1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 tfc->ret = -EAGAIN; 70 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 71 return; 72 } 73 74 tfc->ret = tfc->func(tfc->info); 75 } 76 77 /** 78 * task_function_call - call a function on the cpu on which a task runs 79 * @p: the task to evaluate 80 * @func: the function to be called 81 * @info: the function call argument 82 * 83 * Calls the function @func when the task is currently running. This might 84 * be on the current CPU, which just calls the function directly 85 * 86 * returns: @func return value, or 87 * -ESRCH - when the process isn't running 88 * -EAGAIN - when the process moved away 89 */ 90 static int 91 task_function_call(struct task_struct *p, remote_function_f func, void *info) 92 { 93 struct remote_function_call data = { 94 .p = p, 95 .func = func, 96 .info = info, 97 .ret = -ESRCH, /* No such (running) process */ 98 }; 99 100 if (task_curr(p)) 101 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 102 103 return data.ret; 104 } 105 106 /** 107 * cpu_function_call - call a function on the cpu 108 * @func: the function to be called 109 * @info: the function call argument 110 * 111 * Calls the function @func on the remote cpu. 112 * 113 * returns: @func return value or -ENXIO when the cpu is offline 114 */ 115 static int cpu_function_call(int cpu, remote_function_f func, void *info) 116 { 117 struct remote_function_call data = { 118 .p = NULL, 119 .func = func, 120 .info = info, 121 .ret = -ENXIO, /* No such CPU */ 122 }; 123 124 smp_call_function_single(cpu, remote_function, &data, 1); 125 126 return data.ret; 127 } 128 129 #define EVENT_OWNER_KERNEL ((void *) -1) 130 131 static bool is_kernel_event(struct perf_event *event) 132 { 133 return event->owner == EVENT_OWNER_KERNEL; 134 } 135 136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 137 PERF_FLAG_FD_OUTPUT |\ 138 PERF_FLAG_PID_CGROUP |\ 139 PERF_FLAG_FD_CLOEXEC) 140 141 /* 142 * branch priv levels that need permission checks 143 */ 144 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 145 (PERF_SAMPLE_BRANCH_KERNEL |\ 146 PERF_SAMPLE_BRANCH_HV) 147 148 enum event_type_t { 149 EVENT_FLEXIBLE = 0x1, 150 EVENT_PINNED = 0x2, 151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 152 }; 153 154 /* 155 * perf_sched_events : >0 events exist 156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 157 */ 158 struct static_key_deferred perf_sched_events __read_mostly; 159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 160 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 161 162 static atomic_t nr_mmap_events __read_mostly; 163 static atomic_t nr_comm_events __read_mostly; 164 static atomic_t nr_task_events __read_mostly; 165 static atomic_t nr_freq_events __read_mostly; 166 167 static LIST_HEAD(pmus); 168 static DEFINE_MUTEX(pmus_lock); 169 static struct srcu_struct pmus_srcu; 170 171 /* 172 * perf event paranoia level: 173 * -1 - not paranoid at all 174 * 0 - disallow raw tracepoint access for unpriv 175 * 1 - disallow cpu events for unpriv 176 * 2 - disallow kernel profiling for unpriv 177 */ 178 int sysctl_perf_event_paranoid __read_mostly = 1; 179 180 /* Minimum for 512 kiB + 1 user control page */ 181 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 182 183 /* 184 * max perf event sample rate 185 */ 186 #define DEFAULT_MAX_SAMPLE_RATE 100000 187 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 188 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 189 190 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 191 192 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 193 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 194 195 static int perf_sample_allowed_ns __read_mostly = 196 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 197 198 void update_perf_cpu_limits(void) 199 { 200 u64 tmp = perf_sample_period_ns; 201 202 tmp *= sysctl_perf_cpu_time_max_percent; 203 do_div(tmp, 100); 204 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 205 } 206 207 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 208 209 int perf_proc_update_handler(struct ctl_table *table, int write, 210 void __user *buffer, size_t *lenp, 211 loff_t *ppos) 212 { 213 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 214 215 if (ret || !write) 216 return ret; 217 218 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 219 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 220 update_perf_cpu_limits(); 221 222 return 0; 223 } 224 225 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 226 227 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 228 void __user *buffer, size_t *lenp, 229 loff_t *ppos) 230 { 231 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 232 233 if (ret || !write) 234 return ret; 235 236 update_perf_cpu_limits(); 237 238 return 0; 239 } 240 241 /* 242 * perf samples are done in some very critical code paths (NMIs). 243 * If they take too much CPU time, the system can lock up and not 244 * get any real work done. This will drop the sample rate when 245 * we detect that events are taking too long. 246 */ 247 #define NR_ACCUMULATED_SAMPLES 128 248 static DEFINE_PER_CPU(u64, running_sample_length); 249 250 static void perf_duration_warn(struct irq_work *w) 251 { 252 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 253 u64 avg_local_sample_len; 254 u64 local_samples_len; 255 256 local_samples_len = __this_cpu_read(running_sample_length); 257 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 258 259 printk_ratelimited(KERN_WARNING 260 "perf interrupt took too long (%lld > %lld), lowering " 261 "kernel.perf_event_max_sample_rate to %d\n", 262 avg_local_sample_len, allowed_ns >> 1, 263 sysctl_perf_event_sample_rate); 264 } 265 266 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 267 268 void perf_sample_event_took(u64 sample_len_ns) 269 { 270 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 271 u64 avg_local_sample_len; 272 u64 local_samples_len; 273 274 if (allowed_ns == 0) 275 return; 276 277 /* decay the counter by 1 average sample */ 278 local_samples_len = __this_cpu_read(running_sample_length); 279 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 280 local_samples_len += sample_len_ns; 281 __this_cpu_write(running_sample_length, local_samples_len); 282 283 /* 284 * note: this will be biased artifically low until we have 285 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 286 * from having to maintain a count. 287 */ 288 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 289 290 if (avg_local_sample_len <= allowed_ns) 291 return; 292 293 if (max_samples_per_tick <= 1) 294 return; 295 296 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 297 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 298 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 299 300 update_perf_cpu_limits(); 301 302 if (!irq_work_queue(&perf_duration_work)) { 303 early_printk("perf interrupt took too long (%lld > %lld), lowering " 304 "kernel.perf_event_max_sample_rate to %d\n", 305 avg_local_sample_len, allowed_ns >> 1, 306 sysctl_perf_event_sample_rate); 307 } 308 } 309 310 static atomic64_t perf_event_id; 311 312 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 313 enum event_type_t event_type); 314 315 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 316 enum event_type_t event_type, 317 struct task_struct *task); 318 319 static void update_context_time(struct perf_event_context *ctx); 320 static u64 perf_event_time(struct perf_event *event); 321 322 void __weak perf_event_print_debug(void) { } 323 324 extern __weak const char *perf_pmu_name(void) 325 { 326 return "pmu"; 327 } 328 329 static inline u64 perf_clock(void) 330 { 331 return local_clock(); 332 } 333 334 static inline u64 perf_event_clock(struct perf_event *event) 335 { 336 return event->clock(); 337 } 338 339 static inline struct perf_cpu_context * 340 __get_cpu_context(struct perf_event_context *ctx) 341 { 342 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 343 } 344 345 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 346 struct perf_event_context *ctx) 347 { 348 raw_spin_lock(&cpuctx->ctx.lock); 349 if (ctx) 350 raw_spin_lock(&ctx->lock); 351 } 352 353 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 354 struct perf_event_context *ctx) 355 { 356 if (ctx) 357 raw_spin_unlock(&ctx->lock); 358 raw_spin_unlock(&cpuctx->ctx.lock); 359 } 360 361 #ifdef CONFIG_CGROUP_PERF 362 363 static inline bool 364 perf_cgroup_match(struct perf_event *event) 365 { 366 struct perf_event_context *ctx = event->ctx; 367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 368 369 /* @event doesn't care about cgroup */ 370 if (!event->cgrp) 371 return true; 372 373 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 374 if (!cpuctx->cgrp) 375 return false; 376 377 /* 378 * Cgroup scoping is recursive. An event enabled for a cgroup is 379 * also enabled for all its descendant cgroups. If @cpuctx's 380 * cgroup is a descendant of @event's (the test covers identity 381 * case), it's a match. 382 */ 383 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 384 event->cgrp->css.cgroup); 385 } 386 387 static inline void perf_detach_cgroup(struct perf_event *event) 388 { 389 css_put(&event->cgrp->css); 390 event->cgrp = NULL; 391 } 392 393 static inline int is_cgroup_event(struct perf_event *event) 394 { 395 return event->cgrp != NULL; 396 } 397 398 static inline u64 perf_cgroup_event_time(struct perf_event *event) 399 { 400 struct perf_cgroup_info *t; 401 402 t = per_cpu_ptr(event->cgrp->info, event->cpu); 403 return t->time; 404 } 405 406 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 407 { 408 struct perf_cgroup_info *info; 409 u64 now; 410 411 now = perf_clock(); 412 413 info = this_cpu_ptr(cgrp->info); 414 415 info->time += now - info->timestamp; 416 info->timestamp = now; 417 } 418 419 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 420 { 421 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 422 if (cgrp_out) 423 __update_cgrp_time(cgrp_out); 424 } 425 426 static inline void update_cgrp_time_from_event(struct perf_event *event) 427 { 428 struct perf_cgroup *cgrp; 429 430 /* 431 * ensure we access cgroup data only when needed and 432 * when we know the cgroup is pinned (css_get) 433 */ 434 if (!is_cgroup_event(event)) 435 return; 436 437 cgrp = perf_cgroup_from_task(current); 438 /* 439 * Do not update time when cgroup is not active 440 */ 441 if (cgrp == event->cgrp) 442 __update_cgrp_time(event->cgrp); 443 } 444 445 static inline void 446 perf_cgroup_set_timestamp(struct task_struct *task, 447 struct perf_event_context *ctx) 448 { 449 struct perf_cgroup *cgrp; 450 struct perf_cgroup_info *info; 451 452 /* 453 * ctx->lock held by caller 454 * ensure we do not access cgroup data 455 * unless we have the cgroup pinned (css_get) 456 */ 457 if (!task || !ctx->nr_cgroups) 458 return; 459 460 cgrp = perf_cgroup_from_task(task); 461 info = this_cpu_ptr(cgrp->info); 462 info->timestamp = ctx->timestamp; 463 } 464 465 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 466 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 467 468 /* 469 * reschedule events based on the cgroup constraint of task. 470 * 471 * mode SWOUT : schedule out everything 472 * mode SWIN : schedule in based on cgroup for next 473 */ 474 void perf_cgroup_switch(struct task_struct *task, int mode) 475 { 476 struct perf_cpu_context *cpuctx; 477 struct pmu *pmu; 478 unsigned long flags; 479 480 /* 481 * disable interrupts to avoid geting nr_cgroup 482 * changes via __perf_event_disable(). Also 483 * avoids preemption. 484 */ 485 local_irq_save(flags); 486 487 /* 488 * we reschedule only in the presence of cgroup 489 * constrained events. 490 */ 491 rcu_read_lock(); 492 493 list_for_each_entry_rcu(pmu, &pmus, entry) { 494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 495 if (cpuctx->unique_pmu != pmu) 496 continue; /* ensure we process each cpuctx once */ 497 498 /* 499 * perf_cgroup_events says at least one 500 * context on this CPU has cgroup events. 501 * 502 * ctx->nr_cgroups reports the number of cgroup 503 * events for a context. 504 */ 505 if (cpuctx->ctx.nr_cgroups > 0) { 506 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 507 perf_pmu_disable(cpuctx->ctx.pmu); 508 509 if (mode & PERF_CGROUP_SWOUT) { 510 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 511 /* 512 * must not be done before ctxswout due 513 * to event_filter_match() in event_sched_out() 514 */ 515 cpuctx->cgrp = NULL; 516 } 517 518 if (mode & PERF_CGROUP_SWIN) { 519 WARN_ON_ONCE(cpuctx->cgrp); 520 /* 521 * set cgrp before ctxsw in to allow 522 * event_filter_match() to not have to pass 523 * task around 524 */ 525 cpuctx->cgrp = perf_cgroup_from_task(task); 526 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 527 } 528 perf_pmu_enable(cpuctx->ctx.pmu); 529 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 530 } 531 } 532 533 rcu_read_unlock(); 534 535 local_irq_restore(flags); 536 } 537 538 static inline void perf_cgroup_sched_out(struct task_struct *task, 539 struct task_struct *next) 540 { 541 struct perf_cgroup *cgrp1; 542 struct perf_cgroup *cgrp2 = NULL; 543 544 /* 545 * we come here when we know perf_cgroup_events > 0 546 */ 547 cgrp1 = perf_cgroup_from_task(task); 548 549 /* 550 * next is NULL when called from perf_event_enable_on_exec() 551 * that will systematically cause a cgroup_switch() 552 */ 553 if (next) 554 cgrp2 = perf_cgroup_from_task(next); 555 556 /* 557 * only schedule out current cgroup events if we know 558 * that we are switching to a different cgroup. Otherwise, 559 * do no touch the cgroup events. 560 */ 561 if (cgrp1 != cgrp2) 562 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 563 } 564 565 static inline void perf_cgroup_sched_in(struct task_struct *prev, 566 struct task_struct *task) 567 { 568 struct perf_cgroup *cgrp1; 569 struct perf_cgroup *cgrp2 = NULL; 570 571 /* 572 * we come here when we know perf_cgroup_events > 0 573 */ 574 cgrp1 = perf_cgroup_from_task(task); 575 576 /* prev can never be NULL */ 577 cgrp2 = perf_cgroup_from_task(prev); 578 579 /* 580 * only need to schedule in cgroup events if we are changing 581 * cgroup during ctxsw. Cgroup events were not scheduled 582 * out of ctxsw out if that was not the case. 583 */ 584 if (cgrp1 != cgrp2) 585 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 586 } 587 588 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 589 struct perf_event_attr *attr, 590 struct perf_event *group_leader) 591 { 592 struct perf_cgroup *cgrp; 593 struct cgroup_subsys_state *css; 594 struct fd f = fdget(fd); 595 int ret = 0; 596 597 if (!f.file) 598 return -EBADF; 599 600 css = css_tryget_online_from_dir(f.file->f_path.dentry, 601 &perf_event_cgrp_subsys); 602 if (IS_ERR(css)) { 603 ret = PTR_ERR(css); 604 goto out; 605 } 606 607 cgrp = container_of(css, struct perf_cgroup, css); 608 event->cgrp = cgrp; 609 610 /* 611 * all events in a group must monitor 612 * the same cgroup because a task belongs 613 * to only one perf cgroup at a time 614 */ 615 if (group_leader && group_leader->cgrp != cgrp) { 616 perf_detach_cgroup(event); 617 ret = -EINVAL; 618 } 619 out: 620 fdput(f); 621 return ret; 622 } 623 624 static inline void 625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 626 { 627 struct perf_cgroup_info *t; 628 t = per_cpu_ptr(event->cgrp->info, event->cpu); 629 event->shadow_ctx_time = now - t->timestamp; 630 } 631 632 static inline void 633 perf_cgroup_defer_enabled(struct perf_event *event) 634 { 635 /* 636 * when the current task's perf cgroup does not match 637 * the event's, we need to remember to call the 638 * perf_mark_enable() function the first time a task with 639 * a matching perf cgroup is scheduled in. 640 */ 641 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 642 event->cgrp_defer_enabled = 1; 643 } 644 645 static inline void 646 perf_cgroup_mark_enabled(struct perf_event *event, 647 struct perf_event_context *ctx) 648 { 649 struct perf_event *sub; 650 u64 tstamp = perf_event_time(event); 651 652 if (!event->cgrp_defer_enabled) 653 return; 654 655 event->cgrp_defer_enabled = 0; 656 657 event->tstamp_enabled = tstamp - event->total_time_enabled; 658 list_for_each_entry(sub, &event->sibling_list, group_entry) { 659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 660 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 661 sub->cgrp_defer_enabled = 0; 662 } 663 } 664 } 665 #else /* !CONFIG_CGROUP_PERF */ 666 667 static inline bool 668 perf_cgroup_match(struct perf_event *event) 669 { 670 return true; 671 } 672 673 static inline void perf_detach_cgroup(struct perf_event *event) 674 {} 675 676 static inline int is_cgroup_event(struct perf_event *event) 677 { 678 return 0; 679 } 680 681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 682 { 683 return 0; 684 } 685 686 static inline void update_cgrp_time_from_event(struct perf_event *event) 687 { 688 } 689 690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 691 { 692 } 693 694 static inline void perf_cgroup_sched_out(struct task_struct *task, 695 struct task_struct *next) 696 { 697 } 698 699 static inline void perf_cgroup_sched_in(struct task_struct *prev, 700 struct task_struct *task) 701 { 702 } 703 704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 705 struct perf_event_attr *attr, 706 struct perf_event *group_leader) 707 { 708 return -EINVAL; 709 } 710 711 static inline void 712 perf_cgroup_set_timestamp(struct task_struct *task, 713 struct perf_event_context *ctx) 714 { 715 } 716 717 void 718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 719 { 720 } 721 722 static inline void 723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 724 { 725 } 726 727 static inline u64 perf_cgroup_event_time(struct perf_event *event) 728 { 729 return 0; 730 } 731 732 static inline void 733 perf_cgroup_defer_enabled(struct perf_event *event) 734 { 735 } 736 737 static inline void 738 perf_cgroup_mark_enabled(struct perf_event *event, 739 struct perf_event_context *ctx) 740 { 741 } 742 #endif 743 744 /* 745 * set default to be dependent on timer tick just 746 * like original code 747 */ 748 #define PERF_CPU_HRTIMER (1000 / HZ) 749 /* 750 * function must be called with interrupts disbled 751 */ 752 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 753 { 754 struct perf_cpu_context *cpuctx; 755 int rotations = 0; 756 757 WARN_ON(!irqs_disabled()); 758 759 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 760 rotations = perf_rotate_context(cpuctx); 761 762 raw_spin_lock(&cpuctx->hrtimer_lock); 763 if (rotations) 764 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 765 else 766 cpuctx->hrtimer_active = 0; 767 raw_spin_unlock(&cpuctx->hrtimer_lock); 768 769 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 770 } 771 772 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 773 { 774 struct hrtimer *timer = &cpuctx->hrtimer; 775 struct pmu *pmu = cpuctx->ctx.pmu; 776 u64 interval; 777 778 /* no multiplexing needed for SW PMU */ 779 if (pmu->task_ctx_nr == perf_sw_context) 780 return; 781 782 /* 783 * check default is sane, if not set then force to 784 * default interval (1/tick) 785 */ 786 interval = pmu->hrtimer_interval_ms; 787 if (interval < 1) 788 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 789 790 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 791 792 raw_spin_lock_init(&cpuctx->hrtimer_lock); 793 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 794 timer->function = perf_mux_hrtimer_handler; 795 } 796 797 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 798 { 799 struct hrtimer *timer = &cpuctx->hrtimer; 800 struct pmu *pmu = cpuctx->ctx.pmu; 801 unsigned long flags; 802 803 /* not for SW PMU */ 804 if (pmu->task_ctx_nr == perf_sw_context) 805 return 0; 806 807 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 808 if (!cpuctx->hrtimer_active) { 809 cpuctx->hrtimer_active = 1; 810 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 811 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 812 } 813 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 814 815 return 0; 816 } 817 818 void perf_pmu_disable(struct pmu *pmu) 819 { 820 int *count = this_cpu_ptr(pmu->pmu_disable_count); 821 if (!(*count)++) 822 pmu->pmu_disable(pmu); 823 } 824 825 void perf_pmu_enable(struct pmu *pmu) 826 { 827 int *count = this_cpu_ptr(pmu->pmu_disable_count); 828 if (!--(*count)) 829 pmu->pmu_enable(pmu); 830 } 831 832 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 833 834 /* 835 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 836 * perf_event_task_tick() are fully serialized because they're strictly cpu 837 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 838 * disabled, while perf_event_task_tick is called from IRQ context. 839 */ 840 static void perf_event_ctx_activate(struct perf_event_context *ctx) 841 { 842 struct list_head *head = this_cpu_ptr(&active_ctx_list); 843 844 WARN_ON(!irqs_disabled()); 845 846 WARN_ON(!list_empty(&ctx->active_ctx_list)); 847 848 list_add(&ctx->active_ctx_list, head); 849 } 850 851 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 852 { 853 WARN_ON(!irqs_disabled()); 854 855 WARN_ON(list_empty(&ctx->active_ctx_list)); 856 857 list_del_init(&ctx->active_ctx_list); 858 } 859 860 static void get_ctx(struct perf_event_context *ctx) 861 { 862 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 863 } 864 865 static void free_ctx(struct rcu_head *head) 866 { 867 struct perf_event_context *ctx; 868 869 ctx = container_of(head, struct perf_event_context, rcu_head); 870 kfree(ctx->task_ctx_data); 871 kfree(ctx); 872 } 873 874 static void put_ctx(struct perf_event_context *ctx) 875 { 876 if (atomic_dec_and_test(&ctx->refcount)) { 877 if (ctx->parent_ctx) 878 put_ctx(ctx->parent_ctx); 879 if (ctx->task) 880 put_task_struct(ctx->task); 881 call_rcu(&ctx->rcu_head, free_ctx); 882 } 883 } 884 885 /* 886 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 887 * perf_pmu_migrate_context() we need some magic. 888 * 889 * Those places that change perf_event::ctx will hold both 890 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 891 * 892 * Lock ordering is by mutex address. There are two other sites where 893 * perf_event_context::mutex nests and those are: 894 * 895 * - perf_event_exit_task_context() [ child , 0 ] 896 * __perf_event_exit_task() 897 * sync_child_event() 898 * put_event() [ parent, 1 ] 899 * 900 * - perf_event_init_context() [ parent, 0 ] 901 * inherit_task_group() 902 * inherit_group() 903 * inherit_event() 904 * perf_event_alloc() 905 * perf_init_event() 906 * perf_try_init_event() [ child , 1 ] 907 * 908 * While it appears there is an obvious deadlock here -- the parent and child 909 * nesting levels are inverted between the two. This is in fact safe because 910 * life-time rules separate them. That is an exiting task cannot fork, and a 911 * spawning task cannot (yet) exit. 912 * 913 * But remember that that these are parent<->child context relations, and 914 * migration does not affect children, therefore these two orderings should not 915 * interact. 916 * 917 * The change in perf_event::ctx does not affect children (as claimed above) 918 * because the sys_perf_event_open() case will install a new event and break 919 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 920 * concerned with cpuctx and that doesn't have children. 921 * 922 * The places that change perf_event::ctx will issue: 923 * 924 * perf_remove_from_context(); 925 * synchronize_rcu(); 926 * perf_install_in_context(); 927 * 928 * to affect the change. The remove_from_context() + synchronize_rcu() should 929 * quiesce the event, after which we can install it in the new location. This 930 * means that only external vectors (perf_fops, prctl) can perturb the event 931 * while in transit. Therefore all such accessors should also acquire 932 * perf_event_context::mutex to serialize against this. 933 * 934 * However; because event->ctx can change while we're waiting to acquire 935 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 936 * function. 937 * 938 * Lock order: 939 * task_struct::perf_event_mutex 940 * perf_event_context::mutex 941 * perf_event_context::lock 942 * perf_event::child_mutex; 943 * perf_event::mmap_mutex 944 * mmap_sem 945 */ 946 static struct perf_event_context * 947 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 948 { 949 struct perf_event_context *ctx; 950 951 again: 952 rcu_read_lock(); 953 ctx = ACCESS_ONCE(event->ctx); 954 if (!atomic_inc_not_zero(&ctx->refcount)) { 955 rcu_read_unlock(); 956 goto again; 957 } 958 rcu_read_unlock(); 959 960 mutex_lock_nested(&ctx->mutex, nesting); 961 if (event->ctx != ctx) { 962 mutex_unlock(&ctx->mutex); 963 put_ctx(ctx); 964 goto again; 965 } 966 967 return ctx; 968 } 969 970 static inline struct perf_event_context * 971 perf_event_ctx_lock(struct perf_event *event) 972 { 973 return perf_event_ctx_lock_nested(event, 0); 974 } 975 976 static void perf_event_ctx_unlock(struct perf_event *event, 977 struct perf_event_context *ctx) 978 { 979 mutex_unlock(&ctx->mutex); 980 put_ctx(ctx); 981 } 982 983 /* 984 * This must be done under the ctx->lock, such as to serialize against 985 * context_equiv(), therefore we cannot call put_ctx() since that might end up 986 * calling scheduler related locks and ctx->lock nests inside those. 987 */ 988 static __must_check struct perf_event_context * 989 unclone_ctx(struct perf_event_context *ctx) 990 { 991 struct perf_event_context *parent_ctx = ctx->parent_ctx; 992 993 lockdep_assert_held(&ctx->lock); 994 995 if (parent_ctx) 996 ctx->parent_ctx = NULL; 997 ctx->generation++; 998 999 return parent_ctx; 1000 } 1001 1002 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1003 { 1004 /* 1005 * only top level events have the pid namespace they were created in 1006 */ 1007 if (event->parent) 1008 event = event->parent; 1009 1010 return task_tgid_nr_ns(p, event->ns); 1011 } 1012 1013 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1014 { 1015 /* 1016 * only top level events have the pid namespace they were created in 1017 */ 1018 if (event->parent) 1019 event = event->parent; 1020 1021 return task_pid_nr_ns(p, event->ns); 1022 } 1023 1024 /* 1025 * If we inherit events we want to return the parent event id 1026 * to userspace. 1027 */ 1028 static u64 primary_event_id(struct perf_event *event) 1029 { 1030 u64 id = event->id; 1031 1032 if (event->parent) 1033 id = event->parent->id; 1034 1035 return id; 1036 } 1037 1038 /* 1039 * Get the perf_event_context for a task and lock it. 1040 * This has to cope with with the fact that until it is locked, 1041 * the context could get moved to another task. 1042 */ 1043 static struct perf_event_context * 1044 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1045 { 1046 struct perf_event_context *ctx; 1047 1048 retry: 1049 /* 1050 * One of the few rules of preemptible RCU is that one cannot do 1051 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1052 * part of the read side critical section was preemptible -- see 1053 * rcu_read_unlock_special(). 1054 * 1055 * Since ctx->lock nests under rq->lock we must ensure the entire read 1056 * side critical section is non-preemptible. 1057 */ 1058 preempt_disable(); 1059 rcu_read_lock(); 1060 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1061 if (ctx) { 1062 /* 1063 * If this context is a clone of another, it might 1064 * get swapped for another underneath us by 1065 * perf_event_task_sched_out, though the 1066 * rcu_read_lock() protects us from any context 1067 * getting freed. Lock the context and check if it 1068 * got swapped before we could get the lock, and retry 1069 * if so. If we locked the right context, then it 1070 * can't get swapped on us any more. 1071 */ 1072 raw_spin_lock_irqsave(&ctx->lock, *flags); 1073 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1074 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1075 rcu_read_unlock(); 1076 preempt_enable(); 1077 goto retry; 1078 } 1079 1080 if (!atomic_inc_not_zero(&ctx->refcount)) { 1081 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1082 ctx = NULL; 1083 } 1084 } 1085 rcu_read_unlock(); 1086 preempt_enable(); 1087 return ctx; 1088 } 1089 1090 /* 1091 * Get the context for a task and increment its pin_count so it 1092 * can't get swapped to another task. This also increments its 1093 * reference count so that the context can't get freed. 1094 */ 1095 static struct perf_event_context * 1096 perf_pin_task_context(struct task_struct *task, int ctxn) 1097 { 1098 struct perf_event_context *ctx; 1099 unsigned long flags; 1100 1101 ctx = perf_lock_task_context(task, ctxn, &flags); 1102 if (ctx) { 1103 ++ctx->pin_count; 1104 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1105 } 1106 return ctx; 1107 } 1108 1109 static void perf_unpin_context(struct perf_event_context *ctx) 1110 { 1111 unsigned long flags; 1112 1113 raw_spin_lock_irqsave(&ctx->lock, flags); 1114 --ctx->pin_count; 1115 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1116 } 1117 1118 /* 1119 * Update the record of the current time in a context. 1120 */ 1121 static void update_context_time(struct perf_event_context *ctx) 1122 { 1123 u64 now = perf_clock(); 1124 1125 ctx->time += now - ctx->timestamp; 1126 ctx->timestamp = now; 1127 } 1128 1129 static u64 perf_event_time(struct perf_event *event) 1130 { 1131 struct perf_event_context *ctx = event->ctx; 1132 1133 if (is_cgroup_event(event)) 1134 return perf_cgroup_event_time(event); 1135 1136 return ctx ? ctx->time : 0; 1137 } 1138 1139 /* 1140 * Update the total_time_enabled and total_time_running fields for a event. 