4829 4830 _free_event(event); 4831 } 4832 4833 /* 4834 * Remove user event from the owner task. 4835 */ 4836 static void perf_remove_from_owner(struct perf_event *event) 4837 { 4838 struct task_struct *owner; 4839 4840 rcu_read_lock(); 4841 /* 4842 * Matches the smp_store_release() in perf_event_exit_task(). If we 4843 * observe !owner it means the list deletion is complete and we can 4844 * indeed free this event, otherwise we need to serialize on 4845 * owner->perf_event_mutex. 4846 */ 4847 owner = READ_ONCE(event->owner); 4848 if (owner) { 4849 /* 4850 * Since delayed_put_task_struct() also drops the last 4851 * task reference we can safely take a new reference 4852 * while holding the rcu_read_lock(). 4853 */ 4854 get_task_struct(owner); 4855 } 4856 rcu_read_unlock(); 4857 4858 if (owner) { 4859 /* 4860 * If we're here through perf_event_exit_task() we're already 4861 * holding ctx->mutex which would be an inversion wrt. the 4862 * normal lock order. 4863 * 4864 * However we can safely take this lock because its the child 4865 * ctx->mutex. 4866 */ 4867 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4868 4869 /* 4870 * We have to re-check the event->owner field, if it is cleared 4871 * we raced with perf_event_exit_task(), acquiring the mutex 4872 * ensured they're done, and we can proceed with freeing the 4873 * event. 4874 */ 4875 if (event->owner) { 4876 list_del_init(&event->owner_entry); 4877 smp_store_release(&event->owner, NULL); 4878 } 4879 mutex_unlock(&owner->perf_event_mutex); 4880 put_task_struct(owner); 4881 } 4882 } 4883 4884 static void put_event(struct perf_event *event) 4885 { 4886 if (!atomic_long_dec_and_test(&event->refcount)) 4887 return; 4888 4889 _free_event(event); 4890 } 4891 4892 /* 4893 * Kill an event dead; while event:refcount will preserve the event 4894 * object, it will not preserve its functionality. Once the last 'user' 4895 * gives up the object, we'll destroy the thing. 4896 */ 4897 int perf_event_release_kernel(struct perf_event *event) 4898 { 4899 struct perf_event_context *ctx = event->ctx; 4900 struct perf_event *child, *tmp; 4901 LIST_HEAD(free_list); 4902 4903 /* 4904 * If we got here through err_file: fput(event_file); we will not have 4905 * attached to a context yet. 4906 */ 4907 if (!ctx) { 4908 WARN_ON_ONCE(event->attach_state & 4909 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4910 goto no_ctx; 4911 } 4912 4913 if (!is_kernel_event(event)) 4914 perf_remove_from_owner(event); 4915 4916 ctx = perf_event_ctx_lock(event); 4917 WARN_ON_ONCE(ctx->parent_ctx); 4918 perf_remove_from_context(event, DETACH_GROUP); 4919 4920 raw_spin_lock_irq(&ctx->lock); 4921 /* 4922 * Mark this event as STATE_DEAD, there is no external reference to it 4923 * anymore. 4924 * 4925 * Anybody acquiring event->child_mutex after the below loop _must_ 4926 * also see this, most importantly inherit_event() which will avoid 4927 * placing more children on the list. 4928 * 4929 * Thus this guarantees that we will in fact observe and kill _ALL_ 4930 * child events. 4931 */ 4932 event->state = PERF_EVENT_STATE_DEAD; 4933 raw_spin_unlock_irq(&ctx->lock); 4934 4935 perf_event_ctx_unlock(event, ctx); 4936 4937 again: 4938 mutex_lock(&event->child_mutex); 4939 list_for_each_entry(child, &event->child_list, child_list) { 4940 4941 /* 4942 * Cannot change, child events are not migrated, see the 4943 * comment with perf_event_ctx_lock_nested(). 4944 */ 4945 ctx = READ_ONCE(child->ctx); 4946 /* 4947 * Since child_mutex nests inside ctx::mutex, we must jump 4948 * through hoops. We start by grabbing a reference on the ctx. 4949 * 4950 * Since the event cannot get freed while we hold the 4951 * child_mutex, the context must also exist and have a !0 4952 * reference count. 4953 */ 4954 get_ctx(ctx); 4955 4956 /* 4957 * Now that we have a ctx ref, we can drop child_mutex, and 4958 * acquire ctx::mutex without fear of it going away. Then we 4959 * can re-acquire child_mutex. 4960 */ 4961 mutex_unlock(&event->child_mutex); 4962 mutex_lock(&ctx->mutex); 4963 mutex_lock(&event->child_mutex); 4964 4965 /* 4966 * Now that we hold ctx::mutex and child_mutex, revalidate our 4967 * state, if child is still the first entry, it didn't get freed 4968 * and we can continue doing so. 4969 */ 4970 tmp = list_first_entry_or_null(&event->child_list, 4971 struct perf_event, child_list); 4972 if (tmp == child) { 4973 perf_remove_from_context(child, DETACH_GROUP); 4974 list_move(&child->child_list, &free_list); 4975 /* 4976 * This matches the refcount bump in inherit_event(); 4977 * this can't be the last reference. 4978 */ 4979 put_event(event); 4980 } 4981 4982 mutex_unlock(&event->child_mutex); 4983 mutex_unlock(&ctx->mutex); 4984 put_ctx(ctx); 4985 goto again; 4986 } 4987 mutex_unlock(&event->child_mutex); 4988 4989 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4990 void *var = &child->ctx->refcount; 4991 4992 list_del(&child->child_list); 4993 free_event(child); 4994 4995 /* 4996 * Wake any perf_event_free_task() waiting for this event to be 4997 * freed. 4998 */ 4999 smp_mb(); /* pairs with wait_var_event() */ 5000 wake_up_var(var); 5001 } 5002 5003 no_ctx: 5004 put_event(event); /* Must be the 'last' reference */ 5005 return 0; 5006 } 5007 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5008 5009 /* 5010 * Called when the last reference to the file is gone. 5011 */ 5012 static int perf_release(struct inode *inode, struct file *file) 5013 { 5014 perf_event_release_kernel(file->private_data); 5015 return 0; 5016 } 5017 5018 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5019 { 5020 struct perf_event *child; 5021 u64 total = 0; 5022 5023 *enabled = 0; 5024 *running = 0; 5025 5026 mutex_lock(&event->child_mutex); 5027 5028 (void)perf_event_read(event, false); 5029 total += perf_event_count(event); 5030 5031 *enabled += event->total_time_enabled + 5032 atomic64_read(&event->child_total_time_enabled); 5033 *running += event->total_time_running + 5034 atomic64_read(&event->child_total_time_running); 5035 5036 list_for_each_entry(child, &event->child_list, child_list) { 5037 (void)perf_event_read(child, false); 5038 total += perf_event_count(child); 5039 *enabled += child->total_time_enabled; 5040 *running += child->total_time_running; 5041 } 5042 mutex_unlock(&event->child_mutex); 5043 5044 return total; 5045 } 5046 5047 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5048 { 5049 struct perf_event_context *ctx; 5050 u64 count; 5051 5052 ctx = perf_event_ctx_lock(event); 5053 count = __perf_event_read_value(event, enabled, running); 5054 perf_event_ctx_unlock(event, ctx); 5055 5056 return count; 5057 } 5058 EXPORT_SYMBOL_GPL(perf_event_read_value); 5059 5060 static int __perf_read_group_add(struct perf_event *leader, 5061 u64 read_format, u64 *values) 5062 { 5063 struct perf_event_context *ctx = leader->ctx; 5064 struct perf_event *sub; 5065 unsigned long flags; 5066 int n = 1; /* skip @nr */ 5067 int ret; 5068 5069 ret = perf_event_read(leader, true); 5070 if (ret) 5071 return ret; 5072 5073 raw_spin_lock_irqsave(&ctx->lock, flags); 5074 5075 /* 5076 * Since we co-schedule groups, {enabled,running} times of siblings 5077 * will be identical to those of the leader, so we only publish one 5078 * set. 5079 */ 5080 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5081 values[n++] += leader->total_time_enabled + 5082 atomic64_read(&leader->child_total_time_enabled); 5083 } 5084 5085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5086 values[n++] += leader->total_time_running + 5087 atomic64_read(&leader->child_total_time_running); 5088 } 5089 5090 /* 5091 * Write {count,id} tuples for every sibling. 5092 */ 5093 values[n++] += perf_event_count(leader); 5094 if (read_format & PERF_FORMAT_ID) 5095 values[n++] = primary_event_id(leader); 5096 5097 for_each_sibling_event(sub, leader) { 5098 values[n++] += perf_event_count(sub); 5099 if (read_format & PERF_FORMAT_ID) 5100 values[n++] = primary_event_id(sub); 5101 } 5102 5103 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5104 return 0; 5105 } 5106 5107 static int perf_read_group(struct perf_event *event, 5108 u64 read_format, char __user *buf) 5109 { 5110 struct perf_event *leader = event->group_leader, *child; 5111 struct perf_event_context *ctx = leader->ctx; 5112 int ret; 5113 u64 *values; 5114 5115 lockdep_assert_held(&ctx->mutex); 5116 5117 values = kzalloc(event->read_size, GFP_KERNEL); 5118 if (!values) 5119 return -ENOMEM; 5120 5121 values[0] = 1 + leader->nr_siblings; 5122 5123 /* 5124 * By locking the child_mutex of the leader we effectively 5125 * lock the child list of all siblings.. XXX explain how. 5126 */ 5127 mutex_lock(&leader->child_mutex); 5128 5129 ret = __perf_read_group_add(leader, read_format, values); 5130 if (ret) 5131 goto unlock; 5132 5133 list_for_each_entry(child, &leader->child_list, child_list) { 5134 ret = __perf_read_group_add(child, read_format, values); 5135 if (ret) 5136 goto unlock; 5137 } 5138 5139 mutex_unlock(&leader->child_mutex); 5140 5141 ret = event->read_size; 5142 if (copy_to_user(buf, values, event->read_size)) 5143 ret = -EFAULT; 5144 goto out; 5145 5146 unlock: 5147 mutex_unlock(&leader->child_mutex); 5148 out: 5149 kfree(values); 5150 return ret; 5151 } 5152 5153 static int perf_read_one(struct perf_event *event, 5154 u64 read_format, char __user *buf) 5155 { 5156 u64 enabled, running; 5157 u64 values[4]; 5158 int n = 0; 5159 5160 values[n++] = __perf_event_read_value(event, &enabled, &running); 5161 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5162 values[n++] = enabled; 5163 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5164 values[n++] = running; 5165 if (read_format & PERF_FORMAT_ID) 5166 values[n++] = primary_event_id(event); 5167 5168 if (copy_to_user(buf, values, n * sizeof(u64))) 5169 return -EFAULT; 5170 5171 return n * sizeof(u64); 5172 } 5173 5174 static bool is_event_hup(struct perf_event *event) 5175 { 5176 bool no_children; 5177 5178 if (event->state > PERF_EVENT_STATE_EXIT) 5179 return false; 5180 5181 mutex_lock(&event->child_mutex); 5182 no_children = list_empty(&event->child_list); 5183 mutex_unlock(&event->child_mutex); 5184 return no_children; 5185 } 5186 5187 /* 5188 * Read the performance event - simple non blocking version for now 5189 */ 5190 static ssize_t 5191 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5192 { 5193 u64 read_format = event->attr.read_format; 5194 int ret; 5195 5196 /* 5197 * Return end-of-file for a read on an event that is in 5198 * error state (i.e. because it was pinned but it couldn't be 5199 * scheduled on to the CPU at some point). 5200 */ 5201 if (event->state == PERF_EVENT_STATE_ERROR) 5202 return 0; 5203 5204 if (count < event->read_size) 5205 return -ENOSPC; 5206 5207 WARN_ON_ONCE(event->ctx->parent_ctx); 5208 if (read_format & PERF_FORMAT_GROUP) 5209 ret = perf_read_group(event, read_format, buf); 5210 else 5211 ret = perf_read_one(event, read_format, buf); 5212 5213 return ret; 5214 } 5215 5216 static ssize_t 5217 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5218 { 5219 struct perf_event *event = file->private_data; 5220 struct perf_event_context *ctx; 5221 int ret; 5222 5223 ret = security_perf_event_read(event); 5224 if (ret) 5225 return ret; 5226 5227 ctx = perf_event_ctx_lock(event); 5228 ret = __perf_read(event, buf, count); 5229 perf_event_ctx_unlock(event, ctx); 5230 5231 return ret; 5232 } 5233 5234 static __poll_t perf_poll(struct file *file, poll_table *wait) 5235 { 5236 struct perf_event *event = file->private_data; 5237 struct perf_buffer *rb; 5238 __poll_t events = EPOLLHUP; 5239 5240 poll_wait(file, &event->waitq, wait); 5241 5242 if (is_event_hup(event)) 5243 return events; 5244 5245 /* 5246 * Pin the event->rb by taking event->mmap_mutex; otherwise 5247 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5248 */ 5249 mutex_lock(&event->mmap_mutex); 5250 rb = event->rb; 5251 if (rb) 5252 events = atomic_xchg(&rb->poll, 0); 5253 mutex_unlock(&event->mmap_mutex); 5254 return events; 5255 } 5256 5257 static void _perf_event_reset(struct perf_event *event) 5258 { 5259 (void)perf_event_read(event, false); 5260 local64_set(&event->count, 0); 5261 perf_event_update_userpage(event); 5262 } 5263 5264 /* Assume it's not an event with inherit set. */ 5265 u64 perf_event_pause(struct perf_event *event, bool reset) 5266 { 5267 struct perf_event_context *ctx; 5268 u64 count; 5269 5270 ctx = perf_event_ctx_lock(event); 5271 WARN_ON_ONCE(event->attr.inherit); 5272 _perf_event_disable(event); 5273 count = local64_read(&event->count); 5274 if (reset) 5275 local64_set(&event->count, 0); 5276 perf_event_ctx_unlock(event, ctx); 5277 5278 return count; 5279 } 5280 EXPORT_SYMBOL_GPL(perf_event_pause); 5281 5282 /* 5283 * Holding the top-level event's child_mutex means that any 5284 * descendant process that has inherited this event will block 5285 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5286 * task existence requirements of perf_event_enable/disable. 5287 */ 5288 static void perf_event_for_each_child(struct perf_event *event, 5289 void (*func)(struct perf_event *)) 5290 { 5291 struct perf_event *child; 5292 5293 WARN_ON_ONCE(event->ctx->parent_ctx); 5294 5295 mutex_lock(&event->child_mutex); 5296 func(event); 5297 list_for_each_entry(child, &event->child_list, child_list) 5298 func(child); 5299 mutex_unlock(&event->child_mutex); 5300 } 5301 5302 static void perf_event_for_each(struct perf_event *event, 5303 void (*func)(struct perf_event *)) 5304 { 5305 struct perf_event_context *ctx = event->ctx; 5306 struct perf_event *sibling; 5307 5308 lockdep_assert_held(&ctx->mutex); 5309 5310 event = event->group_leader; 5311 5312 perf_event_for_each_child(event, func); 5313 for_each_sibling_event(sibling, event) 5314 perf_event_for_each_child(sibling, func); 5315 } 5316 5317 static void __perf_event_period(struct perf_event *event, 5318 struct perf_cpu_context *cpuctx, 5319 struct perf_event_context *ctx, 5320 void *info) 5321 { 5322 u64 value = *((u64 *)info); 5323 bool active; 5324 5325 if (event->attr.freq) { 5326 event->attr.sample_freq = value; 5327 } else { 5328 event->attr.sample_period = value; 5329 event->hw.sample_period = value; 5330 } 5331 5332 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5333 if (active) { 5334 perf_pmu_disable(ctx->pmu); 5335 /* 5336 * We could be throttled; unthrottle now to avoid the tick 5337 * trying to unthrottle while we already re-started the event. 5338 */ 5339 if (event->hw.interrupts == MAX_INTERRUPTS) { 5340 event->hw.interrupts = 0; 5341 perf_log_throttle(event, 1); 5342 } 5343 event->pmu->stop(event, PERF_EF_UPDATE); 5344 } 5345 5346 local64_set(&event->hw.period_left, 0); 5347 5348 if (active) { 5349 event->pmu->start(event, PERF_EF_RELOAD); 5350 perf_pmu_enable(ctx->pmu); 5351 } 5352 } 5353 5354 static int perf_event_check_period(struct perf_event *event, u64 value) 5355 { 5356 return event->pmu->check_period(event, value); 5357 } 5358 5359 static int _perf_event_period(struct perf_event *event, u64 value) 5360 { 5361 if (!is_sampling_event(event)) 5362 return -EINVAL; 5363 5364 if (!value) 5365 return -EINVAL; 5366 5367 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5368 return -EINVAL; 5369 5370 if (perf_event_check_period(event, value)) 5371 return -EINVAL; 5372 5373 if (!event->attr.freq && (value & (1ULL << 63))) 5374 return -EINVAL; 5375 5376 event_function_call(event, __perf_event_period, &value); 5377 5378 return 0; 5379 } 5380 5381 int perf_event_period(struct perf_event *event, u64 value) 5382 { 5383 struct perf_event_context *ctx; 5384 int ret; 5385 5386 ctx = perf_event_ctx_lock(event); 5387 ret = _perf_event_period(event, value); 5388 perf_event_ctx_unlock(event, ctx); 5389 5390 return ret; 5391 } 5392 EXPORT_SYMBOL_GPL(perf_event_period); 5393 5394 static const struct file_operations perf_fops; 5395 5396 static inline int perf_fget_light(int fd, struct fd *p) 5397 { 5398 struct fd f = fdget(fd); 5399 if (!f.file) 5400 return -EBADF; 5401 5402 if (f.file->f_op != &perf_fops) { 5403 fdput(f); 5404 return -EBADF; 5405 } 5406 *p = f; 5407 return 0; 5408 } 5409 5410 static int perf_event_set_output(struct perf_event *event, 5411 struct perf_event *output_event); 5412 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5413 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5414 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5415 struct perf_event_attr *attr); 5416 5417 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5418 { 5419 void (*func)(struct perf_event *); 5420 u32 flags = arg; 5421 5422 switch (cmd) { 5423 case PERF_EVENT_IOC_ENABLE: 5424 func = _perf_event_enable; 5425 break; 5426 case PERF_EVENT_IOC_DISABLE: 5427 func = _perf_event_disable; 5428 break; 5429 case PERF_EVENT_IOC_RESET: 5430 func = _perf_event_reset; 5431 break; 5432 5433 case PERF_EVENT_IOC_REFRESH: 5434 return _perf_event_refresh(event, arg); 5435 5436 case PERF_EVENT_IOC_PERIOD: 5437 { 5438 u64 value; 5439 5440 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5441 return -EFAULT; 5442 5443 return _perf_event_period(event, value); 5444 } 5445 case PERF_EVENT_IOC_ID: 5446 { 5447 u64 id = primary_event_id(event); 5448 5449 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5450 return -EFAULT; 5451 return 0; 5452 } 5453 5454 case PERF_EVENT_IOC_SET_OUTPUT: 5455 { 5456 int ret; 5457 if (arg != -1) { 5458 struct perf_event *output_event; 5459 struct fd output; 5460 ret = perf_fget_light(arg, &output); 5461 if (ret) 5462 return ret; 5463 output_event = output.file->private_data; 5464 ret = perf_event_set_output(event, output_event); 5465 fdput(output); 5466 } else { 5467 ret = perf_event_set_output(event, NULL); 5468 } 5469 return ret; 5470 } 5471 5472 case PERF_EVENT_IOC_SET_FILTER: 5473 return perf_event_set_filter(event, (void __user *)arg); 5474 5475 case PERF_EVENT_IOC_SET_BPF: 5476 return perf_event_set_bpf_prog(event, arg); 5477 5478 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5479 struct perf_buffer *rb; 5480 5481 rcu_read_lock(); 5482 rb = rcu_dereference(event->rb); 5483 if (!rb || !rb->nr_pages) { 5484 rcu_read_unlock(); 5485 return -EINVAL; 5486 } 5487 rb_toggle_paused(rb, !!arg); 5488 rcu_read_unlock(); 5489 return 0; 5490 } 5491 5492 case PERF_EVENT_IOC_QUERY_BPF: 5493 return perf_event_query_prog_array(event, (void __user *)arg); 5494 5495 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5496 struct perf_event_attr new_attr; 5497 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5498 &new_attr); 5499 5500 if (err) 5501 return err; 5502 5503 return perf_event_modify_attr(event, &new_attr); 5504 } 5505 default: 5506 return -ENOTTY; 5507 } 5508 5509 if (flags & PERF_IOC_FLAG_GROUP) 5510 perf_event_for_each(event, func); 5511 else 5512 perf_event_for_each_child(event, func); 5513 5514 return 0; 5515 } 5516 5517 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5518 { 5519 struct perf_event *event = file->private_data; 5520 struct perf_event_context *ctx; 5521 long ret; 5522 5523 /* Treat ioctl like writes as it is likely a mutating operation. */ 5524 ret = security_perf_event_write(event); 5525 if (ret) 5526 return ret; 5527 5528 ctx = perf_event_ctx_lock(event); 5529 ret = _perf_ioctl(event, cmd, arg); 5530 perf_event_ctx_unlock(event, ctx); 5531 5532 return ret; 5533 } 5534 5535 #ifdef CONFIG_COMPAT 5536 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5537 unsigned long arg) 5538 { 5539 switch (_IOC_NR(cmd)) { 5540 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5541 case _IOC_NR(PERF_EVENT_IOC_ID): 5542 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5543 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5544 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5545 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5546 cmd &= ~IOCSIZE_MASK; 5547 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5548 } 5549 break; 5550 } 5551 return perf_ioctl(file, cmd, arg); 5552 } 5553 #else 5554 # define perf_compat_ioctl NULL 5555 #endif 5556 5557 int perf_event_task_enable(void) 5558 { 5559 struct perf_event_context *ctx; 5560 struct perf_event *event; 5561 5562 mutex_lock(¤t->perf_event_mutex); 5563 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5564 ctx = perf_event_ctx_lock(event); 5565 perf_event_for_each_child(event, _perf_event_enable); 5566 perf_event_ctx_unlock(event, ctx); 5567 } 5568 mutex_unlock(¤t->perf_event_mutex); 5569 5570 return 0; 5571 } 5572 5573 int perf_event_task_disable(void) 5574 { 5575 struct perf_event_context *ctx; 5576 struct perf_event *event; 5577 5578 mutex_lock(¤t->perf_event_mutex); 5579 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5580 ctx = perf_event_ctx_lock(event); 5581 perf_event_for_each_child(event, _perf_event_disable); 5582 perf_event_ctx_unlock(event, ctx); 5583 } 5584 mutex_unlock(¤t->perf_event_mutex); 5585 5586 return 0; 5587 } 5588 5589 static int perf_event_index(struct perf_event *event) 5590 { 5591 if (event->hw.state & PERF_HES_STOPPED) 5592 return 0; 5593 5594 if (event->state != PERF_EVENT_STATE_ACTIVE) 5595 return 0; 5596 5597 return event->pmu->event_idx(event); 5598 } 5599 5600 static void calc_timer_values(struct perf_event *event, 5601 u64 *now, 5602 u64 *enabled, 5603 u64 *running) 5604 { 5605 u64 ctx_time; 5606 5607 *now = perf_clock(); 5608 ctx_time = event->shadow_ctx_time + *now; 5609 __perf_update_times(event, ctx_time, enabled, running); 5610 } 5611 5612 static void perf_event_init_userpage(struct perf_event *event) 5613 { 5614 struct perf_event_mmap_page *userpg; 5615 struct perf_buffer *rb; 5616 5617 rcu_read_lock(); 5618 rb = rcu_dereference(event->rb); 5619 if (!rb) 5620 goto unlock; 5621 5622 userpg = rb->user_page; 5623 5624 /* Allow new userspace to detect that bit 0 is deprecated */ 5625 userpg->cap_bit0_is_deprecated = 1; 5626 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5627 userpg->data_offset = PAGE_SIZE; 5628 userpg->data_size = perf_data_size(rb); 5629 5630 unlock: 5631 rcu_read_unlock(); 5632 } 5633 5634 void __weak arch_perf_update_userpage( 5635 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5636 { 5637 } 5638 5639 /* 5640 * Callers need to ensure there can be no nesting of this function, otherwise 5641 * the seqlock logic goes bad. We can not serialize this because the arch 5642 * code calls this from NMI context. 5643 */ 5644 void perf_event_update_userpage(struct perf_event *event) 5645 { 5646 struct perf_event_mmap_page *userpg; 5647 struct perf_buffer *rb; 5648 u64 enabled, running, now; 5649 5650 rcu_read_lock(); 5651 rb = rcu_dereference(event->rb); 5652 if (!rb) 5653 goto unlock; 5654 5655 /* 5656 * compute total_time_enabled, total_time_running 5657 * based on snapshot values taken when the event 5658 * was last scheduled in. 5659 * 5660 * we cannot simply called update_context_time() 5661 * because of locking issue as we can be called in 5662 * NMI context 5663 */ 5664 calc_timer_values(event, &now, &enabled, &running); 5665 5666 userpg = rb->user_page; 5667 /* 5668 * Disable preemption to guarantee consistent time stamps are stored to 5669 * the user page. 5670 */ 5671 preempt_disable(); 5672 ++userpg->lock; 5673 barrier(); 5674 userpg->index = perf_event_index(event); 5675 userpg->offset = perf_event_count(event); 5676 if (userpg->index) 5677 userpg->offset -= local64_read(&event->hw.prev_count); 5678 5679 userpg->time_enabled = enabled + 5680 atomic64_read(&event->child_total_time_enabled); 5681 5682 userpg->time_running = running + 5683 atomic64_read(&event->child_total_time_running); 5684 5685 arch_perf_update_userpage(event, userpg, now); 5686 5687 barrier(); 5688 ++userpg->lock; 5689 preempt_enable(); 5690 unlock: 5691 rcu_read_unlock(); 5692 } 5693 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5694 5695 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5696 { 5697 struct perf_event *event = vmf->vma->vm_file->private_data; 5698 struct perf_buffer *rb; 5699 vm_fault_t ret = VM_FAULT_SIGBUS; 5700 5701 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5702 if (vmf->pgoff == 0) 5703 ret = 0; 5704 return ret; 5705 } 5706 5707 rcu_read_lock(); 5708 rb = rcu_dereference(event->rb); 5709 if (!rb) 5710 goto unlock; 5711 5712 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5713 goto unlock; 5714 5715 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5716 if (!vmf->page) 5717 goto unlock; 5718 5719 get_page(vmf->page); 5720 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5721 vmf->page->index = vmf->pgoff; 5722 5723 ret = 0; 5724 unlock: 5725 rcu_read_unlock(); 5726 5727 return ret; 5728 } 5729 5730 static void ring_buffer_attach(struct perf_event *event, 5731 struct perf_buffer *rb) 5732 { 5733 struct perf_buffer *old_rb = NULL; 5734 unsigned long flags; 5735 5736 if (event->rb) { 5737 /* 5738 * Should be impossible, we set this when removing 5739 * event->rb_entry and wait/clear when adding event->rb_entry. 5740 */ 5741 WARN_ON_ONCE(event->rcu_pending); 5742 5743 old_rb = event->rb; 5744 spin_lock_irqsave(&old_rb->event_lock, flags); 5745 list_del_rcu(&event->rb_entry); 5746 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5747 5748 event->rcu_batches = get_state_synchronize_rcu(); 5749 event->rcu_pending = 1; 5750 } 5751 5752 if (rb) { 5753 if (event->rcu_pending) { 5754 cond_synchronize_rcu(event->rcu_batches); 5755 event->rcu_pending = 0; 5756 } 5757 5758 spin_lock_irqsave(&rb->event_lock, flags); 5759 list_add_rcu(&event->rb_entry, &rb->event_list); 5760 spin_unlock_irqrestore(&rb->event_lock, flags); 5761 } 5762 5763 /* 5764 * Avoid racing with perf_mmap_close(AUX): stop the event 5765 * before swizzling the event::rb pointer; if it's getting 5766 * unmapped, its aux_mmap_count will be 0 and it won't 5767 * restart. See the comment in __perf_pmu_output_stop(). 5768 * 5769 * Data will inevitably be lost when set_output is done in 5770 * mid-air, but then again, whoever does it like this is 5771 * not in for the data anyway. 5772 */ 5773 if (has_aux(event)) 5774 perf_event_stop(event, 0); 5775 5776 rcu_assign_pointer(event->rb, rb); 5777 5778 if (old_rb) { 5779 ring_buffer_put(old_rb); 5780 /* 5781 * Since we detached before setting the new rb, so that we 5782 * could attach the new rb, we could have missed a wakeup. 5783 * Provide it now. 5784 */ 5785 wake_up_all(&event->waitq); 5786 } 5787 } 5788 5789 static void ring_buffer_wakeup(struct perf_event *event) 5790 { 5791 struct perf_buffer *rb; 5792 5793 rcu_read_lock(); 5794 rb = rcu_dereference(event->rb); 5795 if (rb) { 5796 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5797 wake_up_all(&event->waitq); 5798 } 5799 rcu_read_unlock(); 5800 } 5801 5802 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5803 { 5804 struct perf_buffer *rb; 5805 5806 rcu_read_lock(); 5807 rb = rcu_dereference(event->rb); 5808 if (rb) { 5809 if (!refcount_inc_not_zero(&rb->refcount)) 5810 rb = NULL; 5811 } 5812 rcu_read_unlock(); 5813 5814 return rb; 5815 } 5816 5817 void ring_buffer_put(struct perf_buffer *rb) 5818 { 5819 if (!refcount_dec_and_test(&rb->refcount)) 5820 return; 5821 5822 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5823 5824 call_rcu(&rb->rcu_head, rb_free_rcu); 5825 } 5826 5827 static void perf_mmap_open(struct vm_area_struct *vma) 5828 { 5829 struct perf_event *event = vma->vm_file->private_data; 5830 5831 atomic_inc(&event->mmap_count); 5832 atomic_inc(&event->rb->mmap_count); 5833 5834 if (vma->vm_pgoff) 5835 atomic_inc(&event->rb->aux_mmap_count); 5836 5837 if (event->pmu->event_mapped) 5838 event->pmu->event_mapped(event, vma->vm_mm); 5839 } 5840 5841 static void perf_pmu_output_stop(struct perf_event *event); 5842 5843 /* 5844 * A buffer can be mmap()ed multiple times; either directly through the same 5845 * event, or through other events by use of perf_event_set_output(). 