xref: /linux/kernel/events/core.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 enum event_type_t {
122 	EVENT_FLEXIBLE = 0x1,
123 	EVENT_PINNED = 0x2,
124 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126 
127 /*
128  * perf_sched_events : >0 events exist
129  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130  */
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133 
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137 
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141 
142 /*
143  * perf event paranoia level:
144  *  -1 - not paranoid at all
145  *   0 - disallow raw tracepoint access for unpriv
146  *   1 - disallow cpu events for unpriv
147  *   2 - disallow kernel profiling for unpriv
148  */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150 
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 
154 /*
155  * max perf event sample rate
156  */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161 
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 		void __user *buffer, size_t *lenp,
164 		loff_t *ppos)
165 {
166 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167 
168 	if (ret || !write)
169 		return ret;
170 
171 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172 
173 	return 0;
174 }
175 
176 static atomic64_t perf_event_id;
177 
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 			      enum event_type_t event_type);
180 
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 			     enum event_type_t event_type,
183 			     struct task_struct *task);
184 
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187 
188 void __weak perf_event_print_debug(void)	{ }
189 
190 extern __weak const char *perf_pmu_name(void)
191 {
192 	return "pmu";
193 }
194 
195 static inline u64 perf_clock(void)
196 {
197 	return local_clock();
198 }
199 
200 static inline struct perf_cpu_context *
201 __get_cpu_context(struct perf_event_context *ctx)
202 {
203 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
204 }
205 
206 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
207 			  struct perf_event_context *ctx)
208 {
209 	raw_spin_lock(&cpuctx->ctx.lock);
210 	if (ctx)
211 		raw_spin_lock(&ctx->lock);
212 }
213 
214 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
215 			    struct perf_event_context *ctx)
216 {
217 	if (ctx)
218 		raw_spin_unlock(&ctx->lock);
219 	raw_spin_unlock(&cpuctx->ctx.lock);
220 }
221 
222 #ifdef CONFIG_CGROUP_PERF
223 
224 /*
225  * Must ensure cgroup is pinned (css_get) before calling
226  * this function. In other words, we cannot call this function
227  * if there is no cgroup event for the current CPU context.
228  */
229 static inline struct perf_cgroup *
230 perf_cgroup_from_task(struct task_struct *task)
231 {
232 	return container_of(task_subsys_state(task, perf_subsys_id),
233 			struct perf_cgroup, css);
234 }
235 
236 static inline bool
237 perf_cgroup_match(struct perf_event *event)
238 {
239 	struct perf_event_context *ctx = event->ctx;
240 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
241 
242 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
243 }
244 
245 static inline void perf_get_cgroup(struct perf_event *event)
246 {
247 	css_get(&event->cgrp->css);
248 }
249 
250 static inline void perf_put_cgroup(struct perf_event *event)
251 {
252 	css_put(&event->cgrp->css);
253 }
254 
255 static inline void perf_detach_cgroup(struct perf_event *event)
256 {
257 	perf_put_cgroup(event);
258 	event->cgrp = NULL;
259 }
260 
261 static inline int is_cgroup_event(struct perf_event *event)
262 {
263 	return event->cgrp != NULL;
264 }
265 
266 static inline u64 perf_cgroup_event_time(struct perf_event *event)
267 {
268 	struct perf_cgroup_info *t;
269 
270 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
271 	return t->time;
272 }
273 
274 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
275 {
276 	struct perf_cgroup_info *info;
277 	u64 now;
278 
279 	now = perf_clock();
280 
281 	info = this_cpu_ptr(cgrp->info);
282 
283 	info->time += now - info->timestamp;
284 	info->timestamp = now;
285 }
286 
287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
288 {
289 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
290 	if (cgrp_out)
291 		__update_cgrp_time(cgrp_out);
292 }
293 
294 static inline void update_cgrp_time_from_event(struct perf_event *event)
295 {
296 	struct perf_cgroup *cgrp;
297 
298 	/*
299 	 * ensure we access cgroup data only when needed and
300 	 * when we know the cgroup is pinned (css_get)
301 	 */
302 	if (!is_cgroup_event(event))
303 		return;
304 
305 	cgrp = perf_cgroup_from_task(current);
306 	/*
307 	 * Do not update time when cgroup is not active
308 	 */
309 	if (cgrp == event->cgrp)
310 		__update_cgrp_time(event->cgrp);
311 }
312 
313 static inline void
314 perf_cgroup_set_timestamp(struct task_struct *task,
315 			  struct perf_event_context *ctx)
316 {
317 	struct perf_cgroup *cgrp;
318 	struct perf_cgroup_info *info;
319 
320 	/*
321 	 * ctx->lock held by caller
322 	 * ensure we do not access cgroup data
323 	 * unless we have the cgroup pinned (css_get)
324 	 */
325 	if (!task || !ctx->nr_cgroups)
326 		return;
327 
328 	cgrp = perf_cgroup_from_task(task);
329 	info = this_cpu_ptr(cgrp->info);
330 	info->timestamp = ctx->timestamp;
331 }
332 
333 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
334 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
335 
336 /*
337  * reschedule events based on the cgroup constraint of task.
338  *
339  * mode SWOUT : schedule out everything
340  * mode SWIN : schedule in based on cgroup for next
341  */
342 void perf_cgroup_switch(struct task_struct *task, int mode)
343 {
344 	struct perf_cpu_context *cpuctx;
345 	struct pmu *pmu;
346 	unsigned long flags;
347 
348 	/*
349 	 * disable interrupts to avoid geting nr_cgroup
350 	 * changes via __perf_event_disable(). Also
351 	 * avoids preemption.
352 	 */
353 	local_irq_save(flags);
354 
355 	/*
356 	 * we reschedule only in the presence of cgroup
357 	 * constrained events.
358 	 */
359 	rcu_read_lock();
360 
361 	list_for_each_entry_rcu(pmu, &pmus, entry) {
362 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
363 
364 		/*
365 		 * perf_cgroup_events says at least one
366 		 * context on this CPU has cgroup events.
367 		 *
368 		 * ctx->nr_cgroups reports the number of cgroup
369 		 * events for a context.
370 		 */
371 		if (cpuctx->ctx.nr_cgroups > 0) {
372 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
373 			perf_pmu_disable(cpuctx->ctx.pmu);
374 
375 			if (mode & PERF_CGROUP_SWOUT) {
376 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
377 				/*
378 				 * must not be done before ctxswout due
379 				 * to event_filter_match() in event_sched_out()
380 				 */
381 				cpuctx->cgrp = NULL;
382 			}
383 
384 			if (mode & PERF_CGROUP_SWIN) {
385 				WARN_ON_ONCE(cpuctx->cgrp);
386 				/* set cgrp before ctxsw in to
387 				 * allow event_filter_match() to not
388 				 * have to pass task around
389 				 */
390 				cpuctx->cgrp = perf_cgroup_from_task(task);
391 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
392 			}
393 			perf_pmu_enable(cpuctx->ctx.pmu);
394 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
395 		}
396 	}
397 
398 	rcu_read_unlock();
399 
400 	local_irq_restore(flags);
401 }
402 
403 static inline void perf_cgroup_sched_out(struct task_struct *task,
404 					 struct task_struct *next)
405 {
406 	struct perf_cgroup *cgrp1;
407 	struct perf_cgroup *cgrp2 = NULL;
408 
409 	/*
410 	 * we come here when we know perf_cgroup_events > 0
411 	 */
412 	cgrp1 = perf_cgroup_from_task(task);
413 
414 	/*
415 	 * next is NULL when called from perf_event_enable_on_exec()
416 	 * that will systematically cause a cgroup_switch()
417 	 */
418 	if (next)
419 		cgrp2 = perf_cgroup_from_task(next);
420 
421 	/*
422 	 * only schedule out current cgroup events if we know
423 	 * that we are switching to a different cgroup. Otherwise,
424 	 * do no touch the cgroup events.
425 	 */
426 	if (cgrp1 != cgrp2)
427 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
428 }
429 
430 static inline void perf_cgroup_sched_in(struct task_struct *prev,
431 					struct task_struct *task)
432 {
433 	struct perf_cgroup *cgrp1;
434 	struct perf_cgroup *cgrp2 = NULL;
435 
436 	/*
437 	 * we come here when we know perf_cgroup_events > 0
438 	 */
439 	cgrp1 = perf_cgroup_from_task(task);
440 
441 	/* prev can never be NULL */
442 	cgrp2 = perf_cgroup_from_task(prev);
443 
444 	/*
445 	 * only need to schedule in cgroup events if we are changing
446 	 * cgroup during ctxsw. Cgroup events were not scheduled
447 	 * out of ctxsw out if that was not the case.
448 	 */
449 	if (cgrp1 != cgrp2)
450 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
451 }
452 
453 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
454 				      struct perf_event_attr *attr,
455 				      struct perf_event *group_leader)
456 {
457 	struct perf_cgroup *cgrp;
458 	struct cgroup_subsys_state *css;
459 	struct file *file;
460 	int ret = 0, fput_needed;
461 
462 	file = fget_light(fd, &fput_needed);
463 	if (!file)
464 		return -EBADF;
465 
466 	css = cgroup_css_from_dir(file, perf_subsys_id);
467 	if (IS_ERR(css)) {
468 		ret = PTR_ERR(css);
469 		goto out;
470 	}
471 
472 	cgrp = container_of(css, struct perf_cgroup, css);
473 	event->cgrp = cgrp;
474 
475 	/* must be done before we fput() the file */
476 	perf_get_cgroup(event);
477 
478 	/*
479 	 * all events in a group must monitor
480 	 * the same cgroup because a task belongs
481 	 * to only one perf cgroup at a time
482 	 */
483 	if (group_leader && group_leader->cgrp != cgrp) {
484 		perf_detach_cgroup(event);
485 		ret = -EINVAL;
486 	}
487 out:
488 	fput_light(file, fput_needed);
489 	return ret;
490 }
491 
492 static inline void
493 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
494 {
495 	struct perf_cgroup_info *t;
496 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
497 	event->shadow_ctx_time = now - t->timestamp;
498 }
499 
500 static inline void
501 perf_cgroup_defer_enabled(struct perf_event *event)
502 {
503 	/*
504 	 * when the current task's perf cgroup does not match
505 	 * the event's, we need to remember to call the
506 	 * perf_mark_enable() function the first time a task with
507 	 * a matching perf cgroup is scheduled in.
508 	 */
509 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
510 		event->cgrp_defer_enabled = 1;
511 }
512 
513 static inline void
514 perf_cgroup_mark_enabled(struct perf_event *event,
515 			 struct perf_event_context *ctx)
516 {
517 	struct perf_event *sub;
518 	u64 tstamp = perf_event_time(event);
519 
520 	if (!event->cgrp_defer_enabled)
521 		return;
522 
523 	event->cgrp_defer_enabled = 0;
524 
525 	event->tstamp_enabled = tstamp - event->total_time_enabled;
526 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
527 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
528 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
529 			sub->cgrp_defer_enabled = 0;
530 		}
531 	}
532 }
533 #else /* !CONFIG_CGROUP_PERF */
534 
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538 	return true;
539 }
540 
541 static inline void perf_detach_cgroup(struct perf_event *event)
542 {}
543 
544 static inline int is_cgroup_event(struct perf_event *event)
545 {
546 	return 0;
547 }
548 
549 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
550 {
551 	return 0;
552 }
553 
554 static inline void update_cgrp_time_from_event(struct perf_event *event)
555 {
556 }
557 
558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
559 {
560 }
561 
562 static inline void perf_cgroup_sched_out(struct task_struct *task,
563 					 struct task_struct *next)
564 {
565 }
566 
567 static inline void perf_cgroup_sched_in(struct task_struct *prev,
568 					struct task_struct *task)
569 {
570 }
571 
572 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
573 				      struct perf_event_attr *attr,
574 				      struct perf_event *group_leader)
575 {
576 	return -EINVAL;
577 }
578 
579 static inline void
580 perf_cgroup_set_timestamp(struct task_struct *task,
581 			  struct perf_event_context *ctx)
582 {
583 }
584 
585 void
586 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
587 {
588 }
589 
590 static inline void
591 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
592 {
593 }
594 
595 static inline u64 perf_cgroup_event_time(struct perf_event *event)
596 {
597 	return 0;
598 }
599 
600 static inline void
601 perf_cgroup_defer_enabled(struct perf_event *event)
602 {
603 }
604 
605 static inline void
606 perf_cgroup_mark_enabled(struct perf_event *event,
607 			 struct perf_event_context *ctx)
608 {
609 }
610 #endif
611 
612 void perf_pmu_disable(struct pmu *pmu)
613 {
614 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
615 	if (!(*count)++)
616 		pmu->pmu_disable(pmu);
617 }
618 
619 void perf_pmu_enable(struct pmu *pmu)
620 {
621 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
622 	if (!--(*count))
623 		pmu->pmu_enable(pmu);
624 }
625 
626 static DEFINE_PER_CPU(struct list_head, rotation_list);
627 
628 /*
629  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
630  * because they're strictly cpu affine and rotate_start is called with IRQs
631  * disabled, while rotate_context is called from IRQ context.
632  */
633 static void perf_pmu_rotate_start(struct pmu *pmu)
634 {
635 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636 	struct list_head *head = &__get_cpu_var(rotation_list);
637 
638 	WARN_ON(!irqs_disabled());
639 
640 	if (list_empty(&cpuctx->rotation_list))
641 		list_add(&cpuctx->rotation_list, head);
642 }
643 
644 static void get_ctx(struct perf_event_context *ctx)
645 {
646 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
647 }
648 
649 static void put_ctx(struct perf_event_context *ctx)
650 {
651 	if (atomic_dec_and_test(&ctx->refcount)) {
652 		if (ctx->parent_ctx)
653 			put_ctx(ctx->parent_ctx);
654 		if (ctx->task)
655 			put_task_struct(ctx->task);
656 		kfree_rcu(ctx, rcu_head);
657 	}
658 }
659 
660 static void unclone_ctx(struct perf_event_context *ctx)
661 {
662 	if (ctx->parent_ctx) {
663 		put_ctx(ctx->parent_ctx);
664 		ctx->parent_ctx = NULL;
665 	}
666 }
667 
668 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
669 {
670 	/*
671 	 * only top level events have the pid namespace they were created in
672 	 */
673 	if (event->parent)
674 		event = event->parent;
675 
676 	return task_tgid_nr_ns(p, event->ns);
677 }
678 
679 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
680 {
681 	/*
682 	 * only top level events have the pid namespace they were created in
683 	 */
684 	if (event->parent)
685 		event = event->parent;
686 
687 	return task_pid_nr_ns(p, event->ns);
688 }
689 
690 /*
691  * If we inherit events we want to return the parent event id
692  * to userspace.
693  */
694 static u64 primary_event_id(struct perf_event *event)
695 {
696 	u64 id = event->id;
697 
698 	if (event->parent)
699 		id = event->parent->id;
700 
701 	return id;
702 }
703 
704 /*
705  * Get the perf_event_context for a task and lock it.
706  * This has to cope with with the fact that until it is locked,
707  * the context could get moved to another task.
708  */
709 static struct perf_event_context *
710 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
711 {
712 	struct perf_event_context *ctx;
713 
714 	rcu_read_lock();
715 retry:
716 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 	if (ctx) {
718 		/*
719 		 * If this context is a clone of another, it might
720 		 * get swapped for another underneath us by
721 		 * perf_event_task_sched_out, though the
722 		 * rcu_read_lock() protects us from any context
723 		 * getting freed.  Lock the context and check if it
724 		 * got swapped before we could get the lock, and retry
725 		 * if so.  If we locked the right context, then it
726 		 * can't get swapped on us any more.
727 		 */
728 		raw_spin_lock_irqsave(&ctx->lock, *flags);
729 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 			goto retry;
732 		}
733 
734 		if (!atomic_inc_not_zero(&ctx->refcount)) {
735 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 			ctx = NULL;
737 		}
738 	}
739 	rcu_read_unlock();
740 	return ctx;
741 }
742 
743 /*
744  * Get the context for a task and increment its pin_count so it
745  * can't get swapped to another task.  This also increments its
746  * reference count so that the context can't get freed.
747  */
748 static struct perf_event_context *
749 perf_pin_task_context(struct task_struct *task, int ctxn)
750 {
751 	struct perf_event_context *ctx;
752 	unsigned long flags;
753 
754 	ctx = perf_lock_task_context(task, ctxn, &flags);
755 	if (ctx) {
756 		++ctx->pin_count;
757 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
758 	}
759 	return ctx;
760 }
761 
762 static void perf_unpin_context(struct perf_event_context *ctx)
763 {
764 	unsigned long flags;
765 
766 	raw_spin_lock_irqsave(&ctx->lock, flags);
767 	--ctx->pin_count;
768 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 }
770 
771 /*
772  * Update the record of the current time in a context.
773  */
774 static void update_context_time(struct perf_event_context *ctx)
775 {
776 	u64 now = perf_clock();
777 
778 	ctx->time += now - ctx->timestamp;
779 	ctx->timestamp = now;
780 }
781 
782 static u64 perf_event_time(struct perf_event *event)
783 {
784 	struct perf_event_context *ctx = event->ctx;
785 
786 	if (is_cgroup_event(event))
787 		return perf_cgroup_event_time(event);
788 
789 	return ctx ? ctx->time : 0;
790 }
791 
792 /*
793  * Update the total_time_enabled and total_time_running fields for a event.
794  * The caller of this function needs to hold the ctx->lock.
795  */
796 static void update_event_times(struct perf_event *event)
797 {
798 	struct perf_event_context *ctx = event->ctx;
799 	u64 run_end;
800 
801 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
802 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
803 		return;
804 	/*
805 	 * in cgroup mode, time_enabled represents
806 	 * the time the event was enabled AND active
807 	 * tasks were in the monitored cgroup. This is
808 	 * independent of the activity of the context as
809 	 * there may be a mix of cgroup and non-cgroup events.
810 	 *
811 	 * That is why we treat cgroup events differently
812 	 * here.
813 	 */
814 	if (is_cgroup_event(event))
815 		run_end = perf_event_time(event);
816 	else if (ctx->is_active)
817 		run_end = ctx->time;
818 	else
819 		run_end = event->tstamp_stopped;
820 
821 	event->total_time_enabled = run_end - event->tstamp_enabled;
822 
823 	if (event->state == PERF_EVENT_STATE_INACTIVE)
824 		run_end = event->tstamp_stopped;
825 	else
826 		run_end = perf_event_time(event);
827 
828 	event->total_time_running = run_end - event->tstamp_running;
829 
830 }
831 
832 /*
833  * Update total_time_enabled and total_time_running for all events in a group.
834  */
835 static void update_group_times(struct perf_event *leader)
836 {
837 	struct perf_event *event;
838 
839 	update_event_times(leader);
840 	list_for_each_entry(event, &leader->sibling_list, group_entry)
841 		update_event_times(event);
842 }
843 
844 static struct list_head *
845 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
846 {
847 	if (event->attr.pinned)
848 		return &ctx->pinned_groups;
849 	else
850 		return &ctx->flexible_groups;
851 }
852 
853 /*
854  * Add a event from the lists for its context.
855  * Must be called with ctx->mutex and ctx->lock held.
856  */
857 static void
858 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
859 {
860 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
861 	event->attach_state |= PERF_ATTACH_CONTEXT;
862 
863 	/*
864 	 * If we're a stand alone event or group leader, we go to the context
865 	 * list, group events are kept attached to the group so that
866 	 * perf_group_detach can, at all times, locate all siblings.
867 	 */
868 	if (event->group_leader == event) {
869 		struct list_head *list;
870 
871 		if (is_software_event(event))
872 			event->group_flags |= PERF_GROUP_SOFTWARE;
873 
874 		list = ctx_group_list(event, ctx);
875 		list_add_tail(&event->group_entry, list);
876 	}
877 
878 	if (is_cgroup_event(event))
879 		ctx->nr_cgroups++;
880 
881 	list_add_rcu(&event->event_entry, &ctx->event_list);
882 	if (!ctx->nr_events)
883 		perf_pmu_rotate_start(ctx->pmu);
884 	ctx->nr_events++;
885 	if (event->attr.inherit_stat)
886 		ctx->nr_stat++;
887 }
888 
889 /*
890  * Called at perf_event creation and when events are attached/detached from a
891  * group.
892  */
893 static void perf_event__read_size(struct perf_event *event)
894 {
895 	int entry = sizeof(u64); /* value */
896 	int size = 0;
897 	int nr = 1;
898 
899 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
900 		size += sizeof(u64);
901 
902 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
903 		size += sizeof(u64);
904 
905 	if (event->attr.read_format & PERF_FORMAT_ID)
906 		entry += sizeof(u64);
907 
908 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
909 		nr += event->group_leader->nr_siblings;
910 		size += sizeof(u64);
911 	}
912 
913 	size += entry * nr;
914 	event->read_size = size;
915 }
916 
917 static void perf_event__header_size(struct perf_event *event)
918 {
919 	struct perf_sample_data *data;
920 	u64 sample_type = event->attr.sample_type;
921 	u16 size = 0;
922 
923 	perf_event__read_size(event);
924 
925 	if (sample_type & PERF_SAMPLE_IP)
926 		size += sizeof(data->ip);
927 
928 	if (sample_type & PERF_SAMPLE_ADDR)
929 		size += sizeof(data->addr);
930 
931 	if (sample_type & PERF_SAMPLE_PERIOD)
932 		size += sizeof(data->period);
933 
934 	if (sample_type & PERF_SAMPLE_READ)
935 		size += event->read_size;
936 
937 	event->header_size = size;
938 }
939 
940 static void perf_event__id_header_size(struct perf_event *event)
941 {
942 	struct perf_sample_data *data;
943 	u64 sample_type = event->attr.sample_type;
944 	u16 size = 0;
945 
946 	if (sample_type & PERF_SAMPLE_TID)
947 		size += sizeof(data->tid_entry);
948 
949 	if (sample_type & PERF_SAMPLE_TIME)
950 		size += sizeof(data->time);
951 
952 	if (sample_type & PERF_SAMPLE_ID)
953 		size += sizeof(data->id);
954 
955 	if (sample_type & PERF_SAMPLE_STREAM_ID)
956 		size += sizeof(data->stream_id);
957 
958 	if (sample_type & PERF_SAMPLE_CPU)
959 		size += sizeof(data->cpu_entry);
960 
961 	event->id_header_size = size;
962 }
963 
964 static void perf_group_attach(struct perf_event *event)
965 {
966 	struct perf_event *group_leader = event->group_leader, *pos;
967 
968 	/*
969 	 * We can have double attach due to group movement in perf_event_open.
970 	 */
971 	if (event->attach_state & PERF_ATTACH_GROUP)
972 		return;
973 
974 	event->attach_state |= PERF_ATTACH_GROUP;
975 
976 	if (group_leader == event)
977 		return;
978 
979 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
980 			!is_software_event(event))
981 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
982 
983 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
984 	group_leader->nr_siblings++;
985 
986 	perf_event__header_size(group_leader);
987 
988 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
989 		perf_event__header_size(pos);
990 }
991 
992 /*
993  * Remove a event from the lists for its context.
994  * Must be called with ctx->mutex and ctx->lock held.
995  */
996 static void
997 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
998 {
999 	struct perf_cpu_context *cpuctx;
1000 	/*
1001 	 * We can have double detach due to exit/hot-unplug + close.
1002 	 */
1003 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004 		return;
1005 
1006 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1007 
1008 	if (is_cgroup_event(event)) {
1009 		ctx->nr_cgroups--;
1010 		cpuctx = __get_cpu_context(ctx);
1011 		/*
1012 		 * if there are no more cgroup events
1013 		 * then cler cgrp to avoid stale pointer
1014 		 * in update_cgrp_time_from_cpuctx()
1015 		 */
1016 		if (!ctx->nr_cgroups)
1017 			cpuctx->cgrp = NULL;
1018 	}
1019 
1020 	ctx->nr_events--;
1021 	if (event->attr.inherit_stat)
1022 		ctx->nr_stat--;
1023 
1024 	list_del_rcu(&event->event_entry);
1025 
1026 	if (event->group_leader == event)
1027 		list_del_init(&event->group_entry);
1028 
1029 	update_group_times(event);
1030 
1031 	/*
1032 	 * If event was in error state, then keep it
1033 	 * that way, otherwise bogus counts will be
1034 	 * returned on read(). The only way to get out
1035 	 * of error state is by explicit re-enabling
1036 	 * of the event
1037 	 */
1038 	if (event->state > PERF_EVENT_STATE_OFF)
1039 		event->state = PERF_EVENT_STATE_OFF;
1040 }
1041 
1042 static void perf_group_detach(struct perf_event *event)
1043 {
1044 	struct perf_event *sibling, *tmp;
1045 	struct list_head *list = NULL;
1046 
1047 	/*
1048 	 * We can have double detach due to exit/hot-unplug + close.
1049 	 */
1050 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1051 		return;
1052 
1053 	event->attach_state &= ~PERF_ATTACH_GROUP;
1054 
1055 	/*
1056 	 * If this is a sibling, remove it from its group.
1057 	 */
1058 	if (event->group_leader != event) {
1059 		list_del_init(&event->group_entry);
1060 		event->group_leader->nr_siblings--;
1061 		goto out;
1062 	}
1063 
1064 	if (!list_empty(&event->group_entry))
1065 		list = &event->group_entry;
1066 
1067 	/*
1068 	 * If this was a group event with sibling events then
1069 	 * upgrade the siblings to singleton events by adding them
1070 	 * to whatever list we are on.