1141 * The caller of this function needs to hold the ctx->lock. 1142 */ 1143 static void update_event_times(struct perf_event *event) 1144 { 1145 struct perf_event_context *ctx = event->ctx; 1146 u64 run_end; 1147 1148 if (event->state < PERF_EVENT_STATE_INACTIVE || 1149 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1150 return; 1151 /* 1152 * in cgroup mode, time_enabled represents 1153 * the time the event was enabled AND active 1154 * tasks were in the monitored cgroup. This is 1155 * independent of the activity of the context as 1156 * there may be a mix of cgroup and non-cgroup events. 1157 * 1158 * That is why we treat cgroup events differently 1159 * here. 1160 */ 1161 if (is_cgroup_event(event)) 1162 run_end = perf_cgroup_event_time(event); 1163 else if (ctx->is_active) 1164 run_end = ctx->time; 1165 else 1166 run_end = event->tstamp_stopped; 1167 1168 event->total_time_enabled = run_end - event->tstamp_enabled; 1169 1170 if (event->state == PERF_EVENT_STATE_INACTIVE) 1171 run_end = event->tstamp_stopped; 1172 else 1173 run_end = perf_event_time(event); 1174 1175 event->total_time_running = run_end - event->tstamp_running; 1176 1177 } 1178 1179 /* 1180 * Update total_time_enabled and total_time_running for all events in a group. 1181 */ 1182 static void update_group_times(struct perf_event *leader) 1183 { 1184 struct perf_event *event; 1185 1186 update_event_times(leader); 1187 list_for_each_entry(event, &leader->sibling_list, group_entry) 1188 update_event_times(event); 1189 } 1190 1191 static struct list_head * 1192 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1193 { 1194 if (event->attr.pinned) 1195 return &ctx->pinned_groups; 1196 else 1197 return &ctx->flexible_groups; 1198 } 1199 1200 /* 1201 * Add a event from the lists for its context. 1202 * Must be called with ctx->mutex and ctx->lock held. 1203 */ 1204 static void 1205 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1206 { 1207 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1208 event->attach_state |= PERF_ATTACH_CONTEXT; 1209 1210 /* 1211 * If we're a stand alone event or group leader, we go to the context 1212 * list, group events are kept attached to the group so that 1213 * perf_group_detach can, at all times, locate all siblings. 1214 */ 1215 if (event->group_leader == event) { 1216 struct list_head *list; 1217 1218 if (is_software_event(event)) 1219 event->group_flags |= PERF_GROUP_SOFTWARE; 1220 1221 list = ctx_group_list(event, ctx); 1222 list_add_tail(&event->group_entry, list); 1223 } 1224 1225 if (is_cgroup_event(event)) 1226 ctx->nr_cgroups++; 1227 1228 list_add_rcu(&event->event_entry, &ctx->event_list); 1229 ctx->nr_events++; 1230 if (event->attr.inherit_stat) 1231 ctx->nr_stat++; 1232 1233 ctx->generation++; 1234 } 1235 1236 /* 1237 * Initialize event state based on the perf_event_attr::disabled. 1238 */ 1239 static inline void perf_event__state_init(struct perf_event *event) 1240 { 1241 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1242 PERF_EVENT_STATE_INACTIVE; 1243 } 1244 1245 /* 1246 * Called at perf_event creation and when events are attached/detached from a 1247 * group. 1248 */ 1249 static void perf_event__read_size(struct perf_event *event) 1250 { 1251 int entry = sizeof(u64); /* value */ 1252 int size = 0; 1253 int nr = 1; 1254 1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1256 size += sizeof(u64); 1257 1258 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1259 size += sizeof(u64); 1260 1261 if (event->attr.read_format & PERF_FORMAT_ID) 1262 entry += sizeof(u64); 1263 1264 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1265 nr += event->group_leader->nr_siblings; 1266 size += sizeof(u64); 1267 } 1268 1269 size += entry * nr; 1270 event->read_size = size; 1271 } 1272 1273 static void perf_event__header_size(struct perf_event *event) 1274 { 1275 struct perf_sample_data *data; 1276 u64 sample_type = event->attr.sample_type; 1277 u16 size = 0; 1278 1279 perf_event__read_size(event); 1280 1281 if (sample_type & PERF_SAMPLE_IP) 1282 size += sizeof(data->ip); 1283 1284 if (sample_type & PERF_SAMPLE_ADDR) 1285 size += sizeof(data->addr); 1286 1287 if (sample_type & PERF_SAMPLE_PERIOD) 1288 size += sizeof(data->period); 1289 1290 if (sample_type & PERF_SAMPLE_WEIGHT) 1291 size += sizeof(data->weight); 1292 1293 if (sample_type & PERF_SAMPLE_READ) 1294 size += event->read_size; 1295 1296 if (sample_type & PERF_SAMPLE_DATA_SRC) 1297 size += sizeof(data->data_src.val); 1298 1299 if (sample_type & PERF_SAMPLE_TRANSACTION) 1300 size += sizeof(data->txn); 1301 1302 event->header_size = size; 1303 } 1304 1305 static void perf_event__id_header_size(struct perf_event *event) 1306 { 1307 struct perf_sample_data *data; 1308 u64 sample_type = event->attr.sample_type; 1309 u16 size = 0; 1310 1311 if (sample_type & PERF_SAMPLE_TID) 1312 size += sizeof(data->tid_entry); 1313 1314 if (sample_type & PERF_SAMPLE_TIME) 1315 size += sizeof(data->time); 1316 1317 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1318 size += sizeof(data->id); 1319 1320 if (sample_type & PERF_SAMPLE_ID) 1321 size += sizeof(data->id); 1322 1323 if (sample_type & PERF_SAMPLE_STREAM_ID) 1324 size += sizeof(data->stream_id); 1325 1326 if (sample_type & PERF_SAMPLE_CPU) 1327 size += sizeof(data->cpu_entry); 1328 1329 event->id_header_size = size; 1330 } 1331 1332 static void perf_group_attach(struct perf_event *event) 1333 { 1334 struct perf_event *group_leader = event->group_leader, *pos; 1335 1336 /* 1337 * We can have double attach due to group movement in perf_event_open. 1338 */ 1339 if (event->attach_state & PERF_ATTACH_GROUP) 1340 return; 1341 1342 event->attach_state |= PERF_ATTACH_GROUP; 1343 1344 if (group_leader == event) 1345 return; 1346 1347 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1348 1349 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1350 !is_software_event(event)) 1351 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1352 1353 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1354 group_leader->nr_siblings++; 1355 1356 perf_event__header_size(group_leader); 1357 1358 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1359 perf_event__header_size(pos); 1360 } 1361 1362 /* 1363 * Remove a event from the lists for its context. 1364 * Must be called with ctx->mutex and ctx->lock held. 1365 */ 1366 static void 1367 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1368 { 1369 struct perf_cpu_context *cpuctx; 1370 1371 WARN_ON_ONCE(event->ctx != ctx); 1372 lockdep_assert_held(&ctx->lock); 1373 1374 /* 1375 * We can have double detach due to exit/hot-unplug + close. 1376 */ 1377 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1378 return; 1379 1380 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1381 1382 if (is_cgroup_event(event)) { 1383 ctx->nr_cgroups--; 1384 cpuctx = __get_cpu_context(ctx); 1385 /* 1386 * if there are no more cgroup events 1387 * then cler cgrp to avoid stale pointer 1388 * in update_cgrp_time_from_cpuctx() 1389 */ 1390 if (!ctx->nr_cgroups) 1391 cpuctx->cgrp = NULL; 1392 } 1393 1394 ctx->nr_events--; 1395 if (event->attr.inherit_stat) 1396 ctx->nr_stat--; 1397 1398 list_del_rcu(&event->event_entry); 1399 1400 if (event->group_leader == event) 1401 list_del_init(&event->group_entry); 1402 1403 update_group_times(event); 1404 1405 /* 1406 * If event was in error state, then keep it 1407 * that way, otherwise bogus counts will be 1408 * returned on read(). The only way to get out 1409 * of error state is by explicit re-enabling 1410 * of the event 1411 */ 1412 if (event->state > PERF_EVENT_STATE_OFF) 1413 event->state = PERF_EVENT_STATE_OFF; 1414 1415 ctx->generation++; 1416 } 1417 1418 static void perf_group_detach(struct perf_event *event) 1419 { 1420 struct perf_event *sibling, *tmp; 1421 struct list_head *list = NULL; 1422 1423 /* 1424 * We can have double detach due to exit/hot-unplug + close. 1425 */ 1426 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1427 return; 1428 1429 event->attach_state &= ~PERF_ATTACH_GROUP; 1430 1431 /* 1432 * If this is a sibling, remove it from its group. 1433 */ 1434 if (event->group_leader != event) { 1435 list_del_init(&event->group_entry); 1436 event->group_leader->nr_siblings--; 1437 goto out; 1438 } 1439 1440 if (!list_empty(&event->group_entry)) 1441 list = &event->group_entry; 1442 1443 /* 1444 * If this was a group event with sibling events then 1445 * upgrade the siblings to singleton events by adding them 1446 * to whatever list we are on. 1447 */ 1448 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1449 if (list) 1450 list_move_tail(&sibling->group_entry, list); 1451 sibling->group_leader = sibling; 1452 1453 /* Inherit group flags from the previous leader */ 1454 sibling->group_flags = event->group_flags; 1455 1456 WARN_ON_ONCE(sibling->ctx != event->ctx); 1457 } 1458 1459 out: 1460 perf_event__header_size(event->group_leader); 1461 1462 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1463 perf_event__header_size(tmp); 1464 } 1465 1466 /* 1467 * User event without the task. 1468 */ 1469 static bool is_orphaned_event(struct perf_event *event) 1470 { 1471 return event && !is_kernel_event(event) && !event->owner; 1472 } 1473 1474 /* 1475 * Event has a parent but parent's task finished and it's 1476 * alive only because of children holding refference. 1477 */ 1478 static bool is_orphaned_child(struct perf_event *event) 1479 { 1480 return is_orphaned_event(event->parent); 1481 } 1482 1483 static void orphans_remove_work(struct work_struct *work); 1484 1485 static void schedule_orphans_remove(struct perf_event_context *ctx) 1486 { 1487 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1488 return; 1489 1490 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1491 get_ctx(ctx); 1492 ctx->orphans_remove_sched = true; 1493 } 1494 } 1495 1496 static int __init perf_workqueue_init(void) 1497 { 1498 perf_wq = create_singlethread_workqueue("perf"); 1499 WARN(!perf_wq, "failed to create perf workqueue\n"); 1500 return perf_wq ? 0 : -1; 1501 } 1502 1503 core_initcall(perf_workqueue_init); 1504 1505 static inline int pmu_filter_match(struct perf_event *event) 1506 { 1507 struct pmu *pmu = event->pmu; 1508 return pmu->filter_match ? pmu->filter_match(event) : 1; 1509 } 1510 1511 static inline int 1512 event_filter_match(struct perf_event *event) 1513 { 1514 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1515 && perf_cgroup_match(event) && pmu_filter_match(event); 1516 } 1517 1518 static void 1519 event_sched_out(struct perf_event *event, 1520 struct perf_cpu_context *cpuctx, 1521 struct perf_event_context *ctx) 1522 { 1523 u64 tstamp = perf_event_time(event); 1524 u64 delta; 1525 1526 WARN_ON_ONCE(event->ctx != ctx); 1527 lockdep_assert_held(&ctx->lock); 1528 1529 /* 1530 * An event which could not be activated because of 1531 * filter mismatch still needs to have its timings 1532 * maintained, otherwise bogus information is return 1533 * via read() for time_enabled, time_running: 1534 */ 1535 if (event->state == PERF_EVENT_STATE_INACTIVE 1536 && !event_filter_match(event)) { 1537 delta = tstamp - event->tstamp_stopped; 1538 event->tstamp_running += delta; 1539 event->tstamp_stopped = tstamp; 1540 } 1541 1542 if (event->state != PERF_EVENT_STATE_ACTIVE) 1543 return; 1544 1545 perf_pmu_disable(event->pmu); 1546 1547 event->state = PERF_EVENT_STATE_INACTIVE; 1548 if (event->pending_disable) { 1549 event->pending_disable = 0; 1550 event->state = PERF_EVENT_STATE_OFF; 1551 } 1552 event->tstamp_stopped = tstamp; 1553 event->pmu->del(event, 0); 1554 event->oncpu = -1; 1555 1556 if (!is_software_event(event)) 1557 cpuctx->active_oncpu--; 1558 if (!--ctx->nr_active) 1559 perf_event_ctx_deactivate(ctx); 1560 if (event->attr.freq && event->attr.sample_freq) 1561 ctx->nr_freq--; 1562 if (event->attr.exclusive || !cpuctx->active_oncpu) 1563 cpuctx->exclusive = 0; 1564 1565 if (is_orphaned_child(event)) 1566 schedule_orphans_remove(ctx); 1567 1568 perf_pmu_enable(event->pmu); 1569 } 1570 1571 static void 1572 group_sched_out(struct perf_event *group_event, 1573 struct perf_cpu_context *cpuctx, 1574 struct perf_event_context *ctx) 1575 { 1576 struct perf_event *event; 1577 int state = group_event->state; 1578 1579 event_sched_out(group_event, cpuctx, ctx); 1580 1581 /* 1582 * Schedule out siblings (if any): 1583 */ 1584 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1585 event_sched_out(event, cpuctx, ctx); 1586 1587 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1588 cpuctx->exclusive = 0; 1589 } 1590 1591 struct remove_event { 1592 struct perf_event *event; 1593 bool detach_group; 1594 }; 1595 1596 /* 1597 * Cross CPU call to remove a performance event 1598 * 1599 * We disable the event on the hardware level first. After that we 1600 * remove it from the context list. 1601 */ 1602 static int __perf_remove_from_context(void *info) 1603 { 1604 struct remove_event *re = info; 1605 struct perf_event *event = re->event; 1606 struct perf_event_context *ctx = event->ctx; 1607 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1608 1609 raw_spin_lock(&ctx->lock); 1610 event_sched_out(event, cpuctx, ctx); 1611 if (re->detach_group) 1612 perf_group_detach(event); 1613 list_del_event(event, ctx); 1614 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1615 ctx->is_active = 0; 1616 cpuctx->task_ctx = NULL; 1617 } 1618 raw_spin_unlock(&ctx->lock); 1619 1620 return 0; 1621 } 1622 1623 1624 /* 1625 * Remove the event from a task's (or a CPU's) list of events. 1626 * 1627 * CPU events are removed with a smp call. For task events we only 1628 * call when the task is on a CPU. 1629 * 1630 * If event->ctx is a cloned context, callers must make sure that 1631 * every task struct that event->ctx->task could possibly point to 1632 * remains valid. This is OK when called from perf_release since 1633 * that only calls us on the top-level context, which can't be a clone. 1634 * When called from perf_event_exit_task, it's OK because the 1635 * context has been detached from its task. 1636 */ 1637 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1638 { 1639 struct perf_event_context *ctx = event->ctx; 1640 struct task_struct *task = ctx->task; 1641 struct remove_event re = { 1642 .event = event, 1643 .detach_group = detach_group, 1644 }; 1645 1646 lockdep_assert_held(&ctx->mutex); 1647 1648 if (!task) { 1649 /* 1650 * Per cpu events are removed via an smp call. The removal can 1651 * fail if the CPU is currently offline, but in that case we 1652 * already called __perf_remove_from_context from 1653 * perf_event_exit_cpu. 1654 */ 1655 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1656 return; 1657 } 1658 1659 retry: 1660 if (!task_function_call(task, __perf_remove_from_context, &re)) 1661 return; 1662 1663 raw_spin_lock_irq(&ctx->lock); 1664 /* 1665 * If we failed to find a running task, but find the context active now 1666 * that we've acquired the ctx->lock, retry. 1667 */ 1668 if (ctx->is_active) { 1669 raw_spin_unlock_irq(&ctx->lock); 1670 /* 1671 * Reload the task pointer, it might have been changed by 1672 * a concurrent perf_event_context_sched_out(). 1673 */ 1674 task = ctx->task; 1675 goto retry; 1676 } 1677 1678 /* 1679 * Since the task isn't running, its safe to remove the event, us 1680 * holding the ctx->lock ensures the task won't get scheduled in. 1681 */ 1682 if (detach_group) 1683 perf_group_detach(event); 1684 list_del_event(event, ctx); 1685 raw_spin_unlock_irq(&ctx->lock); 1686 } 1687 1688 /* 1689 * Cross CPU call to disable a performance event 1690 */ 1691 int __perf_event_disable(void *info) 1692 { 1693 struct perf_event *event = info; 1694 struct perf_event_context *ctx = event->ctx; 1695 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1696 1697 /* 1698 * If this is a per-task event, need to check whether this 1699 * event's task is the current task on this cpu. 1700 * 1701 * Can trigger due to concurrent perf_event_context_sched_out() 1702 * flipping contexts around. 1703 */ 1704 if (ctx->task && cpuctx->task_ctx != ctx) 1705 return -EINVAL; 1706 1707 raw_spin_lock(&ctx->lock); 1708 1709 /* 1710 * If the event is on, turn it off. 1711 * If it is in error state, leave it in error state. 1712 */ 1713 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1714 update_context_time(ctx); 1715 update_cgrp_time_from_event(event); 1716 update_group_times(event); 1717 if (event == event->group_leader) 1718 group_sched_out(event, cpuctx, ctx); 1719 else 1720 event_sched_out(event, cpuctx, ctx); 1721 event->state = PERF_EVENT_STATE_OFF; 1722 } 1723 1724 raw_spin_unlock(&ctx->lock); 1725 1726 return 0; 1727 } 1728 1729 /* 1730 * Disable a event. 1731 * 1732 * If event->ctx is a cloned context, callers must make sure that 1733 * every task struct that event->ctx->task could possibly point to 1734 * remains valid. This condition is satisifed when called through 1735 * perf_event_for_each_child or perf_event_for_each because they 1736 * hold the top-level event's child_mutex, so any descendant that 1737 * goes to exit will block in sync_child_event. 1738 * When called from perf_pending_event it's OK because event->ctx 1739 * is the current context on this CPU and preemption is disabled, 1740 * hence we can't get into perf_event_task_sched_out for this context. 1741 */ 1742 static void _perf_event_disable(struct perf_event *event) 1743 { 1744 struct perf_event_context *ctx = event->ctx; 1745 struct task_struct *task = ctx->task; 1746 1747 if (!task) { 1748 /* 1749 * Disable the event on the cpu that it's on 1750 */ 1751 cpu_function_call(event->cpu, __perf_event_disable, event); 1752 return; 1753 } 1754 1755 retry: 1756 if (!task_function_call(task, __perf_event_disable, event)) 1757 return; 1758 1759 raw_spin_lock_irq(&ctx->lock); 1760 /* 1761 * If the event is still active, we need to retry the cross-call. 1762 */ 1763 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1764 raw_spin_unlock_irq(&ctx->lock); 1765 /* 1766 * Reload the task pointer, it might have been changed by 1767 * a concurrent perf_event_context_sched_out(). 1768 */ 1769 task = ctx->task; 1770 goto retry; 1771 } 1772 1773 /* 1774 * Since we have the lock this context can't be scheduled 1775 * in, so we can change the state safely. 1776 */ 1777 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1778 update_group_times(event); 1779 event->state = PERF_EVENT_STATE_OFF; 1780 } 1781 raw_spin_unlock_irq(&ctx->lock); 1782 } 1783 1784 /* 1785 * Strictly speaking kernel users cannot create groups and therefore this 1786 * interface does not need the perf_event_ctx_lock() magic. 1787 */ 1788 void perf_event_disable(struct perf_event *event) 1789 { 1790 struct perf_event_context *ctx; 1791 1792 ctx = perf_event_ctx_lock(event); 1793 _perf_event_disable(event); 1794 perf_event_ctx_unlock(event, ctx); 1795 } 1796 EXPORT_SYMBOL_GPL(perf_event_disable); 1797 1798 static void perf_set_shadow_time(struct perf_event *event, 1799 struct perf_event_context *ctx, 1800 u64 tstamp) 1801 { 1802 /* 1803 * use the correct time source for the time snapshot 1804 * 1805 * We could get by without this by leveraging the 1806 * fact that to get to this function, the caller 1807 * has most likely already called update_context_time() 1808 * and update_cgrp_time_xx() and thus both timestamp 1809 * are identical (or very close). Given that tstamp is, 1810 * already adjusted for cgroup, we could say that: 1811 * tstamp - ctx->timestamp 1812 * is equivalent to 1813 * tstamp - cgrp->timestamp. 1814 * 1815 * Then, in perf_output_read(), the calculation would 1816 * work with no changes because: 1817 * - event is guaranteed scheduled in 1818 * - no scheduled out in between 1819 * - thus the timestamp would be the same 1820 * 1821 * But this is a bit hairy. 1822 * 1823 * So instead, we have an explicit cgroup call to remain 1824 * within the time time source all along. We believe it 1825 * is cleaner and simpler to understand. 1826 */ 1827 if (is_cgroup_event(event)) 1828 perf_cgroup_set_shadow_time(event, tstamp); 1829 else 1830 event->shadow_ctx_time = tstamp - ctx->timestamp; 1831 } 1832 1833 #define MAX_INTERRUPTS (~0ULL) 1834 1835 static void perf_log_throttle(struct perf_event *event, int enable); 1836 static void perf_log_itrace_start(struct perf_event *event); 1837 1838 static int 1839 event_sched_in(struct perf_event *event, 1840 struct perf_cpu_context *cpuctx, 1841 struct perf_event_context *ctx) 1842 { 1843 u64 tstamp = perf_event_time(event); 1844 int ret = 0; 1845 1846 lockdep_assert_held(&ctx->lock); 1847 1848 if (event->state <= PERF_EVENT_STATE_OFF) 1849 return 0; 1850 1851 event->state = PERF_EVENT_STATE_ACTIVE; 1852 event->oncpu = smp_processor_id(); 1853 1854 /* 1855 * Unthrottle events, since we scheduled we might have missed several 1856 * ticks already, also for a heavily scheduling task there is little 1857 * guarantee it'll get a tick in a timely manner. 1858 */ 1859 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1860 perf_log_throttle(event, 1); 1861 event->hw.interrupts = 0; 1862 } 1863 1864 /* 1865 * The new state must be visible before we turn it on in the hardware: 1866 */ 1867 smp_wmb(); 1868 1869 perf_pmu_disable(event->pmu); 1870 1871 event->tstamp_running += tstamp - event->tstamp_stopped; 1872 1873 perf_set_shadow_time(event, ctx, tstamp); 1874 1875 perf_log_itrace_start(event); 1876 1877 if (event->pmu->add(event, PERF_EF_START)) { 1878 event->state = PERF_EVENT_STATE_INACTIVE; 1879 event->oncpu = -1; 1880 ret = -EAGAIN; 1881 goto out; 1882 } 1883 1884 if (!is_software_event(event)) 1885 cpuctx->active_oncpu++; 1886 if (!ctx->nr_active++) 1887 perf_event_ctx_activate(ctx); 1888 if (event->attr.freq && event->attr.sample_freq) 1889 ctx->nr_freq++; 1890 1891 if (event->attr.exclusive) 1892 cpuctx->exclusive = 1; 1893 1894 if (is_orphaned_child(event)) 1895 schedule_orphans_remove(ctx); 1896 1897 out: 1898 perf_pmu_enable(event->pmu); 1899 1900 return ret; 1901 } 1902 1903 static int 1904 group_sched_in(struct perf_event *group_event, 1905 struct perf_cpu_context *cpuctx, 1906 struct perf_event_context *ctx) 1907 { 1908 struct perf_event *event, *partial_group = NULL; 1909 struct pmu *pmu = ctx->pmu; 1910 u64 now = ctx->time; 1911 bool simulate = false; 1912 1913 if (group_event->state == PERF_EVENT_STATE_OFF) 1914 return 0; 1915 1916 pmu->start_txn(pmu); 1917 1918 if (event_sched_in(group_event, cpuctx, ctx)) { 1919 pmu->cancel_txn(pmu); 1920 perf_mux_hrtimer_restart(cpuctx); 1921 return -EAGAIN; 1922 } 1923 1924 /* 1925 * Schedule in siblings as one group (if any): 1926 */ 1927 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1928 if (event_sched_in(event, cpuctx, ctx)) { 1929 partial_group = event; 1930 goto group_error; 1931 } 1932 } 1933 1934 if (!pmu->commit_txn(pmu)) 1935 return 0; 1936 1937 group_error: 1938 /* 1939 * Groups can be scheduled in as one unit only, so undo any 1940 * partial group before returning: 1941 * The events up to the failed event are scheduled out normally, 1942 * tstamp_stopped will be updated. 1943 * 1944 * The failed events and the remaining siblings need to have 1945 * their timings updated as if they had gone thru event_sched_in() 1946 * and event_sched_out(). This is required to get consistent timings 1947 * across the group. This also takes care of the case where the group 1948 * could never be scheduled by ensuring tstamp_stopped is set to mark 1949 * the time the event was actually stopped, such that time delta 1950 * calculation in update_event_times() is correct. 1951 */ 1952 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1953 if (event == partial_group) 1954 simulate = true; 1955 1956 if (simulate) { 1957 event->tstamp_running += now - event->tstamp_stopped; 1958 event->tstamp_stopped = now; 1959 } else { 1960 event_sched_out(event, cpuctx, ctx); 1961 } 1962 } 1963 event_sched_out(group_event, cpuctx, ctx); 1964 1965 pmu->cancel_txn(pmu); 1966 1967 perf_mux_hrtimer_restart(cpuctx); 1968 1969 return -EAGAIN; 1970 } 1971 1972 /* 1973 * Work out whether we can put this event group on the CPU now. 1974 */ 1975 static int group_can_go_on(struct perf_event *event, 1976 struct perf_cpu_context *cpuctx, 1977 int can_add_hw) 1978 { 1979 /* 1980 * Groups consisting entirely of software events can always go on. 1981 */ 1982 if (event->group_flags & PERF_GROUP_SOFTWARE) 1983 return 1; 1984 /* 1985 * If an exclusive group is already on, no other hardware 1986 * events can go on. 1987 */ 1988 if (cpuctx->exclusive) 1989 return 0; 1990 /* 1991 * If this group is exclusive and there are already 1992 * events on the CPU, it can't go on. 1993 */ 1994 if (event->attr.exclusive && cpuctx->active_oncpu) 1995 return 0; 1996 /* 1997 * Otherwise, try to add it if all previous groups were able 1998 * to go on. 1999 */ 2000 return can_add_hw; 2001 } 2002 2003 static void add_event_to_ctx(struct perf_event *event, 2004 struct perf_event_context *ctx) 2005 { 2006 u64 tstamp = perf_event_time(event); 2007 2008 list_add_event(event, ctx); 2009 perf_group_attach(event); 2010 event->tstamp_enabled = tstamp; 2011 event->tstamp_running = tstamp; 2012 event->tstamp_stopped = tstamp; 2013 } 2014 2015 static void task_ctx_sched_out(struct perf_event_context *ctx); 2016 static void 2017 ctx_sched_in(struct perf_event_context *ctx, 2018 struct perf_cpu_context *cpuctx, 2019 enum event_type_t event_type, 2020 struct task_struct *task); 2021 2022 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2023 struct perf_event_context *ctx, 2024 struct task_struct *task) 2025 { 2026 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2027 if (ctx) 2028 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2029 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2030 if (ctx) 2031 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2032 } 2033 2034 /* 2035 * Cross CPU call to install and enable a performance event 2036 * 2037 * Must be called with ctx->mutex held 2038 */ 2039 static int __perf_install_in_context(void *info) 2040 { 2041 struct perf_event *event = info; 2042 struct perf_event_context *ctx = event->ctx; 2043 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2044 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2045 struct task_struct *task = current; 2046 2047 perf_ctx_lock(cpuctx, task_ctx); 2048 perf_pmu_disable(cpuctx->ctx.pmu); 2049 2050 /* 2051 * If there was an active task_ctx schedule it out. 2052 */ 2053 if (task_ctx) 2054 task_ctx_sched_out(task_ctx); 2055 2056 /* 2057 * If the context we're installing events in is not the 2058 * active task_ctx, flip them. 2059 */ 2060 if (ctx->task && task_ctx != ctx) { 2061 if (task_ctx) 2062 raw_spin_unlock(&task_ctx->lock); 2063 raw_spin_lock(&ctx->lock); 2064 task_ctx = ctx; 2065 } 2066 2067 if (task_ctx) { 2068 cpuctx->task_ctx = task_ctx; 2069 task = task_ctx->task; 2070 } 2071 2072 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2073 2074 update_context_time(ctx); 2075 /* 2076 * update cgrp time only if current cgrp 2077 * matches event->cgrp. Must be done before 2078 * calling add_event_to_ctx() 2079 */ 2080 update_cgrp_time_from_event(event); 2081 2082 add_event_to_ctx(event, ctx); 2083 2084 /* 2085 * Schedule everything back in 2086 */ 2087 perf_event_sched_in(cpuctx, task_ctx, task); 2088 2089 perf_pmu_enable(cpuctx->ctx.pmu); 2090 perf_ctx_unlock(cpuctx, task_ctx); 2091 2092 return 0; 2093 } 2094 2095 /* 2096 * Attach a performance event to a context 2097 * 2098 * First we add the event to the list with the hardware enable bit 2099 * in event->hw_config cleared. 2100 * 2101 * If the event is attached to a task which is on a CPU we use a smp 2102 * call to enable it in the task context. The task might have been 2103 * scheduled away, but we check this in the smp call again. 2104 */ 2105 static void 2106 perf_install_in_context(struct perf_event_context *ctx, 2107 struct perf_event *event, 2108 int cpu) 2109 { 2110 struct task_struct *task = ctx->task; 2111 2112 lockdep_assert_held(&ctx->mutex); 2113 2114 event->ctx = ctx; 2115 if (event->cpu != -1) 2116 event->cpu = cpu; 2117 2118 if (!task) { 2119 /* 2120 * Per cpu events are installed via an smp call and 2121 * the install is always successful. 2122 */ 2123 cpu_function_call(cpu, __perf_install_in_context, event); 2124 return; 2125 } 2126 2127 retry: 2128 if (!task_function_call(task, __perf_install_in_context, event)) 2129 return; 2130 2131 raw_spin_lock_irq(&ctx->lock); 2132 /* 2133 * If we failed to find a running task, but find the context active now 2134 * that we've acquired the ctx->lock, retry. 2135 */ 2136 if (ctx->is_active) { 2137 raw_spin_unlock_irq(&ctx->lock); 2138 /* 2139 * Reload the task pointer, it might have been changed by 2140 * a concurrent perf_event_context_sched_out(). 2141 */ 2142 task = ctx->task; 2143 goto retry; 2144 } 2145 2146 /* 2147 * Since the task isn't running, its safe to add the event, us holding 2148 * the ctx->lock ensures the task won't get scheduled in. 2149 */ 2150 add_event_to_ctx(event, ctx); 2151 raw_spin_unlock_irq(&ctx->lock); 2152 } 2153 2154 /* 2155 * Put a event into inactive state and update time fields. 2156 * Enabling the leader of a group effectively enables all 2157 * the group members that aren't explicitly disabled, so we 2158 * have to update their ->tstamp_enabled also. 2159 * Note: this works for group members as well as group leaders 2160 * since the non-leader members' sibling_lists will be empty. 