5846 * 5847 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5848 * the buffer here, where we still have a VM context. This means we need 5849 * to detach all events redirecting to us. 5850 */ 5851 static void perf_mmap_close(struct vm_area_struct *vma) 5852 { 5853 struct perf_event *event = vma->vm_file->private_data; 5854 5855 struct perf_buffer *rb = ring_buffer_get(event); 5856 struct user_struct *mmap_user = rb->mmap_user; 5857 int mmap_locked = rb->mmap_locked; 5858 unsigned long size = perf_data_size(rb); 5859 5860 if (event->pmu->event_unmapped) 5861 event->pmu->event_unmapped(event, vma->vm_mm); 5862 5863 /* 5864 * rb->aux_mmap_count will always drop before rb->mmap_count and 5865 * event->mmap_count, so it is ok to use event->mmap_mutex to 5866 * serialize with perf_mmap here. 5867 */ 5868 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5869 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5870 /* 5871 * Stop all AUX events that are writing to this buffer, 5872 * so that we can free its AUX pages and corresponding PMU 5873 * data. Note that after rb::aux_mmap_count dropped to zero, 5874 * they won't start any more (see perf_aux_output_begin()). 5875 */ 5876 perf_pmu_output_stop(event); 5877 5878 /* now it's safe to free the pages */ 5879 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5880 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5881 5882 /* this has to be the last one */ 5883 rb_free_aux(rb); 5884 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5885 5886 mutex_unlock(&event->mmap_mutex); 5887 } 5888 5889 atomic_dec(&rb->mmap_count); 5890 5891 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5892 goto out_put; 5893 5894 ring_buffer_attach(event, NULL); 5895 mutex_unlock(&event->mmap_mutex); 5896 5897 /* If there's still other mmap()s of this buffer, we're done. */ 5898 if (atomic_read(&rb->mmap_count)) 5899 goto out_put; 5900 5901 /* 5902 * No other mmap()s, detach from all other events that might redirect 5903 * into the now unreachable buffer. Somewhat complicated by the 5904 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5905 */ 5906 again: 5907 rcu_read_lock(); 5908 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5909 if (!atomic_long_inc_not_zero(&event->refcount)) { 5910 /* 5911 * This event is en-route to free_event() which will 5912 * detach it and remove it from the list. 5913 */ 5914 continue; 5915 } 5916 rcu_read_unlock(); 5917 5918 mutex_lock(&event->mmap_mutex); 5919 /* 5920 * Check we didn't race with perf_event_set_output() which can 5921 * swizzle the rb from under us while we were waiting to 5922 * acquire mmap_mutex. 5923 * 5924 * If we find a different rb; ignore this event, a next 5925 * iteration will no longer find it on the list. We have to 5926 * still restart the iteration to make sure we're not now 5927 * iterating the wrong list. 5928 */ 5929 if (event->rb == rb) 5930 ring_buffer_attach(event, NULL); 5931 5932 mutex_unlock(&event->mmap_mutex); 5933 put_event(event); 5934 5935 /* 5936 * Restart the iteration; either we're on the wrong list or 5937 * destroyed its integrity by doing a deletion. 5938 */ 5939 goto again; 5940 } 5941 rcu_read_unlock(); 5942 5943 /* 5944 * It could be there's still a few 0-ref events on the list; they'll 5945 * get cleaned up by free_event() -- they'll also still have their 5946 * ref on the rb and will free it whenever they are done with it. 5947 * 5948 * Aside from that, this buffer is 'fully' detached and unmapped, 5949 * undo the VM accounting. 5950 */ 5951 5952 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5953 &mmap_user->locked_vm); 5954 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5955 free_uid(mmap_user); 5956 5957 out_put: 5958 ring_buffer_put(rb); /* could be last */ 5959 } 5960 5961 static const struct vm_operations_struct perf_mmap_vmops = { 5962 .open = perf_mmap_open, 5963 .close = perf_mmap_close, /* non mergeable */ 5964 .fault = perf_mmap_fault, 5965 .page_mkwrite = perf_mmap_fault, 5966 }; 5967 5968 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5969 { 5970 struct perf_event *event = file->private_data; 5971 unsigned long user_locked, user_lock_limit; 5972 struct user_struct *user = current_user(); 5973 struct perf_buffer *rb = NULL; 5974 unsigned long locked, lock_limit; 5975 unsigned long vma_size; 5976 unsigned long nr_pages; 5977 long user_extra = 0, extra = 0; 5978 int ret = 0, flags = 0; 5979 5980 /* 5981 * Don't allow mmap() of inherited per-task counters. This would 5982 * create a performance issue due to all children writing to the 5983 * same rb. 5984 */ 5985 if (event->cpu == -1 && event->attr.inherit) 5986 return -EINVAL; 5987 5988 if (!(vma->vm_flags & VM_SHARED)) 5989 return -EINVAL; 5990 5991 ret = security_perf_event_read(event); 5992 if (ret) 5993 return ret; 5994 5995 vma_size = vma->vm_end - vma->vm_start; 5996 5997 if (vma->vm_pgoff == 0) { 5998 nr_pages = (vma_size / PAGE_SIZE) - 1; 5999 } else { 6000 /* 6001 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6002 * mapped, all subsequent mappings should have the same size 6003 * and offset. Must be above the normal perf buffer. 6004 */ 6005 u64 aux_offset, aux_size; 6006 6007 if (!event->rb) 6008 return -EINVAL; 6009 6010 nr_pages = vma_size / PAGE_SIZE; 6011 6012 mutex_lock(&event->mmap_mutex); 6013 ret = -EINVAL; 6014 6015 rb = event->rb; 6016 if (!rb) 6017 goto aux_unlock; 6018 6019 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6020 aux_size = READ_ONCE(rb->user_page->aux_size); 6021 6022 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6023 goto aux_unlock; 6024 6025 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6026 goto aux_unlock; 6027 6028 /* already mapped with a different offset */ 6029 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6030 goto aux_unlock; 6031 6032 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6033 goto aux_unlock; 6034 6035 /* already mapped with a different size */ 6036 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6037 goto aux_unlock; 6038 6039 if (!is_power_of_2(nr_pages)) 6040 goto aux_unlock; 6041 6042 if (!atomic_inc_not_zero(&rb->mmap_count)) 6043 goto aux_unlock; 6044 6045 if (rb_has_aux(rb)) { 6046 atomic_inc(&rb->aux_mmap_count); 6047 ret = 0; 6048 goto unlock; 6049 } 6050 6051 atomic_set(&rb->aux_mmap_count, 1); 6052 user_extra = nr_pages; 6053 6054 goto accounting; 6055 } 6056 6057 /* 6058 * If we have rb pages ensure they're a power-of-two number, so we 6059 * can do bitmasks instead of modulo. 6060 */ 6061 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6062 return -EINVAL; 6063 6064 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6065 return -EINVAL; 6066 6067 WARN_ON_ONCE(event->ctx->parent_ctx); 6068 again: 6069 mutex_lock(&event->mmap_mutex); 6070 if (event->rb) { 6071 if (event->rb->nr_pages != nr_pages) { 6072 ret = -EINVAL; 6073 goto unlock; 6074 } 6075 6076 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6077 /* 6078 * Raced against perf_mmap_close() through 6079 * perf_event_set_output(). Try again, hope for better 6080 * luck. 6081 */ 6082 mutex_unlock(&event->mmap_mutex); 6083 goto again; 6084 } 6085 6086 goto unlock; 6087 } 6088 6089 user_extra = nr_pages + 1; 6090 6091 accounting: 6092 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6093 6094 /* 6095 * Increase the limit linearly with more CPUs: 6096 */ 6097 user_lock_limit *= num_online_cpus(); 6098 6099 user_locked = atomic_long_read(&user->locked_vm); 6100 6101 /* 6102 * sysctl_perf_event_mlock may have changed, so that 6103 * user->locked_vm > user_lock_limit 6104 */ 6105 if (user_locked > user_lock_limit) 6106 user_locked = user_lock_limit; 6107 user_locked += user_extra; 6108 6109 if (user_locked > user_lock_limit) { 6110 /* 6111 * charge locked_vm until it hits user_lock_limit; 6112 * charge the rest from pinned_vm 6113 */ 6114 extra = user_locked - user_lock_limit; 6115 user_extra -= extra; 6116 } 6117 6118 lock_limit = rlimit(RLIMIT_MEMLOCK); 6119 lock_limit >>= PAGE_SHIFT; 6120 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6121 6122 if ((locked > lock_limit) && perf_is_paranoid() && 6123 !capable(CAP_IPC_LOCK)) { 6124 ret = -EPERM; 6125 goto unlock; 6126 } 6127 6128 WARN_ON(!rb && event->rb); 6129 6130 if (vma->vm_flags & VM_WRITE) 6131 flags |= RING_BUFFER_WRITABLE; 6132 6133 if (!rb) { 6134 rb = rb_alloc(nr_pages, 6135 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6136 event->cpu, flags); 6137 6138 if (!rb) { 6139 ret = -ENOMEM; 6140 goto unlock; 6141 } 6142 6143 atomic_set(&rb->mmap_count, 1); 6144 rb->mmap_user = get_current_user(); 6145 rb->mmap_locked = extra; 6146 6147 ring_buffer_attach(event, rb); 6148 6149 perf_event_init_userpage(event); 6150 perf_event_update_userpage(event); 6151 } else { 6152 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6153 event->attr.aux_watermark, flags); 6154 if (!ret) 6155 rb->aux_mmap_locked = extra; 6156 } 6157 6158 unlock: 6159 if (!ret) { 6160 atomic_long_add(user_extra, &user->locked_vm); 6161 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6162 6163 atomic_inc(&event->mmap_count); 6164 } else if (rb) { 6165 atomic_dec(&rb->mmap_count); 6166 } 6167 aux_unlock: 6168 mutex_unlock(&event->mmap_mutex); 6169 6170 /* 6171 * Since pinned accounting is per vm we cannot allow fork() to copy our 6172 * vma. 6173 */ 6174 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6175 vma->vm_ops = &perf_mmap_vmops; 6176 6177 if (event->pmu->event_mapped) 6178 event->pmu->event_mapped(event, vma->vm_mm); 6179 6180 return ret; 6181 } 6182 6183 static int perf_fasync(int fd, struct file *filp, int on) 6184 { 6185 struct inode *inode = file_inode(filp); 6186 struct perf_event *event = filp->private_data; 6187 int retval; 6188 6189 inode_lock(inode); 6190 retval = fasync_helper(fd, filp, on, &event->fasync); 6191 inode_unlock(inode); 6192 6193 if (retval < 0) 6194 return retval; 6195 6196 return 0; 6197 } 6198 6199 static const struct file_operations perf_fops = { 6200 .llseek = no_llseek, 6201 .release = perf_release, 6202 .read = perf_read, 6203 .poll = perf_poll, 6204 .unlocked_ioctl = perf_ioctl, 6205 .compat_ioctl = perf_compat_ioctl, 6206 .mmap = perf_mmap, 6207 .fasync = perf_fasync, 6208 }; 6209 6210 /* 6211 * Perf event wakeup 6212 * 6213 * If there's data, ensure we set the poll() state and publish everything 6214 * to user-space before waking everybody up. 6215 */ 6216 6217 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6218 { 6219 /* only the parent has fasync state */ 6220 if (event->parent) 6221 event = event->parent; 6222 return &event->fasync; 6223 } 6224 6225 void perf_event_wakeup(struct perf_event *event) 6226 { 6227 ring_buffer_wakeup(event); 6228 6229 if (event->pending_kill) { 6230 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6231 event->pending_kill = 0; 6232 } 6233 } 6234 6235 static void perf_pending_event_disable(struct perf_event *event) 6236 { 6237 int cpu = READ_ONCE(event->pending_disable); 6238 6239 if (cpu < 0) 6240 return; 6241 6242 if (cpu == smp_processor_id()) { 6243 WRITE_ONCE(event->pending_disable, -1); 6244 perf_event_disable_local(event); 6245 return; 6246 } 6247 6248 /* 6249 * CPU-A CPU-B 6250 * 6251 * perf_event_disable_inatomic() 6252 * @pending_disable = CPU-A; 6253 * irq_work_queue(); 6254 * 6255 * sched-out 6256 * @pending_disable = -1; 6257 * 6258 * sched-in 6259 * perf_event_disable_inatomic() 6260 * @pending_disable = CPU-B; 6261 * irq_work_queue(); // FAILS 6262 * 6263 * irq_work_run() 6264 * perf_pending_event() 6265 * 6266 * But the event runs on CPU-B and wants disabling there. 6267 */ 6268 irq_work_queue_on(&event->pending, cpu); 6269 } 6270 6271 static void perf_pending_event(struct irq_work *entry) 6272 { 6273 struct perf_event *event = container_of(entry, struct perf_event, pending); 6274 int rctx; 6275 6276 rctx = perf_swevent_get_recursion_context(); 6277 /* 6278 * If we 'fail' here, that's OK, it means recursion is already disabled 6279 * and we won't recurse 'further'. 6280 */ 6281 6282 perf_pending_event_disable(event); 6283 6284 if (event->pending_wakeup) { 6285 event->pending_wakeup = 0; 6286 perf_event_wakeup(event); 6287 } 6288 6289 if (rctx >= 0) 6290 perf_swevent_put_recursion_context(rctx); 6291 } 6292 6293 /* 6294 * We assume there is only KVM supporting the callbacks. 6295 * Later on, we might change it to a list if there is 6296 * another virtualization implementation supporting the callbacks. 6297 */ 6298 struct perf_guest_info_callbacks *perf_guest_cbs; 6299 6300 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6301 { 6302 perf_guest_cbs = cbs; 6303 return 0; 6304 } 6305 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6306 6307 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6308 { 6309 perf_guest_cbs = NULL; 6310 return 0; 6311 } 6312 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6313 6314 static void 6315 perf_output_sample_regs(struct perf_output_handle *handle, 6316 struct pt_regs *regs, u64 mask) 6317 { 6318 int bit; 6319 DECLARE_BITMAP(_mask, 64); 6320 6321 bitmap_from_u64(_mask, mask); 6322 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6323 u64 val; 6324 6325 val = perf_reg_value(regs, bit); 6326 perf_output_put(handle, val); 6327 } 6328 } 6329 6330 static void perf_sample_regs_user(struct perf_regs *regs_user, 6331 struct pt_regs *regs, 6332 struct pt_regs *regs_user_copy) 6333 { 6334 if (user_mode(regs)) { 6335 regs_user->abi = perf_reg_abi(current); 6336 regs_user->regs = regs; 6337 } else if (!(current->flags & PF_KTHREAD)) { 6338 perf_get_regs_user(regs_user, regs, regs_user_copy); 6339 } else { 6340 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6341 regs_user->regs = NULL; 6342 } 6343 } 6344 6345 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6346 struct pt_regs *regs) 6347 { 6348 regs_intr->regs = regs; 6349 regs_intr->abi = perf_reg_abi(current); 6350 } 6351 6352 6353 /* 6354 * Get remaining task size from user stack pointer. 6355 * 6356 * It'd be better to take stack vma map and limit this more 6357 * precisely, but there's no way to get it safely under interrupt, 6358 * so using TASK_SIZE as limit. 6359 */ 6360 static u64 perf_ustack_task_size(struct pt_regs *regs) 6361 { 6362 unsigned long addr = perf_user_stack_pointer(regs); 6363 6364 if (!addr || addr >= TASK_SIZE) 6365 return 0; 6366 6367 return TASK_SIZE - addr; 6368 } 6369 6370 static u16 6371 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6372 struct pt_regs *regs) 6373 { 6374 u64 task_size; 6375 6376 /* No regs, no stack pointer, no dump. */ 6377 if (!regs) 6378 return 0; 6379 6380 /* 6381 * Check if we fit in with the requested stack size into the: 6382 * - TASK_SIZE 6383 * If we don't, we limit the size to the TASK_SIZE. 6384 * 6385 * - remaining sample size 6386 * If we don't, we customize the stack size to 6387 * fit in to the remaining sample size. 6388 */ 6389 6390 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6391 stack_size = min(stack_size, (u16) task_size); 6392 6393 /* Current header size plus static size and dynamic size. */ 6394 header_size += 2 * sizeof(u64); 6395 6396 /* Do we fit in with the current stack dump size? */ 6397 if ((u16) (header_size + stack_size) < header_size) { 6398 /* 6399 * If we overflow the maximum size for the sample, 6400 * we customize the stack dump size to fit in. 6401 */ 6402 stack_size = USHRT_MAX - header_size - sizeof(u64); 6403 stack_size = round_up(stack_size, sizeof(u64)); 6404 } 6405 6406 return stack_size; 6407 } 6408 6409 static void 6410 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6411 struct pt_regs *regs) 6412 { 6413 /* Case of a kernel thread, nothing to dump */ 6414 if (!regs) { 6415 u64 size = 0; 6416 perf_output_put(handle, size); 6417 } else { 6418 unsigned long sp; 6419 unsigned int rem; 6420 u64 dyn_size; 6421 mm_segment_t fs; 6422 6423 /* 6424 * We dump: 6425 * static size 6426 * - the size requested by user or the best one we can fit 6427 * in to the sample max size 6428 * data 6429 * - user stack dump data 6430 * dynamic size 6431 * - the actual dumped size 6432 */ 6433 6434 /* Static size. */ 6435 perf_output_put(handle, dump_size); 6436 6437 /* Data. */ 6438 sp = perf_user_stack_pointer(regs); 6439 fs = get_fs(); 6440 set_fs(USER_DS); 6441 rem = __output_copy_user(handle, (void *) sp, dump_size); 6442 set_fs(fs); 6443 dyn_size = dump_size - rem; 6444 6445 perf_output_skip(handle, rem); 6446 6447 /* Dynamic size. */ 6448 perf_output_put(handle, dyn_size); 6449 } 6450 } 6451 6452 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6453 struct perf_sample_data *data, 6454 size_t size) 6455 { 6456 struct perf_event *sampler = event->aux_event; 6457 struct perf_buffer *rb; 6458 6459 data->aux_size = 0; 6460 6461 if (!sampler) 6462 goto out; 6463 6464 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6465 goto out; 6466 6467 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6468 goto out; 6469 6470 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6471 if (!rb) 6472 goto out; 6473 6474 /* 6475 * If this is an NMI hit inside sampling code, don't take 6476 * the sample. See also perf_aux_sample_output(). 6477 */ 6478 if (READ_ONCE(rb->aux_in_sampling)) { 6479 data->aux_size = 0; 6480 } else { 6481 size = min_t(size_t, size, perf_aux_size(rb)); 6482 data->aux_size = ALIGN(size, sizeof(u64)); 6483 } 6484 ring_buffer_put(rb); 6485 6486 out: 6487 return data->aux_size; 6488 } 6489 6490 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6491 struct perf_event *event, 6492 struct perf_output_handle *handle, 6493 unsigned long size) 6494 { 6495 unsigned long flags; 6496 long ret; 6497 6498 /* 6499 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6500 * paths. If we start calling them in NMI context, they may race with 6501 * the IRQ ones, that is, for example, re-starting an event that's just 6502 * been stopped, which is why we're using a separate callback that 6503 * doesn't change the event state. 6504 * 6505 * IRQs need to be disabled to prevent IPIs from racing with us. 6506 */ 6507 local_irq_save(flags); 6508 /* 6509 * Guard against NMI hits inside the critical section; 6510 * see also perf_prepare_sample_aux(). 6511 */ 6512 WRITE_ONCE(rb->aux_in_sampling, 1); 6513 barrier(); 6514 6515 ret = event->pmu->snapshot_aux(event, handle, size); 6516 6517 barrier(); 6518 WRITE_ONCE(rb->aux_in_sampling, 0); 6519 local_irq_restore(flags); 6520 6521 return ret; 6522 } 6523 6524 static void perf_aux_sample_output(struct perf_event *event, 6525 struct perf_output_handle *handle, 6526 struct perf_sample_data *data) 6527 { 6528 struct perf_event *sampler = event->aux_event; 6529 struct perf_buffer *rb; 6530 unsigned long pad; 6531 long size; 6532 6533 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6534 return; 6535 6536 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6537 if (!rb) 6538 return; 6539 6540 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6541 6542 /* 6543 * An error here means that perf_output_copy() failed (returned a 6544 * non-zero surplus that it didn't copy), which in its current 6545 * enlightened implementation is not possible. If that changes, we'd 6546 * like to know. 6547 */ 6548 if (WARN_ON_ONCE(size < 0)) 6549 goto out_put; 6550 6551 /* 6552 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6553 * perf_prepare_sample_aux(), so should not be more than that. 6554 */ 6555 pad = data->aux_size - size; 6556 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6557 pad = 8; 6558 6559 if (pad) { 6560 u64 zero = 0; 6561 perf_output_copy(handle, &zero, pad); 6562 } 6563 6564 out_put: 6565 ring_buffer_put(rb); 6566 } 6567 6568 static void __perf_event_header__init_id(struct perf_event_header *header, 6569 struct perf_sample_data *data, 6570 struct perf_event *event) 6571 { 6572 u64 sample_type = event->attr.sample_type; 6573 6574 data->type = sample_type; 6575 header->size += event->id_header_size; 6576 6577 if (sample_type & PERF_SAMPLE_TID) { 6578 /* namespace issues */ 6579 data->tid_entry.pid = perf_event_pid(event, current); 6580 data->tid_entry.tid = perf_event_tid(event, current); 6581 } 6582 6583 if (sample_type & PERF_SAMPLE_TIME) 6584 data->time = perf_event_clock(event); 6585 6586 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6587 data->id = primary_event_id(event); 6588 6589 if (sample_type & PERF_SAMPLE_STREAM_ID) 6590 data->stream_id = event->id; 6591 6592 if (sample_type & PERF_SAMPLE_CPU) { 6593 data->cpu_entry.cpu = raw_smp_processor_id(); 6594 data->cpu_entry.reserved = 0; 6595 } 6596 } 6597 6598 void perf_event_header__init_id(struct perf_event_header *header, 6599 struct perf_sample_data *data, 6600 struct perf_event *event) 6601 { 6602 if (event->attr.sample_id_all) 6603 __perf_event_header__init_id(header, data, event); 6604 } 6605 6606 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6607 struct perf_sample_data *data) 6608 { 6609 u64 sample_type = data->type; 6610 6611 if (sample_type & PERF_SAMPLE_TID) 6612 perf_output_put(handle, data->tid_entry); 6613 6614 if (sample_type & PERF_SAMPLE_TIME) 6615 perf_output_put(handle, data->time); 6616 6617 if (sample_type & PERF_SAMPLE_ID) 6618 perf_output_put(handle, data->id); 6619 6620 if (sample_type & PERF_SAMPLE_STREAM_ID) 6621 perf_output_put(handle, data->stream_id); 6622 6623 if (sample_type & PERF_SAMPLE_CPU) 6624 perf_output_put(handle, data->cpu_entry); 6625 6626 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6627 perf_output_put(handle, data->id); 6628 } 6629 6630 void perf_event__output_id_sample(struct perf_event *event, 6631 struct perf_output_handle *handle, 6632 struct perf_sample_data *sample) 6633 { 6634 if (event->attr.sample_id_all) 6635 __perf_event__output_id_sample(handle, sample); 6636 } 6637 6638 static void perf_output_read_one(struct perf_output_handle *handle, 6639 struct perf_event *event, 6640 u64 enabled, u64 running) 6641 { 6642 u64 read_format = event->attr.read_format; 6643 u64 values[4]; 6644 int n = 0; 6645 6646 values[n++] = perf_event_count(event); 6647 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6648 values[n++] = enabled + 6649 atomic64_read(&event->child_total_time_enabled); 6650 } 6651 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6652 values[n++] = running + 6653 atomic64_read(&event->child_total_time_running); 6654 } 6655 if (read_format & PERF_FORMAT_ID) 6656 values[n++] = primary_event_id(event); 6657 6658 __output_copy(handle, values, n * sizeof(u64)); 6659 } 6660 6661 static void perf_output_read_group(struct perf_output_handle *handle, 6662 struct perf_event *event, 6663 u64 enabled, u64 running) 6664 { 6665 struct perf_event *leader = event->group_leader, *sub; 6666 u64 read_format = event->attr.read_format; 6667 u64 values[5]; 6668 int n = 0; 6669 6670 values[n++] = 1 + leader->nr_siblings; 6671 6672 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6673 values[n++] = enabled; 6674 6675 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6676 values[n++] = running; 6677 6678 if ((leader != event) && 6679 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6680 leader->pmu->read(leader); 6681 6682 values[n++] = perf_event_count(leader); 6683 if (read_format & PERF_FORMAT_ID) 6684 values[n++] = primary_event_id(leader); 6685 6686 __output_copy(handle, values, n * sizeof(u64)); 6687 6688 for_each_sibling_event(sub, leader) { 6689 n = 0; 6690 6691 if ((sub != event) && 6692 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6693 sub->pmu->read(sub); 6694 6695 values[n++] = perf_event_count(sub); 6696 if (read_format & PERF_FORMAT_ID) 6697 values[n++] = primary_event_id(sub); 6698 6699 __output_copy(handle, values, n * sizeof(u64)); 6700 } 6701 } 6702 6703 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6704 PERF_FORMAT_TOTAL_TIME_RUNNING) 6705 6706 /* 6707 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6708 * 6709 * The problem is that its both hard and excessively expensive to iterate the 6710 * child list, not to mention that its impossible to IPI the children running 6711 * on another CPU, from interrupt/NMI context. 6712 */ 6713 static void perf_output_read(struct perf_output_handle *handle, 6714 struct perf_event *event) 6715 { 6716 u64 enabled = 0, running = 0, now; 6717 u64 read_format = event->attr.read_format; 6718 6719 /* 6720 * compute total_time_enabled, total_time_running 6721 * based on snapshot values taken when the event 6722 * was last scheduled in. 6723 * 6724 * we cannot simply called update_context_time() 6725 * because of locking issue as we are called in 6726 * NMI context 6727 */ 6728 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6729 calc_timer_values(event, &now, &enabled, &running); 6730 6731 if (event->attr.read_format & PERF_FORMAT_GROUP) 6732 perf_output_read_group(handle, event, enabled, running); 6733 else 6734 perf_output_read_one(handle, event, enabled, running); 6735 } 6736 6737 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6738 { 6739 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6740 } 6741 6742 void perf_output_sample(struct perf_output_handle *handle, 6743 struct perf_event_header *header, 6744 struct perf_sample_data *data, 6745 struct perf_event *event) 6746 { 6747 u64 sample_type = data->type; 6748 6749 perf_output_put(handle, *header); 6750 6751 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6752 perf_output_put(handle, data->id); 6753 6754 if (sample_type & PERF_SAMPLE_IP) 6755 perf_output_put(handle, data->ip); 6756 6757 if (sample_type & PERF_SAMPLE_TID) 6758 perf_output_put(handle, data->tid_entry); 6759 6760 if (sample_type & PERF_SAMPLE_TIME) 6761 perf_output_put(handle, data->time); 6762 6763 if (sample_type & PERF_SAMPLE_ADDR) 6764 perf_output_put(handle, data->addr); 6765 6766 if (sample_type & PERF_SAMPLE_ID) 6767 perf_output_put(handle, data->id); 6768 6769 if (sample_type & PERF_SAMPLE_STREAM_ID) 6770 perf_output_put(handle, data->stream_id); 6771 6772 if (sample_type & PERF_SAMPLE_CPU) 6773 perf_output_put(handle, data->cpu_entry); 6774 6775 if (sample_type & PERF_SAMPLE_PERIOD) 6776 perf_output_put(handle, data->period); 6777 6778 if (sample_type & PERF_SAMPLE_READ) 6779 perf_output_read(handle, event); 6780 6781 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6782 int size = 1; 6783 6784 size += data->callchain->nr; 6785 size *= sizeof(u64); 6786 __output_copy(handle, data->callchain, size); 6787 } 6788 6789 if (sample_type & PERF_SAMPLE_RAW) { 6790 struct perf_raw_record *raw = data->raw; 6791 6792 if (raw) { 6793 struct perf_raw_frag *frag = &raw->frag; 6794 6795 perf_output_put(handle, raw->size); 6796 do { 6797 if (frag->copy) { 6798 __output_custom(handle, frag->copy, 6799 frag->data, frag->size); 6800 } else { 6801 __output_copy(handle, frag->data, 6802 frag->size); 6803 } 6804 if (perf_raw_frag_last(frag)) 6805 break; 6806 frag = frag->next; 6807 } while (1); 6808 if (frag->pad) 6809 __output_skip(handle, NULL, frag->pad); 6810 } else { 6811 struct { 6812 u32 size; 6813 u32 data; 6814 } raw = { 6815 .size = sizeof(u32), 6816 .data = 0, 6817 }; 6818 perf_output_put(handle, raw); 6819 } 6820 } 6821 6822 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6823 if (data->br_stack) { 6824 size_t size; 6825 6826 size = data->br_stack->nr 6827 * sizeof(struct perf_branch_entry); 6828 6829 perf_output_put(handle, data->br_stack->nr); 6830 if (perf_sample_save_hw_index(event)) 6831 perf_output_put(handle, data->br_stack->hw_idx); 6832 perf_output_copy(handle, data->br_stack->entries, size); 6833 } else { 6834 /* 6835 * we always store at least the value of nr 6836 */ 6837 u64 nr = 0; 6838 perf_output_put(handle, nr); 6839 } 6840 } 6841 6842 if (sample_type & PERF_SAMPLE_REGS_USER) { 6843 u64 abi = data->regs_user.abi; 6844 6845 /* 6846 * If there are no regs to dump, notice it through 6847 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6848 */ 6849 perf_output_put(handle, abi); 6850 6851 if (abi) { 6852 u64 mask = event->attr.sample_regs_user; 6853 perf_output_sample_regs(handle, 6854 data->regs_user.regs, 6855 mask); 6856 } 6857 } 6858 6859 if (sample_type & PERF_SAMPLE_STACK_USER) { 6860 perf_output_sample_ustack(handle, 6861 data->stack_user_size, 6862 data->regs_user.regs); 6863 } 6864 6865 if (sample_type & PERF_SAMPLE_WEIGHT) 6866 perf_output_put(handle, data->weight); 6867 6868 if (sample_type & PERF_SAMPLE_DATA_SRC) 6869 perf_output_put(handle, data->data_src.val); 6870 6871 if (sample_type & PERF_SAMPLE_TRANSACTION) 6872 perf_output_put(handle, data->txn); 6873 6874 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6875 u64 abi = data->regs_intr.abi; 6876 /* 6877 * If there are no regs to dump, notice it through 6878 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6879 */ 6880 perf_output_put(handle, abi); 6881 6882 if (abi) { 6883 u64 mask = event->attr.sample_regs_intr; 6884 6885 perf_output_sample_regs(handle, 6886 data->regs_intr.regs, 6887 mask); 6888 } 6889 } 6890 6891 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6892 perf_output_put(handle, data->phys_addr); 6893 6894 if (sample_type & PERF_SAMPLE_CGROUP) 6895 perf_output_put(handle, data->cgroup); 6896 6897 if (sample_type & PERF_SAMPLE_AUX) { 6898 perf_output_put(handle, data->aux_size); 6899 6900 if (data->aux_size) 6901 perf_aux_sample_output(event, handle, data); 6902 } 6903 6904 if (!event->attr.watermark) { 6905 int wakeup_events = event->attr.wakeup_events; 6906 6907 if (wakeup_events) { 6908 struct perf_buffer *rb = handle->rb; 6909 int events = local_inc_return(&rb->events); 6910 6911 if (events >= wakeup_events) { 6912 local_sub(wakeup_events, &rb->events); 6913 local_inc(&rb->wakeup); 6914 } 6915 } 6916 } 6917 } 6918 6919 static u64 perf_virt_to_phys(u64 virt) 6920 { 6921 u64 phys_addr = 0; 6922 struct page *p = NULL; 6923 6924 if (!virt) 6925 return 0; 6926 6927 if (virt >= TASK_SIZE) { 6928 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6929 if (virt_addr_valid((void *)(uintptr_t)virt) && 6930 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6931 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6932 } else { 6933 /* 6934 * Walking the pages tables for user address. 