1071 	 */
1072 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 		if (list)
1074 			list_move_tail(&sibling->group_entry, list);
1075 		sibling->group_leader = sibling;
1076 
1077 		/* Inherit group flags from the previous leader */
1078 		sibling->group_flags = event->group_flags;
1079 	}
1080 
1081 out:
1082 	perf_event__header_size(event->group_leader);
1083 
1084 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1085 		perf_event__header_size(tmp);
1086 }
1087 
1088 static inline int
1089 event_filter_match(struct perf_event *event)
1090 {
1091 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1092 	    && perf_cgroup_match(event);
1093 }
1094 
1095 static void
1096 event_sched_out(struct perf_event *event,
1097 		  struct perf_cpu_context *cpuctx,
1098 		  struct perf_event_context *ctx)
1099 {
1100 	u64 tstamp = perf_event_time(event);
1101 	u64 delta;
1102 	/*
1103 	 * An event which could not be activated because of
1104 	 * filter mismatch still needs to have its timings
1105 	 * maintained, otherwise bogus information is return
1106 	 * via read() for time_enabled, time_running:
1107 	 */
1108 	if (event->state == PERF_EVENT_STATE_INACTIVE
1109 	    && !event_filter_match(event)) {
1110 		delta = tstamp - event->tstamp_stopped;
1111 		event->tstamp_running += delta;
1112 		event->tstamp_stopped = tstamp;
1113 	}
1114 
1115 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1116 		return;
1117 
1118 	event->state = PERF_EVENT_STATE_INACTIVE;
1119 	if (event->pending_disable) {
1120 		event->pending_disable = 0;
1121 		event->state = PERF_EVENT_STATE_OFF;
1122 	}
1123 	event->tstamp_stopped = tstamp;
1124 	event->pmu->del(event, 0);
1125 	event->oncpu = -1;
1126 
1127 	if (!is_software_event(event))
1128 		cpuctx->active_oncpu--;
1129 	ctx->nr_active--;
1130 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 		cpuctx->exclusive = 0;
1132 }
1133 
1134 static void
1135 group_sched_out(struct perf_event *group_event,
1136 		struct perf_cpu_context *cpuctx,
1137 		struct perf_event_context *ctx)
1138 {
1139 	struct perf_event *event;
1140 	int state = group_event->state;
1141 
1142 	event_sched_out(group_event, cpuctx, ctx);
1143 
1144 	/*
1145 	 * Schedule out siblings (if any):
1146 	 */
1147 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1148 		event_sched_out(event, cpuctx, ctx);
1149 
1150 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 		cpuctx->exclusive = 0;
1152 }
1153 
1154 /*
1155  * Cross CPU call to remove a performance event
1156  *
1157  * We disable the event on the hardware level first. After that we
1158  * remove it from the context list.
1159  */
1160 static int __perf_remove_from_context(void *info)
1161 {
1162 	struct perf_event *event = info;
1163 	struct perf_event_context *ctx = event->ctx;
1164 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1165 
1166 	raw_spin_lock(&ctx->lock);
1167 	event_sched_out(event, cpuctx, ctx);
1168 	list_del_event(event, ctx);
1169 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1170 		ctx->is_active = 0;
1171 		cpuctx->task_ctx = NULL;
1172 	}
1173 	raw_spin_unlock(&ctx->lock);
1174 
1175 	return 0;
1176 }
1177 
1178 
1179 /*
1180  * Remove the event from a task's (or a CPU's) list of events.
1181  *
1182  * CPU events are removed with a smp call. For task events we only
1183  * call when the task is on a CPU.
1184  *
1185  * If event->ctx is a cloned context, callers must make sure that
1186  * every task struct that event->ctx->task could possibly point to
1187  * remains valid.  This is OK when called from perf_release since
1188  * that only calls us on the top-level context, which can't be a clone.
1189  * When called from perf_event_exit_task, it's OK because the
1190  * context has been detached from its task.
1191  */
1192 static void perf_remove_from_context(struct perf_event *event)
1193 {
1194 	struct perf_event_context *ctx = event->ctx;
1195 	struct task_struct *task = ctx->task;
1196 
1197 	lockdep_assert_held(&ctx->mutex);
1198 
1199 	if (!task) {
1200 		/*
1201 		 * Per cpu events are removed via an smp call and
1202 		 * the removal is always successful.
1203 		 */
1204 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1205 		return;
1206 	}
1207 
1208 retry:
1209 	if (!task_function_call(task, __perf_remove_from_context, event))
1210 		return;
1211 
1212 	raw_spin_lock_irq(&ctx->lock);
1213 	/*
1214 	 * If we failed to find a running task, but find the context active now
1215 	 * that we've acquired the ctx->lock, retry.
1216 	 */
1217 	if (ctx->is_active) {
1218 		raw_spin_unlock_irq(&ctx->lock);
1219 		goto retry;
1220 	}
1221 
1222 	/*
1223 	 * Since the task isn't running, its safe to remove the event, us
1224 	 * holding the ctx->lock ensures the task won't get scheduled in.
1225 	 */
1226 	list_del_event(event, ctx);
1227 	raw_spin_unlock_irq(&ctx->lock);
1228 }
1229 
1230 /*
1231  * Cross CPU call to disable a performance event
1232  */
1233 static int __perf_event_disable(void *info)
1234 {
1235 	struct perf_event *event = info;
1236 	struct perf_event_context *ctx = event->ctx;
1237 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1238 
1239 	/*
1240 	 * If this is a per-task event, need to check whether this
1241 	 * event's task is the current task on this cpu.
1242 	 *
1243 	 * Can trigger due to concurrent perf_event_context_sched_out()
1244 	 * flipping contexts around.
1245 	 */
1246 	if (ctx->task && cpuctx->task_ctx != ctx)
1247 		return -EINVAL;
1248 
1249 	raw_spin_lock(&ctx->lock);
1250 
1251 	/*
1252 	 * If the event is on, turn it off.
1253 	 * If it is in error state, leave it in error state.
1254 	 */
1255 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256 		update_context_time(ctx);
1257 		update_cgrp_time_from_event(event);
1258 		update_group_times(event);
1259 		if (event == event->group_leader)
1260 			group_sched_out(event, cpuctx, ctx);
1261 		else
1262 			event_sched_out(event, cpuctx, ctx);
1263 		event->state = PERF_EVENT_STATE_OFF;
1264 	}
1265 
1266 	raw_spin_unlock(&ctx->lock);
1267 
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Disable a event.
1273  *
1274  * If event->ctx is a cloned context, callers must make sure that
1275  * every task struct that event->ctx->task could possibly point to
1276  * remains valid.  This condition is satisifed when called through
1277  * perf_event_for_each_child or perf_event_for_each because they
1278  * hold the top-level event's child_mutex, so any descendant that
1279  * goes to exit will block in sync_child_event.
1280  * When called from perf_pending_event it's OK because event->ctx
1281  * is the current context on this CPU and preemption is disabled,
1282  * hence we can't get into perf_event_task_sched_out for this context.
1283  */
1284 void perf_event_disable(struct perf_event *event)
1285 {
1286 	struct perf_event_context *ctx = event->ctx;
1287 	struct task_struct *task = ctx->task;
1288 
1289 	if (!task) {
1290 		/*
1291 		 * Disable the event on the cpu that it's on
1292 		 */
1293 		cpu_function_call(event->cpu, __perf_event_disable, event);
1294 		return;
1295 	}
1296 
1297 retry:
1298 	if (!task_function_call(task, __perf_event_disable, event))
1299 		return;
1300 
1301 	raw_spin_lock_irq(&ctx->lock);
1302 	/*
1303 	 * If the event is still active, we need to retry the cross-call.
1304 	 */
1305 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306 		raw_spin_unlock_irq(&ctx->lock);
1307 		/*
1308 		 * Reload the task pointer, it might have been changed by
1309 		 * a concurrent perf_event_context_sched_out().
1310 		 */
1311 		task = ctx->task;
1312 		goto retry;
1313 	}
1314 
1315 	/*
1316 	 * Since we have the lock this context can't be scheduled
1317 	 * in, so we can change the state safely.
1318 	 */
1319 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1320 		update_group_times(event);
1321 		event->state = PERF_EVENT_STATE_OFF;
1322 	}
1323 	raw_spin_unlock_irq(&ctx->lock);
1324 }
1325 
1326 static void perf_set_shadow_time(struct perf_event *event,
1327 				 struct perf_event_context *ctx,
1328 				 u64 tstamp)
1329 {
1330 	/*
1331 	 * use the correct time source for the time snapshot
1332 	 *
1333 	 * We could get by without this by leveraging the
1334 	 * fact that to get to this function, the caller
1335 	 * has most likely already called update_context_time()
1336 	 * and update_cgrp_time_xx() and thus both timestamp
1337 	 * are identical (or very close). Given that tstamp is,
1338 	 * already adjusted for cgroup, we could say that:
1339 	 *    tstamp - ctx->timestamp
1340 	 * is equivalent to
1341 	 *    tstamp - cgrp->timestamp.
1342 	 *
1343 	 * Then, in perf_output_read(), the calculation would
1344 	 * work with no changes because:
1345 	 * - event is guaranteed scheduled in
1346 	 * - no scheduled out in between
1347 	 * - thus the timestamp would be the same
1348 	 *
1349 	 * But this is a bit hairy.
1350 	 *
1351 	 * So instead, we have an explicit cgroup call to remain
1352 	 * within the time time source all along. We believe it
1353 	 * is cleaner and simpler to understand.
1354 	 */
1355 	if (is_cgroup_event(event))
1356 		perf_cgroup_set_shadow_time(event, tstamp);
1357 	else
1358 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1359 }
1360 
1361 #define MAX_INTERRUPTS (~0ULL)
1362 
1363 static void perf_log_throttle(struct perf_event *event, int enable);
1364 
1365 static int
1366 event_sched_in(struct perf_event *event,
1367 		 struct perf_cpu_context *cpuctx,
1368 		 struct perf_event_context *ctx)
1369 {
1370 	u64 tstamp = perf_event_time(event);
1371 
1372 	if (event->state <= PERF_EVENT_STATE_OFF)
1373 		return 0;
1374 
1375 	event->state = PERF_EVENT_STATE_ACTIVE;
1376 	event->oncpu = smp_processor_id();
1377 
1378 	/*
1379 	 * Unthrottle events, since we scheduled we might have missed several
1380 	 * ticks already, also for a heavily scheduling task there is little
1381 	 * guarantee it'll get a tick in a timely manner.
1382 	 */
1383 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1384 		perf_log_throttle(event, 1);
1385 		event->hw.interrupts = 0;
1386 	}
1387 
1388 	/*
1389 	 * The new state must be visible before we turn it on in the hardware:
1390 	 */
1391 	smp_wmb();
1392 
1393 	if (event->pmu->add(event, PERF_EF_START)) {
1394 		event->state = PERF_EVENT_STATE_INACTIVE;
1395 		event->oncpu = -1;
1396 		return -EAGAIN;
1397 	}
1398 
1399 	event->tstamp_running += tstamp - event->tstamp_stopped;
1400 
1401 	perf_set_shadow_time(event, ctx, tstamp);
1402 
1403 	if (!is_software_event(event))
1404 		cpuctx->active_oncpu++;
1405 	ctx->nr_active++;
1406 
1407 	if (event->attr.exclusive)
1408 		cpuctx->exclusive = 1;
1409 
1410 	return 0;
1411 }
1412 
1413 static int
1414 group_sched_in(struct perf_event *group_event,
1415 	       struct perf_cpu_context *cpuctx,
1416 	       struct perf_event_context *ctx)
1417 {
1418 	struct perf_event *event, *partial_group = NULL;
1419 	struct pmu *pmu = group_event->pmu;
1420 	u64 now = ctx->time;
1421 	bool simulate = false;
1422 
1423 	if (group_event->state == PERF_EVENT_STATE_OFF)
1424 		return 0;
1425 
1426 	pmu->start_txn(pmu);
1427 
1428 	if (event_sched_in(group_event, cpuctx, ctx)) {
1429 		pmu->cancel_txn(pmu);
1430 		return -EAGAIN;
1431 	}
1432 
1433 	/*
1434 	 * Schedule in siblings as one group (if any):
1435 	 */
1436 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437 		if (event_sched_in(event, cpuctx, ctx)) {
1438 			partial_group = event;
1439 			goto group_error;
1440 		}
1441 	}
1442 
1443 	if (!pmu->commit_txn(pmu))
1444 		return 0;
1445 
1446 group_error:
1447 	/*
1448 	 * Groups can be scheduled in as one unit only, so undo any
1449 	 * partial group before returning:
1450 	 * The events up to the failed event are scheduled out normally,
1451 	 * tstamp_stopped will be updated.
1452 	 *
1453 	 * The failed events and the remaining siblings need to have
1454 	 * their timings updated as if they had gone thru event_sched_in()
1455 	 * and event_sched_out(). This is required to get consistent timings
1456 	 * across the group. This also takes care of the case where the group
1457 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1458 	 * the time the event was actually stopped, such that time delta
1459 	 * calculation in update_event_times() is correct.
1460 	 */
1461 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1462 		if (event == partial_group)
1463 			simulate = true;
1464 
1465 		if (simulate) {
1466 			event->tstamp_running += now - event->tstamp_stopped;
1467 			event->tstamp_stopped = now;
1468 		} else {
1469 			event_sched_out(event, cpuctx, ctx);
1470 		}
1471 	}
1472 	event_sched_out(group_event, cpuctx, ctx);
1473 
1474 	pmu->cancel_txn(pmu);
1475 
1476 	return -EAGAIN;
1477 }
1478 
1479 /*
1480  * Work out whether we can put this event group on the CPU now.
1481  */
1482 static int group_can_go_on(struct perf_event *event,
1483 			   struct perf_cpu_context *cpuctx,
1484 			   int can_add_hw)
1485 {
1486 	/*
1487 	 * Groups consisting entirely of software events can always go on.
1488 	 */
1489 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 		return 1;
1491 	/*
1492 	 * If an exclusive group is already on, no other hardware
1493 	 * events can go on.
1494 	 */
1495 	if (cpuctx->exclusive)
1496 		return 0;
1497 	/*
1498 	 * If this group is exclusive and there are already
1499 	 * events on the CPU, it can't go on.
1500 	 */
1501 	if (event->attr.exclusive && cpuctx->active_oncpu)
1502 		return 0;
1503 	/*
1504 	 * Otherwise, try to add it if all previous groups were able
1505 	 * to go on.
1506 	 */
1507 	return can_add_hw;
1508 }
1509 
1510 static void add_event_to_ctx(struct perf_event *event,
1511 			       struct perf_event_context *ctx)
1512 {
1513 	u64 tstamp = perf_event_time(event);
1514 
1515 	list_add_event(event, ctx);
1516 	perf_group_attach(event);
1517 	event->tstamp_enabled = tstamp;
1518 	event->tstamp_running = tstamp;
1519 	event->tstamp_stopped = tstamp;
1520 }
1521 
1522 static void task_ctx_sched_out(struct perf_event_context *ctx);
1523 static void
1524 ctx_sched_in(struct perf_event_context *ctx,
1525 	     struct perf_cpu_context *cpuctx,
1526 	     enum event_type_t event_type,
1527 	     struct task_struct *task);
1528 
1529 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1530 				struct perf_event_context *ctx,
1531 				struct task_struct *task)
1532 {
1533 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1534 	if (ctx)
1535 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1536 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1537 	if (ctx)
1538 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1539 }
1540 
1541 /*
1542  * Cross CPU call to install and enable a performance event
1543  *
1544  * Must be called with ctx->mutex held
1545  */
1546 static int  __perf_install_in_context(void *info)
1547 {
1548 	struct perf_event *event = info;
1549 	struct perf_event_context *ctx = event->ctx;
1550 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1552 	struct task_struct *task = current;
1553 
1554 	perf_ctx_lock(cpuctx, task_ctx);
1555 	perf_pmu_disable(cpuctx->ctx.pmu);
1556 
1557 	/*
1558 	 * If there was an active task_ctx schedule it out.
1559 	 */
1560 	if (task_ctx)
1561 		task_ctx_sched_out(task_ctx);
1562 
1563 	/*
1564 	 * If the context we're installing events in is not the
1565 	 * active task_ctx, flip them.
1566 	 */
1567 	if (ctx->task && task_ctx != ctx) {
1568 		if (task_ctx)
1569 			raw_spin_unlock(&task_ctx->lock);
1570 		raw_spin_lock(&ctx->lock);
1571 		task_ctx = ctx;
1572 	}
1573 
1574 	if (task_ctx) {
1575 		cpuctx->task_ctx = task_ctx;
1576 		task = task_ctx->task;
1577 	}
1578 
1579 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1580 
1581 	update_context_time(ctx);
1582 	/*
1583 	 * update cgrp time only if current cgrp
1584 	 * matches event->cgrp. Must be done before
1585 	 * calling add_event_to_ctx()
1586 	 */
1587 	update_cgrp_time_from_event(event);
1588 
1589 	add_event_to_ctx(event, ctx);
1590 
1591 	/*
1592 	 * Schedule everything back in
1593 	 */
1594 	perf_event_sched_in(cpuctx, task_ctx, task);
1595 
1596 	perf_pmu_enable(cpuctx->ctx.pmu);
1597 	perf_ctx_unlock(cpuctx, task_ctx);
1598 
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Attach a performance event to a context
1604  *
1605  * First we add the event to the list with the hardware enable bit
1606  * in event->hw_config cleared.
1607  *
1608  * If the event is attached to a task which is on a CPU we use a smp
1609  * call to enable it in the task context. The task might have been
1610  * scheduled away, but we check this in the smp call again.
1611  */
1612 static void
1613 perf_install_in_context(struct perf_event_context *ctx,
1614 			struct perf_event *event,
1615 			int cpu)
1616 {
1617 	struct task_struct *task = ctx->task;
1618 
1619 	lockdep_assert_held(&ctx->mutex);
1620 
1621 	event->ctx = ctx;
1622 
1623 	if (!task) {
1624 		/*
1625 		 * Per cpu events are installed via an smp call and
1626 		 * the install is always successful.
1627 		 */
1628 		cpu_function_call(cpu, __perf_install_in_context, event);
1629 		return;
1630 	}
1631 
1632 retry:
1633 	if (!task_function_call(task, __perf_install_in_context, event))
1634 		return;
1635 
1636 	raw_spin_lock_irq(&ctx->lock);
1637 	/*
1638 	 * If we failed to find a running task, but find the context active now
1639 	 * that we've acquired the ctx->lock, retry.
1640 	 */
1641 	if (ctx->is_active) {
1642 		raw_spin_unlock_irq(&ctx->lock);
1643 		goto retry;
1644 	}
1645 
1646 	/*
1647 	 * Since the task isn't running, its safe to add the event, us holding
1648 	 * the ctx->lock ensures the task won't get scheduled in.
1649 	 */
1650 	add_event_to_ctx(event, ctx);
1651 	raw_spin_unlock_irq(&ctx->lock);
1652 }
1653 
1654 /*
1655  * Put a event into inactive state and update time fields.
1656  * Enabling the leader of a group effectively enables all
1657  * the group members that aren't explicitly disabled, so we
1658  * have to update their ->tstamp_enabled also.
1659  * Note: this works for group members as well as group leaders
1660  * since the non-leader members' sibling_lists will be empty.
1661  */
1662 static void __perf_event_mark_enabled(struct perf_event *event,
1663 					struct perf_event_context *ctx)
1664 {
1665 	struct perf_event *sub;
1666 	u64 tstamp = perf_event_time(event);
1667 
1668 	event->state = PERF_EVENT_STATE_INACTIVE;
1669 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1670 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1672 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1673 	}
1674 }
1675 
1676 /*
1677  * Cross CPU call to enable a performance event
1678  */
1679 static int __perf_event_enable(void *info)
1680 {
1681 	struct perf_event *event = info;
1682 	struct perf_event_context *ctx = event->ctx;
1683 	struct perf_event *leader = event->group_leader;
1684 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685 	int err;
1686 
1687 	if (WARN_ON_ONCE(!ctx->is_active))
1688 		return -EINVAL;
1689 
1690 	raw_spin_lock(&ctx->lock);
1691 	update_context_time(ctx);
1692 
1693 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694 		goto unlock;
1695 
1696 	/*
1697 	 * set current task's cgroup time reference point
1698 	 */
1699 	perf_cgroup_set_timestamp(current, ctx);
1700 
1701 	__perf_event_mark_enabled(event, ctx);
1702 
1703 	if (!event_filter_match(event)) {
1704 		if (is_cgroup_event(event))
1705 			perf_cgroup_defer_enabled(event);
1706 		goto unlock;
1707 	}
1708 
1709 	/*
1710 	 * If the event is in a group and isn't the group leader,
1711 	 * then don't put it on unless the group is on.
1712 	 */
1713 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714 		goto unlock;
1715 
1716 	if (!group_can_go_on(event, cpuctx, 1)) {
1717 		err = -EEXIST;
1718 	} else {
1719 		if (event == leader)
1720 			err = group_sched_in(event, cpuctx, ctx);
1721 		else
1722 			err = event_sched_in(event, cpuctx, ctx);
1723 	}
1724 
1725 	if (err) {
1726 		/*
1727 		 * If this event can't go on and it's part of a
1728 		 * group, then the whole group has to come off.
1729 		 */
1730 		if (leader != event)
1731 			group_sched_out(leader, cpuctx, ctx);
1732 		if (leader->attr.pinned) {
1733 			update_group_times(leader);
1734 			leader->state = PERF_EVENT_STATE_ERROR;
1735 		}
1736 	}
1737 
1738 unlock:
1739 	raw_spin_unlock(&ctx->lock);
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * Enable a event.
1746  *
1747  * If event->ctx is a cloned context, callers must make sure that
1748  * every task struct that event->ctx->task could possibly point to
1749  * remains valid.  This condition is satisfied when called through
1750  * perf_event_for_each_child or perf_event_for_each as described
1751  * for perf_event_disable.
1752  */
1753 void perf_event_enable(struct perf_event *event)
1754 {
1755 	struct perf_event_context *ctx = event->ctx;
1756 	struct task_struct *task = ctx->task;
1757 
1758 	if (!task) {
1759 		/*
1760 		 * Enable the event on the cpu that it's on
1761 		 */
1762 		cpu_function_call(event->cpu, __perf_event_enable, event);
1763 		return;
1764 	}
1765 
1766 	raw_spin_lock_irq(&ctx->lock);
1767 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 		goto out;
1769 
1770 	/*
1771 	 * If the event is in error state, clear that first.
1772 	 * That way, if we see the event in error state below, we
1773 	 * know that it has gone back into error state, as distinct
1774 	 * from the task having been scheduled away before the
1775 	 * cross-call arrived.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_ERROR)
1778 		event->state = PERF_EVENT_STATE_OFF;
1779 
1780 retry:
1781 	if (!ctx->is_active) {
1782 		__perf_event_mark_enabled(event, ctx);
1783 		goto out;
1784 	}
1785 
1786 	raw_spin_unlock_irq(&ctx->lock);
1787 
1788 	if (!task_function_call(task, __perf_event_enable, event))
1789 		return;
1790 
1791 	raw_spin_lock_irq(&ctx->lock);
1792 
1793 	/*
1794 	 * If the context is active and the event is still off,
1795 	 * we need to retry the cross-call.
1796 	 */
1797 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1798 		/*
1799 		 * task could have been flipped by a concurrent
1800 		 * perf_event_context_sched_out()
1801 		 */
1802 		task = ctx->task;
1803 		goto retry;
1804 	}
1805 
1806 out:
1807 	raw_spin_unlock_irq(&ctx->lock);
1808 }
1809 
1810 int perf_event_refresh(struct perf_event *event, int refresh)
1811 {
1812 	/*
1813 	 * not supported on inherited events
1814 	 */
1815 	if (event->attr.inherit || !is_sampling_event(event))
1816 		return -EINVAL;
1817 
1818 	atomic_add(refresh, &event->event_limit);
1819 	perf_event_enable(event);
1820 
1821 	return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(perf_event_refresh);
1824 
1825 static void ctx_sched_out(struct perf_event_context *ctx,
1826 			  struct perf_cpu_context *cpuctx,
1827 			  enum event_type_t event_type)
1828 {
1829 	struct perf_event *event;
1830 	int is_active = ctx->is_active;
1831 
1832 	ctx->is_active &= ~event_type;
1833 	if (likely(!ctx->nr_events))
1834 		return;
1835 
1836 	update_context_time(ctx);
1837 	update_cgrp_time_from_cpuctx(cpuctx);
1838 	if (!ctx->nr_active)
1839 		return;
1840 
1841 	perf_pmu_disable(ctx->pmu);
1842 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1844 			group_sched_out(event, cpuctx, ctx);
1845 	}
1846 
1847 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849 			group_sched_out(event, cpuctx, ctx);
1850 	}
1851 	perf_pmu_enable(ctx->pmu);
1852 }
1853 
1854 /*
1855  * Test whether two contexts are equivalent, i.e. whether they
1856  * have both been cloned from the same version of the same context
1857  * and they both have the same number of enabled events.
1858  * If the number of enabled events is the same, then the set
1859  * of enabled events should be the same, because these are both
1860  * inherited contexts, therefore we can't access individual events
1861  * in them directly with an fd; we can only enable/disable all
1862  * events via prctl, or enable/disable all events in a family
1863  * via ioctl, which will have the same effect on both contexts.
1864  */
1865 static int context_equiv(struct perf_event_context *ctx1,
1866 			 struct perf_event_context *ctx2)
1867 {
1868 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869 		&& ctx1->parent_gen == ctx2->parent_gen
1870 		&& !ctx1->pin_count && !ctx2->pin_count;
1871 }
1872 
1873 static void __perf_event_sync_stat(struct perf_event *event,
1874 				     struct perf_event *next_event)
1875 {
1876 	u64 value;
1877 
1878 	if (!event->attr.inherit_stat)
1879 		return;
1880 
1881 	/*
1882 	 * Update the event value, we cannot use perf_event_read()
1883 	 * because we're in the middle of a context switch and have IRQs
1884 	 * disabled, which upsets smp_call_function_single(), however
1885 	 * we know the event must be on the current CPU, therefore we
1886 	 * don't need to use it.
1887 	 */
1888 	switch (event->state) {
1889 	case PERF_EVENT_STATE_ACTIVE:
1890 		event->pmu->read(event);
1891 		/* fall-through */
1892 
1893 	case PERF_EVENT_STATE_INACTIVE:
1894 		update_event_times(event);
1895 		break;
1896 
1897 	default:
1898 		break;
1899 	}
1900 
1901 	/*
1902 	 * In order to keep per-task stats reliable we need to flip the event
1903 	 * values when we flip the contexts.