2161 */ 2162 static void __perf_event_mark_enabled(struct perf_event *event) 2163 { 2164 struct perf_event *sub; 2165 u64 tstamp = perf_event_time(event); 2166 2167 event->state = PERF_EVENT_STATE_INACTIVE; 2168 event->tstamp_enabled = tstamp - event->total_time_enabled; 2169 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2170 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2171 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2172 } 2173 } 2174 2175 /* 2176 * Cross CPU call to enable a performance event 2177 */ 2178 static int __perf_event_enable(void *info) 2179 { 2180 struct perf_event *event = info; 2181 struct perf_event_context *ctx = event->ctx; 2182 struct perf_event *leader = event->group_leader; 2183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2184 int err; 2185 2186 /* 2187 * There's a time window between 'ctx->is_active' check 2188 * in perf_event_enable function and this place having: 2189 * - IRQs on 2190 * - ctx->lock unlocked 2191 * 2192 * where the task could be killed and 'ctx' deactivated 2193 * by perf_event_exit_task. 2194 */ 2195 if (!ctx->is_active) 2196 return -EINVAL; 2197 2198 raw_spin_lock(&ctx->lock); 2199 update_context_time(ctx); 2200 2201 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2202 goto unlock; 2203 2204 /* 2205 * set current task's cgroup time reference point 2206 */ 2207 perf_cgroup_set_timestamp(current, ctx); 2208 2209 __perf_event_mark_enabled(event); 2210 2211 if (!event_filter_match(event)) { 2212 if (is_cgroup_event(event)) 2213 perf_cgroup_defer_enabled(event); 2214 goto unlock; 2215 } 2216 2217 /* 2218 * If the event is in a group and isn't the group leader, 2219 * then don't put it on unless the group is on. 2220 */ 2221 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2222 goto unlock; 2223 2224 if (!group_can_go_on(event, cpuctx, 1)) { 2225 err = -EEXIST; 2226 } else { 2227 if (event == leader) 2228 err = group_sched_in(event, cpuctx, ctx); 2229 else 2230 err = event_sched_in(event, cpuctx, ctx); 2231 } 2232 2233 if (err) { 2234 /* 2235 * If this event can't go on and it's part of a 2236 * group, then the whole group has to come off. 2237 */ 2238 if (leader != event) { 2239 group_sched_out(leader, cpuctx, ctx); 2240 perf_mux_hrtimer_restart(cpuctx); 2241 } 2242 if (leader->attr.pinned) { 2243 update_group_times(leader); 2244 leader->state = PERF_EVENT_STATE_ERROR; 2245 } 2246 } 2247 2248 unlock: 2249 raw_spin_unlock(&ctx->lock); 2250 2251 return 0; 2252 } 2253 2254 /* 2255 * Enable a event. 2256 * 2257 * If event->ctx is a cloned context, callers must make sure that 2258 * every task struct that event->ctx->task could possibly point to 2259 * remains valid. This condition is satisfied when called through 2260 * perf_event_for_each_child or perf_event_for_each as described 2261 * for perf_event_disable. 2262 */ 2263 static void _perf_event_enable(struct perf_event *event) 2264 { 2265 struct perf_event_context *ctx = event->ctx; 2266 struct task_struct *task = ctx->task; 2267 2268 if (!task) { 2269 /* 2270 * Enable the event on the cpu that it's on 2271 */ 2272 cpu_function_call(event->cpu, __perf_event_enable, event); 2273 return; 2274 } 2275 2276 raw_spin_lock_irq(&ctx->lock); 2277 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2278 goto out; 2279 2280 /* 2281 * If the event is in error state, clear that first. 2282 * That way, if we see the event in error state below, we 2283 * know that it has gone back into error state, as distinct 2284 * from the task having been scheduled away before the 2285 * cross-call arrived. 2286 */ 2287 if (event->state == PERF_EVENT_STATE_ERROR) 2288 event->state = PERF_EVENT_STATE_OFF; 2289 2290 retry: 2291 if (!ctx->is_active) { 2292 __perf_event_mark_enabled(event); 2293 goto out; 2294 } 2295 2296 raw_spin_unlock_irq(&ctx->lock); 2297 2298 if (!task_function_call(task, __perf_event_enable, event)) 2299 return; 2300 2301 raw_spin_lock_irq(&ctx->lock); 2302 2303 /* 2304 * If the context is active and the event is still off, 2305 * we need to retry the cross-call. 2306 */ 2307 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2308 /* 2309 * task could have been flipped by a concurrent 2310 * perf_event_context_sched_out() 2311 */ 2312 task = ctx->task; 2313 goto retry; 2314 } 2315 2316 out: 2317 raw_spin_unlock_irq(&ctx->lock); 2318 } 2319 2320 /* 2321 * See perf_event_disable(); 2322 */ 2323 void perf_event_enable(struct perf_event *event) 2324 { 2325 struct perf_event_context *ctx; 2326 2327 ctx = perf_event_ctx_lock(event); 2328 _perf_event_enable(event); 2329 perf_event_ctx_unlock(event, ctx); 2330 } 2331 EXPORT_SYMBOL_GPL(perf_event_enable); 2332 2333 static int _perf_event_refresh(struct perf_event *event, int refresh) 2334 { 2335 /* 2336 * not supported on inherited events 2337 */ 2338 if (event->attr.inherit || !is_sampling_event(event)) 2339 return -EINVAL; 2340 2341 atomic_add(refresh, &event->event_limit); 2342 _perf_event_enable(event); 2343 2344 return 0; 2345 } 2346 2347 /* 2348 * See perf_event_disable() 2349 */ 2350 int perf_event_refresh(struct perf_event *event, int refresh) 2351 { 2352 struct perf_event_context *ctx; 2353 int ret; 2354 2355 ctx = perf_event_ctx_lock(event); 2356 ret = _perf_event_refresh(event, refresh); 2357 perf_event_ctx_unlock(event, ctx); 2358 2359 return ret; 2360 } 2361 EXPORT_SYMBOL_GPL(perf_event_refresh); 2362 2363 static void ctx_sched_out(struct perf_event_context *ctx, 2364 struct perf_cpu_context *cpuctx, 2365 enum event_type_t event_type) 2366 { 2367 struct perf_event *event; 2368 int is_active = ctx->is_active; 2369 2370 ctx->is_active &= ~event_type; 2371 if (likely(!ctx->nr_events)) 2372 return; 2373 2374 update_context_time(ctx); 2375 update_cgrp_time_from_cpuctx(cpuctx); 2376 if (!ctx->nr_active) 2377 return; 2378 2379 perf_pmu_disable(ctx->pmu); 2380 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2381 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2382 group_sched_out(event, cpuctx, ctx); 2383 } 2384 2385 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2386 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2387 group_sched_out(event, cpuctx, ctx); 2388 } 2389 perf_pmu_enable(ctx->pmu); 2390 } 2391 2392 /* 2393 * Test whether two contexts are equivalent, i.e. whether they have both been 2394 * cloned from the same version of the same context. 2395 * 2396 * Equivalence is measured using a generation number in the context that is 2397 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2398 * and list_del_event(). 2399 */ 2400 static int context_equiv(struct perf_event_context *ctx1, 2401 struct perf_event_context *ctx2) 2402 { 2403 lockdep_assert_held(&ctx1->lock); 2404 lockdep_assert_held(&ctx2->lock); 2405 2406 /* Pinning disables the swap optimization */ 2407 if (ctx1->pin_count || ctx2->pin_count) 2408 return 0; 2409 2410 /* If ctx1 is the parent of ctx2 */ 2411 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2412 return 1; 2413 2414 /* If ctx2 is the parent of ctx1 */ 2415 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2416 return 1; 2417 2418 /* 2419 * If ctx1 and ctx2 have the same parent; we flatten the parent 2420 * hierarchy, see perf_event_init_context(). 2421 */ 2422 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2423 ctx1->parent_gen == ctx2->parent_gen) 2424 return 1; 2425 2426 /* Unmatched */ 2427 return 0; 2428 } 2429 2430 static void __perf_event_sync_stat(struct perf_event *event, 2431 struct perf_event *next_event) 2432 { 2433 u64 value; 2434 2435 if (!event->attr.inherit_stat) 2436 return; 2437 2438 /* 2439 * Update the event value, we cannot use perf_event_read() 2440 * because we're in the middle of a context switch and have IRQs 2441 * disabled, which upsets smp_call_function_single(), however 2442 * we know the event must be on the current CPU, therefore we 2443 * don't need to use it. 2444 */ 2445 switch (event->state) { 2446 case PERF_EVENT_STATE_ACTIVE: 2447 event->pmu->read(event); 2448 /* fall-through */ 2449 2450 case PERF_EVENT_STATE_INACTIVE: 2451 update_event_times(event); 2452 break; 2453 2454 default: 2455 break; 2456 } 2457 2458 /* 2459 * In order to keep per-task stats reliable we need to flip the event 2460 * values when we flip the contexts. 2461 */ 2462 value = local64_read(&next_event->count); 2463 value = local64_xchg(&event->count, value); 2464 local64_set(&next_event->count, value); 2465 2466 swap(event->total_time_enabled, next_event->total_time_enabled); 2467 swap(event->total_time_running, next_event->total_time_running); 2468 2469 /* 2470 * Since we swizzled the values, update the user visible data too. 2471 */ 2472 perf_event_update_userpage(event); 2473 perf_event_update_userpage(next_event); 2474 } 2475 2476 static void perf_event_sync_stat(struct perf_event_context *ctx, 2477 struct perf_event_context *next_ctx) 2478 { 2479 struct perf_event *event, *next_event; 2480 2481 if (!ctx->nr_stat) 2482 return; 2483 2484 update_context_time(ctx); 2485 2486 event = list_first_entry(&ctx->event_list, 2487 struct perf_event, event_entry); 2488 2489 next_event = list_first_entry(&next_ctx->event_list, 2490 struct perf_event, event_entry); 2491 2492 while (&event->event_entry != &ctx->event_list && 2493 &next_event->event_entry != &next_ctx->event_list) { 2494 2495 __perf_event_sync_stat(event, next_event); 2496 2497 event = list_next_entry(event, event_entry); 2498 next_event = list_next_entry(next_event, event_entry); 2499 } 2500 } 2501 2502 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2503 struct task_struct *next) 2504 { 2505 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2506 struct perf_event_context *next_ctx; 2507 struct perf_event_context *parent, *next_parent; 2508 struct perf_cpu_context *cpuctx; 2509 int do_switch = 1; 2510 2511 if (likely(!ctx)) 2512 return; 2513 2514 cpuctx = __get_cpu_context(ctx); 2515 if (!cpuctx->task_ctx) 2516 return; 2517 2518 rcu_read_lock(); 2519 next_ctx = next->perf_event_ctxp[ctxn]; 2520 if (!next_ctx) 2521 goto unlock; 2522 2523 parent = rcu_dereference(ctx->parent_ctx); 2524 next_parent = rcu_dereference(next_ctx->parent_ctx); 2525 2526 /* If neither context have a parent context; they cannot be clones. */ 2527 if (!parent && !next_parent) 2528 goto unlock; 2529 2530 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2531 /* 2532 * Looks like the two contexts are clones, so we might be 2533 * able to optimize the context switch. We lock both 2534 * contexts and check that they are clones under the 2535 * lock (including re-checking that neither has been 2536 * uncloned in the meantime). It doesn't matter which 2537 * order we take the locks because no other cpu could 2538 * be trying to lock both of these tasks. 2539 */ 2540 raw_spin_lock(&ctx->lock); 2541 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2542 if (context_equiv(ctx, next_ctx)) { 2543 /* 2544 * XXX do we need a memory barrier of sorts 2545 * wrt to rcu_dereference() of perf_event_ctxp 2546 */ 2547 task->perf_event_ctxp[ctxn] = next_ctx; 2548 next->perf_event_ctxp[ctxn] = ctx; 2549 ctx->task = next; 2550 next_ctx->task = task; 2551 2552 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2553 2554 do_switch = 0; 2555 2556 perf_event_sync_stat(ctx, next_ctx); 2557 } 2558 raw_spin_unlock(&next_ctx->lock); 2559 raw_spin_unlock(&ctx->lock); 2560 } 2561 unlock: 2562 rcu_read_unlock(); 2563 2564 if (do_switch) { 2565 raw_spin_lock(&ctx->lock); 2566 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2567 cpuctx->task_ctx = NULL; 2568 raw_spin_unlock(&ctx->lock); 2569 } 2570 } 2571 2572 void perf_sched_cb_dec(struct pmu *pmu) 2573 { 2574 this_cpu_dec(perf_sched_cb_usages); 2575 } 2576 2577 void perf_sched_cb_inc(struct pmu *pmu) 2578 { 2579 this_cpu_inc(perf_sched_cb_usages); 2580 } 2581 2582 /* 2583 * This function provides the context switch callback to the lower code 2584 * layer. It is invoked ONLY when the context switch callback is enabled. 2585 */ 2586 static void perf_pmu_sched_task(struct task_struct *prev, 2587 struct task_struct *next, 2588 bool sched_in) 2589 { 2590 struct perf_cpu_context *cpuctx; 2591 struct pmu *pmu; 2592 unsigned long flags; 2593 2594 if (prev == next) 2595 return; 2596 2597 local_irq_save(flags); 2598 2599 rcu_read_lock(); 2600 2601 list_for_each_entry_rcu(pmu, &pmus, entry) { 2602 if (pmu->sched_task) { 2603 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2604 2605 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2606 2607 perf_pmu_disable(pmu); 2608 2609 pmu->sched_task(cpuctx->task_ctx, sched_in); 2610 2611 perf_pmu_enable(pmu); 2612 2613 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2614 } 2615 } 2616 2617 rcu_read_unlock(); 2618 2619 local_irq_restore(flags); 2620 } 2621 2622 #define for_each_task_context_nr(ctxn) \ 2623 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2624 2625 /* 2626 * Called from scheduler to remove the events of the current task, 2627 * with interrupts disabled. 2628 * 2629 * We stop each event and update the event value in event->count. 2630 * 2631 * This does not protect us against NMI, but disable() 2632 * sets the disabled bit in the control field of event _before_ 2633 * accessing the event control register. If a NMI hits, then it will 2634 * not restart the event. 2635 */ 2636 void __perf_event_task_sched_out(struct task_struct *task, 2637 struct task_struct *next) 2638 { 2639 int ctxn; 2640 2641 if (__this_cpu_read(perf_sched_cb_usages)) 2642 perf_pmu_sched_task(task, next, false); 2643 2644 for_each_task_context_nr(ctxn) 2645 perf_event_context_sched_out(task, ctxn, next); 2646 2647 /* 2648 * if cgroup events exist on this CPU, then we need 2649 * to check if we have to switch out PMU state. 2650 * cgroup event are system-wide mode only 2651 */ 2652 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2653 perf_cgroup_sched_out(task, next); 2654 } 2655 2656 static void task_ctx_sched_out(struct perf_event_context *ctx) 2657 { 2658 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2659 2660 if (!cpuctx->task_ctx) 2661 return; 2662 2663 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2664 return; 2665 2666 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2667 cpuctx->task_ctx = NULL; 2668 } 2669 2670 /* 2671 * Called with IRQs disabled 2672 */ 2673 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type) 2675 { 2676 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2677 } 2678 2679 static void 2680 ctx_pinned_sched_in(struct perf_event_context *ctx, 2681 struct perf_cpu_context *cpuctx) 2682 { 2683 struct perf_event *event; 2684 2685 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2686 if (event->state <= PERF_EVENT_STATE_OFF) 2687 continue; 2688 if (!event_filter_match(event)) 2689 continue; 2690 2691 /* may need to reset tstamp_enabled */ 2692 if (is_cgroup_event(event)) 2693 perf_cgroup_mark_enabled(event, ctx); 2694 2695 if (group_can_go_on(event, cpuctx, 1)) 2696 group_sched_in(event, cpuctx, ctx); 2697 2698 /* 2699 * If this pinned group hasn't been scheduled, 2700 * put it in error state. 2701 */ 2702 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2703 update_group_times(event); 2704 event->state = PERF_EVENT_STATE_ERROR; 2705 } 2706 } 2707 } 2708 2709 static void 2710 ctx_flexible_sched_in(struct perf_event_context *ctx, 2711 struct perf_cpu_context *cpuctx) 2712 { 2713 struct perf_event *event; 2714 int can_add_hw = 1; 2715 2716 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2717 /* Ignore events in OFF or ERROR state */ 2718 if (event->state <= PERF_EVENT_STATE_OFF) 2719 continue; 2720 /* 2721 * Listen to the 'cpu' scheduling filter constraint 2722 * of events: 2723 */ 2724 if (!event_filter_match(event)) 2725 continue; 2726 2727 /* may need to reset tstamp_enabled */ 2728 if (is_cgroup_event(event)) 2729 perf_cgroup_mark_enabled(event, ctx); 2730 2731 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2732 if (group_sched_in(event, cpuctx, ctx)) 2733 can_add_hw = 0; 2734 } 2735 } 2736 } 2737 2738 static void 2739 ctx_sched_in(struct perf_event_context *ctx, 2740 struct perf_cpu_context *cpuctx, 2741 enum event_type_t event_type, 2742 struct task_struct *task) 2743 { 2744 u64 now; 2745 int is_active = ctx->is_active; 2746 2747 ctx->is_active |= event_type; 2748 if (likely(!ctx->nr_events)) 2749 return; 2750 2751 now = perf_clock(); 2752 ctx->timestamp = now; 2753 perf_cgroup_set_timestamp(task, ctx); 2754 /* 2755 * First go through the list and put on any pinned groups 2756 * in order to give them the best chance of going on. 2757 */ 2758 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2759 ctx_pinned_sched_in(ctx, cpuctx); 2760 2761 /* Then walk through the lower prio flexible groups */ 2762 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2763 ctx_flexible_sched_in(ctx, cpuctx); 2764 } 2765 2766 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2767 enum event_type_t event_type, 2768 struct task_struct *task) 2769 { 2770 struct perf_event_context *ctx = &cpuctx->ctx; 2771 2772 ctx_sched_in(ctx, cpuctx, event_type, task); 2773 } 2774 2775 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2776 struct task_struct *task) 2777 { 2778 struct perf_cpu_context *cpuctx; 2779 2780 cpuctx = __get_cpu_context(ctx); 2781 if (cpuctx->task_ctx == ctx) 2782 return; 2783 2784 perf_ctx_lock(cpuctx, ctx); 2785 perf_pmu_disable(ctx->pmu); 2786 /* 2787 * We want to keep the following priority order: 2788 * cpu pinned (that don't need to move), task pinned, 2789 * cpu flexible, task flexible. 2790 */ 2791 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2792 2793 if (ctx->nr_events) 2794 cpuctx->task_ctx = ctx; 2795 2796 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2797 2798 perf_pmu_enable(ctx->pmu); 2799 perf_ctx_unlock(cpuctx, ctx); 2800 } 2801 2802 /* 2803 * Called from scheduler to add the events of the current task 2804 * with interrupts disabled. 2805 * 2806 * We restore the event value and then enable it. 2807 * 2808 * This does not protect us against NMI, but enable() 2809 * sets the enabled bit in the control field of event _before_ 2810 * accessing the event control register. If a NMI hits, then it will 2811 * keep the event running. 2812 */ 2813 void __perf_event_task_sched_in(struct task_struct *prev, 2814 struct task_struct *task) 2815 { 2816 struct perf_event_context *ctx; 2817 int ctxn; 2818 2819 for_each_task_context_nr(ctxn) { 2820 ctx = task->perf_event_ctxp[ctxn]; 2821 if (likely(!ctx)) 2822 continue; 2823 2824 perf_event_context_sched_in(ctx, task); 2825 } 2826 /* 2827 * if cgroup events exist on this CPU, then we need 2828 * to check if we have to switch in PMU state. 2829 * cgroup event are system-wide mode only 2830 */ 2831 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2832 perf_cgroup_sched_in(prev, task); 2833 2834 if (__this_cpu_read(perf_sched_cb_usages)) 2835 perf_pmu_sched_task(prev, task, true); 2836 } 2837 2838 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2839 { 2840 u64 frequency = event->attr.sample_freq; 2841 u64 sec = NSEC_PER_SEC; 2842 u64 divisor, dividend; 2843 2844 int count_fls, nsec_fls, frequency_fls, sec_fls; 2845 2846 count_fls = fls64(count); 2847 nsec_fls = fls64(nsec); 2848 frequency_fls = fls64(frequency); 2849 sec_fls = 30; 2850 2851 /* 2852 * We got @count in @nsec, with a target of sample_freq HZ 2853 * the target period becomes: 2854 * 2855 * @count * 10^9 2856 * period = ------------------- 2857 * @nsec * sample_freq 2858 * 2859 */ 2860 2861 /* 2862 * Reduce accuracy by one bit such that @a and @b converge 2863 * to a similar magnitude. 2864 */ 2865 #define REDUCE_FLS(a, b) \ 2866 do { \ 2867 if (a##_fls > b##_fls) { \ 2868 a >>= 1; \ 2869 a##_fls--; \ 2870 } else { \ 2871 b >>= 1; \ 2872 b##_fls--; \ 2873 } \ 2874 } while (0) 2875 2876 /* 2877 * Reduce accuracy until either term fits in a u64, then proceed with 2878 * the other, so that finally we can do a u64/u64 division. 2879 */ 2880 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2881 REDUCE_FLS(nsec, frequency); 2882 REDUCE_FLS(sec, count); 2883 } 2884 2885 if (count_fls + sec_fls > 64) { 2886 divisor = nsec * frequency; 2887 2888 while (count_fls + sec_fls > 64) { 2889 REDUCE_FLS(count, sec); 2890 divisor >>= 1; 2891 } 2892 2893 dividend = count * sec; 2894 } else { 2895 dividend = count * sec; 2896 2897 while (nsec_fls + frequency_fls > 64) { 2898 REDUCE_FLS(nsec, frequency); 2899 dividend >>= 1; 2900 } 2901 2902 divisor = nsec * frequency; 2903 } 2904 2905 if (!divisor) 2906 return dividend; 2907 2908 return div64_u64(dividend, divisor); 2909 } 2910 2911 static DEFINE_PER_CPU(int, perf_throttled_count); 2912 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2913 2914 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2915 { 2916 struct hw_perf_event *hwc = &event->hw; 2917 s64 period, sample_period; 2918 s64 delta; 2919 2920 period = perf_calculate_period(event, nsec, count); 2921 2922 delta = (s64)(period - hwc->sample_period); 2923 delta = (delta + 7) / 8; /* low pass filter */ 2924 2925 sample_period = hwc->sample_period + delta; 2926 2927 if (!sample_period) 2928 sample_period = 1; 2929 2930 hwc->sample_period = sample_period; 2931 2932 if (local64_read(&hwc->period_left) > 8*sample_period) { 2933 if (disable) 2934 event->pmu->stop(event, PERF_EF_UPDATE); 2935 2936 local64_set(&hwc->period_left, 0); 2937 2938 if (disable) 2939 event->pmu->start(event, PERF_EF_RELOAD); 2940 } 2941 } 2942 2943 /* 2944 * combine freq adjustment with unthrottling to avoid two passes over the 2945 * events. At the same time, make sure, having freq events does not change 2946 * the rate of unthrottling as that would introduce bias. 2947 */ 2948 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2949 int needs_unthr) 2950 { 2951 struct perf_event *event; 2952 struct hw_perf_event *hwc; 2953 u64 now, period = TICK_NSEC; 2954 s64 delta; 2955 2956 /* 2957 * only need to iterate over all events iff: 2958 * - context have events in frequency mode (needs freq adjust) 2959 * - there are events to unthrottle on this cpu 2960 */ 2961 if (!(ctx->nr_freq || needs_unthr)) 2962 return; 2963 2964 raw_spin_lock(&ctx->lock); 2965 perf_pmu_disable(ctx->pmu); 2966 2967 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2968 if (event->state != PERF_EVENT_STATE_ACTIVE) 2969 continue; 2970 2971 if (!event_filter_match(event)) 2972 continue; 2973 2974 perf_pmu_disable(event->pmu); 2975 2976 hwc = &event->hw; 2977 2978 if (hwc->interrupts == MAX_INTERRUPTS) { 2979 hwc->interrupts = 0; 2980 perf_log_throttle(event, 1); 2981 event->pmu->start(event, 0); 2982 } 2983 2984 if (!event->attr.freq || !event->attr.sample_freq) 2985 goto next; 2986 2987 /* 2988 * stop the event and update event->count 2989 */ 2990 event->pmu->stop(event, PERF_EF_UPDATE); 2991 2992 now = local64_read(&event->count); 2993 delta = now - hwc->freq_count_stamp; 2994 hwc->freq_count_stamp = now; 2995 2996 /* 2997 * restart the event 2998 * reload only if value has changed 2999 * we have stopped the event so tell that 3000 * to perf_adjust_period() to avoid stopping it 3001 * twice. 3002 */ 3003 if (delta > 0) 3004 perf_adjust_period(event, period, delta, false); 3005 3006 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3007 next: 3008 perf_pmu_enable(event->pmu); 3009 } 3010 3011 perf_pmu_enable(ctx->pmu); 3012 raw_spin_unlock(&ctx->lock); 3013 } 3014 3015 /* 3016 * Round-robin a context's events: 3017 */ 3018 static void rotate_ctx(struct perf_event_context *ctx) 3019 { 3020 /* 3021 * Rotate the first entry last of non-pinned groups. Rotation might be 3022 * disabled by the inheritance code. 3023 */ 3024 if (!ctx->rotate_disable) 3025 list_rotate_left(&ctx->flexible_groups); 3026 } 3027 3028 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3029 { 3030 struct perf_event_context *ctx = NULL; 3031 int rotate = 0; 3032 3033 if (cpuctx->ctx.nr_events) { 3034 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3035 rotate = 1; 3036 } 3037 3038 ctx = cpuctx->task_ctx; 3039 if (ctx && ctx->nr_events) { 3040 if (ctx->nr_events != ctx->nr_active) 3041 rotate = 1; 3042 } 3043 3044 if (!rotate) 3045 goto done; 3046 3047 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3048 perf_pmu_disable(cpuctx->ctx.pmu); 3049 3050 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3051 if (ctx) 3052 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3053 3054 rotate_ctx(&cpuctx->ctx); 3055 if (ctx) 3056 rotate_ctx(ctx); 3057 3058 perf_event_sched_in(cpuctx, ctx, current); 3059 3060 perf_pmu_enable(cpuctx->ctx.pmu); 3061 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3062 done: 3063 3064 return rotate; 3065 } 3066 3067 #ifdef CONFIG_NO_HZ_FULL 3068 bool perf_event_can_stop_tick(void) 3069 { 3070 if (atomic_read(&nr_freq_events) || 3071 __this_cpu_read(perf_throttled_count)) 3072 return false; 3073 else 3074 return true; 3075 } 3076 #endif 3077 3078 void perf_event_task_tick(void) 3079 { 3080 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3081 struct perf_event_context *ctx, *tmp; 3082 int throttled; 3083 3084 WARN_ON(!irqs_disabled()); 3085 3086 __this_cpu_inc(perf_throttled_seq); 3087 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3088 3089 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3090 perf_adjust_freq_unthr_context(ctx, throttled); 3091 } 3092 3093 static int event_enable_on_exec(struct perf_event *event, 3094 struct perf_event_context *ctx) 3095 { 3096 if (!event->attr.enable_on_exec) 3097 return 0; 3098 3099 event->attr.enable_on_exec = 0; 3100 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3101 return 0; 3102 3103 __perf_event_mark_enabled(event); 3104 3105 return 1; 3106 } 3107 3108 /* 3109 * Enable all of a task's events that have been marked enable-on-exec. 3110 * This expects task == current. 3111 */ 3112 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3113 { 3114 struct perf_event_context *clone_ctx = NULL; 3115 struct perf_event *event; 3116 unsigned long flags; 3117 int enabled = 0; 3118 int ret; 3119 3120 local_irq_save(flags); 3121 if (!ctx || !ctx->nr_events) 3122 goto out; 3123 3124 /* 3125 * We must ctxsw out cgroup events to avoid conflict 3126 * when invoking perf_task_event_sched_in() later on 3127 * in this function. Otherwise we end up trying to 3128 * ctxswin cgroup events which are already scheduled 3129 * in. 3130 */ 3131 perf_cgroup_sched_out(current, NULL); 3132 3133 raw_spin_lock(&ctx->lock); 3134 task_ctx_sched_out(ctx); 3135 3136 list_for_each_entry(event, &ctx->event_list, event_entry) { 3137 ret = event_enable_on_exec(event, ctx); 3138 if (ret) 3139 enabled = 1; 3140 } 3141 3142 /* 3143 * Unclone this context if we enabled any event. 3144 */ 3145 if (enabled) 3146 clone_ctx = unclone_ctx(ctx); 3147 3148 raw_spin_unlock(&ctx->lock); 3149 3150 /* 3151 * Also calls ctxswin for cgroup events, if any: 3152 */ 3153 perf_event_context_sched_in(ctx, ctx->task); 3154 out: 3155 local_irq_restore(flags); 3156 3157 if (clone_ctx) 3158 put_ctx(clone_ctx); 3159 } 3160 3161 void perf_event_exec(void) 3162 { 3163 struct perf_event_context *ctx; 3164 int ctxn; 3165 3166 rcu_read_lock(); 3167 for_each_task_context_nr(ctxn) { 3168 ctx = current->perf_event_ctxp[ctxn]; 3169 if (!ctx) 3170 continue; 3171 3172 perf_event_enable_on_exec(ctx); 3173 } 3174 rcu_read_unlock(); 3175 } 3176 3177 /* 3178 * Cross CPU call to read the hardware event 3179 */ 3180 static void __perf_event_read(void *info) 3181 { 3182 struct perf_event *event = info; 3183 struct perf_event_context *ctx = event->ctx; 3184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3185 3186 /* 3187 * If this is a task context, we need to check whether it is 3188 * the current task context of this cpu. If not it has been 3189 * scheduled out before the smp call arrived. In that case 3190 * event->count would have been updated to a recent sample 3191 * when the event was scheduled out. 3192 */ 3193 if (ctx->task && cpuctx->task_ctx != ctx) 3194 return; 3195 3196 raw_spin_lock(&ctx->lock); 3197 if (ctx->is_active) { 3198 update_context_time(ctx); 3199 update_cgrp_time_from_event(event); 3200 } 3201 update_event_times(event); 3202 if (event->state == PERF_EVENT_STATE_ACTIVE) 3203 event->pmu->read(event); 3204 raw_spin_unlock(&ctx->lock); 3205 } 3206 3207 static inline u64 perf_event_count(struct perf_event *event) 3208 { 3209 if (event->pmu->count) 3210 return event->pmu->count(event); 3211 3212 return __perf_event_count(event); 3213 } 3214 3215 /* 3216 * NMI-safe method to read a local event, that is an event that 3217 * is: 3218 * - either for the current task, or for this CPU 3219 * - does not have inherit set, for inherited task events 3220 * will not be local and we cannot read them atomically 3221 * - must not have a pmu::count method 3222 */ 3223 u64 perf_event_read_local(struct perf_event *event) 3224 { 3225 unsigned long flags; 3226 u64 val; 3227 3228 /* 3229 * Disabling interrupts avoids all counter scheduling (context 3230 * switches, timer based rotation and IPIs). 3231 */ 3232 local_irq_save(flags); 3233 3234 /* If this is a per-task event, it must be for current */ 3235 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3236 event->hw.target != current); 3237 3238 /* If this is a per-CPU event, it must be for this CPU */ 3239 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3240 event->cpu != smp_processor_id()); 3241 3242 /* 3243 * It must not be an event with inherit set, we cannot read 3244 * all child counters from atomic context. 