6935 * Interrupts are disabled, so it prevents any tear down 6936 * of the page tables. 6937 * Try IRQ-safe get_user_page_fast_only first. 6938 * If failed, leave phys_addr as 0. 6939 */ 6940 if (current->mm != NULL) { 6941 pagefault_disable(); 6942 if (get_user_page_fast_only(virt, 0, &p)) 6943 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6944 pagefault_enable(); 6945 } 6946 6947 if (p) 6948 put_page(p); 6949 } 6950 6951 return phys_addr; 6952 } 6953 6954 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6955 6956 struct perf_callchain_entry * 6957 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6958 { 6959 bool kernel = !event->attr.exclude_callchain_kernel; 6960 bool user = !event->attr.exclude_callchain_user; 6961 /* Disallow cross-task user callchains. */ 6962 bool crosstask = event->ctx->task && event->ctx->task != current; 6963 const u32 max_stack = event->attr.sample_max_stack; 6964 struct perf_callchain_entry *callchain; 6965 6966 if (!kernel && !user) 6967 return &__empty_callchain; 6968 6969 callchain = get_perf_callchain(regs, 0, kernel, user, 6970 max_stack, crosstask, true); 6971 return callchain ?: &__empty_callchain; 6972 } 6973 6974 void perf_prepare_sample(struct perf_event_header *header, 6975 struct perf_sample_data *data, 6976 struct perf_event *event, 6977 struct pt_regs *regs) 6978 { 6979 u64 sample_type = event->attr.sample_type; 6980 6981 header->type = PERF_RECORD_SAMPLE; 6982 header->size = sizeof(*header) + event->header_size; 6983 6984 header->misc = 0; 6985 header->misc |= perf_misc_flags(regs); 6986 6987 __perf_event_header__init_id(header, data, event); 6988 6989 if (sample_type & PERF_SAMPLE_IP) 6990 data->ip = perf_instruction_pointer(regs); 6991 6992 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6993 int size = 1; 6994 6995 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6996 data->callchain = perf_callchain(event, regs); 6997 6998 size += data->callchain->nr; 6999 7000 header->size += size * sizeof(u64); 7001 } 7002 7003 if (sample_type & PERF_SAMPLE_RAW) { 7004 struct perf_raw_record *raw = data->raw; 7005 int size; 7006 7007 if (raw) { 7008 struct perf_raw_frag *frag = &raw->frag; 7009 u32 sum = 0; 7010 7011 do { 7012 sum += frag->size; 7013 if (perf_raw_frag_last(frag)) 7014 break; 7015 frag = frag->next; 7016 } while (1); 7017 7018 size = round_up(sum + sizeof(u32), sizeof(u64)); 7019 raw->size = size - sizeof(u32); 7020 frag->pad = raw->size - sum; 7021 } else { 7022 size = sizeof(u64); 7023 } 7024 7025 header->size += size; 7026 } 7027 7028 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7029 int size = sizeof(u64); /* nr */ 7030 if (data->br_stack) { 7031 if (perf_sample_save_hw_index(event)) 7032 size += sizeof(u64); 7033 7034 size += data->br_stack->nr 7035 * sizeof(struct perf_branch_entry); 7036 } 7037 header->size += size; 7038 } 7039 7040 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7041 perf_sample_regs_user(&data->regs_user, regs, 7042 &data->regs_user_copy); 7043 7044 if (sample_type & PERF_SAMPLE_REGS_USER) { 7045 /* regs dump ABI info */ 7046 int size = sizeof(u64); 7047 7048 if (data->regs_user.regs) { 7049 u64 mask = event->attr.sample_regs_user; 7050 size += hweight64(mask) * sizeof(u64); 7051 } 7052 7053 header->size += size; 7054 } 7055 7056 if (sample_type & PERF_SAMPLE_STACK_USER) { 7057 /* 7058 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7059 * processed as the last one or have additional check added 7060 * in case new sample type is added, because we could eat 7061 * up the rest of the sample size. 7062 */ 7063 u16 stack_size = event->attr.sample_stack_user; 7064 u16 size = sizeof(u64); 7065 7066 stack_size = perf_sample_ustack_size(stack_size, header->size, 7067 data->regs_user.regs); 7068 7069 /* 7070 * If there is something to dump, add space for the dump 7071 * itself and for the field that tells the dynamic size, 7072 * which is how many have been actually dumped. 7073 */ 7074 if (stack_size) 7075 size += sizeof(u64) + stack_size; 7076 7077 data->stack_user_size = stack_size; 7078 header->size += size; 7079 } 7080 7081 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7082 /* regs dump ABI info */ 7083 int size = sizeof(u64); 7084 7085 perf_sample_regs_intr(&data->regs_intr, regs); 7086 7087 if (data->regs_intr.regs) { 7088 u64 mask = event->attr.sample_regs_intr; 7089 7090 size += hweight64(mask) * sizeof(u64); 7091 } 7092 7093 header->size += size; 7094 } 7095 7096 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7097 data->phys_addr = perf_virt_to_phys(data->addr); 7098 7099 #ifdef CONFIG_CGROUP_PERF 7100 if (sample_type & PERF_SAMPLE_CGROUP) { 7101 struct cgroup *cgrp; 7102 7103 /* protected by RCU */ 7104 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7105 data->cgroup = cgroup_id(cgrp); 7106 } 7107 #endif 7108 7109 if (sample_type & PERF_SAMPLE_AUX) { 7110 u64 size; 7111 7112 header->size += sizeof(u64); /* size */ 7113 7114 /* 7115 * Given the 16bit nature of header::size, an AUX sample can 7116 * easily overflow it, what with all the preceding sample bits. 7117 * Make sure this doesn't happen by using up to U16_MAX bytes 7118 * per sample in total (rounded down to 8 byte boundary). 7119 */ 7120 size = min_t(size_t, U16_MAX - header->size, 7121 event->attr.aux_sample_size); 7122 size = rounddown(size, 8); 7123 size = perf_prepare_sample_aux(event, data, size); 7124 7125 WARN_ON_ONCE(size + header->size > U16_MAX); 7126 header->size += size; 7127 } 7128 /* 7129 * If you're adding more sample types here, you likely need to do 7130 * something about the overflowing header::size, like repurpose the 7131 * lowest 3 bits of size, which should be always zero at the moment. 7132 * This raises a more important question, do we really need 512k sized 7133 * samples and why, so good argumentation is in order for whatever you 7134 * do here next. 7135 */ 7136 WARN_ON_ONCE(header->size & 7); 7137 } 7138 7139 static __always_inline int 7140 __perf_event_output(struct perf_event *event, 7141 struct perf_sample_data *data, 7142 struct pt_regs *regs, 7143 int (*output_begin)(struct perf_output_handle *, 7144 struct perf_event *, 7145 unsigned int)) 7146 { 7147 struct perf_output_handle handle; 7148 struct perf_event_header header; 7149 int err; 7150 7151 /* protect the callchain buffers */ 7152 rcu_read_lock(); 7153 7154 perf_prepare_sample(&header, data, event, regs); 7155 7156 err = output_begin(&handle, event, header.size); 7157 if (err) 7158 goto exit; 7159 7160 perf_output_sample(&handle, &header, data, event); 7161 7162 perf_output_end(&handle); 7163 7164 exit: 7165 rcu_read_unlock(); 7166 return err; 7167 } 7168 7169 void 7170 perf_event_output_forward(struct perf_event *event, 7171 struct perf_sample_data *data, 7172 struct pt_regs *regs) 7173 { 7174 __perf_event_output(event, data, regs, perf_output_begin_forward); 7175 } 7176 7177 void 7178 perf_event_output_backward(struct perf_event *event, 7179 struct perf_sample_data *data, 7180 struct pt_regs *regs) 7181 { 7182 __perf_event_output(event, data, regs, perf_output_begin_backward); 7183 } 7184 7185 int 7186 perf_event_output(struct perf_event *event, 7187 struct perf_sample_data *data, 7188 struct pt_regs *regs) 7189 { 7190 return __perf_event_output(event, data, regs, perf_output_begin); 7191 } 7192 7193 /* 7194 * read event_id 7195 */ 7196 7197 struct perf_read_event { 7198 struct perf_event_header header; 7199 7200 u32 pid; 7201 u32 tid; 7202 }; 7203 7204 static void 7205 perf_event_read_event(struct perf_event *event, 7206 struct task_struct *task) 7207 { 7208 struct perf_output_handle handle; 7209 struct perf_sample_data sample; 7210 struct perf_read_event read_event = { 7211 .header = { 7212 .type = PERF_RECORD_READ, 7213 .misc = 0, 7214 .size = sizeof(read_event) + event->read_size, 7215 }, 7216 .pid = perf_event_pid(event, task), 7217 .tid = perf_event_tid(event, task), 7218 }; 7219 int ret; 7220 7221 perf_event_header__init_id(&read_event.header, &sample, event); 7222 ret = perf_output_begin(&handle, event, read_event.header.size); 7223 if (ret) 7224 return; 7225 7226 perf_output_put(&handle, read_event); 7227 perf_output_read(&handle, event); 7228 perf_event__output_id_sample(event, &handle, &sample); 7229 7230 perf_output_end(&handle); 7231 } 7232 7233 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7234 7235 static void 7236 perf_iterate_ctx(struct perf_event_context *ctx, 7237 perf_iterate_f output, 7238 void *data, bool all) 7239 { 7240 struct perf_event *event; 7241 7242 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7243 if (!all) { 7244 if (event->state < PERF_EVENT_STATE_INACTIVE) 7245 continue; 7246 if (!event_filter_match(event)) 7247 continue; 7248 } 7249 7250 output(event, data); 7251 } 7252 } 7253 7254 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7255 { 7256 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7257 struct perf_event *event; 7258 7259 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7260 /* 7261 * Skip events that are not fully formed yet; ensure that 7262 * if we observe event->ctx, both event and ctx will be 7263 * complete enough. See perf_install_in_context(). 7264 */ 7265 if (!smp_load_acquire(&event->ctx)) 7266 continue; 7267 7268 if (event->state < PERF_EVENT_STATE_INACTIVE) 7269 continue; 7270 if (!event_filter_match(event)) 7271 continue; 7272 output(event, data); 7273 } 7274 } 7275 7276 /* 7277 * Iterate all events that need to receive side-band events. 7278 * 7279 * For new callers; ensure that account_pmu_sb_event() includes 7280 * your event, otherwise it might not get delivered. 7281 */ 7282 static void 7283 perf_iterate_sb(perf_iterate_f output, void *data, 7284 struct perf_event_context *task_ctx) 7285 { 7286 struct perf_event_context *ctx; 7287 int ctxn; 7288 7289 rcu_read_lock(); 7290 preempt_disable(); 7291 7292 /* 7293 * If we have task_ctx != NULL we only notify the task context itself. 7294 * The task_ctx is set only for EXIT events before releasing task 7295 * context. 7296 */ 7297 if (task_ctx) { 7298 perf_iterate_ctx(task_ctx, output, data, false); 7299 goto done; 7300 } 7301 7302 perf_iterate_sb_cpu(output, data); 7303 7304 for_each_task_context_nr(ctxn) { 7305 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7306 if (ctx) 7307 perf_iterate_ctx(ctx, output, data, false); 7308 } 7309 done: 7310 preempt_enable(); 7311 rcu_read_unlock(); 7312 } 7313 7314 /* 7315 * Clear all file-based filters at exec, they'll have to be 7316 * re-instated when/if these objects are mmapped again. 7317 */ 7318 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7319 { 7320 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7321 struct perf_addr_filter *filter; 7322 unsigned int restart = 0, count = 0; 7323 unsigned long flags; 7324 7325 if (!has_addr_filter(event)) 7326 return; 7327 7328 raw_spin_lock_irqsave(&ifh->lock, flags); 7329 list_for_each_entry(filter, &ifh->list, entry) { 7330 if (filter->path.dentry) { 7331 event->addr_filter_ranges[count].start = 0; 7332 event->addr_filter_ranges[count].size = 0; 7333 restart++; 7334 } 7335 7336 count++; 7337 } 7338 7339 if (restart) 7340 event->addr_filters_gen++; 7341 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7342 7343 if (restart) 7344 perf_event_stop(event, 1); 7345 } 7346 7347 void perf_event_exec(void) 7348 { 7349 struct perf_event_context *ctx; 7350 int ctxn; 7351 7352 rcu_read_lock(); 7353 for_each_task_context_nr(ctxn) { 7354 ctx = current->perf_event_ctxp[ctxn]; 7355 if (!ctx) 7356 continue; 7357 7358 perf_event_enable_on_exec(ctxn); 7359 7360 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7361 true); 7362 } 7363 rcu_read_unlock(); 7364 } 7365 7366 struct remote_output { 7367 struct perf_buffer *rb; 7368 int err; 7369 }; 7370 7371 static void __perf_event_output_stop(struct perf_event *event, void *data) 7372 { 7373 struct perf_event *parent = event->parent; 7374 struct remote_output *ro = data; 7375 struct perf_buffer *rb = ro->rb; 7376 struct stop_event_data sd = { 7377 .event = event, 7378 }; 7379 7380 if (!has_aux(event)) 7381 return; 7382 7383 if (!parent) 7384 parent = event; 7385 7386 /* 7387 * In case of inheritance, it will be the parent that links to the 7388 * ring-buffer, but it will be the child that's actually using it. 7389 * 7390 * We are using event::rb to determine if the event should be stopped, 7391 * however this may race with ring_buffer_attach() (through set_output), 7392 * which will make us skip the event that actually needs to be stopped. 7393 * So ring_buffer_attach() has to stop an aux event before re-assigning 7394 * its rb pointer. 7395 */ 7396 if (rcu_dereference(parent->rb) == rb) 7397 ro->err = __perf_event_stop(&sd); 7398 } 7399 7400 static int __perf_pmu_output_stop(void *info) 7401 { 7402 struct perf_event *event = info; 7403 struct pmu *pmu = event->ctx->pmu; 7404 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7405 struct remote_output ro = { 7406 .rb = event->rb, 7407 }; 7408 7409 rcu_read_lock(); 7410 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7411 if (cpuctx->task_ctx) 7412 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7413 &ro, false); 7414 rcu_read_unlock(); 7415 7416 return ro.err; 7417 } 7418 7419 static void perf_pmu_output_stop(struct perf_event *event) 7420 { 7421 struct perf_event *iter; 7422 int err, cpu; 7423 7424 restart: 7425 rcu_read_lock(); 7426 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7427 /* 7428 * For per-CPU events, we need to make sure that neither they 7429 * nor their children are running; for cpu==-1 events it's 7430 * sufficient to stop the event itself if it's active, since 7431 * it can't have children. 7432 */ 7433 cpu = iter->cpu; 7434 if (cpu == -1) 7435 cpu = READ_ONCE(iter->oncpu); 7436 7437 if (cpu == -1) 7438 continue; 7439 7440 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7441 if (err == -EAGAIN) { 7442 rcu_read_unlock(); 7443 goto restart; 7444 } 7445 } 7446 rcu_read_unlock(); 7447 } 7448 7449 /* 7450 * task tracking -- fork/exit 7451 * 7452 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7453 */ 7454 7455 struct perf_task_event { 7456 struct task_struct *task; 7457 struct perf_event_context *task_ctx; 7458 7459 struct { 7460 struct perf_event_header header; 7461 7462 u32 pid; 7463 u32 ppid; 7464 u32 tid; 7465 u32 ptid; 7466 u64 time; 7467 } event_id; 7468 }; 7469 7470 static int perf_event_task_match(struct perf_event *event) 7471 { 7472 return event->attr.comm || event->attr.mmap || 7473 event->attr.mmap2 || event->attr.mmap_data || 7474 event->attr.task; 7475 } 7476 7477 static void perf_event_task_output(struct perf_event *event, 7478 void *data) 7479 { 7480 struct perf_task_event *task_event = data; 7481 struct perf_output_handle handle; 7482 struct perf_sample_data sample; 7483 struct task_struct *task = task_event->task; 7484 int ret, size = task_event->event_id.header.size; 7485 7486 if (!perf_event_task_match(event)) 7487 return; 7488 7489 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7490 7491 ret = perf_output_begin(&handle, event, 7492 task_event->event_id.header.size); 7493 if (ret) 7494 goto out; 7495 7496 task_event->event_id.pid = perf_event_pid(event, task); 7497 task_event->event_id.tid = perf_event_tid(event, task); 7498 7499 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7500 task_event->event_id.ppid = perf_event_pid(event, 7501 task->real_parent); 7502 task_event->event_id.ptid = perf_event_pid(event, 7503 task->real_parent); 7504 } else { /* PERF_RECORD_FORK */ 7505 task_event->event_id.ppid = perf_event_pid(event, current); 7506 task_event->event_id.ptid = perf_event_tid(event, current); 7507 } 7508 7509 task_event->event_id.time = perf_event_clock(event); 7510 7511 perf_output_put(&handle, task_event->event_id); 7512 7513 perf_event__output_id_sample(event, &handle, &sample); 7514 7515 perf_output_end(&handle); 7516 out: 7517 task_event->event_id.header.size = size; 7518 } 7519 7520 static void perf_event_task(struct task_struct *task, 7521 struct perf_event_context *task_ctx, 7522 int new) 7523 { 7524 struct perf_task_event task_event; 7525 7526 if (!atomic_read(&nr_comm_events) && 7527 !atomic_read(&nr_mmap_events) && 7528 !atomic_read(&nr_task_events)) 7529 return; 7530 7531 task_event = (struct perf_task_event){ 7532 .task = task, 7533 .task_ctx = task_ctx, 7534 .event_id = { 7535 .header = { 7536 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7537 .misc = 0, 7538 .size = sizeof(task_event.event_id), 7539 }, 7540 /* .pid */ 7541 /* .ppid */ 7542 /* .tid */ 7543 /* .ptid */ 7544 /* .time */ 7545 }, 7546 }; 7547 7548 perf_iterate_sb(perf_event_task_output, 7549 &task_event, 7550 task_ctx); 7551 } 7552 7553 void perf_event_fork(struct task_struct *task) 7554 { 7555 perf_event_task(task, NULL, 1); 7556 perf_event_namespaces(task); 7557 } 7558 7559 /* 7560 * comm tracking 7561 */ 7562 7563 struct perf_comm_event { 7564 struct task_struct *task; 7565 char *comm; 7566 int comm_size; 7567 7568 struct { 7569 struct perf_event_header header; 7570 7571 u32 pid; 7572 u32 tid; 7573 } event_id; 7574 }; 7575 7576 static int perf_event_comm_match(struct perf_event *event) 7577 { 7578 return event->attr.comm; 7579 } 7580 7581 static void perf_event_comm_output(struct perf_event *event, 7582 void *data) 7583 { 7584 struct perf_comm_event *comm_event = data; 7585 struct perf_output_handle handle; 7586 struct perf_sample_data sample; 7587 int size = comm_event->event_id.header.size; 7588 int ret; 7589 7590 if (!perf_event_comm_match(event)) 7591 return; 7592 7593 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7594 ret = perf_output_begin(&handle, event, 7595 comm_event->event_id.header.size); 7596 7597 if (ret) 7598 goto out; 7599 7600 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7601 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7602 7603 perf_output_put(&handle, comm_event->event_id); 7604 __output_copy(&handle, comm_event->comm, 7605 comm_event->comm_size); 7606 7607 perf_event__output_id_sample(event, &handle, &sample); 7608 7609 perf_output_end(&handle); 7610 out: 7611 comm_event->event_id.header.size = size; 7612 } 7613 7614 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7615 { 7616 char comm[TASK_COMM_LEN]; 7617 unsigned int size; 7618 7619 memset(comm, 0, sizeof(comm)); 7620 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7621 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7622 7623 comm_event->comm = comm; 7624 comm_event->comm_size = size; 7625 7626 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7627 7628 perf_iterate_sb(perf_event_comm_output, 7629 comm_event, 7630 NULL); 7631 } 7632 7633 void perf_event_comm(struct task_struct *task, bool exec) 7634 { 7635 struct perf_comm_event comm_event; 7636 7637 if (!atomic_read(&nr_comm_events)) 7638 return; 7639 7640 comm_event = (struct perf_comm_event){ 7641 .task = task, 7642 /* .comm */ 7643 /* .comm_size */ 7644 .event_id = { 7645 .header = { 7646 .type = PERF_RECORD_COMM, 7647 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7648 /* .size */ 7649 }, 7650 /* .pid */ 7651 /* .tid */ 7652 }, 7653 }; 7654 7655 perf_event_comm_event(&comm_event); 7656 } 7657 7658 /* 7659 * namespaces tracking 7660 */ 7661 7662 struct perf_namespaces_event { 7663 struct task_struct *task; 7664 7665 struct { 7666 struct perf_event_header header; 7667 7668 u32 pid; 7669 u32 tid; 7670 u64 nr_namespaces; 7671 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7672 } event_id; 7673 }; 7674 7675 static int perf_event_namespaces_match(struct perf_event *event) 7676 { 7677 return event->attr.namespaces; 7678 } 7679 7680 static void perf_event_namespaces_output(struct perf_event *event, 7681 void *data) 7682 { 7683 struct perf_namespaces_event *namespaces_event = data; 7684 struct perf_output_handle handle; 7685 struct perf_sample_data sample; 7686 u16 header_size = namespaces_event->event_id.header.size; 7687 int ret; 7688 7689 if (!perf_event_namespaces_match(event)) 7690 return; 7691 7692 perf_event_header__init_id(&namespaces_event->event_id.header, 7693 &sample, event); 7694 ret = perf_output_begin(&handle, event, 7695 namespaces_event->event_id.header.size); 7696 if (ret) 7697 goto out; 7698 7699 namespaces_event->event_id.pid = perf_event_pid(event, 7700 namespaces_event->task); 7701 namespaces_event->event_id.tid = perf_event_tid(event, 7702 namespaces_event->task); 7703 7704 perf_output_put(&handle, namespaces_event->event_id); 7705 7706 perf_event__output_id_sample(event, &handle, &sample); 7707 7708 perf_output_end(&handle); 7709 out: 7710 namespaces_event->event_id.header.size = header_size; 7711 } 7712 7713 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7714 struct task_struct *task, 7715 const struct proc_ns_operations *ns_ops) 7716 { 7717 struct path ns_path; 7718 struct inode *ns_inode; 7719 int error; 7720 7721 error = ns_get_path(&ns_path, task, ns_ops); 7722 if (!error) { 7723 ns_inode = ns_path.dentry->d_inode; 7724 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7725 ns_link_info->ino = ns_inode->i_ino; 7726 path_put(&ns_path); 7727 } 7728 } 7729 7730 void perf_event_namespaces(struct task_struct *task) 7731 { 7732 struct perf_namespaces_event namespaces_event; 7733 struct perf_ns_link_info *ns_link_info; 7734 7735 if (!atomic_read(&nr_namespaces_events)) 7736 return; 7737 7738 namespaces_event = (struct perf_namespaces_event){ 7739 .task = task, 7740 .event_id = { 7741 .header = { 7742 .type = PERF_RECORD_NAMESPACES, 7743 .misc = 0, 7744 .size = sizeof(namespaces_event.event_id), 7745 }, 7746 /* .pid */ 7747 /* .tid */ 7748 .nr_namespaces = NR_NAMESPACES, 7749 /* .link_info[NR_NAMESPACES] */ 7750 }, 7751 }; 7752 7753 ns_link_info = namespaces_event.event_id.link_info; 7754 7755 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7756 task, &mntns_operations); 7757 7758 #ifdef CONFIG_USER_NS 7759 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7760 task, &userns_operations); 7761 #endif 7762 #ifdef CONFIG_NET_NS 7763 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7764 task, &netns_operations); 7765 #endif 7766 #ifdef CONFIG_UTS_NS 7767 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7768 task, &utsns_operations); 7769 #endif 7770 #ifdef CONFIG_IPC_NS 7771 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7772 task, &ipcns_operations); 7773 #endif 7774 #ifdef CONFIG_PID_NS 7775 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7776 task, &pidns_operations); 7777 #endif 7778 #ifdef CONFIG_CGROUPS 7779 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7780 task, &cgroupns_operations); 7781 #endif 7782 7783 perf_iterate_sb(perf_event_namespaces_output, 7784 &namespaces_event, 7785 NULL); 7786 } 7787 7788 /* 7789 * cgroup tracking 7790 */ 7791 #ifdef CONFIG_CGROUP_PERF 7792 7793 struct perf_cgroup_event { 7794 char *path; 7795 int path_size; 7796 struct { 7797 struct perf_event_header header; 7798 u64 id; 7799 char path[]; 7800 } event_id; 7801 }; 7802 7803 static int perf_event_cgroup_match(struct perf_event *event) 7804 { 7805 return event->attr.cgroup; 7806 } 7807 7808 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7809 { 7810 struct perf_cgroup_event *cgroup_event = data; 7811 struct perf_output_handle handle; 7812 struct perf_sample_data sample; 7813 u16 header_size = cgroup_event->event_id.header.size; 7814 int ret; 7815 7816 if (!perf_event_cgroup_match(event)) 7817 return; 7818 7819 perf_event_header__init_id(&cgroup_event->event_id.header, 7820 &sample, event); 7821 ret = perf_output_begin(&handle, event, 7822 cgroup_event->event_id.header.size); 7823 if (ret) 7824 goto out; 7825 7826 perf_output_put(&handle, cgroup_event->event_id); 7827 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7828 7829 perf_event__output_id_sample(event, &handle, &sample); 7830 7831 perf_output_end(&handle); 7832 out: 7833 cgroup_event->event_id.header.size = header_size; 7834 } 7835 7836 static void perf_event_cgroup(struct cgroup *cgrp) 7837 { 7838 struct perf_cgroup_event cgroup_event; 7839 char path_enomem[16] = "//enomem"; 7840 char *pathname; 7841 size_t size; 7842 7843 if (!atomic_read(&nr_cgroup_events)) 7844 return; 7845 7846 cgroup_event = (struct perf_cgroup_event){ 7847 .event_id = { 7848 .header = { 7849 .type = PERF_RECORD_CGROUP, 7850 .misc = 0, 7851 .size = sizeof(cgroup_event.event_id), 7852 }, 7853 .id = cgroup_id(cgrp), 7854 }, 7855 }; 7856 7857 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7858 if (pathname == NULL) { 7859 cgroup_event.path = path_enomem; 7860 } else { 7861 /* just to be sure to have enough space for alignment */ 7862 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 7863 cgroup_event.path = pathname; 7864 } 7865 7866 /* 7867 * Since our buffer works in 8 byte units we need to align our string 7868 * size to a multiple of 8. However, we must guarantee the tail end is 7869 * zero'd out to avoid leaking random bits to userspace. 