1904 	 */
1905 	value = local64_read(&next_event->count);
1906 	value = local64_xchg(&event->count, value);
1907 	local64_set(&next_event->count, value);
1908 
1909 	swap(event->total_time_enabled, next_event->total_time_enabled);
1910 	swap(event->total_time_running, next_event->total_time_running);
1911 
1912 	/*
1913 	 * Since we swizzled the values, update the user visible data too.
1914 	 */
1915 	perf_event_update_userpage(event);
1916 	perf_event_update_userpage(next_event);
1917 }
1918 
1919 #define list_next_entry(pos, member) \
1920 	list_entry(pos->member.next, typeof(*pos), member)
1921 
1922 static void perf_event_sync_stat(struct perf_event_context *ctx,
1923 				   struct perf_event_context *next_ctx)
1924 {
1925 	struct perf_event *event, *next_event;
1926 
1927 	if (!ctx->nr_stat)
1928 		return;
1929 
1930 	update_context_time(ctx);
1931 
1932 	event = list_first_entry(&ctx->event_list,
1933 				   struct perf_event, event_entry);
1934 
1935 	next_event = list_first_entry(&next_ctx->event_list,
1936 					struct perf_event, event_entry);
1937 
1938 	while (&event->event_entry != &ctx->event_list &&
1939 	       &next_event->event_entry != &next_ctx->event_list) {
1940 
1941 		__perf_event_sync_stat(event, next_event);
1942 
1943 		event = list_next_entry(event, event_entry);
1944 		next_event = list_next_entry(next_event, event_entry);
1945 	}
1946 }
1947 
1948 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1949 					 struct task_struct *next)
1950 {
1951 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 	struct perf_event_context *next_ctx;
1953 	struct perf_event_context *parent;
1954 	struct perf_cpu_context *cpuctx;
1955 	int do_switch = 1;
1956 
1957 	if (likely(!ctx))
1958 		return;
1959 
1960 	cpuctx = __get_cpu_context(ctx);
1961 	if (!cpuctx->task_ctx)
1962 		return;
1963 
1964 	rcu_read_lock();
1965 	parent = rcu_dereference(ctx->parent_ctx);
1966 	next_ctx = next->perf_event_ctxp[ctxn];
1967 	if (parent && next_ctx &&
1968 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1969 		/*
1970 		 * Looks like the two contexts are clones, so we might be
1971 		 * able to optimize the context switch.  We lock both
1972 		 * contexts and check that they are clones under the
1973 		 * lock (including re-checking that neither has been
1974 		 * uncloned in the meantime).  It doesn't matter which
1975 		 * order we take the locks because no other cpu could
1976 		 * be trying to lock both of these tasks.
1977 		 */
1978 		raw_spin_lock(&ctx->lock);
1979 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980 		if (context_equiv(ctx, next_ctx)) {
1981 			/*
1982 			 * XXX do we need a memory barrier of sorts
1983 			 * wrt to rcu_dereference() of perf_event_ctxp
1984 			 */
1985 			task->perf_event_ctxp[ctxn] = next_ctx;
1986 			next->perf_event_ctxp[ctxn] = ctx;
1987 			ctx->task = next;
1988 			next_ctx->task = task;
1989 			do_switch = 0;
1990 
1991 			perf_event_sync_stat(ctx, next_ctx);
1992 		}
1993 		raw_spin_unlock(&next_ctx->lock);
1994 		raw_spin_unlock(&ctx->lock);
1995 	}
1996 	rcu_read_unlock();
1997 
1998 	if (do_switch) {
1999 		raw_spin_lock(&ctx->lock);
2000 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001 		cpuctx->task_ctx = NULL;
2002 		raw_spin_unlock(&ctx->lock);
2003 	}
2004 }
2005 
2006 #define for_each_task_context_nr(ctxn)					\
2007 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2008 
2009 /*
2010  * Called from scheduler to remove the events of the current task,
2011  * with interrupts disabled.
2012  *
2013  * We stop each event and update the event value in event->count.
2014  *
2015  * This does not protect us against NMI, but disable()
2016  * sets the disabled bit in the control field of event _before_
2017  * accessing the event control register. If a NMI hits, then it will
2018  * not restart the event.
2019  */
2020 void __perf_event_task_sched_out(struct task_struct *task,
2021 				 struct task_struct *next)
2022 {
2023 	int ctxn;
2024 
2025 	for_each_task_context_nr(ctxn)
2026 		perf_event_context_sched_out(task, ctxn, next);
2027 
2028 	/*
2029 	 * if cgroup events exist on this CPU, then we need
2030 	 * to check if we have to switch out PMU state.
2031 	 * cgroup event are system-wide mode only
2032 	 */
2033 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034 		perf_cgroup_sched_out(task, next);
2035 }
2036 
2037 static void task_ctx_sched_out(struct perf_event_context *ctx)
2038 {
2039 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040 
2041 	if (!cpuctx->task_ctx)
2042 		return;
2043 
2044 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2045 		return;
2046 
2047 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 	cpuctx->task_ctx = NULL;
2049 }
2050 
2051 /*
2052  * Called with IRQs disabled
2053  */
2054 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2055 			      enum event_type_t event_type)
2056 {
2057 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2058 }
2059 
2060 static void
2061 ctx_pinned_sched_in(struct perf_event_context *ctx,
2062 		    struct perf_cpu_context *cpuctx)
2063 {
2064 	struct perf_event *event;
2065 
2066 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2067 		if (event->state <= PERF_EVENT_STATE_OFF)
2068 			continue;
2069 		if (!event_filter_match(event))
2070 			continue;
2071 
2072 		/* may need to reset tstamp_enabled */
2073 		if (is_cgroup_event(event))
2074 			perf_cgroup_mark_enabled(event, ctx);
2075 
2076 		if (group_can_go_on(event, cpuctx, 1))
2077 			group_sched_in(event, cpuctx, ctx);
2078 
2079 		/*
2080 		 * If this pinned group hasn't been scheduled,
2081 		 * put it in error state.
2082 		 */
2083 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2084 			update_group_times(event);
2085 			event->state = PERF_EVENT_STATE_ERROR;
2086 		}
2087 	}
2088 }
2089 
2090 static void
2091 ctx_flexible_sched_in(struct perf_event_context *ctx,
2092 		      struct perf_cpu_context *cpuctx)
2093 {
2094 	struct perf_event *event;
2095 	int can_add_hw = 1;
2096 
2097 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2098 		/* Ignore events in OFF or ERROR state */
2099 		if (event->state <= PERF_EVENT_STATE_OFF)
2100 			continue;
2101 		/*
2102 		 * Listen to the 'cpu' scheduling filter constraint
2103 		 * of events:
2104 		 */
2105 		if (!event_filter_match(event))
2106 			continue;
2107 
2108 		/* may need to reset tstamp_enabled */
2109 		if (is_cgroup_event(event))
2110 			perf_cgroup_mark_enabled(event, ctx);
2111 
2112 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113 			if (group_sched_in(event, cpuctx, ctx))
2114 				can_add_hw = 0;
2115 		}
2116 	}
2117 }
2118 
2119 static void
2120 ctx_sched_in(struct perf_event_context *ctx,
2121 	     struct perf_cpu_context *cpuctx,
2122 	     enum event_type_t event_type,
2123 	     struct task_struct *task)
2124 {
2125 	u64 now;
2126 	int is_active = ctx->is_active;
2127 
2128 	ctx->is_active |= event_type;
2129 	if (likely(!ctx->nr_events))
2130 		return;
2131 
2132 	now = perf_clock();
2133 	ctx->timestamp = now;
2134 	perf_cgroup_set_timestamp(task, ctx);
2135 	/*
2136 	 * First go through the list and put on any pinned groups
2137 	 * in order to give them the best chance of going on.
2138 	 */
2139 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140 		ctx_pinned_sched_in(ctx, cpuctx);
2141 
2142 	/* Then walk through the lower prio flexible groups */
2143 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144 		ctx_flexible_sched_in(ctx, cpuctx);
2145 }
2146 
2147 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2148 			     enum event_type_t event_type,
2149 			     struct task_struct *task)
2150 {
2151 	struct perf_event_context *ctx = &cpuctx->ctx;
2152 
2153 	ctx_sched_in(ctx, cpuctx, event_type, task);
2154 }
2155 
2156 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2157 					struct task_struct *task)
2158 {
2159 	struct perf_cpu_context *cpuctx;
2160 
2161 	cpuctx = __get_cpu_context(ctx);
2162 	if (cpuctx->task_ctx == ctx)
2163 		return;
2164 
2165 	perf_ctx_lock(cpuctx, ctx);
2166 	perf_pmu_disable(ctx->pmu);
2167 	/*
2168 	 * We want to keep the following priority order:
2169 	 * cpu pinned (that don't need to move), task pinned,
2170 	 * cpu flexible, task flexible.
2171 	 */
2172 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2173 
2174 	perf_event_sched_in(cpuctx, ctx, task);
2175 
2176 	cpuctx->task_ctx = ctx;
2177 
2178 	perf_pmu_enable(ctx->pmu);
2179 	perf_ctx_unlock(cpuctx, ctx);
2180 
2181 	/*
2182 	 * Since these rotations are per-cpu, we need to ensure the
2183 	 * cpu-context we got scheduled on is actually rotating.
2184 	 */
2185 	perf_pmu_rotate_start(ctx->pmu);
2186 }
2187 
2188 /*
2189  * Called from scheduler to add the events of the current task
2190  * with interrupts disabled.
2191  *
2192  * We restore the event value and then enable it.
2193  *
2194  * This does not protect us against NMI, but enable()
2195  * sets the enabled bit in the control field of event _before_
2196  * accessing the event control register. If a NMI hits, then it will
2197  * keep the event running.
2198  */
2199 void __perf_event_task_sched_in(struct task_struct *prev,
2200 				struct task_struct *task)
2201 {
2202 	struct perf_event_context *ctx;
2203 	int ctxn;
2204 
2205 	for_each_task_context_nr(ctxn) {
2206 		ctx = task->perf_event_ctxp[ctxn];
2207 		if (likely(!ctx))
2208 			continue;
2209 
2210 		perf_event_context_sched_in(ctx, task);
2211 	}
2212 	/*
2213 	 * if cgroup events exist on this CPU, then we need
2214 	 * to check if we have to switch in PMU state.
2215 	 * cgroup event are system-wide mode only
2216 	 */
2217 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2218 		perf_cgroup_sched_in(prev, task);
2219 }
2220 
2221 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2222 {
2223 	u64 frequency = event->attr.sample_freq;
2224 	u64 sec = NSEC_PER_SEC;
2225 	u64 divisor, dividend;
2226 
2227 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2228 
2229 	count_fls = fls64(count);
2230 	nsec_fls = fls64(nsec);
2231 	frequency_fls = fls64(frequency);
2232 	sec_fls = 30;
2233 
2234 	/*
2235 	 * We got @count in @nsec, with a target of sample_freq HZ
2236 	 * the target period becomes:
2237 	 *
2238 	 *             @count * 10^9
2239 	 * period = -------------------
2240 	 *          @nsec * sample_freq
2241 	 *
2242 	 */
2243 
2244 	/*
2245 	 * Reduce accuracy by one bit such that @a and @b converge
2246 	 * to a similar magnitude.
2247 	 */
2248 #define REDUCE_FLS(a, b)		\
2249 do {					\
2250 	if (a##_fls > b##_fls) {	\
2251 		a >>= 1;		\
2252 		a##_fls--;		\
2253 	} else {			\
2254 		b >>= 1;		\
2255 		b##_fls--;		\
2256 	}				\
2257 } while (0)
2258 
2259 	/*
2260 	 * Reduce accuracy until either term fits in a u64, then proceed with
2261 	 * the other, so that finally we can do a u64/u64 division.
2262 	 */
2263 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2264 		REDUCE_FLS(nsec, frequency);
2265 		REDUCE_FLS(sec, count);
2266 	}
2267 
2268 	if (count_fls + sec_fls > 64) {
2269 		divisor = nsec * frequency;
2270 
2271 		while (count_fls + sec_fls > 64) {
2272 			REDUCE_FLS(count, sec);
2273 			divisor >>= 1;
2274 		}
2275 
2276 		dividend = count * sec;
2277 	} else {
2278 		dividend = count * sec;
2279 
2280 		while (nsec_fls + frequency_fls > 64) {
2281 			REDUCE_FLS(nsec, frequency);
2282 			dividend >>= 1;
2283 		}
2284 
2285 		divisor = nsec * frequency;
2286 	}
2287 
2288 	if (!divisor)
2289 		return dividend;
2290 
2291 	return div64_u64(dividend, divisor);
2292 }
2293 
2294 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2295 {
2296 	struct hw_perf_event *hwc = &event->hw;
2297 	s64 period, sample_period;
2298 	s64 delta;
2299 
2300 	period = perf_calculate_period(event, nsec, count);
2301 
2302 	delta = (s64)(period - hwc->sample_period);
2303 	delta = (delta + 7) / 8; /* low pass filter */
2304 
2305 	sample_period = hwc->sample_period + delta;
2306 
2307 	if (!sample_period)
2308 		sample_period = 1;
2309 
2310 	hwc->sample_period = sample_period;
2311 
2312 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2313 		event->pmu->stop(event, PERF_EF_UPDATE);
2314 		local64_set(&hwc->period_left, 0);
2315 		event->pmu->start(event, PERF_EF_RELOAD);
2316 	}
2317 }
2318 
2319 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2320 {
2321 	struct perf_event *event;
2322 	struct hw_perf_event *hwc;
2323 	u64 interrupts, now;
2324 	s64 delta;
2325 
2326 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2327 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2328 			continue;
2329 
2330 		if (!event_filter_match(event))
2331 			continue;
2332 
2333 		hwc = &event->hw;
2334 
2335 		interrupts = hwc->interrupts;
2336 		hwc->interrupts = 0;
2337 
2338 		/*
2339 		 * unthrottle events on the tick
2340 		 */
2341 		if (interrupts == MAX_INTERRUPTS) {
2342 			perf_log_throttle(event, 1);
2343 			event->pmu->start(event, 0);
2344 		}
2345 
2346 		if (!event->attr.freq || !event->attr.sample_freq)
2347 			continue;
2348 
2349 		event->pmu->read(event);
2350 		now = local64_read(&event->count);
2351 		delta = now - hwc->freq_count_stamp;
2352 		hwc->freq_count_stamp = now;
2353 
2354 		if (delta > 0)
2355 			perf_adjust_period(event, period, delta);
2356 	}
2357 }
2358 
2359 /*
2360  * Round-robin a context's events:
2361  */
2362 static void rotate_ctx(struct perf_event_context *ctx)
2363 {
2364 	/*
2365 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2366 	 * disabled by the inheritance code.
2367 	 */
2368 	if (!ctx->rotate_disable)
2369 		list_rotate_left(&ctx->flexible_groups);
2370 }
2371 
2372 /*
2373  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2374  * because they're strictly cpu affine and rotate_start is called with IRQs
2375  * disabled, while rotate_context is called from IRQ context.
2376  */
2377 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2378 {
2379 	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2380 	struct perf_event_context *ctx = NULL;
2381 	int rotate = 0, remove = 1;
2382 
2383 	if (cpuctx->ctx.nr_events) {
2384 		remove = 0;
2385 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2386 			rotate = 1;
2387 	}
2388 
2389 	ctx = cpuctx->task_ctx;
2390 	if (ctx && ctx->nr_events) {
2391 		remove = 0;
2392 		if (ctx->nr_events != ctx->nr_active)
2393 			rotate = 1;
2394 	}
2395 
2396 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2397 	perf_pmu_disable(cpuctx->ctx.pmu);
2398 	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2399 	if (ctx)
2400 		perf_ctx_adjust_freq(ctx, interval);
2401 
2402 	if (!rotate)
2403 		goto done;
2404 
2405 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2406 	if (ctx)
2407 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2408 
2409 	rotate_ctx(&cpuctx->ctx);
2410 	if (ctx)
2411 		rotate_ctx(ctx);
2412 
2413 	perf_event_sched_in(cpuctx, ctx, current);
2414 
2415 done:
2416 	if (remove)
2417 		list_del_init(&cpuctx->rotation_list);
2418 
2419 	perf_pmu_enable(cpuctx->ctx.pmu);
2420 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2421 }
2422 
2423 void perf_event_task_tick(void)
2424 {
2425 	struct list_head *head = &__get_cpu_var(rotation_list);
2426 	struct perf_cpu_context *cpuctx, *tmp;
2427 
2428 	WARN_ON(!irqs_disabled());
2429 
2430 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2431 		if (cpuctx->jiffies_interval == 1 ||
2432 				!(jiffies % cpuctx->jiffies_interval))
2433 			perf_rotate_context(cpuctx);
2434 	}
2435 }
2436 
2437 static int event_enable_on_exec(struct perf_event *event,
2438 				struct perf_event_context *ctx)
2439 {
2440 	if (!event->attr.enable_on_exec)
2441 		return 0;
2442 
2443 	event->attr.enable_on_exec = 0;
2444 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2445 		return 0;
2446 
2447 	__perf_event_mark_enabled(event, ctx);
2448 
2449 	return 1;
2450 }
2451 
2452 /*
2453  * Enable all of a task's events that have been marked enable-on-exec.
2454  * This expects task == current.
2455  */
2456 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2457 {
2458 	struct perf_event *event;
2459 	unsigned long flags;
2460 	int enabled = 0;
2461 	int ret;
2462 
2463 	local_irq_save(flags);
2464 	if (!ctx || !ctx->nr_events)
2465 		goto out;
2466 
2467 	/*
2468 	 * We must ctxsw out cgroup events to avoid conflict
2469 	 * when invoking perf_task_event_sched_in() later on
2470 	 * in this function. Otherwise we end up trying to
2471 	 * ctxswin cgroup events which are already scheduled
2472 	 * in.
2473 	 */
2474 	perf_cgroup_sched_out(current, NULL);
2475 
2476 	raw_spin_lock(&ctx->lock);
2477 	task_ctx_sched_out(ctx);
2478 
2479 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2480 		ret = event_enable_on_exec(event, ctx);
2481 		if (ret)
2482 			enabled = 1;
2483 	}
2484 
2485 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2486 		ret = event_enable_on_exec(event, ctx);
2487 		if (ret)
2488 			enabled = 1;
2489 	}
2490 
2491 	/*
2492 	 * Unclone this context if we enabled any event.
2493 	 */
2494 	if (enabled)
2495 		unclone_ctx(ctx);
2496 
2497 	raw_spin_unlock(&ctx->lock);
2498 
2499 	/*
2500 	 * Also calls ctxswin for cgroup events, if any:
2501 	 */
2502 	perf_event_context_sched_in(ctx, ctx->task);
2503 out:
2504 	local_irq_restore(flags);
2505 }
2506 
2507 /*
2508  * Cross CPU call to read the hardware event
2509  */
2510 static void __perf_event_read(void *info)
2511 {
2512 	struct perf_event *event = info;
2513 	struct perf_event_context *ctx = event->ctx;
2514 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2515 
2516 	/*
2517 	 * If this is a task context, we need to check whether it is
2518 	 * the current task context of this cpu.  If not it has been
2519 	 * scheduled out before the smp call arrived.  In that case
2520 	 * event->count would have been updated to a recent sample
2521 	 * when the event was scheduled out.
2522 	 */
2523 	if (ctx->task && cpuctx->task_ctx != ctx)
2524 		return;
2525 
2526 	raw_spin_lock(&ctx->lock);
2527 	if (ctx->is_active) {
2528 		update_context_time(ctx);
2529 		update_cgrp_time_from_event(event);
2530 	}
2531 	update_event_times(event);
2532 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2533 		event->pmu->read(event);
2534 	raw_spin_unlock(&ctx->lock);
2535 }
2536 
2537 static inline u64 perf_event_count(struct perf_event *event)
2538 {
2539 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2540 }
2541 
2542 static u64 perf_event_read(struct perf_event *event)
2543 {
2544 	/*
2545 	 * If event is enabled and currently active on a CPU, update the
2546 	 * value in the event structure:
2547 	 */
2548 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2549 		smp_call_function_single(event->oncpu,
2550 					 __perf_event_read, event, 1);
2551 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2552 		struct perf_event_context *ctx = event->ctx;
2553 		unsigned long flags;
2554 
2555 		raw_spin_lock_irqsave(&ctx->lock, flags);
2556 		/*
2557 		 * may read while context is not active
2558 		 * (e.g., thread is blocked), in that case
2559 		 * we cannot update context time
2560 		 */
2561 		if (ctx->is_active) {
2562 			update_context_time(ctx);
2563 			update_cgrp_time_from_event(event);
2564 		}
2565 		update_event_times(event);
2566 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2567 	}
2568 
2569 	return perf_event_count(event);
2570 }
2571 
2572 /*
2573  * Callchain support
2574  */
2575 
2576 struct callchain_cpus_entries {
2577 	struct rcu_head			rcu_head;
2578 	struct perf_callchain_entry	*cpu_entries[0];
2579 };
2580 
2581 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2582 static atomic_t nr_callchain_events;
2583 static DEFINE_MUTEX(callchain_mutex);
2584 struct callchain_cpus_entries *callchain_cpus_entries;
2585 
2586 
2587 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2588 				  struct pt_regs *regs)
2589 {
2590 }
2591 
2592 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2593 				struct pt_regs *regs)
2594 {
2595 }
2596 
2597 static void release_callchain_buffers_rcu(struct rcu_head *head)
2598 {
2599 	struct callchain_cpus_entries *entries;
2600 	int cpu;
2601 
2602 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2603 
2604 	for_each_possible_cpu(cpu)
2605 		kfree(entries->cpu_entries[cpu]);
2606 
2607 	kfree(entries);
2608 }
2609 
2610 static void release_callchain_buffers(void)
2611 {
2612 	struct callchain_cpus_entries *entries;
2613 
2614 	entries = callchain_cpus_entries;
2615 	rcu_assign_pointer(callchain_cpus_entries, NULL);
2616 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2617 }
2618 
2619 static int alloc_callchain_buffers(void)
2620 {
2621 	int cpu;
2622 	int size;
2623 	struct callchain_cpus_entries *entries;
2624 
2625 	/*
2626 	 * We can't use the percpu allocation API for data that can be
2627 	 * accessed from NMI. Use a temporary manual per cpu allocation
2628 	 * until that gets sorted out.
2629 	 */
2630 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2631 
2632 	entries = kzalloc(size, GFP_KERNEL);
2633 	if (!entries)
2634 		return -ENOMEM;
2635 
2636 	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2637 
2638 	for_each_possible_cpu(cpu) {
2639 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2640 							 cpu_to_node(cpu));
2641 		if (!entries->cpu_entries[cpu])
2642 			goto fail;
2643 	}
2644 
2645 	rcu_assign_pointer(callchain_cpus_entries, entries);
2646 
2647 	return 0;
2648 
2649 fail:
2650 	for_each_possible_cpu(cpu)
2651 		kfree(entries->cpu_entries[cpu]);
2652 	kfree(entries);
2653 
2654 	return -ENOMEM;
2655 }
2656 
2657 static int get_callchain_buffers(void)
2658 {
2659 	int err = 0;
2660 	int count;
2661 
2662 	mutex_lock(&callchain_mutex);
2663 
2664 	count = atomic_inc_return(&nr_callchain_events);
2665 	if (WARN_ON_ONCE(count < 1)) {
2666 		err = -EINVAL;
2667 		goto exit;
2668 	}
2669 
2670 	if (count > 1) {
2671 		/* If the allocation failed, give up */
2672 		if (!callchain_cpus_entries)
2673 			err = -ENOMEM;
2674 		goto exit;
2675 	}
2676 
2677 	err = alloc_callchain_buffers();
2678 	if (err)
2679 		release_callchain_buffers();
2680 exit:
2681 	mutex_unlock(&callchain_mutex);
2682 
2683 	return err;
2684 }
2685 
2686 static void put_callchain_buffers(void)
2687 {
2688 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2689 		release_callchain_buffers();
2690 		mutex_unlock(&callchain_mutex);
2691 	}
2692 }
2693 
2694 static int get_recursion_context(int *recursion)
2695 {
2696 	int rctx;
2697 
2698 	if (in_nmi())
2699 		rctx = 3;
2700 	else if (in_irq())
2701 		rctx = 2;
2702 	else if (in_softirq())
2703 		rctx = 1;
2704 	else
2705 		rctx = 0;
2706 
2707 	if (recursion[rctx])
2708 		return -1;
2709 
2710 	recursion[rctx]++;
2711 	barrier();
2712 
2713 	return rctx;
2714 }
2715 
2716 static inline void put_recursion_context(int *recursion, int rctx)
2717 {
2718 	barrier();
2719 	recursion[rctx]--;
2720 }
2721 
2722 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2723 {
2724 	int cpu;
2725 	struct callchain_cpus_entries *entries;
2726 
2727 	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2728 	if (*rctx == -1)
2729 		return NULL;
2730 
2731 	entries = rcu_dereference(callchain_cpus_entries);
2732 	if (!entries)
2733 		return NULL;
2734 
2735 	cpu = smp_processor_id();
2736 
2737 	return &entries->cpu_entries[cpu][*rctx];
2738 }
2739 
2740 static void
2741 put_callchain_entry(int rctx)
2742 {
2743 	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2744 }
2745 
2746 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2747 {
2748 	int rctx;
2749 	struct perf_callchain_entry *entry;
2750 
2751 
2752 	entry = get_callchain_entry(&rctx);
2753 	if (rctx == -1)
2754 		return NULL;
2755 
2756 	if (!entry)
2757 		goto exit_put;
2758 
2759 	entry->nr = 0;
2760 
2761 	if (!user_mode(regs)) {
2762 		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2763 		perf_callchain_kernel(entry, regs);
2764 		if (current->mm)
2765 			regs = task_pt_regs(current);
2766 		else
2767 			regs = NULL;
2768 	}
2769 
2770 	if (regs) {
2771 		perf_callchain_store(entry, PERF_CONTEXT_USER);
2772 		perf_callchain_user(entry, regs);
2773 	}
2774 
2775 exit_put:
2776 	put_callchain_entry(rctx);
2777 
2778 	return entry;
2779 }
2780 
2781 /*
2782  * Initialize the perf_event context in a task_struct:
2783  */
2784 static void __perf_event_init_context(struct perf_event_context *ctx)
2785 {
2786 	raw_spin_lock_init(&ctx->lock);
2787 	mutex_init(&ctx->mutex);
2788 	INIT_LIST_HEAD(&ctx->pinned_groups);
2789 	INIT_LIST_HEAD(&ctx->flexible_groups);
2790 	INIT_LIST_HEAD(&ctx->event_list);
2791 	atomic_set(&ctx->refcount, 1);
2792 }
2793 
2794 static struct perf_event_context *
2795 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2796 {
2797 	struct perf_event_context *ctx;
2798 
2799 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2800 	if (!ctx)
2801 		return NULL;
2802 
2803 	__perf_event_init_context(ctx);
2804 	if (task) {
2805 		ctx->task = task;
2806 		get_task_struct(task);
2807 	}
2808 	ctx->pmu = pmu;
2809 
2810 	return ctx;
2811 }
2812 
2813 static struct task_struct *
2814 find_lively_task_by_vpid(pid_t vpid)
2815 {
2816 	struct task_struct *task;
2817 	int err;
2818 
2819 	rcu_read_lock();
2820 	if (!vpid)
2821 		task = current;
2822 	else
2823 		task = find_task_by_vpid(vpid);
2824 	if (task)
2825 		get_task_struct(task);
2826 	rcu_read_unlock();
2827 
2828 	if (!task)
2829 		return ERR_PTR(-ESRCH);
2830 
2831 	/* Reuse ptrace permission checks for now. */
2832 	err = -EACCES;
2833 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2834 		goto errout;
2835 
2836 	return task;
2837 errout:
2838 	put_task_struct(task);
2839 	return ERR_PTR(err);
2840 
2841 }
2842 
2843 /*
2844  * Returns a matching context with refcount and pincount.