3245 */ 3246 WARN_ON_ONCE(event->attr.inherit); 3247 3248 /* 3249 * It must not have a pmu::count method, those are not 3250 * NMI safe. 3251 */ 3252 WARN_ON_ONCE(event->pmu->count); 3253 3254 /* 3255 * If the event is currently on this CPU, its either a per-task event, 3256 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3257 * oncpu == -1). 3258 */ 3259 if (event->oncpu == smp_processor_id()) 3260 event->pmu->read(event); 3261 3262 val = local64_read(&event->count); 3263 local_irq_restore(flags); 3264 3265 return val; 3266 } 3267 3268 static u64 perf_event_read(struct perf_event *event) 3269 { 3270 /* 3271 * If event is enabled and currently active on a CPU, update the 3272 * value in the event structure: 3273 */ 3274 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3275 smp_call_function_single(event->oncpu, 3276 __perf_event_read, event, 1); 3277 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3278 struct perf_event_context *ctx = event->ctx; 3279 unsigned long flags; 3280 3281 raw_spin_lock_irqsave(&ctx->lock, flags); 3282 /* 3283 * may read while context is not active 3284 * (e.g., thread is blocked), in that case 3285 * we cannot update context time 3286 */ 3287 if (ctx->is_active) { 3288 update_context_time(ctx); 3289 update_cgrp_time_from_event(event); 3290 } 3291 update_event_times(event); 3292 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3293 } 3294 3295 return perf_event_count(event); 3296 } 3297 3298 /* 3299 * Initialize the perf_event context in a task_struct: 3300 */ 3301 static void __perf_event_init_context(struct perf_event_context *ctx) 3302 { 3303 raw_spin_lock_init(&ctx->lock); 3304 mutex_init(&ctx->mutex); 3305 INIT_LIST_HEAD(&ctx->active_ctx_list); 3306 INIT_LIST_HEAD(&ctx->pinned_groups); 3307 INIT_LIST_HEAD(&ctx->flexible_groups); 3308 INIT_LIST_HEAD(&ctx->event_list); 3309 atomic_set(&ctx->refcount, 1); 3310 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3311 } 3312 3313 static struct perf_event_context * 3314 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3315 { 3316 struct perf_event_context *ctx; 3317 3318 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3319 if (!ctx) 3320 return NULL; 3321 3322 __perf_event_init_context(ctx); 3323 if (task) { 3324 ctx->task = task; 3325 get_task_struct(task); 3326 } 3327 ctx->pmu = pmu; 3328 3329 return ctx; 3330 } 3331 3332 static struct task_struct * 3333 find_lively_task_by_vpid(pid_t vpid) 3334 { 3335 struct task_struct *task; 3336 int err; 3337 3338 rcu_read_lock(); 3339 if (!vpid) 3340 task = current; 3341 else 3342 task = find_task_by_vpid(vpid); 3343 if (task) 3344 get_task_struct(task); 3345 rcu_read_unlock(); 3346 3347 if (!task) 3348 return ERR_PTR(-ESRCH); 3349 3350 /* Reuse ptrace permission checks for now. */ 3351 err = -EACCES; 3352 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3353 goto errout; 3354 3355 return task; 3356 errout: 3357 put_task_struct(task); 3358 return ERR_PTR(err); 3359 3360 } 3361 3362 /* 3363 * Returns a matching context with refcount and pincount. 3364 */ 3365 static struct perf_event_context * 3366 find_get_context(struct pmu *pmu, struct task_struct *task, 3367 struct perf_event *event) 3368 { 3369 struct perf_event_context *ctx, *clone_ctx = NULL; 3370 struct perf_cpu_context *cpuctx; 3371 void *task_ctx_data = NULL; 3372 unsigned long flags; 3373 int ctxn, err; 3374 int cpu = event->cpu; 3375 3376 if (!task) { 3377 /* Must be root to operate on a CPU event: */ 3378 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3379 return ERR_PTR(-EACCES); 3380 3381 /* 3382 * We could be clever and allow to attach a event to an 3383 * offline CPU and activate it when the CPU comes up, but 3384 * that's for later. 3385 */ 3386 if (!cpu_online(cpu)) 3387 return ERR_PTR(-ENODEV); 3388 3389 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3390 ctx = &cpuctx->ctx; 3391 get_ctx(ctx); 3392 ++ctx->pin_count; 3393 3394 return ctx; 3395 } 3396 3397 err = -EINVAL; 3398 ctxn = pmu->task_ctx_nr; 3399 if (ctxn < 0) 3400 goto errout; 3401 3402 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3403 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3404 if (!task_ctx_data) { 3405 err = -ENOMEM; 3406 goto errout; 3407 } 3408 } 3409 3410 retry: 3411 ctx = perf_lock_task_context(task, ctxn, &flags); 3412 if (ctx) { 3413 clone_ctx = unclone_ctx(ctx); 3414 ++ctx->pin_count; 3415 3416 if (task_ctx_data && !ctx->task_ctx_data) { 3417 ctx->task_ctx_data = task_ctx_data; 3418 task_ctx_data = NULL; 3419 } 3420 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3421 3422 if (clone_ctx) 3423 put_ctx(clone_ctx); 3424 } else { 3425 ctx = alloc_perf_context(pmu, task); 3426 err = -ENOMEM; 3427 if (!ctx) 3428 goto errout; 3429 3430 if (task_ctx_data) { 3431 ctx->task_ctx_data = task_ctx_data; 3432 task_ctx_data = NULL; 3433 } 3434 3435 err = 0; 3436 mutex_lock(&task->perf_event_mutex); 3437 /* 3438 * If it has already passed perf_event_exit_task(). 3439 * we must see PF_EXITING, it takes this mutex too. 3440 */ 3441 if (task->flags & PF_EXITING) 3442 err = -ESRCH; 3443 else if (task->perf_event_ctxp[ctxn]) 3444 err = -EAGAIN; 3445 else { 3446 get_ctx(ctx); 3447 ++ctx->pin_count; 3448 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3449 } 3450 mutex_unlock(&task->perf_event_mutex); 3451 3452 if (unlikely(err)) { 3453 put_ctx(ctx); 3454 3455 if (err == -EAGAIN) 3456 goto retry; 3457 goto errout; 3458 } 3459 } 3460 3461 kfree(task_ctx_data); 3462 return ctx; 3463 3464 errout: 3465 kfree(task_ctx_data); 3466 return ERR_PTR(err); 3467 } 3468 3469 static void perf_event_free_filter(struct perf_event *event); 3470 static void perf_event_free_bpf_prog(struct perf_event *event); 3471 3472 static void free_event_rcu(struct rcu_head *head) 3473 { 3474 struct perf_event *event; 3475 3476 event = container_of(head, struct perf_event, rcu_head); 3477 if (event->ns) 3478 put_pid_ns(event->ns); 3479 perf_event_free_filter(event); 3480 kfree(event); 3481 } 3482 3483 static void ring_buffer_attach(struct perf_event *event, 3484 struct ring_buffer *rb); 3485 3486 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3487 { 3488 if (event->parent) 3489 return; 3490 3491 if (is_cgroup_event(event)) 3492 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3493 } 3494 3495 static void unaccount_event(struct perf_event *event) 3496 { 3497 if (event->parent) 3498 return; 3499 3500 if (event->attach_state & PERF_ATTACH_TASK) 3501 static_key_slow_dec_deferred(&perf_sched_events); 3502 if (event->attr.mmap || event->attr.mmap_data) 3503 atomic_dec(&nr_mmap_events); 3504 if (event->attr.comm) 3505 atomic_dec(&nr_comm_events); 3506 if (event->attr.task) 3507 atomic_dec(&nr_task_events); 3508 if (event->attr.freq) 3509 atomic_dec(&nr_freq_events); 3510 if (is_cgroup_event(event)) 3511 static_key_slow_dec_deferred(&perf_sched_events); 3512 if (has_branch_stack(event)) 3513 static_key_slow_dec_deferred(&perf_sched_events); 3514 3515 unaccount_event_cpu(event, event->cpu); 3516 } 3517 3518 /* 3519 * The following implement mutual exclusion of events on "exclusive" pmus 3520 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3521 * at a time, so we disallow creating events that might conflict, namely: 3522 * 3523 * 1) cpu-wide events in the presence of per-task events, 3524 * 2) per-task events in the presence of cpu-wide events, 3525 * 3) two matching events on the same context. 3526 * 3527 * The former two cases are handled in the allocation path (perf_event_alloc(), 3528 * __free_event()), the latter -- before the first perf_install_in_context(). 3529 */ 3530 static int exclusive_event_init(struct perf_event *event) 3531 { 3532 struct pmu *pmu = event->pmu; 3533 3534 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3535 return 0; 3536 3537 /* 3538 * Prevent co-existence of per-task and cpu-wide events on the 3539 * same exclusive pmu. 3540 * 3541 * Negative pmu::exclusive_cnt means there are cpu-wide 3542 * events on this "exclusive" pmu, positive means there are 3543 * per-task events. 3544 * 3545 * Since this is called in perf_event_alloc() path, event::ctx 3546 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3547 * to mean "per-task event", because unlike other attach states it 3548 * never gets cleared. 3549 */ 3550 if (event->attach_state & PERF_ATTACH_TASK) { 3551 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3552 return -EBUSY; 3553 } else { 3554 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3555 return -EBUSY; 3556 } 3557 3558 return 0; 3559 } 3560 3561 static void exclusive_event_destroy(struct perf_event *event) 3562 { 3563 struct pmu *pmu = event->pmu; 3564 3565 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3566 return; 3567 3568 /* see comment in exclusive_event_init() */ 3569 if (event->attach_state & PERF_ATTACH_TASK) 3570 atomic_dec(&pmu->exclusive_cnt); 3571 else 3572 atomic_inc(&pmu->exclusive_cnt); 3573 } 3574 3575 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3576 { 3577 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3578 (e1->cpu == e2->cpu || 3579 e1->cpu == -1 || 3580 e2->cpu == -1)) 3581 return true; 3582 return false; 3583 } 3584 3585 /* Called under the same ctx::mutex as perf_install_in_context() */ 3586 static bool exclusive_event_installable(struct perf_event *event, 3587 struct perf_event_context *ctx) 3588 { 3589 struct perf_event *iter_event; 3590 struct pmu *pmu = event->pmu; 3591 3592 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3593 return true; 3594 3595 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3596 if (exclusive_event_match(iter_event, event)) 3597 return false; 3598 } 3599 3600 return true; 3601 } 3602 3603 static void __free_event(struct perf_event *event) 3604 { 3605 if (!event->parent) { 3606 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3607 put_callchain_buffers(); 3608 } 3609 3610 perf_event_free_bpf_prog(event); 3611 3612 if (event->destroy) 3613 event->destroy(event); 3614 3615 if (event->ctx) 3616 put_ctx(event->ctx); 3617 3618 if (event->pmu) { 3619 exclusive_event_destroy(event); 3620 module_put(event->pmu->module); 3621 } 3622 3623 call_rcu(&event->rcu_head, free_event_rcu); 3624 } 3625 3626 static void _free_event(struct perf_event *event) 3627 { 3628 irq_work_sync(&event->pending); 3629 3630 unaccount_event(event); 3631 3632 if (event->rb) { 3633 /* 3634 * Can happen when we close an event with re-directed output. 3635 * 3636 * Since we have a 0 refcount, perf_mmap_close() will skip 3637 * over us; possibly making our ring_buffer_put() the last. 3638 */ 3639 mutex_lock(&event->mmap_mutex); 3640 ring_buffer_attach(event, NULL); 3641 mutex_unlock(&event->mmap_mutex); 3642 } 3643 3644 if (is_cgroup_event(event)) 3645 perf_detach_cgroup(event); 3646 3647 __free_event(event); 3648 } 3649 3650 /* 3651 * Used to free events which have a known refcount of 1, such as in error paths 3652 * where the event isn't exposed yet and inherited events. 3653 */ 3654 static void free_event(struct perf_event *event) 3655 { 3656 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3657 "unexpected event refcount: %ld; ptr=%p\n", 3658 atomic_long_read(&event->refcount), event)) { 3659 /* leak to avoid use-after-free */ 3660 return; 3661 } 3662 3663 _free_event(event); 3664 } 3665 3666 /* 3667 * Remove user event from the owner task. 3668 */ 3669 static void perf_remove_from_owner(struct perf_event *event) 3670 { 3671 struct task_struct *owner; 3672 3673 rcu_read_lock(); 3674 owner = ACCESS_ONCE(event->owner); 3675 /* 3676 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3677 * !owner it means the list deletion is complete and we can indeed 3678 * free this event, otherwise we need to serialize on 3679 * owner->perf_event_mutex. 3680 */ 3681 smp_read_barrier_depends(); 3682 if (owner) { 3683 /* 3684 * Since delayed_put_task_struct() also drops the last 3685 * task reference we can safely take a new reference 3686 * while holding the rcu_read_lock(). 3687 */ 3688 get_task_struct(owner); 3689 } 3690 rcu_read_unlock(); 3691 3692 if (owner) { 3693 /* 3694 * If we're here through perf_event_exit_task() we're already 3695 * holding ctx->mutex which would be an inversion wrt. the 3696 * normal lock order. 3697 * 3698 * However we can safely take this lock because its the child 3699 * ctx->mutex. 3700 */ 3701 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3702 3703 /* 3704 * We have to re-check the event->owner field, if it is cleared 3705 * we raced with perf_event_exit_task(), acquiring the mutex 3706 * ensured they're done, and we can proceed with freeing the 3707 * event. 3708 */ 3709 if (event->owner) 3710 list_del_init(&event->owner_entry); 3711 mutex_unlock(&owner->perf_event_mutex); 3712 put_task_struct(owner); 3713 } 3714 } 3715 3716 static void put_event(struct perf_event *event) 3717 { 3718 struct perf_event_context *ctx; 3719 3720 if (!atomic_long_dec_and_test(&event->refcount)) 3721 return; 3722 3723 if (!is_kernel_event(event)) 3724 perf_remove_from_owner(event); 3725 3726 /* 3727 * There are two ways this annotation is useful: 3728 * 3729 * 1) there is a lock recursion from perf_event_exit_task 3730 * see the comment there. 3731 * 3732 * 2) there is a lock-inversion with mmap_sem through 3733 * perf_event_read_group(), which takes faults while 3734 * holding ctx->mutex, however this is called after 3735 * the last filedesc died, so there is no possibility 3736 * to trigger the AB-BA case. 3737 */ 3738 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3739 WARN_ON_ONCE(ctx->parent_ctx); 3740 perf_remove_from_context(event, true); 3741 perf_event_ctx_unlock(event, ctx); 3742 3743 _free_event(event); 3744 } 3745 3746 int perf_event_release_kernel(struct perf_event *event) 3747 { 3748 put_event(event); 3749 return 0; 3750 } 3751 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3752 3753 /* 3754 * Called when the last reference to the file is gone. 3755 */ 3756 static int perf_release(struct inode *inode, struct file *file) 3757 { 3758 put_event(file->private_data); 3759 return 0; 3760 } 3761 3762 /* 3763 * Remove all orphanes events from the context. 3764 */ 3765 static void orphans_remove_work(struct work_struct *work) 3766 { 3767 struct perf_event_context *ctx; 3768 struct perf_event *event, *tmp; 3769 3770 ctx = container_of(work, struct perf_event_context, 3771 orphans_remove.work); 3772 3773 mutex_lock(&ctx->mutex); 3774 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3775 struct perf_event *parent_event = event->parent; 3776 3777 if (!is_orphaned_child(event)) 3778 continue; 3779 3780 perf_remove_from_context(event, true); 3781 3782 mutex_lock(&parent_event->child_mutex); 3783 list_del_init(&event->child_list); 3784 mutex_unlock(&parent_event->child_mutex); 3785 3786 free_event(event); 3787 put_event(parent_event); 3788 } 3789 3790 raw_spin_lock_irq(&ctx->lock); 3791 ctx->orphans_remove_sched = false; 3792 raw_spin_unlock_irq(&ctx->lock); 3793 mutex_unlock(&ctx->mutex); 3794 3795 put_ctx(ctx); 3796 } 3797 3798 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3799 { 3800 struct perf_event *child; 3801 u64 total = 0; 3802 3803 *enabled = 0; 3804 *running = 0; 3805 3806 mutex_lock(&event->child_mutex); 3807 total += perf_event_read(event); 3808 *enabled += event->total_time_enabled + 3809 atomic64_read(&event->child_total_time_enabled); 3810 *running += event->total_time_running + 3811 atomic64_read(&event->child_total_time_running); 3812 3813 list_for_each_entry(child, &event->child_list, child_list) { 3814 total += perf_event_read(child); 3815 *enabled += child->total_time_enabled; 3816 *running += child->total_time_running; 3817 } 3818 mutex_unlock(&event->child_mutex); 3819 3820 return total; 3821 } 3822 EXPORT_SYMBOL_GPL(perf_event_read_value); 3823 3824 static int perf_event_read_group(struct perf_event *event, 3825 u64 read_format, char __user *buf) 3826 { 3827 struct perf_event *leader = event->group_leader, *sub; 3828 struct perf_event_context *ctx = leader->ctx; 3829 int n = 0, size = 0, ret; 3830 u64 count, enabled, running; 3831 u64 values[5]; 3832 3833 lockdep_assert_held(&ctx->mutex); 3834 3835 count = perf_event_read_value(leader, &enabled, &running); 3836 3837 values[n++] = 1 + leader->nr_siblings; 3838 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3839 values[n++] = enabled; 3840 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3841 values[n++] = running; 3842 values[n++] = count; 3843 if (read_format & PERF_FORMAT_ID) 3844 values[n++] = primary_event_id(leader); 3845 3846 size = n * sizeof(u64); 3847 3848 if (copy_to_user(buf, values, size)) 3849 return -EFAULT; 3850 3851 ret = size; 3852 3853 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3854 n = 0; 3855 3856 values[n++] = perf_event_read_value(sub, &enabled, &running); 3857 if (read_format & PERF_FORMAT_ID) 3858 values[n++] = primary_event_id(sub); 3859 3860 size = n * sizeof(u64); 3861 3862 if (copy_to_user(buf + ret, values, size)) { 3863 return -EFAULT; 3864 } 3865 3866 ret += size; 3867 } 3868 3869 return ret; 3870 } 3871 3872 static int perf_event_read_one(struct perf_event *event, 3873 u64 read_format, char __user *buf) 3874 { 3875 u64 enabled, running; 3876 u64 values[4]; 3877 int n = 0; 3878 3879 values[n++] = perf_event_read_value(event, &enabled, &running); 3880 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3881 values[n++] = enabled; 3882 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3883 values[n++] = running; 3884 if (read_format & PERF_FORMAT_ID) 3885 values[n++] = primary_event_id(event); 3886 3887 if (copy_to_user(buf, values, n * sizeof(u64))) 3888 return -EFAULT; 3889 3890 return n * sizeof(u64); 3891 } 3892 3893 static bool is_event_hup(struct perf_event *event) 3894 { 3895 bool no_children; 3896 3897 if (event->state != PERF_EVENT_STATE_EXIT) 3898 return false; 3899 3900 mutex_lock(&event->child_mutex); 3901 no_children = list_empty(&event->child_list); 3902 mutex_unlock(&event->child_mutex); 3903 return no_children; 3904 } 3905 3906 /* 3907 * Read the performance event - simple non blocking version for now 3908 */ 3909 static ssize_t 3910 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3911 { 3912 u64 read_format = event->attr.read_format; 3913 int ret; 3914 3915 /* 3916 * Return end-of-file for a read on a event that is in 3917 * error state (i.e. because it was pinned but it couldn't be 3918 * scheduled on to the CPU at some point). 3919 */ 3920 if (event->state == PERF_EVENT_STATE_ERROR) 3921 return 0; 3922 3923 if (count < event->read_size) 3924 return -ENOSPC; 3925 3926 WARN_ON_ONCE(event->ctx->parent_ctx); 3927 if (read_format & PERF_FORMAT_GROUP) 3928 ret = perf_event_read_group(event, read_format, buf); 3929 else 3930 ret = perf_event_read_one(event, read_format, buf); 3931 3932 return ret; 3933 } 3934 3935 static ssize_t 3936 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3937 { 3938 struct perf_event *event = file->private_data; 3939 struct perf_event_context *ctx; 3940 int ret; 3941 3942 ctx = perf_event_ctx_lock(event); 3943 ret = perf_read_hw(event, buf, count); 3944 perf_event_ctx_unlock(event, ctx); 3945 3946 return ret; 3947 } 3948 3949 static unsigned int perf_poll(struct file *file, poll_table *wait) 3950 { 3951 struct perf_event *event = file->private_data; 3952 struct ring_buffer *rb; 3953 unsigned int events = POLLHUP; 3954 3955 poll_wait(file, &event->waitq, wait); 3956 3957 if (is_event_hup(event)) 3958 return events; 3959 3960 /* 3961 * Pin the event->rb by taking event->mmap_mutex; otherwise 3962 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3963 */ 3964 mutex_lock(&event->mmap_mutex); 3965 rb = event->rb; 3966 if (rb) 3967 events = atomic_xchg(&rb->poll, 0); 3968 mutex_unlock(&event->mmap_mutex); 3969 return events; 3970 } 3971 3972 static void _perf_event_reset(struct perf_event *event) 3973 { 3974 (void)perf_event_read(event); 3975 local64_set(&event->count, 0); 3976 perf_event_update_userpage(event); 3977 } 3978 3979 /* 3980 * Holding the top-level event's child_mutex means that any 3981 * descendant process that has inherited this event will block 3982 * in sync_child_event if it goes to exit, thus satisfying the 3983 * task existence requirements of perf_event_enable/disable. 3984 */ 3985 static void perf_event_for_each_child(struct perf_event *event, 3986 void (*func)(struct perf_event *)) 3987 { 3988 struct perf_event *child; 3989 3990 WARN_ON_ONCE(event->ctx->parent_ctx); 3991 3992 mutex_lock(&event->child_mutex); 3993 func(event); 3994 list_for_each_entry(child, &event->child_list, child_list) 3995 func(child); 3996 mutex_unlock(&event->child_mutex); 3997 } 3998 3999 static void perf_event_for_each(struct perf_event *event, 4000 void (*func)(struct perf_event *)) 4001 { 4002 struct perf_event_context *ctx = event->ctx; 4003 struct perf_event *sibling; 4004 4005 lockdep_assert_held(&ctx->mutex); 4006 4007 event = event->group_leader; 4008 4009 perf_event_for_each_child(event, func); 4010 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4011 perf_event_for_each_child(sibling, func); 4012 } 4013 4014 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4015 { 4016 struct perf_event_context *ctx = event->ctx; 4017 int ret = 0, active; 4018 u64 value; 4019 4020 if (!is_sampling_event(event)) 4021 return -EINVAL; 4022 4023 if (copy_from_user(&value, arg, sizeof(value))) 4024 return -EFAULT; 4025 4026 if (!value) 4027 return -EINVAL; 4028 4029 raw_spin_lock_irq(&ctx->lock); 4030 if (event->attr.freq) { 4031 if (value > sysctl_perf_event_sample_rate) { 4032 ret = -EINVAL; 4033 goto unlock; 4034 } 4035 4036 event->attr.sample_freq = value; 4037 } else { 4038 event->attr.sample_period = value; 4039 event->hw.sample_period = value; 4040 } 4041 4042 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4043 if (active) { 4044 perf_pmu_disable(ctx->pmu); 4045 event->pmu->stop(event, PERF_EF_UPDATE); 4046 } 4047 4048 local64_set(&event->hw.period_left, 0); 4049 4050 if (active) { 4051 event->pmu->start(event, PERF_EF_RELOAD); 4052 perf_pmu_enable(ctx->pmu); 4053 } 4054 4055 unlock: 4056 raw_spin_unlock_irq(&ctx->lock); 4057 4058 return ret; 4059 } 4060 4061 static const struct file_operations perf_fops; 4062 4063 static inline int perf_fget_light(int fd, struct fd *p) 4064 { 4065 struct fd f = fdget(fd); 4066 if (!f.file) 4067 return -EBADF; 4068 4069 if (f.file->f_op != &perf_fops) { 4070 fdput(f); 4071 return -EBADF; 4072 } 4073 *p = f; 4074 return 0; 4075 } 4076 4077 static int perf_event_set_output(struct perf_event *event, 4078 struct perf_event *output_event); 4079 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4081 4082 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4083 { 4084 void (*func)(struct perf_event *); 4085 u32 flags = arg; 4086 4087 switch (cmd) { 4088 case PERF_EVENT_IOC_ENABLE: 4089 func = _perf_event_enable; 4090 break; 4091 case PERF_EVENT_IOC_DISABLE: 4092 func = _perf_event_disable; 4093 break; 4094 case PERF_EVENT_IOC_RESET: 4095 func = _perf_event_reset; 4096 break; 4097 4098 case PERF_EVENT_IOC_REFRESH: 4099 return _perf_event_refresh(event, arg); 4100 4101 case PERF_EVENT_IOC_PERIOD: 4102 return perf_event_period(event, (u64 __user *)arg); 4103 4104 case PERF_EVENT_IOC_ID: 4105 { 4106 u64 id = primary_event_id(event); 4107 4108 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4109 return -EFAULT; 4110 return 0; 4111 } 4112 4113 case PERF_EVENT_IOC_SET_OUTPUT: 4114 { 4115 int ret; 4116 if (arg != -1) { 4117 struct perf_event *output_event; 4118 struct fd output; 4119 ret = perf_fget_light(arg, &output); 4120 if (ret) 4121 return ret; 4122 output_event = output.file->private_data; 4123 ret = perf_event_set_output(event, output_event); 4124 fdput(output); 4125 } else { 4126 ret = perf_event_set_output(event, NULL); 4127 } 4128 return ret; 4129 } 4130 4131 case PERF_EVENT_IOC_SET_FILTER: 4132 return perf_event_set_filter(event, (void __user *)arg); 4133 4134 case PERF_EVENT_IOC_SET_BPF: 4135 return perf_event_set_bpf_prog(event, arg); 4136 4137 default: 4138 return -ENOTTY; 4139 } 4140 4141 if (flags & PERF_IOC_FLAG_GROUP) 4142 perf_event_for_each(event, func); 4143 else 4144 perf_event_for_each_child(event, func); 4145 4146 return 0; 4147 } 4148 4149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4150 { 4151 struct perf_event *event = file->private_data; 4152 struct perf_event_context *ctx; 4153 long ret; 4154 4155 ctx = perf_event_ctx_lock(event); 4156 ret = _perf_ioctl(event, cmd, arg); 4157 perf_event_ctx_unlock(event, ctx); 4158 4159 return ret; 4160 } 4161 4162 #ifdef CONFIG_COMPAT 4163 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4164 unsigned long arg) 4165 { 4166 switch (_IOC_NR(cmd)) { 4167 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4168 case _IOC_NR(PERF_EVENT_IOC_ID): 4169 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4170 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4171 cmd &= ~IOCSIZE_MASK; 4172 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4173 } 4174 break; 4175 } 4176 return perf_ioctl(file, cmd, arg); 4177 } 4178 #else 4179 # define perf_compat_ioctl NULL 4180 #endif 4181 4182 int perf_event_task_enable(void) 4183 { 4184 struct perf_event_context *ctx; 4185 struct perf_event *event; 4186 4187 mutex_lock(¤t->perf_event_mutex); 4188 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4189 ctx = perf_event_ctx_lock(event); 4190 perf_event_for_each_child(event, _perf_event_enable); 4191 perf_event_ctx_unlock(event, ctx); 4192 } 4193 mutex_unlock(¤t->perf_event_mutex); 4194 4195 return 0; 4196 } 4197 4198 int perf_event_task_disable(void) 4199 { 4200 struct perf_event_context *ctx; 4201 struct perf_event *event; 4202 4203 mutex_lock(¤t->perf_event_mutex); 4204 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4205 ctx = perf_event_ctx_lock(event); 4206 perf_event_for_each_child(event, _perf_event_disable); 4207 perf_event_ctx_unlock(event, ctx); 4208 } 4209 mutex_unlock(¤t->perf_event_mutex); 4210 4211 return 0; 4212 } 4213 4214 static int perf_event_index(struct perf_event *event) 4215 { 4216 if (event->hw.state & PERF_HES_STOPPED) 4217 return 0; 4218 4219 if (event->state != PERF_EVENT_STATE_ACTIVE) 4220 return 0; 4221 4222 return event->pmu->event_idx(event); 4223 } 4224 4225 static void calc_timer_values(struct perf_event *event, 4226 u64 *now, 4227 u64 *enabled, 4228 u64 *running) 4229 { 4230 u64 ctx_time; 4231 4232 *now = perf_clock(); 4233 ctx_time = event->shadow_ctx_time + *now; 4234 *enabled = ctx_time - event->tstamp_enabled; 4235 *running = ctx_time - event->tstamp_running; 4236 } 4237 4238 static void perf_event_init_userpage(struct perf_event *event) 4239 { 4240 struct perf_event_mmap_page *userpg; 4241 struct ring_buffer *rb; 4242 4243 rcu_read_lock(); 4244 rb = rcu_dereference(event->rb); 4245 if (!rb) 4246 goto unlock; 4247 4248 userpg = rb->user_page; 4249 4250 /* Allow new userspace to detect that bit 0 is deprecated */ 4251 userpg->cap_bit0_is_deprecated = 1; 4252 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4253 userpg->data_offset = PAGE_SIZE; 4254 userpg->data_size = perf_data_size(rb); 4255 4256 unlock: 4257 rcu_read_unlock(); 4258 } 4259 4260 void __weak arch_perf_update_userpage( 4261 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4262 { 4263 } 4264 4265 /* 4266 * Callers need to ensure there can be no nesting of this function, otherwise 4267 * the seqlock logic goes bad. We can not serialize this because the arch 4268 * code calls this from NMI context. 4269 */ 4270 void perf_event_update_userpage(struct perf_event *event) 4271 { 4272 struct perf_event_mmap_page *userpg; 4273 struct ring_buffer *rb; 4274 u64 enabled, running, now; 4275 4276 rcu_read_lock(); 4277 rb = rcu_dereference(event->rb); 4278 if (!rb) 4279 goto unlock; 4280 4281 /* 4282 * compute total_time_enabled, total_time_running 4283 * based on snapshot values taken when the event 4284 * was last scheduled in. 4285 * 4286 * we cannot simply called update_context_time() 4287 * because of locking issue as we can be called in 4288 * NMI context 4289 */ 4290 calc_timer_values(event, &now, &enabled, &running); 4291 4292 userpg = rb->user_page; 4293 /* 4294 * Disable preemption so as to not let the corresponding user-space 4295 * spin too long if we get preempted. 4296 */ 4297 preempt_disable(); 4298 ++userpg->lock; 4299 barrier(); 4300 userpg->index = perf_event_index(event); 4301 userpg->offset = perf_event_count(event); 4302 if (userpg->index) 4303 userpg->offset -= local64_read(&event->hw.prev_count); 4304 4305 userpg->time_enabled = enabled + 4306 atomic64_read(&event->child_total_time_enabled); 4307 4308 userpg->time_running = running + 4309 atomic64_read(&event->child_total_time_running); 4310 4311 arch_perf_update_userpage(event, userpg, now); 4312 4313 barrier(); 4314 ++userpg->lock; 4315 preempt_enable(); 4316 unlock: 4317 rcu_read_unlock(); 4318 } 4319 4320 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4321 { 4322 struct perf_event *event = vma->vm_file->private_data; 4323 struct ring_buffer *rb; 4324 int ret = VM_FAULT_SIGBUS; 4325 4326 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4327 if (vmf->pgoff == 0) 4328 ret = 0; 4329 return ret; 4330 } 4331 4332 rcu_read_lock(); 4333 rb = rcu_dereference(event->rb); 4334 if (!rb) 4335 goto unlock; 4336 4337 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4338 goto unlock; 4339 4340 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4341 if (!vmf->page) 4342 goto unlock; 4343 4344 get_page(vmf->page); 4345 vmf->page->mapping = vma->vm_file->f_mapping; 4346 vmf->page->index = vmf->pgoff; 4347 4348 ret = 0; 4349 unlock: 4350 rcu_read_unlock(); 4351 4352 return ret; 4353 } 4354 4355 static void ring_buffer_attach(struct perf_event *event, 4356 struct ring_buffer *rb) 4357 { 4358 struct ring_buffer *old_rb = NULL; 4359 unsigned long flags; 4360 4361 if (event->rb) { 4362 /* 4363 * Should be impossible, we set this when removing 4364 * event->rb_entry and wait/clear when adding event->rb_entry. 