7870 */ 7871 size = strlen(cgroup_event.path) + 1; 7872 while (!IS_ALIGNED(size, sizeof(u64))) 7873 cgroup_event.path[size++] = '\0'; 7874 7875 cgroup_event.event_id.header.size += size; 7876 cgroup_event.path_size = size; 7877 7878 perf_iterate_sb(perf_event_cgroup_output, 7879 &cgroup_event, 7880 NULL); 7881 7882 kfree(pathname); 7883 } 7884 7885 #endif 7886 7887 /* 7888 * mmap tracking 7889 */ 7890 7891 struct perf_mmap_event { 7892 struct vm_area_struct *vma; 7893 7894 const char *file_name; 7895 int file_size; 7896 int maj, min; 7897 u64 ino; 7898 u64 ino_generation; 7899 u32 prot, flags; 7900 7901 struct { 7902 struct perf_event_header header; 7903 7904 u32 pid; 7905 u32 tid; 7906 u64 start; 7907 u64 len; 7908 u64 pgoff; 7909 } event_id; 7910 }; 7911 7912 static int perf_event_mmap_match(struct perf_event *event, 7913 void *data) 7914 { 7915 struct perf_mmap_event *mmap_event = data; 7916 struct vm_area_struct *vma = mmap_event->vma; 7917 int executable = vma->vm_flags & VM_EXEC; 7918 7919 return (!executable && event->attr.mmap_data) || 7920 (executable && (event->attr.mmap || event->attr.mmap2)); 7921 } 7922 7923 static void perf_event_mmap_output(struct perf_event *event, 7924 void *data) 7925 { 7926 struct perf_mmap_event *mmap_event = data; 7927 struct perf_output_handle handle; 7928 struct perf_sample_data sample; 7929 int size = mmap_event->event_id.header.size; 7930 u32 type = mmap_event->event_id.header.type; 7931 int ret; 7932 7933 if (!perf_event_mmap_match(event, data)) 7934 return; 7935 7936 if (event->attr.mmap2) { 7937 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7938 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7939 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7940 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7941 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7942 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7943 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7944 } 7945 7946 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7947 ret = perf_output_begin(&handle, event, 7948 mmap_event->event_id.header.size); 7949 if (ret) 7950 goto out; 7951 7952 mmap_event->event_id.pid = perf_event_pid(event, current); 7953 mmap_event->event_id.tid = perf_event_tid(event, current); 7954 7955 perf_output_put(&handle, mmap_event->event_id); 7956 7957 if (event->attr.mmap2) { 7958 perf_output_put(&handle, mmap_event->maj); 7959 perf_output_put(&handle, mmap_event->min); 7960 perf_output_put(&handle, mmap_event->ino); 7961 perf_output_put(&handle, mmap_event->ino_generation); 7962 perf_output_put(&handle, mmap_event->prot); 7963 perf_output_put(&handle, mmap_event->flags); 7964 } 7965 7966 __output_copy(&handle, mmap_event->file_name, 7967 mmap_event->file_size); 7968 7969 perf_event__output_id_sample(event, &handle, &sample); 7970 7971 perf_output_end(&handle); 7972 out: 7973 mmap_event->event_id.header.size = size; 7974 mmap_event->event_id.header.type = type; 7975 } 7976 7977 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7978 { 7979 struct vm_area_struct *vma = mmap_event->vma; 7980 struct file *file = vma->vm_file; 7981 int maj = 0, min = 0; 7982 u64 ino = 0, gen = 0; 7983 u32 prot = 0, flags = 0; 7984 unsigned int size; 7985 char tmp[16]; 7986 char *buf = NULL; 7987 char *name; 7988 7989 if (vma->vm_flags & VM_READ) 7990 prot |= PROT_READ; 7991 if (vma->vm_flags & VM_WRITE) 7992 prot |= PROT_WRITE; 7993 if (vma->vm_flags & VM_EXEC) 7994 prot |= PROT_EXEC; 7995 7996 if (vma->vm_flags & VM_MAYSHARE) 7997 flags = MAP_SHARED; 7998 else 7999 flags = MAP_PRIVATE; 8000 8001 if (vma->vm_flags & VM_DENYWRITE) 8002 flags |= MAP_DENYWRITE; 8003 if (vma->vm_flags & VM_MAYEXEC) 8004 flags |= MAP_EXECUTABLE; 8005 if (vma->vm_flags & VM_LOCKED) 8006 flags |= MAP_LOCKED; 8007 if (is_vm_hugetlb_page(vma)) 8008 flags |= MAP_HUGETLB; 8009 8010 if (file) { 8011 struct inode *inode; 8012 dev_t dev; 8013 8014 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8015 if (!buf) { 8016 name = "//enomem"; 8017 goto cpy_name; 8018 } 8019 /* 8020 * d_path() works from the end of the rb backwards, so we 8021 * need to add enough zero bytes after the string to handle 8022 * the 64bit alignment we do later. 8023 */ 8024 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8025 if (IS_ERR(name)) { 8026 name = "//toolong"; 8027 goto cpy_name; 8028 } 8029 inode = file_inode(vma->vm_file); 8030 dev = inode->i_sb->s_dev; 8031 ino = inode->i_ino; 8032 gen = inode->i_generation; 8033 maj = MAJOR(dev); 8034 min = MINOR(dev); 8035 8036 goto got_name; 8037 } else { 8038 if (vma->vm_ops && vma->vm_ops->name) { 8039 name = (char *) vma->vm_ops->name(vma); 8040 if (name) 8041 goto cpy_name; 8042 } 8043 8044 name = (char *)arch_vma_name(vma); 8045 if (name) 8046 goto cpy_name; 8047 8048 if (vma->vm_start <= vma->vm_mm->start_brk && 8049 vma->vm_end >= vma->vm_mm->brk) { 8050 name = "[heap]"; 8051 goto cpy_name; 8052 } 8053 if (vma->vm_start <= vma->vm_mm->start_stack && 8054 vma->vm_end >= vma->vm_mm->start_stack) { 8055 name = "[stack]"; 8056 goto cpy_name; 8057 } 8058 8059 name = "//anon"; 8060 goto cpy_name; 8061 } 8062 8063 cpy_name: 8064 strlcpy(tmp, name, sizeof(tmp)); 8065 name = tmp; 8066 got_name: 8067 /* 8068 * Since our buffer works in 8 byte units we need to align our string 8069 * size to a multiple of 8. However, we must guarantee the tail end is 8070 * zero'd out to avoid leaking random bits to userspace. 8071 */ 8072 size = strlen(name)+1; 8073 while (!IS_ALIGNED(size, sizeof(u64))) 8074 name[size++] = '\0'; 8075 8076 mmap_event->file_name = name; 8077 mmap_event->file_size = size; 8078 mmap_event->maj = maj; 8079 mmap_event->min = min; 8080 mmap_event->ino = ino; 8081 mmap_event->ino_generation = gen; 8082 mmap_event->prot = prot; 8083 mmap_event->flags = flags; 8084 8085 if (!(vma->vm_flags & VM_EXEC)) 8086 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8087 8088 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8089 8090 perf_iterate_sb(perf_event_mmap_output, 8091 mmap_event, 8092 NULL); 8093 8094 kfree(buf); 8095 } 8096 8097 /* 8098 * Check whether inode and address range match filter criteria. 8099 */ 8100 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8101 struct file *file, unsigned long offset, 8102 unsigned long size) 8103 { 8104 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8105 if (!filter->path.dentry) 8106 return false; 8107 8108 if (d_inode(filter->path.dentry) != file_inode(file)) 8109 return false; 8110 8111 if (filter->offset > offset + size) 8112 return false; 8113 8114 if (filter->offset + filter->size < offset) 8115 return false; 8116 8117 return true; 8118 } 8119 8120 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8121 struct vm_area_struct *vma, 8122 struct perf_addr_filter_range *fr) 8123 { 8124 unsigned long vma_size = vma->vm_end - vma->vm_start; 8125 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8126 struct file *file = vma->vm_file; 8127 8128 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8129 return false; 8130 8131 if (filter->offset < off) { 8132 fr->start = vma->vm_start; 8133 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8134 } else { 8135 fr->start = vma->vm_start + filter->offset - off; 8136 fr->size = min(vma->vm_end - fr->start, filter->size); 8137 } 8138 8139 return true; 8140 } 8141 8142 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8143 { 8144 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8145 struct vm_area_struct *vma = data; 8146 struct perf_addr_filter *filter; 8147 unsigned int restart = 0, count = 0; 8148 unsigned long flags; 8149 8150 if (!has_addr_filter(event)) 8151 return; 8152 8153 if (!vma->vm_file) 8154 return; 8155 8156 raw_spin_lock_irqsave(&ifh->lock, flags); 8157 list_for_each_entry(filter, &ifh->list, entry) { 8158 if (perf_addr_filter_vma_adjust(filter, vma, 8159 &event->addr_filter_ranges[count])) 8160 restart++; 8161 8162 count++; 8163 } 8164 8165 if (restart) 8166 event->addr_filters_gen++; 8167 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8168 8169 if (restart) 8170 perf_event_stop(event, 1); 8171 } 8172 8173 /* 8174 * Adjust all task's events' filters to the new vma 8175 */ 8176 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8177 { 8178 struct perf_event_context *ctx; 8179 int ctxn; 8180 8181 /* 8182 * Data tracing isn't supported yet and as such there is no need 8183 * to keep track of anything that isn't related to executable code: 8184 */ 8185 if (!(vma->vm_flags & VM_EXEC)) 8186 return; 8187 8188 rcu_read_lock(); 8189 for_each_task_context_nr(ctxn) { 8190 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8191 if (!ctx) 8192 continue; 8193 8194 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8195 } 8196 rcu_read_unlock(); 8197 } 8198 8199 void perf_event_mmap(struct vm_area_struct *vma) 8200 { 8201 struct perf_mmap_event mmap_event; 8202 8203 if (!atomic_read(&nr_mmap_events)) 8204 return; 8205 8206 mmap_event = (struct perf_mmap_event){ 8207 .vma = vma, 8208 /* .file_name */ 8209 /* .file_size */ 8210 .event_id = { 8211 .header = { 8212 .type = PERF_RECORD_MMAP, 8213 .misc = PERF_RECORD_MISC_USER, 8214 /* .size */ 8215 }, 8216 /* .pid */ 8217 /* .tid */ 8218 .start = vma->vm_start, 8219 .len = vma->vm_end - vma->vm_start, 8220 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8221 }, 8222 /* .maj (attr_mmap2 only) */ 8223 /* .min (attr_mmap2 only) */ 8224 /* .ino (attr_mmap2 only) */ 8225 /* .ino_generation (attr_mmap2 only) */ 8226 /* .prot (attr_mmap2 only) */ 8227 /* .flags (attr_mmap2 only) */ 8228 }; 8229 8230 perf_addr_filters_adjust(vma); 8231 perf_event_mmap_event(&mmap_event); 8232 } 8233 8234 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8235 unsigned long size, u64 flags) 8236 { 8237 struct perf_output_handle handle; 8238 struct perf_sample_data sample; 8239 struct perf_aux_event { 8240 struct perf_event_header header; 8241 u64 offset; 8242 u64 size; 8243 u64 flags; 8244 } rec = { 8245 .header = { 8246 .type = PERF_RECORD_AUX, 8247 .misc = 0, 8248 .size = sizeof(rec), 8249 }, 8250 .offset = head, 8251 .size = size, 8252 .flags = flags, 8253 }; 8254 int ret; 8255 8256 perf_event_header__init_id(&rec.header, &sample, event); 8257 ret = perf_output_begin(&handle, event, rec.header.size); 8258 8259 if (ret) 8260 return; 8261 8262 perf_output_put(&handle, rec); 8263 perf_event__output_id_sample(event, &handle, &sample); 8264 8265 perf_output_end(&handle); 8266 } 8267 8268 /* 8269 * Lost/dropped samples logging 8270 */ 8271 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8272 { 8273 struct perf_output_handle handle; 8274 struct perf_sample_data sample; 8275 int ret; 8276 8277 struct { 8278 struct perf_event_header header; 8279 u64 lost; 8280 } lost_samples_event = { 8281 .header = { 8282 .type = PERF_RECORD_LOST_SAMPLES, 8283 .misc = 0, 8284 .size = sizeof(lost_samples_event), 8285 }, 8286 .lost = lost, 8287 }; 8288 8289 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8290 8291 ret = perf_output_begin(&handle, event, 8292 lost_samples_event.header.size); 8293 if (ret) 8294 return; 8295 8296 perf_output_put(&handle, lost_samples_event); 8297 perf_event__output_id_sample(event, &handle, &sample); 8298 perf_output_end(&handle); 8299 } 8300 8301 /* 8302 * context_switch tracking 8303 */ 8304 8305 struct perf_switch_event { 8306 struct task_struct *task; 8307 struct task_struct *next_prev; 8308 8309 struct { 8310 struct perf_event_header header; 8311 u32 next_prev_pid; 8312 u32 next_prev_tid; 8313 } event_id; 8314 }; 8315 8316 static int perf_event_switch_match(struct perf_event *event) 8317 { 8318 return event->attr.context_switch; 8319 } 8320 8321 static void perf_event_switch_output(struct perf_event *event, void *data) 8322 { 8323 struct perf_switch_event *se = data; 8324 struct perf_output_handle handle; 8325 struct perf_sample_data sample; 8326 int ret; 8327 8328 if (!perf_event_switch_match(event)) 8329 return; 8330 8331 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8332 if (event->ctx->task) { 8333 se->event_id.header.type = PERF_RECORD_SWITCH; 8334 se->event_id.header.size = sizeof(se->event_id.header); 8335 } else { 8336 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8337 se->event_id.header.size = sizeof(se->event_id); 8338 se->event_id.next_prev_pid = 8339 perf_event_pid(event, se->next_prev); 8340 se->event_id.next_prev_tid = 8341 perf_event_tid(event, se->next_prev); 8342 } 8343 8344 perf_event_header__init_id(&se->event_id.header, &sample, event); 8345 8346 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8347 if (ret) 8348 return; 8349 8350 if (event->ctx->task) 8351 perf_output_put(&handle, se->event_id.header); 8352 else 8353 perf_output_put(&handle, se->event_id); 8354 8355 perf_event__output_id_sample(event, &handle, &sample); 8356 8357 perf_output_end(&handle); 8358 } 8359 8360 static void perf_event_switch(struct task_struct *task, 8361 struct task_struct *next_prev, bool sched_in) 8362 { 8363 struct perf_switch_event switch_event; 8364 8365 /* N.B. caller checks nr_switch_events != 0 */ 8366 8367 switch_event = (struct perf_switch_event){ 8368 .task = task, 8369 .next_prev = next_prev, 8370 .event_id = { 8371 .header = { 8372 /* .type */ 8373 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8374 /* .size */ 8375 }, 8376 /* .next_prev_pid */ 8377 /* .next_prev_tid */ 8378 }, 8379 }; 8380 8381 if (!sched_in && task->state == TASK_RUNNING) 8382 switch_event.event_id.header.misc |= 8383 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8384 8385 perf_iterate_sb(perf_event_switch_output, 8386 &switch_event, 8387 NULL); 8388 } 8389 8390 /* 8391 * IRQ throttle logging 8392 */ 8393 8394 static void perf_log_throttle(struct perf_event *event, int enable) 8395 { 8396 struct perf_output_handle handle; 8397 struct perf_sample_data sample; 8398 int ret; 8399 8400 struct { 8401 struct perf_event_header header; 8402 u64 time; 8403 u64 id; 8404 u64 stream_id; 8405 } throttle_event = { 8406 .header = { 8407 .type = PERF_RECORD_THROTTLE, 8408 .misc = 0, 8409 .size = sizeof(throttle_event), 8410 }, 8411 .time = perf_event_clock(event), 8412 .id = primary_event_id(event), 8413 .stream_id = event->id, 8414 }; 8415 8416 if (enable) 8417 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8418 8419 perf_event_header__init_id(&throttle_event.header, &sample, event); 8420 8421 ret = perf_output_begin(&handle, event, 8422 throttle_event.header.size); 8423 if (ret) 8424 return; 8425 8426 perf_output_put(&handle, throttle_event); 8427 perf_event__output_id_sample(event, &handle, &sample); 8428 perf_output_end(&handle); 8429 } 8430 8431 /* 8432 * ksymbol register/unregister tracking 8433 */ 8434 8435 struct perf_ksymbol_event { 8436 const char *name; 8437 int name_len; 8438 struct { 8439 struct perf_event_header header; 8440 u64 addr; 8441 u32 len; 8442 u16 ksym_type; 8443 u16 flags; 8444 } event_id; 8445 }; 8446 8447 static int perf_event_ksymbol_match(struct perf_event *event) 8448 { 8449 return event->attr.ksymbol; 8450 } 8451 8452 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8453 { 8454 struct perf_ksymbol_event *ksymbol_event = data; 8455 struct perf_output_handle handle; 8456 struct perf_sample_data sample; 8457 int ret; 8458 8459 if (!perf_event_ksymbol_match(event)) 8460 return; 8461 8462 perf_event_header__init_id(&ksymbol_event->event_id.header, 8463 &sample, event); 8464 ret = perf_output_begin(&handle, event, 8465 ksymbol_event->event_id.header.size); 8466 if (ret) 8467 return; 8468 8469 perf_output_put(&handle, ksymbol_event->event_id); 8470 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8471 perf_event__output_id_sample(event, &handle, &sample); 8472 8473 perf_output_end(&handle); 8474 } 8475 8476 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8477 const char *sym) 8478 { 8479 struct perf_ksymbol_event ksymbol_event; 8480 char name[KSYM_NAME_LEN]; 8481 u16 flags = 0; 8482 int name_len; 8483 8484 if (!atomic_read(&nr_ksymbol_events)) 8485 return; 8486 8487 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8488 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8489 goto err; 8490 8491 strlcpy(name, sym, KSYM_NAME_LEN); 8492 name_len = strlen(name) + 1; 8493 while (!IS_ALIGNED(name_len, sizeof(u64))) 8494 name[name_len++] = '\0'; 8495 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8496 8497 if (unregister) 8498 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8499 8500 ksymbol_event = (struct perf_ksymbol_event){ 8501 .name = name, 8502 .name_len = name_len, 8503 .event_id = { 8504 .header = { 8505 .type = PERF_RECORD_KSYMBOL, 8506 .size = sizeof(ksymbol_event.event_id) + 8507 name_len, 8508 }, 8509 .addr = addr, 8510 .len = len, 8511 .ksym_type = ksym_type, 8512 .flags = flags, 8513 }, 8514 }; 8515 8516 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8517 return; 8518 err: 8519 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8520 } 8521 8522 /* 8523 * bpf program load/unload tracking 8524 */ 8525 8526 struct perf_bpf_event { 8527 struct bpf_prog *prog; 8528 struct { 8529 struct perf_event_header header; 8530 u16 type; 8531 u16 flags; 8532 u32 id; 8533 u8 tag[BPF_TAG_SIZE]; 8534 } event_id; 8535 }; 8536 8537 static int perf_event_bpf_match(struct perf_event *event) 8538 { 8539 return event->attr.bpf_event; 8540 } 8541 8542 static void perf_event_bpf_output(struct perf_event *event, void *data) 8543 { 8544 struct perf_bpf_event *bpf_event = data; 8545 struct perf_output_handle handle; 8546 struct perf_sample_data sample; 8547 int ret; 8548 8549 if (!perf_event_bpf_match(event)) 8550 return; 8551 8552 perf_event_header__init_id(&bpf_event->event_id.header, 8553 &sample, event); 8554 ret = perf_output_begin(&handle, event, 8555 bpf_event->event_id.header.size); 8556 if (ret) 8557 return; 8558 8559 perf_output_put(&handle, bpf_event->event_id); 8560 perf_event__output_id_sample(event, &handle, &sample); 8561 8562 perf_output_end(&handle); 8563 } 8564 8565 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8566 enum perf_bpf_event_type type) 8567 { 8568 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8569 int i; 8570 8571 if (prog->aux->func_cnt == 0) { 8572 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8573 (u64)(unsigned long)prog->bpf_func, 8574 prog->jited_len, unregister, 8575 prog->aux->ksym.name); 8576 } else { 8577 for (i = 0; i < prog->aux->func_cnt; i++) { 8578 struct bpf_prog *subprog = prog->aux->func[i]; 8579 8580 perf_event_ksymbol( 8581 PERF_RECORD_KSYMBOL_TYPE_BPF, 8582 (u64)(unsigned long)subprog->bpf_func, 8583 subprog->jited_len, unregister, 8584 prog->aux->ksym.name); 8585 } 8586 } 8587 } 8588 8589 void perf_event_bpf_event(struct bpf_prog *prog, 8590 enum perf_bpf_event_type type, 8591 u16 flags) 8592 { 8593 struct perf_bpf_event bpf_event; 8594 8595 if (type <= PERF_BPF_EVENT_UNKNOWN || 8596 type >= PERF_BPF_EVENT_MAX) 8597 return; 8598 8599 switch (type) { 8600 case PERF_BPF_EVENT_PROG_LOAD: 8601 case PERF_BPF_EVENT_PROG_UNLOAD: 8602 if (atomic_read(&nr_ksymbol_events)) 8603 perf_event_bpf_emit_ksymbols(prog, type); 8604 break; 8605 default: 8606 break; 8607 } 8608 8609 if (!atomic_read(&nr_bpf_events)) 8610 return; 8611 8612 bpf_event = (struct perf_bpf_event){ 8613 .prog = prog, 8614 .event_id = { 8615 .header = { 8616 .type = PERF_RECORD_BPF_EVENT, 8617 .size = sizeof(bpf_event.event_id), 8618 }, 8619 .type = type, 8620 .flags = flags, 8621 .id = prog->aux->id, 8622 }, 8623 }; 8624 8625 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8626 8627 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8628 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8629 } 8630 8631 void perf_event_itrace_started(struct perf_event *event) 8632 { 8633 event->attach_state |= PERF_ATTACH_ITRACE; 8634 } 8635 8636 static void perf_log_itrace_start(struct perf_event *event) 8637 { 8638 struct perf_output_handle handle; 8639 struct perf_sample_data sample; 8640 struct perf_aux_event { 8641 struct perf_event_header header; 8642 u32 pid; 8643 u32 tid; 8644 } rec; 8645 int ret; 8646 8647 if (event->parent) 8648 event = event->parent; 8649 8650 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8651 event->attach_state & PERF_ATTACH_ITRACE) 8652 return; 8653 8654 rec.header.type = PERF_RECORD_ITRACE_START; 8655 rec.header.misc = 0; 8656 rec.header.size = sizeof(rec); 8657 rec.pid = perf_event_pid(event, current); 8658 rec.tid = perf_event_tid(event, current); 8659 8660 perf_event_header__init_id(&rec.header, &sample, event); 8661 ret = perf_output_begin(&handle, event, rec.header.size); 8662 8663 if (ret) 8664 return; 8665 8666 perf_output_put(&handle, rec); 8667 perf_event__output_id_sample(event, &handle, &sample); 8668 8669 perf_output_end(&handle); 8670 } 8671 8672 static int 8673 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8674 { 8675 struct hw_perf_event *hwc = &event->hw; 8676 int ret = 0; 8677 u64 seq; 8678 8679 seq = __this_cpu_read(perf_throttled_seq); 8680 if (seq != hwc->interrupts_seq) { 8681 hwc->interrupts_seq = seq; 8682 hwc->interrupts = 1; 8683 } else { 8684 hwc->interrupts++; 8685 if (unlikely(throttle 8686 && hwc->interrupts >= max_samples_per_tick)) { 8687 __this_cpu_inc(perf_throttled_count); 8688 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8689 hwc->interrupts = MAX_INTERRUPTS; 8690 perf_log_throttle(event, 0); 8691 ret = 1; 8692 } 8693 } 8694 8695 if (event->attr.freq) { 8696 u64 now = perf_clock(); 8697 s64 delta = now - hwc->freq_time_stamp; 8698 8699 hwc->freq_time_stamp = now; 8700 8701 if (delta > 0 && delta < 2*TICK_NSEC) 8702 perf_adjust_period(event, delta, hwc->last_period, true); 8703 } 8704 8705 return ret; 8706 } 8707 8708 int perf_event_account_interrupt(struct perf_event *event) 8709 { 8710 return __perf_event_account_interrupt(event, 1); 8711 } 8712 8713 /* 8714 * Generic event overflow handling, sampling. 8715 */ 8716 8717 static int __perf_event_overflow(struct perf_event *event, 8718 int throttle, struct perf_sample_data *data, 8719 struct pt_regs *regs) 8720 { 8721 int events = atomic_read(&event->event_limit); 8722 int ret = 0; 8723 8724 /* 8725 * Non-sampling counters might still use the PMI to fold short 8726 * hardware counters, ignore those. 8727 */ 8728 if (unlikely(!is_sampling_event(event))) 8729 return 0; 8730 8731 ret = __perf_event_account_interrupt(event, throttle); 8732 8733 /* 8734 * XXX event_limit might not quite work as expected on inherited 8735 * events 8736 */ 8737 8738 event->pending_kill = POLL_IN; 8739 if (events && atomic_dec_and_test(&event->event_limit)) { 8740 ret = 1; 8741 event->pending_kill = POLL_HUP; 8742 8743 perf_event_disable_inatomic(event); 8744 } 8745 8746 READ_ONCE(event->overflow_handler)(event, data, regs); 8747 8748 if (*perf_event_fasync(event) && event->pending_kill) { 8749 event->pending_wakeup = 1; 8750 irq_work_queue(&event->pending); 8751 } 8752 8753 return ret; 8754 } 8755 8756 int perf_event_overflow(struct perf_event *event, 8757 struct perf_sample_data *data, 8758 struct pt_regs *regs) 8759 { 8760 return __perf_event_overflow(event, 1, data, regs); 8761 } 8762 8763 /* 8764 * Generic software event infrastructure 8765 */ 8766 8767 struct swevent_htable { 8768 struct swevent_hlist *swevent_hlist; 8769 struct mutex hlist_mutex; 8770 int hlist_refcount; 8771 8772 /* Recursion avoidance in each contexts */ 8773 int recursion[PERF_NR_CONTEXTS]; 8774 }; 8775 8776 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8777 8778 /* 8779 * We directly increment event->count and keep a second value in 8780 * event->hw.period_left to count intervals. This period event 8781 * is kept in the range [-sample_period, 0] so that we can use the 8782 * sign as trigger. 8783 */ 8784 8785 u64 perf_swevent_set_period(struct perf_event *event) 8786 { 8787 struct hw_perf_event *hwc = &event->hw; 8788 u64 period = hwc->last_period; 8789 u64 nr, offset; 8790 s64 old, val; 8791 8792 hwc->last_period = hwc->sample_period; 8793 8794 again: 8795 old = val = local64_read(&hwc->period_left); 8796 if (val < 0) 8797 return 0; 8798 8799 nr = div64_u64(period + val, period); 8800 offset = nr * period; 8801 val -= offset; 8802 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8803 goto again; 8804 8805 return nr; 8806 } 8807 8808 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8809 struct perf_sample_data *data, 8810 struct pt_regs *regs) 8811 { 8812 struct hw_perf_event *hwc = &event->hw; 8813 int throttle = 0; 8814 8815 if (!overflow) 8816 overflow = perf_swevent_set_period(event); 8817 8818 if (hwc->interrupts == MAX_INTERRUPTS) 8819 return; 8820 8821 for (; overflow; overflow--) { 8822 if (__perf_event_overflow(event, throttle, 8823 data, regs)) { 8824 /* 8825 * We inhibit the overflow from happening when 8826 * hwc->interrupts == MAX_INTERRUPTS. 8827 */ 8828 break; 8829 } 8830 throttle = 1; 8831 } 8832 } 8833 8834 static void perf_swevent_event(struct perf_event *event, u64 nr, 8835 struct perf_sample_data *data, 8836 struct pt_regs *regs) 8837 { 8838 struct hw_perf_event *hwc = &event->hw; 8839 8840 local64_add(nr, &event->count); 8841 8842 if (!regs) 8843 return; 8844 8845 if (!is_sampling_event(event)) 8846 return; 8847 8848 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8849 data->period = nr; 8850 return perf_swevent_overflow(event, 1, data, regs); 8851 } else 8852 data->period = event->hw.last_period; 8853 8854 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8855 return perf_swevent_overflow(event, 1, data, regs); 8856 8857 if (local64_add_negative(nr, &hwc->period_left)) 8858 return; 8859 8860 perf_swevent_overflow(event, 0, data, regs); 8861 } 8862 8863 static int perf_exclude_event(struct perf_event *event, 8864 struct pt_regs *regs) 8865 { 8866 if (event->hw.state & PERF_HES_STOPPED) 8867 return 1; 8868 8869 if (regs) { 8870 if (event->attr.exclude_user && user_mode(regs)) 8871 return 1; 8872 8873 if (event->attr.exclude_kernel && !user_mode(regs)) 8874 return 1; 8875 } 8876 8877 return 0; 8878 } 8879 8880 static int perf_swevent_match(struct perf_event *event, 8881 enum perf_type_id type, 8882 u32 event_id, 8883 struct perf_sample_data *data, 8884 struct pt_regs *regs) 8885 { 8886 if (event->attr.type != type) 8887 return 0; 8888 8889 if (event->attr.config != event_id) 8890 return 0; 8891 8892 if (perf_exclude_event(event, regs)) 8893 return 0; 8894 8895 return 1; 8896 } 8897 8898 static inline u64 swevent_hash(u64 type, u32 event_id) 8899 { 8900 u64 val = event_id | (type << 32); 8901 8902 return hash_64(val, SWEVENT_HLIST_BITS); 8903 } 8904 8905 static inline struct hlist_head * 8906 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8907 { 8908 u64 hash = swevent_hash(type, event_id); 8909 8910 return &hlist->heads[hash]; 8911 } 8912 8913 /* For the read side: events when they trigger */ 8914 static inline struct hlist_head * 8915 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8916 { 8917 struct swevent_hlist *hlist; 8918 8919 hlist = rcu_dereference(swhash->swevent_hlist); 8920 if (!hlist) 8921 return NULL; 8922 8923 return __find_swevent_head(hlist, type, event_id); 8924 } 8925 8926 /* For the event head insertion and removal in the hlist */ 8927 static inline struct hlist_head * 8928 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8929 { 8930 struct swevent_hlist *hlist; 8931 u32 event_id = event->attr.config; 8932 u64 type = event->attr.type; 8933 8934 /* 8935 * Event scheduling is always serialized against hlist allocation 8936 * and release. Which makes the protected version suitable here. 8937 * The context lock guarantees that. 8938 */ 8939 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8940 lockdep_is_held(&event->ctx->lock)); 8941 if (!hlist) 8942 return NULL; 8943 8944 return __find_swevent_head(hlist, type, event_id); 8945 } 8946 8947 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8948 u64 nr, 8949 struct perf_sample_data *data, 8950 struct pt_regs *regs) 8951 { 8952 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8953 struct perf_event *event; 8954 struct hlist_head *head; 8955 8956 rcu_read_lock(); 8957 head = find_swevent_head_rcu(swhash, type, event_id); 8958 if (!head) 8959 goto end; 8960 8961 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8962 if (perf_swevent_match(event, type, event_id, data, regs)) 8963 perf_swevent_event(event, nr, data, regs); 8964 } 8965 end: 8966 rcu_read_unlock(); 8967 } 8968 8969 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8970 8971 int perf_swevent_get_recursion_context(void) 8972 { 8973 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8974 8975 return get_recursion_context(swhash->recursion); 8976 } 8977 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8978 8979 void perf_swevent_put_recursion_context(int rctx) 8980 { 8981 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8982 8983 put_recursion_context(swhash->recursion, rctx); 8984 } 8985 8986 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8987 { 8988 struct perf_sample_data data; 8989 8990 if (WARN_ON_ONCE(!regs)) 8991 return; 8992 8993 perf_sample_data_init(&data, addr, 0); 8994 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8995 } 8996 8997 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8998 { 8999 int rctx; 9000 9001 preempt_disable_notrace(); 9002 rctx = perf_swevent_get_recursion_context(); 9003 if (unlikely(rctx < 0)) 9004 goto fail; 9005 9006 ___perf_sw_event(event_id, nr, regs, addr); 9007 9008 perf_swevent_put_recursion_context(rctx); 9009 fail: 9010 preempt_enable_notrace(); 9011 } 9012 9013 static void perf_swevent_read(struct perf_event *event) 9014 { 9015 } 9016 9017 static int perf_swevent_add(struct perf_event *event, int flags) 9018 { 9019 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9020 struct hw_perf_event *hwc = &event->hw; 9021 struct hlist_head *head; 9022 9023 if (is_sampling_event(event)) { 9024 hwc->last_period = hwc->sample_period; 9025 perf_swevent_set_period(event); 9026 } 9027 9028 hwc->state = !