2845  */
2846 static struct perf_event_context *
2847 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2848 {
2849 	struct perf_event_context *ctx;
2850 	struct perf_cpu_context *cpuctx;
2851 	unsigned long flags;
2852 	int ctxn, err;
2853 
2854 	if (!task) {
2855 		/* Must be root to operate on a CPU event: */
2856 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2857 			return ERR_PTR(-EACCES);
2858 
2859 		/*
2860 		 * We could be clever and allow to attach a event to an
2861 		 * offline CPU and activate it when the CPU comes up, but
2862 		 * that's for later.
2863 		 */
2864 		if (!cpu_online(cpu))
2865 			return ERR_PTR(-ENODEV);
2866 
2867 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2868 		ctx = &cpuctx->ctx;
2869 		get_ctx(ctx);
2870 		++ctx->pin_count;
2871 
2872 		return ctx;
2873 	}
2874 
2875 	err = -EINVAL;
2876 	ctxn = pmu->task_ctx_nr;
2877 	if (ctxn < 0)
2878 		goto errout;
2879 
2880 retry:
2881 	ctx = perf_lock_task_context(task, ctxn, &flags);
2882 	if (ctx) {
2883 		unclone_ctx(ctx);
2884 		++ctx->pin_count;
2885 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2886 	} else {
2887 		ctx = alloc_perf_context(pmu, task);
2888 		err = -ENOMEM;
2889 		if (!ctx)
2890 			goto errout;
2891 
2892 		err = 0;
2893 		mutex_lock(&task->perf_event_mutex);
2894 		/*
2895 		 * If it has already passed perf_event_exit_task().
2896 		 * we must see PF_EXITING, it takes this mutex too.
2897 		 */
2898 		if (task->flags & PF_EXITING)
2899 			err = -ESRCH;
2900 		else if (task->perf_event_ctxp[ctxn])
2901 			err = -EAGAIN;
2902 		else {
2903 			get_ctx(ctx);
2904 			++ctx->pin_count;
2905 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2906 		}
2907 		mutex_unlock(&task->perf_event_mutex);
2908 
2909 		if (unlikely(err)) {
2910 			put_ctx(ctx);
2911 
2912 			if (err == -EAGAIN)
2913 				goto retry;
2914 			goto errout;
2915 		}
2916 	}
2917 
2918 	return ctx;
2919 
2920 errout:
2921 	return ERR_PTR(err);
2922 }
2923 
2924 static void perf_event_free_filter(struct perf_event *event);
2925 
2926 static void free_event_rcu(struct rcu_head *head)
2927 {
2928 	struct perf_event *event;
2929 
2930 	event = container_of(head, struct perf_event, rcu_head);
2931 	if (event->ns)
2932 		put_pid_ns(event->ns);
2933 	perf_event_free_filter(event);
2934 	kfree(event);
2935 }
2936 
2937 static void ring_buffer_put(struct ring_buffer *rb);
2938 
2939 static void free_event(struct perf_event *event)
2940 {
2941 	irq_work_sync(&event->pending);
2942 
2943 	if (!event->parent) {
2944 		if (event->attach_state & PERF_ATTACH_TASK)
2945 			jump_label_dec(&perf_sched_events);
2946 		if (event->attr.mmap || event->attr.mmap_data)
2947 			atomic_dec(&nr_mmap_events);
2948 		if (event->attr.comm)
2949 			atomic_dec(&nr_comm_events);
2950 		if (event->attr.task)
2951 			atomic_dec(&nr_task_events);
2952 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2953 			put_callchain_buffers();
2954 		if (is_cgroup_event(event)) {
2955 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2956 			jump_label_dec(&perf_sched_events);
2957 		}
2958 	}
2959 
2960 	if (event->rb) {
2961 		ring_buffer_put(event->rb);
2962 		event->rb = NULL;
2963 	}
2964 
2965 	if (is_cgroup_event(event))
2966 		perf_detach_cgroup(event);
2967 
2968 	if (event->destroy)
2969 		event->destroy(event);
2970 
2971 	if (event->ctx)
2972 		put_ctx(event->ctx);
2973 
2974 	call_rcu(&event->rcu_head, free_event_rcu);
2975 }
2976 
2977 int perf_event_release_kernel(struct perf_event *event)
2978 {
2979 	struct perf_event_context *ctx = event->ctx;
2980 
2981 	WARN_ON_ONCE(ctx->parent_ctx);
2982 	/*
2983 	 * There are two ways this annotation is useful:
2984 	 *
2985 	 *  1) there is a lock recursion from perf_event_exit_task
2986 	 *     see the comment there.
2987 	 *
2988 	 *  2) there is a lock-inversion with mmap_sem through
2989 	 *     perf_event_read_group(), which takes faults while
2990 	 *     holding ctx->mutex, however this is called after
2991 	 *     the last filedesc died, so there is no possibility
2992 	 *     to trigger the AB-BA case.
2993 	 */
2994 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2995 	raw_spin_lock_irq(&ctx->lock);
2996 	perf_group_detach(event);
2997 	raw_spin_unlock_irq(&ctx->lock);
2998 	perf_remove_from_context(event);
2999 	mutex_unlock(&ctx->mutex);
3000 
3001 	free_event(event);
3002 
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3006 
3007 /*
3008  * Called when the last reference to the file is gone.
3009  */
3010 static int perf_release(struct inode *inode, struct file *file)
3011 {
3012 	struct perf_event *event = file->private_data;
3013 	struct task_struct *owner;
3014 
3015 	file->private_data = NULL;
3016 
3017 	rcu_read_lock();
3018 	owner = ACCESS_ONCE(event->owner);
3019 	/*
3020 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3021 	 * !owner it means the list deletion is complete and we can indeed
3022 	 * free this event, otherwise we need to serialize on
3023 	 * owner->perf_event_mutex.
3024 	 */
3025 	smp_read_barrier_depends();
3026 	if (owner) {
3027 		/*
3028 		 * Since delayed_put_task_struct() also drops the last
3029 		 * task reference we can safely take a new reference
3030 		 * while holding the rcu_read_lock().
3031 		 */
3032 		get_task_struct(owner);
3033 	}
3034 	rcu_read_unlock();
3035 
3036 	if (owner) {
3037 		mutex_lock(&owner->perf_event_mutex);
3038 		/*
3039 		 * We have to re-check the event->owner field, if it is cleared
3040 		 * we raced with perf_event_exit_task(), acquiring the mutex
3041 		 * ensured they're done, and we can proceed with freeing the
3042 		 * event.
3043 		 */
3044 		if (event->owner)
3045 			list_del_init(&event->owner_entry);
3046 		mutex_unlock(&owner->perf_event_mutex);
3047 		put_task_struct(owner);
3048 	}
3049 
3050 	return perf_event_release_kernel(event);
3051 }
3052 
3053 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3054 {
3055 	struct perf_event *child;
3056 	u64 total = 0;
3057 
3058 	*enabled = 0;
3059 	*running = 0;
3060 
3061 	mutex_lock(&event->child_mutex);
3062 	total += perf_event_read(event);
3063 	*enabled += event->total_time_enabled +
3064 			atomic64_read(&event->child_total_time_enabled);
3065 	*running += event->total_time_running +
3066 			atomic64_read(&event->child_total_time_running);
3067 
3068 	list_for_each_entry(child, &event->child_list, child_list) {
3069 		total += perf_event_read(child);
3070 		*enabled += child->total_time_enabled;
3071 		*running += child->total_time_running;
3072 	}
3073 	mutex_unlock(&event->child_mutex);
3074 
3075 	return total;
3076 }
3077 EXPORT_SYMBOL_GPL(perf_event_read_value);
3078 
3079 static int perf_event_read_group(struct perf_event *event,
3080 				   u64 read_format, char __user *buf)
3081 {
3082 	struct perf_event *leader = event->group_leader, *sub;
3083 	int n = 0, size = 0, ret = -EFAULT;
3084 	struct perf_event_context *ctx = leader->ctx;
3085 	u64 values[5];
3086 	u64 count, enabled, running;
3087 
3088 	mutex_lock(&ctx->mutex);
3089 	count = perf_event_read_value(leader, &enabled, &running);
3090 
3091 	values[n++] = 1 + leader->nr_siblings;
3092 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3093 		values[n++] = enabled;
3094 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3095 		values[n++] = running;
3096 	values[n++] = count;
3097 	if (read_format & PERF_FORMAT_ID)
3098 		values[n++] = primary_event_id(leader);
3099 
3100 	size = n * sizeof(u64);
3101 
3102 	if (copy_to_user(buf, values, size))
3103 		goto unlock;
3104 
3105 	ret = size;
3106 
3107 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3108 		n = 0;
3109 
3110 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3111 		if (read_format & PERF_FORMAT_ID)
3112 			values[n++] = primary_event_id(sub);
3113 
3114 		size = n * sizeof(u64);
3115 
3116 		if (copy_to_user(buf + ret, values, size)) {
3117 			ret = -EFAULT;
3118 			goto unlock;
3119 		}
3120 
3121 		ret += size;
3122 	}
3123 unlock:
3124 	mutex_unlock(&ctx->mutex);
3125 
3126 	return ret;
3127 }
3128 
3129 static int perf_event_read_one(struct perf_event *event,
3130 				 u64 read_format, char __user *buf)
3131 {
3132 	u64 enabled, running;
3133 	u64 values[4];
3134 	int n = 0;
3135 
3136 	values[n++] = perf_event_read_value(event, &enabled, &running);
3137 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3138 		values[n++] = enabled;
3139 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3140 		values[n++] = running;
3141 	if (read_format & PERF_FORMAT_ID)
3142 		values[n++] = primary_event_id(event);
3143 
3144 	if (copy_to_user(buf, values, n * sizeof(u64)))
3145 		return -EFAULT;
3146 
3147 	return n * sizeof(u64);
3148 }
3149 
3150 /*
3151  * Read the performance event - simple non blocking version for now
3152  */
3153 static ssize_t
3154 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3155 {
3156 	u64 read_format = event->attr.read_format;
3157 	int ret;
3158 
3159 	/*
3160 	 * Return end-of-file for a read on a event that is in
3161 	 * error state (i.e. because it was pinned but it couldn't be
3162 	 * scheduled on to the CPU at some point).
3163 	 */
3164 	if (event->state == PERF_EVENT_STATE_ERROR)
3165 		return 0;
3166 
3167 	if (count < event->read_size)
3168 		return -ENOSPC;
3169 
3170 	WARN_ON_ONCE(event->ctx->parent_ctx);
3171 	if (read_format & PERF_FORMAT_GROUP)
3172 		ret = perf_event_read_group(event, read_format, buf);
3173 	else
3174 		ret = perf_event_read_one(event, read_format, buf);
3175 
3176 	return ret;
3177 }
3178 
3179 static ssize_t
3180 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3181 {
3182 	struct perf_event *event = file->private_data;
3183 
3184 	return perf_read_hw(event, buf, count);
3185 }
3186 
3187 static unsigned int perf_poll(struct file *file, poll_table *wait)
3188 {
3189 	struct perf_event *event = file->private_data;
3190 	struct ring_buffer *rb;
3191 	unsigned int events = POLL_HUP;
3192 
3193 	rcu_read_lock();
3194 	rb = rcu_dereference(event->rb);
3195 	if (rb)
3196 		events = atomic_xchg(&rb->poll, 0);
3197 	rcu_read_unlock();
3198 
3199 	poll_wait(file, &event->waitq, wait);
3200 
3201 	return events;
3202 }
3203 
3204 static void perf_event_reset(struct perf_event *event)
3205 {
3206 	(void)perf_event_read(event);
3207 	local64_set(&event->count, 0);
3208 	perf_event_update_userpage(event);
3209 }
3210 
3211 /*
3212  * Holding the top-level event's child_mutex means that any
3213  * descendant process that has inherited this event will block
3214  * in sync_child_event if it goes to exit, thus satisfying the
3215  * task existence requirements of perf_event_enable/disable.
3216  */
3217 static void perf_event_for_each_child(struct perf_event *event,
3218 					void (*func)(struct perf_event *))
3219 {
3220 	struct perf_event *child;
3221 
3222 	WARN_ON_ONCE(event->ctx->parent_ctx);
3223 	mutex_lock(&event->child_mutex);
3224 	func(event);
3225 	list_for_each_entry(child, &event->child_list, child_list)
3226 		func(child);
3227 	mutex_unlock(&event->child_mutex);
3228 }
3229 
3230 static void perf_event_for_each(struct perf_event *event,
3231 				  void (*func)(struct perf_event *))
3232 {
3233 	struct perf_event_context *ctx = event->ctx;
3234 	struct perf_event *sibling;
3235 
3236 	WARN_ON_ONCE(ctx->parent_ctx);
3237 	mutex_lock(&ctx->mutex);
3238 	event = event->group_leader;
3239 
3240 	perf_event_for_each_child(event, func);
3241 	func(event);
3242 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3243 		perf_event_for_each_child(event, func);
3244 	mutex_unlock(&ctx->mutex);
3245 }
3246 
3247 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3248 {
3249 	struct perf_event_context *ctx = event->ctx;
3250 	int ret = 0;
3251 	u64 value;
3252 
3253 	if (!is_sampling_event(event))
3254 		return -EINVAL;
3255 
3256 	if (copy_from_user(&value, arg, sizeof(value)))
3257 		return -EFAULT;
3258 
3259 	if (!value)
3260 		return -EINVAL;
3261 
3262 	raw_spin_lock_irq(&ctx->lock);
3263 	if (event->attr.freq) {
3264 		if (value > sysctl_perf_event_sample_rate) {
3265 			ret = -EINVAL;
3266 			goto unlock;
3267 		}
3268 
3269 		event->attr.sample_freq = value;
3270 	} else {
3271 		event->attr.sample_period = value;
3272 		event->hw.sample_period = value;
3273 	}
3274 unlock:
3275 	raw_spin_unlock_irq(&ctx->lock);
3276 
3277 	return ret;
3278 }
3279 
3280 static const struct file_operations perf_fops;
3281 
3282 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3283 {
3284 	struct file *file;
3285 
3286 	file = fget_light(fd, fput_needed);
3287 	if (!file)
3288 		return ERR_PTR(-EBADF);
3289 
3290 	if (file->f_op != &perf_fops) {
3291 		fput_light(file, *fput_needed);
3292 		*fput_needed = 0;
3293 		return ERR_PTR(-EBADF);
3294 	}
3295 
3296 	return file->private_data;
3297 }
3298 
3299 static int perf_event_set_output(struct perf_event *event,
3300 				 struct perf_event *output_event);
3301 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3302 
3303 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3304 {
3305 	struct perf_event *event = file->private_data;
3306 	void (*func)(struct perf_event *);
3307 	u32 flags = arg;
3308 
3309 	switch (cmd) {
3310 	case PERF_EVENT_IOC_ENABLE:
3311 		func = perf_event_enable;
3312 		break;
3313 	case PERF_EVENT_IOC_DISABLE:
3314 		func = perf_event_disable;
3315 		break;
3316 	case PERF_EVENT_IOC_RESET:
3317 		func = perf_event_reset;
3318 		break;
3319 
3320 	case PERF_EVENT_IOC_REFRESH:
3321 		return perf_event_refresh(event, arg);
3322 
3323 	case PERF_EVENT_IOC_PERIOD:
3324 		return perf_event_period(event, (u64 __user *)arg);
3325 
3326 	case PERF_EVENT_IOC_SET_OUTPUT:
3327 	{
3328 		struct perf_event *output_event = NULL;
3329 		int fput_needed = 0;
3330 		int ret;
3331 
3332 		if (arg != -1) {
3333 			output_event = perf_fget_light(arg, &fput_needed);
3334 			if (IS_ERR(output_event))
3335 				return PTR_ERR(output_event);
3336 		}
3337 
3338 		ret = perf_event_set_output(event, output_event);
3339 		if (output_event)
3340 			fput_light(output_event->filp, fput_needed);
3341 
3342 		return ret;
3343 	}
3344 
3345 	case PERF_EVENT_IOC_SET_FILTER:
3346 		return perf_event_set_filter(event, (void __user *)arg);
3347 
3348 	default:
3349 		return -ENOTTY;
3350 	}
3351 
3352 	if (flags & PERF_IOC_FLAG_GROUP)
3353 		perf_event_for_each(event, func);
3354 	else
3355 		perf_event_for_each_child(event, func);
3356 
3357 	return 0;
3358 }
3359 
3360 int perf_event_task_enable(void)
3361 {
3362 	struct perf_event *event;
3363 
3364 	mutex_lock(&current->perf_event_mutex);
3365 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3366 		perf_event_for_each_child(event, perf_event_enable);
3367 	mutex_unlock(&current->perf_event_mutex);
3368 
3369 	return 0;
3370 }
3371 
3372 int perf_event_task_disable(void)
3373 {
3374 	struct perf_event *event;
3375 
3376 	mutex_lock(&current->perf_event_mutex);
3377 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3378 		perf_event_for_each_child(event, perf_event_disable);
3379 	mutex_unlock(&current->perf_event_mutex);
3380 
3381 	return 0;
3382 }
3383 
3384 #ifndef PERF_EVENT_INDEX_OFFSET
3385 # define PERF_EVENT_INDEX_OFFSET 0
3386 #endif
3387 
3388 static int perf_event_index(struct perf_event *event)
3389 {
3390 	if (event->hw.state & PERF_HES_STOPPED)
3391 		return 0;
3392 
3393 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3394 		return 0;
3395 
3396 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3397 }
3398 
3399 static void calc_timer_values(struct perf_event *event,
3400 				u64 *enabled,
3401 				u64 *running)
3402 {
3403 	u64 now, ctx_time;
3404 
3405 	now = perf_clock();
3406 	ctx_time = event->shadow_ctx_time + now;
3407 	*enabled = ctx_time - event->tstamp_enabled;
3408 	*running = ctx_time - event->tstamp_running;
3409 }
3410 
3411 /*
3412  * Callers need to ensure there can be no nesting of this function, otherwise
3413  * the seqlock logic goes bad. We can not serialize this because the arch
3414  * code calls this from NMI context.
3415  */
3416 void perf_event_update_userpage(struct perf_event *event)
3417 {
3418 	struct perf_event_mmap_page *userpg;
3419 	struct ring_buffer *rb;
3420 	u64 enabled, running;
3421 
3422 	rcu_read_lock();
3423 	/*
3424 	 * compute total_time_enabled, total_time_running
3425 	 * based on snapshot values taken when the event
3426 	 * was last scheduled in.
3427 	 *
3428 	 * we cannot simply called update_context_time()
3429 	 * because of locking issue as we can be called in
3430 	 * NMI context
3431 	 */
3432 	calc_timer_values(event, &enabled, &running);
3433 	rb = rcu_dereference(event->rb);
3434 	if (!rb)
3435 		goto unlock;
3436 
3437 	userpg = rb->user_page;
3438 
3439 	/*
3440 	 * Disable preemption so as to not let the corresponding user-space
3441 	 * spin too long if we get preempted.
3442 	 */
3443 	preempt_disable();
3444 	++userpg->lock;
3445 	barrier();
3446 	userpg->index = perf_event_index(event);
3447 	userpg->offset = perf_event_count(event);
3448 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3449 		userpg->offset -= local64_read(&event->hw.prev_count);
3450 
3451 	userpg->time_enabled = enabled +
3452 			atomic64_read(&event->child_total_time_enabled);
3453 
3454 	userpg->time_running = running +
3455 			atomic64_read(&event->child_total_time_running);
3456 
3457 	barrier();
3458 	++userpg->lock;
3459 	preempt_enable();
3460 unlock:
3461 	rcu_read_unlock();
3462 }
3463 
3464 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3465 {
3466 	struct perf_event *event = vma->vm_file->private_data;
3467 	struct ring_buffer *rb;
3468 	int ret = VM_FAULT_SIGBUS;
3469 
3470 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3471 		if (vmf->pgoff == 0)
3472 			ret = 0;
3473 		return ret;
3474 	}
3475 
3476 	rcu_read_lock();
3477 	rb = rcu_dereference(event->rb);
3478 	if (!rb)
3479 		goto unlock;
3480 
3481 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3482 		goto unlock;
3483 
3484 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3485 	if (!vmf->page)
3486 		goto unlock;
3487 
3488 	get_page(vmf->page);
3489 	vmf->page->mapping = vma->vm_file->f_mapping;
3490 	vmf->page->index   = vmf->pgoff;
3491 
3492 	ret = 0;
3493 unlock:
3494 	rcu_read_unlock();
3495 
3496 	return ret;
3497 }
3498 
3499 static void rb_free_rcu(struct rcu_head *rcu_head)
3500 {
3501 	struct ring_buffer *rb;
3502 
3503 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3504 	rb_free(rb);
3505 }
3506 
3507 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3508 {
3509 	struct ring_buffer *rb;
3510 
3511 	rcu_read_lock();
3512 	rb = rcu_dereference(event->rb);
3513 	if (rb) {
3514 		if (!atomic_inc_not_zero(&rb->refcount))
3515 			rb = NULL;
3516 	}
3517 	rcu_read_unlock();
3518 
3519 	return rb;
3520 }
3521 
3522 static void ring_buffer_put(struct ring_buffer *rb)
3523 {
3524 	if (!atomic_dec_and_test(&rb->refcount))
3525 		return;
3526 
3527 	call_rcu(&rb->rcu_head, rb_free_rcu);
3528 }
3529 
3530 static void perf_mmap_open(struct vm_area_struct *vma)
3531 {
3532 	struct perf_event *event = vma->vm_file->private_data;
3533 
3534 	atomic_inc(&event->mmap_count);
3535 }
3536 
3537 static void perf_mmap_close(struct vm_area_struct *vma)
3538 {
3539 	struct perf_event *event = vma->vm_file->private_data;
3540 
3541 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3542 		unsigned long size = perf_data_size(event->rb);
3543 		struct user_struct *user = event->mmap_user;
3544 		struct ring_buffer *rb = event->rb;
3545 
3546 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3547 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3548 		rcu_assign_pointer(event->rb, NULL);
3549 		mutex_unlock(&event->mmap_mutex);
3550 
3551 		ring_buffer_put(rb);
3552 		free_uid(user);
3553 	}
3554 }
3555 
3556 static const struct vm_operations_struct perf_mmap_vmops = {
3557 	.open		= perf_mmap_open,
3558 	.close		= perf_mmap_close,
3559 	.fault		= perf_mmap_fault,
3560 	.page_mkwrite	= perf_mmap_fault,
3561 };
3562 
3563 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3564 {
3565 	struct perf_event *event = file->private_data;
3566 	unsigned long user_locked, user_lock_limit;
3567 	struct user_struct *user = current_user();
3568 	unsigned long locked, lock_limit;
3569 	struct ring_buffer *rb;
3570 	unsigned long vma_size;
3571 	unsigned long nr_pages;
3572 	long user_extra, extra;
3573 	int ret = 0, flags = 0;
3574 
3575 	/*
3576 	 * Don't allow mmap() of inherited per-task counters. This would
3577 	 * create a performance issue due to all children writing to the
3578 	 * same rb.
3579 	 */
3580 	if (event->cpu == -1 && event->attr.inherit)
3581 		return -EINVAL;
3582 
3583 	if (!(vma->vm_flags & VM_SHARED))
3584 		return -EINVAL;
3585 
3586 	vma_size = vma->vm_end - vma->vm_start;
3587 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3588 
3589 	/*
3590 	 * If we have rb pages ensure they're a power-of-two number, so we
3591 	 * can do bitmasks instead of modulo.
