1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright � 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 enum event_type_t { 122 EVENT_FLEXIBLE = 0x1, 123 EVENT_PINNED = 0x2, 124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 125 }; 126 127 /* 128 * perf_sched_events : >0 events exist 129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 130 */ 131 struct jump_label_key perf_sched_events __read_mostly; 132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 133 134 static atomic_t nr_mmap_events __read_mostly; 135 static atomic_t nr_comm_events __read_mostly; 136 static atomic_t nr_task_events __read_mostly; 137 138 static LIST_HEAD(pmus); 139 static DEFINE_MUTEX(pmus_lock); 140 static struct srcu_struct pmus_srcu; 141 142 /* 143 * perf event paranoia level: 144 * -1 - not paranoid at all 145 * 0 - disallow raw tracepoint access for unpriv 146 * 1 - disallow cpu events for unpriv 147 * 2 - disallow kernel profiling for unpriv 148 */ 149 int sysctl_perf_event_paranoid __read_mostly = 1; 150 151 /* Minimum for 512 kiB + 1 user control page */ 152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 153 154 /* 155 * max perf event sample rate 156 */ 157 #define DEFAULT_MAX_SAMPLE_RATE 100000 158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 159 static int max_samples_per_tick __read_mostly = 160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 161 162 int perf_proc_update_handler(struct ctl_table *table, int write, 163 void __user *buffer, size_t *lenp, 164 loff_t *ppos) 165 { 166 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 167 168 if (ret || !write) 169 return ret; 170 171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 172 173 return 0; 174 } 175 176 static atomic64_t perf_event_id; 177 178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 179 enum event_type_t event_type); 180 181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 182 enum event_type_t event_type, 183 struct task_struct *task); 184 185 static void update_context_time(struct perf_event_context *ctx); 186 static u64 perf_event_time(struct perf_event *event); 187 188 void __weak perf_event_print_debug(void) { } 189 190 extern __weak const char *perf_pmu_name(void) 191 { 192 return "pmu"; 193 } 194 195 static inline u64 perf_clock(void) 196 { 197 return local_clock(); 198 } 199 200 static inline struct perf_cpu_context * 201 __get_cpu_context(struct perf_event_context *ctx) 202 { 203 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 204 } 205 206 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 207 struct perf_event_context *ctx) 208 { 209 raw_spin_lock(&cpuctx->ctx.lock); 210 if (ctx) 211 raw_spin_lock(&ctx->lock); 212 } 213 214 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 215 struct perf_event_context *ctx) 216 { 217 if (ctx) 218 raw_spin_unlock(&ctx->lock); 219 raw_spin_unlock(&cpuctx->ctx.lock); 220 } 221 222 #ifdef CONFIG_CGROUP_PERF 223 224 /* 225 * Must ensure cgroup is pinned (css_get) before calling 226 * this function. In other words, we cannot call this function 227 * if there is no cgroup event for the current CPU context. 228 */ 229 static inline struct perf_cgroup * 230 perf_cgroup_from_task(struct task_struct *task) 231 { 232 return container_of(task_subsys_state(task, perf_subsys_id), 233 struct perf_cgroup, css); 234 } 235 236 static inline bool 237 perf_cgroup_match(struct perf_event *event) 238 { 239 struct perf_event_context *ctx = event->ctx; 240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 241 242 return !event->cgrp || event->cgrp == cpuctx->cgrp; 243 } 244 245 static inline void perf_get_cgroup(struct perf_event *event) 246 { 247 css_get(&event->cgrp->css); 248 } 249 250 static inline void perf_put_cgroup(struct perf_event *event) 251 { 252 css_put(&event->cgrp->css); 253 } 254 255 static inline void perf_detach_cgroup(struct perf_event *event) 256 { 257 perf_put_cgroup(event); 258 event->cgrp = NULL; 259 } 260 261 static inline int is_cgroup_event(struct perf_event *event) 262 { 263 return event->cgrp != NULL; 264 } 265 266 static inline u64 perf_cgroup_event_time(struct perf_event *event) 267 { 268 struct perf_cgroup_info *t; 269 270 t = per_cpu_ptr(event->cgrp->info, event->cpu); 271 return t->time; 272 } 273 274 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 275 { 276 struct perf_cgroup_info *info; 277 u64 now; 278 279 now = perf_clock(); 280 281 info = this_cpu_ptr(cgrp->info); 282 283 info->time += now - info->timestamp; 284 info->timestamp = now; 285 } 286 287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 288 { 289 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 290 if (cgrp_out) 291 __update_cgrp_time(cgrp_out); 292 } 293 294 static inline void update_cgrp_time_from_event(struct perf_event *event) 295 { 296 struct perf_cgroup *cgrp; 297 298 /* 299 * ensure we access cgroup data only when needed and 300 * when we know the cgroup is pinned (css_get) 301 */ 302 if (!is_cgroup_event(event)) 303 return; 304 305 cgrp = perf_cgroup_from_task(current); 306 /* 307 * Do not update time when cgroup is not active 308 */ 309 if (cgrp == event->cgrp) 310 __update_cgrp_time(event->cgrp); 311 } 312 313 static inline void 314 perf_cgroup_set_timestamp(struct task_struct *task, 315 struct perf_event_context *ctx) 316 { 317 struct perf_cgroup *cgrp; 318 struct perf_cgroup_info *info; 319 320 /* 321 * ctx->lock held by caller 322 * ensure we do not access cgroup data 323 * unless we have the cgroup pinned (css_get) 324 */ 325 if (!task || !ctx->nr_cgroups) 326 return; 327 328 cgrp = perf_cgroup_from_task(task); 329 info = this_cpu_ptr(cgrp->info); 330 info->timestamp = ctx->timestamp; 331 } 332 333 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 334 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 335 336 /* 337 * reschedule events based on the cgroup constraint of task. 338 * 339 * mode SWOUT : schedule out everything 340 * mode SWIN : schedule in based on cgroup for next 341 */ 342 void perf_cgroup_switch(struct task_struct *task, int mode) 343 { 344 struct perf_cpu_context *cpuctx; 345 struct pmu *pmu; 346 unsigned long flags; 347 348 /* 349 * disable interrupts to avoid geting nr_cgroup 350 * changes via __perf_event_disable(). Also 351 * avoids preemption. 352 */ 353 local_irq_save(flags); 354 355 /* 356 * we reschedule only in the presence of cgroup 357 * constrained events. 358 */ 359 rcu_read_lock(); 360 361 list_for_each_entry_rcu(pmu, &pmus, entry) { 362 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 363 364 /* 365 * perf_cgroup_events says at least one 366 * context on this CPU has cgroup events. 367 * 368 * ctx->nr_cgroups reports the number of cgroup 369 * events for a context. 370 */ 371 if (cpuctx->ctx.nr_cgroups > 0) { 372 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 373 perf_pmu_disable(cpuctx->ctx.pmu); 374 375 if (mode & PERF_CGROUP_SWOUT) { 376 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 377 /* 378 * must not be done before ctxswout due 379 * to event_filter_match() in event_sched_out() 380 */ 381 cpuctx->cgrp = NULL; 382 } 383 384 if (mode & PERF_CGROUP_SWIN) { 385 WARN_ON_ONCE(cpuctx->cgrp); 386 /* set cgrp before ctxsw in to 387 * allow event_filter_match() to not 388 * have to pass task around 389 */ 390 cpuctx->cgrp = perf_cgroup_from_task(task); 391 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 392 } 393 perf_pmu_enable(cpuctx->ctx.pmu); 394 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 395 } 396 } 397 398 rcu_read_unlock(); 399 400 local_irq_restore(flags); 401 } 402 403 static inline void perf_cgroup_sched_out(struct task_struct *task, 404 struct task_struct *next) 405 { 406 struct perf_cgroup *cgrp1; 407 struct perf_cgroup *cgrp2 = NULL; 408 409 /* 410 * we come here when we know perf_cgroup_events > 0 411 */ 412 cgrp1 = perf_cgroup_from_task(task); 413 414 /* 415 * next is NULL when called from perf_event_enable_on_exec() 416 * that will systematically cause a cgroup_switch() 417 */ 418 if (next) 419 cgrp2 = perf_cgroup_from_task(next); 420 421 /* 422 * only schedule out current cgroup events if we know 423 * that we are switching to a different cgroup. Otherwise, 424 * do no touch the cgroup events. 425 */ 426 if (cgrp1 != cgrp2) 427 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 428 } 429 430 static inline void perf_cgroup_sched_in(struct task_struct *prev, 431 struct task_struct *task) 432 { 433 struct perf_cgroup *cgrp1; 434 struct perf_cgroup *cgrp2 = NULL; 435 436 /* 437 * we come here when we know perf_cgroup_events > 0 438 */ 439 cgrp1 = perf_cgroup_from_task(task); 440 441 /* prev can never be NULL */ 442 cgrp2 = perf_cgroup_from_task(prev); 443 444 /* 445 * only need to schedule in cgroup events if we are changing 446 * cgroup during ctxsw. Cgroup events were not scheduled 447 * out of ctxsw out if that was not the case. 448 */ 449 if (cgrp1 != cgrp2) 450 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 451 } 452 453 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 454 struct perf_event_attr *attr, 455 struct perf_event *group_leader) 456 { 457 struct perf_cgroup *cgrp; 458 struct cgroup_subsys_state *css; 459 struct file *file; 460 int ret = 0, fput_needed; 461 462 file = fget_light(fd, &fput_needed); 463 if (!file) 464 return -EBADF; 465 466 css = cgroup_css_from_dir(file, perf_subsys_id); 467 if (IS_ERR(css)) { 468 ret = PTR_ERR(css); 469 goto out; 470 } 471 472 cgrp = container_of(css, struct perf_cgroup, css); 473 event->cgrp = cgrp; 474 475 /* must be done before we fput() the file */ 476 perf_get_cgroup(event); 477 478 /* 479 * all events in a group must monitor 480 * the same cgroup because a task belongs 481 * to only one perf cgroup at a time 482 */ 483 if (group_leader && group_leader->cgrp != cgrp) { 484 perf_detach_cgroup(event); 485 ret = -EINVAL; 486 } 487 out: 488 fput_light(file, fput_needed); 489 return ret; 490 } 491 492 static inline void 493 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 494 { 495 struct perf_cgroup_info *t; 496 t = per_cpu_ptr(event->cgrp->info, event->cpu); 497 event->shadow_ctx_time = now - t->timestamp; 498 } 499 500 static inline void 501 perf_cgroup_defer_enabled(struct perf_event *event) 502 { 503 /* 504 * when the current task's perf cgroup does not match 505 * the event's, we need to remember to call the 506 * perf_mark_enable() function the first time a task with 507 * a matching perf cgroup is scheduled in. 508 */ 509 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 510 event->cgrp_defer_enabled = 1; 511 } 512 513 static inline void 514 perf_cgroup_mark_enabled(struct perf_event *event, 515 struct perf_event_context *ctx) 516 { 517 struct perf_event *sub; 518 u64 tstamp = perf_event_time(event); 519 520 if (!event->cgrp_defer_enabled) 521 return; 522 523 event->cgrp_defer_enabled = 0; 524 525 event->tstamp_enabled = tstamp - event->total_time_enabled; 526 list_for_each_entry(sub, &event->sibling_list, group_entry) { 527 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 528 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 529 sub->cgrp_defer_enabled = 0; 530 } 531 } 532 } 533 #else /* !CONFIG_CGROUP_PERF */ 534 535 static inline bool 536 perf_cgroup_match(struct perf_event *event) 537 { 538 return true; 539 } 540 541 static inline void perf_detach_cgroup(struct perf_event *event) 542 {} 543 544 static inline int is_cgroup_event(struct perf_event *event) 545 { 546 return 0; 547 } 548 549 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 550 { 551 return 0; 552 } 553 554 static inline void update_cgrp_time_from_event(struct perf_event *event) 555 { 556 } 557 558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 559 { 560 } 561 562 static inline void perf_cgroup_sched_out(struct task_struct *task, 563 struct task_struct *next) 564 { 565 } 566 567 static inline void perf_cgroup_sched_in(struct task_struct *prev, 568 struct task_struct *task) 569 { 570 } 571 572 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 573 struct perf_event_attr *attr, 574 struct perf_event *group_leader) 575 { 576 return -EINVAL; 577 } 578 579 static inline void 580 perf_cgroup_set_timestamp(struct task_struct *task, 581 struct perf_event_context *ctx) 582 { 583 } 584 585 void 586 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 587 { 588 } 589 590 static inline void 591 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 592 { 593 } 594 595 static inline u64 perf_cgroup_event_time(struct perf_event *event) 596 { 597 return 0; 598 } 599 600 static inline void 601 perf_cgroup_defer_enabled(struct perf_event *event) 602 { 603 } 604 605 static inline void 606 perf_cgroup_mark_enabled(struct perf_event *event, 607 struct perf_event_context *ctx) 608 { 609 } 610 #endif 611 612 void perf_pmu_disable(struct pmu *pmu) 613 { 614 int *count = this_cpu_ptr(pmu->pmu_disable_count); 615 if (!(*count)++) 616 pmu->pmu_disable(pmu); 617 } 618 619 void perf_pmu_enable(struct pmu *pmu) 620 { 621 int *count = this_cpu_ptr(pmu->pmu_disable_count); 622 if (!--(*count)) 623 pmu->pmu_enable(pmu); 624 } 625 626 static DEFINE_PER_CPU(struct list_head, rotation_list); 627 628 /* 629 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 630 * because they're strictly cpu affine and rotate_start is called with IRQs 631 * disabled, while rotate_context is called from IRQ context. 632 */ 633 static void perf_pmu_rotate_start(struct pmu *pmu) 634 { 635 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 636 struct list_head *head = &__get_cpu_var(rotation_list); 637 638 WARN_ON(!irqs_disabled()); 639 640 if (list_empty(&cpuctx->rotation_list)) 641 list_add(&cpuctx->rotation_list, head); 642 } 643 644 static void get_ctx(struct perf_event_context *ctx) 645 { 646 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 647 } 648 649 static void put_ctx(struct perf_event_context *ctx) 650 { 651 if (atomic_dec_and_test(&ctx->refcount)) { 652 if (ctx->parent_ctx) 653 put_ctx(ctx->parent_ctx); 654 if (ctx->task) 655 put_task_struct(ctx->task); 656 kfree_rcu(ctx, rcu_head); 657 } 658 } 659 660 static void unclone_ctx(struct perf_event_context *ctx) 661 { 662 if (ctx->parent_ctx) { 663 put_ctx(ctx->parent_ctx); 664 ctx->parent_ctx = NULL; 665 } 666 } 667 668 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 669 { 670 /* 671 * only top level events have the pid namespace they were created in 672 */ 673 if (event->parent) 674 event = event->parent; 675 676 return task_tgid_nr_ns(p, event->ns); 677 } 678 679 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 680 { 681 /* 682 * only top level events have the pid namespace they were created in 683 */ 684 if (event->parent) 685 event = event->parent; 686 687 return task_pid_nr_ns(p, event->ns); 688 } 689 690 /* 691 * If we inherit events we want to return the parent event id 692 * to userspace. 693 */ 694 static u64 primary_event_id(struct perf_event *event) 695 { 696 u64 id = event->id; 697 698 if (event->parent) 699 id = event->parent->id; 700 701 return id; 702 } 703 704 /* 705 * Get the perf_event_context for a task and lock it. 706 * This has to cope with with the fact that until it is locked, 707 * the context could get moved to another task. 708 */ 709 static struct perf_event_context * 710 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 711 { 712 struct perf_event_context *ctx; 713 714 rcu_read_lock(); 715 retry: 716 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 717 if (ctx) { 718 /* 719 * If this context is a clone of another, it might 720 * get swapped for another underneath us by 721 * perf_event_task_sched_out, though the 722 * rcu_read_lock() protects us from any context 723 * getting freed. Lock the context and check if it 724 * got swapped before we could get the lock, and retry 725 * if so. If we locked the right context, then it 726 * can't get swapped on us any more. 727 */ 728 raw_spin_lock_irqsave(&ctx->lock, *flags); 729 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 730 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 731 goto retry; 732 } 733 734 if (!atomic_inc_not_zero(&ctx->refcount)) { 735 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 736 ctx = NULL; 737 } 738 } 739 rcu_read_unlock(); 740 return ctx; 741 } 742 743 /* 744 * Get the context for a task and increment its pin_count so it 745 * can't get swapped to another task. This also increments its 746 * reference count so that the context can't get freed. 747 */ 748 static struct perf_event_context * 749 perf_pin_task_context(struct task_struct *task, int ctxn) 750 { 751 struct perf_event_context *ctx; 752 unsigned long flags; 753 754 ctx = perf_lock_task_context(task, ctxn, &flags); 755 if (ctx) { 756 ++ctx->pin_count; 757 raw_spin_unlock_irqrestore(&ctx->lock, flags); 758 } 759 return ctx; 760 } 761 762 static void perf_unpin_context(struct perf_event_context *ctx) 763 { 764 unsigned long flags; 765 766 raw_spin_lock_irqsave(&ctx->lock, flags); 767 --ctx->pin_count; 768 raw_spin_unlock_irqrestore(&ctx->lock, flags); 769 } 770 771 /* 772 * Update the record of the current time in a context. 773 */ 774 static void update_context_time(struct perf_event_context *ctx) 775 { 776 u64 now = perf_clock(); 777 778 ctx->time += now - ctx->timestamp; 779 ctx->timestamp = now; 780 } 781 782 static u64 perf_event_time(struct perf_event *event) 783 { 784 struct perf_event_context *ctx = event->ctx; 785 786 if (is_cgroup_event(event)) 787 return perf_cgroup_event_time(event); 788 789 return ctx ? ctx->time : 0; 790 } 791 792 /* 793 * Update the total_time_enabled and total_time_running fields for a event. 794 * The caller of this function needs to hold the ctx->lock. 795 */ 796 static void update_event_times(struct perf_event *event) 797 { 798 struct perf_event_context *ctx = event->ctx; 799 u64 run_end; 800 801 if (event->state < PERF_EVENT_STATE_INACTIVE || 802 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 803 return; 804 /* 805 * in cgroup mode, time_enabled represents 806 * the time the event was enabled AND active 807 * tasks were in the monitored cgroup. This is 808 * independent of the activity of the context as 809 * there may be a mix of cgroup and non-cgroup events. 810 * 811 * That is why we treat cgroup events differently 812 * here. 813 */ 814 if (is_cgroup_event(event)) 815 run_end = perf_event_time(event); 816 else if (ctx->is_active) 817 run_end = ctx->time; 818 else 819 run_end = event->tstamp_stopped; 820 821 event->total_time_enabled = run_end - event->tstamp_enabled; 822 823 if (event->state == PERF_EVENT_STATE_INACTIVE) 824 run_end = event->tstamp_stopped; 825 else 826 run_end = perf_event_time(event); 827 828 event->total_time_running = run_end - event->tstamp_running; 829 830 } 831 832 /* 833 * Update total_time_enabled and total_time_running for all events in a group. 834 */ 835 static void update_group_times(struct perf_event *leader) 836 { 837 struct perf_event *event; 838 839 update_event_times(leader); 840 list_for_each_entry(event, &leader->sibling_list, group_entry) 841 update_event_times(event); 842 } 843 844 static struct list_head * 845 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 846 { 847 if (event->attr.pinned) 848 return &ctx->pinned_groups; 849 else 850 return &ctx->flexible_groups; 851 } 852 853 /* 854 * Add a event from the lists for its context. 855 * Must be called with ctx->mutex and ctx->lock held. 856 */ 857 static void 858 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 859 { 860 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 861 event->attach_state |= PERF_ATTACH_CONTEXT; 862 863 /* 864 * If we're a stand alone event or group leader, we go to the context 865 * list, group events are kept attached to the group so that 866 * perf_group_detach can, at all times, locate all siblings. 867 */ 868 if (event->group_leader == event) { 869 struct list_head *list; 870 871 if (is_software_event(event)) 872 event->group_flags |= PERF_GROUP_SOFTWARE; 873 874 list = ctx_group_list(event, ctx); 875 list_add_tail(&event->group_entry, list); 876 } 877 878 if (is_cgroup_event(event)) 879 ctx->nr_cgroups++; 880 881 list_add_rcu(&event->event_entry, &ctx->event_list); 882 if (!ctx->nr_events) 883 perf_pmu_rotate_start(ctx->pmu); 884 ctx->nr_events++; 885 if (event->attr.inherit_stat) 886 ctx->nr_stat++; 887 } 888 889 /* 890 * Called at perf_event creation and when events are attached/detached from a 891 * group. 892 */ 893 static void perf_event__read_size(struct perf_event *event) 894 { 895 int entry = sizeof(u64); /* value */ 896 int size = 0; 897 int nr = 1; 898 899 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 900 size += sizeof(u64); 901 902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 903 size += sizeof(u64); 904 905 if (event->attr.read_format & PERF_FORMAT_ID) 906 entry += sizeof(u64); 907 908 if (event->attr.read_format & PERF_FORMAT_GROUP) { 909 nr += event->group_leader->nr_siblings; 910 size += sizeof(u64); 911 } 912 913 size += entry * nr; 914 event->read_size = size; 915 } 916 917 static void perf_event__header_size(struct perf_event *event) 918 { 919 struct perf_sample_data *data; 920 u64 sample_type = event->attr.sample_type; 921 u16 size = 0; 922 923 perf_event__read_size(event); 924 925 if (sample_type & PERF_SAMPLE_IP) 926 size += sizeof(data->ip); 927 928 if (sample_type & PERF_SAMPLE_ADDR) 929 size += sizeof(data->addr); 930 931 if (sample_type & PERF_SAMPLE_PERIOD) 932 size += sizeof(data->period); 933 934 if (sample_type & PERF_SAMPLE_READ) 935 size += event->read_size; 936 937 event->header_size = size; 938 } 939 940 static void perf_event__id_header_size(struct perf_event *event) 941 { 942 struct perf_sample_data *data; 943 u64 sample_type = event->attr.sample_type; 944 u16 size = 0; 945 946 if (sample_type & PERF_SAMPLE_TID) 947 size += sizeof(data->tid_entry); 948 949 if (sample_type & PERF_SAMPLE_TIME) 950 size += sizeof(data->time); 951 952 if (sample_type & PERF_SAMPLE_ID) 953 size += sizeof(data->id); 954 955 if (sample_type & PERF_SAMPLE_STREAM_ID) 956 size += sizeof(data->stream_id); 957 958 if (sample_type & PERF_SAMPLE_CPU) 959 size += sizeof(data->cpu_entry); 960 961 event->id_header_size = size; 962 } 963 964 static void perf_group_attach(struct perf_event *event) 965 { 966 struct perf_event *group_leader = event->group_leader, *pos; 967 968 /* 969 * We can have double attach due to group movement in perf_event_open. 970 */ 971 if (event->attach_state & PERF_ATTACH_GROUP) 972 return; 973 974 event->attach_state |= PERF_ATTACH_GROUP; 975 976 if (group_leader == event) 977 return; 978 979 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 980 !is_software_event(event)) 981 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 982 983 list_add_tail(&event->group_entry, &group_leader->sibling_list); 984 group_leader->nr_siblings++; 985 986 perf_event__header_size(group_leader); 987 988 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 989 perf_event__header_size(pos); 990 } 991 992 /* 993 * Remove a event from the lists for its context. 