4365 */ 4366 WARN_ON_ONCE(event->rcu_pending); 4367 4368 old_rb = event->rb; 4369 spin_lock_irqsave(&old_rb->event_lock, flags); 4370 list_del_rcu(&event->rb_entry); 4371 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4372 4373 event->rcu_batches = get_state_synchronize_rcu(); 4374 event->rcu_pending = 1; 4375 } 4376 4377 if (rb) { 4378 if (event->rcu_pending) { 4379 cond_synchronize_rcu(event->rcu_batches); 4380 event->rcu_pending = 0; 4381 } 4382 4383 spin_lock_irqsave(&rb->event_lock, flags); 4384 list_add_rcu(&event->rb_entry, &rb->event_list); 4385 spin_unlock_irqrestore(&rb->event_lock, flags); 4386 } 4387 4388 rcu_assign_pointer(event->rb, rb); 4389 4390 if (old_rb) { 4391 ring_buffer_put(old_rb); 4392 /* 4393 * Since we detached before setting the new rb, so that we 4394 * could attach the new rb, we could have missed a wakeup. 4395 * Provide it now. 4396 */ 4397 wake_up_all(&event->waitq); 4398 } 4399 } 4400 4401 static void ring_buffer_wakeup(struct perf_event *event) 4402 { 4403 struct ring_buffer *rb; 4404 4405 rcu_read_lock(); 4406 rb = rcu_dereference(event->rb); 4407 if (rb) { 4408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4409 wake_up_all(&event->waitq); 4410 } 4411 rcu_read_unlock(); 4412 } 4413 4414 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4415 { 4416 struct ring_buffer *rb; 4417 4418 rcu_read_lock(); 4419 rb = rcu_dereference(event->rb); 4420 if (rb) { 4421 if (!atomic_inc_not_zero(&rb->refcount)) 4422 rb = NULL; 4423 } 4424 rcu_read_unlock(); 4425 4426 return rb; 4427 } 4428 4429 void ring_buffer_put(struct ring_buffer *rb) 4430 { 4431 if (!atomic_dec_and_test(&rb->refcount)) 4432 return; 4433 4434 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4435 4436 call_rcu(&rb->rcu_head, rb_free_rcu); 4437 } 4438 4439 static void perf_mmap_open(struct vm_area_struct *vma) 4440 { 4441 struct perf_event *event = vma->vm_file->private_data; 4442 4443 atomic_inc(&event->mmap_count); 4444 atomic_inc(&event->rb->mmap_count); 4445 4446 if (vma->vm_pgoff) 4447 atomic_inc(&event->rb->aux_mmap_count); 4448 4449 if (event->pmu->event_mapped) 4450 event->pmu->event_mapped(event); 4451 } 4452 4453 /* 4454 * A buffer can be mmap()ed multiple times; either directly through the same 4455 * event, or through other events by use of perf_event_set_output(). 4456 * 4457 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4458 * the buffer here, where we still have a VM context. This means we need 4459 * to detach all events redirecting to us. 4460 */ 4461 static void perf_mmap_close(struct vm_area_struct *vma) 4462 { 4463 struct perf_event *event = vma->vm_file->private_data; 4464 4465 struct ring_buffer *rb = ring_buffer_get(event); 4466 struct user_struct *mmap_user = rb->mmap_user; 4467 int mmap_locked = rb->mmap_locked; 4468 unsigned long size = perf_data_size(rb); 4469 4470 if (event->pmu->event_unmapped) 4471 event->pmu->event_unmapped(event); 4472 4473 /* 4474 * rb->aux_mmap_count will always drop before rb->mmap_count and 4475 * event->mmap_count, so it is ok to use event->mmap_mutex to 4476 * serialize with perf_mmap here. 4477 */ 4478 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4479 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4480 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4481 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4482 4483 rb_free_aux(rb); 4484 mutex_unlock(&event->mmap_mutex); 4485 } 4486 4487 atomic_dec(&rb->mmap_count); 4488 4489 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4490 goto out_put; 4491 4492 ring_buffer_attach(event, NULL); 4493 mutex_unlock(&event->mmap_mutex); 4494 4495 /* If there's still other mmap()s of this buffer, we're done. */ 4496 if (atomic_read(&rb->mmap_count)) 4497 goto out_put; 4498 4499 /* 4500 * No other mmap()s, detach from all other events that might redirect 4501 * into the now unreachable buffer. Somewhat complicated by the 4502 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4503 */ 4504 again: 4505 rcu_read_lock(); 4506 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4507 if (!atomic_long_inc_not_zero(&event->refcount)) { 4508 /* 4509 * This event is en-route to free_event() which will 4510 * detach it and remove it from the list. 4511 */ 4512 continue; 4513 } 4514 rcu_read_unlock(); 4515 4516 mutex_lock(&event->mmap_mutex); 4517 /* 4518 * Check we didn't race with perf_event_set_output() which can 4519 * swizzle the rb from under us while we were waiting to 4520 * acquire mmap_mutex. 4521 * 4522 * If we find a different rb; ignore this event, a next 4523 * iteration will no longer find it on the list. We have to 4524 * still restart the iteration to make sure we're not now 4525 * iterating the wrong list. 4526 */ 4527 if (event->rb == rb) 4528 ring_buffer_attach(event, NULL); 4529 4530 mutex_unlock(&event->mmap_mutex); 4531 put_event(event); 4532 4533 /* 4534 * Restart the iteration; either we're on the wrong list or 4535 * destroyed its integrity by doing a deletion. 4536 */ 4537 goto again; 4538 } 4539 rcu_read_unlock(); 4540 4541 /* 4542 * It could be there's still a few 0-ref events on the list; they'll 4543 * get cleaned up by free_event() -- they'll also still have their 4544 * ref on the rb and will free it whenever they are done with it. 4545 * 4546 * Aside from that, this buffer is 'fully' detached and unmapped, 4547 * undo the VM accounting. 4548 */ 4549 4550 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4551 vma->vm_mm->pinned_vm -= mmap_locked; 4552 free_uid(mmap_user); 4553 4554 out_put: 4555 ring_buffer_put(rb); /* could be last */ 4556 } 4557 4558 static const struct vm_operations_struct perf_mmap_vmops = { 4559 .open = perf_mmap_open, 4560 .close = perf_mmap_close, /* non mergable */ 4561 .fault = perf_mmap_fault, 4562 .page_mkwrite = perf_mmap_fault, 4563 }; 4564 4565 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4566 { 4567 struct perf_event *event = file->private_data; 4568 unsigned long user_locked, user_lock_limit; 4569 struct user_struct *user = current_user(); 4570 unsigned long locked, lock_limit; 4571 struct ring_buffer *rb = NULL; 4572 unsigned long vma_size; 4573 unsigned long nr_pages; 4574 long user_extra = 0, extra = 0; 4575 int ret = 0, flags = 0; 4576 4577 /* 4578 * Don't allow mmap() of inherited per-task counters. This would 4579 * create a performance issue due to all children writing to the 4580 * same rb. 4581 */ 4582 if (event->cpu == -1 && event->attr.inherit) 4583 return -EINVAL; 4584 4585 if (!(vma->vm_flags & VM_SHARED)) 4586 return -EINVAL; 4587 4588 vma_size = vma->vm_end - vma->vm_start; 4589 4590 if (vma->vm_pgoff == 0) { 4591 nr_pages = (vma_size / PAGE_SIZE) - 1; 4592 } else { 4593 /* 4594 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4595 * mapped, all subsequent mappings should have the same size 4596 * and offset. Must be above the normal perf buffer. 4597 */ 4598 u64 aux_offset, aux_size; 4599 4600 if (!event->rb) 4601 return -EINVAL; 4602 4603 nr_pages = vma_size / PAGE_SIZE; 4604 4605 mutex_lock(&event->mmap_mutex); 4606 ret = -EINVAL; 4607 4608 rb = event->rb; 4609 if (!rb) 4610 goto aux_unlock; 4611 4612 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4613 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4614 4615 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4616 goto aux_unlock; 4617 4618 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4619 goto aux_unlock; 4620 4621 /* already mapped with a different offset */ 4622 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4623 goto aux_unlock; 4624 4625 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4626 goto aux_unlock; 4627 4628 /* already mapped with a different size */ 4629 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4630 goto aux_unlock; 4631 4632 if (!is_power_of_2(nr_pages)) 4633 goto aux_unlock; 4634 4635 if (!atomic_inc_not_zero(&rb->mmap_count)) 4636 goto aux_unlock; 4637 4638 if (rb_has_aux(rb)) { 4639 atomic_inc(&rb->aux_mmap_count); 4640 ret = 0; 4641 goto unlock; 4642 } 4643 4644 atomic_set(&rb->aux_mmap_count, 1); 4645 user_extra = nr_pages; 4646 4647 goto accounting; 4648 } 4649 4650 /* 4651 * If we have rb pages ensure they're a power-of-two number, so we 4652 * can do bitmasks instead of modulo. 4653 */ 4654 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4655 return -EINVAL; 4656 4657 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4658 return -EINVAL; 4659 4660 WARN_ON_ONCE(event->ctx->parent_ctx); 4661 again: 4662 mutex_lock(&event->mmap_mutex); 4663 if (event->rb) { 4664 if (event->rb->nr_pages != nr_pages) { 4665 ret = -EINVAL; 4666 goto unlock; 4667 } 4668 4669 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4670 /* 4671 * Raced against perf_mmap_close() through 4672 * perf_event_set_output(). Try again, hope for better 4673 * luck. 4674 */ 4675 mutex_unlock(&event->mmap_mutex); 4676 goto again; 4677 } 4678 4679 goto unlock; 4680 } 4681 4682 user_extra = nr_pages + 1; 4683 4684 accounting: 4685 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4686 4687 /* 4688 * Increase the limit linearly with more CPUs: 4689 */ 4690 user_lock_limit *= num_online_cpus(); 4691 4692 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4693 4694 if (user_locked > user_lock_limit) 4695 extra = user_locked - user_lock_limit; 4696 4697 lock_limit = rlimit(RLIMIT_MEMLOCK); 4698 lock_limit >>= PAGE_SHIFT; 4699 locked = vma->vm_mm->pinned_vm + extra; 4700 4701 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4702 !capable(CAP_IPC_LOCK)) { 4703 ret = -EPERM; 4704 goto unlock; 4705 } 4706 4707 WARN_ON(!rb && event->rb); 4708 4709 if (vma->vm_flags & VM_WRITE) 4710 flags |= RING_BUFFER_WRITABLE; 4711 4712 if (!rb) { 4713 rb = rb_alloc(nr_pages, 4714 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4715 event->cpu, flags); 4716 4717 if (!rb) { 4718 ret = -ENOMEM; 4719 goto unlock; 4720 } 4721 4722 atomic_set(&rb->mmap_count, 1); 4723 rb->mmap_user = get_current_user(); 4724 rb->mmap_locked = extra; 4725 4726 ring_buffer_attach(event, rb); 4727 4728 perf_event_init_userpage(event); 4729 perf_event_update_userpage(event); 4730 } else { 4731 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4732 event->attr.aux_watermark, flags); 4733 if (!ret) 4734 rb->aux_mmap_locked = extra; 4735 } 4736 4737 unlock: 4738 if (!ret) { 4739 atomic_long_add(user_extra, &user->locked_vm); 4740 vma->vm_mm->pinned_vm += extra; 4741 4742 atomic_inc(&event->mmap_count); 4743 } else if (rb) { 4744 atomic_dec(&rb->mmap_count); 4745 } 4746 aux_unlock: 4747 mutex_unlock(&event->mmap_mutex); 4748 4749 /* 4750 * Since pinned accounting is per vm we cannot allow fork() to copy our 4751 * vma. 4752 */ 4753 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4754 vma->vm_ops = &perf_mmap_vmops; 4755 4756 if (event->pmu->event_mapped) 4757 event->pmu->event_mapped(event); 4758 4759 return ret; 4760 } 4761 4762 static int perf_fasync(int fd, struct file *filp, int on) 4763 { 4764 struct inode *inode = file_inode(filp); 4765 struct perf_event *event = filp->private_data; 4766 int retval; 4767 4768 mutex_lock(&inode->i_mutex); 4769 retval = fasync_helper(fd, filp, on, &event->fasync); 4770 mutex_unlock(&inode->i_mutex); 4771 4772 if (retval < 0) 4773 return retval; 4774 4775 return 0; 4776 } 4777 4778 static const struct file_operations perf_fops = { 4779 .llseek = no_llseek, 4780 .release = perf_release, 4781 .read = perf_read, 4782 .poll = perf_poll, 4783 .unlocked_ioctl = perf_ioctl, 4784 .compat_ioctl = perf_compat_ioctl, 4785 .mmap = perf_mmap, 4786 .fasync = perf_fasync, 4787 }; 4788 4789 /* 4790 * Perf event wakeup 4791 * 4792 * If there's data, ensure we set the poll() state and publish everything 4793 * to user-space before waking everybody up. 4794 */ 4795 4796 void perf_event_wakeup(struct perf_event *event) 4797 { 4798 ring_buffer_wakeup(event); 4799 4800 if (event->pending_kill) { 4801 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4802 event->pending_kill = 0; 4803 } 4804 } 4805 4806 static void perf_pending_event(struct irq_work *entry) 4807 { 4808 struct perf_event *event = container_of(entry, 4809 struct perf_event, pending); 4810 int rctx; 4811 4812 rctx = perf_swevent_get_recursion_context(); 4813 /* 4814 * If we 'fail' here, that's OK, it means recursion is already disabled 4815 * and we won't recurse 'further'. 4816 */ 4817 4818 if (event->pending_disable) { 4819 event->pending_disable = 0; 4820 __perf_event_disable(event); 4821 } 4822 4823 if (event->pending_wakeup) { 4824 event->pending_wakeup = 0; 4825 perf_event_wakeup(event); 4826 } 4827 4828 if (rctx >= 0) 4829 perf_swevent_put_recursion_context(rctx); 4830 } 4831 4832 /* 4833 * We assume there is only KVM supporting the callbacks. 4834 * Later on, we might change it to a list if there is 4835 * another virtualization implementation supporting the callbacks. 4836 */ 4837 struct perf_guest_info_callbacks *perf_guest_cbs; 4838 4839 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4840 { 4841 perf_guest_cbs = cbs; 4842 return 0; 4843 } 4844 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4845 4846 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4847 { 4848 perf_guest_cbs = NULL; 4849 return 0; 4850 } 4851 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4852 4853 static void 4854 perf_output_sample_regs(struct perf_output_handle *handle, 4855 struct pt_regs *regs, u64 mask) 4856 { 4857 int bit; 4858 4859 for_each_set_bit(bit, (const unsigned long *) &mask, 4860 sizeof(mask) * BITS_PER_BYTE) { 4861 u64 val; 4862 4863 val = perf_reg_value(regs, bit); 4864 perf_output_put(handle, val); 4865 } 4866 } 4867 4868 static void perf_sample_regs_user(struct perf_regs *regs_user, 4869 struct pt_regs *regs, 4870 struct pt_regs *regs_user_copy) 4871 { 4872 if (user_mode(regs)) { 4873 regs_user->abi = perf_reg_abi(current); 4874 regs_user->regs = regs; 4875 } else if (current->mm) { 4876 perf_get_regs_user(regs_user, regs, regs_user_copy); 4877 } else { 4878 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4879 regs_user->regs = NULL; 4880 } 4881 } 4882 4883 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4884 struct pt_regs *regs) 4885 { 4886 regs_intr->regs = regs; 4887 regs_intr->abi = perf_reg_abi(current); 4888 } 4889 4890 4891 /* 4892 * Get remaining task size from user stack pointer. 4893 * 4894 * It'd be better to take stack vma map and limit this more 4895 * precisly, but there's no way to get it safely under interrupt, 4896 * so using TASK_SIZE as limit. 4897 */ 4898 static u64 perf_ustack_task_size(struct pt_regs *regs) 4899 { 4900 unsigned long addr = perf_user_stack_pointer(regs); 4901 4902 if (!addr || addr >= TASK_SIZE) 4903 return 0; 4904 4905 return TASK_SIZE - addr; 4906 } 4907 4908 static u16 4909 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4910 struct pt_regs *regs) 4911 { 4912 u64 task_size; 4913 4914 /* No regs, no stack pointer, no dump. */ 4915 if (!regs) 4916 return 0; 4917 4918 /* 4919 * Check if we fit in with the requested stack size into the: 4920 * - TASK_SIZE 4921 * If we don't, we limit the size to the TASK_SIZE. 4922 * 4923 * - remaining sample size 4924 * If we don't, we customize the stack size to 4925 * fit in to the remaining sample size. 4926 */ 4927 4928 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4929 stack_size = min(stack_size, (u16) task_size); 4930 4931 /* Current header size plus static size and dynamic size. */ 4932 header_size += 2 * sizeof(u64); 4933 4934 /* Do we fit in with the current stack dump size? */ 4935 if ((u16) (header_size + stack_size) < header_size) { 4936 /* 4937 * If we overflow the maximum size for the sample, 4938 * we customize the stack dump size to fit in. 4939 */ 4940 stack_size = USHRT_MAX - header_size - sizeof(u64); 4941 stack_size = round_up(stack_size, sizeof(u64)); 4942 } 4943 4944 return stack_size; 4945 } 4946 4947 static void 4948 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4949 struct pt_regs *regs) 4950 { 4951 /* Case of a kernel thread, nothing to dump */ 4952 if (!regs) { 4953 u64 size = 0; 4954 perf_output_put(handle, size); 4955 } else { 4956 unsigned long sp; 4957 unsigned int rem; 4958 u64 dyn_size; 4959 4960 /* 4961 * We dump: 4962 * static size 4963 * - the size requested by user or the best one we can fit 4964 * in to the sample max size 4965 * data 4966 * - user stack dump data 4967 * dynamic size 4968 * - the actual dumped size 4969 */ 4970 4971 /* Static size. */ 4972 perf_output_put(handle, dump_size); 4973 4974 /* Data. */ 4975 sp = perf_user_stack_pointer(regs); 4976 rem = __output_copy_user(handle, (void *) sp, dump_size); 4977 dyn_size = dump_size - rem; 4978 4979 perf_output_skip(handle, rem); 4980 4981 /* Dynamic size. */ 4982 perf_output_put(handle, dyn_size); 4983 } 4984 } 4985 4986 static void __perf_event_header__init_id(struct perf_event_header *header, 4987 struct perf_sample_data *data, 4988 struct perf_event *event) 4989 { 4990 u64 sample_type = event->attr.sample_type; 4991 4992 data->type = sample_type; 4993 header->size += event->id_header_size; 4994 4995 if (sample_type & PERF_SAMPLE_TID) { 4996 /* namespace issues */ 4997 data->tid_entry.pid = perf_event_pid(event, current); 4998 data->tid_entry.tid = perf_event_tid(event, current); 4999 } 5000 5001 if (sample_type & PERF_SAMPLE_TIME) 5002 data->time = perf_event_clock(event); 5003 5004 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5005 data->id = primary_event_id(event); 5006 5007 if (sample_type & PERF_SAMPLE_STREAM_ID) 5008 data->stream_id = event->id; 5009 5010 if (sample_type & PERF_SAMPLE_CPU) { 5011 data->cpu_entry.cpu = raw_smp_processor_id(); 5012 data->cpu_entry.reserved = 0; 5013 } 5014 } 5015 5016 void perf_event_header__init_id(struct perf_event_header *header, 5017 struct perf_sample_data *data, 5018 struct perf_event *event) 5019 { 5020 if (event->attr.sample_id_all) 5021 __perf_event_header__init_id(header, data, event); 5022 } 5023 5024 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5025 struct perf_sample_data *data) 5026 { 5027 u64 sample_type = data->type; 5028 5029 if (sample_type & PERF_SAMPLE_TID) 5030 perf_output_put(handle, data->tid_entry); 5031 5032 if (sample_type & PERF_SAMPLE_TIME) 5033 perf_output_put(handle, data->time); 5034 5035 if (sample_type & PERF_SAMPLE_ID) 5036 perf_output_put(handle, data->id); 5037 5038 if (sample_type & PERF_SAMPLE_STREAM_ID) 5039 perf_output_put(handle, data->stream_id); 5040 5041 if (sample_type & PERF_SAMPLE_CPU) 5042 perf_output_put(handle, data->cpu_entry); 5043 5044 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5045 perf_output_put(handle, data->id); 5046 } 5047 5048 void perf_event__output_id_sample(struct perf_event *event, 5049 struct perf_output_handle *handle, 5050 struct perf_sample_data *sample) 5051 { 5052 if (event->attr.sample_id_all) 5053 __perf_event__output_id_sample(handle, sample); 5054 } 5055 5056 static void perf_output_read_one(struct perf_output_handle *handle, 5057 struct perf_event *event, 5058 u64 enabled, u64 running) 5059 { 5060 u64 read_format = event->attr.read_format; 5061 u64 values[4]; 5062 int n = 0; 5063 5064 values[n++] = perf_event_count(event); 5065 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5066 values[n++] = enabled + 5067 atomic64_read(&event->child_total_time_enabled); 5068 } 5069 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5070 values[n++] = running + 5071 atomic64_read(&event->child_total_time_running); 5072 } 5073 if (read_format & PERF_FORMAT_ID) 5074 values[n++] = primary_event_id(event); 5075 5076 __output_copy(handle, values, n * sizeof(u64)); 5077 } 5078 5079 /* 5080 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5081 */ 5082 static void perf_output_read_group(struct perf_output_handle *handle, 5083 struct perf_event *event, 5084 u64 enabled, u64 running) 5085 { 5086 struct perf_event *leader = event->group_leader, *sub; 5087 u64 read_format = event->attr.read_format; 5088 u64 values[5]; 5089 int n = 0; 5090 5091 values[n++] = 1 + leader->nr_siblings; 5092 5093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5094 values[n++] = enabled; 5095 5096 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5097 values[n++] = running; 5098 5099 if (leader != event) 5100 leader->pmu->read(leader); 5101 5102 values[n++] = perf_event_count(leader); 5103 if (read_format & PERF_FORMAT_ID) 5104 values[n++] = primary_event_id(leader); 5105 5106 __output_copy(handle, values, n * sizeof(u64)); 5107 5108 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5109 n = 0; 5110 5111 if ((sub != event) && 5112 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5113 sub->pmu->read(sub); 5114 5115 values[n++] = perf_event_count(sub); 5116 if (read_format & PERF_FORMAT_ID) 5117 values[n++] = primary_event_id(sub); 5118 5119 __output_copy(handle, values, n * sizeof(u64)); 5120 } 5121 } 5122 5123 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5124 PERF_FORMAT_TOTAL_TIME_RUNNING) 5125 5126 static void perf_output_read(struct perf_output_handle *handle, 5127 struct perf_event *event) 5128 { 5129 u64 enabled = 0, running = 0, now; 5130 u64 read_format = event->attr.read_format; 5131 5132 /* 5133 * compute total_time_enabled, total_time_running 5134 * based on snapshot values taken when the event 5135 * was last scheduled in. 5136 * 5137 * we cannot simply called update_context_time() 5138 * because of locking issue as we are called in 5139 * NMI context 5140 */ 5141 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5142 calc_timer_values(event, &now, &enabled, &running); 5143 5144 if (event->attr.read_format & PERF_FORMAT_GROUP) 5145 perf_output_read_group(handle, event, enabled, running); 5146 else 5147 perf_output_read_one(handle, event, enabled, running); 5148 } 5149 5150 void perf_output_sample(struct perf_output_handle *handle, 5151 struct perf_event_header *header, 5152 struct perf_sample_data *data, 5153 struct perf_event *event) 5154 { 5155 u64 sample_type = data->type; 5156 5157 perf_output_put(handle, *header); 5158 5159 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5160 perf_output_put(handle, data->id); 5161 5162 if (sample_type & PERF_SAMPLE_IP) 5163 perf_output_put(handle, data->ip); 5164 5165 if (sample_type & PERF_SAMPLE_TID) 5166 perf_output_put(handle, data->tid_entry); 5167 5168 if (sample_type & PERF_SAMPLE_TIME) 5169 perf_output_put(handle, data->time); 5170 5171 if (sample_type & PERF_SAMPLE_ADDR) 5172 perf_output_put(handle, data->addr); 5173 5174 if (sample_type & PERF_SAMPLE_ID) 5175 perf_output_put(handle, data->id); 5176 5177 if (sample_type & PERF_SAMPLE_STREAM_ID) 5178 perf_output_put(handle, data->stream_id); 5179 5180 if (sample_type & PERF_SAMPLE_CPU) 5181 perf_output_put(handle, data->cpu_entry); 5182 5183 if (sample_type & PERF_SAMPLE_PERIOD) 5184 perf_output_put(handle, data->period); 5185 5186 if (sample_type & PERF_SAMPLE_READ) 5187 perf_output_read(handle, event); 5188 5189 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5190 if (data->callchain) { 5191 int size = 1; 5192 5193 if (data->callchain) 5194 size += data->callchain->nr; 5195 5196 size *= sizeof(u64); 5197 5198 __output_copy(handle, data->callchain, size); 5199 } else { 5200 u64 nr = 0; 5201 perf_output_put(handle, nr); 5202 } 5203 } 5204 5205 if (sample_type & PERF_SAMPLE_RAW) { 5206 if (data->raw) { 5207 perf_output_put(handle, data->raw->size); 5208 __output_copy(handle, data->raw->data, 5209 data->raw->size); 5210 } else { 5211 struct { 5212 u32 size; 5213 u32 data; 5214 } raw = { 5215 .size = sizeof(u32), 5216 .data = 0, 5217 }; 5218 perf_output_put(handle, raw); 5219 } 5220 } 5221 5222 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5223 if (data->br_stack) { 5224 size_t size; 5225 5226 size = data->br_stack->nr 5227 * sizeof(struct perf_branch_entry); 5228 5229 perf_output_put(handle, data->br_stack->nr); 5230 perf_output_copy(handle, data->br_stack->entries, size); 5231 } else { 5232 /* 5233 * we always store at least the value of nr 5234 */ 5235 u64 nr = 0; 5236 perf_output_put(handle, nr); 5237 } 5238 } 5239 5240 if (sample_type & PERF_SAMPLE_REGS_USER) { 5241 u64 abi = data->regs_user.abi; 5242 5243 /* 5244 * If there are no regs to dump, notice it through 5245 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5246 */ 5247 perf_output_put(handle, abi); 5248 5249 if (abi) { 5250 u64 mask = event->attr.sample_regs_user; 5251 perf_output_sample_regs(handle, 5252 data->regs_user.regs, 5253 mask); 5254 } 5255 } 5256 5257 if (sample_type & PERF_SAMPLE_STACK_USER) { 5258 perf_output_sample_ustack(handle, 5259 data->stack_user_size, 5260 data->regs_user.regs); 5261 } 5262 5263 if (sample_type & PERF_SAMPLE_WEIGHT) 5264 perf_output_put(handle, data->weight); 5265 5266 if (sample_type & PERF_SAMPLE_DATA_SRC) 5267 perf_output_put(handle, data->data_src.val); 5268 5269 if (sample_type & PERF_SAMPLE_TRANSACTION) 5270 perf_output_put(handle, data->txn); 5271 5272 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5273 u64 abi = data->regs_intr.abi; 5274 /* 5275 * If there are no regs to dump, notice it through 5276 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5277 */ 5278 perf_output_put(handle, abi); 5279 5280 if (abi) { 5281 u64 mask = event->attr.sample_regs_intr; 5282 5283 perf_output_sample_regs(handle, 5284 data->regs_intr.regs, 5285 mask); 5286 } 5287 } 5288 5289 if (!event->attr.watermark) { 5290 int wakeup_events = event->attr.wakeup_events; 5291 5292 if (wakeup_events) { 5293 struct ring_buffer *rb = handle->rb; 5294 int events = local_inc_return(&rb->events); 5295 5296 if (events >= wakeup_events) { 5297 local_sub(wakeup_events, &rb->events); 5298 local_inc(&rb->wakeup); 5299 } 5300 } 5301 } 5302 } 5303 5304 void perf_prepare_sample(struct perf_event_header *header, 5305 struct perf_sample_data *data, 5306 struct perf_event *event, 5307 struct pt_regs *regs) 5308 { 5309 u64 sample_type = event->attr.sample_type; 5310 5311 header->type = PERF_RECORD_SAMPLE; 5312 header->size = sizeof(*header) + event->header_size; 5313 5314 header->misc = 0; 5315 header->misc |= perf_misc_flags(regs); 5316 5317 __perf_event_header__init_id(header, data, event); 5318 5319 if (sample_type & PERF_SAMPLE_IP) 5320 data->ip = perf_instruction_pointer(regs); 5321 5322 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5323 int size = 1; 5324 5325 data->callchain = perf_callchain(event, regs); 5326 5327 if (data->callchain) 5328 size += data->callchain->nr; 5329 5330 header->size += size * sizeof(u64); 5331 } 5332 5333 if (sample_type & PERF_SAMPLE_RAW) { 5334 int size = sizeof(u32); 5335 5336 if (data->raw) 5337 size += data->raw->size; 5338 else 5339 size += sizeof(u32); 5340 5341 WARN_ON_ONCE(size & (sizeof(u64)-1)); 5342 header->size += size; 5343 } 5344 5345 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5346 int size = sizeof(u64); /* nr */ 5347 if (data->br_stack) { 5348 size += data->br_stack->nr 5349 * sizeof(struct perf_branch_entry); 5350 } 5351 header->size += size; 5352 } 5353 5354 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5355 perf_sample_regs_user(&data->regs_user, regs, 5356 &data->regs_user_copy); 5357 5358 if (sample_type & PERF_SAMPLE_REGS_USER) { 5359 /* regs dump ABI info */ 5360 int size = sizeof(u64); 5361 5362 if (data->regs_user.regs) { 5363 u64 mask = event->attr.sample_regs_user; 5364 size += hweight64(mask) * sizeof(u64); 5365 } 5366 5367 header->size += size; 5368 } 5369 5370 if (sample_type & PERF_SAMPLE_STACK_USER) { 5371 /* 5372 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5373 * processed as the last one or have additional check added 5374 * in case new sample type is added, because we could eat 5375 * up the rest of the sample size. 5376 */ 5377 u16 stack_size = event->attr.sample_stack_user; 5378 u16 size = sizeof(u64); 5379 5380 stack_size = perf_sample_ustack_size(stack_size, header->size, 5381 data->regs_user.regs); 5382 5383 /* 5384 * If there is something to dump, add space for the dump 5385 * itself and for the field that tells the dynamic size, 5386 * which is how many have been actually dumped. 