(flags & PERF_EF_START); 9029 9030 head = find_swevent_head(swhash, event); 9031 if (WARN_ON_ONCE(!head)) 9032 return -EINVAL; 9033 9034 hlist_add_head_rcu(&event->hlist_entry, head); 9035 perf_event_update_userpage(event); 9036 9037 return 0; 9038 } 9039 9040 static void perf_swevent_del(struct perf_event *event, int flags) 9041 { 9042 hlist_del_rcu(&event->hlist_entry); 9043 } 9044 9045 static void perf_swevent_start(struct perf_event *event, int flags) 9046 { 9047 event->hw.state = 0; 9048 } 9049 9050 static void perf_swevent_stop(struct perf_event *event, int flags) 9051 { 9052 event->hw.state = PERF_HES_STOPPED; 9053 } 9054 9055 /* Deref the hlist from the update side */ 9056 static inline struct swevent_hlist * 9057 swevent_hlist_deref(struct swevent_htable *swhash) 9058 { 9059 return rcu_dereference_protected(swhash->swevent_hlist, 9060 lockdep_is_held(&swhash->hlist_mutex)); 9061 } 9062 9063 static void swevent_hlist_release(struct swevent_htable *swhash) 9064 { 9065 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9066 9067 if (!hlist) 9068 return; 9069 9070 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9071 kfree_rcu(hlist, rcu_head); 9072 } 9073 9074 static void swevent_hlist_put_cpu(int cpu) 9075 { 9076 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9077 9078 mutex_lock(&swhash->hlist_mutex); 9079 9080 if (!--swhash->hlist_refcount) 9081 swevent_hlist_release(swhash); 9082 9083 mutex_unlock(&swhash->hlist_mutex); 9084 } 9085 9086 static void swevent_hlist_put(void) 9087 { 9088 int cpu; 9089 9090 for_each_possible_cpu(cpu) 9091 swevent_hlist_put_cpu(cpu); 9092 } 9093 9094 static int swevent_hlist_get_cpu(int cpu) 9095 { 9096 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9097 int err = 0; 9098 9099 mutex_lock(&swhash->hlist_mutex); 9100 if (!swevent_hlist_deref(swhash) && 9101 cpumask_test_cpu(cpu, perf_online_mask)) { 9102 struct swevent_hlist *hlist; 9103 9104 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9105 if (!hlist) { 9106 err = -ENOMEM; 9107 goto exit; 9108 } 9109 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9110 } 9111 swhash->hlist_refcount++; 9112 exit: 9113 mutex_unlock(&swhash->hlist_mutex); 9114 9115 return err; 9116 } 9117 9118 static int swevent_hlist_get(void) 9119 { 9120 int err, cpu, failed_cpu; 9121 9122 mutex_lock(&pmus_lock); 9123 for_each_possible_cpu(cpu) { 9124 err = swevent_hlist_get_cpu(cpu); 9125 if (err) { 9126 failed_cpu = cpu; 9127 goto fail; 9128 } 9129 } 9130 mutex_unlock(&pmus_lock); 9131 return 0; 9132 fail: 9133 for_each_possible_cpu(cpu) { 9134 if (cpu == failed_cpu) 9135 break; 9136 swevent_hlist_put_cpu(cpu); 9137 } 9138 mutex_unlock(&pmus_lock); 9139 return err; 9140 } 9141 9142 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9143 9144 static void sw_perf_event_destroy(struct perf_event *event) 9145 { 9146 u64 event_id = event->attr.config; 9147 9148 WARN_ON(event->parent); 9149 9150 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9151 swevent_hlist_put(); 9152 } 9153 9154 static int perf_swevent_init(struct perf_event *event) 9155 { 9156 u64 event_id = event->attr.config; 9157 9158 if (event->attr.type != PERF_TYPE_SOFTWARE) 9159 return -ENOENT; 9160 9161 /* 9162 * no branch sampling for software events 9163 */ 9164 if (has_branch_stack(event)) 9165 return -EOPNOTSUPP; 9166 9167 switch (event_id) { 9168 case PERF_COUNT_SW_CPU_CLOCK: 9169 case PERF_COUNT_SW_TASK_CLOCK: 9170 return -ENOENT; 9171 9172 default: 9173 break; 9174 } 9175 9176 if (event_id >= PERF_COUNT_SW_MAX) 9177 return -ENOENT; 9178 9179 if (!event->parent) { 9180 int err; 9181 9182 err = swevent_hlist_get(); 9183 if (err) 9184 return err; 9185 9186 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9187 event->destroy = sw_perf_event_destroy; 9188 } 9189 9190 return 0; 9191 } 9192 9193 static struct pmu perf_swevent = { 9194 .task_ctx_nr = perf_sw_context, 9195 9196 .capabilities = PERF_PMU_CAP_NO_NMI, 9197 9198 .event_init = perf_swevent_init, 9199 .add = perf_swevent_add, 9200 .del = perf_swevent_del, 9201 .start = perf_swevent_start, 9202 .stop = perf_swevent_stop, 9203 .read = perf_swevent_read, 9204 }; 9205 9206 #ifdef CONFIG_EVENT_TRACING 9207 9208 static int perf_tp_filter_match(struct perf_event *event, 9209 struct perf_sample_data *data) 9210 { 9211 void *record = data->raw->frag.data; 9212 9213 /* only top level events have filters set */ 9214 if (event->parent) 9215 event = event->parent; 9216 9217 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9218 return 1; 9219 return 0; 9220 } 9221 9222 static int perf_tp_event_match(struct perf_event *event, 9223 struct perf_sample_data *data, 9224 struct pt_regs *regs) 9225 { 9226 if (event->hw.state & PERF_HES_STOPPED) 9227 return 0; 9228 /* 9229 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9230 */ 9231 if (event->attr.exclude_kernel && !user_mode(regs)) 9232 return 0; 9233 9234 if (!perf_tp_filter_match(event, data)) 9235 return 0; 9236 9237 return 1; 9238 } 9239 9240 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9241 struct trace_event_call *call, u64 count, 9242 struct pt_regs *regs, struct hlist_head *head, 9243 struct task_struct *task) 9244 { 9245 if (bpf_prog_array_valid(call)) { 9246 *(struct pt_regs **)raw_data = regs; 9247 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9248 perf_swevent_put_recursion_context(rctx); 9249 return; 9250 } 9251 } 9252 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9253 rctx, task); 9254 } 9255 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9256 9257 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9258 struct pt_regs *regs, struct hlist_head *head, int rctx, 9259 struct task_struct *task) 9260 { 9261 struct perf_sample_data data; 9262 struct perf_event *event; 9263 9264 struct perf_raw_record raw = { 9265 .frag = { 9266 .size = entry_size, 9267 .data = record, 9268 }, 9269 }; 9270 9271 perf_sample_data_init(&data, 0, 0); 9272 data.raw = &raw; 9273 9274 perf_trace_buf_update(record, event_type); 9275 9276 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9277 if (perf_tp_event_match(event, &data, regs)) 9278 perf_swevent_event(event, count, &data, regs); 9279 } 9280 9281 /* 9282 * If we got specified a target task, also iterate its context and 9283 * deliver this event there too. 9284 */ 9285 if (task && task != current) { 9286 struct perf_event_context *ctx; 9287 struct trace_entry *entry = record; 9288 9289 rcu_read_lock(); 9290 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9291 if (!ctx) 9292 goto unlock; 9293 9294 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9295 if (event->cpu != smp_processor_id()) 9296 continue; 9297 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9298 continue; 9299 if (event->attr.config != entry->type) 9300 continue; 9301 if (perf_tp_event_match(event, &data, regs)) 9302 perf_swevent_event(event, count, &data, regs); 9303 } 9304 unlock: 9305 rcu_read_unlock(); 9306 } 9307 9308 perf_swevent_put_recursion_context(rctx); 9309 } 9310 EXPORT_SYMBOL_GPL(perf_tp_event); 9311 9312 static void tp_perf_event_destroy(struct perf_event *event) 9313 { 9314 perf_trace_destroy(event); 9315 } 9316 9317 static int perf_tp_event_init(struct perf_event *event) 9318 { 9319 int err; 9320 9321 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9322 return -ENOENT; 9323 9324 /* 9325 * no branch sampling for tracepoint events 9326 */ 9327 if (has_branch_stack(event)) 9328 return -EOPNOTSUPP; 9329 9330 err = perf_trace_init(event); 9331 if (err) 9332 return err; 9333 9334 event->destroy = tp_perf_event_destroy; 9335 9336 return 0; 9337 } 9338 9339 static struct pmu perf_tracepoint = { 9340 .task_ctx_nr = perf_sw_context, 9341 9342 .event_init = perf_tp_event_init, 9343 .add = perf_trace_add, 9344 .del = perf_trace_del, 9345 .start = perf_swevent_start, 9346 .stop = perf_swevent_stop, 9347 .read = perf_swevent_read, 9348 }; 9349 9350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9351 /* 9352 * Flags in config, used by dynamic PMU kprobe and uprobe 9353 * The flags should match following PMU_FORMAT_ATTR(). 9354 * 9355 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9356 * if not set, create kprobe/uprobe 9357 * 9358 * The following values specify a reference counter (or semaphore in the 9359 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9360 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9361 * 9362 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9363 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9364 */ 9365 enum perf_probe_config { 9366 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9367 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9368 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9369 }; 9370 9371 PMU_FORMAT_ATTR(retprobe, "config:0"); 9372 #endif 9373 9374 #ifdef CONFIG_KPROBE_EVENTS 9375 static struct attribute *kprobe_attrs[] = { 9376 &format_attr_retprobe.attr, 9377 NULL, 9378 }; 9379 9380 static struct attribute_group kprobe_format_group = { 9381 .name = "format", 9382 .attrs = kprobe_attrs, 9383 }; 9384 9385 static const struct attribute_group *kprobe_attr_groups[] = { 9386 &kprobe_format_group, 9387 NULL, 9388 }; 9389 9390 static int perf_kprobe_event_init(struct perf_event *event); 9391 static struct pmu perf_kprobe = { 9392 .task_ctx_nr = perf_sw_context, 9393 .event_init = perf_kprobe_event_init, 9394 .add = perf_trace_add, 9395 .del = perf_trace_del, 9396 .start = perf_swevent_start, 9397 .stop = perf_swevent_stop, 9398 .read = perf_swevent_read, 9399 .attr_groups = kprobe_attr_groups, 9400 }; 9401 9402 static int perf_kprobe_event_init(struct perf_event *event) 9403 { 9404 int err; 9405 bool is_retprobe; 9406 9407 if (event->attr.type != perf_kprobe.type) 9408 return -ENOENT; 9409 9410 if (!perfmon_capable()) 9411 return -EACCES; 9412 9413 /* 9414 * no branch sampling for probe events 9415 */ 9416 if (has_branch_stack(event)) 9417 return -EOPNOTSUPP; 9418 9419 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9420 err = perf_kprobe_init(event, is_retprobe); 9421 if (err) 9422 return err; 9423 9424 event->destroy = perf_kprobe_destroy; 9425 9426 return 0; 9427 } 9428 #endif /* CONFIG_KPROBE_EVENTS */ 9429 9430 #ifdef CONFIG_UPROBE_EVENTS 9431 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9432 9433 static struct attribute *uprobe_attrs[] = { 9434 &format_attr_retprobe.attr, 9435 &format_attr_ref_ctr_offset.attr, 9436 NULL, 9437 }; 9438 9439 static struct attribute_group uprobe_format_group = { 9440 .name = "format", 9441 .attrs = uprobe_attrs, 9442 }; 9443 9444 static const struct attribute_group *uprobe_attr_groups[] = { 9445 &uprobe_format_group, 9446 NULL, 9447 }; 9448 9449 static int perf_uprobe_event_init(struct perf_event *event); 9450 static struct pmu perf_uprobe = { 9451 .task_ctx_nr = perf_sw_context, 9452 .event_init = perf_uprobe_event_init, 9453 .add = perf_trace_add, 9454 .del = perf_trace_del, 9455 .start = perf_swevent_start, 9456 .stop = perf_swevent_stop, 9457 .read = perf_swevent_read, 9458 .attr_groups = uprobe_attr_groups, 9459 }; 9460 9461 static int perf_uprobe_event_init(struct perf_event *event) 9462 { 9463 int err; 9464 unsigned long ref_ctr_offset; 9465 bool is_retprobe; 9466 9467 if (event->attr.type != perf_uprobe.type) 9468 return -ENOENT; 9469 9470 if (!perfmon_capable()) 9471 return -EACCES; 9472 9473 /* 9474 * no branch sampling for probe events 9475 */ 9476 if (has_branch_stack(event)) 9477 return -EOPNOTSUPP; 9478 9479 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9480 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9481 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9482 if (err) 9483 return err; 9484 9485 event->destroy = perf_uprobe_destroy; 9486 9487 return 0; 9488 } 9489 #endif /* CONFIG_UPROBE_EVENTS */ 9490 9491 static inline void perf_tp_register(void) 9492 { 9493 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9494 #ifdef CONFIG_KPROBE_EVENTS 9495 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9496 #endif 9497 #ifdef CONFIG_UPROBE_EVENTS 9498 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9499 #endif 9500 } 9501 9502 static void perf_event_free_filter(struct perf_event *event) 9503 { 9504 ftrace_profile_free_filter(event); 9505 } 9506 9507 #ifdef CONFIG_BPF_SYSCALL 9508 static void bpf_overflow_handler(struct perf_event *event, 9509 struct perf_sample_data *data, 9510 struct pt_regs *regs) 9511 { 9512 struct bpf_perf_event_data_kern ctx = { 9513 .data = data, 9514 .event = event, 9515 }; 9516 int ret = 0; 9517 9518 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9519 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9520 goto out; 9521 rcu_read_lock(); 9522 ret = BPF_PROG_RUN(event->prog, &ctx); 9523 rcu_read_unlock(); 9524 out: 9525 __this_cpu_dec(bpf_prog_active); 9526 if (!ret) 9527 return; 9528 9529 event->orig_overflow_handler(event, data, regs); 9530 } 9531 9532 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9533 { 9534 struct bpf_prog *prog; 9535 9536 if (event->overflow_handler_context) 9537 /* hw breakpoint or kernel counter */ 9538 return -EINVAL; 9539 9540 if (event->prog) 9541 return -EEXIST; 9542 9543 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9544 if (IS_ERR(prog)) 9545 return PTR_ERR(prog); 9546 9547 event->prog = prog; 9548 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9549 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9550 return 0; 9551 } 9552 9553 static void perf_event_free_bpf_handler(struct perf_event *event) 9554 { 9555 struct bpf_prog *prog = event->prog; 9556 9557 if (!prog) 9558 return; 9559 9560 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9561 event->prog = NULL; 9562 bpf_prog_put(prog); 9563 } 9564 #else 9565 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9566 { 9567 return -EOPNOTSUPP; 9568 } 9569 static void perf_event_free_bpf_handler(struct perf_event *event) 9570 { 9571 } 9572 #endif 9573 9574 /* 9575 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9576 * with perf_event_open() 9577 */ 9578 static inline bool perf_event_is_tracing(struct perf_event *event) 9579 { 9580 if (event->pmu == &perf_tracepoint) 9581 return true; 9582 #ifdef CONFIG_KPROBE_EVENTS 9583 if (event->pmu == &perf_kprobe) 9584 return true; 9585 #endif 9586 #ifdef CONFIG_UPROBE_EVENTS 9587 if (event->pmu == &perf_uprobe) 9588 return true; 9589 #endif 9590 return false; 9591 } 9592 9593 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9594 { 9595 bool is_kprobe, is_tracepoint, is_syscall_tp; 9596 struct bpf_prog *prog; 9597 int ret; 9598 9599 if (!perf_event_is_tracing(event)) 9600 return perf_event_set_bpf_handler(event, prog_fd); 9601 9602 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9603 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9604 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9605 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9606 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9607 return -EINVAL; 9608 9609 prog = bpf_prog_get(prog_fd); 9610 if (IS_ERR(prog)) 9611 return PTR_ERR(prog); 9612 9613 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9614 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9615 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9616 /* valid fd, but invalid bpf program type */ 9617 bpf_prog_put(prog); 9618 return -EINVAL; 9619 } 9620 9621 /* Kprobe override only works for kprobes, not uprobes. */ 9622 if (prog->kprobe_override && 9623 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9624 bpf_prog_put(prog); 9625 return -EINVAL; 9626 } 9627 9628 if (is_tracepoint || is_syscall_tp) { 9629 int off = trace_event_get_offsets(event->tp_event); 9630 9631 if (prog->aux->max_ctx_offset > off) { 9632 bpf_prog_put(prog); 9633 return -EACCES; 9634 } 9635 } 9636 9637 ret = perf_event_attach_bpf_prog(event, prog); 9638 if (ret) 9639 bpf_prog_put(prog); 9640 return ret; 9641 } 9642 9643 static void perf_event_free_bpf_prog(struct perf_event *event) 9644 { 9645 if (!perf_event_is_tracing(event)) { 9646 perf_event_free_bpf_handler(event); 9647 return; 9648 } 9649 perf_event_detach_bpf_prog(event); 9650 } 9651 9652 #else 9653 9654 static inline void perf_tp_register(void) 9655 { 9656 } 9657 9658 static void perf_event_free_filter(struct perf_event *event) 9659 { 9660 } 9661 9662 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9663 { 9664 return -ENOENT; 9665 } 9666 9667 static void perf_event_free_bpf_prog(struct perf_event *event) 9668 { 9669 } 9670 #endif /* CONFIG_EVENT_TRACING */ 9671 9672 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9673 void perf_bp_event(struct perf_event *bp, void *data) 9674 { 9675 struct perf_sample_data sample; 9676 struct pt_regs *regs = data; 9677 9678 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9679 9680 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9681 perf_swevent_event(bp, 1, &sample, regs); 9682 } 9683 #endif 9684 9685 /* 9686 * Allocate a new address filter 9687 */ 9688 static struct perf_addr_filter * 9689 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9690 { 9691 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9692 struct perf_addr_filter *filter; 9693 9694 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9695 if (!filter) 9696 return NULL; 9697 9698 INIT_LIST_HEAD(&filter->entry); 9699 list_add_tail(&filter->entry, filters); 9700 9701 return filter; 9702 } 9703 9704 static void free_filters_list(struct list_head *filters) 9705 { 9706 struct perf_addr_filter *filter, *iter; 9707 9708 list_for_each_entry_safe(filter, iter, filters, entry) { 9709 path_put(&filter->path); 9710 list_del(&filter->entry); 9711 kfree(filter); 9712 } 9713 } 9714 9715 /* 9716 * Free existing address filters and optionally install new ones 9717 */ 9718 static void perf_addr_filters_splice(struct perf_event *event, 9719 struct list_head *head) 9720 { 9721 unsigned long flags; 9722 LIST_HEAD(list); 9723 9724 if (!has_addr_filter(event)) 9725 return; 9726 9727 /* don't bother with children, they don't have their own filters */ 9728 if (event->parent) 9729 return; 9730 9731 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9732 9733 list_splice_init(&event->addr_filters.list, &list); 9734 if (head) 9735 list_splice(head, &event->addr_filters.list); 9736 9737 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9738 9739 free_filters_list(&list); 9740 } 9741 9742 /* 9743 * Scan through mm's vmas and see if one of them matches the 9744 * @filter; if so, adjust filter's address range. 9745 * Called with mm::mmap_lock down for reading. 9746 */ 9747 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9748 struct mm_struct *mm, 9749 struct perf_addr_filter_range *fr) 9750 { 9751 struct vm_area_struct *vma; 9752 9753 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9754 if (!vma->vm_file) 9755 continue; 9756 9757 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9758 return; 9759 } 9760 } 9761 9762 /* 9763 * Update event's address range filters based on the 9764 * task's existing mappings, if any. 9765 */ 9766 static void perf_event_addr_filters_apply(struct perf_event *event) 9767 { 9768 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9769 struct task_struct *task = READ_ONCE(event->ctx->task); 9770 struct perf_addr_filter *filter; 9771 struct mm_struct *mm = NULL; 9772 unsigned int count = 0; 9773 unsigned long flags; 9774 9775 /* 9776 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9777 * will stop on the parent's child_mutex that our caller is also holding 9778 */ 9779 if (task == TASK_TOMBSTONE) 9780 return; 9781 9782 if (ifh->nr_file_filters) { 9783 mm = get_task_mm(event->ctx->task); 9784 if (!mm) 9785 goto restart; 9786 9787 mmap_read_lock(mm); 9788 } 9789 9790 raw_spin_lock_irqsave(&ifh->lock, flags); 9791 list_for_each_entry(filter, &ifh->list, entry) { 9792 if (filter->path.dentry) { 9793 /* 9794 * Adjust base offset if the filter is associated to a 9795 * binary that needs to be mapped: 9796 */ 9797 event->addr_filter_ranges[count].start = 0; 9798 event->addr_filter_ranges[count].size = 0; 9799 9800 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9801 } else { 9802 event->addr_filter_ranges[count].start = filter->offset; 9803 event->addr_filter_ranges[count].size = filter->size; 9804 } 9805 9806 count++; 9807 } 9808 9809 event->addr_filters_gen++; 9810 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9811 9812 if (ifh->nr_file_filters) { 9813 mmap_read_unlock(mm); 9814 9815 mmput(mm); 9816 } 9817 9818 restart: 9819 perf_event_stop(event, 1); 9820 } 9821 9822 /* 9823 * Address range filtering: limiting the data to certain 9824 * instruction address ranges. Filters are ioctl()ed to us from 9825 * userspace as ascii strings. 9826 * 9827 * Filter string format: 9828 * 9829 * ACTION RANGE_SPEC 9830 * where ACTION is one of the 9831 * * "filter": limit the trace to this region 9832 * * "start": start tracing from this address 9833 * * "stop": stop tracing at this address/region; 9834 * RANGE_SPEC is 9835 * * for kernel addresses: <start address>[/<size>] 9836 * * for object files: <start address>[/<size>]@</path/to/object/file> 9837 * 9838 * if <size> is not specified or is zero, the range is treated as a single 9839 * address; not valid for ACTION=="filter". 9840 */ 9841 enum { 9842 IF_ACT_NONE = -1, 9843 IF_ACT_FILTER, 9844 IF_ACT_START, 9845 IF_ACT_STOP, 9846 IF_SRC_FILE, 9847 IF_SRC_KERNEL, 9848 IF_SRC_FILEADDR, 9849 IF_SRC_KERNELADDR, 9850 }; 9851 9852 enum { 9853 IF_STATE_ACTION = 0, 9854 IF_STATE_SOURCE, 9855 IF_STATE_END, 9856 }; 9857 9858 static const match_table_t if_tokens = { 9859 { IF_ACT_FILTER, "filter" }, 9860 { IF_ACT_START, "start" }, 9861 { IF_ACT_STOP, "stop" }, 9862 { IF_SRC_FILE, "%u/%u@%s" }, 9863 { IF_SRC_KERNEL, "%u/%u" }, 9864 { IF_SRC_FILEADDR, "%u@%s" }, 9865 { IF_SRC_KERNELADDR, "%u" }, 9866 { IF_ACT_NONE, NULL }, 9867 }; 9868 9869 /* 9870 * Address filter string parser 9871 */ 9872 static int 9873 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9874 struct list_head *filters) 9875 { 9876 struct perf_addr_filter *filter = NULL; 9877 char *start, *orig, *filename = NULL; 9878 substring_t args[MAX_OPT_ARGS]; 9879 int state = IF_STATE_ACTION, token; 9880 unsigned int kernel = 0; 9881 int ret = -EINVAL; 9882 9883 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9884 if (!fstr) 9885 return -ENOMEM; 9886 9887 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9888 static const enum perf_addr_filter_action_t actions[] = { 9889 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9890 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9891 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9892 }; 9893 ret = -EINVAL; 9894 9895 if (!*start) 9896 continue; 9897 9898 /* filter definition begins */ 9899 if (state == IF_STATE_ACTION) { 9900 filter = perf_addr_filter_new(event, filters); 9901 if (!filter) 9902 goto fail; 9903 } 9904 9905 token = match_token(start, if_tokens, args); 9906 switch (token) { 9907 case IF_ACT_FILTER: 9908 case IF_ACT_START: 9909 case IF_ACT_STOP: 9910 if (state != IF_STATE_ACTION) 9911 goto fail; 9912 9913 filter->action = actions[token]; 9914 state = IF_STATE_SOURCE; 9915 break; 9916 9917 case IF_SRC_KERNELADDR: 9918 case IF_SRC_KERNEL: 9919 kernel = 1; 9920 /* fall through */ 9921 9922 case IF_SRC_FILEADDR: 9923 case IF_SRC_FILE: 9924 if (state != IF_STATE_SOURCE) 9925 goto fail; 9926 9927 *args[0].to = 0; 9928 ret = kstrtoul(args[0].from, 0, &filter->offset); 9929 if (ret) 9930 goto fail; 9931 9932 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9933 *args[1].to = 0; 9934 ret = kstrtoul(args[1].from, 0, &filter->size); 9935 if (ret) 9936 goto fail; 9937 } 9938 9939 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9940 int fpos = token == IF_SRC_FILE ? 2 : 1; 9941 9942 filename = match_strdup(&args[fpos]); 9943 if (!filename) { 9944 ret = -ENOMEM; 9945 goto fail; 9946 } 9947 } 9948 9949 state = IF_STATE_END; 9950 break; 9951 9952 default: 9953 goto fail; 9954 } 9955 9956 /* 9957 * Filter definition is fully parsed, validate and install it. 9958 * Make sure that it doesn't contradict itself or the event's 9959 * attribute. 9960 */ 9961 if (state == IF_STATE_END) { 9962 ret = -EINVAL; 9963 if (kernel && event->attr.exclude_kernel) 9964 goto fail; 9965 9966 /* 9967 * ACTION "filter" must have a non-zero length region 9968 * specified. 9969 */ 9970 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9971 !filter->size) 9972 goto fail; 9973 9974 if (!kernel) { 9975 if (!filename) 9976 goto fail; 9977 9978 /* 9979 * For now, we only support file-based filters 9980 * in per-task events; doing so for CPU-wide 9981 * events requires additional context switching 9982 * trickery, since same object code will be 9983 * mapped at different virtual addresses in 9984 * different processes. 