994 * Must be called with ctx->mutex and ctx->lock held. 995 */ 996 static void 997 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 998 { 999 struct perf_cpu_context *cpuctx; 1000 /* 1001 * We can have double detach due to exit/hot-unplug + close. 1002 */ 1003 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1004 return; 1005 1006 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1007 1008 if (is_cgroup_event(event)) { 1009 ctx->nr_cgroups--; 1010 cpuctx = __get_cpu_context(ctx); 1011 /* 1012 * if there are no more cgroup events 1013 * then cler cgrp to avoid stale pointer 1014 * in update_cgrp_time_from_cpuctx() 1015 */ 1016 if (!ctx->nr_cgroups) 1017 cpuctx->cgrp = NULL; 1018 } 1019 1020 ctx->nr_events--; 1021 if (event->attr.inherit_stat) 1022 ctx->nr_stat--; 1023 1024 list_del_rcu(&event->event_entry); 1025 1026 if (event->group_leader == event) 1027 list_del_init(&event->group_entry); 1028 1029 update_group_times(event); 1030 1031 /* 1032 * If event was in error state, then keep it 1033 * that way, otherwise bogus counts will be 1034 * returned on read(). The only way to get out 1035 * of error state is by explicit re-enabling 1036 * of the event 1037 */ 1038 if (event->state > PERF_EVENT_STATE_OFF) 1039 event->state = PERF_EVENT_STATE_OFF; 1040 } 1041 1042 static void perf_group_detach(struct perf_event *event) 1043 { 1044 struct perf_event *sibling, *tmp; 1045 struct list_head *list = NULL; 1046 1047 /* 1048 * We can have double detach due to exit/hot-unplug + close. 1049 */ 1050 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1051 return; 1052 1053 event->attach_state &= ~PERF_ATTACH_GROUP; 1054 1055 /* 1056 * If this is a sibling, remove it from its group. 1057 */ 1058 if (event->group_leader != event) { 1059 list_del_init(&event->group_entry); 1060 event->group_leader->nr_siblings--; 1061 goto out; 1062 } 1063 1064 if (!list_empty(&event->group_entry)) 1065 list = &event->group_entry; 1066 1067 /* 1068 * If this was a group event with sibling events then 1069 * upgrade the siblings to singleton events by adding them 1070 * to whatever list we are on. 1071 */ 1072 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1073 if (list) 1074 list_move_tail(&sibling->group_entry, list); 1075 sibling->group_leader = sibling; 1076 1077 /* Inherit group flags from the previous leader */ 1078 sibling->group_flags = event->group_flags; 1079 } 1080 1081 out: 1082 perf_event__header_size(event->group_leader); 1083 1084 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1085 perf_event__header_size(tmp); 1086 } 1087 1088 static inline int 1089 event_filter_match(struct perf_event *event) 1090 { 1091 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1092 && perf_cgroup_match(event); 1093 } 1094 1095 static void 1096 event_sched_out(struct perf_event *event, 1097 struct perf_cpu_context *cpuctx, 1098 struct perf_event_context *ctx) 1099 { 1100 u64 tstamp = perf_event_time(event); 1101 u64 delta; 1102 /* 1103 * An event which could not be activated because of 1104 * filter mismatch still needs to have its timings 1105 * maintained, otherwise bogus information is return 1106 * via read() for time_enabled, time_running: 1107 */ 1108 if (event->state == PERF_EVENT_STATE_INACTIVE 1109 && !event_filter_match(event)) { 1110 delta = tstamp - event->tstamp_stopped; 1111 event->tstamp_running += delta; 1112 event->tstamp_stopped = tstamp; 1113 } 1114 1115 if (event->state != PERF_EVENT_STATE_ACTIVE) 1116 return; 1117 1118 event->state = PERF_EVENT_STATE_INACTIVE; 1119 if (event->pending_disable) { 1120 event->pending_disable = 0; 1121 event->state = PERF_EVENT_STATE_OFF; 1122 } 1123 event->tstamp_stopped = tstamp; 1124 event->pmu->del(event, 0); 1125 event->oncpu = -1; 1126 1127 if (!is_software_event(event)) 1128 cpuctx->active_oncpu--; 1129 ctx->nr_active--; 1130 if (event->attr.exclusive || !cpuctx->active_oncpu) 1131 cpuctx->exclusive = 0; 1132 } 1133 1134 static void 1135 group_sched_out(struct perf_event *group_event, 1136 struct perf_cpu_context *cpuctx, 1137 struct perf_event_context *ctx) 1138 { 1139 struct perf_event *event; 1140 int state = group_event->state; 1141 1142 event_sched_out(group_event, cpuctx, ctx); 1143 1144 /* 1145 * Schedule out siblings (if any): 1146 */ 1147 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1148 event_sched_out(event, cpuctx, ctx); 1149 1150 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1151 cpuctx->exclusive = 0; 1152 } 1153 1154 /* 1155 * Cross CPU call to remove a performance event 1156 * 1157 * We disable the event on the hardware level first. After that we 1158 * remove it from the context list. 1159 */ 1160 static int __perf_remove_from_context(void *info) 1161 { 1162 struct perf_event *event = info; 1163 struct perf_event_context *ctx = event->ctx; 1164 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1165 1166 raw_spin_lock(&ctx->lock); 1167 event_sched_out(event, cpuctx, ctx); 1168 list_del_event(event, ctx); 1169 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1170 ctx->is_active = 0; 1171 cpuctx->task_ctx = NULL; 1172 } 1173 raw_spin_unlock(&ctx->lock); 1174 1175 return 0; 1176 } 1177 1178 1179 /* 1180 * Remove the event from a task's (or a CPU's) list of events. 1181 * 1182 * CPU events are removed with a smp call. For task events we only 1183 * call when the task is on a CPU. 1184 * 1185 * If event->ctx is a cloned context, callers must make sure that 1186 * every task struct that event->ctx->task could possibly point to 1187 * remains valid. This is OK when called from perf_release since 1188 * that only calls us on the top-level context, which can't be a clone. 1189 * When called from perf_event_exit_task, it's OK because the 1190 * context has been detached from its task. 1191 */ 1192 static void perf_remove_from_context(struct perf_event *event) 1193 { 1194 struct perf_event_context *ctx = event->ctx; 1195 struct task_struct *task = ctx->task; 1196 1197 lockdep_assert_held(&ctx->mutex); 1198 1199 if (!task) { 1200 /* 1201 * Per cpu events are removed via an smp call and 1202 * the removal is always successful. 1203 */ 1204 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1205 return; 1206 } 1207 1208 retry: 1209 if (!task_function_call(task, __perf_remove_from_context, event)) 1210 return; 1211 1212 raw_spin_lock_irq(&ctx->lock); 1213 /* 1214 * If we failed to find a running task, but find the context active now 1215 * that we've acquired the ctx->lock, retry. 1216 */ 1217 if (ctx->is_active) { 1218 raw_spin_unlock_irq(&ctx->lock); 1219 goto retry; 1220 } 1221 1222 /* 1223 * Since the task isn't running, its safe to remove the event, us 1224 * holding the ctx->lock ensures the task won't get scheduled in. 1225 */ 1226 list_del_event(event, ctx); 1227 raw_spin_unlock_irq(&ctx->lock); 1228 } 1229 1230 /* 1231 * Cross CPU call to disable a performance event 1232 */ 1233 static int __perf_event_disable(void *info) 1234 { 1235 struct perf_event *event = info; 1236 struct perf_event_context *ctx = event->ctx; 1237 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1238 1239 /* 1240 * If this is a per-task event, need to check whether this 1241 * event's task is the current task on this cpu. 1242 * 1243 * Can trigger due to concurrent perf_event_context_sched_out() 1244 * flipping contexts around. 1245 */ 1246 if (ctx->task && cpuctx->task_ctx != ctx) 1247 return -EINVAL; 1248 1249 raw_spin_lock(&ctx->lock); 1250 1251 /* 1252 * If the event is on, turn it off. 1253 * If it is in error state, leave it in error state. 1254 */ 1255 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1256 update_context_time(ctx); 1257 update_cgrp_time_from_event(event); 1258 update_group_times(event); 1259 if (event == event->group_leader) 1260 group_sched_out(event, cpuctx, ctx); 1261 else 1262 event_sched_out(event, cpuctx, ctx); 1263 event->state = PERF_EVENT_STATE_OFF; 1264 } 1265 1266 raw_spin_unlock(&ctx->lock); 1267 1268 return 0; 1269 } 1270 1271 /* 1272 * Disable a event. 1273 * 1274 * If event->ctx is a cloned context, callers must make sure that 1275 * every task struct that event->ctx->task could possibly point to 1276 * remains valid. This condition is satisifed when called through 1277 * perf_event_for_each_child or perf_event_for_each because they 1278 * hold the top-level event's child_mutex, so any descendant that 1279 * goes to exit will block in sync_child_event. 1280 * When called from perf_pending_event it's OK because event->ctx 1281 * is the current context on this CPU and preemption is disabled, 1282 * hence we can't get into perf_event_task_sched_out for this context. 1283 */ 1284 void perf_event_disable(struct perf_event *event) 1285 { 1286 struct perf_event_context *ctx = event->ctx; 1287 struct task_struct *task = ctx->task; 1288 1289 if (!task) { 1290 /* 1291 * Disable the event on the cpu that it's on 1292 */ 1293 cpu_function_call(event->cpu, __perf_event_disable, event); 1294 return; 1295 } 1296 1297 retry: 1298 if (!task_function_call(task, __perf_event_disable, event)) 1299 return; 1300 1301 raw_spin_lock_irq(&ctx->lock); 1302 /* 1303 * If the event is still active, we need to retry the cross-call. 1304 */ 1305 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1306 raw_spin_unlock_irq(&ctx->lock); 1307 /* 1308 * Reload the task pointer, it might have been changed by 1309 * a concurrent perf_event_context_sched_out(). 1310 */ 1311 task = ctx->task; 1312 goto retry; 1313 } 1314 1315 /* 1316 * Since we have the lock this context can't be scheduled 1317 * in, so we can change the state safely. 1318 */ 1319 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1320 update_group_times(event); 1321 event->state = PERF_EVENT_STATE_OFF; 1322 } 1323 raw_spin_unlock_irq(&ctx->lock); 1324 } 1325 1326 static void perf_set_shadow_time(struct perf_event *event, 1327 struct perf_event_context *ctx, 1328 u64 tstamp) 1329 { 1330 /* 1331 * use the correct time source for the time snapshot 1332 * 1333 * We could get by without this by leveraging the 1334 * fact that to get to this function, the caller 1335 * has most likely already called update_context_time() 1336 * and update_cgrp_time_xx() and thus both timestamp 1337 * are identical (or very close). Given that tstamp is, 1338 * already adjusted for cgroup, we could say that: 1339 * tstamp - ctx->timestamp 1340 * is equivalent to 1341 * tstamp - cgrp->timestamp. 1342 * 1343 * Then, in perf_output_read(), the calculation would 1344 * work with no changes because: 1345 * - event is guaranteed scheduled in 1346 * - no scheduled out in between 1347 * - thus the timestamp would be the same 1348 * 1349 * But this is a bit hairy. 1350 * 1351 * So instead, we have an explicit cgroup call to remain 1352 * within the time time source all along. We believe it 1353 * is cleaner and simpler to understand. 1354 */ 1355 if (is_cgroup_event(event)) 1356 perf_cgroup_set_shadow_time(event, tstamp); 1357 else 1358 event->shadow_ctx_time = tstamp - ctx->timestamp; 1359 } 1360 1361 #define MAX_INTERRUPTS (~0ULL) 1362 1363 static void perf_log_throttle(struct perf_event *event, int enable); 1364 1365 static int 1366 event_sched_in(struct perf_event *event, 1367 struct perf_cpu_context *cpuctx, 1368 struct perf_event_context *ctx) 1369 { 1370 u64 tstamp = perf_event_time(event); 1371 1372 if (event->state <= PERF_EVENT_STATE_OFF) 1373 return 0; 1374 1375 event->state = PERF_EVENT_STATE_ACTIVE; 1376 event->oncpu = smp_processor_id(); 1377 1378 /* 1379 * Unthrottle events, since we scheduled we might have missed several 1380 * ticks already, also for a heavily scheduling task there is little 1381 * guarantee it'll get a tick in a timely manner. 1382 */ 1383 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1384 perf_log_throttle(event, 1); 1385 event->hw.interrupts = 0; 1386 } 1387 1388 /* 1389 * The new state must be visible before we turn it on in the hardware: 1390 */ 1391 smp_wmb(); 1392 1393 if (event->pmu->add(event, PERF_EF_START)) { 1394 event->state = PERF_EVENT_STATE_INACTIVE; 1395 event->oncpu = -1; 1396 return -EAGAIN; 1397 } 1398 1399 event->tstamp_running += tstamp - event->tstamp_stopped; 1400 1401 perf_set_shadow_time(event, ctx, tstamp); 1402 1403 if (!is_software_event(event)) 1404 cpuctx->active_oncpu++; 1405 ctx->nr_active++; 1406 1407 if (event->attr.exclusive) 1408 cpuctx->exclusive = 1; 1409 1410 return 0; 1411 } 1412 1413 static int 1414 group_sched_in(struct perf_event *group_event, 1415 struct perf_cpu_context *cpuctx, 1416 struct perf_event_context *ctx) 1417 { 1418 struct perf_event *event, *partial_group = NULL; 1419 struct pmu *pmu = group_event->pmu; 1420 u64 now = ctx->time; 1421 bool simulate = false; 1422 1423 if (group_event->state == PERF_EVENT_STATE_OFF) 1424 return 0; 1425 1426 pmu->start_txn(pmu); 1427 1428 if (event_sched_in(group_event, cpuctx, ctx)) { 1429 pmu->cancel_txn(pmu); 1430 return -EAGAIN; 1431 } 1432 1433 /* 1434 * Schedule in siblings as one group (if any): 1435 */ 1436 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1437 if (event_sched_in(event, cpuctx, ctx)) { 1438 partial_group = event; 1439 goto group_error; 1440 } 1441 } 1442 1443 if (!pmu->commit_txn(pmu)) 1444 return 0; 1445 1446 group_error: 1447 /* 1448 * Groups can be scheduled in as one unit only, so undo any 1449 * partial group before returning: 1450 * The events up to the failed event are scheduled out normally, 1451 * tstamp_stopped will be updated. 1452 * 1453 * The failed events and the remaining siblings need to have 1454 * their timings updated as if they had gone thru event_sched_in() 1455 * and event_sched_out(). This is required to get consistent timings 1456 * across the group. This also takes care of the case where the group 1457 * could never be scheduled by ensuring tstamp_stopped is set to mark 1458 * the time the event was actually stopped, such that time delta 1459 * calculation in update_event_times() is correct. 1460 */ 1461 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1462 if (event == partial_group) 1463 simulate = true; 1464 1465 if (simulate) { 1466 event->tstamp_running += now - event->tstamp_stopped; 1467 event->tstamp_stopped = now; 1468 } else { 1469 event_sched_out(event, cpuctx, ctx); 1470 } 1471 } 1472 event_sched_out(group_event, cpuctx, ctx); 1473 1474 pmu->cancel_txn(pmu); 1475 1476 return -EAGAIN; 1477 } 1478 1479 /* 1480 * Work out whether we can put this event group on the CPU now. 1481 */ 1482 static int group_can_go_on(struct perf_event *event, 1483 struct perf_cpu_context *cpuctx, 1484 int can_add_hw) 1485 { 1486 /* 1487 * Groups consisting entirely of software events can always go on. 1488 */ 1489 if (event->group_flags & PERF_GROUP_SOFTWARE) 1490 return 1; 1491 /* 1492 * If an exclusive group is already on, no other hardware 1493 * events can go on. 1494 */ 1495 if (cpuctx->exclusive) 1496 return 0; 1497 /* 1498 * If this group is exclusive and there are already 1499 * events on the CPU, it can't go on. 1500 */ 1501 if (event->attr.exclusive && cpuctx->active_oncpu) 1502 return 0; 1503 /* 1504 * Otherwise, try to add it if all previous groups were able 1505 * to go on. 1506 */ 1507 return can_add_hw; 1508 } 1509 1510 static void add_event_to_ctx(struct perf_event *event, 1511 struct perf_event_context *ctx) 1512 { 1513 u64 tstamp = perf_event_time(event); 1514 1515 list_add_event(event, ctx); 1516 perf_group_attach(event); 1517 event->tstamp_enabled = tstamp; 1518 event->tstamp_running = tstamp; 1519 event->tstamp_stopped = tstamp; 1520 } 1521 1522 static void task_ctx_sched_out(struct perf_event_context *ctx); 1523 static void 1524 ctx_sched_in(struct perf_event_context *ctx, 1525 struct perf_cpu_context *cpuctx, 1526 enum event_type_t event_type, 1527 struct task_struct *task); 1528 1529 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1530 struct perf_event_context *ctx, 1531 struct task_struct *task) 1532 { 1533 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1534 if (ctx) 1535 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1536 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1537 if (ctx) 1538 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1539 } 1540 1541 /* 1542 * Cross CPU call to install and enable a performance event 1543 * 1544 * Must be called with ctx->mutex held 1545 */ 1546 static int __perf_install_in_context(void *info) 1547 { 1548 struct perf_event *event = info; 1549 struct perf_event_context *ctx = event->ctx; 1550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1551 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1552 struct task_struct *task = current; 1553 1554 perf_ctx_lock(cpuctx, task_ctx); 1555 perf_pmu_disable(cpuctx->ctx.pmu); 1556 1557 /* 1558 * If there was an active task_ctx schedule it out. 1559 */ 1560 if (task_ctx) 1561 task_ctx_sched_out(task_ctx); 1562 1563 /* 1564 * If the context we're installing events in is not the 1565 * active task_ctx, flip them. 1566 */ 1567 if (ctx->task && task_ctx != ctx) { 1568 if (task_ctx) 1569 raw_spin_unlock(&task_ctx->lock); 1570 raw_spin_lock(&ctx->lock); 1571 task_ctx = ctx; 1572 } 1573 1574 if (task_ctx) { 1575 cpuctx->task_ctx = task_ctx; 1576 task = task_ctx->task; 1577 } 1578 1579 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1580 1581 update_context_time(ctx); 1582 /* 1583 * update cgrp time only if current cgrp 1584 * matches event->cgrp. Must be done before 1585 * calling add_event_to_ctx() 1586 */ 1587 update_cgrp_time_from_event(event); 1588 1589 add_event_to_ctx(event, ctx); 1590 1591 /* 1592 * Schedule everything back in 1593 */ 1594 perf_event_sched_in(cpuctx, task_ctx, task); 1595 1596 perf_pmu_enable(cpuctx->ctx.pmu); 1597 perf_ctx_unlock(cpuctx, task_ctx); 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Attach a performance event to a context 1604 * 1605 * First we add the event to the list with the hardware enable bit 1606 * in event->hw_config cleared. 1607 * 1608 * If the event is attached to a task which is on a CPU we use a smp 1609 * call to enable it in the task context. The task might have been 1610 * scheduled away, but we check this in the smp call again. 1611 */ 1612 static void 1613 perf_install_in_context(struct perf_event_context *ctx, 1614 struct perf_event *event, 1615 int cpu) 1616 { 1617 struct task_struct *task = ctx->task; 1618 1619 lockdep_assert_held(&ctx->mutex); 1620 1621 event->ctx = ctx; 1622 1623 if (!task) { 1624 /* 1625 * Per cpu events are installed via an smp call and 1626 * the install is always successful. 1627 */ 1628 cpu_function_call(cpu, __perf_install_in_context, event); 1629 return; 1630 } 1631 1632 retry: 1633 if (!task_function_call(task, __perf_install_in_context, event)) 1634 return; 1635 1636 raw_spin_lock_irq(&ctx->lock); 1637 /* 1638 * If we failed to find a running task, but find the context active now 1639 * that we've acquired the ctx->lock, retry. 1640 */ 1641 if (ctx->is_active) { 1642 raw_spin_unlock_irq(&ctx->lock); 1643 goto retry; 1644 } 1645 1646 /* 1647 * Since the task isn't running, its safe to add the event, us holding 1648 * the ctx->lock ensures the task won't get scheduled in. 1649 */ 1650 add_event_to_ctx(event, ctx); 1651 raw_spin_unlock_irq(&ctx->lock); 1652 } 1653 1654 /* 1655 * Put a event into inactive state and update time fields. 1656 * Enabling the leader of a group effectively enables all 1657 * the group members that aren't explicitly disabled, so we 1658 * have to update their ->tstamp_enabled also. 1659 * Note: this works for group members as well as group leaders 1660 * since the non-leader members' sibling_lists will be empty. 1661 */ 1662 static void __perf_event_mark_enabled(struct perf_event *event, 1663 struct perf_event_context *ctx) 1664 { 1665 struct perf_event *sub; 1666 u64 tstamp = perf_event_time(event); 1667 1668 event->state = PERF_EVENT_STATE_INACTIVE; 1669 event->tstamp_enabled = tstamp - event->total_time_enabled; 1670 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1671 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1672 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1673 } 1674 } 1675 1676 /* 1677 * Cross CPU call to enable a performance event 1678 */ 1679 static int __perf_event_enable(void *info) 1680 { 1681 struct perf_event *event = info; 1682 struct perf_event_context *ctx = event->ctx; 1683 struct perf_event *leader = event->group_leader; 1684 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1685 int err; 1686 1687 if (WARN_ON_ONCE(!ctx->is_active)) 1688 return -EINVAL; 1689 1690 raw_spin_lock(&ctx->lock); 1691 update_context_time(ctx); 1692 1693 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1694 goto unlock; 1695 1696 /* 1697 * set current task's cgroup time reference point 1698 */ 1699 perf_cgroup_set_timestamp(current, ctx); 1700 1701 __perf_event_mark_enabled(event, ctx); 1702 1703 if (!event_filter_match(event)) { 1704 if (is_cgroup_event(event)) 1705 perf_cgroup_defer_enabled(event); 1706 goto unlock; 1707 } 1708 1709 /* 1710 * If the event is in a group and isn't the group leader, 1711 * then don't put it on unless the group is on. 1712 */ 1713 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1714 goto unlock; 1715 1716 if (!group_can_go_on(event, cpuctx, 1)) { 1717 err = -EEXIST; 1718 } else { 1719 if (event == leader) 1720 err = group_sched_in(event, cpuctx, ctx); 1721 else 1722 err = event_sched_in(event, cpuctx, ctx); 1723 } 1724 1725 if (err) { 1726 /* 1727 * If this event can't go on and it's part of a 1728 * group, then the whole group has to come off. 1729 */ 1730 if (leader != event) 1731 group_sched_out(leader, cpuctx, ctx); 1732 if (leader->attr.pinned) { 1733 update_group_times(leader); 1734 leader->state = PERF_EVENT_STATE_ERROR; 1735 } 1736 } 1737 1738 unlock: 1739 raw_spin_unlock(&ctx->lock); 1740 1741 return 0; 1742 } 1743 1744 /* 1745 * Enable a event. 1746 * 1747 * If event->ctx is a cloned context, callers must make sure that 1748 * every task struct that event->ctx->task could possibly point to 1749 * remains valid. This condition is satisfied when called through 1750 * perf_event_for_each_child or perf_event_for_each as described 1751 * for perf_event_disable. 1752 */ 1753 void perf_event_enable(struct perf_event *event) 1754 { 1755 struct perf_event_context *ctx = event->ctx; 1756 struct task_struct *task = ctx->task; 1757 1758 if (!task) { 1759 /* 1760 * Enable the event on the cpu that it's on 1761 */ 1762 cpu_function_call(event->cpu, __perf_event_enable, event); 1763 return; 1764 } 1765 1766 raw_spin_lock_irq(&ctx->lock); 1767 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1768 goto out; 1769 1770 /* 1771 * If the event is in error state, clear that first. 1772 * That way, if we see the event in error state below, we 1773 * know that it has gone back into error state, as distinct 1774 * from the task having been scheduled away before the 1775 * cross-call arrived. 