3592 	 */
3593 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3594 		return -EINVAL;
3595 
3596 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3597 		return -EINVAL;
3598 
3599 	if (vma->vm_pgoff != 0)
3600 		return -EINVAL;
3601 
3602 	WARN_ON_ONCE(event->ctx->parent_ctx);
3603 	mutex_lock(&event->mmap_mutex);
3604 	if (event->rb) {
3605 		if (event->rb->nr_pages == nr_pages)
3606 			atomic_inc(&event->rb->refcount);
3607 		else
3608 			ret = -EINVAL;
3609 		goto unlock;
3610 	}
3611 
3612 	user_extra = nr_pages + 1;
3613 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3614 
3615 	/*
3616 	 * Increase the limit linearly with more CPUs:
3617 	 */
3618 	user_lock_limit *= num_online_cpus();
3619 
3620 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3621 
3622 	extra = 0;
3623 	if (user_locked > user_lock_limit)
3624 		extra = user_locked - user_lock_limit;
3625 
3626 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3627 	lock_limit >>= PAGE_SHIFT;
3628 	locked = vma->vm_mm->pinned_vm + extra;
3629 
3630 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3631 		!capable(CAP_IPC_LOCK)) {
3632 		ret = -EPERM;
3633 		goto unlock;
3634 	}
3635 
3636 	WARN_ON(event->rb);
3637 
3638 	if (vma->vm_flags & VM_WRITE)
3639 		flags |= RING_BUFFER_WRITABLE;
3640 
3641 	rb = rb_alloc(nr_pages,
3642 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3643 		event->cpu, flags);
3644 
3645 	if (!rb) {
3646 		ret = -ENOMEM;
3647 		goto unlock;
3648 	}
3649 	rcu_assign_pointer(event->rb, rb);
3650 
3651 	atomic_long_add(user_extra, &user->locked_vm);
3652 	event->mmap_locked = extra;
3653 	event->mmap_user = get_current_user();
3654 	vma->vm_mm->pinned_vm += event->mmap_locked;
3655 
3656 unlock:
3657 	if (!ret)
3658 		atomic_inc(&event->mmap_count);
3659 	mutex_unlock(&event->mmap_mutex);
3660 
3661 	vma->vm_flags |= VM_RESERVED;
3662 	vma->vm_ops = &perf_mmap_vmops;
3663 
3664 	return ret;
3665 }
3666 
3667 static int perf_fasync(int fd, struct file *filp, int on)
3668 {
3669 	struct inode *inode = filp->f_path.dentry->d_inode;
3670 	struct perf_event *event = filp->private_data;
3671 	int retval;
3672 
3673 	mutex_lock(&inode->i_mutex);
3674 	retval = fasync_helper(fd, filp, on, &event->fasync);
3675 	mutex_unlock(&inode->i_mutex);
3676 
3677 	if (retval < 0)
3678 		return retval;
3679 
3680 	return 0;
3681 }
3682 
3683 static const struct file_operations perf_fops = {
3684 	.llseek			= no_llseek,
3685 	.release		= perf_release,
3686 	.read			= perf_read,
3687 	.poll			= perf_poll,
3688 	.unlocked_ioctl		= perf_ioctl,
3689 	.compat_ioctl		= perf_ioctl,
3690 	.mmap			= perf_mmap,
3691 	.fasync			= perf_fasync,
3692 };
3693 
3694 /*
3695  * Perf event wakeup
3696  *
3697  * If there's data, ensure we set the poll() state and publish everything
3698  * to user-space before waking everybody up.
3699  */
3700 
3701 void perf_event_wakeup(struct perf_event *event)
3702 {
3703 	wake_up_all(&event->waitq);
3704 
3705 	if (event->pending_kill) {
3706 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3707 		event->pending_kill = 0;
3708 	}
3709 }
3710 
3711 static void perf_pending_event(struct irq_work *entry)
3712 {
3713 	struct perf_event *event = container_of(entry,
3714 			struct perf_event, pending);
3715 
3716 	if (event->pending_disable) {
3717 		event->pending_disable = 0;
3718 		__perf_event_disable(event);
3719 	}
3720 
3721 	if (event->pending_wakeup) {
3722 		event->pending_wakeup = 0;
3723 		perf_event_wakeup(event);
3724 	}
3725 }
3726 
3727 /*
3728  * We assume there is only KVM supporting the callbacks.
3729  * Later on, we might change it to a list if there is
3730  * another virtualization implementation supporting the callbacks.
3731  */
3732 struct perf_guest_info_callbacks *perf_guest_cbs;
3733 
3734 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3735 {
3736 	perf_guest_cbs = cbs;
3737 	return 0;
3738 }
3739 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3740 
3741 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3742 {
3743 	perf_guest_cbs = NULL;
3744 	return 0;
3745 }
3746 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3747 
3748 static void __perf_event_header__init_id(struct perf_event_header *header,
3749 					 struct perf_sample_data *data,
3750 					 struct perf_event *event)
3751 {
3752 	u64 sample_type = event->attr.sample_type;
3753 
3754 	data->type = sample_type;
3755 	header->size += event->id_header_size;
3756 
3757 	if (sample_type & PERF_SAMPLE_TID) {
3758 		/* namespace issues */
3759 		data->tid_entry.pid = perf_event_pid(event, current);
3760 		data->tid_entry.tid = perf_event_tid(event, current);
3761 	}
3762 
3763 	if (sample_type & PERF_SAMPLE_TIME)
3764 		data->time = perf_clock();
3765 
3766 	if (sample_type & PERF_SAMPLE_ID)
3767 		data->id = primary_event_id(event);
3768 
3769 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3770 		data->stream_id = event->id;
3771 
3772 	if (sample_type & PERF_SAMPLE_CPU) {
3773 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3774 		data->cpu_entry.reserved = 0;
3775 	}
3776 }
3777 
3778 void perf_event_header__init_id(struct perf_event_header *header,
3779 				struct perf_sample_data *data,
3780 				struct perf_event *event)
3781 {
3782 	if (event->attr.sample_id_all)
3783 		__perf_event_header__init_id(header, data, event);
3784 }
3785 
3786 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3787 					   struct perf_sample_data *data)
3788 {
3789 	u64 sample_type = data->type;
3790 
3791 	if (sample_type & PERF_SAMPLE_TID)
3792 		perf_output_put(handle, data->tid_entry);
3793 
3794 	if (sample_type & PERF_SAMPLE_TIME)
3795 		perf_output_put(handle, data->time);
3796 
3797 	if (sample_type & PERF_SAMPLE_ID)
3798 		perf_output_put(handle, data->id);
3799 
3800 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3801 		perf_output_put(handle, data->stream_id);
3802 
3803 	if (sample_type & PERF_SAMPLE_CPU)
3804 		perf_output_put(handle, data->cpu_entry);
3805 }
3806 
3807 void perf_event__output_id_sample(struct perf_event *event,
3808 				  struct perf_output_handle *handle,
3809 				  struct perf_sample_data *sample)
3810 {
3811 	if (event->attr.sample_id_all)
3812 		__perf_event__output_id_sample(handle, sample);
3813 }
3814 
3815 static void perf_output_read_one(struct perf_output_handle *handle,
3816 				 struct perf_event *event,
3817 				 u64 enabled, u64 running)
3818 {
3819 	u64 read_format = event->attr.read_format;
3820 	u64 values[4];
3821 	int n = 0;
3822 
3823 	values[n++] = perf_event_count(event);
3824 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3825 		values[n++] = enabled +
3826 			atomic64_read(&event->child_total_time_enabled);
3827 	}
3828 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3829 		values[n++] = running +
3830 			atomic64_read(&event->child_total_time_running);
3831 	}
3832 	if (read_format & PERF_FORMAT_ID)
3833 		values[n++] = primary_event_id(event);
3834 
3835 	__output_copy(handle, values, n * sizeof(u64));
3836 }
3837 
3838 /*
3839  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3840  */
3841 static void perf_output_read_group(struct perf_output_handle *handle,
3842 			    struct perf_event *event,
3843 			    u64 enabled, u64 running)
3844 {
3845 	struct perf_event *leader = event->group_leader, *sub;
3846 	u64 read_format = event->attr.read_format;
3847 	u64 values[5];
3848 	int n = 0;
3849 
3850 	values[n++] = 1 + leader->nr_siblings;
3851 
3852 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3853 		values[n++] = enabled;
3854 
3855 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3856 		values[n++] = running;
3857 
3858 	if (leader != event)
3859 		leader->pmu->read(leader);
3860 
3861 	values[n++] = perf_event_count(leader);
3862 	if (read_format & PERF_FORMAT_ID)
3863 		values[n++] = primary_event_id(leader);
3864 
3865 	__output_copy(handle, values, n * sizeof(u64));
3866 
3867 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3868 		n = 0;
3869 
3870 		if (sub != event)
3871 			sub->pmu->read(sub);
3872 
3873 		values[n++] = perf_event_count(sub);
3874 		if (read_format & PERF_FORMAT_ID)
3875 			values[n++] = primary_event_id(sub);
3876 
3877 		__output_copy(handle, values, n * sizeof(u64));
3878 	}
3879 }
3880 
3881 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3882 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3883 
3884 static void perf_output_read(struct perf_output_handle *handle,
3885 			     struct perf_event *event)
3886 {
3887 	u64 enabled = 0, running = 0;
3888 	u64 read_format = event->attr.read_format;
3889 
3890 	/*
3891 	 * compute total_time_enabled, total_time_running
3892 	 * based on snapshot values taken when the event
3893 	 * was last scheduled in.
3894 	 *
3895 	 * we cannot simply called update_context_time()
3896 	 * because of locking issue as we are called in
3897 	 * NMI context
3898 	 */
3899 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3900 		calc_timer_values(event, &enabled, &running);
3901 
3902 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3903 		perf_output_read_group(handle, event, enabled, running);
3904 	else
3905 		perf_output_read_one(handle, event, enabled, running);
3906 }
3907 
3908 void perf_output_sample(struct perf_output_handle *handle,
3909 			struct perf_event_header *header,
3910 			struct perf_sample_data *data,
3911 			struct perf_event *event)
3912 {
3913 	u64 sample_type = data->type;
3914 
3915 	perf_output_put(handle, *header);
3916 
3917 	if (sample_type & PERF_SAMPLE_IP)
3918 		perf_output_put(handle, data->ip);
3919 
3920 	if (sample_type & PERF_SAMPLE_TID)
3921 		perf_output_put(handle, data->tid_entry);
3922 
3923 	if (sample_type & PERF_SAMPLE_TIME)
3924 		perf_output_put(handle, data->time);
3925 
3926 	if (sample_type & PERF_SAMPLE_ADDR)
3927 		perf_output_put(handle, data->addr);
3928 
3929 	if (sample_type & PERF_SAMPLE_ID)
3930 		perf_output_put(handle, data->id);
3931 
3932 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3933 		perf_output_put(handle, data->stream_id);
3934 
3935 	if (sample_type & PERF_SAMPLE_CPU)
3936 		perf_output_put(handle, data->cpu_entry);
3937 
3938 	if (sample_type & PERF_SAMPLE_PERIOD)
3939 		perf_output_put(handle, data->period);
3940 
3941 	if (sample_type & PERF_SAMPLE_READ)
3942 		perf_output_read(handle, event);
3943 
3944 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3945 		if (data->callchain) {
3946 			int size = 1;
3947 
3948 			if (data->callchain)
3949 				size += data->callchain->nr;
3950 
3951 			size *= sizeof(u64);
3952 
3953 			__output_copy(handle, data->callchain, size);
3954 		} else {
3955 			u64 nr = 0;
3956 			perf_output_put(handle, nr);
3957 		}
3958 	}
3959 
3960 	if (sample_type & PERF_SAMPLE_RAW) {
3961 		if (data->raw) {
3962 			perf_output_put(handle, data->raw->size);
3963 			__output_copy(handle, data->raw->data,
3964 					   data->raw->size);
3965 		} else {
3966 			struct {
3967 				u32	size;
3968 				u32	data;
3969 			} raw = {
3970 				.size = sizeof(u32),
3971 				.data = 0,
3972 			};
3973 			perf_output_put(handle, raw);
3974 		}
3975 	}
3976 
3977 	if (!event->attr.watermark) {
3978 		int wakeup_events = event->attr.wakeup_events;
3979 
3980 		if (wakeup_events) {
3981 			struct ring_buffer *rb = handle->rb;
3982 			int events = local_inc_return(&rb->events);
3983 
3984 			if (events >= wakeup_events) {
3985 				local_sub(wakeup_events, &rb->events);
3986 				local_inc(&rb->wakeup);
3987 			}
3988 		}
3989 	}
3990 }
3991 
3992 void perf_prepare_sample(struct perf_event_header *header,
3993 			 struct perf_sample_data *data,
3994 			 struct perf_event *event,
3995 			 struct pt_regs *regs)
3996 {
3997 	u64 sample_type = event->attr.sample_type;
3998 
3999 	header->type = PERF_RECORD_SAMPLE;
4000 	header->size = sizeof(*header) + event->header_size;
4001 
4002 	header->misc = 0;
4003 	header->misc |= perf_misc_flags(regs);
4004 
4005 	__perf_event_header__init_id(header, data, event);
4006 
4007 	if (sample_type & PERF_SAMPLE_IP)
4008 		data->ip = perf_instruction_pointer(regs);
4009 
4010 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4011 		int size = 1;
4012 
4013 		data->callchain = perf_callchain(regs);
4014 
4015 		if (data->callchain)
4016 			size += data->callchain->nr;
4017 
4018 		header->size += size * sizeof(u64);
4019 	}
4020 
4021 	if (sample_type & PERF_SAMPLE_RAW) {
4022 		int size = sizeof(u32);
4023 
4024 		if (data->raw)
4025 			size += data->raw->size;
4026 		else
4027 			size += sizeof(u32);
4028 
4029 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4030 		header->size += size;
4031 	}
4032 }
4033 
4034 static void perf_event_output(struct perf_event *event,
4035 				struct perf_sample_data *data,
4036 				struct pt_regs *regs)
4037 {
4038 	struct perf_output_handle handle;
4039 	struct perf_event_header header;
4040 
4041 	/* protect the callchain buffers */
4042 	rcu_read_lock();
4043 
4044 	perf_prepare_sample(&header, data, event, regs);
4045 
4046 	if (perf_output_begin(&handle, event, header.size))
4047 		goto exit;
4048 
4049 	perf_output_sample(&handle, &header, data, event);
4050 
4051 	perf_output_end(&handle);
4052 
4053 exit:
4054 	rcu_read_unlock();
4055 }
4056 
4057 /*
4058  * read event_id
4059  */
4060 
4061 struct perf_read_event {
4062 	struct perf_event_header	header;
4063 
4064 	u32				pid;
4065 	u32				tid;
4066 };
4067 
4068 static void
4069 perf_event_read_event(struct perf_event *event,
4070 			struct task_struct *task)
4071 {
4072 	struct perf_output_handle handle;
4073 	struct perf_sample_data sample;
4074 	struct perf_read_event read_event = {
4075 		.header = {
4076 			.type = PERF_RECORD_READ,
4077 			.misc = 0,
4078 			.size = sizeof(read_event) + event->read_size,
4079 		},
4080 		.pid = perf_event_pid(event, task),
4081 		.tid = perf_event_tid(event, task),
4082 	};
4083 	int ret;
4084 
4085 	perf_event_header__init_id(&read_event.header, &sample, event);
4086 	ret = perf_output_begin(&handle, event, read_event.header.size);
4087 	if (ret)
4088 		return;
4089 
4090 	perf_output_put(&handle, read_event);
4091 	perf_output_read(&handle, event);
4092 	perf_event__output_id_sample(event, &handle, &sample);
4093 
4094 	perf_output_end(&handle);
4095 }
4096 
4097 /*
4098  * task tracking -- fork/exit
4099  *
4100  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4101  */
4102 
4103 struct perf_task_event {
4104 	struct task_struct		*task;
4105 	struct perf_event_context	*task_ctx;
4106 
4107 	struct {
4108 		struct perf_event_header	header;
4109 
4110 		u32				pid;
4111 		u32				ppid;
4112 		u32				tid;
4113 		u32				ptid;
4114 		u64				time;
4115 	} event_id;
4116 };
4117 
4118 static void perf_event_task_output(struct perf_event *event,
4119 				     struct perf_task_event *task_event)
4120 {
4121 	struct perf_output_handle handle;
4122 	struct perf_sample_data	sample;
4123 	struct task_struct *task = task_event->task;
4124 	int ret, size = task_event->event_id.header.size;
4125 
4126 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4127 
4128 	ret = perf_output_begin(&handle, event,
4129 				task_event->event_id.header.size);
4130 	if (ret)
4131 		goto out;
4132 
4133 	task_event->event_id.pid = perf_event_pid(event, task);
4134 	task_event->event_id.ppid = perf_event_pid(event, current);
4135 
4136 	task_event->event_id.tid = perf_event_tid(event, task);
4137 	task_event->event_id.ptid = perf_event_tid(event, current);
4138 
4139 	perf_output_put(&handle, task_event->event_id);
4140 
4141 	perf_event__output_id_sample(event, &handle, &sample);
4142 
4143 	perf_output_end(&handle);
4144 out:
4145 	task_event->event_id.header.size = size;
4146 }
4147 
4148 static int perf_event_task_match(struct perf_event *event)
4149 {
4150 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4151 		return 0;
4152 
4153 	if (!event_filter_match(event))
4154 		return 0;
4155 
4156 	if (event->attr.comm || event->attr.mmap ||
4157 	    event->attr.mmap_data || event->attr.task)
4158 		return 1;
4159 
4160 	return 0;
4161 }
4162 
4163 static void perf_event_task_ctx(struct perf_event_context *ctx,
4164 				  struct perf_task_event *task_event)
4165 {
4166 	struct perf_event *event;
4167 
4168 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4169 		if (perf_event_task_match(event))
4170 			perf_event_task_output(event, task_event);
4171 	}
4172 }
4173 
4174 static void perf_event_task_event(struct perf_task_event *task_event)
4175 {
4176 	struct perf_cpu_context *cpuctx;
4177 	struct perf_event_context *ctx;
4178 	struct pmu *pmu;
4179 	int ctxn;
4180 
4181 	rcu_read_lock();
4182 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4183 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4184 		if (cpuctx->active_pmu != pmu)
4185 			goto next;
4186 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4187 
4188 		ctx = task_event->task_ctx;
4189 		if (!ctx) {
4190 			ctxn = pmu->task_ctx_nr;
4191 			if (ctxn < 0)
4192 				goto next;
4193 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4194 		}
4195 		if (ctx)
4196 			perf_event_task_ctx(ctx, task_event);
4197 next:
4198 		put_cpu_ptr(pmu->pmu_cpu_context);
4199 	}
4200 	rcu_read_unlock();
4201 }
4202 
4203 static void perf_event_task(struct task_struct *task,
4204 			      struct perf_event_context *task_ctx,
4205 			      int new)
4206 {
4207 	struct perf_task_event task_event;
4208 
4209 	if (!atomic_read(&nr_comm_events) &&
4210 	    !atomic_read(&nr_mmap_events) &&
4211 	    !atomic_read(&nr_task_events))
4212 		return;
4213 
4214 	task_event = (struct perf_task_event){
4215 		.task	  = task,
4216 		.task_ctx = task_ctx,
4217 		.event_id    = {
4218 			.header = {
4219 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4220 				.misc = 0,
4221 				.size = sizeof(task_event.event_id),
4222 			},
4223 			/* .pid  */
4224 			/* .ppid */
4225 			/* .tid  */
4226 			/* .ptid */
4227 			.time = perf_clock(),
4228 		},
4229 	};
4230 
4231 	perf_event_task_event(&task_event);
4232 }
4233 
4234 void perf_event_fork(struct task_struct *task)
4235 {
4236 	perf_event_task(task, NULL, 1);
4237 }
4238 
4239 /*
4240  * comm tracking
4241  */
4242 
4243 struct perf_comm_event {
4244 	struct task_struct	*task;
4245 	char			*comm;
4246 	int			comm_size;
4247 
4248 	struct {
4249 		struct perf_event_header	header;
4250 
4251 		u32				pid;
4252 		u32				tid;
4253 	} event_id;
4254 };
4255 
4256 static void perf_event_comm_output(struct perf_event *event,
4257 				     struct perf_comm_event *comm_event)
4258 {
4259 	struct perf_output_handle handle;
4260 	struct perf_sample_data sample;
4261 	int size = comm_event->event_id.header.size;
4262 	int ret;
4263 
4264 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4265 	ret = perf_output_begin(&handle, event,
4266 				comm_event->event_id.header.size);
4267 
4268 	if (ret)
4269 		goto out;
4270 
4271 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4272 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4273 
4274 	perf_output_put(&handle, comm_event->event_id);
4275 	__output_copy(&handle, comm_event->comm,
4276 				   comm_event->comm_size);
4277 
4278 	perf_event__output_id_sample(event, &handle, &sample);
4279 
4280 	perf_output_end(&handle);
4281 out:
4282 	comm_event->event_id.header.size = size;
4283 }
4284 
4285 static int perf_event_comm_match(struct perf_event *event)
4286 {
4287 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4288 		return 0;
4289 
4290 	if (!event_filter_match(event))
4291 		return 0;
4292 
4293 	if (event->attr.comm)
4294 		return 1;
4295 
4296 	return 0;
4297 }
4298 
4299 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4300 				  struct perf_comm_event *comm_event)
4301 {
4302 	struct perf_event *event;
4303 
4304 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4305 		if (perf_event_comm_match(event))
4306 			perf_event_comm_output(event, comm_event);
4307 	}
4308 }
4309 
4310 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4311 {
4312 	struct perf_cpu_context *cpuctx;
4313 	struct perf_event_context *ctx;
4314 	char comm[TASK_COMM_LEN];
4315 	unsigned int size;
4316 	struct pmu *pmu;
4317 	int ctxn;
4318 
4319 	memset(comm, 0, sizeof(comm));
4320 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4321 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4322 
4323 	comm_event->comm = comm;
4324 	comm_event->comm_size = size;
4325 
4326 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4327 	rcu_read_lock();
4328 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4329 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4330 		if (cpuctx->active_pmu != pmu)
4331 			goto next;
4332 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4333 
4334 		ctxn = pmu->task_ctx_nr;
4335 		if (ctxn < 0)
4336 			goto next;
4337 
4338 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4339 		if (ctx)
4340 			perf_event_comm_ctx(ctx, comm_event);
4341 next:
4342 		put_cpu_ptr(pmu->pmu_cpu_context);
4343 	}
4344 	rcu_read_unlock();
4345 }
4346 
4347 void perf_event_comm(struct task_struct *task)
4348 {
4349 	struct perf_comm_event comm_event;
4350 	struct perf_event_context *ctx;
4351 	int ctxn;
4352 
4353 	for_each_task_context_nr(ctxn) {
4354 		ctx = task->perf_event_ctxp[ctxn];
4355 		if (!ctx)
4356 			continue;
4357 
4358 		perf_event_enable_on_exec(ctx);
4359 	}
4360 
4361 	if (!atomic_read(&nr_comm_events))
4362 		return;
4363 
4364 	comm_event = (struct perf_comm_event){
4365 		.task	= task,
4366 		/* .comm      */
4367 		/* .comm_size */
4368 		.event_id  = {
4369 			.header = {
4370 				.type = PERF_RECORD_COMM,
4371 				.misc = 0,
4372 				/* .size */
4373 			},
4374 			/* .pid */
4375 			/* .tid */
4376 		},
4377 	};
4378 
4379 	perf_event_comm_event(&comm_event);
4380 }
4381 
4382 /*
4383  * mmap tracking
4384  */
4385 
4386 struct perf_mmap_event {
4387 	struct vm_area_struct	*vma;
4388 
4389 	const char		*file_name;
4390 	int			file_size;
4391 
4392 	struct {
4393 		struct perf_event_header	header;
4394 
4395 		u32				pid;
4396 		u32				tid;
4397 		u64				start;
4398 		u64				len;
4399 		u64				pgoff;
4400 	} event_id;
4401 };
4402 
4403 static void perf_event_mmap_output(struct perf_event *event,
4404 				     struct perf_mmap_event *mmap_event)
4405 {
4406 	struct perf_output_handle handle;
4407 	struct perf_sample_data sample;
4408 	int size = mmap_event->event_id.header.size;
4409 	int ret;
4410 
4411 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4412 	ret = perf_output_begin(&handle, event,
4413 				mmap_event->event_id.header.size);
4414 	if (ret)
4415 		goto out;
4416 
4417 	mmap_event->event_id.pid = perf_event_pid(event, current);
4418 	mmap_event->event_id.tid = perf_event_tid(event, current);
4419 
4420 	perf_output_put(&handle, mmap_event->event_id);
4421 	__output_copy(&handle, mmap_event->file_name,
4422 				   mmap_event->file_size);
4423 
4424 	perf_event__output_id_sample(event, &handle, &sample);
4425 
4426 	perf_output_end(&handle);
4427 out:
4428 	mmap_event->event_id.header.size = size;
4429 }
4430 
4431 static int perf_event_mmap_match(struct perf_event *event,
4432 				   struct perf_mmap_event *mmap_event,
4433 				   int executable)
4434 {
4435 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4436 		return 0;
4437 
4438 	if (!event_filter_match(event))
4439 		return 0;
4440 
4441 	if ((!executable && event->attr.mmap_data) ||
4442 	    (executable && event->attr.mmap))
4443 		return 1;
4444 
4445 	return 0;
4446 }
4447 
4448 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4449 				  struct perf_mmap_event *mmap_event,
4450 				  int executable)
4451 {
4452 	struct perf_event *event;
4453 
4454 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4455 		if (perf_event_mmap_match(event, mmap_event, executable))
4456 			perf_event_mmap_output(event, mmap_event);
4457 	}
4458 }
4459 
4460 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4461 {
4462 	struct perf_cpu_context *cpuctx;
4463 	struct perf_event_context *ctx;
4464 	struct vm_area_struct *vma = mmap_event->vma;
4465 	struct file *file = vma->vm_file;
4466 	unsigned int size;
4467 	char tmp[16];
4468 	char *buf = NULL;
4469 	const char *name;
4470 	struct pmu *pmu;
4471 	int ctxn;
4472 
4473 	memset(tmp, 0, sizeof(tmp));
4474 
4475 	if (file) {
4476 		/*
4477 		 * d_path works from the end of the rb backwards, so we
4478 		 * need to add enough zero bytes after the string to handle
4479 		 * the 64bit alignment we do later.