9985 */ 9986 ret = -EOPNOTSUPP; 9987 if (!event->ctx->task) 9988 goto fail_free_name; 9989 9990 /* look up the path and grab its inode */ 9991 ret = kern_path(filename, LOOKUP_FOLLOW, 9992 &filter->path); 9993 if (ret) 9994 goto fail_free_name; 9995 9996 kfree(filename); 9997 filename = NULL; 9998 9999 ret = -EINVAL; 10000 if (!filter->path.dentry || 10001 !S_ISREG(d_inode(filter->path.dentry) 10002 ->i_mode)) 10003 goto fail; 10004 10005 event->addr_filters.nr_file_filters++; 10006 } 10007 10008 /* ready to consume more filters */ 10009 state = IF_STATE_ACTION; 10010 filter = NULL; 10011 } 10012 } 10013 10014 if (state != IF_STATE_ACTION) 10015 goto fail; 10016 10017 kfree(orig); 10018 10019 return 0; 10020 10021 fail_free_name: 10022 kfree(filename); 10023 fail: 10024 free_filters_list(filters); 10025 kfree(orig); 10026 10027 return ret; 10028 } 10029 10030 static int 10031 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10032 { 10033 LIST_HEAD(filters); 10034 int ret; 10035 10036 /* 10037 * Since this is called in perf_ioctl() path, we're already holding 10038 * ctx::mutex. 10039 */ 10040 lockdep_assert_held(&event->ctx->mutex); 10041 10042 if (WARN_ON_ONCE(event->parent)) 10043 return -EINVAL; 10044 10045 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10046 if (ret) 10047 goto fail_clear_files; 10048 10049 ret = event->pmu->addr_filters_validate(&filters); 10050 if (ret) 10051 goto fail_free_filters; 10052 10053 /* remove existing filters, if any */ 10054 perf_addr_filters_splice(event, &filters); 10055 10056 /* install new filters */ 10057 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10058 10059 return ret; 10060 10061 fail_free_filters: 10062 free_filters_list(&filters); 10063 10064 fail_clear_files: 10065 event->addr_filters.nr_file_filters = 0; 10066 10067 return ret; 10068 } 10069 10070 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10071 { 10072 int ret = -EINVAL; 10073 char *filter_str; 10074 10075 filter_str = strndup_user(arg, PAGE_SIZE); 10076 if (IS_ERR(filter_str)) 10077 return PTR_ERR(filter_str); 10078 10079 #ifdef CONFIG_EVENT_TRACING 10080 if (perf_event_is_tracing(event)) { 10081 struct perf_event_context *ctx = event->ctx; 10082 10083 /* 10084 * Beware, here be dragons!! 10085 * 10086 * the tracepoint muck will deadlock against ctx->mutex, but 10087 * the tracepoint stuff does not actually need it. So 10088 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10089 * already have a reference on ctx. 10090 * 10091 * This can result in event getting moved to a different ctx, 10092 * but that does not affect the tracepoint state. 10093 */ 10094 mutex_unlock(&ctx->mutex); 10095 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10096 mutex_lock(&ctx->mutex); 10097 } else 10098 #endif 10099 if (has_addr_filter(event)) 10100 ret = perf_event_set_addr_filter(event, filter_str); 10101 10102 kfree(filter_str); 10103 return ret; 10104 } 10105 10106 /* 10107 * hrtimer based swevent callback 10108 */ 10109 10110 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10111 { 10112 enum hrtimer_restart ret = HRTIMER_RESTART; 10113 struct perf_sample_data data; 10114 struct pt_regs *regs; 10115 struct perf_event *event; 10116 u64 period; 10117 10118 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10119 10120 if (event->state != PERF_EVENT_STATE_ACTIVE) 10121 return HRTIMER_NORESTART; 10122 10123 event->pmu->read(event); 10124 10125 perf_sample_data_init(&data, 0, event->hw.last_period); 10126 regs = get_irq_regs(); 10127 10128 if (regs && !perf_exclude_event(event, regs)) { 10129 if (!(event->attr.exclude_idle && is_idle_task(current))) 10130 if (__perf_event_overflow(event, 1, &data, regs)) 10131 ret = HRTIMER_NORESTART; 10132 } 10133 10134 period = max_t(u64, 10000, event->hw.sample_period); 10135 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10136 10137 return ret; 10138 } 10139 10140 static void perf_swevent_start_hrtimer(struct perf_event *event) 10141 { 10142 struct hw_perf_event *hwc = &event->hw; 10143 s64 period; 10144 10145 if (!is_sampling_event(event)) 10146 return; 10147 10148 period = local64_read(&hwc->period_left); 10149 if (period) { 10150 if (period < 0) 10151 period = 10000; 10152 10153 local64_set(&hwc->period_left, 0); 10154 } else { 10155 period = max_t(u64, 10000, hwc->sample_period); 10156 } 10157 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10158 HRTIMER_MODE_REL_PINNED_HARD); 10159 } 10160 10161 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10162 { 10163 struct hw_perf_event *hwc = &event->hw; 10164 10165 if (is_sampling_event(event)) { 10166 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10167 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10168 10169 hrtimer_cancel(&hwc->hrtimer); 10170 } 10171 } 10172 10173 static void perf_swevent_init_hrtimer(struct perf_event *event) 10174 { 10175 struct hw_perf_event *hwc = &event->hw; 10176 10177 if (!is_sampling_event(event)) 10178 return; 10179 10180 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10181 hwc->hrtimer.function = perf_swevent_hrtimer; 10182 10183 /* 10184 * Since hrtimers have a fixed rate, we can do a static freq->period 10185 * mapping and avoid the whole period adjust feedback stuff. 10186 */ 10187 if (event->attr.freq) { 10188 long freq = event->attr.sample_freq; 10189 10190 event->attr.sample_period = NSEC_PER_SEC / freq; 10191 hwc->sample_period = event->attr.sample_period; 10192 local64_set(&hwc->period_left, hwc->sample_period); 10193 hwc->last_period = hwc->sample_period; 10194 event->attr.freq = 0; 10195 } 10196 } 10197 10198 /* 10199 * Software event: cpu wall time clock 10200 */ 10201 10202 static void cpu_clock_event_update(struct perf_event *event) 10203 { 10204 s64 prev; 10205 u64 now; 10206 10207 now = local_clock(); 10208 prev = local64_xchg(&event->hw.prev_count, now); 10209 local64_add(now - prev, &event->count); 10210 } 10211 10212 static void cpu_clock_event_start(struct perf_event *event, int flags) 10213 { 10214 local64_set(&event->hw.prev_count, local_clock()); 10215 perf_swevent_start_hrtimer(event); 10216 } 10217 10218 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10219 { 10220 perf_swevent_cancel_hrtimer(event); 10221 cpu_clock_event_update(event); 10222 } 10223 10224 static int cpu_clock_event_add(struct perf_event *event, int flags) 10225 { 10226 if (flags & PERF_EF_START) 10227 cpu_clock_event_start(event, flags); 10228 perf_event_update_userpage(event); 10229 10230 return 0; 10231 } 10232 10233 static void cpu_clock_event_del(struct perf_event *event, int flags) 10234 { 10235 cpu_clock_event_stop(event, flags); 10236 } 10237 10238 static void cpu_clock_event_read(struct perf_event *event) 10239 { 10240 cpu_clock_event_update(event); 10241 } 10242 10243 static int cpu_clock_event_init(struct perf_event *event) 10244 { 10245 if (event->attr.type != PERF_TYPE_SOFTWARE) 10246 return -ENOENT; 10247 10248 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10249 return -ENOENT; 10250 10251 /* 10252 * no branch sampling for software events 10253 */ 10254 if (has_branch_stack(event)) 10255 return -EOPNOTSUPP; 10256 10257 perf_swevent_init_hrtimer(event); 10258 10259 return 0; 10260 } 10261 10262 static struct pmu perf_cpu_clock = { 10263 .task_ctx_nr = perf_sw_context, 10264 10265 .capabilities = PERF_PMU_CAP_NO_NMI, 10266 10267 .event_init = cpu_clock_event_init, 10268 .add = cpu_clock_event_add, 10269 .del = cpu_clock_event_del, 10270 .start = cpu_clock_event_start, 10271 .stop = cpu_clock_event_stop, 10272 .read = cpu_clock_event_read, 10273 }; 10274 10275 /* 10276 * Software event: task time clock 10277 */ 10278 10279 static void task_clock_event_update(struct perf_event *event, u64 now) 10280 { 10281 u64 prev; 10282 s64 delta; 10283 10284 prev = local64_xchg(&event->hw.prev_count, now); 10285 delta = now - prev; 10286 local64_add(delta, &event->count); 10287 } 10288 10289 static void task_clock_event_start(struct perf_event *event, int flags) 10290 { 10291 local64_set(&event->hw.prev_count, event->ctx->time); 10292 perf_swevent_start_hrtimer(event); 10293 } 10294 10295 static void task_clock_event_stop(struct perf_event *event, int flags) 10296 { 10297 perf_swevent_cancel_hrtimer(event); 10298 task_clock_event_update(event, event->ctx->time); 10299 } 10300 10301 static int task_clock_event_add(struct perf_event *event, int flags) 10302 { 10303 if (flags & PERF_EF_START) 10304 task_clock_event_start(event, flags); 10305 perf_event_update_userpage(event); 10306 10307 return 0; 10308 } 10309 10310 static void task_clock_event_del(struct perf_event *event, int flags) 10311 { 10312 task_clock_event_stop(event, PERF_EF_UPDATE); 10313 } 10314 10315 static void task_clock_event_read(struct perf_event *event) 10316 { 10317 u64 now = perf_clock(); 10318 u64 delta = now - event->ctx->timestamp; 10319 u64 time = event->ctx->time + delta; 10320 10321 task_clock_event_update(event, time); 10322 } 10323 10324 static int task_clock_event_init(struct perf_event *event) 10325 { 10326 if (event->attr.type != PERF_TYPE_SOFTWARE) 10327 return -ENOENT; 10328 10329 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10330 return -ENOENT; 10331 10332 /* 10333 * no branch sampling for software events 10334 */ 10335 if (has_branch_stack(event)) 10336 return -EOPNOTSUPP; 10337 10338 perf_swevent_init_hrtimer(event); 10339 10340 return 0; 10341 } 10342 10343 static struct pmu perf_task_clock = { 10344 .task_ctx_nr = perf_sw_context, 10345 10346 .capabilities = PERF_PMU_CAP_NO_NMI, 10347 10348 .event_init = task_clock_event_init, 10349 .add = task_clock_event_add, 10350 .del = task_clock_event_del, 10351 .start = task_clock_event_start, 10352 .stop = task_clock_event_stop, 10353 .read = task_clock_event_read, 10354 }; 10355 10356 static void perf_pmu_nop_void(struct pmu *pmu) 10357 { 10358 } 10359 10360 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10361 { 10362 } 10363 10364 static int perf_pmu_nop_int(struct pmu *pmu) 10365 { 10366 return 0; 10367 } 10368 10369 static int perf_event_nop_int(struct perf_event *event, u64 value) 10370 { 10371 return 0; 10372 } 10373 10374 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10375 10376 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10377 { 10378 __this_cpu_write(nop_txn_flags, flags); 10379 10380 if (flags & ~PERF_PMU_TXN_ADD) 10381 return; 10382 10383 perf_pmu_disable(pmu); 10384 } 10385 10386 static int perf_pmu_commit_txn(struct pmu *pmu) 10387 { 10388 unsigned int flags = __this_cpu_read(nop_txn_flags); 10389 10390 __this_cpu_write(nop_txn_flags, 0); 10391 10392 if (flags & ~PERF_PMU_TXN_ADD) 10393 return 0; 10394 10395 perf_pmu_enable(pmu); 10396 return 0; 10397 } 10398 10399 static void perf_pmu_cancel_txn(struct pmu *pmu) 10400 { 10401 unsigned int flags = __this_cpu_read(nop_txn_flags); 10402 10403 __this_cpu_write(nop_txn_flags, 0); 10404 10405 if (flags & ~PERF_PMU_TXN_ADD) 10406 return; 10407 10408 perf_pmu_enable(pmu); 10409 } 10410 10411 static int perf_event_idx_default(struct perf_event *event) 10412 { 10413 return 0; 10414 } 10415 10416 /* 10417 * Ensures all contexts with the same task_ctx_nr have the same 10418 * pmu_cpu_context too. 10419 */ 10420 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10421 { 10422 struct pmu *pmu; 10423 10424 if (ctxn < 0) 10425 return NULL; 10426 10427 list_for_each_entry(pmu, &pmus, entry) { 10428 if (pmu->task_ctx_nr == ctxn) 10429 return pmu->pmu_cpu_context; 10430 } 10431 10432 return NULL; 10433 } 10434 10435 static void free_pmu_context(struct pmu *pmu) 10436 { 10437 /* 10438 * Static contexts such as perf_sw_context have a global lifetime 10439 * and may be shared between different PMUs. Avoid freeing them 10440 * when a single PMU is going away. 10441 */ 10442 if (pmu->task_ctx_nr > perf_invalid_context) 10443 return; 10444 10445 free_percpu(pmu->pmu_cpu_context); 10446 } 10447 10448 /* 10449 * Let userspace know that this PMU supports address range filtering: 10450 */ 10451 static ssize_t nr_addr_filters_show(struct device *dev, 10452 struct device_attribute *attr, 10453 char *page) 10454 { 10455 struct pmu *pmu = dev_get_drvdata(dev); 10456 10457 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10458 } 10459 DEVICE_ATTR_RO(nr_addr_filters); 10460 10461 static struct idr pmu_idr; 10462 10463 static ssize_t 10464 type_show(struct device *dev, struct device_attribute *attr, char *page) 10465 { 10466 struct pmu *pmu = dev_get_drvdata(dev); 10467 10468 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10469 } 10470 static DEVICE_ATTR_RO(type); 10471 10472 static ssize_t 10473 perf_event_mux_interval_ms_show(struct device *dev, 10474 struct device_attribute *attr, 10475 char *page) 10476 { 10477 struct pmu *pmu = dev_get_drvdata(dev); 10478 10479 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10480 } 10481 10482 static DEFINE_MUTEX(mux_interval_mutex); 10483 10484 static ssize_t 10485 perf_event_mux_interval_ms_store(struct device *dev, 10486 struct device_attribute *attr, 10487 const char *buf, size_t count) 10488 { 10489 struct pmu *pmu = dev_get_drvdata(dev); 10490 int timer, cpu, ret; 10491 10492 ret = kstrtoint(buf, 0, &timer); 10493 if (ret) 10494 return ret; 10495 10496 if (timer < 1) 10497 return -EINVAL; 10498 10499 /* same value, noting to do */ 10500 if (timer == pmu->hrtimer_interval_ms) 10501 return count; 10502 10503 mutex_lock(&mux_interval_mutex); 10504 pmu->hrtimer_interval_ms = timer; 10505 10506 /* update all cpuctx for this PMU */ 10507 cpus_read_lock(); 10508 for_each_online_cpu(cpu) { 10509 struct perf_cpu_context *cpuctx; 10510 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10511 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10512 10513 cpu_function_call(cpu, 10514 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10515 } 10516 cpus_read_unlock(); 10517 mutex_unlock(&mux_interval_mutex); 10518 10519 return count; 10520 } 10521 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10522 10523 static struct attribute *pmu_dev_attrs[] = { 10524 &dev_attr_type.attr, 10525 &dev_attr_perf_event_mux_interval_ms.attr, 10526 NULL, 10527 }; 10528 ATTRIBUTE_GROUPS(pmu_dev); 10529 10530 static int pmu_bus_running; 10531 static struct bus_type pmu_bus = { 10532 .name = "event_source", 10533 .dev_groups = pmu_dev_groups, 10534 }; 10535 10536 static void pmu_dev_release(struct device *dev) 10537 { 10538 kfree(dev); 10539 } 10540 10541 static int pmu_dev_alloc(struct pmu *pmu) 10542 { 10543 int ret = -ENOMEM; 10544 10545 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10546 if (!pmu->dev) 10547 goto out; 10548 10549 pmu->dev->groups = pmu->attr_groups; 10550 device_initialize(pmu->dev); 10551 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10552 if (ret) 10553 goto free_dev; 10554 10555 dev_set_drvdata(pmu->dev, pmu); 10556 pmu->dev->bus = &pmu_bus; 10557 pmu->dev->release = pmu_dev_release; 10558 ret = device_add(pmu->dev); 10559 if (ret) 10560 goto free_dev; 10561 10562 /* For PMUs with address filters, throw in an extra attribute: */ 10563 if (pmu->nr_addr_filters) 10564 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10565 10566 if (ret) 10567 goto del_dev; 10568 10569 if (pmu->attr_update) 10570 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10571 10572 if (ret) 10573 goto del_dev; 10574 10575 out: 10576 return ret; 10577 10578 del_dev: 10579 device_del(pmu->dev); 10580 10581 free_dev: 10582 put_device(pmu->dev); 10583 goto out; 10584 } 10585 10586 static struct lock_class_key cpuctx_mutex; 10587 static struct lock_class_key cpuctx_lock; 10588 10589 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10590 { 10591 int cpu, ret, max = PERF_TYPE_MAX; 10592 10593 mutex_lock(&pmus_lock); 10594 ret = -ENOMEM; 10595 pmu->pmu_disable_count = alloc_percpu(int); 10596 if (!pmu->pmu_disable_count) 10597 goto unlock; 10598 10599 pmu->type = -1; 10600 if (!name) 10601 goto skip_type; 10602 pmu->name = name; 10603 10604 if (type != PERF_TYPE_SOFTWARE) { 10605 if (type >= 0) 10606 max = type; 10607 10608 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10609 if (ret < 0) 10610 goto free_pdc; 10611 10612 WARN_ON(type >= 0 && ret != type); 10613 10614 type = ret; 10615 } 10616 pmu->type = type; 10617 10618 if (pmu_bus_running) { 10619 ret = pmu_dev_alloc(pmu); 10620 if (ret) 10621 goto free_idr; 10622 } 10623 10624 skip_type: 10625 if (pmu->task_ctx_nr == perf_hw_context) { 10626 static int hw_context_taken = 0; 10627 10628 /* 10629 * Other than systems with heterogeneous CPUs, it never makes 10630 * sense for two PMUs to share perf_hw_context. PMUs which are 10631 * uncore must use perf_invalid_context. 10632 */ 10633 if (WARN_ON_ONCE(hw_context_taken && 10634 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10635 pmu->task_ctx_nr = perf_invalid_context; 10636 10637 hw_context_taken = 1; 10638 } 10639 10640 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10641 if (pmu->pmu_cpu_context) 10642 goto got_cpu_context; 10643 10644 ret = -ENOMEM; 10645 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10646 if (!pmu->pmu_cpu_context) 10647 goto free_dev; 10648 10649 for_each_possible_cpu(cpu) { 10650 struct perf_cpu_context *cpuctx; 10651 10652 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10653 __perf_event_init_context(&cpuctx->ctx); 10654 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10655 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10656 cpuctx->ctx.pmu = pmu; 10657 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10658 10659 __perf_mux_hrtimer_init(cpuctx, cpu); 10660 10661 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10662 cpuctx->heap = cpuctx->heap_default; 10663 } 10664 10665 got_cpu_context: 10666 if (!pmu->start_txn) { 10667 if (pmu->pmu_enable) { 10668 /* 10669 * If we have pmu_enable/pmu_disable calls, install 10670 * transaction stubs that use that to try and batch 10671 * hardware accesses. 10672 */ 10673 pmu->start_txn = perf_pmu_start_txn; 10674 pmu->commit_txn = perf_pmu_commit_txn; 10675 pmu->cancel_txn = perf_pmu_cancel_txn; 10676 } else { 10677 pmu->start_txn = perf_pmu_nop_txn; 10678 pmu->commit_txn = perf_pmu_nop_int; 10679 pmu->cancel_txn = perf_pmu_nop_void; 10680 } 10681 } 10682 10683 if (!pmu->pmu_enable) { 10684 pmu->pmu_enable = perf_pmu_nop_void; 10685 pmu->pmu_disable = perf_pmu_nop_void; 10686 } 10687 10688 if (!pmu->check_period) 10689 pmu->check_period = perf_event_nop_int; 10690 10691 if (!pmu->event_idx) 10692 pmu->event_idx = perf_event_idx_default; 10693 10694 /* 10695 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10696 * since these cannot be in the IDR. This way the linear search 10697 * is fast, provided a valid software event is provided. 10698 */ 10699 if (type == PERF_TYPE_SOFTWARE || !name) 10700 list_add_rcu(&pmu->entry, &pmus); 10701 else 10702 list_add_tail_rcu(&pmu->entry, &pmus); 10703 10704 atomic_set(&pmu->exclusive_cnt, 0); 10705 ret = 0; 10706 unlock: 10707 mutex_unlock(&pmus_lock); 10708 10709 return ret; 10710 10711 free_dev: 10712 device_del(pmu->dev); 10713 put_device(pmu->dev); 10714 10715 free_idr: 10716 if (pmu->type != PERF_TYPE_SOFTWARE) 10717 idr_remove(&pmu_idr, pmu->type); 10718 10719 free_pdc: 10720 free_percpu(pmu->pmu_disable_count); 10721 goto unlock; 10722 } 10723 EXPORT_SYMBOL_GPL(perf_pmu_register); 10724 10725 void perf_pmu_unregister(struct pmu *pmu) 10726 { 10727 mutex_lock(&pmus_lock); 10728 list_del_rcu(&pmu->entry); 10729 10730 /* 10731 * We dereference the pmu list under both SRCU and regular RCU, so 10732 * synchronize against both of those. 10733 */ 10734 synchronize_srcu(&pmus_srcu); 10735 synchronize_rcu(); 10736 10737 free_percpu(pmu->pmu_disable_count); 10738 if (pmu->type != PERF_TYPE_SOFTWARE) 10739 idr_remove(&pmu_idr, pmu->type); 10740 if (pmu_bus_running) { 10741 if (pmu->nr_addr_filters) 10742 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10743 device_del(pmu->dev); 10744 put_device(pmu->dev); 10745 } 10746 free_pmu_context(pmu); 10747 mutex_unlock(&pmus_lock); 10748 } 10749 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10750 10751 static inline bool has_extended_regs(struct perf_event *event) 10752 { 10753 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10754 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10755 } 10756 10757 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10758 { 10759 struct perf_event_context *ctx = NULL; 10760 int ret; 10761 10762 if (!try_module_get(pmu->module)) 10763 return -ENODEV; 10764 10765 /* 10766 * A number of pmu->event_init() methods iterate the sibling_list to, 10767 * for example, validate if the group fits on the PMU. Therefore, 10768 * if this is a sibling event, acquire the ctx->mutex to protect 10769 * the sibling_list. 10770 */ 10771 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10772 /* 10773 * This ctx->mutex can nest when we're called through 10774 * inheritance. See the perf_event_ctx_lock_nested() comment. 10775 */ 10776 ctx = perf_event_ctx_lock_nested(event->group_leader, 10777 SINGLE_DEPTH_NESTING); 10778 BUG_ON(!ctx); 10779 } 10780 10781 event->pmu = pmu; 10782 ret = pmu->event_init(event); 10783 10784 if (ctx) 10785 perf_event_ctx_unlock(event->group_leader, ctx); 10786 10787 if (!ret) { 10788 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10789 has_extended_regs(event)) 10790 ret = -EOPNOTSUPP; 10791 10792 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10793 event_has_any_exclude_flag(event)) 10794 ret = -EINVAL; 10795 10796 if (ret && event->destroy) 10797 event->destroy(event); 10798 } 10799 10800 if (ret) 10801 module_put(pmu->module); 10802 10803 return ret; 10804 } 10805 10806 static struct pmu *perf_init_event(struct perf_event *event) 10807 { 10808 int idx, type, ret; 10809 struct pmu *pmu; 10810 10811 idx = srcu_read_lock(&pmus_srcu); 10812 10813 /* Try parent's PMU first: */ 10814 if (event->parent && event->parent->pmu) { 10815 pmu = event->parent->pmu; 10816 ret = perf_try_init_event(pmu, event); 10817 if (!ret) 10818 goto unlock; 10819 } 10820 10821 /* 10822 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10823 * are often aliases for PERF_TYPE_RAW. 10824 */ 10825 type = event->attr.type; 10826 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10827 type = PERF_TYPE_RAW; 10828 10829 again: 10830 rcu_read_lock(); 10831 pmu = idr_find(&pmu_idr, type); 10832 rcu_read_unlock(); 10833 if (pmu) { 10834 ret = perf_try_init_event(pmu, event); 10835 if (ret == -ENOENT && event->attr.type != type) { 10836 type = event->attr.type; 10837 goto again; 10838 } 10839 10840 if (ret) 10841 pmu = ERR_PTR(ret); 10842 10843 goto unlock; 10844 } 10845 10846 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10847 ret = perf_try_init_event(pmu, event); 10848 if (!ret) 10849 goto unlock; 10850 10851 if (ret != -ENOENT) { 10852 pmu = ERR_PTR(ret); 10853 goto unlock; 10854 } 10855 } 10856 pmu = ERR_PTR(-ENOENT); 10857 unlock: 10858 srcu_read_unlock(&pmus_srcu, idx); 10859 10860 return pmu; 10861 } 10862 10863 static void attach_sb_event(struct perf_event *event) 10864 { 10865 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10866 10867 raw_spin_lock(&pel->lock); 10868 list_add_rcu(&event->sb_list, &pel->list); 10869 raw_spin_unlock(&pel->lock); 10870 } 10871 10872 /* 10873 * We keep a list of all !task (and therefore per-cpu) events 10874 * that need to receive side-band records. 10875 * 10876 * This avoids having to scan all the various PMU per-cpu contexts 10877 * looking for them. 10878 */ 10879 static void account_pmu_sb_event(struct perf_event *event) 10880 { 10881 if (is_sb_event(event)) 10882 attach_sb_event(event); 10883 } 10884 10885 static void account_event_cpu(struct perf_event *event, int cpu) 10886 { 10887 if (event->parent) 10888 return; 10889 10890 if (is_cgroup_event(event)) 10891 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10892 } 10893 10894 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10895 static void account_freq_event_nohz(void) 10896 { 10897 #ifdef CONFIG_NO_HZ_FULL 10898 /* Lock so we don't race with concurrent unaccount */ 10899 spin_lock(&nr_freq_lock); 10900 if (atomic_inc_return(&nr_freq_events) == 1) 10901 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10902 spin_unlock(&nr_freq_lock); 10903 #endif 10904 } 10905 10906 static void account_freq_event(void) 10907 { 10908 if (tick_nohz_full_enabled()) 10909 account_freq_event_nohz(); 10910 else 10911 atomic_inc(&nr_freq_events); 10912 } 10913 10914 10915 static void account_event(struct perf_event *event) 10916 { 10917 bool inc = false; 10918 10919 if (event->parent) 10920 return; 10921 10922 if (event->attach_state & PERF_ATTACH_TASK) 10923 inc = true; 10924 if (event->attr.mmap || event->attr.mmap_data) 10925 atomic_inc(&nr_mmap_events); 10926 if (event->attr.comm) 10927 atomic_inc(&nr_comm_events); 10928 if (event->attr.namespaces) 10929 atomic_inc(&nr_namespaces_events); 10930 if (event->attr.cgroup) 10931 atomic_inc(&nr_cgroup_events); 10932 if (event->attr.task) 10933 atomic_inc(&nr_task_events); 10934 if (event->attr.freq) 10935 account_freq_event(); 10936 if (event->attr.context_switch) { 10937 atomic_inc(&nr_switch_events); 10938 inc = true; 10939 } 10940 if (has_branch_stack(event)) 10941 inc = true; 10942 if (is_cgroup_event(event)) 10943 inc = true; 10944 if (event->attr.ksymbol) 10945 atomic_inc(&nr_ksymbol_events); 10946 if (event->attr.bpf_event) 10947 atomic_inc(&nr_bpf_events); 10948 10949 if (inc) { 10950 /* 10951 * We need the mutex here because static_branch_enable() 10952 * must complete *before* the perf_sched_count increment 10953 * becomes visible. 10954 */ 10955 if (atomic_inc_not_zero(&perf_sched_count)) 10956 goto enabled; 10957 10958 mutex_lock(&perf_sched_mutex); 10959 if (!atomic_read(&perf_sched_count)) { 10960 static_branch_enable(&perf_sched_events); 10961 /* 10962 * Guarantee that all CPUs observe they key change and 10963 * call the perf scheduling hooks before proceeding to 10964 * install events that need them. 10965 */ 10966 synchronize_rcu(); 10967 } 10968 /* 10969 * Now that we have waited for the sync_sched(), allow further 10970 * increments to by-pass the mutex. 