1776 */ 1777 if (event->state == PERF_EVENT_STATE_ERROR) 1778 event->state = PERF_EVENT_STATE_OFF; 1779 1780 retry: 1781 if (!ctx->is_active) { 1782 __perf_event_mark_enabled(event, ctx); 1783 goto out; 1784 } 1785 1786 raw_spin_unlock_irq(&ctx->lock); 1787 1788 if (!task_function_call(task, __perf_event_enable, event)) 1789 return; 1790 1791 raw_spin_lock_irq(&ctx->lock); 1792 1793 /* 1794 * If the context is active and the event is still off, 1795 * we need to retry the cross-call. 1796 */ 1797 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1798 /* 1799 * task could have been flipped by a concurrent 1800 * perf_event_context_sched_out() 1801 */ 1802 task = ctx->task; 1803 goto retry; 1804 } 1805 1806 out: 1807 raw_spin_unlock_irq(&ctx->lock); 1808 } 1809 1810 int perf_event_refresh(struct perf_event *event, int refresh) 1811 { 1812 /* 1813 * not supported on inherited events 1814 */ 1815 if (event->attr.inherit || !is_sampling_event(event)) 1816 return -EINVAL; 1817 1818 atomic_add(refresh, &event->event_limit); 1819 perf_event_enable(event); 1820 1821 return 0; 1822 } 1823 EXPORT_SYMBOL_GPL(perf_event_refresh); 1824 1825 static void ctx_sched_out(struct perf_event_context *ctx, 1826 struct perf_cpu_context *cpuctx, 1827 enum event_type_t event_type) 1828 { 1829 struct perf_event *event; 1830 int is_active = ctx->is_active; 1831 1832 ctx->is_active &= ~event_type; 1833 if (likely(!ctx->nr_events)) 1834 return; 1835 1836 update_context_time(ctx); 1837 update_cgrp_time_from_cpuctx(cpuctx); 1838 if (!ctx->nr_active) 1839 return; 1840 1841 perf_pmu_disable(ctx->pmu); 1842 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1843 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1844 group_sched_out(event, cpuctx, ctx); 1845 } 1846 1847 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1848 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1849 group_sched_out(event, cpuctx, ctx); 1850 } 1851 perf_pmu_enable(ctx->pmu); 1852 } 1853 1854 /* 1855 * Test whether two contexts are equivalent, i.e. whether they 1856 * have both been cloned from the same version of the same context 1857 * and they both have the same number of enabled events. 1858 * If the number of enabled events is the same, then the set 1859 * of enabled events should be the same, because these are both 1860 * inherited contexts, therefore we can't access individual events 1861 * in them directly with an fd; we can only enable/disable all 1862 * events via prctl, or enable/disable all events in a family 1863 * via ioctl, which will have the same effect on both contexts. 1864 */ 1865 static int context_equiv(struct perf_event_context *ctx1, 1866 struct perf_event_context *ctx2) 1867 { 1868 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1869 && ctx1->parent_gen == ctx2->parent_gen 1870 && !ctx1->pin_count && !ctx2->pin_count; 1871 } 1872 1873 static void __perf_event_sync_stat(struct perf_event *event, 1874 struct perf_event *next_event) 1875 { 1876 u64 value; 1877 1878 if (!event->attr.inherit_stat) 1879 return; 1880 1881 /* 1882 * Update the event value, we cannot use perf_event_read() 1883 * because we're in the middle of a context switch and have IRQs 1884 * disabled, which upsets smp_call_function_single(), however 1885 * we know the event must be on the current CPU, therefore we 1886 * don't need to use it. 1887 */ 1888 switch (event->state) { 1889 case PERF_EVENT_STATE_ACTIVE: 1890 event->pmu->read(event); 1891 /* fall-through */ 1892 1893 case PERF_EVENT_STATE_INACTIVE: 1894 update_event_times(event); 1895 break; 1896 1897 default: 1898 break; 1899 } 1900 1901 /* 1902 * In order to keep per-task stats reliable we need to flip the event 1903 * values when we flip the contexts. 1904 */ 1905 value = local64_read(&next_event->count); 1906 value = local64_xchg(&event->count, value); 1907 local64_set(&next_event->count, value); 1908 1909 swap(event->total_time_enabled, next_event->total_time_enabled); 1910 swap(event->total_time_running, next_event->total_time_running); 1911 1912 /* 1913 * Since we swizzled the values, update the user visible data too. 1914 */ 1915 perf_event_update_userpage(event); 1916 perf_event_update_userpage(next_event); 1917 } 1918 1919 #define list_next_entry(pos, member) \ 1920 list_entry(pos->member.next, typeof(*pos), member) 1921 1922 static void perf_event_sync_stat(struct perf_event_context *ctx, 1923 struct perf_event_context *next_ctx) 1924 { 1925 struct perf_event *event, *next_event; 1926 1927 if (!ctx->nr_stat) 1928 return; 1929 1930 update_context_time(ctx); 1931 1932 event = list_first_entry(&ctx->event_list, 1933 struct perf_event, event_entry); 1934 1935 next_event = list_first_entry(&next_ctx->event_list, 1936 struct perf_event, event_entry); 1937 1938 while (&event->event_entry != &ctx->event_list && 1939 &next_event->event_entry != &next_ctx->event_list) { 1940 1941 __perf_event_sync_stat(event, next_event); 1942 1943 event = list_next_entry(event, event_entry); 1944 next_event = list_next_entry(next_event, event_entry); 1945 } 1946 } 1947 1948 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1949 struct task_struct *next) 1950 { 1951 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1952 struct perf_event_context *next_ctx; 1953 struct perf_event_context *parent; 1954 struct perf_cpu_context *cpuctx; 1955 int do_switch = 1; 1956 1957 if (likely(!ctx)) 1958 return; 1959 1960 cpuctx = __get_cpu_context(ctx); 1961 if (!cpuctx->task_ctx) 1962 return; 1963 1964 rcu_read_lock(); 1965 parent = rcu_dereference(ctx->parent_ctx); 1966 next_ctx = next->perf_event_ctxp[ctxn]; 1967 if (parent && next_ctx && 1968 rcu_dereference(next_ctx->parent_ctx) == parent) { 1969 /* 1970 * Looks like the two contexts are clones, so we might be 1971 * able to optimize the context switch. We lock both 1972 * contexts and check that they are clones under the 1973 * lock (including re-checking that neither has been 1974 * uncloned in the meantime). It doesn't matter which 1975 * order we take the locks because no other cpu could 1976 * be trying to lock both of these tasks. 1977 */ 1978 raw_spin_lock(&ctx->lock); 1979 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 1980 if (context_equiv(ctx, next_ctx)) { 1981 /* 1982 * XXX do we need a memory barrier of sorts 1983 * wrt to rcu_dereference() of perf_event_ctxp 1984 */ 1985 task->perf_event_ctxp[ctxn] = next_ctx; 1986 next->perf_event_ctxp[ctxn] = ctx; 1987 ctx->task = next; 1988 next_ctx->task = task; 1989 do_switch = 0; 1990 1991 perf_event_sync_stat(ctx, next_ctx); 1992 } 1993 raw_spin_unlock(&next_ctx->lock); 1994 raw_spin_unlock(&ctx->lock); 1995 } 1996 rcu_read_unlock(); 1997 1998 if (do_switch) { 1999 raw_spin_lock(&ctx->lock); 2000 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2001 cpuctx->task_ctx = NULL; 2002 raw_spin_unlock(&ctx->lock); 2003 } 2004 } 2005 2006 #define for_each_task_context_nr(ctxn) \ 2007 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2008 2009 /* 2010 * Called from scheduler to remove the events of the current task, 2011 * with interrupts disabled. 2012 * 2013 * We stop each event and update the event value in event->count. 2014 * 2015 * This does not protect us against NMI, but disable() 2016 * sets the disabled bit in the control field of event _before_ 2017 * accessing the event control register. If a NMI hits, then it will 2018 * not restart the event. 2019 */ 2020 void __perf_event_task_sched_out(struct task_struct *task, 2021 struct task_struct *next) 2022 { 2023 int ctxn; 2024 2025 for_each_task_context_nr(ctxn) 2026 perf_event_context_sched_out(task, ctxn, next); 2027 2028 /* 2029 * if cgroup events exist on this CPU, then we need 2030 * to check if we have to switch out PMU state. 2031 * cgroup event are system-wide mode only 2032 */ 2033 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2034 perf_cgroup_sched_out(task, next); 2035 } 2036 2037 static void task_ctx_sched_out(struct perf_event_context *ctx) 2038 { 2039 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2040 2041 if (!cpuctx->task_ctx) 2042 return; 2043 2044 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2045 return; 2046 2047 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2048 cpuctx->task_ctx = NULL; 2049 } 2050 2051 /* 2052 * Called with IRQs disabled 2053 */ 2054 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2055 enum event_type_t event_type) 2056 { 2057 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2058 } 2059 2060 static void 2061 ctx_pinned_sched_in(struct perf_event_context *ctx, 2062 struct perf_cpu_context *cpuctx) 2063 { 2064 struct perf_event *event; 2065 2066 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2067 if (event->state <= PERF_EVENT_STATE_OFF) 2068 continue; 2069 if (!event_filter_match(event)) 2070 continue; 2071 2072 /* may need to reset tstamp_enabled */ 2073 if (is_cgroup_event(event)) 2074 perf_cgroup_mark_enabled(event, ctx); 2075 2076 if (group_can_go_on(event, cpuctx, 1)) 2077 group_sched_in(event, cpuctx, ctx); 2078 2079 /* 2080 * If this pinned group hasn't been scheduled, 2081 * put it in error state. 2082 */ 2083 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2084 update_group_times(event); 2085 event->state = PERF_EVENT_STATE_ERROR; 2086 } 2087 } 2088 } 2089 2090 static void 2091 ctx_flexible_sched_in(struct perf_event_context *ctx, 2092 struct perf_cpu_context *cpuctx) 2093 { 2094 struct perf_event *event; 2095 int can_add_hw = 1; 2096 2097 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2098 /* Ignore events in OFF or ERROR state */ 2099 if (event->state <= PERF_EVENT_STATE_OFF) 2100 continue; 2101 /* 2102 * Listen to the 'cpu' scheduling filter constraint 2103 * of events: 2104 */ 2105 if (!event_filter_match(event)) 2106 continue; 2107 2108 /* may need to reset tstamp_enabled */ 2109 if (is_cgroup_event(event)) 2110 perf_cgroup_mark_enabled(event, ctx); 2111 2112 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2113 if (group_sched_in(event, cpuctx, ctx)) 2114 can_add_hw = 0; 2115 } 2116 } 2117 } 2118 2119 static void 2120 ctx_sched_in(struct perf_event_context *ctx, 2121 struct perf_cpu_context *cpuctx, 2122 enum event_type_t event_type, 2123 struct task_struct *task) 2124 { 2125 u64 now; 2126 int is_active = ctx->is_active; 2127 2128 ctx->is_active |= event_type; 2129 if (likely(!ctx->nr_events)) 2130 return; 2131 2132 now = perf_clock(); 2133 ctx->timestamp = now; 2134 perf_cgroup_set_timestamp(task, ctx); 2135 /* 2136 * First go through the list and put on any pinned groups 2137 * in order to give them the best chance of going on. 2138 */ 2139 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2140 ctx_pinned_sched_in(ctx, cpuctx); 2141 2142 /* Then walk through the lower prio flexible groups */ 2143 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2144 ctx_flexible_sched_in(ctx, cpuctx); 2145 } 2146 2147 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2148 enum event_type_t event_type, 2149 struct task_struct *task) 2150 { 2151 struct perf_event_context *ctx = &cpuctx->ctx; 2152 2153 ctx_sched_in(ctx, cpuctx, event_type, task); 2154 } 2155 2156 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2157 struct task_struct *task) 2158 { 2159 struct perf_cpu_context *cpuctx; 2160 2161 cpuctx = __get_cpu_context(ctx); 2162 if (cpuctx->task_ctx == ctx) 2163 return; 2164 2165 perf_ctx_lock(cpuctx, ctx); 2166 perf_pmu_disable(ctx->pmu); 2167 /* 2168 * We want to keep the following priority order: 2169 * cpu pinned (that don't need to move), task pinned, 2170 * cpu flexible, task flexible. 2171 */ 2172 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2173 2174 perf_event_sched_in(cpuctx, ctx, task); 2175 2176 cpuctx->task_ctx = ctx; 2177 2178 perf_pmu_enable(ctx->pmu); 2179 perf_ctx_unlock(cpuctx, ctx); 2180 2181 /* 2182 * Since these rotations are per-cpu, we need to ensure the 2183 * cpu-context we got scheduled on is actually rotating. 2184 */ 2185 perf_pmu_rotate_start(ctx->pmu); 2186 } 2187 2188 /* 2189 * Called from scheduler to add the events of the current task 2190 * with interrupts disabled. 2191 * 2192 * We restore the event value and then enable it. 2193 * 2194 * This does not protect us against NMI, but enable() 2195 * sets the enabled bit in the control field of event _before_ 2196 * accessing the event control register. If a NMI hits, then it will 2197 * keep the event running. 2198 */ 2199 void __perf_event_task_sched_in(struct task_struct *prev, 2200 struct task_struct *task) 2201 { 2202 struct perf_event_context *ctx; 2203 int ctxn; 2204 2205 for_each_task_context_nr(ctxn) { 2206 ctx = task->perf_event_ctxp[ctxn]; 2207 if (likely(!ctx)) 2208 continue; 2209 2210 perf_event_context_sched_in(ctx, task); 2211 } 2212 /* 2213 * if cgroup events exist on this CPU, then we need 2214 * to check if we have to switch in PMU state. 2215 * cgroup event are system-wide mode only 2216 */ 2217 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2218 perf_cgroup_sched_in(prev, task); 2219 } 2220 2221 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2222 { 2223 u64 frequency = event->attr.sample_freq; 2224 u64 sec = NSEC_PER_SEC; 2225 u64 divisor, dividend; 2226 2227 int count_fls, nsec_fls, frequency_fls, sec_fls; 2228 2229 count_fls = fls64(count); 2230 nsec_fls = fls64(nsec); 2231 frequency_fls = fls64(frequency); 2232 sec_fls = 30; 2233 2234 /* 2235 * We got @count in @nsec, with a target of sample_freq HZ 2236 * the target period becomes: 2237 * 2238 * @count * 10^9 2239 * period = ------------------- 2240 * @nsec * sample_freq 2241 * 2242 */ 2243 2244 /* 2245 * Reduce accuracy by one bit such that @a and @b converge 2246 * to a similar magnitude. 2247 */ 2248 #define REDUCE_FLS(a, b) \ 2249 do { \ 2250 if (a##_fls > b##_fls) { \ 2251 a >>= 1; \ 2252 a##_fls--; \ 2253 } else { \ 2254 b >>= 1; \ 2255 b##_fls--; \ 2256 } \ 2257 } while (0) 2258 2259 /* 2260 * Reduce accuracy until either term fits in a u64, then proceed with 2261 * the other, so that finally we can do a u64/u64 division. 2262 */ 2263 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2264 REDUCE_FLS(nsec, frequency); 2265 REDUCE_FLS(sec, count); 2266 } 2267 2268 if (count_fls + sec_fls > 64) { 2269 divisor = nsec * frequency; 2270 2271 while (count_fls + sec_fls > 64) { 2272 REDUCE_FLS(count, sec); 2273 divisor >>= 1; 2274 } 2275 2276 dividend = count * sec; 2277 } else { 2278 dividend = count * sec; 2279 2280 while (nsec_fls + frequency_fls > 64) { 2281 REDUCE_FLS(nsec, frequency); 2282 dividend >>= 1; 2283 } 2284 2285 divisor = nsec * frequency; 2286 } 2287 2288 if (!divisor) 2289 return dividend; 2290 2291 return div64_u64(dividend, divisor); 2292 } 2293 2294 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) 2295 { 2296 struct hw_perf_event *hwc = &event->hw; 2297 s64 period, sample_period; 2298 s64 delta; 2299 2300 period = perf_calculate_period(event, nsec, count); 2301 2302 delta = (s64)(period - hwc->sample_period); 2303 delta = (delta + 7) / 8; /* low pass filter */ 2304 2305 sample_period = hwc->sample_period + delta; 2306 2307 if (!sample_period) 2308 sample_period = 1; 2309 2310 hwc->sample_period = sample_period; 2311 2312 if (local64_read(&hwc->period_left) > 8*sample_period) { 2313 event->pmu->stop(event, PERF_EF_UPDATE); 2314 local64_set(&hwc->period_left, 0); 2315 event->pmu->start(event, PERF_EF_RELOAD); 2316 } 2317 } 2318 2319 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) 2320 { 2321 struct perf_event *event; 2322 struct hw_perf_event *hwc; 2323 u64 interrupts, now; 2324 s64 delta; 2325 2326 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2327 if (event->state != PERF_EVENT_STATE_ACTIVE) 2328 continue; 2329 2330 if (!event_filter_match(event)) 2331 continue; 2332 2333 hwc = &event->hw; 2334 2335 interrupts = hwc->interrupts; 2336 hwc->interrupts = 0; 2337 2338 /* 2339 * unthrottle events on the tick 2340 */ 2341 if (interrupts == MAX_INTERRUPTS) { 2342 perf_log_throttle(event, 1); 2343 event->pmu->start(event, 0); 2344 } 2345 2346 if (!event->attr.freq || !event->attr.sample_freq) 2347 continue; 2348 2349 event->pmu->read(event); 2350 now = local64_read(&event->count); 2351 delta = now - hwc->freq_count_stamp; 2352 hwc->freq_count_stamp = now; 2353 2354 if (delta > 0) 2355 perf_adjust_period(event, period, delta); 2356 } 2357 } 2358 2359 /* 2360 * Round-robin a context's events: 2361 */ 2362 static void rotate_ctx(struct perf_event_context *ctx) 2363 { 2364 /* 2365 * Rotate the first entry last of non-pinned groups. Rotation might be 2366 * disabled by the inheritance code. 2367 */ 2368 if (!ctx->rotate_disable) 2369 list_rotate_left(&ctx->flexible_groups); 2370 } 2371 2372 /* 2373 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2374 * because they're strictly cpu affine and rotate_start is called with IRQs 2375 * disabled, while rotate_context is called from IRQ context. 2376 */ 2377 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2378 { 2379 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; 2380 struct perf_event_context *ctx = NULL; 2381 int rotate = 0, remove = 1; 2382 2383 if (cpuctx->ctx.nr_events) { 2384 remove = 0; 2385 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2386 rotate = 1; 2387 } 2388 2389 ctx = cpuctx->task_ctx; 2390 if (ctx && ctx->nr_events) { 2391 remove = 0; 2392 if (ctx->nr_events != ctx->nr_active) 2393 rotate = 1; 2394 } 2395 2396 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2397 perf_pmu_disable(cpuctx->ctx.pmu); 2398 perf_ctx_adjust_freq(&cpuctx->ctx, interval); 2399 if (ctx) 2400 perf_ctx_adjust_freq(ctx, interval); 2401 2402 if (!rotate) 2403 goto done; 2404 2405 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2406 if (ctx) 2407 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2408 2409 rotate_ctx(&cpuctx->ctx); 2410 if (ctx) 2411 rotate_ctx(ctx); 2412 2413 perf_event_sched_in(cpuctx, ctx, current); 2414 2415 done: 2416 if (remove) 2417 list_del_init(&cpuctx->rotation_list); 2418 2419 perf_pmu_enable(cpuctx->ctx.pmu); 2420 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2421 } 2422 2423 void perf_event_task_tick(void) 2424 { 2425 struct list_head *head = &__get_cpu_var(rotation_list); 2426 struct perf_cpu_context *cpuctx, *tmp; 2427 2428 WARN_ON(!irqs_disabled()); 2429 2430 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2431 if (cpuctx->jiffies_interval == 1 || 2432 !(jiffies % cpuctx->jiffies_interval)) 2433 perf_rotate_context(cpuctx); 2434 } 2435 } 2436 2437 static int event_enable_on_exec(struct perf_event *event, 2438 struct perf_event_context *ctx) 2439 { 2440 if (!event->attr.enable_on_exec) 2441 return 0; 2442 2443 event->attr.enable_on_exec = 0; 2444 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2445 return 0; 2446 2447 __perf_event_mark_enabled(event, ctx); 2448 2449 return 1; 2450 } 2451 2452 /* 2453 * Enable all of a task's events that have been marked enable-on-exec. 2454 * This expects task == current. 2455 */ 2456 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2457 { 2458 struct perf_event *event; 2459 unsigned long flags; 2460 int enabled = 0; 2461 int ret; 2462 2463 local_irq_save(flags); 2464 if (!ctx || !ctx->nr_events) 2465 goto out; 2466 2467 /* 2468 * We must ctxsw out cgroup events to avoid conflict 2469 * when invoking perf_task_event_sched_in() later on 2470 * in this function. Otherwise we end up trying to 2471 * ctxswin cgroup events which are already scheduled 2472 * in. 2473 */ 2474 perf_cgroup_sched_out(current, NULL); 2475 2476 raw_spin_lock(&ctx->lock); 2477 task_ctx_sched_out(ctx); 2478 2479 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2480 ret = event_enable_on_exec(event, ctx); 2481 if (ret) 2482 enabled = 1; 2483 } 2484 2485 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2486 ret = event_enable_on_exec(event, ctx); 2487 if (ret) 2488 enabled = 1; 2489 } 2490 2491 /* 2492 * Unclone this context if we enabled any event. 