5387 */ 5388 if (stack_size) 5389 size += sizeof(u64) + stack_size; 5390 5391 data->stack_user_size = stack_size; 5392 header->size += size; 5393 } 5394 5395 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5396 /* regs dump ABI info */ 5397 int size = sizeof(u64); 5398 5399 perf_sample_regs_intr(&data->regs_intr, regs); 5400 5401 if (data->regs_intr.regs) { 5402 u64 mask = event->attr.sample_regs_intr; 5403 5404 size += hweight64(mask) * sizeof(u64); 5405 } 5406 5407 header->size += size; 5408 } 5409 } 5410 5411 void perf_event_output(struct perf_event *event, 5412 struct perf_sample_data *data, 5413 struct pt_regs *regs) 5414 { 5415 struct perf_output_handle handle; 5416 struct perf_event_header header; 5417 5418 /* protect the callchain buffers */ 5419 rcu_read_lock(); 5420 5421 perf_prepare_sample(&header, data, event, regs); 5422 5423 if (perf_output_begin(&handle, event, header.size)) 5424 goto exit; 5425 5426 perf_output_sample(&handle, &header, data, event); 5427 5428 perf_output_end(&handle); 5429 5430 exit: 5431 rcu_read_unlock(); 5432 } 5433 5434 /* 5435 * read event_id 5436 */ 5437 5438 struct perf_read_event { 5439 struct perf_event_header header; 5440 5441 u32 pid; 5442 u32 tid; 5443 }; 5444 5445 static void 5446 perf_event_read_event(struct perf_event *event, 5447 struct task_struct *task) 5448 { 5449 struct perf_output_handle handle; 5450 struct perf_sample_data sample; 5451 struct perf_read_event read_event = { 5452 .header = { 5453 .type = PERF_RECORD_READ, 5454 .misc = 0, 5455 .size = sizeof(read_event) + event->read_size, 5456 }, 5457 .pid = perf_event_pid(event, task), 5458 .tid = perf_event_tid(event, task), 5459 }; 5460 int ret; 5461 5462 perf_event_header__init_id(&read_event.header, &sample, event); 5463 ret = perf_output_begin(&handle, event, read_event.header.size); 5464 if (ret) 5465 return; 5466 5467 perf_output_put(&handle, read_event); 5468 perf_output_read(&handle, event); 5469 perf_event__output_id_sample(event, &handle, &sample); 5470 5471 perf_output_end(&handle); 5472 } 5473 5474 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5475 5476 static void 5477 perf_event_aux_ctx(struct perf_event_context *ctx, 5478 perf_event_aux_output_cb output, 5479 void *data) 5480 { 5481 struct perf_event *event; 5482 5483 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5484 if (event->state < PERF_EVENT_STATE_INACTIVE) 5485 continue; 5486 if (!event_filter_match(event)) 5487 continue; 5488 output(event, data); 5489 } 5490 } 5491 5492 static void 5493 perf_event_aux(perf_event_aux_output_cb output, void *data, 5494 struct perf_event_context *task_ctx) 5495 { 5496 struct perf_cpu_context *cpuctx; 5497 struct perf_event_context *ctx; 5498 struct pmu *pmu; 5499 int ctxn; 5500 5501 rcu_read_lock(); 5502 list_for_each_entry_rcu(pmu, &pmus, entry) { 5503 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5504 if (cpuctx->unique_pmu != pmu) 5505 goto next; 5506 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5507 if (task_ctx) 5508 goto next; 5509 ctxn = pmu->task_ctx_nr; 5510 if (ctxn < 0) 5511 goto next; 5512 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5513 if (ctx) 5514 perf_event_aux_ctx(ctx, output, data); 5515 next: 5516 put_cpu_ptr(pmu->pmu_cpu_context); 5517 } 5518 5519 if (task_ctx) { 5520 preempt_disable(); 5521 perf_event_aux_ctx(task_ctx, output, data); 5522 preempt_enable(); 5523 } 5524 rcu_read_unlock(); 5525 } 5526 5527 /* 5528 * task tracking -- fork/exit 5529 * 5530 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5531 */ 5532 5533 struct perf_task_event { 5534 struct task_struct *task; 5535 struct perf_event_context *task_ctx; 5536 5537 struct { 5538 struct perf_event_header header; 5539 5540 u32 pid; 5541 u32 ppid; 5542 u32 tid; 5543 u32 ptid; 5544 u64 time; 5545 } event_id; 5546 }; 5547 5548 static int perf_event_task_match(struct perf_event *event) 5549 { 5550 return event->attr.comm || event->attr.mmap || 5551 event->attr.mmap2 || event->attr.mmap_data || 5552 event->attr.task; 5553 } 5554 5555 static void perf_event_task_output(struct perf_event *event, 5556 void *data) 5557 { 5558 struct perf_task_event *task_event = data; 5559 struct perf_output_handle handle; 5560 struct perf_sample_data sample; 5561 struct task_struct *task = task_event->task; 5562 int ret, size = task_event->event_id.header.size; 5563 5564 if (!perf_event_task_match(event)) 5565 return; 5566 5567 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5568 5569 ret = perf_output_begin(&handle, event, 5570 task_event->event_id.header.size); 5571 if (ret) 5572 goto out; 5573 5574 task_event->event_id.pid = perf_event_pid(event, task); 5575 task_event->event_id.ppid = perf_event_pid(event, current); 5576 5577 task_event->event_id.tid = perf_event_tid(event, task); 5578 task_event->event_id.ptid = perf_event_tid(event, current); 5579 5580 task_event->event_id.time = perf_event_clock(event); 5581 5582 perf_output_put(&handle, task_event->event_id); 5583 5584 perf_event__output_id_sample(event, &handle, &sample); 5585 5586 perf_output_end(&handle); 5587 out: 5588 task_event->event_id.header.size = size; 5589 } 5590 5591 static void perf_event_task(struct task_struct *task, 5592 struct perf_event_context *task_ctx, 5593 int new) 5594 { 5595 struct perf_task_event task_event; 5596 5597 if (!atomic_read(&nr_comm_events) && 5598 !atomic_read(&nr_mmap_events) && 5599 !atomic_read(&nr_task_events)) 5600 return; 5601 5602 task_event = (struct perf_task_event){ 5603 .task = task, 5604 .task_ctx = task_ctx, 5605 .event_id = { 5606 .header = { 5607 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5608 .misc = 0, 5609 .size = sizeof(task_event.event_id), 5610 }, 5611 /* .pid */ 5612 /* .ppid */ 5613 /* .tid */ 5614 /* .ptid */ 5615 /* .time */ 5616 }, 5617 }; 5618 5619 perf_event_aux(perf_event_task_output, 5620 &task_event, 5621 task_ctx); 5622 } 5623 5624 void perf_event_fork(struct task_struct *task) 5625 { 5626 perf_event_task(task, NULL, 1); 5627 } 5628 5629 /* 5630 * comm tracking 5631 */ 5632 5633 struct perf_comm_event { 5634 struct task_struct *task; 5635 char *comm; 5636 int comm_size; 5637 5638 struct { 5639 struct perf_event_header header; 5640 5641 u32 pid; 5642 u32 tid; 5643 } event_id; 5644 }; 5645 5646 static int perf_event_comm_match(struct perf_event *event) 5647 { 5648 return event->attr.comm; 5649 } 5650 5651 static void perf_event_comm_output(struct perf_event *event, 5652 void *data) 5653 { 5654 struct perf_comm_event *comm_event = data; 5655 struct perf_output_handle handle; 5656 struct perf_sample_data sample; 5657 int size = comm_event->event_id.header.size; 5658 int ret; 5659 5660 if (!perf_event_comm_match(event)) 5661 return; 5662 5663 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5664 ret = perf_output_begin(&handle, event, 5665 comm_event->event_id.header.size); 5666 5667 if (ret) 5668 goto out; 5669 5670 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5671 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5672 5673 perf_output_put(&handle, comm_event->event_id); 5674 __output_copy(&handle, comm_event->comm, 5675 comm_event->comm_size); 5676 5677 perf_event__output_id_sample(event, &handle, &sample); 5678 5679 perf_output_end(&handle); 5680 out: 5681 comm_event->event_id.header.size = size; 5682 } 5683 5684 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5685 { 5686 char comm[TASK_COMM_LEN]; 5687 unsigned int size; 5688 5689 memset(comm, 0, sizeof(comm)); 5690 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5691 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5692 5693 comm_event->comm = comm; 5694 comm_event->comm_size = size; 5695 5696 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5697 5698 perf_event_aux(perf_event_comm_output, 5699 comm_event, 5700 NULL); 5701 } 5702 5703 void perf_event_comm(struct task_struct *task, bool exec) 5704 { 5705 struct perf_comm_event comm_event; 5706 5707 if (!atomic_read(&nr_comm_events)) 5708 return; 5709 5710 comm_event = (struct perf_comm_event){ 5711 .task = task, 5712 /* .comm */ 5713 /* .comm_size */ 5714 .event_id = { 5715 .header = { 5716 .type = PERF_RECORD_COMM, 5717 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5718 /* .size */ 5719 }, 5720 /* .pid */ 5721 /* .tid */ 5722 }, 5723 }; 5724 5725 perf_event_comm_event(&comm_event); 5726 } 5727 5728 /* 5729 * mmap tracking 5730 */ 5731 5732 struct perf_mmap_event { 5733 struct vm_area_struct *vma; 5734 5735 const char *file_name; 5736 int file_size; 5737 int maj, min; 5738 u64 ino; 5739 u64 ino_generation; 5740 u32 prot, flags; 5741 5742 struct { 5743 struct perf_event_header header; 5744 5745 u32 pid; 5746 u32 tid; 5747 u64 start; 5748 u64 len; 5749 u64 pgoff; 5750 } event_id; 5751 }; 5752 5753 static int perf_event_mmap_match(struct perf_event *event, 5754 void *data) 5755 { 5756 struct perf_mmap_event *mmap_event = data; 5757 struct vm_area_struct *vma = mmap_event->vma; 5758 int executable = vma->vm_flags & VM_EXEC; 5759 5760 return (!executable && event->attr.mmap_data) || 5761 (executable && (event->attr.mmap || event->attr.mmap2)); 5762 } 5763 5764 static void perf_event_mmap_output(struct perf_event *event, 5765 void *data) 5766 { 5767 struct perf_mmap_event *mmap_event = data; 5768 struct perf_output_handle handle; 5769 struct perf_sample_data sample; 5770 int size = mmap_event->event_id.header.size; 5771 int ret; 5772 5773 if (!perf_event_mmap_match(event, data)) 5774 return; 5775 5776 if (event->attr.mmap2) { 5777 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5778 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5779 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5780 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5781 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5782 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5783 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5784 } 5785 5786 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5787 ret = perf_output_begin(&handle, event, 5788 mmap_event->event_id.header.size); 5789 if (ret) 5790 goto out; 5791 5792 mmap_event->event_id.pid = perf_event_pid(event, current); 5793 mmap_event->event_id.tid = perf_event_tid(event, current); 5794 5795 perf_output_put(&handle, mmap_event->event_id); 5796 5797 if (event->attr.mmap2) { 5798 perf_output_put(&handle, mmap_event->maj); 5799 perf_output_put(&handle, mmap_event->min); 5800 perf_output_put(&handle, mmap_event->ino); 5801 perf_output_put(&handle, mmap_event->ino_generation); 5802 perf_output_put(&handle, mmap_event->prot); 5803 perf_output_put(&handle, mmap_event->flags); 5804 } 5805 5806 __output_copy(&handle, mmap_event->file_name, 5807 mmap_event->file_size); 5808 5809 perf_event__output_id_sample(event, &handle, &sample); 5810 5811 perf_output_end(&handle); 5812 out: 5813 mmap_event->event_id.header.size = size; 5814 } 5815 5816 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5817 { 5818 struct vm_area_struct *vma = mmap_event->vma; 5819 struct file *file = vma->vm_file; 5820 int maj = 0, min = 0; 5821 u64 ino = 0, gen = 0; 5822 u32 prot = 0, flags = 0; 5823 unsigned int size; 5824 char tmp[16]; 5825 char *buf = NULL; 5826 char *name; 5827 5828 if (file) { 5829 struct inode *inode; 5830 dev_t dev; 5831 5832 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5833 if (!buf) { 5834 name = "//enomem"; 5835 goto cpy_name; 5836 } 5837 /* 5838 * d_path() works from the end of the rb backwards, so we 5839 * need to add enough zero bytes after the string to handle 5840 * the 64bit alignment we do later. 5841 */ 5842 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 5843 if (IS_ERR(name)) { 5844 name = "//toolong"; 5845 goto cpy_name; 5846 } 5847 inode = file_inode(vma->vm_file); 5848 dev = inode->i_sb->s_dev; 5849 ino = inode->i_ino; 5850 gen = inode->i_generation; 5851 maj = MAJOR(dev); 5852 min = MINOR(dev); 5853 5854 if (vma->vm_flags & VM_READ) 5855 prot |= PROT_READ; 5856 if (vma->vm_flags & VM_WRITE) 5857 prot |= PROT_WRITE; 5858 if (vma->vm_flags & VM_EXEC) 5859 prot |= PROT_EXEC; 5860 5861 if (vma->vm_flags & VM_MAYSHARE) 5862 flags = MAP_SHARED; 5863 else 5864 flags = MAP_PRIVATE; 5865 5866 if (vma->vm_flags & VM_DENYWRITE) 5867 flags |= MAP_DENYWRITE; 5868 if (vma->vm_flags & VM_MAYEXEC) 5869 flags |= MAP_EXECUTABLE; 5870 if (vma->vm_flags & VM_LOCKED) 5871 flags |= MAP_LOCKED; 5872 if (vma->vm_flags & VM_HUGETLB) 5873 flags |= MAP_HUGETLB; 5874 5875 goto got_name; 5876 } else { 5877 if (vma->vm_ops && vma->vm_ops->name) { 5878 name = (char *) vma->vm_ops->name(vma); 5879 if (name) 5880 goto cpy_name; 5881 } 5882 5883 name = (char *)arch_vma_name(vma); 5884 if (name) 5885 goto cpy_name; 5886 5887 if (vma->vm_start <= vma->vm_mm->start_brk && 5888 vma->vm_end >= vma->vm_mm->brk) { 5889 name = "[heap]"; 5890 goto cpy_name; 5891 } 5892 if (vma->vm_start <= vma->vm_mm->start_stack && 5893 vma->vm_end >= vma->vm_mm->start_stack) { 5894 name = "[stack]"; 5895 goto cpy_name; 5896 } 5897 5898 name = "//anon"; 5899 goto cpy_name; 5900 } 5901 5902 cpy_name: 5903 strlcpy(tmp, name, sizeof(tmp)); 5904 name = tmp; 5905 got_name: 5906 /* 5907 * Since our buffer works in 8 byte units we need to align our string 5908 * size to a multiple of 8. However, we must guarantee the tail end is 5909 * zero'd out to avoid leaking random bits to userspace. 5910 */ 5911 size = strlen(name)+1; 5912 while (!IS_ALIGNED(size, sizeof(u64))) 5913 name[size++] = '\0'; 5914 5915 mmap_event->file_name = name; 5916 mmap_event->file_size = size; 5917 mmap_event->maj = maj; 5918 mmap_event->min = min; 5919 mmap_event->ino = ino; 5920 mmap_event->ino_generation = gen; 5921 mmap_event->prot = prot; 5922 mmap_event->flags = flags; 5923 5924 if (!(vma->vm_flags & VM_EXEC)) 5925 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5926 5927 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5928 5929 perf_event_aux(perf_event_mmap_output, 5930 mmap_event, 5931 NULL); 5932 5933 kfree(buf); 5934 } 5935 5936 void perf_event_mmap(struct vm_area_struct *vma) 5937 { 5938 struct perf_mmap_event mmap_event; 5939 5940 if (!atomic_read(&nr_mmap_events)) 5941 return; 5942 5943 mmap_event = (struct perf_mmap_event){ 5944 .vma = vma, 5945 /* .file_name */ 5946 /* .file_size */ 5947 .event_id = { 5948 .header = { 5949 .type = PERF_RECORD_MMAP, 5950 .misc = PERF_RECORD_MISC_USER, 5951 /* .size */ 5952 }, 5953 /* .pid */ 5954 /* .tid */ 5955 .start = vma->vm_start, 5956 .len = vma->vm_end - vma->vm_start, 5957 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5958 }, 5959 /* .maj (attr_mmap2 only) */ 5960 /* .min (attr_mmap2 only) */ 5961 /* .ino (attr_mmap2 only) */ 5962 /* .ino_generation (attr_mmap2 only) */ 5963 /* .prot (attr_mmap2 only) */ 5964 /* .flags (attr_mmap2 only) */ 5965 }; 5966 5967 perf_event_mmap_event(&mmap_event); 5968 } 5969 5970 void perf_event_aux_event(struct perf_event *event, unsigned long head, 5971 unsigned long size, u64 flags) 5972 { 5973 struct perf_output_handle handle; 5974 struct perf_sample_data sample; 5975 struct perf_aux_event { 5976 struct perf_event_header header; 5977 u64 offset; 5978 u64 size; 5979 u64 flags; 5980 } rec = { 5981 .header = { 5982 .type = PERF_RECORD_AUX, 5983 .misc = 0, 5984 .size = sizeof(rec), 5985 }, 5986 .offset = head, 5987 .size = size, 5988 .flags = flags, 5989 }; 5990 int ret; 5991 5992 perf_event_header__init_id(&rec.header, &sample, event); 5993 ret = perf_output_begin(&handle, event, rec.header.size); 5994 5995 if (ret) 5996 return; 5997 5998 perf_output_put(&handle, rec); 5999 perf_event__output_id_sample(event, &handle, &sample); 6000 6001 perf_output_end(&handle); 6002 } 6003 6004 /* 6005 * Lost/dropped samples logging 6006 */ 6007 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6008 { 6009 struct perf_output_handle handle; 6010 struct perf_sample_data sample; 6011 int ret; 6012 6013 struct { 6014 struct perf_event_header header; 6015 u64 lost; 6016 } lost_samples_event = { 6017 .header = { 6018 .type = PERF_RECORD_LOST_SAMPLES, 6019 .misc = 0, 6020 .size = sizeof(lost_samples_event), 6021 }, 6022 .lost = lost, 6023 }; 6024 6025 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6026 6027 ret = perf_output_begin(&handle, event, 6028 lost_samples_event.header.size); 6029 if (ret) 6030 return; 6031 6032 perf_output_put(&handle, lost_samples_event); 6033 perf_event__output_id_sample(event, &handle, &sample); 6034 perf_output_end(&handle); 6035 } 6036 6037 /* 6038 * IRQ throttle logging 6039 */ 6040 6041 static void perf_log_throttle(struct perf_event *event, int enable) 6042 { 6043 struct perf_output_handle handle; 6044 struct perf_sample_data sample; 6045 int ret; 6046 6047 struct { 6048 struct perf_event_header header; 6049 u64 time; 6050 u64 id; 6051 u64 stream_id; 6052 } throttle_event = { 6053 .header = { 6054 .type = PERF_RECORD_THROTTLE, 6055 .misc = 0, 6056 .size = sizeof(throttle_event), 6057 }, 6058 .time = perf_event_clock(event), 6059 .id = primary_event_id(event), 6060 .stream_id = event->id, 6061 }; 6062 6063 if (enable) 6064 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6065 6066 perf_event_header__init_id(&throttle_event.header, &sample, event); 6067 6068 ret = perf_output_begin(&handle, event, 6069 throttle_event.header.size); 6070 if (ret) 6071 return; 6072 6073 perf_output_put(&handle, throttle_event); 6074 perf_event__output_id_sample(event, &handle, &sample); 6075 perf_output_end(&handle); 6076 } 6077 6078 static void perf_log_itrace_start(struct perf_event *event) 6079 { 6080 struct perf_output_handle handle; 6081 struct perf_sample_data sample; 6082 struct perf_aux_event { 6083 struct perf_event_header header; 6084 u32 pid; 6085 u32 tid; 6086 } rec; 6087 int ret; 6088 6089 if (event->parent) 6090 event = event->parent; 6091 6092 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6093 event->hw.itrace_started) 6094 return; 6095 6096 event->hw.itrace_started = 1; 6097 6098 rec.header.type = PERF_RECORD_ITRACE_START; 6099 rec.header.misc = 0; 6100 rec.header.size = sizeof(rec); 6101 rec.pid = perf_event_pid(event, current); 6102 rec.tid = perf_event_tid(event, current); 6103 6104 perf_event_header__init_id(&rec.header, &sample, event); 6105 ret = perf_output_begin(&handle, event, rec.header.size); 6106 6107 if (ret) 6108 return; 6109 6110 perf_output_put(&handle, rec); 6111 perf_event__output_id_sample(event, &handle, &sample); 6112 6113 perf_output_end(&handle); 6114 } 6115 6116 /* 6117 * Generic event overflow handling, sampling. 6118 */ 6119 6120 static int __perf_event_overflow(struct perf_event *event, 6121 int throttle, struct perf_sample_data *data, 6122 struct pt_regs *regs) 6123 { 6124 int events = atomic_read(&event->event_limit); 6125 struct hw_perf_event *hwc = &event->hw; 6126 u64 seq; 6127 int ret = 0; 6128 6129 /* 6130 * Non-sampling counters might still use the PMI to fold short 6131 * hardware counters, ignore those. 6132 */ 6133 if (unlikely(!is_sampling_event(event))) 6134 return 0; 6135 6136 seq = __this_cpu_read(perf_throttled_seq); 6137 if (seq != hwc->interrupts_seq) { 6138 hwc->interrupts_seq = seq; 6139 hwc->interrupts = 1; 6140 } else { 6141 hwc->interrupts++; 6142 if (unlikely(throttle 6143 && hwc->interrupts >= max_samples_per_tick)) { 6144 __this_cpu_inc(perf_throttled_count); 6145 hwc->interrupts = MAX_INTERRUPTS; 6146 perf_log_throttle(event, 0); 6147 tick_nohz_full_kick(); 6148 ret = 1; 6149 } 6150 } 6151 6152 if (event->attr.freq) { 6153 u64 now = perf_clock(); 6154 s64 delta = now - hwc->freq_time_stamp; 6155 6156 hwc->freq_time_stamp = now; 6157 6158 if (delta > 0 && delta < 2*TICK_NSEC) 6159 perf_adjust_period(event, delta, hwc->last_period, true); 6160 } 6161 6162 /* 6163 * XXX event_limit might not quite work as expected on inherited 6164 * events 6165 */ 6166 6167 event->pending_kill = POLL_IN; 6168 if (events && atomic_dec_and_test(&event->event_limit)) { 6169 ret = 1; 6170 event->pending_kill = POLL_HUP; 6171 event->pending_disable = 1; 6172 irq_work_queue(&event->pending); 6173 } 6174 6175 if (event->overflow_handler) 6176 event->overflow_handler(event, data, regs); 6177 else 6178 perf_event_output(event, data, regs); 6179 6180 if (event->fasync && event->pending_kill) { 6181 event->pending_wakeup = 1; 6182 irq_work_queue(&event->pending); 6183 } 6184 6185 return ret; 6186 } 6187 6188 int perf_event_overflow(struct perf_event *event, 6189 struct perf_sample_data *data, 6190 struct pt_regs *regs) 6191 { 6192 return __perf_event_overflow(event, 1, data, regs); 6193 } 6194 6195 /* 6196 * Generic software event infrastructure 6197 */ 6198 6199 struct swevent_htable { 6200 struct swevent_hlist *swevent_hlist; 6201 struct mutex hlist_mutex; 6202 int hlist_refcount; 6203 6204 /* Recursion avoidance in each contexts */ 6205 int recursion[PERF_NR_CONTEXTS]; 6206 6207 /* Keeps track of cpu being initialized/exited */ 6208 bool online; 6209 }; 6210 6211 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6212 6213 /* 6214 * We directly increment event->count and keep a second value in 6215 * event->hw.period_left to count intervals. This period event 6216 * is kept in the range [-sample_period, 0] so that we can use the 6217 * sign as trigger. 6218 */ 6219 6220 u64 perf_swevent_set_period(struct perf_event *event) 6221 { 6222 struct hw_perf_event *hwc = &event->hw; 6223 u64 period = hwc->last_period; 6224 u64 nr, offset; 6225 s64 old, val; 6226 6227 hwc->last_period = hwc->sample_period; 6228 6229 again: 6230 old = val = local64_read(&hwc->period_left); 6231 if (val < 0) 6232 return 0; 6233 6234 nr = div64_u64(period + val, period); 6235 offset = nr * period; 6236 val -= offset; 6237 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6238 goto again; 6239 6240 return nr; 6241 } 6242 6243 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6244 struct perf_sample_data *data, 6245 struct pt_regs *regs) 6246 { 6247 struct hw_perf_event *hwc = &event->hw; 6248 int throttle = 0; 6249 6250 if (!overflow) 6251 overflow = perf_swevent_set_period(event); 6252 6253 if (hwc->interrupts == MAX_INTERRUPTS) 6254 return; 6255 6256 for (; overflow; overflow--) { 6257 if (__perf_event_overflow(event, throttle, 6258 data, regs)) { 6259 /* 6260 * We inhibit the overflow from happening when 6261 * hwc->interrupts == MAX_INTERRUPTS. 6262 */ 6263 break; 6264 } 6265 throttle = 1; 6266 } 6267 } 6268 6269 static void perf_swevent_event(struct perf_event *event, u64 nr, 6270 struct perf_sample_data *data, 6271 struct pt_regs *regs) 6272 { 6273 struct hw_perf_event *hwc = &event->hw; 6274 6275 local64_add(nr, &event->count); 6276 6277 if (!regs) 6278 return; 6279 6280 if (!is_sampling_event(event)) 6281 return; 6282 6283 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6284 data->period = nr; 6285 return perf_swevent_overflow(event, 1, data, regs); 6286 } else 6287 data->period = event->hw.last_period; 6288 6289 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6290 return perf_swevent_overflow(event, 1, data, regs); 6291 6292 if (local64_add_negative(nr, &hwc->period_left)) 6293 return; 6294 6295 perf_swevent_overflow(event, 0, data, regs); 6296 } 6297 6298 static int perf_exclude_event(struct perf_event *event, 6299 struct pt_regs *regs) 6300 { 6301 if (event->hw.state & PERF_HES_STOPPED) 6302 return 1; 6303 6304 if (regs) { 6305 if (event->attr.exclude_user && user_mode(regs)) 6306 return 1; 6307 6308 if (event->attr.exclude_kernel && !user_mode(regs)) 6309 return 1; 6310 } 6311 6312 return 0; 6313 } 6314 6315 static int perf_swevent_match(struct perf_event *event, 6316 enum perf_type_id type, 6317 u32 event_id, 6318 struct perf_sample_data *data, 6319 struct pt_regs *regs) 6320 { 6321 if (event->attr.type != type) 6322 return 0; 6323 6324 if (event->attr.config != event_id) 6325 return 0; 6326 6327 if (perf_exclude_event(event, regs)) 6328 return 0; 6329 6330 return 1; 6331 } 6332 6333 static inline u64 swevent_hash(u64 type, u32 event_id) 6334 { 6335 u64 val = event_id | (type << 32); 6336 6337 return hash_64(val, SWEVENT_HLIST_BITS); 6338 } 6339 6340 static inline struct hlist_head * 6341 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6342 { 6343 u64 hash = swevent_hash(type, event_id); 6344 6345 return &hlist->heads[hash]; 6346 } 6347 6348 /* For the read side: events when they trigger */ 6349 static inline struct hlist_head * 6350 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6351 { 6352 struct swevent_hlist *hlist; 6353 6354 hlist = rcu_dereference(swhash->swevent_hlist); 6355 if (!hlist) 6356 return NULL; 6357 6358 return __find_swevent_head(hlist, type, event_id); 6359 } 6360 6361 /* For the event head insertion and removal in the hlist */ 6362 static inline struct hlist_head * 6363 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6364 { 6365 struct swevent_hlist *hlist; 6366 u32 event_id = event->attr.config; 6367 u64 type = event->attr.type; 6368 6369 /* 6370 * Event scheduling is always serialized against hlist allocation 6371 * and release. Which makes the protected version suitable here. 6372 * The context lock guarantees that. 6373 */ 6374 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6375 lockdep_is_held(&event->ctx->lock)); 6376 if (!hlist) 6377 return NULL; 6378 6379 return __find_swevent_head(hlist, type, event_id); 6380 } 6381 6382 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6383 u64 nr, 6384 struct perf_sample_data *data, 6385 struct pt_regs *regs) 6386 { 6387 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6388 struct perf_event *event; 6389 struct hlist_head *head; 6390 6391 rcu_read_lock(); 6392 head = find_swevent_head_rcu(swhash, type, event_id); 6393 if (!head) 6394 goto end; 6395 6396 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6397 if (perf_swevent_match(event, type, event_id, data, regs)) 6398 perf_swevent_event(event, nr, data, regs); 6399 } 6400 end: 6401 rcu_read_unlock(); 6402 } 6403 6404 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6405 6406 int perf_swevent_get_recursion_context(void) 6407 { 6408 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6409 6410 return get_recursion_context(swhash->recursion); 6411 } 6412 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6413 6414 inline void perf_swevent_put_recursion_context(int rctx) 6415 { 6416 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6417 6418 put_recursion_context(swhash->recursion, rctx); 6419 } 6420 6421 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6422 { 6423 struct perf_sample_data data; 6424 6425 if (WARN_ON_ONCE(!regs)) 6426 return; 6427 6428 perf_sample_data_init(&data, addr, 0); 6429 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6430 } 6431 6432 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6433 { 6434 int rctx; 6435 6436 preempt_disable_notrace(); 6437 rctx = perf_swevent_get_recursion_context(); 6438 if (unlikely(rctx < 0)) 6439 goto fail; 6440 6441 ___perf_sw_event(event_id, nr, regs, addr); 6442 6443 perf_swevent_put_recursion_context(rctx); 6444 fail: 6445 preempt_enable_notrace(); 6446 } 6447 6448 static void perf_swevent_read(struct perf_event *event) 6449 { 6450 } 6451 6452 static int perf_swevent_add(struct perf_event *event, int flags) 6453 { 6454 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6455 struct hw_perf_event *hwc = &event->hw; 6456 struct hlist_head *head; 6457 6458 if (is_sampling_event(event)) { 6459 hwc->last_period = hwc->sample_period; 6460 perf_swevent_set_period(event); 6461 } 6462 6463 hwc->state = !(flags & PERF_EF_START); 6464 6465 head = find_swevent_head(swhash, event); 6466 if (!head) { 6467 /* 6468 * We can race with cpu hotplug code. Do not 6469 * WARN if the cpu just got unplugged. 6470 */ 6471 WARN_ON_ONCE(swhash->online); 6472 return -EINVAL; 6473 } 6474 6475 hlist_add_head_rcu(&event->hlist_entry, head); 6476 perf_event_update_userpage(event); 6477 6478 return 0; 6479 } 6480 6481 static void perf_swevent_del(struct perf_event *event, int flags) 6482 { 6483 hlist_del_rcu(&event->hlist_entry); 6484 } 6485 6486 static void perf_swevent_start(struct perf_event *event, int flags) 6487 { 6488 event->hw.state = 0; 6489 } 6490 6491 static void perf_swevent_stop(struct perf_event *event, int flags) 6492 { 6493 event->hw.state = PERF_HES_STOPPED; 6494 } 6495 6496 /* Deref the hlist from the update side */ 6497 static inline struct swevent_hlist * 6498 swevent_hlist_deref(struct swevent_htable *swhash) 6499 { 6500 return rcu_dereference_protected(swhash->swevent_hlist, 6501 lockdep_is_held(&swhash->hlist_mutex)); 6502 } 6503 6504 static void swevent_hlist_release(struct swevent_htable *swhash) 6505 { 6506 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6507 6508 if (!hlist) 6509 return; 6510 6511 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6512 kfree_rcu(hlist, rcu_head); 6513 } 6514 6515 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6516 { 6517 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6518 6519 mutex_lock(&swhash->hlist_mutex); 6520 6521 if (!