10971 */ 10972 atomic_inc(&perf_sched_count); 10973 mutex_unlock(&perf_sched_mutex); 10974 } 10975 enabled: 10976 10977 account_event_cpu(event, event->cpu); 10978 10979 account_pmu_sb_event(event); 10980 } 10981 10982 /* 10983 * Allocate and initialize an event structure 10984 */ 10985 static struct perf_event * 10986 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10987 struct task_struct *task, 10988 struct perf_event *group_leader, 10989 struct perf_event *parent_event, 10990 perf_overflow_handler_t overflow_handler, 10991 void *context, int cgroup_fd) 10992 { 10993 struct pmu *pmu; 10994 struct perf_event *event; 10995 struct hw_perf_event *hwc; 10996 long err = -EINVAL; 10997 10998 if ((unsigned)cpu >= nr_cpu_ids) { 10999 if (!task || cpu != -1) 11000 return ERR_PTR(-EINVAL); 11001 } 11002 11003 event = kzalloc(sizeof(*event), GFP_KERNEL); 11004 if (!event) 11005 return ERR_PTR(-ENOMEM); 11006 11007 /* 11008 * Single events are their own group leaders, with an 11009 * empty sibling list: 11010 */ 11011 if (!group_leader) 11012 group_leader = event; 11013 11014 mutex_init(&event->child_mutex); 11015 INIT_LIST_HEAD(&event->child_list); 11016 11017 INIT_LIST_HEAD(&event->event_entry); 11018 INIT_LIST_HEAD(&event->sibling_list); 11019 INIT_LIST_HEAD(&event->active_list); 11020 init_event_group(event); 11021 INIT_LIST_HEAD(&event->rb_entry); 11022 INIT_LIST_HEAD(&event->active_entry); 11023 INIT_LIST_HEAD(&event->addr_filters.list); 11024 INIT_HLIST_NODE(&event->hlist_entry); 11025 11026 11027 init_waitqueue_head(&event->waitq); 11028 event->pending_disable = -1; 11029 init_irq_work(&event->pending, perf_pending_event); 11030 11031 mutex_init(&event->mmap_mutex); 11032 raw_spin_lock_init(&event->addr_filters.lock); 11033 11034 atomic_long_set(&event->refcount, 1); 11035 event->cpu = cpu; 11036 event->attr = *attr; 11037 event->group_leader = group_leader; 11038 event->pmu = NULL; 11039 event->oncpu = -1; 11040 11041 event->parent = parent_event; 11042 11043 event->ns = get_pid_ns(task_active_pid_ns(current)); 11044 event->id = atomic64_inc_return(&perf_event_id); 11045 11046 event->state = PERF_EVENT_STATE_INACTIVE; 11047 11048 if (task) { 11049 event->attach_state = PERF_ATTACH_TASK; 11050 /* 11051 * XXX pmu::event_init needs to know what task to account to 11052 * and we cannot use the ctx information because we need the 11053 * pmu before we get a ctx. 11054 */ 11055 event->hw.target = get_task_struct(task); 11056 } 11057 11058 event->clock = &local_clock; 11059 if (parent_event) 11060 event->clock = parent_event->clock; 11061 11062 if (!overflow_handler && parent_event) { 11063 overflow_handler = parent_event->overflow_handler; 11064 context = parent_event->overflow_handler_context; 11065 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11066 if (overflow_handler == bpf_overflow_handler) { 11067 struct bpf_prog *prog = parent_event->prog; 11068 11069 bpf_prog_inc(prog); 11070 event->prog = prog; 11071 event->orig_overflow_handler = 11072 parent_event->orig_overflow_handler; 11073 } 11074 #endif 11075 } 11076 11077 if (overflow_handler) { 11078 event->overflow_handler = overflow_handler; 11079 event->overflow_handler_context = context; 11080 } else if (is_write_backward(event)){ 11081 event->overflow_handler = perf_event_output_backward; 11082 event->overflow_handler_context = NULL; 11083 } else { 11084 event->overflow_handler = perf_event_output_forward; 11085 event->overflow_handler_context = NULL; 11086 } 11087 11088 perf_event__state_init(event); 11089 11090 pmu = NULL; 11091 11092 hwc = &event->hw; 11093 hwc->sample_period = attr->sample_period; 11094 if (attr->freq && attr->sample_freq) 11095 hwc->sample_period = 1; 11096 hwc->last_period = hwc->sample_period; 11097 11098 local64_set(&hwc->period_left, hwc->sample_period); 11099 11100 /* 11101 * We currently do not support PERF_SAMPLE_READ on inherited events. 11102 * See perf_output_read(). 11103 */ 11104 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11105 goto err_ns; 11106 11107 if (!has_branch_stack(event)) 11108 event->attr.branch_sample_type = 0; 11109 11110 pmu = perf_init_event(event); 11111 if (IS_ERR(pmu)) { 11112 err = PTR_ERR(pmu); 11113 goto err_ns; 11114 } 11115 11116 /* 11117 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11118 * be different on other CPUs in the uncore mask. 11119 */ 11120 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11121 err = -EINVAL; 11122 goto err_pmu; 11123 } 11124 11125 if (event->attr.aux_output && 11126 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11127 err = -EOPNOTSUPP; 11128 goto err_pmu; 11129 } 11130 11131 if (cgroup_fd != -1) { 11132 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11133 if (err) 11134 goto err_pmu; 11135 } 11136 11137 err = exclusive_event_init(event); 11138 if (err) 11139 goto err_pmu; 11140 11141 if (has_addr_filter(event)) { 11142 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11143 sizeof(struct perf_addr_filter_range), 11144 GFP_KERNEL); 11145 if (!event->addr_filter_ranges) { 11146 err = -ENOMEM; 11147 goto err_per_task; 11148 } 11149 11150 /* 11151 * Clone the parent's vma offsets: they are valid until exec() 11152 * even if the mm is not shared with the parent. 11153 */ 11154 if (event->parent) { 11155 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11156 11157 raw_spin_lock_irq(&ifh->lock); 11158 memcpy(event->addr_filter_ranges, 11159 event->parent->addr_filter_ranges, 11160 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11161 raw_spin_unlock_irq(&ifh->lock); 11162 } 11163 11164 /* force hw sync on the address filters */ 11165 event->addr_filters_gen = 1; 11166 } 11167 11168 if (!event->parent) { 11169 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11170 err = get_callchain_buffers(attr->sample_max_stack); 11171 if (err) 11172 goto err_addr_filters; 11173 } 11174 } 11175 11176 err = security_perf_event_alloc(event); 11177 if (err) 11178 goto err_callchain_buffer; 11179 11180 /* symmetric to unaccount_event() in _free_event() */ 11181 account_event(event); 11182 11183 return event; 11184 11185 err_callchain_buffer: 11186 if (!event->parent) { 11187 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11188 put_callchain_buffers(); 11189 } 11190 err_addr_filters: 11191 kfree(event->addr_filter_ranges); 11192 11193 err_per_task: 11194 exclusive_event_destroy(event); 11195 11196 err_pmu: 11197 if (is_cgroup_event(event)) 11198 perf_detach_cgroup(event); 11199 if (event->destroy) 11200 event->destroy(event); 11201 module_put(pmu->module); 11202 err_ns: 11203 if (event->ns) 11204 put_pid_ns(event->ns); 11205 if (event->hw.target) 11206 put_task_struct(event->hw.target); 11207 kfree(event); 11208 11209 return ERR_PTR(err); 11210 } 11211 11212 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11213 struct perf_event_attr *attr) 11214 { 11215 u32 size; 11216 int ret; 11217 11218 /* Zero the full structure, so that a short copy will be nice. */ 11219 memset(attr, 0, sizeof(*attr)); 11220 11221 ret = get_user(size, &uattr->size); 11222 if (ret) 11223 return ret; 11224 11225 /* ABI compatibility quirk: */ 11226 if (!size) 11227 size = PERF_ATTR_SIZE_VER0; 11228 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11229 goto err_size; 11230 11231 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11232 if (ret) { 11233 if (ret == -E2BIG) 11234 goto err_size; 11235 return ret; 11236 } 11237 11238 attr->size = size; 11239 11240 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11241 return -EINVAL; 11242 11243 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11244 return -EINVAL; 11245 11246 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11247 return -EINVAL; 11248 11249 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11250 u64 mask = attr->branch_sample_type; 11251 11252 /* only using defined bits */ 11253 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11254 return -EINVAL; 11255 11256 /* at least one branch bit must be set */ 11257 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11258 return -EINVAL; 11259 11260 /* propagate priv level, when not set for branch */ 11261 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11262 11263 /* exclude_kernel checked on syscall entry */ 11264 if (!attr->exclude_kernel) 11265 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11266 11267 if (!attr->exclude_user) 11268 mask |= PERF_SAMPLE_BRANCH_USER; 11269 11270 if (!attr->exclude_hv) 11271 mask |= PERF_SAMPLE_BRANCH_HV; 11272 /* 11273 * adjust user setting (for HW filter setup) 11274 */ 11275 attr->branch_sample_type = mask; 11276 } 11277 /* privileged levels capture (kernel, hv): check permissions */ 11278 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11279 ret = perf_allow_kernel(attr); 11280 if (ret) 11281 return ret; 11282 } 11283 } 11284 11285 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11286 ret = perf_reg_validate(attr->sample_regs_user); 11287 if (ret) 11288 return ret; 11289 } 11290 11291 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11292 if (!arch_perf_have_user_stack_dump()) 11293 return -ENOSYS; 11294 11295 /* 11296 * We have __u32 type for the size, but so far 11297 * we can only use __u16 as maximum due to the 11298 * __u16 sample size limit. 11299 */ 11300 if (attr->sample_stack_user >= USHRT_MAX) 11301 return -EINVAL; 11302 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11303 return -EINVAL; 11304 } 11305 11306 if (!attr->sample_max_stack) 11307 attr->sample_max_stack = sysctl_perf_event_max_stack; 11308 11309 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11310 ret = perf_reg_validate(attr->sample_regs_intr); 11311 11312 #ifndef CONFIG_CGROUP_PERF 11313 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11314 return -EINVAL; 11315 #endif 11316 11317 out: 11318 return ret; 11319 11320 err_size: 11321 put_user(sizeof(*attr), &uattr->size); 11322 ret = -E2BIG; 11323 goto out; 11324 } 11325 11326 static int 11327 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11328 { 11329 struct perf_buffer *rb = NULL; 11330 int ret = -EINVAL; 11331 11332 if (!output_event) 11333 goto set; 11334 11335 /* don't allow circular references */ 11336 if (event == output_event) 11337 goto out; 11338 11339 /* 11340 * Don't allow cross-cpu buffers 11341 */ 11342 if (output_event->cpu != event->cpu) 11343 goto out; 11344 11345 /* 11346 * If its not a per-cpu rb, it must be the same task. 11347 */ 11348 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11349 goto out; 11350 11351 /* 11352 * Mixing clocks in the same buffer is trouble you don't need. 11353 */ 11354 if (output_event->clock != event->clock) 11355 goto out; 11356 11357 /* 11358 * Either writing ring buffer from beginning or from end. 11359 * Mixing is not allowed. 11360 */ 11361 if (is_write_backward(output_event) != is_write_backward(event)) 11362 goto out; 11363 11364 /* 11365 * If both events generate aux data, they must be on the same PMU 11366 */ 11367 if (has_aux(event) && has_aux(output_event) && 11368 event->pmu != output_event->pmu) 11369 goto out; 11370 11371 set: 11372 mutex_lock(&event->mmap_mutex); 11373 /* Can't redirect output if we've got an active mmap() */ 11374 if (atomic_read(&event->mmap_count)) 11375 goto unlock; 11376 11377 if (output_event) { 11378 /* get the rb we want to redirect to */ 11379 rb = ring_buffer_get(output_event); 11380 if (!rb) 11381 goto unlock; 11382 } 11383 11384 ring_buffer_attach(event, rb); 11385 11386 ret = 0; 11387 unlock: 11388 mutex_unlock(&event->mmap_mutex); 11389 11390 out: 11391 return ret; 11392 } 11393 11394 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11395 { 11396 if (b < a) 11397 swap(a, b); 11398 11399 mutex_lock(a); 11400 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11401 } 11402 11403 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11404 { 11405 bool nmi_safe = false; 11406 11407 switch (clk_id) { 11408 case CLOCK_MONOTONIC: 11409 event->clock = &ktime_get_mono_fast_ns; 11410 nmi_safe = true; 11411 break; 11412 11413 case CLOCK_MONOTONIC_RAW: 11414 event->clock = &ktime_get_raw_fast_ns; 11415 nmi_safe = true; 11416 break; 11417 11418 case CLOCK_REALTIME: 11419 event->clock = &ktime_get_real_ns; 11420 break; 11421 11422 case CLOCK_BOOTTIME: 11423 event->clock = &ktime_get_boottime_ns; 11424 break; 11425 11426 case CLOCK_TAI: 11427 event->clock = &ktime_get_clocktai_ns; 11428 break; 11429 11430 default: 11431 return -EINVAL; 11432 } 11433 11434 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11435 return -EINVAL; 11436 11437 return 0; 11438 } 11439 11440 /* 11441 * Variation on perf_event_ctx_lock_nested(), except we take two context 11442 * mutexes. 11443 */ 11444 static struct perf_event_context * 11445 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11446 struct perf_event_context *ctx) 11447 { 11448 struct perf_event_context *gctx; 11449 11450 again: 11451 rcu_read_lock(); 11452 gctx = READ_ONCE(group_leader->ctx); 11453 if (!refcount_inc_not_zero(&gctx->refcount)) { 11454 rcu_read_unlock(); 11455 goto again; 11456 } 11457 rcu_read_unlock(); 11458 11459 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11460 11461 if (group_leader->ctx != gctx) { 11462 mutex_unlock(&ctx->mutex); 11463 mutex_unlock(&gctx->mutex); 11464 put_ctx(gctx); 11465 goto again; 11466 } 11467 11468 return gctx; 11469 } 11470 11471 /** 11472 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11473 * 11474 * @attr_uptr: event_id type attributes for monitoring/sampling 11475 * @pid: target pid 11476 * @cpu: target cpu 11477 * @group_fd: group leader event fd 11478 */ 11479 SYSCALL_DEFINE5(perf_event_open, 11480 struct perf_event_attr __user *, attr_uptr, 11481 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11482 { 11483 struct perf_event *group_leader = NULL, *output_event = NULL; 11484 struct perf_event *event, *sibling; 11485 struct perf_event_attr attr; 11486 struct perf_event_context *ctx, *uninitialized_var(gctx); 11487 struct file *event_file = NULL; 11488 struct fd group = {NULL, 0}; 11489 struct task_struct *task = NULL; 11490 struct pmu *pmu; 11491 int event_fd; 11492 int move_group = 0; 11493 int err; 11494 int f_flags = O_RDWR; 11495 int cgroup_fd = -1; 11496 11497 /* for future expandability... */ 11498 if (flags & ~PERF_FLAG_ALL) 11499 return -EINVAL; 11500 11501 /* Do we allow access to perf_event_open(2) ? */ 11502 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11503 if (err) 11504 return err; 11505 11506 err = perf_copy_attr(attr_uptr, &attr); 11507 if (err) 11508 return err; 11509 11510 if (!attr.exclude_kernel) { 11511 err = perf_allow_kernel(&attr); 11512 if (err) 11513 return err; 11514 } 11515 11516 if (attr.namespaces) { 11517 if (!perfmon_capable()) 11518 return -EACCES; 11519 } 11520 11521 if (attr.freq) { 11522 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11523 return -EINVAL; 11524 } else { 11525 if (attr.sample_period & (1ULL << 63)) 11526 return -EINVAL; 11527 } 11528 11529 /* Only privileged users can get physical addresses */ 11530 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11531 err = perf_allow_kernel(&attr); 11532 if (err) 11533 return err; 11534 } 11535 11536 err = security_locked_down(LOCKDOWN_PERF); 11537 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11538 /* REGS_INTR can leak data, lockdown must prevent this */ 11539 return err; 11540 11541 err = 0; 11542 11543 /* 11544 * In cgroup mode, the pid argument is used to pass the fd 11545 * opened to the cgroup directory in cgroupfs. The cpu argument 11546 * designates the cpu on which to monitor threads from that 11547 * cgroup. 11548 */ 11549 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11550 return -EINVAL; 11551 11552 if (flags & PERF_FLAG_FD_CLOEXEC) 11553 f_flags |= O_CLOEXEC; 11554 11555 event_fd = get_unused_fd_flags(f_flags); 11556 if (event_fd < 0) 11557 return event_fd; 11558 11559 if (group_fd != -1) { 11560 err = perf_fget_light(group_fd, &group); 11561 if (err) 11562 goto err_fd; 11563 group_leader = group.file->private_data; 11564 if (flags & PERF_FLAG_FD_OUTPUT) 11565 output_event = group_leader; 11566 if (flags & PERF_FLAG_FD_NO_GROUP) 11567 group_leader = NULL; 11568 } 11569 11570 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11571 task = find_lively_task_by_vpid(pid); 11572 if (IS_ERR(task)) { 11573 err = PTR_ERR(task); 11574 goto err_group_fd; 11575 } 11576 } 11577 11578 if (task && group_leader && 11579 group_leader->attr.inherit != attr.inherit) { 11580 err = -EINVAL; 11581 goto err_task; 11582 } 11583 11584 if (task) { 11585 err = mutex_lock_interruptible(&task->signal->exec_update_mutex); 11586 if (err) 11587 goto err_task; 11588 11589 /* 11590 * Reuse ptrace permission checks for now. 11591 * 11592 * We must hold exec_update_mutex across this and any potential 11593 * perf_install_in_context() call for this new event to 11594 * serialize against exec() altering our credentials (and the 11595 * perf_event_exit_task() that could imply). 11596 */ 11597 err = -EACCES; 11598 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11599 goto err_cred; 11600 } 11601 11602 if (flags & PERF_FLAG_PID_CGROUP) 11603 cgroup_fd = pid; 11604 11605 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11606 NULL, NULL, cgroup_fd); 11607 if (IS_ERR(event)) { 11608 err = PTR_ERR(event); 11609 goto err_cred; 11610 } 11611 11612 if (is_sampling_event(event)) { 11613 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11614 err = -EOPNOTSUPP; 11615 goto err_alloc; 11616 } 11617 } 11618 11619 /* 11620 * Special case software events and allow them to be part of 11621 * any hardware group. 11622 */ 11623 pmu = event->pmu; 11624 11625 if (attr.use_clockid) { 11626 err = perf_event_set_clock(event, attr.clockid); 11627 if (err) 11628 goto err_alloc; 11629 } 11630 11631 if (pmu->task_ctx_nr == perf_sw_context) 11632 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11633 11634 if (group_leader) { 11635 if (is_software_event(event) && 11636 !in_software_context(group_leader)) { 11637 /* 11638 * If the event is a sw event, but the group_leader 11639 * is on hw context. 11640 * 11641 * Allow the addition of software events to hw 11642 * groups, this is safe because software events 11643 * never fail to schedule. 11644 */ 11645 pmu = group_leader->ctx->pmu; 11646 } else if (!is_software_event(event) && 11647 is_software_event(group_leader) && 11648 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11649 /* 11650 * In case the group is a pure software group, and we 11651 * try to add a hardware event, move the whole group to 11652 * the hardware context. 11653 */ 11654 move_group = 1; 11655 } 11656 } 11657 11658 /* 11659 * Get the target context (task or percpu): 11660 */ 11661 ctx = find_get_context(pmu, task, event); 11662 if (IS_ERR(ctx)) { 11663 err = PTR_ERR(ctx); 11664 goto err_alloc; 11665 } 11666 11667 /* 11668 * Look up the group leader (we will attach this event to it): 11669 */ 11670 if (group_leader) { 11671 err = -EINVAL; 11672 11673 /* 11674 * Do not allow a recursive hierarchy (this new sibling 11675 * becoming part of another group-sibling): 11676 */ 11677 if (group_leader->group_leader != group_leader) 11678 goto err_context; 11679 11680 /* All events in a group should have the same clock */ 11681 if (group_leader->clock != event->clock) 11682 goto err_context; 11683 11684 /* 11685 * Make sure we're both events for the same CPU; 11686 * grouping events for different CPUs is broken; since 11687 * you can never concurrently schedule them anyhow. 11688 */ 11689 if (group_leader->cpu != event->cpu) 11690 goto err_context; 11691 11692 /* 11693 * Make sure we're both on the same task, or both 11694 * per-CPU events. 11695 */ 11696 if (group_leader->ctx->task != ctx->task) 11697 goto err_context; 11698 11699 /* 11700 * Do not allow to attach to a group in a different task 11701 * or CPU context. If we're moving SW events, we'll fix 11702 * this up later, so allow that. 11703 */ 11704 if (!move_group && group_leader->ctx != ctx) 11705 goto err_context; 11706 11707 /* 11708 * Only a group leader can be exclusive or pinned 11709 */ 11710 if (attr.exclusive || attr.pinned) 11711 goto err_context; 11712 } 11713 11714 if (output_event) { 11715 err = perf_event_set_output(event, output_event); 11716 if (err) 11717 goto err_context; 11718 } 11719 11720 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11721 f_flags); 11722 if (IS_ERR(event_file)) { 11723 err = PTR_ERR(event_file); 11724 event_file = NULL; 11725 goto err_context; 11726 } 11727 11728 if (move_group) { 11729 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11730 11731 if (gctx->task == TASK_TOMBSTONE) { 11732 err = -ESRCH; 11733 goto err_locked; 11734 } 11735 11736 /* 11737 * Check if we raced against another sys_perf_event_open() call 11738 * moving the software group underneath us. 11739 */ 11740 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11741 /* 11742 * If someone moved the group out from under us, check 11743 * if this new event wound up on the same ctx, if so 11744 * its the regular !move_group case, otherwise fail. 11745 */ 11746 if (gctx != ctx) { 11747 err = -EINVAL; 11748 goto err_locked; 11749 } else { 11750 perf_event_ctx_unlock(group_leader, gctx); 11751 move_group = 0; 11752 } 11753 } 11754 11755 /* 11756 * Failure to create exclusive events returns -EBUSY. 11757 */ 11758 err = -EBUSY; 11759 if (!exclusive_event_installable(group_leader, ctx)) 11760 goto err_locked; 11761 11762 for_each_sibling_event(sibling, group_leader) { 11763 if (!exclusive_event_installable(sibling, ctx)) 11764 goto err_locked; 11765 } 11766 } else { 11767 mutex_lock(&ctx->mutex); 11768 } 11769 11770 if (ctx->task == TASK_TOMBSTONE) { 11771 err = -ESRCH; 11772 goto err_locked; 11773 } 11774 11775 if (!perf_event_validate_size(event)) { 11776 err = -E2BIG; 11777 goto err_locked; 11778 } 11779 11780 if (!task) { 11781 /* 11782 * Check if the @cpu we're creating an event for is online. 11783 * 11784 * We use the perf_cpu_context::ctx::mutex to serialize against 11785 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11786 */ 11787 struct perf_cpu_context *cpuctx = 11788 container_of(ctx, struct perf_cpu_context, ctx); 11789 11790 if (!cpuctx->online) { 11791 err = -ENODEV; 11792 goto err_locked; 11793 } 11794 } 11795 11796 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11797 err = -EINVAL; 11798 goto err_locked; 11799 } 11800 11801 /* 11802 * Must be under the same ctx::mutex as perf_install_in_context(), 11803 * because we need to serialize with concurrent event creation. 11804 */ 11805 if (!exclusive_event_installable(event, ctx)) { 11806 err = -EBUSY; 11807 goto err_locked; 11808 } 11809 11810 WARN_ON_ONCE(ctx->parent_ctx); 11811 11812 /* 11813 * This is the point on no return; we cannot fail hereafter. This is 11814 * where we start modifying current state. 11815 */ 11816 11817 if (move_group) { 11818 /* 11819 * See perf_event_ctx_lock() for comments on the details 11820 * of swizzling perf_event::ctx. 11821 */ 11822 perf_remove_from_context(group_leader, 0); 11823 put_ctx(gctx); 11824 11825 for_each_sibling_event(sibling, group_leader) { 11826 perf_remove_from_context(sibling, 0); 11827 put_ctx(gctx); 11828 } 11829 11830 /* 11831 * Wait for everybody to stop referencing the events through 11832 * the old lists, before installing it on new lists. 11833 */ 11834 synchronize_rcu(); 11835 11836 /* 11837 * Install the group siblings before the group leader. 11838 * 11839 * Because a group leader will try and install the entire group 11840 * (through the sibling list, which is still in-tact), we can 11841 * end up with siblings installed in the wrong context. 11842 * 11843 * By installing siblings first we NO-OP because they're not 11844 * reachable through the group lists. 11845 */ 11846 for_each_sibling_event(sibling, group_leader) { 11847 perf_event__state_init(sibling); 11848 perf_install_in_context(ctx, sibling, sibling->cpu); 11849 get_ctx(ctx); 11850 } 11851 11852 /* 11853 * Removing from the context ends up with disabled 11854 * event. What we want here is event in the initial 11855 * startup state, ready to be add into new context. 11856 */ 11857 perf_event__state_init(group_leader); 11858 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11859 get_ctx(ctx); 11860 } 11861 11862 /* 11863 * Precalculate sample_data sizes; do while holding ctx::mutex such 11864 * that we're serialized against further additions and before 11865 * perf_install_in_context() which is the point the event is active and 11866 * can use these values. 11867 */ 11868 perf_event__header_size(event); 11869 perf_event__id_header_size(event); 11870 11871 event->owner = current; 11872 11873 perf_install_in_context(ctx, event, event->cpu); 11874 perf_unpin_context(ctx); 11875 11876 if (move_group) 11877 perf_event_ctx_unlock(group_leader, gctx); 11878 mutex_unlock(&ctx->mutex); 11879 11880 if (task) { 11881 mutex_unlock(&task->signal->exec_update_mutex); 11882 put_task_struct(task); 11883 } 11884 11885 mutex_lock(¤t->perf_event_mutex); 11886 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11887 mutex_unlock(¤t->perf_event_mutex); 11888 11889 /* 11890 * Drop the reference on the group_event after placing the 11891 * new event on the sibling_list. This ensures destruction 11892 * of the group leader will find the pointer to itself in 11893 * perf_group_detach(). 11894 */ 11895 fdput(group); 11896 fd_install(event_fd, event_file); 11897 return event_fd; 11898 11899 err_locked: 11900 if (move_group) 11901 perf_event_ctx_unlock(group_leader, gctx); 11902 mutex_unlock(&ctx->mutex); 11903 /* err_file: */ 11904 fput(event_file); 11905 err_context: 11906 perf_unpin_context(ctx); 11907 put_ctx(ctx); 11908 err_alloc: 11909 /* 11910 * If event_file is set, the fput() above will have called ->release() 11911 * and that will take care of freeing the event. 11912 */ 11913 if (!event_file) 11914 free_event(event); 11915 err_cred: 11916 if (task) 11917 mutex_unlock(&task->signal->exec_update_mutex); 11918 err_task: 11919 if (task) 11920 put_task_struct(task); 11921 err_group_fd: 11922 fdput(group); 11923 err_fd: 11924 put_unused_fd(event_fd); 11925 return err; 11926 } 11927 11928 /** 11929 * perf_event_create_kernel_counter 11930 * 11931 * @attr: attributes of the counter to create 11932 * @cpu: cpu in which the counter is bound 11933 * @task: task to profile (NULL for percpu) 11934 */ 11935 struct perf_event * 11936 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11937 struct task_struct *task, 11938 perf_overflow_handler_t overflow_handler, 11939 void *context) 11940 { 11941 struct perf_event_context *ctx; 11942 struct perf_event *event; 11943 int err; 11944 11945 /* 11946 * Grouping is not supported for kernel events, neither is 'AUX', 11947 * make sure the caller's intentions are adjusted. 11948 */ 11949 if (attr->aux_output) 11950 return ERR_PTR(-EINVAL); 11951 11952 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11953 overflow_handler, context, -1); 11954 if (IS_ERR(event)) { 11955 err = PTR_ERR(event); 11956 goto err; 11957 } 11958 11959 /* Mark owner so we could distinguish it from user events. */ 11960 event->owner = TASK_TOMBSTONE; 11961 11962 /* 11963 * Get the target context (task or percpu): 11964 */ 11965 ctx = find_get_context(event->pmu, task, event); 11966 if (IS_ERR(ctx)) { 11967 err = PTR_ERR(ctx); 11968 goto err_free; 11969 } 11970 11971 WARN_ON_ONCE(ctx->parent_ctx); 11972 mutex_lock(&ctx->mutex); 11973 if (ctx->task == TASK_TOMBSTONE) { 11974 err = -ESRCH; 11975 goto err_unlock; 11976 } 11977 11978 if (!task) { 11979 /* 11980 * Check if the @cpu we're creating an event for is online. 11981 * 11982 * We use the perf_cpu_context::ctx::mutex to serialize against 11983 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11984 */ 11985 struct perf_cpu_context *cpuctx = 11986 container_of(ctx, struct perf_cpu_context, ctx); 11987 if (!cpuctx->online) { 11988 err = -ENODEV; 11989 goto err_unlock; 11990 } 11991 } 11992 11993 if (!exclusive_event_installable(event, ctx)) { 11994 err = -EBUSY; 11995 goto err_unlock; 11996 } 11997 11998 perf_install_in_context(ctx, event, event->cpu); 11999 perf_unpin_context(ctx); 12000 mutex_unlock(&ctx->mutex); 12001 12002 return event; 12003 12004 err_unlock: 12005 mutex_unlock(&ctx->mutex); 12006 perf_unpin_context(ctx); 12007 put_ctx(ctx); 12008 err_free: 12009 free_event(event); 12010 err: 12011 return ERR_PTR(err); 12012 } 12013 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12014 12015 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12016 { 12017 struct perf_event_context *src_ctx; 12018 struct perf_event_context *dst_ctx; 12019 struct perf_event *event, *tmp; 12020 LIST_HEAD(events); 12021 12022 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12023 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12024 12025 /* 12026 * See perf_event_ctx_lock() for comments on the details 12027 * of swizzling perf_event::ctx. 12028 */ 12029 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12030 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12031 event_entry) { 12032 perf_remove_from_context(event, 0); 12033 unaccount_event_cpu(event, src_cpu); 12034 put_ctx(src_ctx); 12035 list_add(&event->migrate_entry, &events); 12036 } 12037 12038 /* 12039 * Wait for the events to quiesce before re-instating them. 12040 */ 12041 synchronize_rcu(); 12042 12043 /* 12044 * Re-instate events in 2 passes. 