2493 */ 2494 if (enabled) 2495 unclone_ctx(ctx); 2496 2497 raw_spin_unlock(&ctx->lock); 2498 2499 /* 2500 * Also calls ctxswin for cgroup events, if any: 2501 */ 2502 perf_event_context_sched_in(ctx, ctx->task); 2503 out: 2504 local_irq_restore(flags); 2505 } 2506 2507 /* 2508 * Cross CPU call to read the hardware event 2509 */ 2510 static void __perf_event_read(void *info) 2511 { 2512 struct perf_event *event = info; 2513 struct perf_event_context *ctx = event->ctx; 2514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2515 2516 /* 2517 * If this is a task context, we need to check whether it is 2518 * the current task context of this cpu. If not it has been 2519 * scheduled out before the smp call arrived. In that case 2520 * event->count would have been updated to a recent sample 2521 * when the event was scheduled out. 2522 */ 2523 if (ctx->task && cpuctx->task_ctx != ctx) 2524 return; 2525 2526 raw_spin_lock(&ctx->lock); 2527 if (ctx->is_active) { 2528 update_context_time(ctx); 2529 update_cgrp_time_from_event(event); 2530 } 2531 update_event_times(event); 2532 if (event->state == PERF_EVENT_STATE_ACTIVE) 2533 event->pmu->read(event); 2534 raw_spin_unlock(&ctx->lock); 2535 } 2536 2537 static inline u64 perf_event_count(struct perf_event *event) 2538 { 2539 return local64_read(&event->count) + atomic64_read(&event->child_count); 2540 } 2541 2542 static u64 perf_event_read(struct perf_event *event) 2543 { 2544 /* 2545 * If event is enabled and currently active on a CPU, update the 2546 * value in the event structure: 2547 */ 2548 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2549 smp_call_function_single(event->oncpu, 2550 __perf_event_read, event, 1); 2551 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2552 struct perf_event_context *ctx = event->ctx; 2553 unsigned long flags; 2554 2555 raw_spin_lock_irqsave(&ctx->lock, flags); 2556 /* 2557 * may read while context is not active 2558 * (e.g., thread is blocked), in that case 2559 * we cannot update context time 2560 */ 2561 if (ctx->is_active) { 2562 update_context_time(ctx); 2563 update_cgrp_time_from_event(event); 2564 } 2565 update_event_times(event); 2566 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2567 } 2568 2569 return perf_event_count(event); 2570 } 2571 2572 /* 2573 * Callchain support 2574 */ 2575 2576 struct callchain_cpus_entries { 2577 struct rcu_head rcu_head; 2578 struct perf_callchain_entry *cpu_entries[0]; 2579 }; 2580 2581 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); 2582 static atomic_t nr_callchain_events; 2583 static DEFINE_MUTEX(callchain_mutex); 2584 struct callchain_cpus_entries *callchain_cpus_entries; 2585 2586 2587 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, 2588 struct pt_regs *regs) 2589 { 2590 } 2591 2592 __weak void perf_callchain_user(struct perf_callchain_entry *entry, 2593 struct pt_regs *regs) 2594 { 2595 } 2596 2597 static void release_callchain_buffers_rcu(struct rcu_head *head) 2598 { 2599 struct callchain_cpus_entries *entries; 2600 int cpu; 2601 2602 entries = container_of(head, struct callchain_cpus_entries, rcu_head); 2603 2604 for_each_possible_cpu(cpu) 2605 kfree(entries->cpu_entries[cpu]); 2606 2607 kfree(entries); 2608 } 2609 2610 static void release_callchain_buffers(void) 2611 { 2612 struct callchain_cpus_entries *entries; 2613 2614 entries = callchain_cpus_entries; 2615 rcu_assign_pointer(callchain_cpus_entries, NULL); 2616 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); 2617 } 2618 2619 static int alloc_callchain_buffers(void) 2620 { 2621 int cpu; 2622 int size; 2623 struct callchain_cpus_entries *entries; 2624 2625 /* 2626 * We can't use the percpu allocation API for data that can be 2627 * accessed from NMI. Use a temporary manual per cpu allocation 2628 * until that gets sorted out. 2629 */ 2630 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]); 2631 2632 entries = kzalloc(size, GFP_KERNEL); 2633 if (!entries) 2634 return -ENOMEM; 2635 2636 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; 2637 2638 for_each_possible_cpu(cpu) { 2639 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, 2640 cpu_to_node(cpu)); 2641 if (!entries->cpu_entries[cpu]) 2642 goto fail; 2643 } 2644 2645 rcu_assign_pointer(callchain_cpus_entries, entries); 2646 2647 return 0; 2648 2649 fail: 2650 for_each_possible_cpu(cpu) 2651 kfree(entries->cpu_entries[cpu]); 2652 kfree(entries); 2653 2654 return -ENOMEM; 2655 } 2656 2657 static int get_callchain_buffers(void) 2658 { 2659 int err = 0; 2660 int count; 2661 2662 mutex_lock(&callchain_mutex); 2663 2664 count = atomic_inc_return(&nr_callchain_events); 2665 if (WARN_ON_ONCE(count < 1)) { 2666 err = -EINVAL; 2667 goto exit; 2668 } 2669 2670 if (count > 1) { 2671 /* If the allocation failed, give up */ 2672 if (!callchain_cpus_entries) 2673 err = -ENOMEM; 2674 goto exit; 2675 } 2676 2677 err = alloc_callchain_buffers(); 2678 if (err) 2679 release_callchain_buffers(); 2680 exit: 2681 mutex_unlock(&callchain_mutex); 2682 2683 return err; 2684 } 2685 2686 static void put_callchain_buffers(void) 2687 { 2688 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { 2689 release_callchain_buffers(); 2690 mutex_unlock(&callchain_mutex); 2691 } 2692 } 2693 2694 static int get_recursion_context(int *recursion) 2695 { 2696 int rctx; 2697 2698 if (in_nmi()) 2699 rctx = 3; 2700 else if (in_irq()) 2701 rctx = 2; 2702 else if (in_softirq()) 2703 rctx = 1; 2704 else 2705 rctx = 0; 2706 2707 if (recursion[rctx]) 2708 return -1; 2709 2710 recursion[rctx]++; 2711 barrier(); 2712 2713 return rctx; 2714 } 2715 2716 static inline void put_recursion_context(int *recursion, int rctx) 2717 { 2718 barrier(); 2719 recursion[rctx]--; 2720 } 2721 2722 static struct perf_callchain_entry *get_callchain_entry(int *rctx) 2723 { 2724 int cpu; 2725 struct callchain_cpus_entries *entries; 2726 2727 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); 2728 if (*rctx == -1) 2729 return NULL; 2730 2731 entries = rcu_dereference(callchain_cpus_entries); 2732 if (!entries) 2733 return NULL; 2734 2735 cpu = smp_processor_id(); 2736 2737 return &entries->cpu_entries[cpu][*rctx]; 2738 } 2739 2740 static void 2741 put_callchain_entry(int rctx) 2742 { 2743 put_recursion_context(__get_cpu_var(callchain_recursion), rctx); 2744 } 2745 2746 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) 2747 { 2748 int rctx; 2749 struct perf_callchain_entry *entry; 2750 2751 2752 entry = get_callchain_entry(&rctx); 2753 if (rctx == -1) 2754 return NULL; 2755 2756 if (!entry) 2757 goto exit_put; 2758 2759 entry->nr = 0; 2760 2761 if (!user_mode(regs)) { 2762 perf_callchain_store(entry, PERF_CONTEXT_KERNEL); 2763 perf_callchain_kernel(entry, regs); 2764 if (current->mm) 2765 regs = task_pt_regs(current); 2766 else 2767 regs = NULL; 2768 } 2769 2770 if (regs) { 2771 perf_callchain_store(entry, PERF_CONTEXT_USER); 2772 perf_callchain_user(entry, regs); 2773 } 2774 2775 exit_put: 2776 put_callchain_entry(rctx); 2777 2778 return entry; 2779 } 2780 2781 /* 2782 * Initialize the perf_event context in a task_struct: 2783 */ 2784 static void __perf_event_init_context(struct perf_event_context *ctx) 2785 { 2786 raw_spin_lock_init(&ctx->lock); 2787 mutex_init(&ctx->mutex); 2788 INIT_LIST_HEAD(&ctx->pinned_groups); 2789 INIT_LIST_HEAD(&ctx->flexible_groups); 2790 INIT_LIST_HEAD(&ctx->event_list); 2791 atomic_set(&ctx->refcount, 1); 2792 } 2793 2794 static struct perf_event_context * 2795 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2796 { 2797 struct perf_event_context *ctx; 2798 2799 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2800 if (!ctx) 2801 return NULL; 2802 2803 __perf_event_init_context(ctx); 2804 if (task) { 2805 ctx->task = task; 2806 get_task_struct(task); 2807 } 2808 ctx->pmu = pmu; 2809 2810 return ctx; 2811 } 2812 2813 static struct task_struct * 2814 find_lively_task_by_vpid(pid_t vpid) 2815 { 2816 struct task_struct *task; 2817 int err; 2818 2819 rcu_read_lock(); 2820 if (!vpid) 2821 task = current; 2822 else 2823 task = find_task_by_vpid(vpid); 2824 if (task) 2825 get_task_struct(task); 2826 rcu_read_unlock(); 2827 2828 if (!task) 2829 return ERR_PTR(-ESRCH); 2830 2831 /* Reuse ptrace permission checks for now. */ 2832 err = -EACCES; 2833 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2834 goto errout; 2835 2836 return task; 2837 errout: 2838 put_task_struct(task); 2839 return ERR_PTR(err); 2840 2841 } 2842 2843 /* 2844 * Returns a matching context with refcount and pincount. 2845 */ 2846 static struct perf_event_context * 2847 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2848 { 2849 struct perf_event_context *ctx; 2850 struct perf_cpu_context *cpuctx; 2851 unsigned long flags; 2852 int ctxn, err; 2853 2854 if (!task) { 2855 /* Must be root to operate on a CPU event: */ 2856 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2857 return ERR_PTR(-EACCES); 2858 2859 /* 2860 * We could be clever and allow to attach a event to an 2861 * offline CPU and activate it when the CPU comes up, but 2862 * that's for later. 2863 */ 2864 if (!cpu_online(cpu)) 2865 return ERR_PTR(-ENODEV); 2866 2867 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2868 ctx = &cpuctx->ctx; 2869 get_ctx(ctx); 2870 ++ctx->pin_count; 2871 2872 return ctx; 2873 } 2874 2875 err = -EINVAL; 2876 ctxn = pmu->task_ctx_nr; 2877 if (ctxn < 0) 2878 goto errout; 2879 2880 retry: 2881 ctx = perf_lock_task_context(task, ctxn, &flags); 2882 if (ctx) { 2883 unclone_ctx(ctx); 2884 ++ctx->pin_count; 2885 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2886 } else { 2887 ctx = alloc_perf_context(pmu, task); 2888 err = -ENOMEM; 2889 if (!ctx) 2890 goto errout; 2891 2892 err = 0; 2893 mutex_lock(&task->perf_event_mutex); 2894 /* 2895 * If it has already passed perf_event_exit_task(). 2896 * we must see PF_EXITING, it takes this mutex too. 2897 */ 2898 if (task->flags & PF_EXITING) 2899 err = -ESRCH; 2900 else if (task->perf_event_ctxp[ctxn]) 2901 err = -EAGAIN; 2902 else { 2903 get_ctx(ctx); 2904 ++ctx->pin_count; 2905 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2906 } 2907 mutex_unlock(&task->perf_event_mutex); 2908 2909 if (unlikely(err)) { 2910 put_ctx(ctx); 2911 2912 if (err == -EAGAIN) 2913 goto retry; 2914 goto errout; 2915 } 2916 } 2917 2918 return ctx; 2919 2920 errout: 2921 return ERR_PTR(err); 2922 } 2923 2924 static void perf_event_free_filter(struct perf_event *event); 2925 2926 static void free_event_rcu(struct rcu_head *head) 2927 { 2928 struct perf_event *event; 2929 2930 event = container_of(head, struct perf_event, rcu_head); 2931 if (event->ns) 2932 put_pid_ns(event->ns); 2933 perf_event_free_filter(event); 2934 kfree(event); 2935 } 2936 2937 static void ring_buffer_put(struct ring_buffer *rb); 2938 2939 static void free_event(struct perf_event *event) 2940 { 2941 irq_work_sync(&event->pending); 2942 2943 if (!event->parent) { 2944 if (event->attach_state & PERF_ATTACH_TASK) 2945 jump_label_dec(&perf_sched_events); 2946 if (event->attr.mmap || event->attr.mmap_data) 2947 atomic_dec(&nr_mmap_events); 2948 if (event->attr.comm) 2949 atomic_dec(&nr_comm_events); 2950 if (event->attr.task) 2951 atomic_dec(&nr_task_events); 2952 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2953 put_callchain_buffers(); 2954 if (is_cgroup_event(event)) { 2955 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2956 jump_label_dec(&perf_sched_events); 2957 } 2958 } 2959 2960 if (event->rb) { 2961 ring_buffer_put(event->rb); 2962 event->rb = NULL; 2963 } 2964 2965 if (is_cgroup_event(event)) 2966 perf_detach_cgroup(event); 2967 2968 if (event->destroy) 2969 event->destroy(event); 2970 2971 if (event->ctx) 2972 put_ctx(event->ctx); 2973 2974 call_rcu(&event->rcu_head, free_event_rcu); 2975 } 2976 2977 int perf_event_release_kernel(struct perf_event *event) 2978 { 2979 struct perf_event_context *ctx = event->ctx; 2980 2981 WARN_ON_ONCE(ctx->parent_ctx); 2982 /* 2983 * There are two ways this annotation is useful: 2984 * 2985 * 1) there is a lock recursion from perf_event_exit_task 2986 * see the comment there. 2987 * 2988 * 2) there is a lock-inversion with mmap_sem through 2989 * perf_event_read_group(), which takes faults while 2990 * holding ctx->mutex, however this is called after 2991 * the last filedesc died, so there is no possibility 2992 * to trigger the AB-BA case. 2993 */ 2994 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2995 raw_spin_lock_irq(&ctx->lock); 2996 perf_group_detach(event); 2997 raw_spin_unlock_irq(&ctx->lock); 2998 perf_remove_from_context(event); 2999 mutex_unlock(&ctx->mutex); 3000 3001 free_event(event); 3002 3003 return 0; 3004 } 3005 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3006 3007 /* 3008 * Called when the last reference to the file is gone. 3009 */ 3010 static int perf_release(struct inode *inode, struct file *file) 3011 { 3012 struct perf_event *event = file->private_data; 3013 struct task_struct *owner; 3014 3015 file->private_data = NULL; 3016 3017 rcu_read_lock(); 3018 owner = ACCESS_ONCE(event->owner); 3019 /* 3020 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3021 * !owner it means the list deletion is complete and we can indeed 3022 * free this event, otherwise we need to serialize on 3023 * owner->perf_event_mutex. 3024 */ 3025 smp_read_barrier_depends(); 3026 if (owner) { 3027 /* 3028 * Since delayed_put_task_struct() also drops the last 3029 * task reference we can safely take a new reference 3030 * while holding the rcu_read_lock(). 3031 */ 3032 get_task_struct(owner); 3033 } 3034 rcu_read_unlock(); 3035 3036 if (owner) { 3037 mutex_lock(&owner->perf_event_mutex); 3038 /* 3039 * We have to re-check the event->owner field, if it is cleared 3040 * we raced with perf_event_exit_task(), acquiring the mutex 3041 * ensured they're done, and we can proceed with freeing the 3042 * event. 3043 */ 3044 if (event->owner) 3045 list_del_init(&event->owner_entry); 3046 mutex_unlock(&owner->perf_event_mutex); 3047 put_task_struct(owner); 3048 } 3049 3050 return perf_event_release_kernel(event); 3051 } 3052 3053 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3054 { 3055 struct perf_event *child; 3056 u64 total = 0; 3057 3058 *enabled = 0; 3059 *running = 0; 3060 3061 mutex_lock(&event->child_mutex); 3062 total += perf_event_read(event); 3063 *enabled += event->total_time_enabled + 3064 atomic64_read(&event->child_total_time_enabled); 3065 *running += event->total_time_running + 3066 atomic64_read(&event->child_total_time_running); 3067 3068 list_for_each_entry(child, &event->child_list, child_list) { 3069 total += perf_event_read(child); 3070 *enabled += child->total_time_enabled; 3071 *running += child->total_time_running; 3072 } 3073 mutex_unlock(&event->child_mutex); 3074 3075 return total; 3076 } 3077 EXPORT_SYMBOL_GPL(perf_event_read_value); 3078 3079 static int perf_event_read_group(struct perf_event *event, 3080 u64 read_format, char __user *buf) 3081 { 3082 struct perf_event *leader = event->group_leader, *sub; 3083 int n = 0, size = 0, ret = -EFAULT; 3084 struct perf_event_context *ctx = leader->ctx; 3085 u64 values[5]; 3086 u64 count, enabled, running; 3087 3088 mutex_lock(&ctx->mutex); 3089 count = perf_event_read_value(leader, &enabled, &running); 3090 3091 values[n++] = 1 + leader->nr_siblings; 3092 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3093 values[n++] = enabled; 3094 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3095 values[n++] = running; 3096 values[n++] = count; 3097 if (read_format & PERF_FORMAT_ID) 3098 values[n++] = primary_event_id(leader); 3099 3100 size = n * sizeof(u64); 3101 3102 if (copy_to_user(buf, values, size)) 3103 goto unlock; 3104 3105 ret = size; 3106 3107 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3108 n = 0; 3109 3110 values[n++] = perf_event_read_value(sub, &enabled, &running); 3111 if (read_format & PERF_FORMAT_ID) 3112 values[n++] = primary_event_id(sub); 3113 3114 size = n * sizeof(u64); 3115 3116 if (copy_to_user(buf + ret, values, size)) { 3117 ret = -EFAULT; 3118 goto unlock; 3119 } 3120 3121 ret += size; 3122 } 3123 unlock: 3124 mutex_unlock(&ctx->mutex); 3125 3126 return ret; 3127 } 3128 3129 static int perf_event_read_one(struct perf_event *event, 3130 u64 read_format, char __user *buf) 3131 { 3132 u64 enabled, running; 3133 u64 values[4]; 3134 int n = 0; 3135 3136 values[n++] = perf_event_read_value(event, &enabled, &running); 3137 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3138 values[n++] = enabled; 3139 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3140 values[n++] = running; 3141 if (read_format & PERF_FORMAT_ID) 3142 values[n++] = primary_event_id(event); 3143 3144 if (copy_to_user(buf, values, n * sizeof(u64))) 3145 return -EFAULT; 3146 3147 return n * sizeof(u64); 3148 } 3149 3150 /* 3151 * Read the performance event - simple non blocking version for now 3152 */ 3153 static ssize_t 3154 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3155 { 3156 u64 read_format = event->attr.read_format; 3157 int ret; 3158 3159 /* 3160 * Return end-of-file for a read on a event that is in 3161 * error state (i.e. because it was pinned but it couldn't be 3162 * scheduled on to the CPU at some point). 3163 */ 3164 if (event->state == PERF_EVENT_STATE_ERROR) 3165 return 0; 3166 3167 if (count < event->read_size) 3168 return -ENOSPC; 3169 3170 WARN_ON_ONCE(event->ctx->parent_ctx); 3171 if (read_format & PERF_FORMAT_GROUP) 3172 ret = perf_event_read_group(event, read_format, buf); 3173 else 3174 ret = perf_event_read_one(event, read_format, buf); 3175 3176 return ret; 3177 } 3178 3179 static ssize_t 3180 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3181 { 3182 struct perf_event *event = file->private_data; 3183 3184 return perf_read_hw(event, buf, count); 3185 } 3186 3187 static unsigned int perf_poll(struct file *file, poll_table *wait) 3188 { 3189 struct perf_event *event = file->private_data; 3190 struct ring_buffer *rb; 3191 unsigned int events = POLL_HUP; 3192 3193 rcu_read_lock(); 3194 rb = rcu_dereference(event->rb); 3195 if (rb) 3196 events = atomic_xchg(&rb->poll, 0); 3197 rcu_read_unlock(); 3198 3199 poll_wait(file, &event->waitq, wait); 3200 3201 return events; 3202 } 3203 3204 static void perf_event_reset(struct perf_event *event) 3205 { 3206 (void)perf_event_read(event); 3207 local64_set(&event->count, 0); 3208 perf_event_update_userpage(event); 3209 } 3210 3211 /* 3212 * Holding the top-level event's child_mutex means that any 3213 * descendant process that has inherited this event will block 3214 * in sync_child_event if it goes to exit, thus satisfying the 3215 * task existence requirements of perf_event_enable/disable. 3216 */ 3217 static void perf_event_for_each_child(struct perf_event *event, 3218 void (*func)(struct perf_event *)) 3219 { 3220 struct perf_event *child; 3221 3222 WARN_ON_ONCE(event->ctx->parent_ctx); 3223 mutex_lock(&event->child_mutex); 3224 func(event); 3225 list_for_each_entry(child, &event->child_list, child_list) 3226 func(child); 3227 mutex_unlock(&event->child_mutex); 3228 } 3229 3230 static void perf_event_for_each(struct perf_event *event, 3231 void (*func)(struct perf_event *)) 3232 { 3233 struct perf_event_context *ctx = event->ctx; 3234 struct perf_event *sibling; 3235 3236 WARN_ON_ONCE(ctx->parent_ctx); 3237 mutex_lock(&ctx->mutex); 3238 event = event->group_leader; 3239 3240 perf_event_for_each_child(event, func); 3241 func(event); 3242 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3243 perf_event_for_each_child(event, func); 3244 mutex_unlock(&ctx->mutex); 3245 } 3246 3247 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3248 { 3249 struct perf_event_context *ctx = event->ctx; 3250 int ret = 0; 3251 u64 value; 3252 3253 if (!is_sampling_event(event)) 3254 return -EINVAL; 3255 3256 if (copy_from_user(&value, arg, sizeof(value))) 3257 return -EFAULT; 3258 3259 if (!value) 3260 return -EINVAL; 3261 3262 raw_spin_lock_irq(&ctx->lock); 3263 if (event->attr.freq) { 3264 if (value > sysctl_perf_event_sample_rate) { 3265 ret = -EINVAL; 3266 goto unlock; 3267 } 3268 3269 event->attr.sample_freq = value; 3270 } else { 3271 event->attr.sample_period = value; 3272 event->hw.sample_period = value; 3273 } 3274 unlock: 3275 raw_spin_unlock_irq(&ctx->lock); 3276 3277 return ret; 3278 } 3279 3280 static const struct file_operations perf_fops; 3281 3282 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3283 { 3284 struct file *file; 3285 3286 file = fget_light(fd, fput_needed); 3287 if (!file) 3288 return ERR_PTR(-EBADF); 3289 3290 if (file->f_op != &perf_fops) { 3291 fput_light(file, *fput_needed); 3292 *fput_needed = 0; 3293 return ERR_PTR(-EBADF); 3294 } 3295 3296 return file->private_data; 3297 } 3298 3299 static int perf_event_set_output(struct perf_event *event, 3300 struct perf_event *output_event); 3301 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3302 3303 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3304 { 3305 struct perf_event *event = file->private_data; 3306 void (*func)(struct perf_event *); 3307 u32 flags = arg; 3308 3309 switch (cmd) { 3310 case PERF_EVENT_IOC_ENABLE: 3311 func = perf_event_enable; 3312 break; 3313 case PERF_EVENT_IOC_DISABLE: 3314 func = perf_event_disable; 3315 break; 3316 case PERF_EVENT_IOC_RESET: 3317 func = perf_event_reset; 3318 break; 3319 3320 case PERF_EVENT_IOC_REFRESH: 3321 return perf_event_refresh(event, arg); 3322 3323 case PERF_EVENT_IOC_PERIOD: 3324 return perf_event_period(event, (u64 __user *)arg); 3325 3326 case PERF_EVENT_IOC_SET_OUTPUT: 3327 { 3328 struct perf_event *output_event = NULL; 3329 int fput_needed = 0; 3330 int ret; 3331 3332 if (arg != -1) { 3333 output_event = perf_fget_light(arg, &fput_needed); 3334 if (IS_ERR(output_event)) 3335 return PTR_ERR(output_event); 3336 } 3337 3338 ret = perf_event_set_output(event, output_event); 3339 if (output_event) 3340 fput_light(output_event->filp, fput_needed); 3341 3342 return ret; 3343 } 3344 3345 case PERF_EVENT_IOC_SET_FILTER: 3346 return perf_event_set_filter(event, (void __user *)arg); 3347 3348 default: 3349 return -ENOTTY; 3350 } 3351 3352 if (flags & PERF_IOC_FLAG_GROUP) 3353 perf_event_for_each(event, func); 3354 else 3355 perf_event_for_each_child(event, func); 3356 3357 return 0; 3358 } 3359 3360 int perf_event_task_enable(void) 3361 { 3362 struct perf_event *event; 3363 3364 mutex_lock(¤t->perf_event_mutex); 3365 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3366 perf_event_for_each_child(event, perf_event_enable); 3367 mutex_unlock(¤t->perf_event_mutex); 3368 3369 return 0; 3370 } 3371 3372 int perf_event_task_disable(void) 3373 { 3374 struct perf_event *event; 3375 3376 mutex_lock(¤t->perf_event_mutex); 3377 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3378 perf_event_for_each_child(event, perf_event_disable); 3379 mutex_unlock(¤t->perf_event_mutex); 3380 3381 return 0; 3382 } 3383 3384 #ifndef PERF_EVENT_INDEX_OFFSET 3385 # define PERF_EVENT_INDEX_OFFSET 0 3386 #endif 3387 3388 static int perf_event_index(struct perf_event *event) 3389 { 3390 if (event->hw.state & PERF_HES_STOPPED) 3391 return 0; 3392 3393 if (event->state != PERF_EVENT_STATE_ACTIVE) 3394 return 0; 3395 3396 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; 3397 } 3398 3399 static void calc_timer_values(struct perf_event *event, 3400 u64 *enabled, 3401 u64 *running) 3402 { 3403 u64 now, ctx_time; 3404 3405 now = perf_clock(); 3406 ctx_time = event->shadow_ctx_time + now; 3407 *enabled = ctx_time - event->tstamp_enabled; 3408 *running = ctx_time - event->tstamp_running; 3409 } 3410 3411 /* 3412 * Callers need to ensure there can be no nesting of this function, otherwise 3413 * the seqlock logic goes bad. We can not serialize this because the arch 3414 * code calls this from NMI context. 3415 */ 3416 void perf_event_update_userpage(struct perf_event *event) 3417 { 3418 struct perf_event_mmap_page *userpg; 3419 struct ring_buffer *rb; 3420 u64 enabled, running; 3421 3422 rcu_read_lock(); 3423 /* 3424 * compute total_time_enabled, total_time_running 3425 * based on snapshot values taken when the event 3426 * was last scheduled in. 3427 * 3428 * we cannot simply called update_context_time() 3429 * because of locking issue as we can be called in 3430 * NMI context 3431 */ 3432 calc_timer_values(event, &enabled, &running); 3433 rb = rcu_dereference(event->rb); 3434 if (!rb) 3435 goto unlock; 3436 3437 userpg = rb->user_page; 3438 3439 /* 3440 * Disable preemption so as to not let the corresponding user-space 3441 * spin too long if we get preempted. 