--swhash->hlist_refcount) 6522 swevent_hlist_release(swhash); 6523 6524 mutex_unlock(&swhash->hlist_mutex); 6525 } 6526 6527 static void swevent_hlist_put(struct perf_event *event) 6528 { 6529 int cpu; 6530 6531 for_each_possible_cpu(cpu) 6532 swevent_hlist_put_cpu(event, cpu); 6533 } 6534 6535 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6536 { 6537 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6538 int err = 0; 6539 6540 mutex_lock(&swhash->hlist_mutex); 6541 6542 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6543 struct swevent_hlist *hlist; 6544 6545 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6546 if (!hlist) { 6547 err = -ENOMEM; 6548 goto exit; 6549 } 6550 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6551 } 6552 swhash->hlist_refcount++; 6553 exit: 6554 mutex_unlock(&swhash->hlist_mutex); 6555 6556 return err; 6557 } 6558 6559 static int swevent_hlist_get(struct perf_event *event) 6560 { 6561 int err; 6562 int cpu, failed_cpu; 6563 6564 get_online_cpus(); 6565 for_each_possible_cpu(cpu) { 6566 err = swevent_hlist_get_cpu(event, cpu); 6567 if (err) { 6568 failed_cpu = cpu; 6569 goto fail; 6570 } 6571 } 6572 put_online_cpus(); 6573 6574 return 0; 6575 fail: 6576 for_each_possible_cpu(cpu) { 6577 if (cpu == failed_cpu) 6578 break; 6579 swevent_hlist_put_cpu(event, cpu); 6580 } 6581 6582 put_online_cpus(); 6583 return err; 6584 } 6585 6586 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6587 6588 static void sw_perf_event_destroy(struct perf_event *event) 6589 { 6590 u64 event_id = event->attr.config; 6591 6592 WARN_ON(event->parent); 6593 6594 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6595 swevent_hlist_put(event); 6596 } 6597 6598 static int perf_swevent_init(struct perf_event *event) 6599 { 6600 u64 event_id = event->attr.config; 6601 6602 if (event->attr.type != PERF_TYPE_SOFTWARE) 6603 return -ENOENT; 6604 6605 /* 6606 * no branch sampling for software events 6607 */ 6608 if (has_branch_stack(event)) 6609 return -EOPNOTSUPP; 6610 6611 switch (event_id) { 6612 case PERF_COUNT_SW_CPU_CLOCK: 6613 case PERF_COUNT_SW_TASK_CLOCK: 6614 return -ENOENT; 6615 6616 default: 6617 break; 6618 } 6619 6620 if (event_id >= PERF_COUNT_SW_MAX) 6621 return -ENOENT; 6622 6623 if (!event->parent) { 6624 int err; 6625 6626 err = swevent_hlist_get(event); 6627 if (err) 6628 return err; 6629 6630 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6631 event->destroy = sw_perf_event_destroy; 6632 } 6633 6634 return 0; 6635 } 6636 6637 static struct pmu perf_swevent = { 6638 .task_ctx_nr = perf_sw_context, 6639 6640 .capabilities = PERF_PMU_CAP_NO_NMI, 6641 6642 .event_init = perf_swevent_init, 6643 .add = perf_swevent_add, 6644 .del = perf_swevent_del, 6645 .start = perf_swevent_start, 6646 .stop = perf_swevent_stop, 6647 .read = perf_swevent_read, 6648 }; 6649 6650 #ifdef CONFIG_EVENT_TRACING 6651 6652 static int perf_tp_filter_match(struct perf_event *event, 6653 struct perf_sample_data *data) 6654 { 6655 void *record = data->raw->data; 6656 6657 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6658 return 1; 6659 return 0; 6660 } 6661 6662 static int perf_tp_event_match(struct perf_event *event, 6663 struct perf_sample_data *data, 6664 struct pt_regs *regs) 6665 { 6666 if (event->hw.state & PERF_HES_STOPPED) 6667 return 0; 6668 /* 6669 * All tracepoints are from kernel-space. 6670 */ 6671 if (event->attr.exclude_kernel) 6672 return 0; 6673 6674 if (!perf_tp_filter_match(event, data)) 6675 return 0; 6676 6677 return 1; 6678 } 6679 6680 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6681 struct pt_regs *regs, struct hlist_head *head, int rctx, 6682 struct task_struct *task) 6683 { 6684 struct perf_sample_data data; 6685 struct perf_event *event; 6686 6687 struct perf_raw_record raw = { 6688 .size = entry_size, 6689 .data = record, 6690 }; 6691 6692 perf_sample_data_init(&data, addr, 0); 6693 data.raw = &raw; 6694 6695 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6696 if (perf_tp_event_match(event, &data, regs)) 6697 perf_swevent_event(event, count, &data, regs); 6698 } 6699 6700 /* 6701 * If we got specified a target task, also iterate its context and 6702 * deliver this event there too. 6703 */ 6704 if (task && task != current) { 6705 struct perf_event_context *ctx; 6706 struct trace_entry *entry = record; 6707 6708 rcu_read_lock(); 6709 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6710 if (!ctx) 6711 goto unlock; 6712 6713 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6714 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6715 continue; 6716 if (event->attr.config != entry->type) 6717 continue; 6718 if (perf_tp_event_match(event, &data, regs)) 6719 perf_swevent_event(event, count, &data, regs); 6720 } 6721 unlock: 6722 rcu_read_unlock(); 6723 } 6724 6725 perf_swevent_put_recursion_context(rctx); 6726 } 6727 EXPORT_SYMBOL_GPL(perf_tp_event); 6728 6729 static void tp_perf_event_destroy(struct perf_event *event) 6730 { 6731 perf_trace_destroy(event); 6732 } 6733 6734 static int perf_tp_event_init(struct perf_event *event) 6735 { 6736 int err; 6737 6738 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6739 return -ENOENT; 6740 6741 /* 6742 * no branch sampling for tracepoint events 6743 */ 6744 if (has_branch_stack(event)) 6745 return -EOPNOTSUPP; 6746 6747 err = perf_trace_init(event); 6748 if (err) 6749 return err; 6750 6751 event->destroy = tp_perf_event_destroy; 6752 6753 return 0; 6754 } 6755 6756 static struct pmu perf_tracepoint = { 6757 .task_ctx_nr = perf_sw_context, 6758 6759 .event_init = perf_tp_event_init, 6760 .add = perf_trace_add, 6761 .del = perf_trace_del, 6762 .start = perf_swevent_start, 6763 .stop = perf_swevent_stop, 6764 .read = perf_swevent_read, 6765 }; 6766 6767 static inline void perf_tp_register(void) 6768 { 6769 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6770 } 6771 6772 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6773 { 6774 char *filter_str; 6775 int ret; 6776 6777 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6778 return -EINVAL; 6779 6780 filter_str = strndup_user(arg, PAGE_SIZE); 6781 if (IS_ERR(filter_str)) 6782 return PTR_ERR(filter_str); 6783 6784 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6785 6786 kfree(filter_str); 6787 return ret; 6788 } 6789 6790 static void perf_event_free_filter(struct perf_event *event) 6791 { 6792 ftrace_profile_free_filter(event); 6793 } 6794 6795 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6796 { 6797 struct bpf_prog *prog; 6798 6799 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6800 return -EINVAL; 6801 6802 if (event->tp_event->prog) 6803 return -EEXIST; 6804 6805 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 6806 /* bpf programs can only be attached to kprobes */ 6807 return -EINVAL; 6808 6809 prog = bpf_prog_get(prog_fd); 6810 if (IS_ERR(prog)) 6811 return PTR_ERR(prog); 6812 6813 if (prog->type != BPF_PROG_TYPE_KPROBE) { 6814 /* valid fd, but invalid bpf program type */ 6815 bpf_prog_put(prog); 6816 return -EINVAL; 6817 } 6818 6819 event->tp_event->prog = prog; 6820 6821 return 0; 6822 } 6823 6824 static void perf_event_free_bpf_prog(struct perf_event *event) 6825 { 6826 struct bpf_prog *prog; 6827 6828 if (!event->tp_event) 6829 return; 6830 6831 prog = event->tp_event->prog; 6832 if (prog) { 6833 event->tp_event->prog = NULL; 6834 bpf_prog_put(prog); 6835 } 6836 } 6837 6838 #else 6839 6840 static inline void perf_tp_register(void) 6841 { 6842 } 6843 6844 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6845 { 6846 return -ENOENT; 6847 } 6848 6849 static void perf_event_free_filter(struct perf_event *event) 6850 { 6851 } 6852 6853 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6854 { 6855 return -ENOENT; 6856 } 6857 6858 static void perf_event_free_bpf_prog(struct perf_event *event) 6859 { 6860 } 6861 #endif /* CONFIG_EVENT_TRACING */ 6862 6863 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6864 void perf_bp_event(struct perf_event *bp, void *data) 6865 { 6866 struct perf_sample_data sample; 6867 struct pt_regs *regs = data; 6868 6869 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6870 6871 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6872 perf_swevent_event(bp, 1, &sample, regs); 6873 } 6874 #endif 6875 6876 /* 6877 * hrtimer based swevent callback 6878 */ 6879 6880 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6881 { 6882 enum hrtimer_restart ret = HRTIMER_RESTART; 6883 struct perf_sample_data data; 6884 struct pt_regs *regs; 6885 struct perf_event *event; 6886 u64 period; 6887 6888 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6889 6890 if (event->state != PERF_EVENT_STATE_ACTIVE) 6891 return HRTIMER_NORESTART; 6892 6893 event->pmu->read(event); 6894 6895 perf_sample_data_init(&data, 0, event->hw.last_period); 6896 regs = get_irq_regs(); 6897 6898 if (regs && !perf_exclude_event(event, regs)) { 6899 if (!(event->attr.exclude_idle && is_idle_task(current))) 6900 if (__perf_event_overflow(event, 1, &data, regs)) 6901 ret = HRTIMER_NORESTART; 6902 } 6903 6904 period = max_t(u64, 10000, event->hw.sample_period); 6905 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6906 6907 return ret; 6908 } 6909 6910 static void perf_swevent_start_hrtimer(struct perf_event *event) 6911 { 6912 struct hw_perf_event *hwc = &event->hw; 6913 s64 period; 6914 6915 if (!is_sampling_event(event)) 6916 return; 6917 6918 period = local64_read(&hwc->period_left); 6919 if (period) { 6920 if (period < 0) 6921 period = 10000; 6922 6923 local64_set(&hwc->period_left, 0); 6924 } else { 6925 period = max_t(u64, 10000, hwc->sample_period); 6926 } 6927 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 6928 HRTIMER_MODE_REL_PINNED); 6929 } 6930 6931 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6932 { 6933 struct hw_perf_event *hwc = &event->hw; 6934 6935 if (is_sampling_event(event)) { 6936 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6937 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6938 6939 hrtimer_cancel(&hwc->hrtimer); 6940 } 6941 } 6942 6943 static void perf_swevent_init_hrtimer(struct perf_event *event) 6944 { 6945 struct hw_perf_event *hwc = &event->hw; 6946 6947 if (!is_sampling_event(event)) 6948 return; 6949 6950 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6951 hwc->hrtimer.function = perf_swevent_hrtimer; 6952 6953 /* 6954 * Since hrtimers have a fixed rate, we can do a static freq->period 6955 * mapping and avoid the whole period adjust feedback stuff. 6956 */ 6957 if (event->attr.freq) { 6958 long freq = event->attr.sample_freq; 6959 6960 event->attr.sample_period = NSEC_PER_SEC / freq; 6961 hwc->sample_period = event->attr.sample_period; 6962 local64_set(&hwc->period_left, hwc->sample_period); 6963 hwc->last_period = hwc->sample_period; 6964 event->attr.freq = 0; 6965 } 6966 } 6967 6968 /* 6969 * Software event: cpu wall time clock 6970 */ 6971 6972 static void cpu_clock_event_update(struct perf_event *event) 6973 { 6974 s64 prev; 6975 u64 now; 6976 6977 now = local_clock(); 6978 prev = local64_xchg(&event->hw.prev_count, now); 6979 local64_add(now - prev, &event->count); 6980 } 6981 6982 static void cpu_clock_event_start(struct perf_event *event, int flags) 6983 { 6984 local64_set(&event->hw.prev_count, local_clock()); 6985 perf_swevent_start_hrtimer(event); 6986 } 6987 6988 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6989 { 6990 perf_swevent_cancel_hrtimer(event); 6991 cpu_clock_event_update(event); 6992 } 6993 6994 static int cpu_clock_event_add(struct perf_event *event, int flags) 6995 { 6996 if (flags & PERF_EF_START) 6997 cpu_clock_event_start(event, flags); 6998 perf_event_update_userpage(event); 6999 7000 return 0; 7001 } 7002 7003 static void cpu_clock_event_del(struct perf_event *event, int flags) 7004 { 7005 cpu_clock_event_stop(event, flags); 7006 } 7007 7008 static void cpu_clock_event_read(struct perf_event *event) 7009 { 7010 cpu_clock_event_update(event); 7011 } 7012 7013 static int cpu_clock_event_init(struct perf_event *event) 7014 { 7015 if (event->attr.type != PERF_TYPE_SOFTWARE) 7016 return -ENOENT; 7017 7018 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7019 return -ENOENT; 7020 7021 /* 7022 * no branch sampling for software events 7023 */ 7024 if (has_branch_stack(event)) 7025 return -EOPNOTSUPP; 7026 7027 perf_swevent_init_hrtimer(event); 7028 7029 return 0; 7030 } 7031 7032 static struct pmu perf_cpu_clock = { 7033 .task_ctx_nr = perf_sw_context, 7034 7035 .capabilities = PERF_PMU_CAP_NO_NMI, 7036 7037 .event_init = cpu_clock_event_init, 7038 .add = cpu_clock_event_add, 7039 .del = cpu_clock_event_del, 7040 .start = cpu_clock_event_start, 7041 .stop = cpu_clock_event_stop, 7042 .read = cpu_clock_event_read, 7043 }; 7044 7045 /* 7046 * Software event: task time clock 7047 */ 7048 7049 static void task_clock_event_update(struct perf_event *event, u64 now) 7050 { 7051 u64 prev; 7052 s64 delta; 7053 7054 prev = local64_xchg(&event->hw.prev_count, now); 7055 delta = now - prev; 7056 local64_add(delta, &event->count); 7057 } 7058 7059 static void task_clock_event_start(struct perf_event *event, int flags) 7060 { 7061 local64_set(&event->hw.prev_count, event->ctx->time); 7062 perf_swevent_start_hrtimer(event); 7063 } 7064 7065 static void task_clock_event_stop(struct perf_event *event, int flags) 7066 { 7067 perf_swevent_cancel_hrtimer(event); 7068 task_clock_event_update(event, event->ctx->time); 7069 } 7070 7071 static int task_clock_event_add(struct perf_event *event, int flags) 7072 { 7073 if (flags & PERF_EF_START) 7074 task_clock_event_start(event, flags); 7075 perf_event_update_userpage(event); 7076 7077 return 0; 7078 } 7079 7080 static void task_clock_event_del(struct perf_event *event, int flags) 7081 { 7082 task_clock_event_stop(event, PERF_EF_UPDATE); 7083 } 7084 7085 static void task_clock_event_read(struct perf_event *event) 7086 { 7087 u64 now = perf_clock(); 7088 u64 delta = now - event->ctx->timestamp; 7089 u64 time = event->ctx->time + delta; 7090 7091 task_clock_event_update(event, time); 7092 } 7093 7094 static int task_clock_event_init(struct perf_event *event) 7095 { 7096 if (event->attr.type != PERF_TYPE_SOFTWARE) 7097 return -ENOENT; 7098 7099 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7100 return -ENOENT; 7101 7102 /* 7103 * no branch sampling for software events 7104 */ 7105 if (has_branch_stack(event)) 7106 return -EOPNOTSUPP; 7107 7108 perf_swevent_init_hrtimer(event); 7109 7110 return 0; 7111 } 7112 7113 static struct pmu perf_task_clock = { 7114 .task_ctx_nr = perf_sw_context, 7115 7116 .capabilities = PERF_PMU_CAP_NO_NMI, 7117 7118 .event_init = task_clock_event_init, 7119 .add = task_clock_event_add, 7120 .del = task_clock_event_del, 7121 .start = task_clock_event_start, 7122 .stop = task_clock_event_stop, 7123 .read = task_clock_event_read, 7124 }; 7125 7126 static void perf_pmu_nop_void(struct pmu *pmu) 7127 { 7128 } 7129 7130 static int perf_pmu_nop_int(struct pmu *pmu) 7131 { 7132 return 0; 7133 } 7134 7135 static void perf_pmu_start_txn(struct pmu *pmu) 7136 { 7137 perf_pmu_disable(pmu); 7138 } 7139 7140 static int perf_pmu_commit_txn(struct pmu *pmu) 7141 { 7142 perf_pmu_enable(pmu); 7143 return 0; 7144 } 7145 7146 static void perf_pmu_cancel_txn(struct pmu *pmu) 7147 { 7148 perf_pmu_enable(pmu); 7149 } 7150 7151 static int perf_event_idx_default(struct perf_event *event) 7152 { 7153 return 0; 7154 } 7155 7156 /* 7157 * Ensures all contexts with the same task_ctx_nr have the same 7158 * pmu_cpu_context too. 7159 */ 7160 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7161 { 7162 struct pmu *pmu; 7163 7164 if (ctxn < 0) 7165 return NULL; 7166 7167 list_for_each_entry(pmu, &pmus, entry) { 7168 if (pmu->task_ctx_nr == ctxn) 7169 return pmu->pmu_cpu_context; 7170 } 7171 7172 return NULL; 7173 } 7174 7175 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7176 { 7177 int cpu; 7178 7179 for_each_possible_cpu(cpu) { 7180 struct perf_cpu_context *cpuctx; 7181 7182 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7183 7184 if (cpuctx->unique_pmu == old_pmu) 7185 cpuctx->unique_pmu = pmu; 7186 } 7187 } 7188 7189 static void free_pmu_context(struct pmu *pmu) 7190 { 7191 struct pmu *i; 7192 7193 mutex_lock(&pmus_lock); 7194 /* 7195 * Like a real lame refcount. 7196 */ 7197 list_for_each_entry(i, &pmus, entry) { 7198 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7199 update_pmu_context(i, pmu); 7200 goto out; 7201 } 7202 } 7203 7204 free_percpu(pmu->pmu_cpu_context); 7205 out: 7206 mutex_unlock(&pmus_lock); 7207 } 7208 static struct idr pmu_idr; 7209 7210 static ssize_t 7211 type_show(struct device *dev, struct device_attribute *attr, char *page) 7212 { 7213 struct pmu *pmu = dev_get_drvdata(dev); 7214 7215 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7216 } 7217 static DEVICE_ATTR_RO(type); 7218 7219 static ssize_t 7220 perf_event_mux_interval_ms_show(struct device *dev, 7221 struct device_attribute *attr, 7222 char *page) 7223 { 7224 struct pmu *pmu = dev_get_drvdata(dev); 7225 7226 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7227 } 7228 7229 static DEFINE_MUTEX(mux_interval_mutex); 7230 7231 static ssize_t 7232 perf_event_mux_interval_ms_store(struct device *dev, 7233 struct device_attribute *attr, 7234 const char *buf, size_t count) 7235 { 7236 struct pmu *pmu = dev_get_drvdata(dev); 7237 int timer, cpu, ret; 7238 7239 ret = kstrtoint(buf, 0, &timer); 7240 if (ret) 7241 return ret; 7242 7243 if (timer < 1) 7244 return -EINVAL; 7245 7246 /* same value, noting to do */ 7247 if (timer == pmu->hrtimer_interval_ms) 7248 return count; 7249 7250 mutex_lock(&mux_interval_mutex); 7251 pmu->hrtimer_interval_ms = timer; 7252 7253 /* update all cpuctx for this PMU */ 7254 get_online_cpus(); 7255 for_each_online_cpu(cpu) { 7256 struct perf_cpu_context *cpuctx; 7257 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7258 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7259 7260 cpu_function_call(cpu, 7261 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7262 } 7263 put_online_cpus(); 7264 mutex_unlock(&mux_interval_mutex); 7265 7266 return count; 7267 } 7268 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7269 7270 static struct attribute *pmu_dev_attrs[] = { 7271 &dev_attr_type.attr, 7272 &dev_attr_perf_event_mux_interval_ms.attr, 7273 NULL, 7274 }; 7275 ATTRIBUTE_GROUPS(pmu_dev); 7276 7277 static int pmu_bus_running; 7278 static struct bus_type pmu_bus = { 7279 .name = "event_source", 7280 .dev_groups = pmu_dev_groups, 7281 }; 7282 7283 static void pmu_dev_release(struct device *dev) 7284 { 7285 kfree(dev); 7286 } 7287 7288 static int pmu_dev_alloc(struct pmu *pmu) 7289 { 7290 int ret = -ENOMEM; 7291 7292 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7293 if (!pmu->dev) 7294 goto out; 7295 7296 pmu->dev->groups = pmu->attr_groups; 7297 device_initialize(pmu->dev); 7298 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7299 if (ret) 7300 goto free_dev; 7301 7302 dev_set_drvdata(pmu->dev, pmu); 7303 pmu->dev->bus = &pmu_bus; 7304 pmu->dev->release = pmu_dev_release; 7305 ret = device_add(pmu->dev); 7306 if (ret) 7307 goto free_dev; 7308 7309 out: 7310 return ret; 7311 7312 free_dev: 7313 put_device(pmu->dev); 7314 goto out; 7315 } 7316 7317 static struct lock_class_key cpuctx_mutex; 7318 static struct lock_class_key cpuctx_lock; 7319 7320 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7321 { 7322 int cpu, ret; 7323 7324 mutex_lock(&pmus_lock); 7325 ret = -ENOMEM; 7326 pmu->pmu_disable_count = alloc_percpu(int); 7327 if (!pmu->pmu_disable_count) 7328 goto unlock; 7329 7330 pmu->type = -1; 7331 if (!name) 7332 goto skip_type; 7333 pmu->name = name; 7334 7335 if (type < 0) { 7336 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7337 if (type < 0) { 7338 ret = type; 7339 goto free_pdc; 7340 } 7341 } 7342 pmu->type = type; 7343 7344 if (pmu_bus_running) { 7345 ret = pmu_dev_alloc(pmu); 7346 if (ret) 7347 goto free_idr; 7348 } 7349 7350 skip_type: 7351 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7352 if (pmu->pmu_cpu_context) 7353 goto got_cpu_context; 7354 7355 ret = -ENOMEM; 7356 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7357 if (!pmu->pmu_cpu_context) 7358 goto free_dev; 7359 7360 for_each_possible_cpu(cpu) { 7361 struct perf_cpu_context *cpuctx; 7362 7363 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7364 __perf_event_init_context(&cpuctx->ctx); 7365 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7366 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7367 cpuctx->ctx.pmu = pmu; 7368 7369 __perf_mux_hrtimer_init(cpuctx, cpu); 7370 7371 cpuctx->unique_pmu = pmu; 7372 } 7373 7374 got_cpu_context: 7375 if (!pmu->start_txn) { 7376 if (pmu->pmu_enable) { 7377 /* 7378 * If we have pmu_enable/pmu_disable calls, install 7379 * transaction stubs that use that to try and batch 7380 * hardware accesses. 7381 */ 7382 pmu->start_txn = perf_pmu_start_txn; 7383 pmu->commit_txn = perf_pmu_commit_txn; 7384 pmu->cancel_txn = perf_pmu_cancel_txn; 7385 } else { 7386 pmu->start_txn = perf_pmu_nop_void; 7387 pmu->commit_txn = perf_pmu_nop_int; 7388 pmu->cancel_txn = perf_pmu_nop_void; 7389 } 7390 } 7391 7392 if (!pmu->pmu_enable) { 7393 pmu->pmu_enable = perf_pmu_nop_void; 7394 pmu->pmu_disable = perf_pmu_nop_void; 7395 } 7396 7397 if (!pmu->event_idx) 7398 pmu->event_idx = perf_event_idx_default; 7399 7400 list_add_rcu(&pmu->entry, &pmus); 7401 atomic_set(&pmu->exclusive_cnt, 0); 7402 ret = 0; 7403 unlock: 7404 mutex_unlock(&pmus_lock); 7405 7406 return ret; 7407 7408 free_dev: 7409 device_del(pmu->dev); 7410 put_device(pmu->dev); 7411 7412 free_idr: 7413 if (pmu->type >= PERF_TYPE_MAX) 7414 idr_remove(&pmu_idr, pmu->type); 7415 7416 free_pdc: 7417 free_percpu(pmu->pmu_disable_count); 7418 goto unlock; 7419 } 7420 EXPORT_SYMBOL_GPL(perf_pmu_register); 7421 7422 void perf_pmu_unregister(struct pmu *pmu) 7423 { 7424 mutex_lock(&pmus_lock); 7425 list_del_rcu(&pmu->entry); 7426 mutex_unlock(&pmus_lock); 7427 7428 /* 7429 * We dereference the pmu list under both SRCU and regular RCU, so 7430 * synchronize against both of those. 7431 */ 7432 synchronize_srcu(&pmus_srcu); 7433 synchronize_rcu(); 7434 7435 free_percpu(pmu->pmu_disable_count); 7436 if (pmu->type >= PERF_TYPE_MAX) 7437 idr_remove(&pmu_idr, pmu->type); 7438 device_del(pmu->dev); 7439 put_device(pmu->dev); 7440 free_pmu_context(pmu); 7441 } 7442 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7443 7444 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7445 { 7446 struct perf_event_context *ctx = NULL; 7447 int ret; 7448 7449 if (!try_module_get(pmu->module)) 7450 return -ENODEV; 7451 7452 if (event->group_leader != event) { 7453 /* 7454 * This ctx->mutex can nest when we're called through 7455 * inheritance. See the perf_event_ctx_lock_nested() comment. 7456 */ 7457 ctx = perf_event_ctx_lock_nested(event->group_leader, 7458 SINGLE_DEPTH_NESTING); 7459 BUG_ON(!ctx); 7460 } 7461 7462 event->pmu = pmu; 7463 ret = pmu->event_init(event); 7464 7465 if (ctx) 7466 perf_event_ctx_unlock(event->group_leader, ctx); 7467 7468 if (ret) 7469 module_put(pmu->module); 7470 7471 return ret; 7472 } 7473 7474 struct pmu *perf_init_event(struct perf_event *event) 7475 { 7476 struct pmu *pmu = NULL; 7477 int idx; 7478 int ret; 7479 7480 idx = srcu_read_lock(&pmus_srcu); 7481 7482 rcu_read_lock(); 7483 pmu = idr_find(&pmu_idr, event->attr.type); 7484 rcu_read_unlock(); 7485 if (pmu) { 7486 ret = perf_try_init_event(pmu, event); 7487 if (ret) 7488 pmu = ERR_PTR(ret); 7489 goto unlock; 7490 } 7491 7492 list_for_each_entry_rcu(pmu, &pmus, entry) { 7493 ret = perf_try_init_event(pmu, event); 7494 if (!ret) 7495 goto unlock; 7496 7497 if (ret != -ENOENT) { 7498 pmu = ERR_PTR(ret); 7499 goto unlock; 7500 } 7501 } 7502 pmu = ERR_PTR(-ENOENT); 7503 unlock: 7504 srcu_read_unlock(&pmus_srcu, idx); 7505 7506 return pmu; 7507 } 7508 7509 static void account_event_cpu(struct perf_event *event, int cpu) 7510 { 7511 if (event->parent) 7512 return; 7513 7514 if (is_cgroup_event(event)) 7515 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7516 } 7517 7518 static void account_event(struct perf_event *event) 7519 { 7520 if (event->parent) 7521 return; 7522 7523 if (event->attach_state & PERF_ATTACH_TASK) 7524 static_key_slow_inc(&perf_sched_events.key); 7525 if (event->attr.mmap || event->attr.mmap_data) 7526 atomic_inc(&nr_mmap_events); 7527 if (event->attr.comm) 7528 atomic_inc(&nr_comm_events); 7529 if (event->attr.task) 7530 atomic_inc(&nr_task_events); 7531 if (event->attr.freq) { 7532 if (atomic_inc_return(&nr_freq_events) == 1) 7533 tick_nohz_full_kick_all(); 7534 } 7535 if (has_branch_stack(event)) 7536 static_key_slow_inc(&perf_sched_events.key); 7537 if (is_cgroup_event(event)) 7538 static_key_slow_inc(&perf_sched_events.key); 7539 7540 account_event_cpu(event, event->cpu); 7541 } 7542 7543 /* 7544 * Allocate and initialize a event structure 7545 */ 7546 static struct perf_event * 7547 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7548 struct task_struct *task, 7549 struct perf_event *group_leader, 7550 struct perf_event *parent_event, 7551 perf_overflow_handler_t overflow_handler, 7552 void *context, int cgroup_fd) 7553 { 7554 struct pmu *pmu; 7555 struct perf_event *event; 7556 struct hw_perf_event *hwc; 7557 long err = -EINVAL; 7558 7559 if ((unsigned)cpu >= nr_cpu_ids) { 7560 if (!task || cpu != -1) 7561 return ERR_PTR(-EINVAL); 7562 } 7563 7564 event = kzalloc(sizeof(*event), GFP_KERNEL); 7565 if (!event) 7566 return ERR_PTR(-ENOMEM); 7567 7568 /* 7569 * Single events are their own group leaders, with an 7570 * empty sibling list: 7571 */ 7572 if (!group_leader) 7573 group_leader = event; 7574 7575 mutex_init(&event->child_mutex); 7576 INIT_LIST_HEAD(&event->child_list); 7577 7578 INIT_LIST_HEAD(&event->group_entry); 7579 INIT_LIST_HEAD(&event->event_entry); 7580 INIT_LIST_HEAD(&event->sibling_list); 7581 INIT_LIST_HEAD(&event->rb_entry); 7582 INIT_LIST_HEAD(&event->active_entry); 7583 INIT_HLIST_NODE(&event->hlist_entry); 7584 7585 7586 init_waitqueue_head(&event->waitq); 7587 init_irq_work(&event->pending, perf_pending_event); 7588 7589 mutex_init(&event->mmap_mutex); 7590 7591 atomic_long_set(&event->refcount, 1); 7592 event->cpu = cpu; 7593 event->attr = *attr; 7594 event->group_leader = group_leader; 7595 event->pmu = NULL; 7596 event->oncpu = -1; 7597 7598 event->parent = parent_event; 7599 7600 event->ns = get_pid_ns(task_active_pid_ns(current)); 7601 event->id = atomic64_inc_return(&perf_event_id); 7602 7603 event->state = PERF_EVENT_STATE_INACTIVE; 7604 7605 if (task) { 7606 event->attach_state = PERF_ATTACH_TASK; 7607 /* 7608 * XXX pmu::event_init needs to know what task to account to 7609 * and we cannot use the ctx information because we need the 7610 * pmu before we get a ctx. 7611 */ 7612 event->hw.target = task; 7613 } 7614 7615 event->clock = &local_clock; 7616 if (parent_event) 7617 event->clock = parent_event->clock; 7618 7619 if (!overflow_handler && parent_event) { 7620 overflow_handler = parent_event->overflow_handler; 7621 context = parent_event->overflow_handler_context; 7622 } 7623 7624 event->overflow_handler = overflow_handler; 7625 event->overflow_handler_context = context; 7626 7627 perf_event__state_init(event); 7628 7629 pmu = NULL; 7630 7631 hwc = &event->hw; 7632 hwc->sample_period = attr->sample_period; 7633 if (attr->freq && attr->sample_freq) 7634 hwc->sample_period = 1; 7635 hwc->last_period = hwc->sample_period; 7636 7637 local64_set(&hwc->period_left, hwc->sample_period); 7638 7639 /* 7640 * we currently do not support PERF_FORMAT_GROUP on inherited events 7641 */ 7642 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7643 goto err_ns; 7644 7645 if (!has_branch_stack(event)) 7646 event->attr.branch_sample_type = 0; 7647 7648 if (cgroup_fd != -1) { 7649 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7650 if (err) 7651 goto err_ns; 7652 } 7653 7654 pmu = perf_init_event(event); 7655 if (!pmu) 7656 goto err_ns; 7657 else if (IS_ERR(pmu)) { 7658 err = PTR_ERR(pmu); 7659 goto err_ns; 7660 } 7661 7662 err = exclusive_event_init(event); 7663 if (err) 7664 goto err_pmu; 7665 7666 if (!event->parent) { 7667 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7668 err = get_callchain_buffers(); 7669 if (err) 7670 goto err_per_task; 7671 } 7672 } 7673 7674 return event; 7675 7676 err_per_task: 7677 exclusive_event_destroy(event); 7678 7679 err_pmu: 7680 if (event->destroy) 7681 event->destroy(event); 7682 module_put(pmu->module); 7683 err_ns: 7684 if (is_cgroup_event(event)) 7685 perf_detach_cgroup(event); 7686 if (event->ns) 7687 put_pid_ns(event->ns); 7688 kfree(event); 7689 7690 return ERR_PTR(err); 7691 } 7692 7693 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7694 struct perf_event_attr *attr) 7695 { 7696 u32 size; 7697 int ret; 7698 7699 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7700 return -EFAULT; 7701 7702 /* 7703 * zero the full structure, so that a short copy will be nice. 7704 */ 7705 memset(attr, 0, sizeof(*attr)); 7706 7707 ret = get_user(size, &uattr->size); 7708 if (ret) 7709 return ret; 7710 7711 if (size > PAGE_SIZE) /* silly large */ 7712 goto err_size; 7713 7714 if (!size) /* abi compat */ 7715 size = PERF_ATTR_SIZE_VER0; 7716 7717 if (size < PERF_ATTR_SIZE_VER0) 7718 goto err_size; 7719 7720 /* 7721 * If we're handed a bigger struct than we know of, 7722 * ensure all the unknown bits are 0 - i.e. new 7723 * user-space does not rely on any kernel feature 7724 * extensions we dont know about yet. 7725 */ 7726 if (size > sizeof(*attr)) { 7727 unsigned char __user *addr; 7728 unsigned char __user *end; 7729 unsigned char val; 7730 7731 addr = (void __user *)uattr + sizeof(*attr); 7732 end = (void __user *)uattr + size; 7733 7734 for (; addr < end; addr++) { 7735 ret = get_user(val, addr); 7736 if (ret) 7737 return ret; 7738 if (val) 7739 goto err_size; 7740 } 7741 size = sizeof(*attr); 7742 } 7743 7744 ret = copy_from_user(attr, uattr, size); 7745 if (ret) 7746 return -EFAULT; 7747 7748 if (attr->__reserved_1) 7749 return -EINVAL; 7750 7751 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7752 return -EINVAL; 7753 7754 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7755 return -EINVAL; 7756 7757 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7758 u64 mask = attr->branch_sample_type; 7759 7760 /* only using defined bits */ 7761 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7762 return -EINVAL; 7763 7764 /* at least one branch bit must be set */ 7765 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7766 return -EINVAL; 7767 7768 /* propagate priv level, when not set for branch */ 7769 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7770 7771 /* exclude_kernel checked on syscall entry */ 7772 if (!attr->exclude_kernel) 7773 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7774 7775 if (!attr->exclude_user) 7776 mask |= PERF_SAMPLE_BRANCH_USER; 7777 7778 if (!attr->exclude_hv) 7779 mask |= PERF_SAMPLE_BRANCH_HV; 7780 /* 7781 * adjust user setting (for HW filter setup) 7782 */ 7783 attr->branch_sample_type = mask; 7784 } 7785 /* privileged levels capture (kernel, hv): check permissions */ 7786 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7787 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7788 return -EACCES; 7789 } 7790 7791 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7792 ret = perf_reg_validate(attr->sample_regs_user); 7793 if (ret) 7794 return ret; 7795 } 7796 7797 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7798 if (!arch_perf_have_user_stack_dump()) 7799 return -ENOSYS; 7800 7801 /* 7802 * We have __u32 type for the size, but so far 7803 * we can only use __u16 as maximum due to the 7804 * __u16 sample size limit. 