12045 * 12046 * Skip over group leaders and only install siblings on this first 12047 * pass, siblings will not get enabled without a leader, however a 12048 * leader will enable its siblings, even if those are still on the old 12049 * context. 12050 */ 12051 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12052 if (event->group_leader == event) 12053 continue; 12054 12055 list_del(&event->migrate_entry); 12056 if (event->state >= PERF_EVENT_STATE_OFF) 12057 event->state = PERF_EVENT_STATE_INACTIVE; 12058 account_event_cpu(event, dst_cpu); 12059 perf_install_in_context(dst_ctx, event, dst_cpu); 12060 get_ctx(dst_ctx); 12061 } 12062 12063 /* 12064 * Once all the siblings are setup properly, install the group leaders 12065 * to make it go. 12066 */ 12067 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12068 list_del(&event->migrate_entry); 12069 if (event->state >= PERF_EVENT_STATE_OFF) 12070 event->state = PERF_EVENT_STATE_INACTIVE; 12071 account_event_cpu(event, dst_cpu); 12072 perf_install_in_context(dst_ctx, event, dst_cpu); 12073 get_ctx(dst_ctx); 12074 } 12075 mutex_unlock(&dst_ctx->mutex); 12076 mutex_unlock(&src_ctx->mutex); 12077 } 12078 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12079 12080 static void sync_child_event(struct perf_event *child_event, 12081 struct task_struct *child) 12082 { 12083 struct perf_event *parent_event = child_event->parent; 12084 u64 child_val; 12085 12086 if (child_event->attr.inherit_stat) 12087 perf_event_read_event(child_event, child); 12088 12089 child_val = perf_event_count(child_event); 12090 12091 /* 12092 * Add back the child's count to the parent's count: 12093 */ 12094 atomic64_add(child_val, &parent_event->child_count); 12095 atomic64_add(child_event->total_time_enabled, 12096 &parent_event->child_total_time_enabled); 12097 atomic64_add(child_event->total_time_running, 12098 &parent_event->child_total_time_running); 12099 } 12100 12101 static void 12102 perf_event_exit_event(struct perf_event *child_event, 12103 struct perf_event_context *child_ctx, 12104 struct task_struct *child) 12105 { 12106 struct perf_event *parent_event = child_event->parent; 12107 12108 /* 12109 * Do not destroy the 'original' grouping; because of the context 12110 * switch optimization the original events could've ended up in a 12111 * random child task. 12112 * 12113 * If we were to destroy the original group, all group related 12114 * operations would cease to function properly after this random 12115 * child dies. 12116 * 12117 * Do destroy all inherited groups, we don't care about those 12118 * and being thorough is better. 12119 */ 12120 raw_spin_lock_irq(&child_ctx->lock); 12121 WARN_ON_ONCE(child_ctx->is_active); 12122 12123 if (parent_event) 12124 perf_group_detach(child_event); 12125 list_del_event(child_event, child_ctx); 12126 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12127 raw_spin_unlock_irq(&child_ctx->lock); 12128 12129 /* 12130 * Parent events are governed by their filedesc, retain them. 12131 */ 12132 if (!parent_event) { 12133 perf_event_wakeup(child_event); 12134 return; 12135 } 12136 /* 12137 * Child events can be cleaned up. 12138 */ 12139 12140 sync_child_event(child_event, child); 12141 12142 /* 12143 * Remove this event from the parent's list 12144 */ 12145 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12146 mutex_lock(&parent_event->child_mutex); 12147 list_del_init(&child_event->child_list); 12148 mutex_unlock(&parent_event->child_mutex); 12149 12150 /* 12151 * Kick perf_poll() for is_event_hup(). 12152 */ 12153 perf_event_wakeup(parent_event); 12154 free_event(child_event); 12155 put_event(parent_event); 12156 } 12157 12158 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12159 { 12160 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12161 struct perf_event *child_event, *next; 12162 12163 WARN_ON_ONCE(child != current); 12164 12165 child_ctx = perf_pin_task_context(child, ctxn); 12166 if (!child_ctx) 12167 return; 12168 12169 /* 12170 * In order to reduce the amount of tricky in ctx tear-down, we hold 12171 * ctx::mutex over the entire thing. This serializes against almost 12172 * everything that wants to access the ctx. 12173 * 12174 * The exception is sys_perf_event_open() / 12175 * perf_event_create_kernel_count() which does find_get_context() 12176 * without ctx::mutex (it cannot because of the move_group double mutex 12177 * lock thing). See the comments in perf_install_in_context(). 12178 */ 12179 mutex_lock(&child_ctx->mutex); 12180 12181 /* 12182 * In a single ctx::lock section, de-schedule the events and detach the 12183 * context from the task such that we cannot ever get it scheduled back 12184 * in. 12185 */ 12186 raw_spin_lock_irq(&child_ctx->lock); 12187 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12188 12189 /* 12190 * Now that the context is inactive, destroy the task <-> ctx relation 12191 * and mark the context dead. 12192 */ 12193 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12194 put_ctx(child_ctx); /* cannot be last */ 12195 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12196 put_task_struct(current); /* cannot be last */ 12197 12198 clone_ctx = unclone_ctx(child_ctx); 12199 raw_spin_unlock_irq(&child_ctx->lock); 12200 12201 if (clone_ctx) 12202 put_ctx(clone_ctx); 12203 12204 /* 12205 * Report the task dead after unscheduling the events so that we 12206 * won't get any samples after PERF_RECORD_EXIT. We can however still 12207 * get a few PERF_RECORD_READ events. 12208 */ 12209 perf_event_task(child, child_ctx, 0); 12210 12211 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12212 perf_event_exit_event(child_event, child_ctx, child); 12213 12214 mutex_unlock(&child_ctx->mutex); 12215 12216 put_ctx(child_ctx); 12217 } 12218 12219 /* 12220 * When a child task exits, feed back event values to parent events. 12221 * 12222 * Can be called with exec_update_mutex held when called from 12223 * setup_new_exec(). 12224 */ 12225 void perf_event_exit_task(struct task_struct *child) 12226 { 12227 struct perf_event *event, *tmp; 12228 int ctxn; 12229 12230 mutex_lock(&child->perf_event_mutex); 12231 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12232 owner_entry) { 12233 list_del_init(&event->owner_entry); 12234 12235 /* 12236 * Ensure the list deletion is visible before we clear 12237 * the owner, closes a race against perf_release() where 12238 * we need to serialize on the owner->perf_event_mutex. 12239 */ 12240 smp_store_release(&event->owner, NULL); 12241 } 12242 mutex_unlock(&child->perf_event_mutex); 12243 12244 for_each_task_context_nr(ctxn) 12245 perf_event_exit_task_context(child, ctxn); 12246 12247 /* 12248 * The perf_event_exit_task_context calls perf_event_task 12249 * with child's task_ctx, which generates EXIT events for 12250 * child contexts and sets child->perf_event_ctxp[] to NULL. 12251 * At this point we need to send EXIT events to cpu contexts. 12252 */ 12253 perf_event_task(child, NULL, 0); 12254 } 12255 12256 static void perf_free_event(struct perf_event *event, 12257 struct perf_event_context *ctx) 12258 { 12259 struct perf_event *parent = event->parent; 12260 12261 if (WARN_ON_ONCE(!parent)) 12262 return; 12263 12264 mutex_lock(&parent->child_mutex); 12265 list_del_init(&event->child_list); 12266 mutex_unlock(&parent->child_mutex); 12267 12268 put_event(parent); 12269 12270 raw_spin_lock_irq(&ctx->lock); 12271 perf_group_detach(event); 12272 list_del_event(event, ctx); 12273 raw_spin_unlock_irq(&ctx->lock); 12274 free_event(event); 12275 } 12276 12277 /* 12278 * Free a context as created by inheritance by perf_event_init_task() below, 12279 * used by fork() in case of fail. 12280 * 12281 * Even though the task has never lived, the context and events have been 12282 * exposed through the child_list, so we must take care tearing it all down. 12283 */ 12284 void perf_event_free_task(struct task_struct *task) 12285 { 12286 struct perf_event_context *ctx; 12287 struct perf_event *event, *tmp; 12288 int ctxn; 12289 12290 for_each_task_context_nr(ctxn) { 12291 ctx = task->perf_event_ctxp[ctxn]; 12292 if (!ctx) 12293 continue; 12294 12295 mutex_lock(&ctx->mutex); 12296 raw_spin_lock_irq(&ctx->lock); 12297 /* 12298 * Destroy the task <-> ctx relation and mark the context dead. 12299 * 12300 * This is important because even though the task hasn't been 12301 * exposed yet the context has been (through child_list). 12302 */ 12303 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12304 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12305 put_task_struct(task); /* cannot be last */ 12306 raw_spin_unlock_irq(&ctx->lock); 12307 12308 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12309 perf_free_event(event, ctx); 12310 12311 mutex_unlock(&ctx->mutex); 12312 12313 /* 12314 * perf_event_release_kernel() could've stolen some of our 12315 * child events and still have them on its free_list. In that 12316 * case we must wait for these events to have been freed (in 12317 * particular all their references to this task must've been 12318 * dropped). 12319 * 12320 * Without this copy_process() will unconditionally free this 12321 * task (irrespective of its reference count) and 12322 * _free_event()'s put_task_struct(event->hw.target) will be a 12323 * use-after-free. 12324 * 12325 * Wait for all events to drop their context reference. 12326 */ 12327 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12328 put_ctx(ctx); /* must be last */ 12329 } 12330 } 12331 12332 void perf_event_delayed_put(struct task_struct *task) 12333 { 12334 int ctxn; 12335 12336 for_each_task_context_nr(ctxn) 12337 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12338 } 12339 12340 struct file *perf_event_get(unsigned int fd) 12341 { 12342 struct file *file = fget(fd); 12343 if (!file) 12344 return ERR_PTR(-EBADF); 12345 12346 if (file->f_op != &perf_fops) { 12347 fput(file); 12348 return ERR_PTR(-EBADF); 12349 } 12350 12351 return file; 12352 } 12353 12354 const struct perf_event *perf_get_event(struct file *file) 12355 { 12356 if (file->f_op != &perf_fops) 12357 return ERR_PTR(-EINVAL); 12358 12359 return file->private_data; 12360 } 12361 12362 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12363 { 12364 if (!event) 12365 return ERR_PTR(-EINVAL); 12366 12367 return &event->attr; 12368 } 12369 12370 /* 12371 * Inherit an event from parent task to child task. 12372 * 12373 * Returns: 12374 * - valid pointer on success 12375 * - NULL for orphaned events 12376 * - IS_ERR() on error 12377 */ 12378 static struct perf_event * 12379 inherit_event(struct perf_event *parent_event, 12380 struct task_struct *parent, 12381 struct perf_event_context *parent_ctx, 12382 struct task_struct *child, 12383 struct perf_event *group_leader, 12384 struct perf_event_context *child_ctx) 12385 { 12386 enum perf_event_state parent_state = parent_event->state; 12387 struct perf_event *child_event; 12388 unsigned long flags; 12389 12390 /* 12391 * Instead of creating recursive hierarchies of events, 12392 * we link inherited events back to the original parent, 12393 * which has a filp for sure, which we use as the reference 12394 * count: 12395 */ 12396 if (parent_event->parent) 12397 parent_event = parent_event->parent; 12398 12399 child_event = perf_event_alloc(&parent_event->attr, 12400 parent_event->cpu, 12401 child, 12402 group_leader, parent_event, 12403 NULL, NULL, -1); 12404 if (IS_ERR(child_event)) 12405 return child_event; 12406 12407 12408 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12409 !child_ctx->task_ctx_data) { 12410 struct pmu *pmu = child_event->pmu; 12411 12412 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 12413 GFP_KERNEL); 12414 if (!child_ctx->task_ctx_data) { 12415 free_event(child_event); 12416 return ERR_PTR(-ENOMEM); 12417 } 12418 } 12419 12420 /* 12421 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12422 * must be under the same lock in order to serialize against 12423 * perf_event_release_kernel(), such that either we must observe 12424 * is_orphaned_event() or they will observe us on the child_list. 12425 */ 12426 mutex_lock(&parent_event->child_mutex); 12427 if (is_orphaned_event(parent_event) || 12428 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12429 mutex_unlock(&parent_event->child_mutex); 12430 /* task_ctx_data is freed with child_ctx */ 12431 free_event(child_event); 12432 return NULL; 12433 } 12434 12435 get_ctx(child_ctx); 12436 12437 /* 12438 * Make the child state follow the state of the parent event, 12439 * not its attr.disabled bit. We hold the parent's mutex, 12440 * so we won't race with perf_event_{en, dis}able_family. 12441 */ 12442 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12443 child_event->state = PERF_EVENT_STATE_INACTIVE; 12444 else 12445 child_event->state = PERF_EVENT_STATE_OFF; 12446 12447 if (parent_event->attr.freq) { 12448 u64 sample_period = parent_event->hw.sample_period; 12449 struct hw_perf_event *hwc = &child_event->hw; 12450 12451 hwc->sample_period = sample_period; 12452 hwc->last_period = sample_period; 12453 12454 local64_set(&hwc->period_left, sample_period); 12455 } 12456 12457 child_event->ctx = child_ctx; 12458 child_event->overflow_handler = parent_event->overflow_handler; 12459 child_event->overflow_handler_context 12460 = parent_event->overflow_handler_context; 12461 12462 /* 12463 * Precalculate sample_data sizes 12464 */ 12465 perf_event__header_size(child_event); 12466 perf_event__id_header_size(child_event); 12467 12468 /* 12469 * Link it up in the child's context: 12470 */ 12471 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12472 add_event_to_ctx(child_event, child_ctx); 12473 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12474 12475 /* 12476 * Link this into the parent event's child list 12477 */ 12478 list_add_tail(&child_event->child_list, &parent_event->child_list); 12479 mutex_unlock(&parent_event->child_mutex); 12480 12481 return child_event; 12482 } 12483 12484 /* 12485 * Inherits an event group. 12486 * 12487 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12488 * This matches with perf_event_release_kernel() removing all child events. 12489 * 12490 * Returns: 12491 * - 0 on success 12492 * - <0 on error 12493 */ 12494 static int inherit_group(struct perf_event *parent_event, 12495 struct task_struct *parent, 12496 struct perf_event_context *parent_ctx, 12497 struct task_struct *child, 12498 struct perf_event_context *child_ctx) 12499 { 12500 struct perf_event *leader; 12501 struct perf_event *sub; 12502 struct perf_event *child_ctr; 12503 12504 leader = inherit_event(parent_event, parent, parent_ctx, 12505 child, NULL, child_ctx); 12506 if (IS_ERR(leader)) 12507 return PTR_ERR(leader); 12508 /* 12509 * @leader can be NULL here because of is_orphaned_event(). In this 12510 * case inherit_event() will create individual events, similar to what 12511 * perf_group_detach() would do anyway. 12512 */ 12513 for_each_sibling_event(sub, parent_event) { 12514 child_ctr = inherit_event(sub, parent, parent_ctx, 12515 child, leader, child_ctx); 12516 if (IS_ERR(child_ctr)) 12517 return PTR_ERR(child_ctr); 12518 12519 if (sub->aux_event == parent_event && child_ctr && 12520 !perf_get_aux_event(child_ctr, leader)) 12521 return -EINVAL; 12522 } 12523 return 0; 12524 } 12525 12526 /* 12527 * Creates the child task context and tries to inherit the event-group. 12528 * 12529 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12530 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12531 * consistent with perf_event_release_kernel() removing all child events. 12532 * 12533 * Returns: 12534 * - 0 on success 12535 * - <0 on error 12536 */ 12537 static int 12538 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12539 struct perf_event_context *parent_ctx, 12540 struct task_struct *child, int ctxn, 12541 int *inherited_all) 12542 { 12543 int ret; 12544 struct perf_event_context *child_ctx; 12545 12546 if (!event->attr.inherit) { 12547 *inherited_all = 0; 12548 return 0; 12549 } 12550 12551 child_ctx = child->perf_event_ctxp[ctxn]; 12552 if (!child_ctx) { 12553 /* 12554 * This is executed from the parent task context, so 12555 * inherit events that have been marked for cloning. 12556 * First allocate and initialize a context for the 12557 * child. 12558 */ 12559 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12560 if (!child_ctx) 12561 return -ENOMEM; 12562 12563 child->perf_event_ctxp[ctxn] = child_ctx; 12564 } 12565 12566 ret = inherit_group(event, parent, parent_ctx, 12567 child, child_ctx); 12568 12569 if (ret) 12570 *inherited_all = 0; 12571 12572 return ret; 12573 } 12574 12575 /* 12576 * Initialize the perf_event context in task_struct 12577 */ 12578 static int perf_event_init_context(struct task_struct *child, int ctxn) 12579 { 12580 struct perf_event_context *child_ctx, *parent_ctx; 12581 struct perf_event_context *cloned_ctx; 12582 struct perf_event *event; 12583 struct task_struct *parent = current; 12584 int inherited_all = 1; 12585 unsigned long flags; 12586 int ret = 0; 12587 12588 if (likely(!parent->perf_event_ctxp[ctxn])) 12589 return 0; 12590 12591 /* 12592 * If the parent's context is a clone, pin it so it won't get 12593 * swapped under us. 12594 */ 12595 parent_ctx = perf_pin_task_context(parent, ctxn); 12596 if (!parent_ctx) 12597 return 0; 12598 12599 /* 12600 * No need to check if parent_ctx != NULL here; since we saw 12601 * it non-NULL earlier, the only reason for it to become NULL 12602 * is if we exit, and since we're currently in the middle of 12603 * a fork we can't be exiting at the same time. 12604 */ 12605 12606 /* 12607 * Lock the parent list. No need to lock the child - not PID 12608 * hashed yet and not running, so nobody can access it. 12609 */ 12610 mutex_lock(&parent_ctx->mutex); 12611 12612 /* 12613 * We dont have to disable NMIs - we are only looking at 12614 * the list, not manipulating it: 12615 */ 12616 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12617 ret = inherit_task_group(event, parent, parent_ctx, 12618 child, ctxn, &inherited_all); 12619 if (ret) 12620 goto out_unlock; 12621 } 12622 12623 /* 12624 * We can't hold ctx->lock when iterating the ->flexible_group list due 12625 * to allocations, but we need to prevent rotation because 12626 * rotate_ctx() will change the list from interrupt context. 12627 */ 12628 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12629 parent_ctx->rotate_disable = 1; 12630 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12631 12632 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12633 ret = inherit_task_group(event, parent, parent_ctx, 12634 child, ctxn, &inherited_all); 12635 if (ret) 12636 goto out_unlock; 12637 } 12638 12639 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12640 parent_ctx->rotate_disable = 0; 12641 12642 child_ctx = child->perf_event_ctxp[ctxn]; 12643 12644 if (child_ctx && inherited_all) { 12645 /* 12646 * Mark the child context as a clone of the parent 12647 * context, or of whatever the parent is a clone of. 12648 * 12649 * Note that if the parent is a clone, the holding of 12650 * parent_ctx->lock avoids it from being uncloned. 12651 */ 12652 cloned_ctx = parent_ctx->parent_ctx; 12653 if (cloned_ctx) { 12654 child_ctx->parent_ctx = cloned_ctx; 12655 child_ctx->parent_gen = parent_ctx->parent_gen; 12656 } else { 12657 child_ctx->parent_ctx = parent_ctx; 12658 child_ctx->parent_gen = parent_ctx->generation; 12659 } 12660 get_ctx(child_ctx->parent_ctx); 12661 } 12662 12663 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12664 out_unlock: 12665 mutex_unlock(&parent_ctx->mutex); 12666 12667 perf_unpin_context(parent_ctx); 12668 put_ctx(parent_ctx); 12669 12670 return ret; 12671 } 12672 12673 /* 12674 * Initialize the perf_event context in task_struct 12675 */ 12676 int perf_event_init_task(struct task_struct *child) 12677 { 12678 int ctxn, ret; 12679 12680 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12681 mutex_init(&child->perf_event_mutex); 12682 INIT_LIST_HEAD(&child->perf_event_list); 12683 12684 for_each_task_context_nr(ctxn) { 12685 ret = perf_event_init_context(child, ctxn); 12686 if (ret) { 12687 perf_event_free_task(child); 12688 return ret; 12689 } 12690 } 12691 12692 return 0; 12693 } 12694 12695 static void __init perf_event_init_all_cpus(void) 12696 { 12697 struct swevent_htable *swhash; 12698 int cpu; 12699 12700 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12701 12702 for_each_possible_cpu(cpu) { 12703 swhash = &per_cpu(swevent_htable, cpu); 12704 mutex_init(&swhash->hlist_mutex); 12705 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12706 12707 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12708 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12709 12710 #ifdef CONFIG_CGROUP_PERF 12711 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12712 #endif 12713 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12714 } 12715 } 12716 12717 static void perf_swevent_init_cpu(unsigned int cpu) 12718 { 12719 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12720 12721 mutex_lock(&swhash->hlist_mutex); 12722 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12723 struct swevent_hlist *hlist; 12724 12725 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12726 WARN_ON(!hlist); 12727 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12728 } 12729 mutex_unlock(&swhash->hlist_mutex); 12730 } 12731 12732 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12733 static void __perf_event_exit_context(void *__info) 12734 { 12735 struct perf_event_context *ctx = __info; 12736 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12737 struct perf_event *event; 12738 12739 raw_spin_lock(&ctx->lock); 12740 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12741 list_for_each_entry(event, &ctx->event_list, event_entry) 12742 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12743 raw_spin_unlock(&ctx->lock); 12744 } 12745 12746 static void perf_event_exit_cpu_context(int cpu) 12747 { 12748 struct perf_cpu_context *cpuctx; 12749 struct perf_event_context *ctx; 12750 struct pmu *pmu; 12751 12752 mutex_lock(&pmus_lock); 12753 list_for_each_entry(pmu, &pmus, entry) { 12754 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12755 ctx = &cpuctx->ctx; 12756 12757 mutex_lock(&ctx->mutex); 12758 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12759 cpuctx->online = 0; 12760 mutex_unlock(&ctx->mutex); 12761 } 12762 cpumask_clear_cpu(cpu, perf_online_mask); 12763 mutex_unlock(&pmus_lock); 12764 } 12765 #else 12766 12767 static void perf_event_exit_cpu_context(int cpu) { } 12768 12769 #endif 12770 12771 int perf_event_init_cpu(unsigned int cpu) 12772 { 12773 struct perf_cpu_context *cpuctx; 12774 struct perf_event_context *ctx; 12775 struct pmu *pmu; 12776 12777 perf_swevent_init_cpu(cpu); 12778 12779 mutex_lock(&pmus_lock); 12780 cpumask_set_cpu(cpu, perf_online_mask); 12781 list_for_each_entry(pmu, &pmus, entry) { 12782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12783 ctx = &cpuctx->ctx; 12784 12785 mutex_lock(&ctx->mutex); 12786 cpuctx->online = 1; 12787 mutex_unlock(&ctx->mutex); 12788 } 12789 mutex_unlock(&pmus_lock); 12790 12791 return 0; 12792 } 12793 12794 int perf_event_exit_cpu(unsigned int cpu) 12795 { 12796 perf_event_exit_cpu_context(cpu); 12797 return 0; 12798 } 12799 12800 static int 12801 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12802 { 12803 int cpu; 12804 12805 for_each_online_cpu(cpu) 12806 perf_event_exit_cpu(cpu); 12807 12808 return NOTIFY_OK; 12809 } 12810 12811 /* 12812 * Run the perf reboot notifier at the very last possible moment so that 12813 * the generic watchdog code runs as long as possible. 12814 */ 12815 static struct notifier_block perf_reboot_notifier = { 12816 .notifier_call = perf_reboot, 12817 .priority = INT_MIN, 12818 }; 12819 12820 void __init perf_event_init(void) 12821 { 12822 int ret; 12823 12824 idr_init(&pmu_idr); 12825 12826 perf_event_init_all_cpus(); 12827 init_srcu_struct(&pmus_srcu); 12828 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12829 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12830 perf_pmu_register(&perf_task_clock, NULL, -1); 12831 perf_tp_register(); 12832 perf_event_init_cpu(smp_processor_id()); 12833 register_reboot_notifier(&perf_reboot_notifier); 12834 12835 ret = init_hw_breakpoint(); 12836 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12837 12838 /* 12839 * Build time assertion that we keep the data_head at the intended 12840 * location. IOW, validation we got the __reserved[] size right. 12841 */ 12842 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12843 != 1024); 12844 } 12845 12846 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12847 char *page) 12848 { 12849 struct perf_pmu_events_attr *pmu_attr = 12850 container_of(attr, struct perf_pmu_events_attr, attr); 12851 12852 if (pmu_attr->event_str) 12853 return sprintf(page, "%s\n", pmu_attr->event_str); 12854 12855 return 0; 12856 } 12857 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12858 12859 static int __init perf_event_sysfs_init(void) 12860 { 12861 struct pmu *pmu; 12862 int ret; 12863 12864 mutex_lock(&pmus_lock); 12865 12866 ret = bus_register(&pmu_bus); 12867 if (ret) 12868 goto unlock; 12869 12870 list_for_each_entry(pmu, &pmus, entry) { 12871 if (!pmu->name || pmu->type < 0) 12872 continue; 12873 12874 ret = pmu_dev_alloc(pmu); 12875 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12876 } 12877 pmu_bus_running = 1; 12878 ret = 0; 12879 12880 unlock: 12881 mutex_unlock(&pmus_lock); 12882 12883 return ret; 12884 } 12885 device_initcall(perf_event_sysfs_init); 12886 12887 #ifdef CONFIG_CGROUP_PERF 12888 static struct cgroup_subsys_state * 12889 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12890 { 12891 struct perf_cgroup *jc; 12892 12893 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12894 if (!jc) 12895 return ERR_PTR(-ENOMEM); 12896 12897 jc->info = alloc_percpu(struct perf_cgroup_info); 12898 if (!jc->info) { 12899 kfree(jc); 12900 return ERR_PTR(-ENOMEM); 12901 } 12902 12903 return &jc->css; 12904 } 12905 12906 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12907 { 12908 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12909 12910 free_percpu(jc->info); 12911 kfree(jc); 12912 } 12913 12914 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 12915 { 12916 perf_event_cgroup(css->cgroup); 12917 return 0; 12918 } 12919 12920 static int __perf_cgroup_move(void *info) 12921 { 12922 struct task_struct *task = info; 12923 rcu_read_lock(); 12924 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12925 rcu_read_unlock(); 12926 return 0; 12927 } 12928 12929 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12930 { 12931 struct task_struct *task; 12932 struct cgroup_subsys_state *css; 12933 12934 cgroup_taskset_for_each(task, css, tset) 12935 task_function_call(task, __perf_cgroup_move, task); 12936 } 12937 12938 struct cgroup_subsys perf_event_cgrp_subsys = { 12939 .css_alloc = perf_cgroup_css_alloc, 12940 .css_free = perf_cgroup_css_free, 12941 .css_online = perf_cgroup_css_online, 12942 .attach = perf_cgroup_attach, 12943 /* 12944 * Implicitly enable on dfl hierarchy so that perf events can 12945 * always be filtered by cgroup2 path as long as perf_event 12946 * controller is not mounted on a legacy hierarchy. 12947 */ 12948 .implicit_on_dfl = true, 12949 .threaded = true, 12950 }; 12951 #endif /* CONFIG_CGROUP_PERF */ 12952