3442 */ 3443 preempt_disable(); 3444 ++userpg->lock; 3445 barrier(); 3446 userpg->index = perf_event_index(event); 3447 userpg->offset = perf_event_count(event); 3448 if (event->state == PERF_EVENT_STATE_ACTIVE) 3449 userpg->offset -= local64_read(&event->hw.prev_count); 3450 3451 userpg->time_enabled = enabled + 3452 atomic64_read(&event->child_total_time_enabled); 3453 3454 userpg->time_running = running + 3455 atomic64_read(&event->child_total_time_running); 3456 3457 barrier(); 3458 ++userpg->lock; 3459 preempt_enable(); 3460 unlock: 3461 rcu_read_unlock(); 3462 } 3463 3464 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3465 { 3466 struct perf_event *event = vma->vm_file->private_data; 3467 struct ring_buffer *rb; 3468 int ret = VM_FAULT_SIGBUS; 3469 3470 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3471 if (vmf->pgoff == 0) 3472 ret = 0; 3473 return ret; 3474 } 3475 3476 rcu_read_lock(); 3477 rb = rcu_dereference(event->rb); 3478 if (!rb) 3479 goto unlock; 3480 3481 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3482 goto unlock; 3483 3484 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3485 if (!vmf->page) 3486 goto unlock; 3487 3488 get_page(vmf->page); 3489 vmf->page->mapping = vma->vm_file->f_mapping; 3490 vmf->page->index = vmf->pgoff; 3491 3492 ret = 0; 3493 unlock: 3494 rcu_read_unlock(); 3495 3496 return ret; 3497 } 3498 3499 static void rb_free_rcu(struct rcu_head *rcu_head) 3500 { 3501 struct ring_buffer *rb; 3502 3503 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3504 rb_free(rb); 3505 } 3506 3507 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3508 { 3509 struct ring_buffer *rb; 3510 3511 rcu_read_lock(); 3512 rb = rcu_dereference(event->rb); 3513 if (rb) { 3514 if (!atomic_inc_not_zero(&rb->refcount)) 3515 rb = NULL; 3516 } 3517 rcu_read_unlock(); 3518 3519 return rb; 3520 } 3521 3522 static void ring_buffer_put(struct ring_buffer *rb) 3523 { 3524 if (!atomic_dec_and_test(&rb->refcount)) 3525 return; 3526 3527 call_rcu(&rb->rcu_head, rb_free_rcu); 3528 } 3529 3530 static void perf_mmap_open(struct vm_area_struct *vma) 3531 { 3532 struct perf_event *event = vma->vm_file->private_data; 3533 3534 atomic_inc(&event->mmap_count); 3535 } 3536 3537 static void perf_mmap_close(struct vm_area_struct *vma) 3538 { 3539 struct perf_event *event = vma->vm_file->private_data; 3540 3541 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3542 unsigned long size = perf_data_size(event->rb); 3543 struct user_struct *user = event->mmap_user; 3544 struct ring_buffer *rb = event->rb; 3545 3546 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3547 vma->vm_mm->pinned_vm -= event->mmap_locked; 3548 rcu_assign_pointer(event->rb, NULL); 3549 mutex_unlock(&event->mmap_mutex); 3550 3551 ring_buffer_put(rb); 3552 free_uid(user); 3553 } 3554 } 3555 3556 static const struct vm_operations_struct perf_mmap_vmops = { 3557 .open = perf_mmap_open, 3558 .close = perf_mmap_close, 3559 .fault = perf_mmap_fault, 3560 .page_mkwrite = perf_mmap_fault, 3561 }; 3562 3563 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3564 { 3565 struct perf_event *event = file->private_data; 3566 unsigned long user_locked, user_lock_limit; 3567 struct user_struct *user = current_user(); 3568 unsigned long locked, lock_limit; 3569 struct ring_buffer *rb; 3570 unsigned long vma_size; 3571 unsigned long nr_pages; 3572 long user_extra, extra; 3573 int ret = 0, flags = 0; 3574 3575 /* 3576 * Don't allow mmap() of inherited per-task counters. This would 3577 * create a performance issue due to all children writing to the 3578 * same rb. 3579 */ 3580 if (event->cpu == -1 && event->attr.inherit) 3581 return -EINVAL; 3582 3583 if (!(vma->vm_flags & VM_SHARED)) 3584 return -EINVAL; 3585 3586 vma_size = vma->vm_end - vma->vm_start; 3587 nr_pages = (vma_size / PAGE_SIZE) - 1; 3588 3589 /* 3590 * If we have rb pages ensure they're a power-of-two number, so we 3591 * can do bitmasks instead of modulo. 3592 */ 3593 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3594 return -EINVAL; 3595 3596 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3597 return -EINVAL; 3598 3599 if (vma->vm_pgoff != 0) 3600 return -EINVAL; 3601 3602 WARN_ON_ONCE(event->ctx->parent_ctx); 3603 mutex_lock(&event->mmap_mutex); 3604 if (event->rb) { 3605 if (event->rb->nr_pages == nr_pages) 3606 atomic_inc(&event->rb->refcount); 3607 else 3608 ret = -EINVAL; 3609 goto unlock; 3610 } 3611 3612 user_extra = nr_pages + 1; 3613 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3614 3615 /* 3616 * Increase the limit linearly with more CPUs: 3617 */ 3618 user_lock_limit *= num_online_cpus(); 3619 3620 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3621 3622 extra = 0; 3623 if (user_locked > user_lock_limit) 3624 extra = user_locked - user_lock_limit; 3625 3626 lock_limit = rlimit(RLIMIT_MEMLOCK); 3627 lock_limit >>= PAGE_SHIFT; 3628 locked = vma->vm_mm->pinned_vm + extra; 3629 3630 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3631 !capable(CAP_IPC_LOCK)) { 3632 ret = -EPERM; 3633 goto unlock; 3634 } 3635 3636 WARN_ON(event->rb); 3637 3638 if (vma->vm_flags & VM_WRITE) 3639 flags |= RING_BUFFER_WRITABLE; 3640 3641 rb = rb_alloc(nr_pages, 3642 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3643 event->cpu, flags); 3644 3645 if (!rb) { 3646 ret = -ENOMEM; 3647 goto unlock; 3648 } 3649 rcu_assign_pointer(event->rb, rb); 3650 3651 atomic_long_add(user_extra, &user->locked_vm); 3652 event->mmap_locked = extra; 3653 event->mmap_user = get_current_user(); 3654 vma->vm_mm->pinned_vm += event->mmap_locked; 3655 3656 unlock: 3657 if (!ret) 3658 atomic_inc(&event->mmap_count); 3659 mutex_unlock(&event->mmap_mutex); 3660 3661 vma->vm_flags |= VM_RESERVED; 3662 vma->vm_ops = &perf_mmap_vmops; 3663 3664 return ret; 3665 } 3666 3667 static int perf_fasync(int fd, struct file *filp, int on) 3668 { 3669 struct inode *inode = filp->f_path.dentry->d_inode; 3670 struct perf_event *event = filp->private_data; 3671 int retval; 3672 3673 mutex_lock(&inode->i_mutex); 3674 retval = fasync_helper(fd, filp, on, &event->fasync); 3675 mutex_unlock(&inode->i_mutex); 3676 3677 if (retval < 0) 3678 return retval; 3679 3680 return 0; 3681 } 3682 3683 static const struct file_operations perf_fops = { 3684 .llseek = no_llseek, 3685 .release = perf_release, 3686 .read = perf_read, 3687 .poll = perf_poll, 3688 .unlocked_ioctl = perf_ioctl, 3689 .compat_ioctl = perf_ioctl, 3690 .mmap = perf_mmap, 3691 .fasync = perf_fasync, 3692 }; 3693 3694 /* 3695 * Perf event wakeup 3696 * 3697 * If there's data, ensure we set the poll() state and publish everything 3698 * to user-space before waking everybody up. 3699 */ 3700 3701 void perf_event_wakeup(struct perf_event *event) 3702 { 3703 wake_up_all(&event->waitq); 3704 3705 if (event->pending_kill) { 3706 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3707 event->pending_kill = 0; 3708 } 3709 } 3710 3711 static void perf_pending_event(struct irq_work *entry) 3712 { 3713 struct perf_event *event = container_of(entry, 3714 struct perf_event, pending); 3715 3716 if (event->pending_disable) { 3717 event->pending_disable = 0; 3718 __perf_event_disable(event); 3719 } 3720 3721 if (event->pending_wakeup) { 3722 event->pending_wakeup = 0; 3723 perf_event_wakeup(event); 3724 } 3725 } 3726 3727 /* 3728 * We assume there is only KVM supporting the callbacks. 3729 * Later on, we might change it to a list if there is 3730 * another virtualization implementation supporting the callbacks. 3731 */ 3732 struct perf_guest_info_callbacks *perf_guest_cbs; 3733 3734 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3735 { 3736 perf_guest_cbs = cbs; 3737 return 0; 3738 } 3739 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3740 3741 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3742 { 3743 perf_guest_cbs = NULL; 3744 return 0; 3745 } 3746 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3747 3748 static void __perf_event_header__init_id(struct perf_event_header *header, 3749 struct perf_sample_data *data, 3750 struct perf_event *event) 3751 { 3752 u64 sample_type = event->attr.sample_type; 3753 3754 data->type = sample_type; 3755 header->size += event->id_header_size; 3756 3757 if (sample_type & PERF_SAMPLE_TID) { 3758 /* namespace issues */ 3759 data->tid_entry.pid = perf_event_pid(event, current); 3760 data->tid_entry.tid = perf_event_tid(event, current); 3761 } 3762 3763 if (sample_type & PERF_SAMPLE_TIME) 3764 data->time = perf_clock(); 3765 3766 if (sample_type & PERF_SAMPLE_ID) 3767 data->id = primary_event_id(event); 3768 3769 if (sample_type & PERF_SAMPLE_STREAM_ID) 3770 data->stream_id = event->id; 3771 3772 if (sample_type & PERF_SAMPLE_CPU) { 3773 data->cpu_entry.cpu = raw_smp_processor_id(); 3774 data->cpu_entry.reserved = 0; 3775 } 3776 } 3777 3778 void perf_event_header__init_id(struct perf_event_header *header, 3779 struct perf_sample_data *data, 3780 struct perf_event *event) 3781 { 3782 if (event->attr.sample_id_all) 3783 __perf_event_header__init_id(header, data, event); 3784 } 3785 3786 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3787 struct perf_sample_data *data) 3788 { 3789 u64 sample_type = data->type; 3790 3791 if (sample_type & PERF_SAMPLE_TID) 3792 perf_output_put(handle, data->tid_entry); 3793 3794 if (sample_type & PERF_SAMPLE_TIME) 3795 perf_output_put(handle, data->time); 3796 3797 if (sample_type & PERF_SAMPLE_ID) 3798 perf_output_put(handle, data->id); 3799 3800 if (sample_type & PERF_SAMPLE_STREAM_ID) 3801 perf_output_put(handle, data->stream_id); 3802 3803 if (sample_type & PERF_SAMPLE_CPU) 3804 perf_output_put(handle, data->cpu_entry); 3805 } 3806 3807 void perf_event__output_id_sample(struct perf_event *event, 3808 struct perf_output_handle *handle, 3809 struct perf_sample_data *sample) 3810 { 3811 if (event->attr.sample_id_all) 3812 __perf_event__output_id_sample(handle, sample); 3813 } 3814 3815 static void perf_output_read_one(struct perf_output_handle *handle, 3816 struct perf_event *event, 3817 u64 enabled, u64 running) 3818 { 3819 u64 read_format = event->attr.read_format; 3820 u64 values[4]; 3821 int n = 0; 3822 3823 values[n++] = perf_event_count(event); 3824 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3825 values[n++] = enabled + 3826 atomic64_read(&event->child_total_time_enabled); 3827 } 3828 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3829 values[n++] = running + 3830 atomic64_read(&event->child_total_time_running); 3831 } 3832 if (read_format & PERF_FORMAT_ID) 3833 values[n++] = primary_event_id(event); 3834 3835 __output_copy(handle, values, n * sizeof(u64)); 3836 } 3837 3838 /* 3839 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3840 */ 3841 static void perf_output_read_group(struct perf_output_handle *handle, 3842 struct perf_event *event, 3843 u64 enabled, u64 running) 3844 { 3845 struct perf_event *leader = event->group_leader, *sub; 3846 u64 read_format = event->attr.read_format; 3847 u64 values[5]; 3848 int n = 0; 3849 3850 values[n++] = 1 + leader->nr_siblings; 3851 3852 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3853 values[n++] = enabled; 3854 3855 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3856 values[n++] = running; 3857 3858 if (leader != event) 3859 leader->pmu->read(leader); 3860 3861 values[n++] = perf_event_count(leader); 3862 if (read_format & PERF_FORMAT_ID) 3863 values[n++] = primary_event_id(leader); 3864 3865 __output_copy(handle, values, n * sizeof(u64)); 3866 3867 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3868 n = 0; 3869 3870 if (sub != event) 3871 sub->pmu->read(sub); 3872 3873 values[n++] = perf_event_count(sub); 3874 if (read_format & PERF_FORMAT_ID) 3875 values[n++] = primary_event_id(sub); 3876 3877 __output_copy(handle, values, n * sizeof(u64)); 3878 } 3879 } 3880 3881 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3882 PERF_FORMAT_TOTAL_TIME_RUNNING) 3883 3884 static void perf_output_read(struct perf_output_handle *handle, 3885 struct perf_event *event) 3886 { 3887 u64 enabled = 0, running = 0; 3888 u64 read_format = event->attr.read_format; 3889 3890 /* 3891 * compute total_time_enabled, total_time_running 3892 * based on snapshot values taken when the event 3893 * was last scheduled in. 3894 * 3895 * we cannot simply called update_context_time() 3896 * because of locking issue as we are called in 3897 * NMI context 3898 */ 3899 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3900 calc_timer_values(event, &enabled, &running); 3901 3902 if (event->attr.read_format & PERF_FORMAT_GROUP) 3903 perf_output_read_group(handle, event, enabled, running); 3904 else 3905 perf_output_read_one(handle, event, enabled, running); 3906 } 3907 3908 void perf_output_sample(struct perf_output_handle *handle, 3909 struct perf_event_header *header, 3910 struct perf_sample_data *data, 3911 struct perf_event *event) 3912 { 3913 u64 sample_type = data->type; 3914 3915 perf_output_put(handle, *header); 3916 3917 if (sample_type & PERF_SAMPLE_IP) 3918 perf_output_put(handle, data->ip); 3919 3920 if (sample_type & PERF_SAMPLE_TID) 3921 perf_output_put(handle, data->tid_entry); 3922 3923 if (sample_type & PERF_SAMPLE_TIME) 3924 perf_output_put(handle, data->time); 3925 3926 if (sample_type & PERF_SAMPLE_ADDR) 3927 perf_output_put(handle, data->addr); 3928 3929 if (sample_type & PERF_SAMPLE_ID) 3930 perf_output_put(handle, data->id); 3931 3932 if (sample_type & PERF_SAMPLE_STREAM_ID) 3933 perf_output_put(handle, data->stream_id); 3934 3935 if (sample_type & PERF_SAMPLE_CPU) 3936 perf_output_put(handle, data->cpu_entry); 3937 3938 if (sample_type & PERF_SAMPLE_PERIOD) 3939 perf_output_put(handle, data->period); 3940 3941 if (sample_type & PERF_SAMPLE_READ) 3942 perf_output_read(handle, event); 3943 3944 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3945 if (data->callchain) { 3946 int size = 1; 3947 3948 if (data->callchain) 3949 size += data->callchain->nr; 3950 3951 size *= sizeof(u64); 3952 3953 __output_copy(handle, data->callchain, size); 3954 } else { 3955 u64 nr = 0; 3956 perf_output_put(handle, nr); 3957 } 3958 } 3959 3960 if (sample_type & PERF_SAMPLE_RAW) { 3961 if (data->raw) { 3962 perf_output_put(handle, data->raw->size); 3963 __output_copy(handle, data->raw->data, 3964 data->raw->size); 3965 } else { 3966 struct { 3967 u32 size; 3968 u32 data; 3969 } raw = { 3970 .size = sizeof(u32), 3971 .data = 0, 3972 }; 3973 perf_output_put(handle, raw); 3974 } 3975 } 3976 3977 if (!event->attr.watermark) { 3978 int wakeup_events = event->attr.wakeup_events; 3979 3980 if (wakeup_events) { 3981 struct ring_buffer *rb = handle->rb; 3982 int events = local_inc_return(&rb->events); 3983 3984 if (events >= wakeup_events) { 3985 local_sub(wakeup_events, &rb->events); 3986 local_inc(&rb->wakeup); 3987 } 3988 } 3989 } 3990 } 3991 3992 void perf_prepare_sample(struct perf_event_header *header, 3993 struct perf_sample_data *data, 3994 struct perf_event *event, 3995 struct pt_regs *regs) 3996 { 3997 u64 sample_type = event->attr.sample_type; 3998 3999 header->type = PERF_RECORD_SAMPLE; 4000 header->size = sizeof(*header) + event->header_size; 4001 4002 header->misc = 0; 4003 header->misc |= perf_misc_flags(regs); 4004 4005 __perf_event_header__init_id(header, data, event); 4006 4007 if (sample_type & PERF_SAMPLE_IP) 4008 data->ip = perf_instruction_pointer(regs); 4009 4010 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4011 int size = 1; 4012 4013 data->callchain = perf_callchain(regs); 4014 4015 if (data->callchain) 4016 size += data->callchain->nr; 4017 4018 header->size += size * sizeof(u64); 4019 } 4020 4021 if (sample_type & PERF_SAMPLE_RAW) { 4022 int size = sizeof(u32); 4023 4024 if (data->raw) 4025 size += data->raw->size; 4026 else 4027 size += sizeof(u32); 4028 4029 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4030 header->size += size; 4031 } 4032 } 4033 4034 static void perf_event_output(struct perf_event *event, 4035 struct perf_sample_data *data, 4036 struct pt_regs *regs) 4037 { 4038 struct perf_output_handle handle; 4039 struct perf_event_header header; 4040 4041 /* protect the callchain buffers */ 4042 rcu_read_lock(); 4043 4044 perf_prepare_sample(&header, data, event, regs); 4045 4046 if (perf_output_begin(&handle, event, header.size)) 4047 goto exit; 4048 4049 perf_output_sample(&handle, &header, data, event); 4050 4051 perf_output_end(&handle); 4052 4053 exit: 4054 rcu_read_unlock(); 4055 } 4056 4057 /* 4058 * read event_id 4059 */ 4060 4061 struct perf_read_event { 4062 struct perf_event_header header; 4063 4064 u32 pid; 4065 u32 tid; 4066 }; 4067 4068 static void 4069 perf_event_read_event(struct perf_event *event, 4070 struct task_struct *task) 4071 { 4072 struct perf_output_handle handle; 4073 struct perf_sample_data sample; 4074 struct perf_read_event read_event = { 4075 .header = { 4076 .type = PERF_RECORD_READ, 4077 .misc = 0, 4078 .size = sizeof(read_event) + event->read_size, 4079 }, 4080 .pid = perf_event_pid(event, task), 4081 .tid = perf_event_tid(event, task), 4082 }; 4083 int ret; 4084 4085 perf_event_header__init_id(&read_event.header, &sample, event); 4086 ret = perf_output_begin(&handle, event, read_event.header.size); 4087 if (ret) 4088 return; 4089 4090 perf_output_put(&handle, read_event); 4091 perf_output_read(&handle, event); 4092 perf_event__output_id_sample(event, &handle, &sample); 4093 4094 perf_output_end(&handle); 4095 } 4096 4097 /* 4098 * task tracking -- fork/exit 4099 * 4100 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4101 */ 4102 4103 struct perf_task_event { 4104 struct task_struct *task; 4105 struct perf_event_context *task_ctx; 4106 4107 struct { 4108 struct perf_event_header header; 4109 4110 u32 pid; 4111 u32 ppid; 4112 u32 tid; 4113 u32 ptid; 4114 u64 time; 4115 } event_id; 4116 }; 4117 4118 static void perf_event_task_output(struct perf_event *event, 4119 struct perf_task_event *task_event) 4120 { 4121 struct perf_output_handle handle; 4122 struct perf_sample_data sample; 4123 struct task_struct *task = task_event->task; 4124 int ret, size = task_event->event_id.header.size; 4125 4126 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4127 4128 ret = perf_output_begin(&handle, event, 4129 task_event->event_id.header.size); 4130 if (ret) 4131 goto out; 4132 4133 task_event->event_id.pid = perf_event_pid(event, task); 4134 task_event->event_id.ppid = perf_event_pid(event, current); 4135 4136 task_event->event_id.tid = perf_event_tid(event, task); 4137 task_event->event_id.ptid = perf_event_tid(event, current); 4138 4139 perf_output_put(&handle, task_event->event_id); 4140 4141 perf_event__output_id_sample(event, &handle, &sample); 4142 4143 perf_output_end(&handle); 4144 out: 4145 task_event->event_id.header.size = size; 4146 } 4147 4148 static int perf_event_task_match(struct perf_event *event) 4149 { 4150 if (event->state < PERF_EVENT_STATE_INACTIVE) 4151 return 0; 4152 4153 if (!event_filter_match(event)) 4154 return 0; 4155 4156 if (event->attr.comm || event->attr.mmap || 4157 event->attr.mmap_data || event->attr.task) 4158 return 1; 4159 4160 return 0; 4161 } 4162 4163 static void perf_event_task_ctx(struct perf_event_context *ctx, 4164 struct perf_task_event *task_event) 4165 { 4166 struct perf_event *event; 4167 4168 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4169 if (perf_event_task_match(event)) 4170 perf_event_task_output(event, task_event); 4171 } 4172 } 4173 4174 static void perf_event_task_event(struct perf_task_event *task_event) 4175 { 4176 struct perf_cpu_context *cpuctx; 4177 struct perf_event_context *ctx; 4178 struct pmu *pmu; 4179 int ctxn; 4180 4181 rcu_read_lock(); 4182 list_for_each_entry_rcu(pmu, &pmus, entry) { 4183 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4184 if (cpuctx->active_pmu != pmu) 4185 goto next; 4186 perf_event_task_ctx(&cpuctx->ctx, task_event); 4187 4188 ctx = task_event->task_ctx; 4189 if (!ctx) { 4190 ctxn = pmu->task_ctx_nr; 4191 if (ctxn < 0) 4192 goto next; 4193 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4194 } 4195 if (ctx) 4196 perf_event_task_ctx(ctx, task_event); 4197 next: 4198 put_cpu_ptr(pmu->pmu_cpu_context); 4199 } 4200 rcu_read_unlock(); 4201 } 4202 4203 static void perf_event_task(struct task_struct *task, 4204 struct perf_event_context *task_ctx, 4205 int new) 4206 { 4207 struct perf_task_event task_event; 4208 4209 if (!atomic_read(&nr_comm_events) && 4210 !atomic_read(&nr_mmap_events) && 4211 !atomic_read(&nr_task_events)) 4212 return; 4213 4214 task_event = (struct perf_task_event){ 4215 .task = task, 4216 .task_ctx = task_ctx, 4217 .event_id = { 4218 .header = { 4219 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4220 .misc = 0, 4221 .size = sizeof(task_event.event_id), 4222 }, 4223 /* .pid */ 4224 /* .ppid */ 4225 /* .tid */ 4226 /* .ptid */ 4227 .time = perf_clock(), 4228 }, 4229 }; 4230 4231 perf_event_task_event(&task_event); 4232 } 4233 4234 void perf_event_fork(struct task_struct *task) 4235 { 4236 perf_event_task(task, NULL, 1); 4237 } 4238 4239 /* 4240 * comm tracking 4241 */ 4242 4243 struct perf_comm_event { 4244 struct task_struct *task; 4245 char *comm; 4246 int comm_size; 4247 4248 struct { 4249 struct perf_event_header header; 4250 4251 u32 pid; 4252 u32 tid; 4253 } event_id; 4254 }; 4255 4256 static void perf_event_comm_output(struct perf_event *event, 4257 struct perf_comm_event *comm_event) 4258 { 4259 struct perf_output_handle handle; 4260 struct perf_sample_data sample; 4261 int size = comm_event->event_id.header.size; 4262 int ret; 4263 4264 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4265 ret = perf_output_begin(&handle, event, 4266 comm_event->event_id.header.size); 4267 4268 if (ret) 4269 goto out; 4270 4271 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4272 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4273 4274 perf_output_put(&handle, comm_event->event_id); 4275 __output_copy(&handle, comm_event->comm, 4276 comm_event->comm_size); 4277 4278 perf_event__output_id_sample(event, &handle, &sample); 4279 4280 perf_output_end(&handle); 4281 out: 4282 comm_event->event_id.header.size = size; 4283 } 4284 4285 static int perf_event_comm_match(struct perf_event *event) 4286 { 4287 if (event->state < PERF_EVENT_STATE_INACTIVE) 4288 return 0; 4289 4290 if (!event_filter_match(event)) 4291 return 0; 4292 4293 if (event->attr.comm) 4294 return 1; 4295 4296 return 0; 4297 } 4298 4299 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4300 struct perf_comm_event *comm_event) 4301 { 4302 struct perf_event *event; 4303 4304 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4305 if (perf_event_comm_match(event)) 4306 perf_event_comm_output(event, comm_event); 4307 } 4308 } 4309 4310 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4311 { 4312 struct perf_cpu_context *cpuctx; 4313 struct perf_event_context *ctx; 4314 char comm[TASK_COMM_LEN]; 4315 unsigned int size; 4316 struct pmu *pmu; 4317 int ctxn; 4318 4319 memset(comm, 0, sizeof(comm)); 4320 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4321 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4322 4323 comm_event->comm = comm; 4324 comm_event->comm_size = size; 4325 4326 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4327 rcu_read_lock(); 4328 list_for_each_entry_rcu(pmu, &pmus, entry) { 4329 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4330 if (cpuctx->active_pmu != pmu) 4331 goto next; 4332 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4333 4334 ctxn = pmu->task_ctx_nr; 4335 if (ctxn < 0) 4336 goto next; 4337 4338 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4339 if (ctx) 4340 perf_event_comm_ctx(ctx, comm_event); 4341 next: 4342 put_cpu_ptr(pmu->pmu_cpu_context); 4343 } 4344 rcu_read_unlock(); 4345 } 4346 4347 void perf_event_comm(struct task_struct *task) 4348 { 4349 struct perf_comm_event comm_event; 4350 struct perf_event_context *ctx; 4351 int ctxn; 4352 4353 for_each_task_context_nr(ctxn) { 4354 ctx = task->perf_event_ctxp[ctxn]; 4355 if (!ctx) 4356 continue; 4357 4358 perf_event_enable_on_exec(ctx); 4359 } 4360 4361 if (!atomic_read(&nr_comm_events)) 4362 return; 4363 4364 comm_event = (struct perf_comm_event){ 4365 .task = task, 4366 /* .comm */ 4367 /* .comm_size */ 4368 .event_id = { 4369 .header = { 4370 .type = PERF_RECORD_COMM, 4371 .misc = 0, 4372 /* .size */ 4373 }, 4374 /* .pid */ 4375 /* .tid */ 4376 }, 4377 }; 4378 4379 perf_event_comm_event(&comm_event); 4380 } 4381 4382 /* 4383 * mmap tracking 4384 */ 4385 4386 struct perf_mmap_event { 4387 struct vm_area_struct *vma; 4388 4389 const char *file_name; 4390 int file_size; 4391 4392 struct { 4393 struct perf_event_header header; 4394 4395 u32 pid; 4396 u32 tid; 4397 u64 start; 4398 u64 len; 4399 u64 pgoff; 4400 } event_id; 4401 }; 4402 4403 static void perf_event_mmap_output(struct perf_event *event, 4404 struct perf_mmap_event *mmap_event) 4405 { 4406 struct perf_output_handle handle; 4407 struct perf_sample_data sample; 4408 int size = mmap_event->event_id.header.size; 4409 int ret; 4410 4411 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4412 ret = perf_output_begin(&handle, event, 4413 mmap_event->event_id.header.size); 4414 if (ret) 4415 goto out; 4416 4417 mmap_event->event_id.pid = perf_event_pid(event, current); 4418 mmap_event->event_id.tid = perf_event_tid(event, current); 4419 4420 perf_output_put(&handle, mmap_event->event_id); 4421 __output_copy(&handle, mmap_event->file_name, 4422 mmap_event->file_size); 4423 4424 perf_event__output_id_sample(event, &handle, &sample); 4425 4426 perf_output_end(&handle); 4427 out: 4428 mmap_event->event_id.header.size = size; 4429 } 4430 4431 static int perf_event_mmap_match(struct perf_event *event, 4432 struct perf_mmap_event *mmap_event, 4433 int executable) 4434 { 4435 if (event->state < PERF_EVENT_STATE_INACTIVE) 4436 return 0; 4437 4438 if (!event_filter_match(event)) 4439 return 0; 4440 4441 if ((!executable && event->attr.mmap_data) || 4442 (executable && event->attr.mmap)) 4443 return 1; 4444 4445 return 0; 4446 } 4447 4448 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4449 struct perf_mmap_event *mmap_event, 4450 int executable) 4451 { 4452 struct perf_event *event; 4453 4454 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4455 if (perf_event_mmap_match(event, mmap_event, executable)) 4456 perf_event_mmap_output(event, mmap_event); 4457 } 4458 } 4459 4460 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4461 { 4462 struct perf_cpu_context *cpuctx; 4463 struct perf_event_context *ctx; 4464 struct vm_area_struct *vma = mmap_event->vma; 4465 struct file *file = vma->vm_file; 4466 unsigned int size; 4467 char tmp[16]; 4468 char *buf = NULL; 4469 const char *name; 4470 struct pmu *pmu; 4471 int ctxn; 4472 4473 memset(tmp, 0, sizeof(tmp)); 4474 4475 if (file) { 4476 /* 4477 * d_path works from the end of the rb backwards, so we 4478 * need to add enough zero bytes after the string to handle 4479 * the 64bit alignment we do later. 