4480 		 */
4481 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4482 		if (!buf) {
4483 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4484 			goto got_name;
4485 		}
4486 		name = d_path(&file->f_path, buf, PATH_MAX);
4487 		if (IS_ERR(name)) {
4488 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4489 			goto got_name;
4490 		}
4491 	} else {
4492 		if (arch_vma_name(mmap_event->vma)) {
4493 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4494 				       sizeof(tmp));
4495 			goto got_name;
4496 		}
4497 
4498 		if (!vma->vm_mm) {
4499 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4500 			goto got_name;
4501 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4502 				vma->vm_end >= vma->vm_mm->brk) {
4503 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4504 			goto got_name;
4505 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4506 				vma->vm_end >= vma->vm_mm->start_stack) {
4507 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4508 			goto got_name;
4509 		}
4510 
4511 		name = strncpy(tmp, "//anon", sizeof(tmp));
4512 		goto got_name;
4513 	}
4514 
4515 got_name:
4516 	size = ALIGN(strlen(name)+1, sizeof(u64));
4517 
4518 	mmap_event->file_name = name;
4519 	mmap_event->file_size = size;
4520 
4521 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4522 
4523 	rcu_read_lock();
4524 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4525 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4526 		if (cpuctx->active_pmu != pmu)
4527 			goto next;
4528 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4529 					vma->vm_flags & VM_EXEC);
4530 
4531 		ctxn = pmu->task_ctx_nr;
4532 		if (ctxn < 0)
4533 			goto next;
4534 
4535 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4536 		if (ctx) {
4537 			perf_event_mmap_ctx(ctx, mmap_event,
4538 					vma->vm_flags & VM_EXEC);
4539 		}
4540 next:
4541 		put_cpu_ptr(pmu->pmu_cpu_context);
4542 	}
4543 	rcu_read_unlock();
4544 
4545 	kfree(buf);
4546 }
4547 
4548 void perf_event_mmap(struct vm_area_struct *vma)
4549 {
4550 	struct perf_mmap_event mmap_event;
4551 
4552 	if (!atomic_read(&nr_mmap_events))
4553 		return;
4554 
4555 	mmap_event = (struct perf_mmap_event){
4556 		.vma	= vma,
4557 		/* .file_name */
4558 		/* .file_size */
4559 		.event_id  = {
4560 			.header = {
4561 				.type = PERF_RECORD_MMAP,
4562 				.misc = PERF_RECORD_MISC_USER,
4563 				/* .size */
4564 			},
4565 			/* .pid */
4566 			/* .tid */
4567 			.start  = vma->vm_start,
4568 			.len    = vma->vm_end - vma->vm_start,
4569 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4570 		},
4571 	};
4572 
4573 	perf_event_mmap_event(&mmap_event);
4574 }
4575 
4576 /*
4577  * IRQ throttle logging
4578  */
4579 
4580 static void perf_log_throttle(struct perf_event *event, int enable)
4581 {
4582 	struct perf_output_handle handle;
4583 	struct perf_sample_data sample;
4584 	int ret;
4585 
4586 	struct {
4587 		struct perf_event_header	header;
4588 		u64				time;
4589 		u64				id;
4590 		u64				stream_id;
4591 	} throttle_event = {
4592 		.header = {
4593 			.type = PERF_RECORD_THROTTLE,
4594 			.misc = 0,
4595 			.size = sizeof(throttle_event),
4596 		},
4597 		.time		= perf_clock(),
4598 		.id		= primary_event_id(event),
4599 		.stream_id	= event->id,
4600 	};
4601 
4602 	if (enable)
4603 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4604 
4605 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4606 
4607 	ret = perf_output_begin(&handle, event,
4608 				throttle_event.header.size);
4609 	if (ret)
4610 		return;
4611 
4612 	perf_output_put(&handle, throttle_event);
4613 	perf_event__output_id_sample(event, &handle, &sample);
4614 	perf_output_end(&handle);
4615 }
4616 
4617 /*
4618  * Generic event overflow handling, sampling.
4619  */
4620 
4621 static int __perf_event_overflow(struct perf_event *event,
4622 				   int throttle, struct perf_sample_data *data,
4623 				   struct pt_regs *regs)
4624 {
4625 	int events = atomic_read(&event->event_limit);
4626 	struct hw_perf_event *hwc = &event->hw;
4627 	int ret = 0;
4628 
4629 	/*
4630 	 * Non-sampling counters might still use the PMI to fold short
4631 	 * hardware counters, ignore those.
4632 	 */
4633 	if (unlikely(!is_sampling_event(event)))
4634 		return 0;
4635 
4636 	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4637 		if (throttle) {
4638 			hwc->interrupts = MAX_INTERRUPTS;
4639 			perf_log_throttle(event, 0);
4640 			ret = 1;
4641 		}
4642 	} else
4643 		hwc->interrupts++;
4644 
4645 	if (event->attr.freq) {
4646 		u64 now = perf_clock();
4647 		s64 delta = now - hwc->freq_time_stamp;
4648 
4649 		hwc->freq_time_stamp = now;
4650 
4651 		if (delta > 0 && delta < 2*TICK_NSEC)
4652 			perf_adjust_period(event, delta, hwc->last_period);
4653 	}
4654 
4655 	/*
4656 	 * XXX event_limit might not quite work as expected on inherited
4657 	 * events
4658 	 */
4659 
4660 	event->pending_kill = POLL_IN;
4661 	if (events && atomic_dec_and_test(&event->event_limit)) {
4662 		ret = 1;
4663 		event->pending_kill = POLL_HUP;
4664 		event->pending_disable = 1;
4665 		irq_work_queue(&event->pending);
4666 	}
4667 
4668 	if (event->overflow_handler)
4669 		event->overflow_handler(event, data, regs);
4670 	else
4671 		perf_event_output(event, data, regs);
4672 
4673 	if (event->fasync && event->pending_kill) {
4674 		event->pending_wakeup = 1;
4675 		irq_work_queue(&event->pending);
4676 	}
4677 
4678 	return ret;
4679 }
4680 
4681 int perf_event_overflow(struct perf_event *event,
4682 			  struct perf_sample_data *data,
4683 			  struct pt_regs *regs)
4684 {
4685 	return __perf_event_overflow(event, 1, data, regs);
4686 }
4687 
4688 /*
4689  * Generic software event infrastructure
4690  */
4691 
4692 struct swevent_htable {
4693 	struct swevent_hlist		*swevent_hlist;
4694 	struct mutex			hlist_mutex;
4695 	int				hlist_refcount;
4696 
4697 	/* Recursion avoidance in each contexts */
4698 	int				recursion[PERF_NR_CONTEXTS];
4699 };
4700 
4701 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4702 
4703 /*
4704  * We directly increment event->count and keep a second value in
4705  * event->hw.period_left to count intervals. This period event
4706  * is kept in the range [-sample_period, 0] so that we can use the
4707  * sign as trigger.
4708  */
4709 
4710 static u64 perf_swevent_set_period(struct perf_event *event)
4711 {
4712 	struct hw_perf_event *hwc = &event->hw;
4713 	u64 period = hwc->last_period;
4714 	u64 nr, offset;
4715 	s64 old, val;
4716 
4717 	hwc->last_period = hwc->sample_period;
4718 
4719 again:
4720 	old = val = local64_read(&hwc->period_left);
4721 	if (val < 0)
4722 		return 0;
4723 
4724 	nr = div64_u64(period + val, period);
4725 	offset = nr * period;
4726 	val -= offset;
4727 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4728 		goto again;
4729 
4730 	return nr;
4731 }
4732 
4733 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4734 				    struct perf_sample_data *data,
4735 				    struct pt_regs *regs)
4736 {
4737 	struct hw_perf_event *hwc = &event->hw;
4738 	int throttle = 0;
4739 
4740 	data->period = event->hw.last_period;
4741 	if (!overflow)
4742 		overflow = perf_swevent_set_period(event);
4743 
4744 	if (hwc->interrupts == MAX_INTERRUPTS)
4745 		return;
4746 
4747 	for (; overflow; overflow--) {
4748 		if (__perf_event_overflow(event, throttle,
4749 					    data, regs)) {
4750 			/*
4751 			 * We inhibit the overflow from happening when
4752 			 * hwc->interrupts == MAX_INTERRUPTS.
4753 			 */
4754 			break;
4755 		}
4756 		throttle = 1;
4757 	}
4758 }
4759 
4760 static void perf_swevent_event(struct perf_event *event, u64 nr,
4761 			       struct perf_sample_data *data,
4762 			       struct pt_regs *regs)
4763 {
4764 	struct hw_perf_event *hwc = &event->hw;
4765 
4766 	local64_add(nr, &event->count);
4767 
4768 	if (!regs)
4769 		return;
4770 
4771 	if (!is_sampling_event(event))
4772 		return;
4773 
4774 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4775 		return perf_swevent_overflow(event, 1, data, regs);
4776 
4777 	if (local64_add_negative(nr, &hwc->period_left))
4778 		return;
4779 
4780 	perf_swevent_overflow(event, 0, data, regs);
4781 }
4782 
4783 static int perf_exclude_event(struct perf_event *event,
4784 			      struct pt_regs *regs)
4785 {
4786 	if (event->hw.state & PERF_HES_STOPPED)
4787 		return 1;
4788 
4789 	if (regs) {
4790 		if (event->attr.exclude_user && user_mode(regs))
4791 			return 1;
4792 
4793 		if (event->attr.exclude_kernel && !user_mode(regs))
4794 			return 1;
4795 	}
4796 
4797 	return 0;
4798 }
4799 
4800 static int perf_swevent_match(struct perf_event *event,
4801 				enum perf_type_id type,
4802 				u32 event_id,
4803 				struct perf_sample_data *data,
4804 				struct pt_regs *regs)
4805 {
4806 	if (event->attr.type != type)
4807 		return 0;
4808 
4809 	if (event->attr.config != event_id)
4810 		return 0;
4811 
4812 	if (perf_exclude_event(event, regs))
4813 		return 0;
4814 
4815 	return 1;
4816 }
4817 
4818 static inline u64 swevent_hash(u64 type, u32 event_id)
4819 {
4820 	u64 val = event_id | (type << 32);
4821 
4822 	return hash_64(val, SWEVENT_HLIST_BITS);
4823 }
4824 
4825 static inline struct hlist_head *
4826 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4827 {
4828 	u64 hash = swevent_hash(type, event_id);
4829 
4830 	return &hlist->heads[hash];
4831 }
4832 
4833 /* For the read side: events when they trigger */
4834 static inline struct hlist_head *
4835 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4836 {
4837 	struct swevent_hlist *hlist;
4838 
4839 	hlist = rcu_dereference(swhash->swevent_hlist);
4840 	if (!hlist)
4841 		return NULL;
4842 
4843 	return __find_swevent_head(hlist, type, event_id);
4844 }
4845 
4846 /* For the event head insertion and removal in the hlist */
4847 static inline struct hlist_head *
4848 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4849 {
4850 	struct swevent_hlist *hlist;
4851 	u32 event_id = event->attr.config;
4852 	u64 type = event->attr.type;
4853 
4854 	/*
4855 	 * Event scheduling is always serialized against hlist allocation
4856 	 * and release. Which makes the protected version suitable here.
4857 	 * The context lock guarantees that.
4858 	 */
4859 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4860 					  lockdep_is_held(&event->ctx->lock));
4861 	if (!hlist)
4862 		return NULL;
4863 
4864 	return __find_swevent_head(hlist, type, event_id);
4865 }
4866 
4867 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4868 				    u64 nr,
4869 				    struct perf_sample_data *data,
4870 				    struct pt_regs *regs)
4871 {
4872 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4873 	struct perf_event *event;
4874 	struct hlist_node *node;
4875 	struct hlist_head *head;
4876 
4877 	rcu_read_lock();
4878 	head = find_swevent_head_rcu(swhash, type, event_id);
4879 	if (!head)
4880 		goto end;
4881 
4882 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4883 		if (perf_swevent_match(event, type, event_id, data, regs))
4884 			perf_swevent_event(event, nr, data, regs);
4885 	}
4886 end:
4887 	rcu_read_unlock();
4888 }
4889 
4890 int perf_swevent_get_recursion_context(void)
4891 {
4892 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4893 
4894 	return get_recursion_context(swhash->recursion);
4895 }
4896 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4897 
4898 inline void perf_swevent_put_recursion_context(int rctx)
4899 {
4900 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4901 
4902 	put_recursion_context(swhash->recursion, rctx);
4903 }
4904 
4905 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4906 {
4907 	struct perf_sample_data data;
4908 	int rctx;
4909 
4910 	preempt_disable_notrace();
4911 	rctx = perf_swevent_get_recursion_context();
4912 	if (rctx < 0)
4913 		return;
4914 
4915 	perf_sample_data_init(&data, addr);
4916 
4917 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4918 
4919 	perf_swevent_put_recursion_context(rctx);
4920 	preempt_enable_notrace();
4921 }
4922 
4923 static void perf_swevent_read(struct perf_event *event)
4924 {
4925 }
4926 
4927 static int perf_swevent_add(struct perf_event *event, int flags)
4928 {
4929 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4930 	struct hw_perf_event *hwc = &event->hw;
4931 	struct hlist_head *head;
4932 
4933 	if (is_sampling_event(event)) {
4934 		hwc->last_period = hwc->sample_period;
4935 		perf_swevent_set_period(event);
4936 	}
4937 
4938 	hwc->state = !(flags & PERF_EF_START);
4939 
4940 	head = find_swevent_head(swhash, event);
4941 	if (WARN_ON_ONCE(!head))
4942 		return -EINVAL;
4943 
4944 	hlist_add_head_rcu(&event->hlist_entry, head);
4945 
4946 	return 0;
4947 }
4948 
4949 static void perf_swevent_del(struct perf_event *event, int flags)
4950 {
4951 	hlist_del_rcu(&event->hlist_entry);
4952 }
4953 
4954 static void perf_swevent_start(struct perf_event *event, int flags)
4955 {
4956 	event->hw.state = 0;
4957 }
4958 
4959 static void perf_swevent_stop(struct perf_event *event, int flags)
4960 {
4961 	event->hw.state = PERF_HES_STOPPED;
4962 }
4963 
4964 /* Deref the hlist from the update side */
4965 static inline struct swevent_hlist *
4966 swevent_hlist_deref(struct swevent_htable *swhash)
4967 {
4968 	return rcu_dereference_protected(swhash->swevent_hlist,
4969 					 lockdep_is_held(&swhash->hlist_mutex));
4970 }
4971 
4972 static void swevent_hlist_release(struct swevent_htable *swhash)
4973 {
4974 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4975 
4976 	if (!hlist)
4977 		return;
4978 
4979 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4980 	kfree_rcu(hlist, rcu_head);
4981 }
4982 
4983 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4984 {
4985 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4986 
4987 	mutex_lock(&swhash->hlist_mutex);
4988 
4989 	if (!--swhash->hlist_refcount)
4990 		swevent_hlist_release(swhash);
4991 
4992 	mutex_unlock(&swhash->hlist_mutex);
4993 }
4994 
4995 static void swevent_hlist_put(struct perf_event *event)
4996 {
4997 	int cpu;
4998 
4999 	if (event->cpu != -1) {
5000 		swevent_hlist_put_cpu(event, event->cpu);
5001 		return;
5002 	}
5003 
5004 	for_each_possible_cpu(cpu)
5005 		swevent_hlist_put_cpu(event, cpu);
5006 }
5007 
5008 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5009 {
5010 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5011 	int err = 0;
5012 
5013 	mutex_lock(&swhash->hlist_mutex);
5014 
5015 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5016 		struct swevent_hlist *hlist;
5017 
5018 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5019 		if (!hlist) {
5020 			err = -ENOMEM;
5021 			goto exit;
5022 		}
5023 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5024 	}
5025 	swhash->hlist_refcount++;
5026 exit:
5027 	mutex_unlock(&swhash->hlist_mutex);
5028 
5029 	return err;
5030 }
5031 
5032 static int swevent_hlist_get(struct perf_event *event)
5033 {
5034 	int err;
5035 	int cpu, failed_cpu;
5036 
5037 	if (event->cpu != -1)
5038 		return swevent_hlist_get_cpu(event, event->cpu);
5039 
5040 	get_online_cpus();
5041 	for_each_possible_cpu(cpu) {
5042 		err = swevent_hlist_get_cpu(event, cpu);
5043 		if (err) {
5044 			failed_cpu = cpu;
5045 			goto fail;
5046 		}
5047 	}
5048 	put_online_cpus();
5049 
5050 	return 0;
5051 fail:
5052 	for_each_possible_cpu(cpu) {
5053 		if (cpu == failed_cpu)
5054 			break;
5055 		swevent_hlist_put_cpu(event, cpu);
5056 	}
5057 
5058 	put_online_cpus();
5059 	return err;
5060 }
5061 
5062 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5063 
5064 static void sw_perf_event_destroy(struct perf_event *event)
5065 {
5066 	u64 event_id = event->attr.config;
5067 
5068 	WARN_ON(event->parent);
5069 
5070 	jump_label_dec(&perf_swevent_enabled[event_id]);
5071 	swevent_hlist_put(event);
5072 }
5073 
5074 static int perf_swevent_init(struct perf_event *event)
5075 {
5076 	int event_id = event->attr.config;
5077 
5078 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5079 		return -ENOENT;
5080 
5081 	switch (event_id) {
5082 	case PERF_COUNT_SW_CPU_CLOCK:
5083 	case PERF_COUNT_SW_TASK_CLOCK:
5084 		return -ENOENT;
5085 
5086 	default:
5087 		break;
5088 	}
5089 
5090 	if (event_id >= PERF_COUNT_SW_MAX)
5091 		return -ENOENT;
5092 
5093 	if (!event->parent) {
5094 		int err;
5095 
5096 		err = swevent_hlist_get(event);
5097 		if (err)
5098 			return err;
5099 
5100 		jump_label_inc(&perf_swevent_enabled[event_id]);
5101 		event->destroy = sw_perf_event_destroy;
5102 	}
5103 
5104 	return 0;
5105 }
5106 
5107 static struct pmu perf_swevent = {
5108 	.task_ctx_nr	= perf_sw_context,
5109 
5110 	.event_init	= perf_swevent_init,
5111 	.add		= perf_swevent_add,
5112 	.del		= perf_swevent_del,
5113 	.start		= perf_swevent_start,
5114 	.stop		= perf_swevent_stop,
5115 	.read		= perf_swevent_read,
5116 };
5117 
5118 #ifdef CONFIG_EVENT_TRACING
5119 
5120 static int perf_tp_filter_match(struct perf_event *event,
5121 				struct perf_sample_data *data)
5122 {
5123 	void *record = data->raw->data;
5124 
5125 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5126 		return 1;
5127 	return 0;
5128 }
5129 
5130 static int perf_tp_event_match(struct perf_event *event,
5131 				struct perf_sample_data *data,
5132 				struct pt_regs *regs)
5133 {
5134 	if (event->hw.state & PERF_HES_STOPPED)
5135 		return 0;
5136 	/*
5137 	 * All tracepoints are from kernel-space.
5138 	 */
5139 	if (event->attr.exclude_kernel)
5140 		return 0;
5141 
5142 	if (!perf_tp_filter_match(event, data))
5143 		return 0;
5144 
5145 	return 1;
5146 }
5147 
5148 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5149 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5150 {
5151 	struct perf_sample_data data;
5152 	struct perf_event *event;
5153 	struct hlist_node *node;
5154 
5155 	struct perf_raw_record raw = {
5156 		.size = entry_size,
5157 		.data = record,
5158 	};
5159 
5160 	perf_sample_data_init(&data, addr);
5161 	data.raw = &raw;
5162 
5163 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5164 		if (perf_tp_event_match(event, &data, regs))
5165 			perf_swevent_event(event, count, &data, regs);
5166 	}
5167 
5168 	perf_swevent_put_recursion_context(rctx);
5169 }
5170 EXPORT_SYMBOL_GPL(perf_tp_event);
5171 
5172 static void tp_perf_event_destroy(struct perf_event *event)
5173 {
5174 	perf_trace_destroy(event);
5175 }
5176 
5177 static int perf_tp_event_init(struct perf_event *event)
5178 {
5179 	int err;
5180 
5181 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5182 		return -ENOENT;
5183 
5184 	err = perf_trace_init(event);
5185 	if (err)
5186 		return err;
5187 
5188 	event->destroy = tp_perf_event_destroy;
5189 
5190 	return 0;
5191 }
5192 
5193 static struct pmu perf_tracepoint = {
5194 	.task_ctx_nr	= perf_sw_context,
5195 
5196 	.event_init	= perf_tp_event_init,
5197 	.add		= perf_trace_add,
5198 	.del		= perf_trace_del,
5199 	.start		= perf_swevent_start,
5200 	.stop		= perf_swevent_stop,
5201 	.read		= perf_swevent_read,
5202 };
5203 
5204 static inline void perf_tp_register(void)
5205 {
5206 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5207 }
5208 
5209 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5210 {
5211 	char *filter_str;
5212 	int ret;
5213 
5214 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5215 		return -EINVAL;
5216 
5217 	filter_str = strndup_user(arg, PAGE_SIZE);
5218 	if (IS_ERR(filter_str))
5219 		return PTR_ERR(filter_str);
5220 
5221 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5222 
5223 	kfree(filter_str);
5224 	return ret;
5225 }
5226 
5227 static void perf_event_free_filter(struct perf_event *event)
5228 {
5229 	ftrace_profile_free_filter(event);
5230 }
5231 
5232 #else
5233 
5234 static inline void perf_tp_register(void)
5235 {
5236 }
5237 
5238 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5239 {
5240 	return -ENOENT;
5241 }
5242 
5243 static void perf_event_free_filter(struct perf_event *event)
5244 {
5245 }
5246 
5247 #endif /* CONFIG_EVENT_TRACING */
5248 
5249 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5250 void perf_bp_event(struct perf_event *bp, void *data)
5251 {
5252 	struct perf_sample_data sample;
5253 	struct pt_regs *regs = data;
5254 
5255 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5256 
5257 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5258 		perf_swevent_event(bp, 1, &sample, regs);
5259 }
5260 #endif
5261 
5262 /*
5263  * hrtimer based swevent callback
5264  */
5265 
5266 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5267 {
5268 	enum hrtimer_restart ret = HRTIMER_RESTART;
5269 	struct perf_sample_data data;
5270 	struct pt_regs *regs;
5271 	struct perf_event *event;
5272 	u64 period;
5273 
5274 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5275 
5276 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5277 		return HRTIMER_NORESTART;
5278 
5279 	event->pmu->read(event);
5280 
5281 	perf_sample_data_init(&data, 0);
5282 	data.period = event->hw.last_period;
5283 	regs = get_irq_regs();
5284 
5285 	if (regs && !perf_exclude_event(event, regs)) {
5286 		if (!(event->attr.exclude_idle && current->pid == 0))
5287 			if (perf_event_overflow(event, &data, regs))
5288 				ret = HRTIMER_NORESTART;
5289 	}
5290 
5291 	period = max_t(u64, 10000, event->hw.sample_period);
5292 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5293 
5294 	return ret;
5295 }
5296 
5297 static void perf_swevent_start_hrtimer(struct perf_event *event)
5298 {
5299 	struct hw_perf_event *hwc = &event->hw;
5300 	s64 period;
5301 
5302 	if (!is_sampling_event(event))
5303 		return;
5304 
5305 	period = local64_read(&hwc->period_left);
5306 	if (period) {
5307 		if (period < 0)
5308 			period = 10000;
5309 
5310 		local64_set(&hwc->period_left, 0);
5311 	} else {
5312 		period = max_t(u64, 10000, hwc->sample_period);
5313 	}
5314 	__hrtimer_start_range_ns(&hwc->hrtimer,
5315 				ns_to_ktime(period), 0,
5316 				HRTIMER_MODE_REL_PINNED, 0);
5317 }
5318 
5319 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5320 {
5321 	struct hw_perf_event *hwc = &event->hw;
5322 
5323 	if (is_sampling_event(event)) {
5324 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5325 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5326 
5327 		hrtimer_cancel(&hwc->hrtimer);
5328 	}
5329 }
5330 
5331 static void perf_swevent_init_hrtimer(struct perf_event *event)
5332 {
5333 	struct hw_perf_event *hwc = &event->hw;
5334 
5335 	if (!is_sampling_event(event))
5336 		return;
5337 
5338 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5339 	hwc->hrtimer.function = perf_swevent_hrtimer;
5340 
5341 	/*
5342 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5343 	 * mapping and avoid the whole period adjust feedback stuff.