4480 */ 4481 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4482 if (!buf) { 4483 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4484 goto got_name; 4485 } 4486 name = d_path(&file->f_path, buf, PATH_MAX); 4487 if (IS_ERR(name)) { 4488 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4489 goto got_name; 4490 } 4491 } else { 4492 if (arch_vma_name(mmap_event->vma)) { 4493 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4494 sizeof(tmp)); 4495 goto got_name; 4496 } 4497 4498 if (!vma->vm_mm) { 4499 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4500 goto got_name; 4501 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4502 vma->vm_end >= vma->vm_mm->brk) { 4503 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4504 goto got_name; 4505 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4506 vma->vm_end >= vma->vm_mm->start_stack) { 4507 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4508 goto got_name; 4509 } 4510 4511 name = strncpy(tmp, "//anon", sizeof(tmp)); 4512 goto got_name; 4513 } 4514 4515 got_name: 4516 size = ALIGN(strlen(name)+1, sizeof(u64)); 4517 4518 mmap_event->file_name = name; 4519 mmap_event->file_size = size; 4520 4521 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4522 4523 rcu_read_lock(); 4524 list_for_each_entry_rcu(pmu, &pmus, entry) { 4525 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4526 if (cpuctx->active_pmu != pmu) 4527 goto next; 4528 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4529 vma->vm_flags & VM_EXEC); 4530 4531 ctxn = pmu->task_ctx_nr; 4532 if (ctxn < 0) 4533 goto next; 4534 4535 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4536 if (ctx) { 4537 perf_event_mmap_ctx(ctx, mmap_event, 4538 vma->vm_flags & VM_EXEC); 4539 } 4540 next: 4541 put_cpu_ptr(pmu->pmu_cpu_context); 4542 } 4543 rcu_read_unlock(); 4544 4545 kfree(buf); 4546 } 4547 4548 void perf_event_mmap(struct vm_area_struct *vma) 4549 { 4550 struct perf_mmap_event mmap_event; 4551 4552 if (!atomic_read(&nr_mmap_events)) 4553 return; 4554 4555 mmap_event = (struct perf_mmap_event){ 4556 .vma = vma, 4557 /* .file_name */ 4558 /* .file_size */ 4559 .event_id = { 4560 .header = { 4561 .type = PERF_RECORD_MMAP, 4562 .misc = PERF_RECORD_MISC_USER, 4563 /* .size */ 4564 }, 4565 /* .pid */ 4566 /* .tid */ 4567 .start = vma->vm_start, 4568 .len = vma->vm_end - vma->vm_start, 4569 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4570 }, 4571 }; 4572 4573 perf_event_mmap_event(&mmap_event); 4574 } 4575 4576 /* 4577 * IRQ throttle logging 4578 */ 4579 4580 static void perf_log_throttle(struct perf_event *event, int enable) 4581 { 4582 struct perf_output_handle handle; 4583 struct perf_sample_data sample; 4584 int ret; 4585 4586 struct { 4587 struct perf_event_header header; 4588 u64 time; 4589 u64 id; 4590 u64 stream_id; 4591 } throttle_event = { 4592 .header = { 4593 .type = PERF_RECORD_THROTTLE, 4594 .misc = 0, 4595 .size = sizeof(throttle_event), 4596 }, 4597 .time = perf_clock(), 4598 .id = primary_event_id(event), 4599 .stream_id = event->id, 4600 }; 4601 4602 if (enable) 4603 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4604 4605 perf_event_header__init_id(&throttle_event.header, &sample, event); 4606 4607 ret = perf_output_begin(&handle, event, 4608 throttle_event.header.size); 4609 if (ret) 4610 return; 4611 4612 perf_output_put(&handle, throttle_event); 4613 perf_event__output_id_sample(event, &handle, &sample); 4614 perf_output_end(&handle); 4615 } 4616 4617 /* 4618 * Generic event overflow handling, sampling. 4619 */ 4620 4621 static int __perf_event_overflow(struct perf_event *event, 4622 int throttle, struct perf_sample_data *data, 4623 struct pt_regs *regs) 4624 { 4625 int events = atomic_read(&event->event_limit); 4626 struct hw_perf_event *hwc = &event->hw; 4627 int ret = 0; 4628 4629 /* 4630 * Non-sampling counters might still use the PMI to fold short 4631 * hardware counters, ignore those. 4632 */ 4633 if (unlikely(!is_sampling_event(event))) 4634 return 0; 4635 4636 if (unlikely(hwc->interrupts >= max_samples_per_tick)) { 4637 if (throttle) { 4638 hwc->interrupts = MAX_INTERRUPTS; 4639 perf_log_throttle(event, 0); 4640 ret = 1; 4641 } 4642 } else 4643 hwc->interrupts++; 4644 4645 if (event->attr.freq) { 4646 u64 now = perf_clock(); 4647 s64 delta = now - hwc->freq_time_stamp; 4648 4649 hwc->freq_time_stamp = now; 4650 4651 if (delta > 0 && delta < 2*TICK_NSEC) 4652 perf_adjust_period(event, delta, hwc->last_period); 4653 } 4654 4655 /* 4656 * XXX event_limit might not quite work as expected on inherited 4657 * events 4658 */ 4659 4660 event->pending_kill = POLL_IN; 4661 if (events && atomic_dec_and_test(&event->event_limit)) { 4662 ret = 1; 4663 event->pending_kill = POLL_HUP; 4664 event->pending_disable = 1; 4665 irq_work_queue(&event->pending); 4666 } 4667 4668 if (event->overflow_handler) 4669 event->overflow_handler(event, data, regs); 4670 else 4671 perf_event_output(event, data, regs); 4672 4673 if (event->fasync && event->pending_kill) { 4674 event->pending_wakeup = 1; 4675 irq_work_queue(&event->pending); 4676 } 4677 4678 return ret; 4679 } 4680 4681 int perf_event_overflow(struct perf_event *event, 4682 struct perf_sample_data *data, 4683 struct pt_regs *regs) 4684 { 4685 return __perf_event_overflow(event, 1, data, regs); 4686 } 4687 4688 /* 4689 * Generic software event infrastructure 4690 */ 4691 4692 struct swevent_htable { 4693 struct swevent_hlist *swevent_hlist; 4694 struct mutex hlist_mutex; 4695 int hlist_refcount; 4696 4697 /* Recursion avoidance in each contexts */ 4698 int recursion[PERF_NR_CONTEXTS]; 4699 }; 4700 4701 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4702 4703 /* 4704 * We directly increment event->count and keep a second value in 4705 * event->hw.period_left to count intervals. This period event 4706 * is kept in the range [-sample_period, 0] so that we can use the 4707 * sign as trigger. 4708 */ 4709 4710 static u64 perf_swevent_set_period(struct perf_event *event) 4711 { 4712 struct hw_perf_event *hwc = &event->hw; 4713 u64 period = hwc->last_period; 4714 u64 nr, offset; 4715 s64 old, val; 4716 4717 hwc->last_period = hwc->sample_period; 4718 4719 again: 4720 old = val = local64_read(&hwc->period_left); 4721 if (val < 0) 4722 return 0; 4723 4724 nr = div64_u64(period + val, period); 4725 offset = nr * period; 4726 val -= offset; 4727 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4728 goto again; 4729 4730 return nr; 4731 } 4732 4733 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4734 struct perf_sample_data *data, 4735 struct pt_regs *regs) 4736 { 4737 struct hw_perf_event *hwc = &event->hw; 4738 int throttle = 0; 4739 4740 data->period = event->hw.last_period; 4741 if (!overflow) 4742 overflow = perf_swevent_set_period(event); 4743 4744 if (hwc->interrupts == MAX_INTERRUPTS) 4745 return; 4746 4747 for (; overflow; overflow--) { 4748 if (__perf_event_overflow(event, throttle, 4749 data, regs)) { 4750 /* 4751 * We inhibit the overflow from happening when 4752 * hwc->interrupts == MAX_INTERRUPTS. 4753 */ 4754 break; 4755 } 4756 throttle = 1; 4757 } 4758 } 4759 4760 static void perf_swevent_event(struct perf_event *event, u64 nr, 4761 struct perf_sample_data *data, 4762 struct pt_regs *regs) 4763 { 4764 struct hw_perf_event *hwc = &event->hw; 4765 4766 local64_add(nr, &event->count); 4767 4768 if (!regs) 4769 return; 4770 4771 if (!is_sampling_event(event)) 4772 return; 4773 4774 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4775 return perf_swevent_overflow(event, 1, data, regs); 4776 4777 if (local64_add_negative(nr, &hwc->period_left)) 4778 return; 4779 4780 perf_swevent_overflow(event, 0, data, regs); 4781 } 4782 4783 static int perf_exclude_event(struct perf_event *event, 4784 struct pt_regs *regs) 4785 { 4786 if (event->hw.state & PERF_HES_STOPPED) 4787 return 1; 4788 4789 if (regs) { 4790 if (event->attr.exclude_user && user_mode(regs)) 4791 return 1; 4792 4793 if (event->attr.exclude_kernel && !user_mode(regs)) 4794 return 1; 4795 } 4796 4797 return 0; 4798 } 4799 4800 static int perf_swevent_match(struct perf_event *event, 4801 enum perf_type_id type, 4802 u32 event_id, 4803 struct perf_sample_data *data, 4804 struct pt_regs *regs) 4805 { 4806 if (event->attr.type != type) 4807 return 0; 4808 4809 if (event->attr.config != event_id) 4810 return 0; 4811 4812 if (perf_exclude_event(event, regs)) 4813 return 0; 4814 4815 return 1; 4816 } 4817 4818 static inline u64 swevent_hash(u64 type, u32 event_id) 4819 { 4820 u64 val = event_id | (type << 32); 4821 4822 return hash_64(val, SWEVENT_HLIST_BITS); 4823 } 4824 4825 static inline struct hlist_head * 4826 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4827 { 4828 u64 hash = swevent_hash(type, event_id); 4829 4830 return &hlist->heads[hash]; 4831 } 4832 4833 /* For the read side: events when they trigger */ 4834 static inline struct hlist_head * 4835 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4836 { 4837 struct swevent_hlist *hlist; 4838 4839 hlist = rcu_dereference(swhash->swevent_hlist); 4840 if (!hlist) 4841 return NULL; 4842 4843 return __find_swevent_head(hlist, type, event_id); 4844 } 4845 4846 /* For the event head insertion and removal in the hlist */ 4847 static inline struct hlist_head * 4848 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4849 { 4850 struct swevent_hlist *hlist; 4851 u32 event_id = event->attr.config; 4852 u64 type = event->attr.type; 4853 4854 /* 4855 * Event scheduling is always serialized against hlist allocation 4856 * and release. Which makes the protected version suitable here. 4857 * The context lock guarantees that. 4858 */ 4859 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4860 lockdep_is_held(&event->ctx->lock)); 4861 if (!hlist) 4862 return NULL; 4863 4864 return __find_swevent_head(hlist, type, event_id); 4865 } 4866 4867 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4868 u64 nr, 4869 struct perf_sample_data *data, 4870 struct pt_regs *regs) 4871 { 4872 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4873 struct perf_event *event; 4874 struct hlist_node *node; 4875 struct hlist_head *head; 4876 4877 rcu_read_lock(); 4878 head = find_swevent_head_rcu(swhash, type, event_id); 4879 if (!head) 4880 goto end; 4881 4882 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4883 if (perf_swevent_match(event, type, event_id, data, regs)) 4884 perf_swevent_event(event, nr, data, regs); 4885 } 4886 end: 4887 rcu_read_unlock(); 4888 } 4889 4890 int perf_swevent_get_recursion_context(void) 4891 { 4892 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4893 4894 return get_recursion_context(swhash->recursion); 4895 } 4896 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4897 4898 inline void perf_swevent_put_recursion_context(int rctx) 4899 { 4900 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4901 4902 put_recursion_context(swhash->recursion, rctx); 4903 } 4904 4905 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4906 { 4907 struct perf_sample_data data; 4908 int rctx; 4909 4910 preempt_disable_notrace(); 4911 rctx = perf_swevent_get_recursion_context(); 4912 if (rctx < 0) 4913 return; 4914 4915 perf_sample_data_init(&data, addr); 4916 4917 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4918 4919 perf_swevent_put_recursion_context(rctx); 4920 preempt_enable_notrace(); 4921 } 4922 4923 static void perf_swevent_read(struct perf_event *event) 4924 { 4925 } 4926 4927 static int perf_swevent_add(struct perf_event *event, int flags) 4928 { 4929 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4930 struct hw_perf_event *hwc = &event->hw; 4931 struct hlist_head *head; 4932 4933 if (is_sampling_event(event)) { 4934 hwc->last_period = hwc->sample_period; 4935 perf_swevent_set_period(event); 4936 } 4937 4938 hwc->state = !(flags & PERF_EF_START); 4939 4940 head = find_swevent_head(swhash, event); 4941 if (WARN_ON_ONCE(!head)) 4942 return -EINVAL; 4943 4944 hlist_add_head_rcu(&event->hlist_entry, head); 4945 4946 return 0; 4947 } 4948 4949 static void perf_swevent_del(struct perf_event *event, int flags) 4950 { 4951 hlist_del_rcu(&event->hlist_entry); 4952 } 4953 4954 static void perf_swevent_start(struct perf_event *event, int flags) 4955 { 4956 event->hw.state = 0; 4957 } 4958 4959 static void perf_swevent_stop(struct perf_event *event, int flags) 4960 { 4961 event->hw.state = PERF_HES_STOPPED; 4962 } 4963 4964 /* Deref the hlist from the update side */ 4965 static inline struct swevent_hlist * 4966 swevent_hlist_deref(struct swevent_htable *swhash) 4967 { 4968 return rcu_dereference_protected(swhash->swevent_hlist, 4969 lockdep_is_held(&swhash->hlist_mutex)); 4970 } 4971 4972 static void swevent_hlist_release(struct swevent_htable *swhash) 4973 { 4974 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 4975 4976 if (!hlist) 4977 return; 4978 4979 rcu_assign_pointer(swhash->swevent_hlist, NULL); 4980 kfree_rcu(hlist, rcu_head); 4981 } 4982 4983 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 4984 { 4985 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 4986 4987 mutex_lock(&swhash->hlist_mutex); 4988 4989 if (!--swhash->hlist_refcount) 4990 swevent_hlist_release(swhash); 4991 4992 mutex_unlock(&swhash->hlist_mutex); 4993 } 4994 4995 static void swevent_hlist_put(struct perf_event *event) 4996 { 4997 int cpu; 4998 4999 if (event->cpu != -1) { 5000 swevent_hlist_put_cpu(event, event->cpu); 5001 return; 5002 } 5003 5004 for_each_possible_cpu(cpu) 5005 swevent_hlist_put_cpu(event, cpu); 5006 } 5007 5008 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5009 { 5010 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5011 int err = 0; 5012 5013 mutex_lock(&swhash->hlist_mutex); 5014 5015 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5016 struct swevent_hlist *hlist; 5017 5018 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5019 if (!hlist) { 5020 err = -ENOMEM; 5021 goto exit; 5022 } 5023 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5024 } 5025 swhash->hlist_refcount++; 5026 exit: 5027 mutex_unlock(&swhash->hlist_mutex); 5028 5029 return err; 5030 } 5031 5032 static int swevent_hlist_get(struct perf_event *event) 5033 { 5034 int err; 5035 int cpu, failed_cpu; 5036 5037 if (event->cpu != -1) 5038 return swevent_hlist_get_cpu(event, event->cpu); 5039 5040 get_online_cpus(); 5041 for_each_possible_cpu(cpu) { 5042 err = swevent_hlist_get_cpu(event, cpu); 5043 if (err) { 5044 failed_cpu = cpu; 5045 goto fail; 5046 } 5047 } 5048 put_online_cpus(); 5049 5050 return 0; 5051 fail: 5052 for_each_possible_cpu(cpu) { 5053 if (cpu == failed_cpu) 5054 break; 5055 swevent_hlist_put_cpu(event, cpu); 5056 } 5057 5058 put_online_cpus(); 5059 return err; 5060 } 5061 5062 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5063 5064 static void sw_perf_event_destroy(struct perf_event *event) 5065 { 5066 u64 event_id = event->attr.config; 5067 5068 WARN_ON(event->parent); 5069 5070 jump_label_dec(&perf_swevent_enabled[event_id]); 5071 swevent_hlist_put(event); 5072 } 5073 5074 static int perf_swevent_init(struct perf_event *event) 5075 { 5076 int event_id = event->attr.config; 5077 5078 if (event->attr.type != PERF_TYPE_SOFTWARE) 5079 return -ENOENT; 5080 5081 switch (event_id) { 5082 case PERF_COUNT_SW_CPU_CLOCK: 5083 case PERF_COUNT_SW_TASK_CLOCK: 5084 return -ENOENT; 5085 5086 default: 5087 break; 5088 } 5089 5090 if (event_id >= PERF_COUNT_SW_MAX) 5091 return -ENOENT; 5092 5093 if (!event->parent) { 5094 int err; 5095 5096 err = swevent_hlist_get(event); 5097 if (err) 5098 return err; 5099 5100 jump_label_inc(&perf_swevent_enabled[event_id]); 5101 event->destroy = sw_perf_event_destroy; 5102 } 5103 5104 return 0; 5105 } 5106 5107 static struct pmu perf_swevent = { 5108 .task_ctx_nr = perf_sw_context, 5109 5110 .event_init = perf_swevent_init, 5111 .add = perf_swevent_add, 5112 .del = perf_swevent_del, 5113 .start = perf_swevent_start, 5114 .stop = perf_swevent_stop, 5115 .read = perf_swevent_read, 5116 }; 5117 5118 #ifdef CONFIG_EVENT_TRACING 5119 5120 static int perf_tp_filter_match(struct perf_event *event, 5121 struct perf_sample_data *data) 5122 { 5123 void *record = data->raw->data; 5124 5125 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5126 return 1; 5127 return 0; 5128 } 5129 5130 static int perf_tp_event_match(struct perf_event *event, 5131 struct perf_sample_data *data, 5132 struct pt_regs *regs) 5133 { 5134 if (event->hw.state & PERF_HES_STOPPED) 5135 return 0; 5136 /* 5137 * All tracepoints are from kernel-space. 5138 */ 5139 if (event->attr.exclude_kernel) 5140 return 0; 5141 5142 if (!perf_tp_filter_match(event, data)) 5143 return 0; 5144 5145 return 1; 5146 } 5147 5148 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5149 struct pt_regs *regs, struct hlist_head *head, int rctx) 5150 { 5151 struct perf_sample_data data; 5152 struct perf_event *event; 5153 struct hlist_node *node; 5154 5155 struct perf_raw_record raw = { 5156 .size = entry_size, 5157 .data = record, 5158 }; 5159 5160 perf_sample_data_init(&data, addr); 5161 data.raw = &raw; 5162 5163 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5164 if (perf_tp_event_match(event, &data, regs)) 5165 perf_swevent_event(event, count, &data, regs); 5166 } 5167 5168 perf_swevent_put_recursion_context(rctx); 5169 } 5170 EXPORT_SYMBOL_GPL(perf_tp_event); 5171 5172 static void tp_perf_event_destroy(struct perf_event *event) 5173 { 5174 perf_trace_destroy(event); 5175 } 5176 5177 static int perf_tp_event_init(struct perf_event *event) 5178 { 5179 int err; 5180 5181 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5182 return -ENOENT; 5183 5184 err = perf_trace_init(event); 5185 if (err) 5186 return err; 5187 5188 event->destroy = tp_perf_event_destroy; 5189 5190 return 0; 5191 } 5192 5193 static struct pmu perf_tracepoint = { 5194 .task_ctx_nr = perf_sw_context, 5195 5196 .event_init = perf_tp_event_init, 5197 .add = perf_trace_add, 5198 .del = perf_trace_del, 5199 .start = perf_swevent_start, 5200 .stop = perf_swevent_stop, 5201 .read = perf_swevent_read, 5202 }; 5203 5204 static inline void perf_tp_register(void) 5205 { 5206 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5207 } 5208 5209 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5210 { 5211 char *filter_str; 5212 int ret; 5213 5214 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5215 return -EINVAL; 5216 5217 filter_str = strndup_user(arg, PAGE_SIZE); 5218 if (IS_ERR(filter_str)) 5219 return PTR_ERR(filter_str); 5220 5221 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5222 5223 kfree(filter_str); 5224 return ret; 5225 } 5226 5227 static void perf_event_free_filter(struct perf_event *event) 5228 { 5229 ftrace_profile_free_filter(event); 5230 } 5231 5232 #else 5233 5234 static inline void perf_tp_register(void) 5235 { 5236 } 5237 5238 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5239 { 5240 return -ENOENT; 5241 } 5242 5243 static void perf_event_free_filter(struct perf_event *event) 5244 { 5245 } 5246 5247 #endif /* CONFIG_EVENT_TRACING */ 5248 5249 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5250 void perf_bp_event(struct perf_event *bp, void *data) 5251 { 5252 struct perf_sample_data sample; 5253 struct pt_regs *regs = data; 5254 5255 perf_sample_data_init(&sample, bp->attr.bp_addr); 5256 5257 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5258 perf_swevent_event(bp, 1, &sample, regs); 5259 } 5260 #endif 5261 5262 /* 5263 * hrtimer based swevent callback 5264 */ 5265 5266 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5267 { 5268 enum hrtimer_restart ret = HRTIMER_RESTART; 5269 struct perf_sample_data data; 5270 struct pt_regs *regs; 5271 struct perf_event *event; 5272 u64 period; 5273 5274 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5275 5276 if (event->state != PERF_EVENT_STATE_ACTIVE) 5277 return HRTIMER_NORESTART; 5278 5279 event->pmu->read(event); 5280 5281 perf_sample_data_init(&data, 0); 5282 data.period = event->hw.last_period; 5283 regs = get_irq_regs(); 5284 5285 if (regs && !perf_exclude_event(event, regs)) { 5286 if (!(event->attr.exclude_idle && current->pid == 0)) 5287 if (perf_event_overflow(event, &data, regs)) 5288 ret = HRTIMER_NORESTART; 5289 } 5290 5291 period = max_t(u64, 10000, event->hw.sample_period); 5292 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5293 5294 return ret; 5295 } 5296 5297 static void perf_swevent_start_hrtimer(struct perf_event *event) 5298 { 5299 struct hw_perf_event *hwc = &event->hw; 5300 s64 period; 5301 5302 if (!is_sampling_event(event)) 5303 return; 5304 5305 period = local64_read(&hwc->period_left); 5306 if (period) { 5307 if (period < 0) 5308 period = 10000; 5309 5310 local64_set(&hwc->period_left, 0); 5311 } else { 5312 period = max_t(u64, 10000, hwc->sample_period); 5313 } 5314 __hrtimer_start_range_ns(&hwc->hrtimer, 5315 ns_to_ktime(period), 0, 5316 HRTIMER_MODE_REL_PINNED, 0); 5317 } 5318 5319 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5320 { 5321 struct hw_perf_event *hwc = &event->hw; 5322 5323 if (is_sampling_event(event)) { 5324 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5325 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5326 5327 hrtimer_cancel(&hwc->hrtimer); 5328 } 5329 } 5330 5331 static void perf_swevent_init_hrtimer(struct perf_event *event) 5332 { 5333 struct hw_perf_event *hwc = &event->hw; 5334 5335 if (!is_sampling_event(event)) 5336 return; 5337 5338 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5339 hwc->hrtimer.function = perf_swevent_hrtimer; 5340 5341 /* 5342 * Since hrtimers have a fixed rate, we can do a static freq->period 5343 * mapping and avoid the whole period adjust feedback stuff. 5344 */ 5345 if (event->attr.freq) { 5346 long freq = event->attr.sample_freq; 5347 5348 event->attr.sample_period = NSEC_PER_SEC / freq; 5349 hwc->sample_period = event->attr.sample_period; 5350 local64_set(&hwc->period_left, hwc->sample_period); 5351 event->attr.freq = 0; 5352 } 5353 } 5354 5355 /* 5356 * Software event: cpu wall time clock 5357 */ 5358 5359 static void cpu_clock_event_update(struct perf_event *event) 5360 { 5361 s64 prev; 5362 u64 now; 5363 5364 now = local_clock(); 5365 prev = local64_xchg(&event->hw.prev_count, now); 5366 local64_add(now - prev, &event->count); 5367 } 5368 5369 static void cpu_clock_event_start(struct perf_event *event, int flags) 5370 { 5371 local64_set(&event->hw.prev_count, local_clock()); 5372 perf_swevent_start_hrtimer(event); 5373 } 5374 5375 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5376 { 5377 perf_swevent_cancel_hrtimer(event); 5378 cpu_clock_event_update(event); 5379 } 5380 5381 static int cpu_clock_event_add(struct perf_event *event, int flags) 5382 { 5383 if (flags & PERF_EF_START) 5384 cpu_clock_event_start(event, flags); 5385 5386 return 0; 5387 } 5388 5389 static void cpu_clock_event_del(struct perf_event *event, int flags) 5390 { 5391 cpu_clock_event_stop(event, flags); 5392 } 5393 5394 static void cpu_clock_event_read(struct perf_event *event) 5395 { 5396 cpu_clock_event_update(event); 5397 } 5398 5399 static int cpu_clock_event_init(struct perf_event *event) 5400 { 5401 if (event->attr.type != PERF_TYPE_SOFTWARE) 5402 return -ENOENT; 5403 5404 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5405 return -ENOENT; 5406 5407 perf_swevent_init_hrtimer(event); 5408 5409 return 0; 5410 } 5411 5412 static struct pmu perf_cpu_clock = { 5413 .task_ctx_nr = perf_sw_context, 5414 5415 .event_init = cpu_clock_event_init, 5416 .add = cpu_clock_event_add, 5417 .del = cpu_clock_event_del, 5418 .start = cpu_clock_event_start, 5419 .stop = cpu_clock_event_stop, 5420 .read = cpu_clock_event_read, 5421 }; 5422 5423 /* 5424 * Software event: task time clock 5425 */ 5426 5427 static void task_clock_event_update(struct perf_event *event, u64 now) 5428 { 5429 u64 prev; 5430 s64 delta; 5431 5432 prev = local64_xchg(&event->hw.prev_count, now); 5433 delta = now - prev; 5434 local64_add(delta, &event->count); 5435 } 5436 5437 static void task_clock_event_start(struct perf_event *event, int flags) 5438 { 5439 local64_set(&event->hw.prev_count, event->ctx->time); 5440 perf_swevent_start_hrtimer(event); 5441 } 5442 5443 static void task_clock_event_stop(struct perf_event *event, int flags) 5444 { 5445 perf_swevent_cancel_hrtimer(event); 5446 task_clock_event_update(event, event->ctx->time); 5447 } 5448 5449 static int task_clock_event_add(struct perf_event *event, int flags) 5450 { 5451 if (flags & PERF_EF_START) 5452 task_clock_event_start(event, flags); 5453 5454 return 0; 5455 } 5456 5457 static void task_clock_event_del(struct perf_event *event, int flags) 5458 { 5459 task_clock_event_stop(event, PERF_EF_UPDATE); 5460 } 5461 5462 static void task_clock_event_read(struct perf_event *event) 5463 { 5464 u64 now = perf_clock(); 5465 u64 delta = now - event->ctx->timestamp; 5466 u64 time = event->ctx->time + delta; 5467 5468 task_clock_event_update(event, time); 5469 } 5470 5471 static int task_clock_event_init(struct perf_event *event) 5472 { 5473 if (event->attr.type != PERF_TYPE_SOFTWARE) 5474 return -ENOENT; 5475 5476 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5477 return -ENOENT; 5478 5479 perf_swevent_init_hrtimer(event); 5480 5481 return 0; 5482 } 5483 5484 static struct pmu perf_task_clock = { 5485 .task_ctx_nr = perf_sw_context, 5486 5487 .event_init = task_clock_event_init, 5488 .add = task_clock_event_add, 5489 .del = task_clock_event_del, 5490 .start = task_clock_event_start, 5491 .stop = task_clock_event_stop, 5492 .read = task_clock_event_read, 5493 }; 5494 5495 static void perf_pmu_nop_void(struct pmu *pmu) 5496 { 5497 } 5498 5499 static int perf_pmu_nop_int(struct pmu *pmu) 5500 { 5501 return 0; 5502 } 5503 5504 static void perf_pmu_start_txn(struct pmu *pmu) 5505 { 5506 perf_pmu_disable(pmu); 5507 } 5508 5509 static int perf_pmu_commit_txn(struct pmu *pmu) 5510 { 5511 perf_pmu_enable(pmu); 5512 return 0; 5513 } 5514 5515 static void perf_pmu_cancel_txn(struct pmu *pmu) 5516 { 5517 perf_pmu_enable(pmu); 5518 } 5519 5520 /* 5521 * Ensures all contexts with the same task_ctx_nr have the same 5522 * pmu_cpu_context too. 5523 */ 5524 static void *find_pmu_context(int ctxn) 5525 { 5526 struct pmu *pmu; 5527 5528 if (ctxn < 0) 5529 return NULL; 5530 5531 list_for_each_entry(pmu, &pmus, entry) { 5532 if (pmu->task_ctx_nr == ctxn) 5533 return pmu->pmu_cpu_context; 5534 } 5535 5536 return NULL; 5537 } 5538 5539 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5540 { 5541 int cpu; 5542 5543 for_each_possible_cpu(cpu) { 5544 struct perf_cpu_context *cpuctx; 5545 5546 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5547 5548 if (cpuctx->active_pmu == old_pmu) 5549 cpuctx->active_pmu = pmu; 5550 } 5551 } 5552 5553 static void free_pmu_context(struct pmu *pmu) 5554 { 5555 struct pmu *i; 5556 5557 mutex_lock(&pmus_lock); 5558 /* 5559 * Like a real lame refcount. 5560 */ 5561 list_for_each_entry(i, &pmus, entry) { 5562 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5563 update_pmu_context(i, pmu); 5564 goto out; 5565 } 5566 } 5567 5568 free_percpu(pmu->pmu_cpu_context); 5569 out: 5570 mutex_unlock(&pmus_lock); 5571 } 5572 static struct idr pmu_idr; 5573 5574 static ssize_t 5575 type_show(struct device *dev, struct device_attribute *attr, char *page) 5576 { 5577 struct pmu *pmu = dev_get_drvdata(dev); 5578 5579 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5580 } 5581 5582 static struct device_attribute pmu_dev_attrs[] = { 5583 __ATTR_RO(type), 5584 __ATTR_NULL, 5585 }; 5586 5587 static int pmu_bus_running; 5588 static struct bus_type pmu_bus = { 5589 .name = "event_source", 5590 .dev_attrs = pmu_dev_attrs, 5591 }; 5592 5593 static void pmu_dev_release(struct device *dev) 5594 { 5595 kfree(dev); 5596 } 5597 5598 static int pmu_dev_alloc(struct pmu *pmu) 5599 { 5600 int ret = -ENOMEM; 5601 5602 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5603 if (!pmu->dev) 5604 goto out; 5605 5606 device_initialize(pmu->dev); 5607 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5608 if (ret) 5609 goto free_dev; 5610 5611 dev_set_drvdata(pmu->dev, pmu); 5612 pmu->dev->bus = &pmu_bus; 5613 pmu->dev->release = pmu_dev_release; 5614 ret = device_add(pmu->dev); 5615 if (ret) 5616 goto free_dev; 5617 5618 out: 5619 return ret; 5620 5621 free_dev: 5622 put_device(pmu->dev); 5623 goto out; 5624 } 5625 5626 static struct lock_class_key cpuctx_mutex; 5627 static struct lock_class_key cpuctx_lock; 5628 5629 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5630 { 5631 int cpu, ret; 5632 5633 mutex_lock(&pmus_lock); 5634 ret = -ENOMEM; 5635 pmu->pmu_disable_count = alloc_percpu(int); 5636 if (!pmu->pmu_disable_count) 5637 goto unlock; 5638 5639 pmu->type = -1; 5640 if (!name) 5641 goto skip_type; 5642 pmu->name = name; 5643 5644 if (type < 0) { 5645 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5646 if (!err) 5647 goto free_pdc; 5648 5649 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5650 if (err) { 5651 ret = err; 5652 goto free_pdc; 5653 } 5654 } 5655 pmu->type = type; 5656 5657 if (pmu_bus_running) { 5658 ret = pmu_dev_alloc(pmu); 5659 if (ret) 5660 goto free_idr; 5661 } 5662 5663 skip_type: 5664 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5665 if (pmu->pmu_cpu_context) 5666 goto got_cpu_context; 5667 5668 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5669 if (!pmu->pmu_cpu_context) 5670 goto free_dev; 5671 5672 for_each_possible_cpu(cpu) { 5673 struct perf_cpu_context *cpuctx; 5674 5675 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5676 __perf_event_init_context(&cpuctx->ctx); 5677 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5678 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5679 cpuctx->ctx.type = cpu_context; 5680 cpuctx->ctx.pmu = pmu; 5681 cpuctx->jiffies_interval = 1; 5682 INIT_LIST_HEAD(&cpuctx->rotation_list); 5683 cpuctx->active_pmu = pmu; 5684 } 5685 5686 got_cpu_context: 5687 if (!pmu->start_txn) { 5688 if (pmu->pmu_enable) { 5689 /* 5690 * If we have pmu_enable/pmu_disable calls, install 5691 * transaction stubs that use that to try and batch 5692 * hardware accesses. 5693 */ 5694 pmu->start_txn = perf_pmu_start_txn; 5695 pmu->commit_txn = perf_pmu_commit_txn; 5696 pmu->cancel_txn = perf_pmu_cancel_txn; 5697 } else { 5698 pmu->start_txn = perf_pmu_nop_void; 5699 pmu->commit_txn = perf_pmu_nop_int; 5700 pmu->cancel_txn = perf_pmu_nop_void; 5701 } 5702 } 5703 5704 if (!pmu->pmu_enable) { 5705 pmu->pmu_enable = perf_pmu_nop_void; 5706 pmu->pmu_disable = perf_pmu_nop_void; 5707 } 5708 5709 list_add_rcu(&pmu->entry, &pmus); 5710 ret = 0; 5711 unlock: 5712 mutex_unlock(&pmus_lock); 5713 5714 return ret; 5715 5716 free_dev: 5717 device_del(pmu->dev); 5718 put_device(pmu->dev); 5719 5720 free_idr: 5721 if (pmu->type >= PERF_TYPE_MAX) 5722 idr_remove(&pmu_idr, pmu->type); 5723 5724 free_pdc: 5725 free_percpu(pmu->pmu_disable_count); 5726 goto unlock; 5727 } 5728 5729 void perf_pmu_unregister(struct pmu *pmu) 5730 { 5731 mutex_lock(&pmus_lock); 5732 list_del_rcu(&pmu->entry); 5733 mutex_unlock(&pmus_lock); 5734 5735 /* 5736 * We dereference the pmu list under both SRCU and regular RCU, so 5737 * synchronize against both of those. 5738 */ 5739 synchronize_srcu(&pmus_srcu); 5740 synchronize_rcu(); 5741 5742 free_percpu(pmu->pmu_disable_count); 5743 if (pmu->type >= PERF_TYPE_MAX) 5744 idr_remove(&pmu_idr, pmu->type); 5745 device_del(pmu->dev); 5746 put_device(pmu->dev); 5747 free_pmu_context(pmu); 5748 } 5749 5750 struct pmu *perf_init_event(struct perf_event *event) 5751 { 5752 struct pmu *pmu = NULL; 5753 int idx; 5754 int ret; 5755 5756 idx = srcu_read_lock(&pmus_srcu); 5757 5758 rcu_read_lock(); 5759 pmu = idr_find(&pmu_idr, event->attr.type); 5760 rcu_read_unlock(); 5761 if (pmu) { 5762 event->pmu = pmu; 5763 ret = pmu->event_init(event); 5764 if (ret) 5765 pmu = ERR_PTR(ret); 5766 goto unlock; 5767 } 5768 5769 list_for_each_entry_rcu(pmu, &pmus, entry) { 5770 event->pmu = pmu; 5771 ret = pmu->event_init(event); 5772 if (!ret) 5773 goto unlock; 5774 5775 if (ret != -ENOENT) { 5776 pmu = ERR_PTR(ret); 5777 goto unlock; 5778 } 5779 } 5780 pmu = ERR_PTR(-ENOENT); 5781 unlock: 5782 srcu_read_unlock(&pmus_srcu, idx); 5783 5784 return pmu; 5785 } 5786 5787 /* 5788 * Allocate and initialize a event structure 5789 */ 5790 static struct perf_event * 5791 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5792 struct task_struct *task, 5793 struct perf_event *group_leader, 5794 struct perf_event *parent_event, 5795 perf_overflow_handler_t overflow_handler, 5796 void *context) 5797 { 5798 struct pmu *pmu; 5799 struct perf_event *event; 5800 struct hw_perf_event *hwc; 5801 long err; 5802 5803 if ((unsigned)cpu >= nr_cpu_ids) { 5804 if (!task || cpu != -1) 5805 return ERR_PTR(-EINVAL); 5806 } 5807 5808 event = kzalloc(sizeof(*event), GFP_KERNEL); 5809 if (!event) 5810 return ERR_PTR(-ENOMEM); 5811 5812 /* 5813 * Single events are their own group leaders, with an 5814 * empty sibling list: 5815 */ 5816 if (!group_leader) 5817 group_leader = event; 5818 5819 mutex_init(&event->child_mutex); 5820 INIT_LIST_HEAD(&event->child_list); 5821 5822 INIT_LIST_HEAD(&event->group_entry); 5823 INIT_LIST_HEAD(&event->event_entry); 5824 INIT_LIST_HEAD(&event->sibling_list); 5825 init_waitqueue_head(&event->waitq); 5826 init_irq_work(&event->pending, perf_pending_event); 5827 5828 mutex_init(&event->mmap_mutex); 5829 5830 event->cpu = cpu; 5831 event->attr = *attr; 5832 event->group_leader = group_leader; 5833 event->pmu = NULL; 5834 event->oncpu = -1; 5835 5836 event->parent = parent_event; 5837 5838 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5839 event->id = atomic64_inc_return(&perf_event_id); 5840 5841 event->state = PERF_EVENT_STATE_INACTIVE; 5842 5843 if (task) { 5844 event->attach_state = PERF_ATTACH_TASK; 5845 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5846 /* 5847 * hw_breakpoint is a bit difficult here.. 5848 */ 5849 if (attr->type == PERF_TYPE_BREAKPOINT) 5850 event->hw.bp_target = task; 5851 #endif 5852 } 5853 5854 if (!overflow_handler && parent_event) { 5855 overflow_handler = parent_event->overflow_handler; 5856 context = parent_event->overflow_handler_context; 5857 } 5858 5859 event->overflow_handler = overflow_handler; 5860 event->overflow_handler_context = context; 5861 5862 if (attr->disabled) 5863 event->state = PERF_EVENT_STATE_OFF; 5864 5865 pmu = NULL; 5866 5867 hwc = &event->hw; 5868 hwc->sample_period = attr->sample_period; 5869 if (attr->freq && attr->sample_freq) 5870 hwc->sample_period = 1; 5871 hwc->last_period = hwc->sample_period; 5872 5873 local64_set(&hwc->period_left, hwc->sample_period); 5874 5875 /* 5876 * we currently do not support PERF_FORMAT_GROUP on inherited events 5877 */ 5878 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5879 goto done; 5880 5881 pmu = perf_init_event(event); 5882 5883 done: 5884 err = 0; 5885 if (!pmu) 5886 err = -EINVAL; 5887 else if (IS_ERR(pmu)) 5888 err = PTR_ERR(pmu); 5889 5890 if (err) { 5891 if (event->ns) 5892 put_pid_ns(event->ns); 5893 kfree(event); 5894 return ERR_PTR(err); 5895 } 5896 5897 if (!event->parent) { 5898 if (event->attach_state & PERF_ATTACH_TASK) 5899 jump_label_inc(&perf_sched_events); 5900 if (event->attr.mmap || event->attr.mmap_data) 5901 atomic_inc(&nr_mmap_events); 5902 if (event->attr.comm) 5903 atomic_inc(&nr_comm_events); 5904 if (event->attr.task) 5905 atomic_inc(&nr_task_events); 5906 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 5907 err = get_callchain_buffers(); 5908 if (err) { 5909 free_event(event); 5910 return ERR_PTR(err); 5911 } 5912 } 5913 } 5914 5915 return event; 5916 } 5917 5918 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5919 struct perf_event_attr *attr) 5920 { 5921 u32 size; 5922 int ret; 5923 5924 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 5925 return -EFAULT; 5926 5927 /* 5928 * zero the full structure, so that a short copy will be nice. 5929 */ 5930 memset(attr, 0, sizeof(*attr)); 5931 5932 ret = get_user(size, &uattr->size); 5933 if (ret) 5934 return ret; 5935 5936 if (size > PAGE_SIZE) /* silly large */ 5937 goto err_size; 5938 5939 if (!size) /* abi compat */ 5940 size = PERF_ATTR_SIZE_VER0; 5941 5942 if (size < PERF_ATTR_SIZE_VER0) 5943 goto err_size; 5944 5945 /* 5946 * If we're handed a bigger struct than we know of, 5947 * ensure all the unknown bits are 0 - i.e. new 5948 * user-space does not rely on any kernel feature 5949 * extensions we dont know about yet. 5950 */ 5951 if (size > sizeof(*attr)) { 5952 unsigned char __user *addr; 5953 unsigned char __user *end; 5954 unsigned char val; 5955 5956 addr = (void __user *)uattr + sizeof(*attr); 5957 end = (void __user *)uattr + size; 5958 5959 for (; addr < end; addr++) { 5960 ret = get_user(val, addr); 5961 if (ret) 5962 return ret; 5963 if (val) 5964 goto err_size; 5965 } 5966 size = sizeof(*attr); 5967 } 5968 5969 ret = copy_from_user(attr, uattr, size); 5970 if (ret) 5971 return -EFAULT; 5972 5973 if (attr->__reserved_1) 5974 return -EINVAL; 5975 5976 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 5977 return -EINVAL; 5978 5979 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 5980 return -EINVAL; 5981 5982 out: 5983 return ret; 5984 5985 err_size: 5986 put_user(sizeof(*attr), &uattr->size); 5987 ret = -E2BIG; 5988 goto out; 5989 } 5990 5991 static int 5992 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 5993 { 5994 struct ring_buffer *rb = NULL, *old_rb = NULL; 5995 int ret = -EINVAL; 5996 5997 if (!output_event) 5998 goto set; 5999 6000 /* don't allow circular references */ 6001 if (event == output_event) 6002 goto out; 6003 6004 /* 6005 * Don't allow cross-cpu buffers 6006 */ 6007 if (output_event->cpu != event->cpu) 6008 goto out; 6009 6010 /* 6011 * If its not a per-cpu rb, it must be the same task. 6012 */ 6013 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6014 goto out; 6015 6016 set: 6017 mutex_lock(&event->mmap_mutex); 6018 /* Can't redirect output if we've got an active mmap() */ 6019 if (atomic_read(&event->mmap_count)) 6020 goto unlock; 6021 6022 if (output_event) { 6023 /* get the rb we want to redirect to */ 6024 rb = ring_buffer_get(output_event); 6025 if (!rb) 6026 goto unlock; 6027 } 6028 6029 old_rb = event->rb; 6030 rcu_assign_pointer(event->rb, rb); 6031 ret = 0; 6032 unlock: 6033 mutex_unlock(&event->mmap_mutex); 6034 6035 if (old_rb) 6036 ring_buffer_put(old_rb); 6037 out: 6038 return ret; 6039 } 6040 6041 /** 6042 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6043 * 6044 * @attr_uptr: event_id type attributes for monitoring/sampling 6045 * @pid: target pid 6046 * @cpu: target cpu 6047 * @group_fd: group leader event fd 6048 */ 6049 SYSCALL_DEFINE5(perf_event_open, 6050 struct perf_event_attr __user *, attr_uptr, 6051 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6052 { 6053 struct perf_event *group_leader = NULL, *output_event = NULL; 6054 struct perf_event *event, *sibling; 6055 struct perf_event_attr attr; 6056 struct perf_event_context *ctx; 6057 struct file *event_file = NULL; 6058 struct file *group_file = NULL; 6059 struct task_struct *task = NULL; 6060 struct pmu *pmu; 6061 int event_fd; 6062 int move_group = 0; 6063 int fput_needed = 0; 6064 int err; 6065 6066 /* for future expandability... */ 6067 if (flags & ~PERF_FLAG_ALL) 6068 return -EINVAL; 6069 6070 err = perf_copy_attr(attr_uptr, &attr); 6071 if (err) 6072 return err; 6073 6074 if (!attr.exclude_kernel) { 6075 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6076 return -EACCES; 6077 } 6078 6079 if (attr.freq) { 6080 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6081 return -EINVAL; 6082 } 6083 6084 /* 6085 * In cgroup mode, the pid argument is used to pass the fd 6086 * opened to the cgroup directory in cgroupfs. The cpu argument 6087 * designates the cpu on which to monitor threads from that 6088 * cgroup. 6089 */ 6090 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6091 return -EINVAL; 6092 6093 event_fd = get_unused_fd_flags(O_RDWR); 6094 if (event_fd < 0) 6095 return event_fd; 6096 6097 if (group_fd != -1) { 6098 group_leader = perf_fget_light(group_fd, &fput_needed); 6099 if (IS_ERR(group_leader)) { 6100 err = PTR_ERR(group_leader); 6101 goto err_fd; 6102 } 6103 group_file = group_leader->filp; 6104 if (flags & PERF_FLAG_FD_OUTPUT) 6105 output_event = group_leader; 6106 if (flags & PERF_FLAG_FD_NO_GROUP) 6107 group_leader = NULL; 6108 } 6109 6110 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6111 task = find_lively_task_by_vpid(pid); 6112 if (IS_ERR(task)) { 6113 err = PTR_ERR(task); 6114 goto err_group_fd; 6115 } 6116 } 6117 6118 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6119 NULL, NULL); 6120 if (IS_ERR(event)) { 6121 err = PTR_ERR(event); 6122 goto err_task; 6123 } 6124 6125 if (flags & PERF_FLAG_PID_CGROUP) { 6126 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6127 if (err) 6128 goto err_alloc; 6129 /* 6130 * one more event: 6131 * - that has cgroup constraint on event->cpu 6132 * - that may need work on context switch 6133 */ 6134 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6135 jump_label_inc(&perf_sched_events); 6136 } 6137 6138 /* 6139 * Special case software events and allow them to be part of 6140 * any hardware group. 6141 */ 6142 pmu = event->pmu; 6143 6144 if (group_leader && 6145 (is_software_event(event) != is_software_event(group_leader))) { 6146 if (is_software_event(event)) { 6147 /* 6148 * If event and group_leader are not both a software 6149 * event, and event is, then group leader is not. 6150 * 6151 * Allow the addition of software events to !software 6152 * groups, this is safe because software events never 6153 * fail to schedule. 6154 */ 6155 pmu = group_leader->pmu; 6156 } else if (is_software_event(group_leader) && 6157 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6158 /* 6159 * In case the group is a pure software group, and we 6160 * try to add a hardware event, move the whole group to 6161 * the hardware context. 6162 */ 6163 move_group = 1; 6164 } 6165 } 6166 6167 /* 6168 * Get the target context (task or percpu): 6169 */ 6170 ctx = find_get_context(pmu, task, cpu); 6171 if (IS_ERR(ctx)) { 6172 err = PTR_ERR(ctx); 6173 goto err_alloc; 6174 } 6175 6176 if (task) { 6177 put_task_struct(task); 6178 task = NULL; 6179 } 6180 6181 /* 6182 * Look up the group leader (we will attach this event to it): 6183 */ 6184 if (group_leader) { 6185 err = -EINVAL; 6186 6187 /* 6188 * Do not allow a recursive hierarchy (this new sibling 6189 * becoming part of another group-sibling): 6190 */ 6191 if (group_leader->group_leader != group_leader) 6192 goto err_context; 6193 /* 6194 * Do not allow to attach to a group in a different 6195 * task or CPU context: 6196 */ 6197 if (move_group) { 6198 if (group_leader->ctx->type != ctx->type) 6199 goto err_context; 6200 } else { 6201 if (group_leader->ctx != ctx) 6202 goto err_context; 6203 } 6204 6205 /* 6206 * Only a group leader can be exclusive or pinned 6207 */ 6208 if (attr.exclusive || attr.pinned) 6209 goto err_context; 6210 } 6211 6212 if (output_event) { 6213 err = perf_event_set_output(event, output_event); 6214 if (err) 6215 goto err_context; 6216 } 6217 6218 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6219 if (IS_ERR(event_file)) { 6220 err = PTR_ERR(event_file); 6221 goto err_context; 6222 } 6223 6224 if (move_group) { 6225 struct perf_event_context *gctx = group_leader->ctx; 6226 6227 mutex_lock(&gctx->mutex); 6228 perf_remove_from_context(group_leader); 6229 list_for_each_entry(sibling, &group_leader->sibling_list, 6230 group_entry) { 6231 perf_remove_from_context(sibling); 6232 put_ctx(gctx); 6233 } 6234 mutex_unlock(&gctx->mutex); 6235 put_ctx(gctx); 6236 } 6237 6238 event->filp = event_file; 6239 WARN_ON_ONCE(ctx->parent_ctx); 6240 mutex_lock(&ctx->mutex); 6241 6242 if (move_group) { 6243 perf_install_in_context(ctx, group_leader, cpu); 6244 get_ctx(ctx); 6245 list_for_each_entry(sibling, &group_leader->sibling_list, 6246 group_entry) { 6247 perf_install_in_context(ctx, sibling, cpu); 6248 get_ctx(ctx); 6249 } 6250 } 6251 6252 perf_install_in_context(ctx, event, cpu); 6253 ++ctx->generation; 6254 perf_unpin_context(ctx); 6255 mutex_unlock(&ctx->mutex); 6256 6257 event->owner = current; 6258 6259 mutex_lock(¤t->perf_event_mutex); 6260 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6261 mutex_unlock(¤t->perf_event_mutex); 6262 6263 /* 6264 * Precalculate sample_data sizes 6265 */ 6266 perf_event__header_size(event); 6267 perf_event__id_header_size(event); 6268 6269 /* 6270 * Drop the reference on the group_event after placing the 6271 * new event on the sibling_list. This ensures destruction 6272 * of the group leader will find the pointer to itself in 6273 * perf_group_detach(). 