5344 	 */
5345 	if (event->attr.freq) {
5346 		long freq = event->attr.sample_freq;
5347 
5348 		event->attr.sample_period = NSEC_PER_SEC / freq;
5349 		hwc->sample_period = event->attr.sample_period;
5350 		local64_set(&hwc->period_left, hwc->sample_period);
5351 		event->attr.freq = 0;
5352 	}
5353 }
5354 
5355 /*
5356  * Software event: cpu wall time clock
5357  */
5358 
5359 static void cpu_clock_event_update(struct perf_event *event)
5360 {
5361 	s64 prev;
5362 	u64 now;
5363 
5364 	now = local_clock();
5365 	prev = local64_xchg(&event->hw.prev_count, now);
5366 	local64_add(now - prev, &event->count);
5367 }
5368 
5369 static void cpu_clock_event_start(struct perf_event *event, int flags)
5370 {
5371 	local64_set(&event->hw.prev_count, local_clock());
5372 	perf_swevent_start_hrtimer(event);
5373 }
5374 
5375 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5376 {
5377 	perf_swevent_cancel_hrtimer(event);
5378 	cpu_clock_event_update(event);
5379 }
5380 
5381 static int cpu_clock_event_add(struct perf_event *event, int flags)
5382 {
5383 	if (flags & PERF_EF_START)
5384 		cpu_clock_event_start(event, flags);
5385 
5386 	return 0;
5387 }
5388 
5389 static void cpu_clock_event_del(struct perf_event *event, int flags)
5390 {
5391 	cpu_clock_event_stop(event, flags);
5392 }
5393 
5394 static void cpu_clock_event_read(struct perf_event *event)
5395 {
5396 	cpu_clock_event_update(event);
5397 }
5398 
5399 static int cpu_clock_event_init(struct perf_event *event)
5400 {
5401 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5402 		return -ENOENT;
5403 
5404 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5405 		return -ENOENT;
5406 
5407 	perf_swevent_init_hrtimer(event);
5408 
5409 	return 0;
5410 }
5411 
5412 static struct pmu perf_cpu_clock = {
5413 	.task_ctx_nr	= perf_sw_context,
5414 
5415 	.event_init	= cpu_clock_event_init,
5416 	.add		= cpu_clock_event_add,
5417 	.del		= cpu_clock_event_del,
5418 	.start		= cpu_clock_event_start,
5419 	.stop		= cpu_clock_event_stop,
5420 	.read		= cpu_clock_event_read,
5421 };
5422 
5423 /*
5424  * Software event: task time clock
5425  */
5426 
5427 static void task_clock_event_update(struct perf_event *event, u64 now)
5428 {
5429 	u64 prev;
5430 	s64 delta;
5431 
5432 	prev = local64_xchg(&event->hw.prev_count, now);
5433 	delta = now - prev;
5434 	local64_add(delta, &event->count);
5435 }
5436 
5437 static void task_clock_event_start(struct perf_event *event, int flags)
5438 {
5439 	local64_set(&event->hw.prev_count, event->ctx->time);
5440 	perf_swevent_start_hrtimer(event);
5441 }
5442 
5443 static void task_clock_event_stop(struct perf_event *event, int flags)
5444 {
5445 	perf_swevent_cancel_hrtimer(event);
5446 	task_clock_event_update(event, event->ctx->time);
5447 }
5448 
5449 static int task_clock_event_add(struct perf_event *event, int flags)
5450 {
5451 	if (flags & PERF_EF_START)
5452 		task_clock_event_start(event, flags);
5453 
5454 	return 0;
5455 }
5456 
5457 static void task_clock_event_del(struct perf_event *event, int flags)
5458 {
5459 	task_clock_event_stop(event, PERF_EF_UPDATE);
5460 }
5461 
5462 static void task_clock_event_read(struct perf_event *event)
5463 {
5464 	u64 now = perf_clock();
5465 	u64 delta = now - event->ctx->timestamp;
5466 	u64 time = event->ctx->time + delta;
5467 
5468 	task_clock_event_update(event, time);
5469 }
5470 
5471 static int task_clock_event_init(struct perf_event *event)
5472 {
5473 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5474 		return -ENOENT;
5475 
5476 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5477 		return -ENOENT;
5478 
5479 	perf_swevent_init_hrtimer(event);
5480 
5481 	return 0;
5482 }
5483 
5484 static struct pmu perf_task_clock = {
5485 	.task_ctx_nr	= perf_sw_context,
5486 
5487 	.event_init	= task_clock_event_init,
5488 	.add		= task_clock_event_add,
5489 	.del		= task_clock_event_del,
5490 	.start		= task_clock_event_start,
5491 	.stop		= task_clock_event_stop,
5492 	.read		= task_clock_event_read,
5493 };
5494 
5495 static void perf_pmu_nop_void(struct pmu *pmu)
5496 {
5497 }
5498 
5499 static int perf_pmu_nop_int(struct pmu *pmu)
5500 {
5501 	return 0;
5502 }
5503 
5504 static void perf_pmu_start_txn(struct pmu *pmu)
5505 {
5506 	perf_pmu_disable(pmu);
5507 }
5508 
5509 static int perf_pmu_commit_txn(struct pmu *pmu)
5510 {
5511 	perf_pmu_enable(pmu);
5512 	return 0;
5513 }
5514 
5515 static void perf_pmu_cancel_txn(struct pmu *pmu)
5516 {
5517 	perf_pmu_enable(pmu);
5518 }
5519 
5520 /*
5521  * Ensures all contexts with the same task_ctx_nr have the same
5522  * pmu_cpu_context too.
5523  */
5524 static void *find_pmu_context(int ctxn)
5525 {
5526 	struct pmu *pmu;
5527 
5528 	if (ctxn < 0)
5529 		return NULL;
5530 
5531 	list_for_each_entry(pmu, &pmus, entry) {
5532 		if (pmu->task_ctx_nr == ctxn)
5533 			return pmu->pmu_cpu_context;
5534 	}
5535 
5536 	return NULL;
5537 }
5538 
5539 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5540 {
5541 	int cpu;
5542 
5543 	for_each_possible_cpu(cpu) {
5544 		struct perf_cpu_context *cpuctx;
5545 
5546 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5547 
5548 		if (cpuctx->active_pmu == old_pmu)
5549 			cpuctx->active_pmu = pmu;
5550 	}
5551 }
5552 
5553 static void free_pmu_context(struct pmu *pmu)
5554 {
5555 	struct pmu *i;
5556 
5557 	mutex_lock(&pmus_lock);
5558 	/*
5559 	 * Like a real lame refcount.
5560 	 */
5561 	list_for_each_entry(i, &pmus, entry) {
5562 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5563 			update_pmu_context(i, pmu);
5564 			goto out;
5565 		}
5566 	}
5567 
5568 	free_percpu(pmu->pmu_cpu_context);
5569 out:
5570 	mutex_unlock(&pmus_lock);
5571 }
5572 static struct idr pmu_idr;
5573 
5574 static ssize_t
5575 type_show(struct device *dev, struct device_attribute *attr, char *page)
5576 {
5577 	struct pmu *pmu = dev_get_drvdata(dev);
5578 
5579 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5580 }
5581 
5582 static struct device_attribute pmu_dev_attrs[] = {
5583        __ATTR_RO(type),
5584        __ATTR_NULL,
5585 };
5586 
5587 static int pmu_bus_running;
5588 static struct bus_type pmu_bus = {
5589 	.name		= "event_source",
5590 	.dev_attrs	= pmu_dev_attrs,
5591 };
5592 
5593 static void pmu_dev_release(struct device *dev)
5594 {
5595 	kfree(dev);
5596 }
5597 
5598 static int pmu_dev_alloc(struct pmu *pmu)
5599 {
5600 	int ret = -ENOMEM;
5601 
5602 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5603 	if (!pmu->dev)
5604 		goto out;
5605 
5606 	device_initialize(pmu->dev);
5607 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5608 	if (ret)
5609 		goto free_dev;
5610 
5611 	dev_set_drvdata(pmu->dev, pmu);
5612 	pmu->dev->bus = &pmu_bus;
5613 	pmu->dev->release = pmu_dev_release;
5614 	ret = device_add(pmu->dev);
5615 	if (ret)
5616 		goto free_dev;
5617 
5618 out:
5619 	return ret;
5620 
5621 free_dev:
5622 	put_device(pmu->dev);
5623 	goto out;
5624 }
5625 
5626 static struct lock_class_key cpuctx_mutex;
5627 static struct lock_class_key cpuctx_lock;
5628 
5629 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5630 {
5631 	int cpu, ret;
5632 
5633 	mutex_lock(&pmus_lock);
5634 	ret = -ENOMEM;
5635 	pmu->pmu_disable_count = alloc_percpu(int);
5636 	if (!pmu->pmu_disable_count)
5637 		goto unlock;
5638 
5639 	pmu->type = -1;
5640 	if (!name)
5641 		goto skip_type;
5642 	pmu->name = name;
5643 
5644 	if (type < 0) {
5645 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5646 		if (!err)
5647 			goto free_pdc;
5648 
5649 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5650 		if (err) {
5651 			ret = err;
5652 			goto free_pdc;
5653 		}
5654 	}
5655 	pmu->type = type;
5656 
5657 	if (pmu_bus_running) {
5658 		ret = pmu_dev_alloc(pmu);
5659 		if (ret)
5660 			goto free_idr;
5661 	}
5662 
5663 skip_type:
5664 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5665 	if (pmu->pmu_cpu_context)
5666 		goto got_cpu_context;
5667 
5668 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5669 	if (!pmu->pmu_cpu_context)
5670 		goto free_dev;
5671 
5672 	for_each_possible_cpu(cpu) {
5673 		struct perf_cpu_context *cpuctx;
5674 
5675 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5676 		__perf_event_init_context(&cpuctx->ctx);
5677 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5678 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5679 		cpuctx->ctx.type = cpu_context;
5680 		cpuctx->ctx.pmu = pmu;
5681 		cpuctx->jiffies_interval = 1;
5682 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5683 		cpuctx->active_pmu = pmu;
5684 	}
5685 
5686 got_cpu_context:
5687 	if (!pmu->start_txn) {
5688 		if (pmu->pmu_enable) {
5689 			/*
5690 			 * If we have pmu_enable/pmu_disable calls, install
5691 			 * transaction stubs that use that to try and batch
5692 			 * hardware accesses.
5693 			 */
5694 			pmu->start_txn  = perf_pmu_start_txn;
5695 			pmu->commit_txn = perf_pmu_commit_txn;
5696 			pmu->cancel_txn = perf_pmu_cancel_txn;
5697 		} else {
5698 			pmu->start_txn  = perf_pmu_nop_void;
5699 			pmu->commit_txn = perf_pmu_nop_int;
5700 			pmu->cancel_txn = perf_pmu_nop_void;
5701 		}
5702 	}
5703 
5704 	if (!pmu->pmu_enable) {
5705 		pmu->pmu_enable  = perf_pmu_nop_void;
5706 		pmu->pmu_disable = perf_pmu_nop_void;
5707 	}
5708 
5709 	list_add_rcu(&pmu->entry, &pmus);
5710 	ret = 0;
5711 unlock:
5712 	mutex_unlock(&pmus_lock);
5713 
5714 	return ret;
5715 
5716 free_dev:
5717 	device_del(pmu->dev);
5718 	put_device(pmu->dev);
5719 
5720 free_idr:
5721 	if (pmu->type >= PERF_TYPE_MAX)
5722 		idr_remove(&pmu_idr, pmu->type);
5723 
5724 free_pdc:
5725 	free_percpu(pmu->pmu_disable_count);
5726 	goto unlock;
5727 }
5728 
5729 void perf_pmu_unregister(struct pmu *pmu)
5730 {
5731 	mutex_lock(&pmus_lock);
5732 	list_del_rcu(&pmu->entry);
5733 	mutex_unlock(&pmus_lock);
5734 
5735 	/*
5736 	 * We dereference the pmu list under both SRCU and regular RCU, so
5737 	 * synchronize against both of those.
5738 	 */
5739 	synchronize_srcu(&pmus_srcu);
5740 	synchronize_rcu();
5741 
5742 	free_percpu(pmu->pmu_disable_count);
5743 	if (pmu->type >= PERF_TYPE_MAX)
5744 		idr_remove(&pmu_idr, pmu->type);
5745 	device_del(pmu->dev);
5746 	put_device(pmu->dev);
5747 	free_pmu_context(pmu);
5748 }
5749 
5750 struct pmu *perf_init_event(struct perf_event *event)
5751 {
5752 	struct pmu *pmu = NULL;
5753 	int idx;
5754 	int ret;
5755 
5756 	idx = srcu_read_lock(&pmus_srcu);
5757 
5758 	rcu_read_lock();
5759 	pmu = idr_find(&pmu_idr, event->attr.type);
5760 	rcu_read_unlock();
5761 	if (pmu) {
5762 		event->pmu = pmu;
5763 		ret = pmu->event_init(event);
5764 		if (ret)
5765 			pmu = ERR_PTR(ret);
5766 		goto unlock;
5767 	}
5768 
5769 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5770 		event->pmu = pmu;
5771 		ret = pmu->event_init(event);
5772 		if (!ret)
5773 			goto unlock;
5774 
5775 		if (ret != -ENOENT) {
5776 			pmu = ERR_PTR(ret);
5777 			goto unlock;
5778 		}
5779 	}
5780 	pmu = ERR_PTR(-ENOENT);
5781 unlock:
5782 	srcu_read_unlock(&pmus_srcu, idx);
5783 
5784 	return pmu;
5785 }
5786 
5787 /*
5788  * Allocate and initialize a event structure
5789  */
5790 static struct perf_event *
5791 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5792 		 struct task_struct *task,
5793 		 struct perf_event *group_leader,
5794 		 struct perf_event *parent_event,
5795 		 perf_overflow_handler_t overflow_handler,
5796 		 void *context)
5797 {
5798 	struct pmu *pmu;
5799 	struct perf_event *event;
5800 	struct hw_perf_event *hwc;
5801 	long err;
5802 
5803 	if ((unsigned)cpu >= nr_cpu_ids) {
5804 		if (!task || cpu != -1)
5805 			return ERR_PTR(-EINVAL);
5806 	}
5807 
5808 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5809 	if (!event)
5810 		return ERR_PTR(-ENOMEM);
5811 
5812 	/*
5813 	 * Single events are their own group leaders, with an
5814 	 * empty sibling list:
5815 	 */
5816 	if (!group_leader)
5817 		group_leader = event;
5818 
5819 	mutex_init(&event->child_mutex);
5820 	INIT_LIST_HEAD(&event->child_list);
5821 
5822 	INIT_LIST_HEAD(&event->group_entry);
5823 	INIT_LIST_HEAD(&event->event_entry);
5824 	INIT_LIST_HEAD(&event->sibling_list);
5825 	init_waitqueue_head(&event->waitq);
5826 	init_irq_work(&event->pending, perf_pending_event);
5827 
5828 	mutex_init(&event->mmap_mutex);
5829 
5830 	event->cpu		= cpu;
5831 	event->attr		= *attr;
5832 	event->group_leader	= group_leader;
5833 	event->pmu		= NULL;
5834 	event->oncpu		= -1;
5835 
5836 	event->parent		= parent_event;
5837 
5838 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5839 	event->id		= atomic64_inc_return(&perf_event_id);
5840 
5841 	event->state		= PERF_EVENT_STATE_INACTIVE;
5842 
5843 	if (task) {
5844 		event->attach_state = PERF_ATTACH_TASK;
5845 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5846 		/*
5847 		 * hw_breakpoint is a bit difficult here..
5848 		 */
5849 		if (attr->type == PERF_TYPE_BREAKPOINT)
5850 			event->hw.bp_target = task;
5851 #endif
5852 	}
5853 
5854 	if (!overflow_handler && parent_event) {
5855 		overflow_handler = parent_event->overflow_handler;
5856 		context = parent_event->overflow_handler_context;
5857 	}
5858 
5859 	event->overflow_handler	= overflow_handler;
5860 	event->overflow_handler_context = context;
5861 
5862 	if (attr->disabled)
5863 		event->state = PERF_EVENT_STATE_OFF;
5864 
5865 	pmu = NULL;
5866 
5867 	hwc = &event->hw;
5868 	hwc->sample_period = attr->sample_period;
5869 	if (attr->freq && attr->sample_freq)
5870 		hwc->sample_period = 1;
5871 	hwc->last_period = hwc->sample_period;
5872 
5873 	local64_set(&hwc->period_left, hwc->sample_period);
5874 
5875 	/*
5876 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5877 	 */
5878 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5879 		goto done;
5880 
5881 	pmu = perf_init_event(event);
5882 
5883 done:
5884 	err = 0;
5885 	if (!pmu)
5886 		err = -EINVAL;
5887 	else if (IS_ERR(pmu))
5888 		err = PTR_ERR(pmu);
5889 
5890 	if (err) {
5891 		if (event->ns)
5892 			put_pid_ns(event->ns);
5893 		kfree(event);
5894 		return ERR_PTR(err);
5895 	}
5896 
5897 	if (!event->parent) {
5898 		if (event->attach_state & PERF_ATTACH_TASK)
5899 			jump_label_inc(&perf_sched_events);
5900 		if (event->attr.mmap || event->attr.mmap_data)
5901 			atomic_inc(&nr_mmap_events);
5902 		if (event->attr.comm)
5903 			atomic_inc(&nr_comm_events);
5904 		if (event->attr.task)
5905 			atomic_inc(&nr_task_events);
5906 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5907 			err = get_callchain_buffers();
5908 			if (err) {
5909 				free_event(event);
5910 				return ERR_PTR(err);
5911 			}
5912 		}
5913 	}
5914 
5915 	return event;
5916 }
5917 
5918 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5919 			  struct perf_event_attr *attr)
5920 {
5921 	u32 size;
5922 	int ret;
5923 
5924 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5925 		return -EFAULT;
5926 
5927 	/*
5928 	 * zero the full structure, so that a short copy will be nice.
5929 	 */
5930 	memset(attr, 0, sizeof(*attr));
5931 
5932 	ret = get_user(size, &uattr->size);
5933 	if (ret)
5934 		return ret;
5935 
5936 	if (size > PAGE_SIZE)	/* silly large */
5937 		goto err_size;
5938 
5939 	if (!size)		/* abi compat */
5940 		size = PERF_ATTR_SIZE_VER0;
5941 
5942 	if (size < PERF_ATTR_SIZE_VER0)
5943 		goto err_size;
5944 
5945 	/*
5946 	 * If we're handed a bigger struct than we know of,
5947 	 * ensure all the unknown bits are 0 - i.e. new
5948 	 * user-space does not rely on any kernel feature
5949 	 * extensions we dont know about yet.
5950 	 */
5951 	if (size > sizeof(*attr)) {
5952 		unsigned char __user *addr;
5953 		unsigned char __user *end;
5954 		unsigned char val;
5955 
5956 		addr = (void __user *)uattr + sizeof(*attr);
5957 		end  = (void __user *)uattr + size;
5958 
5959 		for (; addr < end; addr++) {
5960 			ret = get_user(val, addr);
5961 			if (ret)
5962 				return ret;
5963 			if (val)
5964 				goto err_size;
5965 		}
5966 		size = sizeof(*attr);
5967 	}
5968 
5969 	ret = copy_from_user(attr, uattr, size);
5970 	if (ret)
5971 		return -EFAULT;
5972 
5973 	if (attr->__reserved_1)
5974 		return -EINVAL;
5975 
5976 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5977 		return -EINVAL;
5978 
5979 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5980 		return -EINVAL;
5981 
5982 out:
5983 	return ret;
5984 
5985 err_size:
5986 	put_user(sizeof(*attr), &uattr->size);
5987 	ret = -E2BIG;
5988 	goto out;
5989 }
5990 
5991 static int
5992 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5993 {
5994 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5995 	int ret = -EINVAL;
5996 
5997 	if (!output_event)
5998 		goto set;
5999 
6000 	/* don't allow circular references */
6001 	if (event == output_event)
6002 		goto out;
6003 
6004 	/*
6005 	 * Don't allow cross-cpu buffers
6006 	 */
6007 	if (output_event->cpu != event->cpu)
6008 		goto out;
6009 
6010 	/*
6011 	 * If its not a per-cpu rb, it must be the same task.
6012 	 */
6013 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6014 		goto out;
6015 
6016 set:
6017 	mutex_lock(&event->mmap_mutex);
6018 	/* Can't redirect output if we've got an active mmap() */
6019 	if (atomic_read(&event->mmap_count))
6020 		goto unlock;
6021 
6022 	if (output_event) {
6023 		/* get the rb we want to redirect to */
6024 		rb = ring_buffer_get(output_event);
6025 		if (!rb)
6026 			goto unlock;
6027 	}
6028 
6029 	old_rb = event->rb;
6030 	rcu_assign_pointer(event->rb, rb);
6031 	ret = 0;
6032 unlock:
6033 	mutex_unlock(&event->mmap_mutex);
6034 
6035 	if (old_rb)
6036 		ring_buffer_put(old_rb);
6037 out:
6038 	return ret;
6039 }
6040 
6041 /**
6042  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6043  *
6044  * @attr_uptr:	event_id type attributes for monitoring/sampling
6045  * @pid:		target pid
6046  * @cpu:		target cpu
6047  * @group_fd:		group leader event fd
6048  */
6049 SYSCALL_DEFINE5(perf_event_open,
6050 		struct perf_event_attr __user *, attr_uptr,
6051 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6052 {
6053 	struct perf_event *group_leader = NULL, *output_event = NULL;
6054 	struct perf_event *event, *sibling;
6055 	struct perf_event_attr attr;
6056 	struct perf_event_context *ctx;
6057 	struct file *event_file = NULL;
6058 	struct file *group_file = NULL;
6059 	struct task_struct *task = NULL;
6060 	struct pmu *pmu;
6061 	int event_fd;
6062 	int move_group = 0;
6063 	int fput_needed = 0;
6064 	int err;
6065 
6066 	/* for future expandability... */
6067 	if (flags & ~PERF_FLAG_ALL)
6068 		return -EINVAL;
6069 
6070 	err = perf_copy_attr(attr_uptr, &attr);
6071 	if (err)
6072 		return err;
6073 
6074 	if (!attr.exclude_kernel) {
6075 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6076 			return -EACCES;
6077 	}
6078 
6079 	if (attr.freq) {
6080 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6081 			return -EINVAL;
6082 	}
6083 
6084 	/*
6085 	 * In cgroup mode, the pid argument is used to pass the fd
6086 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6087 	 * designates the cpu on which to monitor threads from that
6088 	 * cgroup.
6089 	 */
6090 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6091 		return -EINVAL;
6092 
6093 	event_fd = get_unused_fd_flags(O_RDWR);
6094 	if (event_fd < 0)
6095 		return event_fd;
6096 
6097 	if (group_fd != -1) {
6098 		group_leader = perf_fget_light(group_fd, &fput_needed);
6099 		if (IS_ERR(group_leader)) {
6100 			err = PTR_ERR(group_leader);
6101 			goto err_fd;
6102 		}
6103 		group_file = group_leader->filp;
6104 		if (flags & PERF_FLAG_FD_OUTPUT)
6105 			output_event = group_leader;
6106 		if (flags & PERF_FLAG_FD_NO_GROUP)
6107 			group_leader = NULL;
6108 	}
6109 
6110 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6111 		task = find_lively_task_by_vpid(pid);
6112 		if (IS_ERR(task)) {
6113 			err = PTR_ERR(task);
6114 			goto err_group_fd;
6115 		}
6116 	}
6117 
6118 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6119 				 NULL, NULL);
6120 	if (IS_ERR(event)) {
6121 		err = PTR_ERR(event);
6122 		goto err_task;
6123 	}
6124 
6125 	if (flags & PERF_FLAG_PID_CGROUP) {
6126 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6127 		if (err)
6128 			goto err_alloc;
6129 		/*
6130 		 * one more event:
6131 		 * - that has cgroup constraint on event->cpu
6132 		 * - that may need work on context switch
6133 		 */
6134 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6135 		jump_label_inc(&perf_sched_events);
6136 	}
6137 
6138 	/*
6139 	 * Special case software events and allow them to be part of
6140 	 * any hardware group.
6141 	 */
6142 	pmu = event->pmu;
6143 
6144 	if (group_leader &&
6145 	    (is_software_event(event) != is_software_event(group_leader))) {
6146 		if (is_software_event(event)) {
6147 			/*
6148 			 * If event and group_leader are not both a software
6149 			 * event, and event is, then group leader is not.
6150 			 *
6151 			 * Allow the addition of software events to !software
6152 			 * groups, this is safe because software events never
6153 			 * fail to schedule.
6154 			 */
6155 			pmu = group_leader->pmu;
6156 		} else if (is_software_event(group_leader) &&
6157 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6158 			/*
6159 			 * In case the group is a pure software group, and we
6160 			 * try to add a hardware event, move the whole group to
6161 			 * the hardware context.
6162 			 */
6163 			move_group = 1;
6164 		}
6165 	}
6166 
6167 	/*
6168 	 * Get the target context (task or percpu):
6169 	 */
6170 	ctx = find_get_context(pmu, task, cpu);
6171 	if (IS_ERR(ctx)) {
6172 		err = PTR_ERR(ctx);
6173 		goto err_alloc;
6174 	}
6175 
6176 	if (task) {
6177 		put_task_struct(task);
6178 		task = NULL;
6179 	}
6180 
6181 	/*
6182 	 * Look up the group leader (we will attach this event to it):
6183 	 */
6184 	if (group_leader) {
6185 		err = -EINVAL;
6186 
6187 		/*
6188 		 * Do not allow a recursive hierarchy (this new sibling
6189 		 * becoming part of another group-sibling):
6190 		 */
6191 		if (group_leader->group_leader != group_leader)
6192 			goto err_context;
6193 		/*
6194 		 * Do not allow to attach to a group in a different
6195 		 * task or CPU context:
6196 		 */
6197 		if (move_group) {
6198 			if (group_leader->ctx->type != ctx->type)
6199 				goto err_context;
6200 		} else {
6201 			if (group_leader->ctx != ctx)
6202 				goto err_context;
6203 		}
6204 
6205 		/*
6206 		 * Only a group leader can be exclusive or pinned
6207 		 */
6208 		if (attr.exclusive || attr.pinned)
6209 			goto err_context;
6210 	}
6211 
6212 	if (output_event) {
6213 		err = perf_event_set_output(event, output_event);
6214 		if (err)
6215 			goto err_context;
6216 	}
6217 
6218 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6219 	if (IS_ERR(event_file)) {
6220 		err = PTR_ERR(event_file);
6221 		goto err_context;
6222 	}
6223 
6224 	if (move_group) {
6225 		struct perf_event_context *gctx = group_leader->ctx;
6226 
6227 		mutex_lock(&gctx->mutex);
6228 		perf_remove_from_context(group_leader);
6229 		list_for_each_entry(sibling, &group_leader->sibling_list,
6230 				    group_entry) {
6231 			perf_remove_from_context(sibling);
6232 			put_ctx(gctx);
6233 		}
6234 		mutex_unlock(&gctx->mutex);
6235 		put_ctx(gctx);
6236 	}
6237 
6238 	event->filp = event_file;
6239 	WARN_ON_ONCE(ctx->parent_ctx);
6240 	mutex_lock(&ctx->mutex);
6241 
6242 	if (move_group) {
6243 		perf_install_in_context(ctx, group_leader, cpu);
6244 		get_ctx(ctx);
6245 		list_for_each_entry(sibling, &group_leader->sibling_list,
6246 				    group_entry) {
6247 			perf_install_in_context(ctx, sibling, cpu);
6248 			get_ctx(ctx);
6249 		}
6250 	}
6251 
6252 	perf_install_in_context(ctx, event, cpu);
6253 	++ctx->generation;
6254 	perf_unpin_context(ctx);
6255 	mutex_unlock(&ctx->mutex);
6256 
6257 	event->owner = current;
6258 
6259 	mutex_lock(&current->perf_event_mutex);
6260 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6261 	mutex_unlock(&current->perf_event_mutex);
6262 
6263 	/*
6264 	 * Precalculate sample_data sizes
6265 	 */
6266 	perf_event__header_size(event);
6267 	perf_event__id_header_size(event);
6268 
6269 	/*
6270 	 * Drop the reference on the group_event after placing the
6271 	 * new event on the sibling_list. This ensures destruction
6272 	 * of the group leader will find the pointer to itself in
6273 	 * perf_group_detach().
6274 	 */
6275 	fput_light(group_file, fput_needed);
6276 	fd_install(event_fd, event_file);
6277 	return event_fd;
6278 
6279 err_context:
6280 	perf_unpin_context(ctx);
6281 	put_ctx(ctx);
6282 err_alloc:
6283 	free_event(event);
6284 err_task:
6285 	if (task)
6286 		put_task_struct(task);
6287 err_group_fd:
6288 	fput_light(group_file, fput_needed);
6289 err_fd:
6290 	put_unused_fd(event_fd);
6291 	return err;
6292 }
6293 
6294 /**
6295  * perf_event_create_kernel_counter
6296  *
6297  * @attr: attributes of the counter to create
6298  * @cpu: cpu in which the counter is bound
6299  * @task: task to profile (NULL for percpu)
6300  */
6301 struct perf_event *
6302 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6303 				 struct task_struct *task,
6304 				 perf_overflow_handler_t overflow_handler,
6305 				 void *context)
6306 {
6307 	struct perf_event_context *ctx;
6308 	struct perf_event *event;
6309 	int err;
6310 
6311 	/*
6312 	 * Get the target context (task or percpu):
6313 	 */
6314 
6315 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6316 				 overflow_handler, context);
6317 	if (IS_ERR(event)) {
6318 		err = PTR_ERR(event);
6319 		goto err;
6320 	}
6321 
6322 	ctx = find_get_context(event->pmu, task, cpu);
6323 	if (IS_ERR(ctx)) {
6324 		err = PTR_ERR(ctx);
6325 		goto err_free;
6326 	}
6327 
6328 	event->filp = NULL;
6329 	WARN_ON_ONCE(ctx->parent_ctx);
6330 	mutex_lock(&ctx->mutex);
6331 	perf_install_in_context(ctx, event, cpu);
6332 	++ctx->generation;
6333 	perf_unpin_context(ctx);
6334 	mutex_unlock(&ctx->mutex);
6335 
6336 	return event;
6337 
6338 err_free:
6339 	free_event(event);
6340 err:
6341 	return ERR_PTR(err);
6342 }
6343 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6344 
6345 static void sync_child_event(struct perf_event *child_event,
6346 			       struct task_struct *child)
6347 {
6348 	struct perf_event *parent_event = child_event->parent;
6349 	u64 child_val;
6350 
6351 	if (child_event->attr.inherit_stat)
6352 		perf_event_read_event(child_event, child);
6353 
6354 	child_val = perf_event_count(child_event);
6355 
6356 	/*
6357 	 * Add back the child's count to the parent's count:
6358 	 */
6359 	atomic64_add(child_val, &parent_event->child_count);
6360 	atomic64_add(child_event->total_time_enabled,
6361 		     &parent_event->child_total_time_enabled);
6362 	atomic64_add(child_event->total_time_running,
6363 		     &parent_event->child_total_time_running);
6364 
6365 	/*
6366 	 * Remove this event from the parent's list
6367 	 */
6368 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6369 	mutex_lock(&parent_event->child_mutex);
6370 	list_del_init(&child_event->child_list);
6371 	mutex_unlock(&parent_event->child_mutex);
6372 
6373 	/*
6374 	 * Release the parent event, if this was the last
6375 	 * reference to it.
6376 	 */
6377 	fput(parent_event->filp);
6378 }
6379 
6380 static void
6381 __perf_event_exit_task(struct perf_event *child_event,
6382 			 struct perf_event_context *child_ctx,
6383 			 struct task_struct *child)
6384 {
6385 	if (child_event->parent) {
6386 		raw_spin_lock_irq(&child_ctx->lock);
6387 		perf_group_detach(child_event);
6388 		raw_spin_unlock_irq(&child_ctx->lock);
6389 	}
6390 
6391 	perf_remove_from_context(child_event);
6392 
6393 	/*
6394 	 * It can happen that the parent exits first, and has events
6395 	 * that are still around due to the child reference. These
6396 	 * events need to be zapped.
6397 	 */
6398 	if (child_event->parent) {
6399 		sync_child_event(child_event, child);
6400 		free_event(child_event);
6401 	}
6402 }
6403 
6404 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6405 {
6406 	struct perf_event *child_event, *tmp;
6407 	struct perf_event_context *child_ctx;
6408 	unsigned long flags;
6409 
6410 	if (likely(!child->perf_event_ctxp[ctxn])) {
6411 		perf_event_task(child, NULL, 0);
6412 		return;
6413 	}
6414 
6415 	local_irq_save(flags);
6416 	/*
6417 	 * We can't reschedule here because interrupts are disabled,
6418 	 * and either child is current or it is a task that can't be
6419 	 * scheduled, so we are now safe from rescheduling changing
6420 	 * our context.
6421 	 */
6422 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6423 
6424 	/*
6425 	 * Take the context lock here so that if find_get_context is
6426 	 * reading child->perf_event_ctxp, we wait until it has
6427 	 * incremented the context's refcount before we do put_ctx below.
6428 	 */
6429 	raw_spin_lock(&child_ctx->lock);
6430 	task_ctx_sched_out(child_ctx);
6431 	child->perf_event_ctxp[ctxn] = NULL;
6432 	/*
6433 	 * If this context is a clone; unclone it so it can't get
6434 	 * swapped to another process while we're removing all
6435 	 * the events from it.
6436 	 */
6437 	unclone_ctx(child_ctx);
6438 	update_context_time(child_ctx);
6439 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6440 
6441 	/*
6442 	 * Report the task dead after unscheduling the events so that we
6443 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6444 	 * get a few PERF_RECORD_READ events.
6445 	 */
6446 	perf_event_task(child, child_ctx, 0);
6447 
6448 	/*
6449 	 * We can recurse on the same lock type through:
6450 	 *
6451 	 *   __perf_event_exit_task()
6452 	 *     sync_child_event()
6453 	 *       fput(parent_event->filp)
6454 	 *         perf_release()
6455 	 *           mutex_lock(&ctx->mutex)
6456 	 *
6457 	 * But since its the parent context it won't be the same instance.
6458 	 */
6459 	mutex_lock(&child_ctx->mutex);
6460 
6461 again:
6462 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6463 				 group_entry)
6464 		__perf_event_exit_task(child_event, child_ctx, child);
6465 
6466 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6467 				 group_entry)
6468 		__perf_event_exit_task(child_event, child_ctx, child);
6469 
6470 	/*
6471 	 * If the last event was a group event, it will have appended all
6472 	 * its siblings to the list, but we obtained 'tmp' before that which
6473 	 * will still point to the list head terminating the iteration.
6474 	 */
6475 	if (!list_empty(&child_ctx->pinned_groups) ||
6476 	    !list_empty(&child_ctx->flexible_groups))
6477 		goto again;
6478 
6479 	mutex_unlock(&child_ctx->mutex);
6480 
6481 	put_ctx(child_ctx);
6482 }
6483 
6484 /*
6485  * When a child task exits, feed back event values to parent events.
6486  */
6487 void perf_event_exit_task(struct task_struct *child)
6488 {
6489 	struct perf_event *event, *tmp;
6490 	int ctxn;
6491 
6492 	mutex_lock(&child->perf_event_mutex);
6493 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6494 				 owner_entry) {
6495 		list_del_init(&event->owner_entry);
6496 
6497 		/*
6498 		 * Ensure the list deletion is visible before we clear
6499 		 * the owner, closes a race against perf_release() where
6500 		 * we need to serialize on the owner->perf_event_mutex.
6501 		 */
6502 		smp_wmb();
6503 		event->owner = NULL;
6504 	}
6505 	mutex_unlock(&child->perf_event_mutex);
6506 
6507 	for_each_task_context_nr(ctxn)
6508 		perf_event_exit_task_context(child, ctxn);
6509 }
6510 
6511 static void perf_free_event(struct perf_event *event,
6512 			    struct perf_event_context *ctx)
6513 {
6514 	struct perf_event *parent = event->parent;
6515 
6516 	if (WARN_ON_ONCE(!parent))
6517 		return;
6518 
6519 	mutex_lock(&parent->child_mutex);
6520 	list_del_init(&event->child_list);
6521 	mutex_unlock(&parent->child_mutex);
6522 
6523 	fput(parent->filp);
6524 
6525 	perf_group_detach(event);
6526 	list_del_event(event, ctx);
6527 	free_event(event);
6528 }
6529 
6530 /*
6531  * free an unexposed, unused context as created by inheritance by
6532  * perf_event_init_task below, used by fork() in case of fail.
6533  */
6534 void perf_event_free_task(struct task_struct *task)
6535 {
6536 	struct perf_event_context *ctx;
6537 	struct perf_event *event, *tmp;
6538 	int ctxn;
6539 
6540 	for_each_task_context_nr(ctxn) {
6541 		ctx = task->perf_event_ctxp[ctxn];
6542 		if (!ctx)
6543 			continue;
6544 
6545 		mutex_lock(&ctx->mutex);
6546 again:
6547 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6548 				group_entry)
6549 			perf_free_event(event, ctx);
6550 
6551 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6552 				group_entry)
6553 			perf_free_event(event, ctx);
6554 
6555 		if (!list_empty(&ctx->pinned_groups) ||
6556 				!list_empty(&ctx->flexible_groups))
6557 			goto again;
6558 
6559 		mutex_unlock(&ctx->mutex);
6560 
6561 		put_ctx(ctx);
6562 	}
6563 }
6564 
6565 void perf_event_delayed_put(struct task_struct *task)
6566 {
6567 	int ctxn;
6568 
6569 	for_each_task_context_nr(ctxn)
6570 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6571 }
6572 
6573 /*
6574  * inherit a event from parent task to child task:
6575  */
6576 static struct perf_event *
6577 inherit_event(struct perf_event *parent_event,
6578 	      struct task_struct *parent,
6579 	      struct perf_event_context *parent_ctx,
6580 	      struct task_struct *child,
6581 	      struct perf_event *group_leader,
6582 	      struct perf_event_context *child_ctx)
6583 {
6584 	struct perf_event *child_event;
6585 	unsigned long flags;
6586 
6587 	/*
6588 	 * Instead of creating recursive hierarchies of events,
6589 	 * we link inherited events back to the original parent,
6590 	 * which has a filp for sure, which we use as the reference
6591 	 * count:
6592 	 */
6593 	if (parent_event->parent)
6594 		parent_event = parent_event->parent;
6595 
6596 	child_event = perf_event_alloc(&parent_event->attr,
6597 					   parent_event->cpu,
6598 					   child,
6599 					   group_leader, parent_event,
6600 				           NULL, NULL);
6601 	if (IS_ERR(child_event))
6602 		return child_event;
6603 	get_ctx(child_ctx);
6604 
6605 	/*
6606 	 * Make the child state follow the state of the parent event,
6607 	 * not its attr.disabled bit.  We hold the parent's mutex,
6608 	 * so we won't race with perf_event_{en, dis}able_family.
6609 	 */
6610 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6611 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6612 	else
6613 		child_event->state = PERF_EVENT_STATE_OFF;
6614 
6615 	if (parent_event->attr.freq) {
6616 		u64 sample_period = parent_event->hw.sample_period;
6617 		struct hw_perf_event *hwc = &child_event->hw;
6618 
6619 		hwc->sample_period = sample_period;
6620 		hwc->last_period   = sample_period;
6621 
6622 		local64_set(&hwc->period_left, sample_period);
6623 	}
6624 
6625 	child_event->ctx = child_ctx;
6626 	child_event->overflow_handler = parent_event->overflow_handler;
6627 	child_event->overflow_handler_context
6628 		= parent_event->overflow_handler_context;
6629 
6630 	/*
6631 	 * Precalculate sample_data sizes
6632 	 */
6633 	perf_event__header_size(child_event);
6634 	perf_event__id_header_size(child_event);
6635 
6636 	/*
6637 	 * Link it up in the child's context:
6638 	 */
6639 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6640 	add_event_to_ctx(child_event, child_ctx);
6641 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6642 
6643 	/*
6644 	 * Get a reference to the parent filp - we will fput it
6645 	 * when the child event exits. This is safe to do because
6646 	 * we are in the parent and we know that the filp still
6647 	 * exists and has a nonzero count:
6648 	 */
6649 	atomic_long_inc(&parent_event->filp->f_count);
6650 
6651 	/*
6652 	 * Link this into the parent event's child list
6653 	 */
6654 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6655 	mutex_lock(&parent_event->child_mutex);
6656 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6657 	mutex_unlock(&parent_event->child_mutex);
6658 
6659 	return child_event;
6660 }
6661 
6662 static int inherit_group(struct perf_event *parent_event,
6663 	      struct task_struct *parent,
6664 	      struct perf_event_context *parent_ctx,
6665 	      struct task_struct *child,
6666 	      struct perf_event_context *child_ctx)
6667 {
6668 	struct perf_event *leader;
6669 	struct perf_event *sub;
6670 	struct perf_event *child_ctr;
6671 
6672 	leader = inherit_event(parent_event, parent, parent_ctx,
6673 				 child, NULL, child_ctx);
6674 	if (IS_ERR(leader))
6675 		return PTR_ERR(leader);
6676 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6677 		child_ctr = inherit_event(sub, parent, parent_ctx,
6678 					    child, leader, child_ctx);
6679 		if (IS_ERR(child_ctr))
6680 			return PTR_ERR(child_ctr);
6681 	}
6682 	return 0;
6683 }
6684 
6685 static int
6686 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6687 		   struct perf_event_context *parent_ctx,
6688 		   struct task_struct *child, int ctxn,
6689 		   int *inherited_all)
6690 {
6691 	int ret;
6692 	struct perf_event_context *child_ctx;
6693 
6694 	if (!event->attr.inherit) {
6695 		*inherited_all = 0;
6696 		return 0;
6697 	}
6698 
6699 	child_ctx = child->perf_event_ctxp[ctxn];
6700 	if (!child_ctx) {
6701 		/*
6702 		 * This is executed from the parent task context, so
6703 		 * inherit events that have been marked for cloning.
6704 		 * First allocate and initialize a context for the
6705 		 * child.
6706 		 */
6707 
6708 		child_ctx = alloc_perf_context(event->pmu, child);
6709 		if (!child_ctx)
6710 			return -ENOMEM;
6711 
6712 		child->perf_event_ctxp[ctxn] = child_ctx;
6713 	}
6714 
6715 	ret = inherit_group(event, parent, parent_ctx,
6716 			    child, child_ctx);
6717 
6718 	if (ret)
6719 		*inherited_all = 0;
6720 
6721 	return ret;
6722 }
6723 
6724 /*
6725  * Initialize the perf_event context in task_struct
6726  */
6727 int perf_event_init_context(struct task_struct *child, int ctxn)
6728 {
6729 	struct perf_event_context *child_ctx, *parent_ctx;
6730 	struct perf_event_context *cloned_ctx;
6731 	struct perf_event *event;
6732 	struct task_struct *parent = current;
6733 	int inherited_all = 1;
6734 	unsigned long flags;
6735 	int ret = 0;
6736 
6737 	if (likely(!parent->perf_event_ctxp[ctxn]))
6738 		return 0;
6739 
6740 	/*
6741 	 * If the parent's context is a clone, pin it so it won't get
6742 	 * swapped under us.
6743 	 */
6744 	parent_ctx = perf_pin_task_context(parent, ctxn);
6745 
6746 	/*
6747 	 * No need to check if parent_ctx != NULL here; since we saw
6748 	 * it non-NULL earlier, the only reason for it to become NULL
6749 	 * is if we exit, and since we're currently in the middle of
6750 	 * a fork we can't be exiting at the same time.
6751 	 */
6752 
6753 	/*
6754 	 * Lock the parent list. No need to lock the child - not PID
6755 	 * hashed yet and not running, so nobody can access it.
6756 	 */
6757 	mutex_lock(&parent_ctx->mutex);
6758 
6759 	/*
6760 	 * We dont have to disable NMIs - we are only looking at
6761 	 * the list, not manipulating it:
6762 	 */
6763 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6764 		ret = inherit_task_group(event, parent, parent_ctx,
6765 					 child, ctxn, &inherited_all);
6766 		if (ret)
6767 			break;
6768 	}
6769 
6770 	/*
6771 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6772 	 * to allocations, but we need to prevent rotation because
6773 	 * rotate_ctx() will change the list from interrupt context.
6774 	 */
6775 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6776 	parent_ctx->rotate_disable = 1;
6777 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6778 
6779 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6780 		ret = inherit_task_group(event, parent, parent_ctx,
6781 					 child, ctxn, &inherited_all);
6782 		if (ret)
6783 			break;
6784 	}
6785 
6786 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6787 	parent_ctx->rotate_disable = 0;
6788 
6789 	child_ctx = child->perf_event_ctxp[ctxn];
6790 
6791 	if (child_ctx && inherited_all) {
6792 		/*
6793 		 * Mark the child context as a clone of the parent
6794 		 * context, or of whatever the parent is a clone of.
6795 		 *
6796 		 * Note that if the parent is a clone, the holding of
6797 		 * parent_ctx->lock avoids it from being uncloned.
6798 		 */
6799 		cloned_ctx = parent_ctx->parent_ctx;
6800 		if (cloned_ctx) {
6801 			child_ctx->parent_ctx = cloned_ctx;
6802 			child_ctx->parent_gen = parent_ctx->parent_gen;
6803 		} else {
6804 			child_ctx->parent_ctx = parent_ctx;
6805 			child_ctx->parent_gen = parent_ctx->generation;
6806 		}
6807 		get_ctx(child_ctx->parent_ctx);
6808 	}
6809 
6810 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6811 	mutex_unlock(&parent_ctx->mutex);
6812 
6813 	perf_unpin_context(parent_ctx);
6814 	put_ctx(parent_ctx);
6815 
6816 	return ret;
6817 }
6818 
6819 /*
6820  * Initialize the perf_event context in task_struct
6821  */
6822 int perf_event_init_task(struct task_struct *child)
6823 {
6824 	int ctxn, ret;
6825 
6826 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6827 	mutex_init(&child->perf_event_mutex);
6828 	INIT_LIST_HEAD(&child->perf_event_list);
6829 
6830 	for_each_task_context_nr(ctxn) {
6831 		ret = perf_event_init_context(child, ctxn);
6832 		if (ret)
6833 			return ret;
6834 	}
6835 
6836 	return 0;
6837 }
6838 
6839 static void __init perf_event_init_all_cpus(void)
6840 {
6841 	struct swevent_htable *swhash;
6842 	int cpu;
6843 
6844 	for_each_possible_cpu(cpu) {
6845 		swhash = &per_cpu(swevent_htable, cpu);
6846 		mutex_init(&swhash->hlist_mutex);
6847 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6848 	}
6849 }
6850 
6851 static void __cpuinit perf_event_init_cpu(int cpu)
6852 {
6853 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6854 
6855 	mutex_lock(&swhash->hlist_mutex);
6856 	if (swhash->hlist_refcount > 0) {
6857 		struct swevent_hlist *hlist;
6858 
6859 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6860 		WARN_ON(!hlist);
6861 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6862 	}
6863 	mutex_unlock(&swhash->hlist_mutex);
6864 }
6865 
6866 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6867 static void perf_pmu_rotate_stop(struct pmu *pmu)
6868 {
6869 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6870 
6871 	WARN_ON(!irqs_disabled());
6872 
6873 	list_del_init(&cpuctx->rotation_list);
6874 }
6875 
6876 static void __perf_event_exit_context(void *__info)
6877 {
6878 	struct perf_event_context *ctx = __info;
6879 	struct perf_event *event, *tmp;
6880 
6881 	perf_pmu_rotate_stop(ctx->pmu);
6882 
6883 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6884 		__perf_remove_from_context(event);
6885 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6886 		__perf_remove_from_context(event);
6887 }
6888 
6889 static void perf_event_exit_cpu_context(int cpu)
6890 {
6891 	struct perf_event_context *ctx;
6892 	struct pmu *pmu;
6893 	int idx;
6894 
6895 	idx = srcu_read_lock(&pmus_srcu);
6896 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6897 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6898 
6899 		mutex_lock(&ctx->mutex);
6900 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6901 		mutex_unlock(&ctx->mutex);
6902 	}
6903 	srcu_read_unlock(&pmus_srcu, idx);
6904 }
6905 
6906 static void perf_event_exit_cpu(int cpu)
6907 {
6908 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6909 
6910 	mutex_lock(&swhash->hlist_mutex);
6911 	swevent_hlist_release(swhash);
6912 	mutex_unlock(&swhash->hlist_mutex);
6913 
6914 	perf_event_exit_cpu_context(cpu);
6915 }
6916 #else
6917 static inline void perf_event_exit_cpu(int cpu) { }
6918 #endif
6919 
6920 static int
6921 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6922 {
6923 	int cpu;
6924 
6925 	for_each_online_cpu(cpu)
6926 		perf_event_exit_cpu(cpu);
6927 
6928 	return NOTIFY_OK;
6929 }
6930 
6931 /*
6932  * Run the perf reboot notifier at the very last possible moment so that
6933  * the generic watchdog code runs as long as possible.
6934  */
6935 static struct notifier_block perf_reboot_notifier = {
6936 	.notifier_call = perf_reboot,
6937 	.priority = INT_MIN,
6938 };
6939 
6940 static int __cpuinit
6941 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6942 {
6943 	unsigned int cpu = (long)hcpu;
6944 
6945 	switch (action & ~CPU_TASKS_FROZEN) {
6946 
6947 	case CPU_UP_PREPARE:
6948 	case CPU_DOWN_FAILED:
6949 		perf_event_init_cpu(cpu);
6950 		break;
6951 
6952 	case CPU_UP_CANCELED:
6953 	case CPU_DOWN_PREPARE:
6954 		perf_event_exit_cpu(cpu);
6955 		break;
6956 
6957 	default:
6958 		break;
6959 	}
6960 
6961 	return NOTIFY_OK;
6962 }
6963 
6964 void __init perf_event_init(void)
6965 {
6966 	int ret;
6967 
6968 	idr_init(&pmu_idr);
6969 
6970 	perf_event_init_all_cpus();
6971 	init_srcu_struct(&pmus_srcu);
6972 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6973 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6974 	perf_pmu_register(&perf_task_clock, NULL, -1);
6975 	perf_tp_register();
6976 	perf_cpu_notifier(perf_cpu_notify);
6977 	register_reboot_notifier(&perf_reboot_notifier);
6978 
6979 	ret = init_hw_breakpoint();
6980 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6981 }
6982 
6983 static int __init perf_event_sysfs_init(void)
6984 {
6985 	struct pmu *pmu;
6986 	int ret;
6987 
6988 	mutex_lock(&pmus_lock);
6989 
6990 	ret = bus_register(&pmu_bus);
6991 	if (ret)
6992 		goto unlock;
6993 
6994 	list_for_each_entry(pmu, &pmus, entry) {
6995 		if (!pmu->name || pmu->type < 0)
6996 			continue;
6997 
6998 		ret = pmu_dev_alloc(pmu);
6999 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7000 	}
7001 	pmu_bus_running = 1;
7002 	ret = 0;
7003 
7004 unlock:
7005 	mutex_unlock(&pmus_lock);
7006 
7007 	return ret;
7008 }
7009 device_initcall(perf_event_sysfs_init);
7010 
7011 #ifdef CONFIG_CGROUP_PERF
7012 static struct cgroup_subsys_state *perf_cgroup_create(
7013 	struct cgroup_subsys *ss, struct cgroup *cont)
7014 {
7015 	struct perf_cgroup *jc;
7016 
7017 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7018 	if (!jc)
7019 		return ERR_PTR(-ENOMEM);
7020 
7021 	jc->info = alloc_percpu(struct perf_cgroup_info);
7022 	if (!jc->info) {
7023 		kfree(jc);
7024 		return ERR_PTR(-ENOMEM);
7025 	}
7026 
7027 	return &jc->css;
7028 }
7029 
7030 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7031 				struct cgroup *cont)
7032 {
7033 	struct perf_cgroup *jc;
7034 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7035 			  struct perf_cgroup, css);
7036 	free_percpu(jc->info);
7037 	kfree(jc);
7038 }
7039 
7040 static int __perf_cgroup_move(void *info)
7041 {
7042 	struct task_struct *task = info;
7043 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7044 	return 0;
7045 }
7046 
7047 static void
7048 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7049 {
7050 	task_function_call(task, __perf_cgroup_move, task);
7051 }
7052 
7053 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7054 		struct cgroup *old_cgrp, struct task_struct *task)
7055 {
7056 	/*
7057 	 * cgroup_exit() is called in the copy_process() failure path.
7058 	 * Ignore this case since the task hasn't ran yet, this avoids
7059 	 * trying to poke a half freed task state from generic code.
7060 	 */
7061 	if (!(task->flags & PF_EXITING))
7062 		return;
7063 
7064 	perf_cgroup_attach_task(cgrp, task);
7065 }
7066 
7067 struct cgroup_subsys perf_subsys = {
7068 	.name		= "perf_event",
7069 	.subsys_id	= perf_subsys_id,
7070 	.create		= perf_cgroup_create,
7071 	.destroy	= perf_cgroup_destroy,
7072 	.exit		= perf_cgroup_exit,
7073 	.attach_task	= perf_cgroup_attach_task,
7074 };
7075 #endif /* CONFIG_CGROUP_PERF */
7076