6274 */ 6275 fput_light(group_file, fput_needed); 6276 fd_install(event_fd, event_file); 6277 return event_fd; 6278 6279 err_context: 6280 perf_unpin_context(ctx); 6281 put_ctx(ctx); 6282 err_alloc: 6283 free_event(event); 6284 err_task: 6285 if (task) 6286 put_task_struct(task); 6287 err_group_fd: 6288 fput_light(group_file, fput_needed); 6289 err_fd: 6290 put_unused_fd(event_fd); 6291 return err; 6292 } 6293 6294 /** 6295 * perf_event_create_kernel_counter 6296 * 6297 * @attr: attributes of the counter to create 6298 * @cpu: cpu in which the counter is bound 6299 * @task: task to profile (NULL for percpu) 6300 */ 6301 struct perf_event * 6302 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6303 struct task_struct *task, 6304 perf_overflow_handler_t overflow_handler, 6305 void *context) 6306 { 6307 struct perf_event_context *ctx; 6308 struct perf_event *event; 6309 int err; 6310 6311 /* 6312 * Get the target context (task or percpu): 6313 */ 6314 6315 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6316 overflow_handler, context); 6317 if (IS_ERR(event)) { 6318 err = PTR_ERR(event); 6319 goto err; 6320 } 6321 6322 ctx = find_get_context(event->pmu, task, cpu); 6323 if (IS_ERR(ctx)) { 6324 err = PTR_ERR(ctx); 6325 goto err_free; 6326 } 6327 6328 event->filp = NULL; 6329 WARN_ON_ONCE(ctx->parent_ctx); 6330 mutex_lock(&ctx->mutex); 6331 perf_install_in_context(ctx, event, cpu); 6332 ++ctx->generation; 6333 perf_unpin_context(ctx); 6334 mutex_unlock(&ctx->mutex); 6335 6336 return event; 6337 6338 err_free: 6339 free_event(event); 6340 err: 6341 return ERR_PTR(err); 6342 } 6343 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6344 6345 static void sync_child_event(struct perf_event *child_event, 6346 struct task_struct *child) 6347 { 6348 struct perf_event *parent_event = child_event->parent; 6349 u64 child_val; 6350 6351 if (child_event->attr.inherit_stat) 6352 perf_event_read_event(child_event, child); 6353 6354 child_val = perf_event_count(child_event); 6355 6356 /* 6357 * Add back the child's count to the parent's count: 6358 */ 6359 atomic64_add(child_val, &parent_event->child_count); 6360 atomic64_add(child_event->total_time_enabled, 6361 &parent_event->child_total_time_enabled); 6362 atomic64_add(child_event->total_time_running, 6363 &parent_event->child_total_time_running); 6364 6365 /* 6366 * Remove this event from the parent's list 6367 */ 6368 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6369 mutex_lock(&parent_event->child_mutex); 6370 list_del_init(&child_event->child_list); 6371 mutex_unlock(&parent_event->child_mutex); 6372 6373 /* 6374 * Release the parent event, if this was the last 6375 * reference to it. 6376 */ 6377 fput(parent_event->filp); 6378 } 6379 6380 static void 6381 __perf_event_exit_task(struct perf_event *child_event, 6382 struct perf_event_context *child_ctx, 6383 struct task_struct *child) 6384 { 6385 if (child_event->parent) { 6386 raw_spin_lock_irq(&child_ctx->lock); 6387 perf_group_detach(child_event); 6388 raw_spin_unlock_irq(&child_ctx->lock); 6389 } 6390 6391 perf_remove_from_context(child_event); 6392 6393 /* 6394 * It can happen that the parent exits first, and has events 6395 * that are still around due to the child reference. These 6396 * events need to be zapped. 6397 */ 6398 if (child_event->parent) { 6399 sync_child_event(child_event, child); 6400 free_event(child_event); 6401 } 6402 } 6403 6404 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6405 { 6406 struct perf_event *child_event, *tmp; 6407 struct perf_event_context *child_ctx; 6408 unsigned long flags; 6409 6410 if (likely(!child->perf_event_ctxp[ctxn])) { 6411 perf_event_task(child, NULL, 0); 6412 return; 6413 } 6414 6415 local_irq_save(flags); 6416 /* 6417 * We can't reschedule here because interrupts are disabled, 6418 * and either child is current or it is a task that can't be 6419 * scheduled, so we are now safe from rescheduling changing 6420 * our context. 6421 */ 6422 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6423 6424 /* 6425 * Take the context lock here so that if find_get_context is 6426 * reading child->perf_event_ctxp, we wait until it has 6427 * incremented the context's refcount before we do put_ctx below. 6428 */ 6429 raw_spin_lock(&child_ctx->lock); 6430 task_ctx_sched_out(child_ctx); 6431 child->perf_event_ctxp[ctxn] = NULL; 6432 /* 6433 * If this context is a clone; unclone it so it can't get 6434 * swapped to another process while we're removing all 6435 * the events from it. 6436 */ 6437 unclone_ctx(child_ctx); 6438 update_context_time(child_ctx); 6439 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6440 6441 /* 6442 * Report the task dead after unscheduling the events so that we 6443 * won't get any samples after PERF_RECORD_EXIT. We can however still 6444 * get a few PERF_RECORD_READ events. 6445 */ 6446 perf_event_task(child, child_ctx, 0); 6447 6448 /* 6449 * We can recurse on the same lock type through: 6450 * 6451 * __perf_event_exit_task() 6452 * sync_child_event() 6453 * fput(parent_event->filp) 6454 * perf_release() 6455 * mutex_lock(&ctx->mutex) 6456 * 6457 * But since its the parent context it won't be the same instance. 6458 */ 6459 mutex_lock(&child_ctx->mutex); 6460 6461 again: 6462 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6463 group_entry) 6464 __perf_event_exit_task(child_event, child_ctx, child); 6465 6466 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6467 group_entry) 6468 __perf_event_exit_task(child_event, child_ctx, child); 6469 6470 /* 6471 * If the last event was a group event, it will have appended all 6472 * its siblings to the list, but we obtained 'tmp' before that which 6473 * will still point to the list head terminating the iteration. 6474 */ 6475 if (!list_empty(&child_ctx->pinned_groups) || 6476 !list_empty(&child_ctx->flexible_groups)) 6477 goto again; 6478 6479 mutex_unlock(&child_ctx->mutex); 6480 6481 put_ctx(child_ctx); 6482 } 6483 6484 /* 6485 * When a child task exits, feed back event values to parent events. 6486 */ 6487 void perf_event_exit_task(struct task_struct *child) 6488 { 6489 struct perf_event *event, *tmp; 6490 int ctxn; 6491 6492 mutex_lock(&child->perf_event_mutex); 6493 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6494 owner_entry) { 6495 list_del_init(&event->owner_entry); 6496 6497 /* 6498 * Ensure the list deletion is visible before we clear 6499 * the owner, closes a race against perf_release() where 6500 * we need to serialize on the owner->perf_event_mutex. 6501 */ 6502 smp_wmb(); 6503 event->owner = NULL; 6504 } 6505 mutex_unlock(&child->perf_event_mutex); 6506 6507 for_each_task_context_nr(ctxn) 6508 perf_event_exit_task_context(child, ctxn); 6509 } 6510 6511 static void perf_free_event(struct perf_event *event, 6512 struct perf_event_context *ctx) 6513 { 6514 struct perf_event *parent = event->parent; 6515 6516 if (WARN_ON_ONCE(!parent)) 6517 return; 6518 6519 mutex_lock(&parent->child_mutex); 6520 list_del_init(&event->child_list); 6521 mutex_unlock(&parent->child_mutex); 6522 6523 fput(parent->filp); 6524 6525 perf_group_detach(event); 6526 list_del_event(event, ctx); 6527 free_event(event); 6528 } 6529 6530 /* 6531 * free an unexposed, unused context as created by inheritance by 6532 * perf_event_init_task below, used by fork() in case of fail. 6533 */ 6534 void perf_event_free_task(struct task_struct *task) 6535 { 6536 struct perf_event_context *ctx; 6537 struct perf_event *event, *tmp; 6538 int ctxn; 6539 6540 for_each_task_context_nr(ctxn) { 6541 ctx = task->perf_event_ctxp[ctxn]; 6542 if (!ctx) 6543 continue; 6544 6545 mutex_lock(&ctx->mutex); 6546 again: 6547 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6548 group_entry) 6549 perf_free_event(event, ctx); 6550 6551 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6552 group_entry) 6553 perf_free_event(event, ctx); 6554 6555 if (!list_empty(&ctx->pinned_groups) || 6556 !list_empty(&ctx->flexible_groups)) 6557 goto again; 6558 6559 mutex_unlock(&ctx->mutex); 6560 6561 put_ctx(ctx); 6562 } 6563 } 6564 6565 void perf_event_delayed_put(struct task_struct *task) 6566 { 6567 int ctxn; 6568 6569 for_each_task_context_nr(ctxn) 6570 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6571 } 6572 6573 /* 6574 * inherit a event from parent task to child task: 6575 */ 6576 static struct perf_event * 6577 inherit_event(struct perf_event *parent_event, 6578 struct task_struct *parent, 6579 struct perf_event_context *parent_ctx, 6580 struct task_struct *child, 6581 struct perf_event *group_leader, 6582 struct perf_event_context *child_ctx) 6583 { 6584 struct perf_event *child_event; 6585 unsigned long flags; 6586 6587 /* 6588 * Instead of creating recursive hierarchies of events, 6589 * we link inherited events back to the original parent, 6590 * which has a filp for sure, which we use as the reference 6591 * count: 6592 */ 6593 if (parent_event->parent) 6594 parent_event = parent_event->parent; 6595 6596 child_event = perf_event_alloc(&parent_event->attr, 6597 parent_event->cpu, 6598 child, 6599 group_leader, parent_event, 6600 NULL, NULL); 6601 if (IS_ERR(child_event)) 6602 return child_event; 6603 get_ctx(child_ctx); 6604 6605 /* 6606 * Make the child state follow the state of the parent event, 6607 * not its attr.disabled bit. We hold the parent's mutex, 6608 * so we won't race with perf_event_{en, dis}able_family. 6609 */ 6610 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6611 child_event->state = PERF_EVENT_STATE_INACTIVE; 6612 else 6613 child_event->state = PERF_EVENT_STATE_OFF; 6614 6615 if (parent_event->attr.freq) { 6616 u64 sample_period = parent_event->hw.sample_period; 6617 struct hw_perf_event *hwc = &child_event->hw; 6618 6619 hwc->sample_period = sample_period; 6620 hwc->last_period = sample_period; 6621 6622 local64_set(&hwc->period_left, sample_period); 6623 } 6624 6625 child_event->ctx = child_ctx; 6626 child_event->overflow_handler = parent_event->overflow_handler; 6627 child_event->overflow_handler_context 6628 = parent_event->overflow_handler_context; 6629 6630 /* 6631 * Precalculate sample_data sizes 6632 */ 6633 perf_event__header_size(child_event); 6634 perf_event__id_header_size(child_event); 6635 6636 /* 6637 * Link it up in the child's context: 6638 */ 6639 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6640 add_event_to_ctx(child_event, child_ctx); 6641 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6642 6643 /* 6644 * Get a reference to the parent filp - we will fput it 6645 * when the child event exits. This is safe to do because 6646 * we are in the parent and we know that the filp still 6647 * exists and has a nonzero count: 6648 */ 6649 atomic_long_inc(&parent_event->filp->f_count); 6650 6651 /* 6652 * Link this into the parent event's child list 6653 */ 6654 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6655 mutex_lock(&parent_event->child_mutex); 6656 list_add_tail(&child_event->child_list, &parent_event->child_list); 6657 mutex_unlock(&parent_event->child_mutex); 6658 6659 return child_event; 6660 } 6661 6662 static int inherit_group(struct perf_event *parent_event, 6663 struct task_struct *parent, 6664 struct perf_event_context *parent_ctx, 6665 struct task_struct *child, 6666 struct perf_event_context *child_ctx) 6667 { 6668 struct perf_event *leader; 6669 struct perf_event *sub; 6670 struct perf_event *child_ctr; 6671 6672 leader = inherit_event(parent_event, parent, parent_ctx, 6673 child, NULL, child_ctx); 6674 if (IS_ERR(leader)) 6675 return PTR_ERR(leader); 6676 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6677 child_ctr = inherit_event(sub, parent, parent_ctx, 6678 child, leader, child_ctx); 6679 if (IS_ERR(child_ctr)) 6680 return PTR_ERR(child_ctr); 6681 } 6682 return 0; 6683 } 6684 6685 static int 6686 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6687 struct perf_event_context *parent_ctx, 6688 struct task_struct *child, int ctxn, 6689 int *inherited_all) 6690 { 6691 int ret; 6692 struct perf_event_context *child_ctx; 6693 6694 if (!event->attr.inherit) { 6695 *inherited_all = 0; 6696 return 0; 6697 } 6698 6699 child_ctx = child->perf_event_ctxp[ctxn]; 6700 if (!child_ctx) { 6701 /* 6702 * This is executed from the parent task context, so 6703 * inherit events that have been marked for cloning. 6704 * First allocate and initialize a context for the 6705 * child. 6706 */ 6707 6708 child_ctx = alloc_perf_context(event->pmu, child); 6709 if (!child_ctx) 6710 return -ENOMEM; 6711 6712 child->perf_event_ctxp[ctxn] = child_ctx; 6713 } 6714 6715 ret = inherit_group(event, parent, parent_ctx, 6716 child, child_ctx); 6717 6718 if (ret) 6719 *inherited_all = 0; 6720 6721 return ret; 6722 } 6723 6724 /* 6725 * Initialize the perf_event context in task_struct 6726 */ 6727 int perf_event_init_context(struct task_struct *child, int ctxn) 6728 { 6729 struct perf_event_context *child_ctx, *parent_ctx; 6730 struct perf_event_context *cloned_ctx; 6731 struct perf_event *event; 6732 struct task_struct *parent = current; 6733 int inherited_all = 1; 6734 unsigned long flags; 6735 int ret = 0; 6736 6737 if (likely(!parent->perf_event_ctxp[ctxn])) 6738 return 0; 6739 6740 /* 6741 * If the parent's context is a clone, pin it so it won't get 6742 * swapped under us. 6743 */ 6744 parent_ctx = perf_pin_task_context(parent, ctxn); 6745 6746 /* 6747 * No need to check if parent_ctx != NULL here; since we saw 6748 * it non-NULL earlier, the only reason for it to become NULL 6749 * is if we exit, and since we're currently in the middle of 6750 * a fork we can't be exiting at the same time. 6751 */ 6752 6753 /* 6754 * Lock the parent list. No need to lock the child - not PID 6755 * hashed yet and not running, so nobody can access it. 6756 */ 6757 mutex_lock(&parent_ctx->mutex); 6758 6759 /* 6760 * We dont have to disable NMIs - we are only looking at 6761 * the list, not manipulating it: 6762 */ 6763 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6764 ret = inherit_task_group(event, parent, parent_ctx, 6765 child, ctxn, &inherited_all); 6766 if (ret) 6767 break; 6768 } 6769 6770 /* 6771 * We can't hold ctx->lock when iterating the ->flexible_group list due 6772 * to allocations, but we need to prevent rotation because 6773 * rotate_ctx() will change the list from interrupt context. 6774 */ 6775 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6776 parent_ctx->rotate_disable = 1; 6777 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6778 6779 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6780 ret = inherit_task_group(event, parent, parent_ctx, 6781 child, ctxn, &inherited_all); 6782 if (ret) 6783 break; 6784 } 6785 6786 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6787 parent_ctx->rotate_disable = 0; 6788 6789 child_ctx = child->perf_event_ctxp[ctxn]; 6790 6791 if (child_ctx && inherited_all) { 6792 /* 6793 * Mark the child context as a clone of the parent 6794 * context, or of whatever the parent is a clone of. 6795 * 6796 * Note that if the parent is a clone, the holding of 6797 * parent_ctx->lock avoids it from being uncloned. 6798 */ 6799 cloned_ctx = parent_ctx->parent_ctx; 6800 if (cloned_ctx) { 6801 child_ctx->parent_ctx = cloned_ctx; 6802 child_ctx->parent_gen = parent_ctx->parent_gen; 6803 } else { 6804 child_ctx->parent_ctx = parent_ctx; 6805 child_ctx->parent_gen = parent_ctx->generation; 6806 } 6807 get_ctx(child_ctx->parent_ctx); 6808 } 6809 6810 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6811 mutex_unlock(&parent_ctx->mutex); 6812 6813 perf_unpin_context(parent_ctx); 6814 put_ctx(parent_ctx); 6815 6816 return ret; 6817 } 6818 6819 /* 6820 * Initialize the perf_event context in task_struct 6821 */ 6822 int perf_event_init_task(struct task_struct *child) 6823 { 6824 int ctxn, ret; 6825 6826 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6827 mutex_init(&child->perf_event_mutex); 6828 INIT_LIST_HEAD(&child->perf_event_list); 6829 6830 for_each_task_context_nr(ctxn) { 6831 ret = perf_event_init_context(child, ctxn); 6832 if (ret) 6833 return ret; 6834 } 6835 6836 return 0; 6837 } 6838 6839 static void __init perf_event_init_all_cpus(void) 6840 { 6841 struct swevent_htable *swhash; 6842 int cpu; 6843 6844 for_each_possible_cpu(cpu) { 6845 swhash = &per_cpu(swevent_htable, cpu); 6846 mutex_init(&swhash->hlist_mutex); 6847 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6848 } 6849 } 6850 6851 static void __cpuinit perf_event_init_cpu(int cpu) 6852 { 6853 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6854 6855 mutex_lock(&swhash->hlist_mutex); 6856 if (swhash->hlist_refcount > 0) { 6857 struct swevent_hlist *hlist; 6858 6859 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6860 WARN_ON(!hlist); 6861 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6862 } 6863 mutex_unlock(&swhash->hlist_mutex); 6864 } 6865 6866 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 6867 static void perf_pmu_rotate_stop(struct pmu *pmu) 6868 { 6869 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6870 6871 WARN_ON(!irqs_disabled()); 6872 6873 list_del_init(&cpuctx->rotation_list); 6874 } 6875 6876 static void __perf_event_exit_context(void *__info) 6877 { 6878 struct perf_event_context *ctx = __info; 6879 struct perf_event *event, *tmp; 6880 6881 perf_pmu_rotate_stop(ctx->pmu); 6882 6883 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 6884 __perf_remove_from_context(event); 6885 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 6886 __perf_remove_from_context(event); 6887 } 6888 6889 static void perf_event_exit_cpu_context(int cpu) 6890 { 6891 struct perf_event_context *ctx; 6892 struct pmu *pmu; 6893 int idx; 6894 6895 idx = srcu_read_lock(&pmus_srcu); 6896 list_for_each_entry_rcu(pmu, &pmus, entry) { 6897 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 6898 6899 mutex_lock(&ctx->mutex); 6900 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 6901 mutex_unlock(&ctx->mutex); 6902 } 6903 srcu_read_unlock(&pmus_srcu, idx); 6904 } 6905 6906 static void perf_event_exit_cpu(int cpu) 6907 { 6908 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6909 6910 mutex_lock(&swhash->hlist_mutex); 6911 swevent_hlist_release(swhash); 6912 mutex_unlock(&swhash->hlist_mutex); 6913 6914 perf_event_exit_cpu_context(cpu); 6915 } 6916 #else 6917 static inline void perf_event_exit_cpu(int cpu) { } 6918 #endif 6919 6920 static int 6921 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 6922 { 6923 int cpu; 6924 6925 for_each_online_cpu(cpu) 6926 perf_event_exit_cpu(cpu); 6927 6928 return NOTIFY_OK; 6929 } 6930 6931 /* 6932 * Run the perf reboot notifier at the very last possible moment so that 6933 * the generic watchdog code runs as long as possible. 6934 */ 6935 static struct notifier_block perf_reboot_notifier = { 6936 .notifier_call = perf_reboot, 6937 .priority = INT_MIN, 6938 }; 6939 6940 static int __cpuinit 6941 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 6942 { 6943 unsigned int cpu = (long)hcpu; 6944 6945 switch (action & ~CPU_TASKS_FROZEN) { 6946 6947 case CPU_UP_PREPARE: 6948 case CPU_DOWN_FAILED: 6949 perf_event_init_cpu(cpu); 6950 break; 6951 6952 case CPU_UP_CANCELED: 6953 case CPU_DOWN_PREPARE: 6954 perf_event_exit_cpu(cpu); 6955 break; 6956 6957 default: 6958 break; 6959 } 6960 6961 return NOTIFY_OK; 6962 } 6963 6964 void __init perf_event_init(void) 6965 { 6966 int ret; 6967 6968 idr_init(&pmu_idr); 6969 6970 perf_event_init_all_cpus(); 6971 init_srcu_struct(&pmus_srcu); 6972 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 6973 perf_pmu_register(&perf_cpu_clock, NULL, -1); 6974 perf_pmu_register(&perf_task_clock, NULL, -1); 6975 perf_tp_register(); 6976 perf_cpu_notifier(perf_cpu_notify); 6977 register_reboot_notifier(&perf_reboot_notifier); 6978 6979 ret = init_hw_breakpoint(); 6980 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 6981 } 6982 6983 static int __init perf_event_sysfs_init(void) 6984 { 6985 struct pmu *pmu; 6986 int ret; 6987 6988 mutex_lock(&pmus_lock); 6989 6990 ret = bus_register(&pmu_bus); 6991 if (ret) 6992 goto unlock; 6993 6994 list_for_each_entry(pmu, &pmus, entry) { 6995 if (!pmu->name || pmu->type < 0) 6996 continue; 6997 6998 ret = pmu_dev_alloc(pmu); 6999 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7000 } 7001 pmu_bus_running = 1; 7002 ret = 0; 7003 7004 unlock: 7005 mutex_unlock(&pmus_lock); 7006 7007 return ret; 7008 } 7009 device_initcall(perf_event_sysfs_init); 7010 7011 #ifdef CONFIG_CGROUP_PERF 7012 static struct cgroup_subsys_state *perf_cgroup_create( 7013 struct cgroup_subsys *ss, struct cgroup *cont) 7014 { 7015 struct perf_cgroup *jc; 7016 7017 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7018 if (!jc) 7019 return ERR_PTR(-ENOMEM); 7020 7021 jc->info = alloc_percpu(struct perf_cgroup_info); 7022 if (!jc->info) { 7023 kfree(jc); 7024 return ERR_PTR(-ENOMEM); 7025 } 7026 7027 return &jc->css; 7028 } 7029 7030 static void perf_cgroup_destroy(struct cgroup_subsys *ss, 7031 struct cgroup *cont) 7032 { 7033 struct perf_cgroup *jc; 7034 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7035 struct perf_cgroup, css); 7036 free_percpu(jc->info); 7037 kfree(jc); 7038 } 7039 7040 static int __perf_cgroup_move(void *info) 7041 { 7042 struct task_struct *task = info; 7043 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7044 return 0; 7045 } 7046 7047 static void 7048 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task) 7049 { 7050 task_function_call(task, __perf_cgroup_move, task); 7051 } 7052 7053 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp, 7054 struct cgroup *old_cgrp, struct task_struct *task) 7055 { 7056 /* 7057 * cgroup_exit() is called in the copy_process() failure path. 7058 * Ignore this case since the task hasn't ran yet, this avoids 7059 * trying to poke a half freed task state from generic code. 7060 */ 7061 if (!(task->flags & PF_EXITING)) 7062 return; 7063 7064 perf_cgroup_attach_task(cgrp, task); 7065 } 7066 7067 struct cgroup_subsys perf_subsys = { 7068 .name = "perf_event", 7069 .subsys_id = perf_subsys_id, 7070 .create = perf_cgroup_create, 7071 .destroy = perf_cgroup_destroy, 7072 .exit = perf_cgroup_exit, 7073 .attach_task = perf_cgroup_attach_task, 7074 }; 7075 #endif /* CONFIG_CGROUP_PERF */ 7076