7805 */ 7806 if (attr->sample_stack_user >= USHRT_MAX) 7807 ret = -EINVAL; 7808 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7809 ret = -EINVAL; 7810 } 7811 7812 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 7813 ret = perf_reg_validate(attr->sample_regs_intr); 7814 out: 7815 return ret; 7816 7817 err_size: 7818 put_user(sizeof(*attr), &uattr->size); 7819 ret = -E2BIG; 7820 goto out; 7821 } 7822 7823 static int 7824 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7825 { 7826 struct ring_buffer *rb = NULL; 7827 int ret = -EINVAL; 7828 7829 if (!output_event) 7830 goto set; 7831 7832 /* don't allow circular references */ 7833 if (event == output_event) 7834 goto out; 7835 7836 /* 7837 * Don't allow cross-cpu buffers 7838 */ 7839 if (output_event->cpu != event->cpu) 7840 goto out; 7841 7842 /* 7843 * If its not a per-cpu rb, it must be the same task. 7844 */ 7845 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7846 goto out; 7847 7848 /* 7849 * Mixing clocks in the same buffer is trouble you don't need. 7850 */ 7851 if (output_event->clock != event->clock) 7852 goto out; 7853 7854 /* 7855 * If both events generate aux data, they must be on the same PMU 7856 */ 7857 if (has_aux(event) && has_aux(output_event) && 7858 event->pmu != output_event->pmu) 7859 goto out; 7860 7861 set: 7862 mutex_lock(&event->mmap_mutex); 7863 /* Can't redirect output if we've got an active mmap() */ 7864 if (atomic_read(&event->mmap_count)) 7865 goto unlock; 7866 7867 if (output_event) { 7868 /* get the rb we want to redirect to */ 7869 rb = ring_buffer_get(output_event); 7870 if (!rb) 7871 goto unlock; 7872 } 7873 7874 ring_buffer_attach(event, rb); 7875 7876 ret = 0; 7877 unlock: 7878 mutex_unlock(&event->mmap_mutex); 7879 7880 out: 7881 return ret; 7882 } 7883 7884 static void mutex_lock_double(struct mutex *a, struct mutex *b) 7885 { 7886 if (b < a) 7887 swap(a, b); 7888 7889 mutex_lock(a); 7890 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 7891 } 7892 7893 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 7894 { 7895 bool nmi_safe = false; 7896 7897 switch (clk_id) { 7898 case CLOCK_MONOTONIC: 7899 event->clock = &ktime_get_mono_fast_ns; 7900 nmi_safe = true; 7901 break; 7902 7903 case CLOCK_MONOTONIC_RAW: 7904 event->clock = &ktime_get_raw_fast_ns; 7905 nmi_safe = true; 7906 break; 7907 7908 case CLOCK_REALTIME: 7909 event->clock = &ktime_get_real_ns; 7910 break; 7911 7912 case CLOCK_BOOTTIME: 7913 event->clock = &ktime_get_boot_ns; 7914 break; 7915 7916 case CLOCK_TAI: 7917 event->clock = &ktime_get_tai_ns; 7918 break; 7919 7920 default: 7921 return -EINVAL; 7922 } 7923 7924 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 7925 return -EINVAL; 7926 7927 return 0; 7928 } 7929 7930 /** 7931 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7932 * 7933 * @attr_uptr: event_id type attributes for monitoring/sampling 7934 * @pid: target pid 7935 * @cpu: target cpu 7936 * @group_fd: group leader event fd 7937 */ 7938 SYSCALL_DEFINE5(perf_event_open, 7939 struct perf_event_attr __user *, attr_uptr, 7940 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7941 { 7942 struct perf_event *group_leader = NULL, *output_event = NULL; 7943 struct perf_event *event, *sibling; 7944 struct perf_event_attr attr; 7945 struct perf_event_context *ctx, *uninitialized_var(gctx); 7946 struct file *event_file = NULL; 7947 struct fd group = {NULL, 0}; 7948 struct task_struct *task = NULL; 7949 struct pmu *pmu; 7950 int event_fd; 7951 int move_group = 0; 7952 int err; 7953 int f_flags = O_RDWR; 7954 int cgroup_fd = -1; 7955 7956 /* for future expandability... */ 7957 if (flags & ~PERF_FLAG_ALL) 7958 return -EINVAL; 7959 7960 err = perf_copy_attr(attr_uptr, &attr); 7961 if (err) 7962 return err; 7963 7964 if (!attr.exclude_kernel) { 7965 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7966 return -EACCES; 7967 } 7968 7969 if (attr.freq) { 7970 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7971 return -EINVAL; 7972 } else { 7973 if (attr.sample_period & (1ULL << 63)) 7974 return -EINVAL; 7975 } 7976 7977 /* 7978 * In cgroup mode, the pid argument is used to pass the fd 7979 * opened to the cgroup directory in cgroupfs. The cpu argument 7980 * designates the cpu on which to monitor threads from that 7981 * cgroup. 7982 */ 7983 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7984 return -EINVAL; 7985 7986 if (flags & PERF_FLAG_FD_CLOEXEC) 7987 f_flags |= O_CLOEXEC; 7988 7989 event_fd = get_unused_fd_flags(f_flags); 7990 if (event_fd < 0) 7991 return event_fd; 7992 7993 if (group_fd != -1) { 7994 err = perf_fget_light(group_fd, &group); 7995 if (err) 7996 goto err_fd; 7997 group_leader = group.file->private_data; 7998 if (flags & PERF_FLAG_FD_OUTPUT) 7999 output_event = group_leader; 8000 if (flags & PERF_FLAG_FD_NO_GROUP) 8001 group_leader = NULL; 8002 } 8003 8004 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8005 task = find_lively_task_by_vpid(pid); 8006 if (IS_ERR(task)) { 8007 err = PTR_ERR(task); 8008 goto err_group_fd; 8009 } 8010 } 8011 8012 if (task && group_leader && 8013 group_leader->attr.inherit != attr.inherit) { 8014 err = -EINVAL; 8015 goto err_task; 8016 } 8017 8018 get_online_cpus(); 8019 8020 if (flags & PERF_FLAG_PID_CGROUP) 8021 cgroup_fd = pid; 8022 8023 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8024 NULL, NULL, cgroup_fd); 8025 if (IS_ERR(event)) { 8026 err = PTR_ERR(event); 8027 goto err_cpus; 8028 } 8029 8030 if (is_sampling_event(event)) { 8031 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8032 err = -ENOTSUPP; 8033 goto err_alloc; 8034 } 8035 } 8036 8037 account_event(event); 8038 8039 /* 8040 * Special case software events and allow them to be part of 8041 * any hardware group. 8042 */ 8043 pmu = event->pmu; 8044 8045 if (attr.use_clockid) { 8046 err = perf_event_set_clock(event, attr.clockid); 8047 if (err) 8048 goto err_alloc; 8049 } 8050 8051 if (group_leader && 8052 (is_software_event(event) != is_software_event(group_leader))) { 8053 if (is_software_event(event)) { 8054 /* 8055 * If event and group_leader are not both a software 8056 * event, and event is, then group leader is not. 8057 * 8058 * Allow the addition of software events to !software 8059 * groups, this is safe because software events never 8060 * fail to schedule. 8061 */ 8062 pmu = group_leader->pmu; 8063 } else if (is_software_event(group_leader) && 8064 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8065 /* 8066 * In case the group is a pure software group, and we 8067 * try to add a hardware event, move the whole group to 8068 * the hardware context. 8069 */ 8070 move_group = 1; 8071 } 8072 } 8073 8074 /* 8075 * Get the target context (task or percpu): 8076 */ 8077 ctx = find_get_context(pmu, task, event); 8078 if (IS_ERR(ctx)) { 8079 err = PTR_ERR(ctx); 8080 goto err_alloc; 8081 } 8082 8083 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8084 err = -EBUSY; 8085 goto err_context; 8086 } 8087 8088 if (task) { 8089 put_task_struct(task); 8090 task = NULL; 8091 } 8092 8093 /* 8094 * Look up the group leader (we will attach this event to it): 8095 */ 8096 if (group_leader) { 8097 err = -EINVAL; 8098 8099 /* 8100 * Do not allow a recursive hierarchy (this new sibling 8101 * becoming part of another group-sibling): 8102 */ 8103 if (group_leader->group_leader != group_leader) 8104 goto err_context; 8105 8106 /* All events in a group should have the same clock */ 8107 if (group_leader->clock != event->clock) 8108 goto err_context; 8109 8110 /* 8111 * Do not allow to attach to a group in a different 8112 * task or CPU context: 8113 */ 8114 if (move_group) { 8115 /* 8116 * Make sure we're both on the same task, or both 8117 * per-cpu events. 8118 */ 8119 if (group_leader->ctx->task != ctx->task) 8120 goto err_context; 8121 8122 /* 8123 * Make sure we're both events for the same CPU; 8124 * grouping events for different CPUs is broken; since 8125 * you can never concurrently schedule them anyhow. 8126 */ 8127 if (group_leader->cpu != event->cpu) 8128 goto err_context; 8129 } else { 8130 if (group_leader->ctx != ctx) 8131 goto err_context; 8132 } 8133 8134 /* 8135 * Only a group leader can be exclusive or pinned 8136 */ 8137 if (attr.exclusive || attr.pinned) 8138 goto err_context; 8139 } 8140 8141 if (output_event) { 8142 err = perf_event_set_output(event, output_event); 8143 if (err) 8144 goto err_context; 8145 } 8146 8147 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8148 f_flags); 8149 if (IS_ERR(event_file)) { 8150 err = PTR_ERR(event_file); 8151 goto err_context; 8152 } 8153 8154 if (move_group) { 8155 gctx = group_leader->ctx; 8156 8157 /* 8158 * See perf_event_ctx_lock() for comments on the details 8159 * of swizzling perf_event::ctx. 8160 */ 8161 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8162 8163 perf_remove_from_context(group_leader, false); 8164 8165 list_for_each_entry(sibling, &group_leader->sibling_list, 8166 group_entry) { 8167 perf_remove_from_context(sibling, false); 8168 put_ctx(gctx); 8169 } 8170 } else { 8171 mutex_lock(&ctx->mutex); 8172 } 8173 8174 WARN_ON_ONCE(ctx->parent_ctx); 8175 8176 if (move_group) { 8177 /* 8178 * Wait for everybody to stop referencing the events through 8179 * the old lists, before installing it on new lists. 8180 */ 8181 synchronize_rcu(); 8182 8183 /* 8184 * Install the group siblings before the group leader. 8185 * 8186 * Because a group leader will try and install the entire group 8187 * (through the sibling list, which is still in-tact), we can 8188 * end up with siblings installed in the wrong context. 8189 * 8190 * By installing siblings first we NO-OP because they're not 8191 * reachable through the group lists. 8192 */ 8193 list_for_each_entry(sibling, &group_leader->sibling_list, 8194 group_entry) { 8195 perf_event__state_init(sibling); 8196 perf_install_in_context(ctx, sibling, sibling->cpu); 8197 get_ctx(ctx); 8198 } 8199 8200 /* 8201 * Removing from the context ends up with disabled 8202 * event. What we want here is event in the initial 8203 * startup state, ready to be add into new context. 8204 */ 8205 perf_event__state_init(group_leader); 8206 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8207 get_ctx(ctx); 8208 } 8209 8210 if (!exclusive_event_installable(event, ctx)) { 8211 err = -EBUSY; 8212 mutex_unlock(&ctx->mutex); 8213 fput(event_file); 8214 goto err_context; 8215 } 8216 8217 perf_install_in_context(ctx, event, event->cpu); 8218 perf_unpin_context(ctx); 8219 8220 if (move_group) { 8221 mutex_unlock(&gctx->mutex); 8222 put_ctx(gctx); 8223 } 8224 mutex_unlock(&ctx->mutex); 8225 8226 put_online_cpus(); 8227 8228 event->owner = current; 8229 8230 mutex_lock(¤t->perf_event_mutex); 8231 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8232 mutex_unlock(¤t->perf_event_mutex); 8233 8234 /* 8235 * Precalculate sample_data sizes 8236 */ 8237 perf_event__header_size(event); 8238 perf_event__id_header_size(event); 8239 8240 /* 8241 * Drop the reference on the group_event after placing the 8242 * new event on the sibling_list. This ensures destruction 8243 * of the group leader will find the pointer to itself in 8244 * perf_group_detach(). 8245 */ 8246 fdput(group); 8247 fd_install(event_fd, event_file); 8248 return event_fd; 8249 8250 err_context: 8251 perf_unpin_context(ctx); 8252 put_ctx(ctx); 8253 err_alloc: 8254 free_event(event); 8255 err_cpus: 8256 put_online_cpus(); 8257 err_task: 8258 if (task) 8259 put_task_struct(task); 8260 err_group_fd: 8261 fdput(group); 8262 err_fd: 8263 put_unused_fd(event_fd); 8264 return err; 8265 } 8266 8267 /** 8268 * perf_event_create_kernel_counter 8269 * 8270 * @attr: attributes of the counter to create 8271 * @cpu: cpu in which the counter is bound 8272 * @task: task to profile (NULL for percpu) 8273 */ 8274 struct perf_event * 8275 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8276 struct task_struct *task, 8277 perf_overflow_handler_t overflow_handler, 8278 void *context) 8279 { 8280 struct perf_event_context *ctx; 8281 struct perf_event *event; 8282 int err; 8283 8284 /* 8285 * Get the target context (task or percpu): 8286 */ 8287 8288 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8289 overflow_handler, context, -1); 8290 if (IS_ERR(event)) { 8291 err = PTR_ERR(event); 8292 goto err; 8293 } 8294 8295 /* Mark owner so we could distinguish it from user events. */ 8296 event->owner = EVENT_OWNER_KERNEL; 8297 8298 account_event(event); 8299 8300 ctx = find_get_context(event->pmu, task, event); 8301 if (IS_ERR(ctx)) { 8302 err = PTR_ERR(ctx); 8303 goto err_free; 8304 } 8305 8306 WARN_ON_ONCE(ctx->parent_ctx); 8307 mutex_lock(&ctx->mutex); 8308 if (!exclusive_event_installable(event, ctx)) { 8309 mutex_unlock(&ctx->mutex); 8310 perf_unpin_context(ctx); 8311 put_ctx(ctx); 8312 err = -EBUSY; 8313 goto err_free; 8314 } 8315 8316 perf_install_in_context(ctx, event, cpu); 8317 perf_unpin_context(ctx); 8318 mutex_unlock(&ctx->mutex); 8319 8320 return event; 8321 8322 err_free: 8323 free_event(event); 8324 err: 8325 return ERR_PTR(err); 8326 } 8327 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8328 8329 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8330 { 8331 struct perf_event_context *src_ctx; 8332 struct perf_event_context *dst_ctx; 8333 struct perf_event *event, *tmp; 8334 LIST_HEAD(events); 8335 8336 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8337 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8338 8339 /* 8340 * See perf_event_ctx_lock() for comments on the details 8341 * of swizzling perf_event::ctx. 8342 */ 8343 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8344 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8345 event_entry) { 8346 perf_remove_from_context(event, false); 8347 unaccount_event_cpu(event, src_cpu); 8348 put_ctx(src_ctx); 8349 list_add(&event->migrate_entry, &events); 8350 } 8351 8352 /* 8353 * Wait for the events to quiesce before re-instating them. 8354 */ 8355 synchronize_rcu(); 8356 8357 /* 8358 * Re-instate events in 2 passes. 8359 * 8360 * Skip over group leaders and only install siblings on this first 8361 * pass, siblings will not get enabled without a leader, however a 8362 * leader will enable its siblings, even if those are still on the old 8363 * context. 8364 */ 8365 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8366 if (event->group_leader == event) 8367 continue; 8368 8369 list_del(&event->migrate_entry); 8370 if (event->state >= PERF_EVENT_STATE_OFF) 8371 event->state = PERF_EVENT_STATE_INACTIVE; 8372 account_event_cpu(event, dst_cpu); 8373 perf_install_in_context(dst_ctx, event, dst_cpu); 8374 get_ctx(dst_ctx); 8375 } 8376 8377 /* 8378 * Once all the siblings are setup properly, install the group leaders 8379 * to make it go. 8380 */ 8381 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8382 list_del(&event->migrate_entry); 8383 if (event->state >= PERF_EVENT_STATE_OFF) 8384 event->state = PERF_EVENT_STATE_INACTIVE; 8385 account_event_cpu(event, dst_cpu); 8386 perf_install_in_context(dst_ctx, event, dst_cpu); 8387 get_ctx(dst_ctx); 8388 } 8389 mutex_unlock(&dst_ctx->mutex); 8390 mutex_unlock(&src_ctx->mutex); 8391 } 8392 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8393 8394 static void sync_child_event(struct perf_event *child_event, 8395 struct task_struct *child) 8396 { 8397 struct perf_event *parent_event = child_event->parent; 8398 u64 child_val; 8399 8400 if (child_event->attr.inherit_stat) 8401 perf_event_read_event(child_event, child); 8402 8403 child_val = perf_event_count(child_event); 8404 8405 /* 8406 * Add back the child's count to the parent's count: 8407 */ 8408 atomic64_add(child_val, &parent_event->child_count); 8409 atomic64_add(child_event->total_time_enabled, 8410 &parent_event->child_total_time_enabled); 8411 atomic64_add(child_event->total_time_running, 8412 &parent_event->child_total_time_running); 8413 8414 /* 8415 * Remove this event from the parent's list 8416 */ 8417 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8418 mutex_lock(&parent_event->child_mutex); 8419 list_del_init(&child_event->child_list); 8420 mutex_unlock(&parent_event->child_mutex); 8421 8422 /* 8423 * Make sure user/parent get notified, that we just 8424 * lost one event. 8425 */ 8426 perf_event_wakeup(parent_event); 8427 8428 /* 8429 * Release the parent event, if this was the last 8430 * reference to it. 8431 */ 8432 put_event(parent_event); 8433 } 8434 8435 static void 8436 __perf_event_exit_task(struct perf_event *child_event, 8437 struct perf_event_context *child_ctx, 8438 struct task_struct *child) 8439 { 8440 /* 8441 * Do not destroy the 'original' grouping; because of the context 8442 * switch optimization the original events could've ended up in a 8443 * random child task. 8444 * 8445 * If we were to destroy the original group, all group related 8446 * operations would cease to function properly after this random 8447 * child dies. 8448 * 8449 * Do destroy all inherited groups, we don't care about those 8450 * and being thorough is better. 8451 */ 8452 perf_remove_from_context(child_event, !!child_event->parent); 8453 8454 /* 8455 * It can happen that the parent exits first, and has events 8456 * that are still around due to the child reference. These 8457 * events need to be zapped. 8458 */ 8459 if (child_event->parent) { 8460 sync_child_event(child_event, child); 8461 free_event(child_event); 8462 } else { 8463 child_event->state = PERF_EVENT_STATE_EXIT; 8464 perf_event_wakeup(child_event); 8465 } 8466 } 8467 8468 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8469 { 8470 struct perf_event *child_event, *next; 8471 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8472 unsigned long flags; 8473 8474 if (likely(!child->perf_event_ctxp[ctxn])) { 8475 perf_event_task(child, NULL, 0); 8476 return; 8477 } 8478 8479 local_irq_save(flags); 8480 /* 8481 * We can't reschedule here because interrupts are disabled, 8482 * and either child is current or it is a task that can't be 8483 * scheduled, so we are now safe from rescheduling changing 8484 * our context. 8485 */ 8486 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8487 8488 /* 8489 * Take the context lock here so that if find_get_context is 8490 * reading child->perf_event_ctxp, we wait until it has 8491 * incremented the context's refcount before we do put_ctx below. 8492 */ 8493 raw_spin_lock(&child_ctx->lock); 8494 task_ctx_sched_out(child_ctx); 8495 child->perf_event_ctxp[ctxn] = NULL; 8496 8497 /* 8498 * If this context is a clone; unclone it so it can't get 8499 * swapped to another process while we're removing all 8500 * the events from it. 8501 */ 8502 clone_ctx = unclone_ctx(child_ctx); 8503 update_context_time(child_ctx); 8504 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8505 8506 if (clone_ctx) 8507 put_ctx(clone_ctx); 8508 8509 /* 8510 * Report the task dead after unscheduling the events so that we 8511 * won't get any samples after PERF_RECORD_EXIT. We can however still 8512 * get a few PERF_RECORD_READ events. 8513 */ 8514 perf_event_task(child, child_ctx, 0); 8515 8516 /* 8517 * We can recurse on the same lock type through: 8518 * 8519 * __perf_event_exit_task() 8520 * sync_child_event() 8521 * put_event() 8522 * mutex_lock(&ctx->mutex) 8523 * 8524 * But since its the parent context it won't be the same instance. 8525 */ 8526 mutex_lock(&child_ctx->mutex); 8527 8528 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8529 __perf_event_exit_task(child_event, child_ctx, child); 8530 8531 mutex_unlock(&child_ctx->mutex); 8532 8533 put_ctx(child_ctx); 8534 } 8535 8536 /* 8537 * When a child task exits, feed back event values to parent events. 8538 */ 8539 void perf_event_exit_task(struct task_struct *child) 8540 { 8541 struct perf_event *event, *tmp; 8542 int ctxn; 8543 8544 mutex_lock(&child->perf_event_mutex); 8545 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8546 owner_entry) { 8547 list_del_init(&event->owner_entry); 8548 8549 /* 8550 * Ensure the list deletion is visible before we clear 8551 * the owner, closes a race against perf_release() where 8552 * we need to serialize on the owner->perf_event_mutex. 8553 */ 8554 smp_wmb(); 8555 event->owner = NULL; 8556 } 8557 mutex_unlock(&child->perf_event_mutex); 8558 8559 for_each_task_context_nr(ctxn) 8560 perf_event_exit_task_context(child, ctxn); 8561 } 8562 8563 static void perf_free_event(struct perf_event *event, 8564 struct perf_event_context *ctx) 8565 { 8566 struct perf_event *parent = event->parent; 8567 8568 if (WARN_ON_ONCE(!parent)) 8569 return; 8570 8571 mutex_lock(&parent->child_mutex); 8572 list_del_init(&event->child_list); 8573 mutex_unlock(&parent->child_mutex); 8574 8575 put_event(parent); 8576 8577 raw_spin_lock_irq(&ctx->lock); 8578 perf_group_detach(event); 8579 list_del_event(event, ctx); 8580 raw_spin_unlock_irq(&ctx->lock); 8581 free_event(event); 8582 } 8583 8584 /* 8585 * Free an unexposed, unused context as created by inheritance by 8586 * perf_event_init_task below, used by fork() in case of fail. 8587 * 8588 * Not all locks are strictly required, but take them anyway to be nice and 8589 * help out with the lockdep assertions. 8590 */ 8591 void perf_event_free_task(struct task_struct *task) 8592 { 8593 struct perf_event_context *ctx; 8594 struct perf_event *event, *tmp; 8595 int ctxn; 8596 8597 for_each_task_context_nr(ctxn) { 8598 ctx = task->perf_event_ctxp[ctxn]; 8599 if (!ctx) 8600 continue; 8601 8602 mutex_lock(&ctx->mutex); 8603 again: 8604 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8605 group_entry) 8606 perf_free_event(event, ctx); 8607 8608 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8609 group_entry) 8610 perf_free_event(event, ctx); 8611 8612 if (!list_empty(&ctx->pinned_groups) || 8613 !list_empty(&ctx->flexible_groups)) 8614 goto again; 8615 8616 mutex_unlock(&ctx->mutex); 8617 8618 put_ctx(ctx); 8619 } 8620 } 8621 8622 void perf_event_delayed_put(struct task_struct *task) 8623 { 8624 int ctxn; 8625 8626 for_each_task_context_nr(ctxn) 8627 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8628 } 8629 8630 struct perf_event *perf_event_get(unsigned int fd) 8631 { 8632 int err; 8633 struct fd f; 8634 struct perf_event *event; 8635 8636 err = perf_fget_light(fd, &f); 8637 if (err) 8638 return ERR_PTR(err); 8639 8640 event = f.file->private_data; 8641 atomic_long_inc(&event->refcount); 8642 fdput(f); 8643 8644 return event; 8645 } 8646 8647 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 8648 { 8649 if (!event) 8650 return ERR_PTR(-EINVAL); 8651 8652 return &event->attr; 8653 } 8654 8655 /* 8656 * inherit a event from parent task to child task: 8657 */ 8658 static struct perf_event * 8659 inherit_event(struct perf_event *parent_event, 8660 struct task_struct *parent, 8661 struct perf_event_context *parent_ctx, 8662 struct task_struct *child, 8663 struct perf_event *group_leader, 8664 struct perf_event_context *child_ctx) 8665 { 8666 enum perf_event_active_state parent_state = parent_event->state; 8667 struct perf_event *child_event; 8668 unsigned long flags; 8669 8670 /* 8671 * Instead of creating recursive hierarchies of events, 8672 * we link inherited events back to the original parent, 8673 * which has a filp for sure, which we use as the reference 8674 * count: 8675 */ 8676 if (parent_event->parent) 8677 parent_event = parent_event->parent; 8678 8679 child_event = perf_event_alloc(&parent_event->attr, 8680 parent_event->cpu, 8681 child, 8682 group_leader, parent_event, 8683 NULL, NULL, -1); 8684 if (IS_ERR(child_event)) 8685 return child_event; 8686 8687 if (is_orphaned_event(parent_event) || 8688 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8689 free_event(child_event); 8690 return NULL; 8691 } 8692 8693 get_ctx(child_ctx); 8694 8695 /* 8696 * Make the child state follow the state of the parent event, 8697 * not its attr.disabled bit. We hold the parent's mutex, 8698 * so we won't race with perf_event_{en, dis}able_family. 8699 */ 8700 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8701 child_event->state = PERF_EVENT_STATE_INACTIVE; 8702 else 8703 child_event->state = PERF_EVENT_STATE_OFF; 8704 8705 if (parent_event->attr.freq) { 8706 u64 sample_period = parent_event->hw.sample_period; 8707 struct hw_perf_event *hwc = &child_event->hw; 8708 8709 hwc->sample_period = sample_period; 8710 hwc->last_period = sample_period; 8711 8712 local64_set(&hwc->period_left, sample_period); 8713 } 8714 8715 child_event->ctx = child_ctx; 8716 child_event->overflow_handler = parent_event->overflow_handler; 8717 child_event->overflow_handler_context 8718 = parent_event->overflow_handler_context; 8719 8720 /* 8721 * Precalculate sample_data sizes 8722 */ 8723 perf_event__header_size(child_event); 8724 perf_event__id_header_size(child_event); 8725 8726 /* 8727 * Link it up in the child's context: 8728 */ 8729 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8730 add_event_to_ctx(child_event, child_ctx); 8731 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8732 8733 /* 8734 * Link this into the parent event's child list 8735 */ 8736 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8737 mutex_lock(&parent_event->child_mutex); 8738 list_add_tail(&child_event->child_list, &parent_event->child_list); 8739 mutex_unlock(&parent_event->child_mutex); 8740 8741 return child_event; 8742 } 8743 8744 static int inherit_group(struct perf_event *parent_event, 8745 struct task_struct *parent, 8746 struct perf_event_context *parent_ctx, 8747 struct task_struct *child, 8748 struct perf_event_context *child_ctx) 8749 { 8750 struct perf_event *leader; 8751 struct perf_event *sub; 8752 struct perf_event *child_ctr; 8753 8754 leader = inherit_event(parent_event, parent, parent_ctx, 8755 child, NULL, child_ctx); 8756 if (IS_ERR(leader)) 8757 return PTR_ERR(leader); 8758 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 8759 child_ctr = inherit_event(sub, parent, parent_ctx, 8760 child, leader, child_ctx); 8761 if (IS_ERR(child_ctr)) 8762 return PTR_ERR(child_ctr); 8763 } 8764 return 0; 8765 } 8766 8767 static int 8768 inherit_task_group(struct perf_event *event, struct task_struct *parent, 8769 struct perf_event_context *parent_ctx, 8770 struct task_struct *child, int ctxn, 8771 int *inherited_all) 8772 { 8773 int ret; 8774 struct perf_event_context *child_ctx; 8775 8776 if (!event->attr.inherit) { 8777 *inherited_all = 0; 8778 return 0; 8779 } 8780 8781 child_ctx = child->perf_event_ctxp[ctxn]; 8782 if (!child_ctx) { 8783 /* 8784 * This is executed from the parent task context, so 8785 * inherit events that have been marked for cloning. 8786 * First allocate and initialize a context for the 8787 * child. 8788 */ 8789 8790 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 8791 if (!child_ctx) 8792 return -ENOMEM; 8793 8794 child->perf_event_ctxp[ctxn] = child_ctx; 8795 } 8796 8797 ret = inherit_group(event, parent, parent_ctx, 8798 child, child_ctx); 8799 8800 if (ret) 8801 *inherited_all = 0; 8802 8803 return ret; 8804 } 8805 8806 /* 8807 * Initialize the perf_event context in task_struct 8808 */ 8809 static int perf_event_init_context(struct task_struct *child, int ctxn) 8810 { 8811 struct perf_event_context *child_ctx, *parent_ctx; 8812 struct perf_event_context *cloned_ctx; 8813 struct perf_event *event; 8814 struct task_struct *parent = current; 8815 int inherited_all = 1; 8816 unsigned long flags; 8817 int ret = 0; 8818 8819 if (likely(!parent->perf_event_ctxp[ctxn])) 8820 return 0; 8821 8822 /* 8823 * If the parent's context is a clone, pin it so it won't get 8824 * swapped under us. 8825 */ 8826 parent_ctx = perf_pin_task_context(parent, ctxn); 8827 if (!parent_ctx) 8828 return 0; 8829 8830 /* 8831 * No need to check if parent_ctx != NULL here; since we saw 8832 * it non-NULL earlier, the only reason for it to become NULL 8833 * is if we exit, and since we're currently in the middle of 8834 * a fork we can't be exiting at the same time. 8835 */ 8836 8837 /* 8838 * Lock the parent list. No need to lock the child - not PID 8839 * hashed yet and not running, so nobody can access it. 8840 */ 8841 mutex_lock(&parent_ctx->mutex); 8842 8843 /* 8844 * We dont have to disable NMIs - we are only looking at 8845 * the list, not manipulating it: 8846 */ 8847 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 8848 ret = inherit_task_group(event, parent, parent_ctx, 8849 child, ctxn, &inherited_all); 8850 if (ret) 8851 break; 8852 } 8853 8854 /* 8855 * We can't hold ctx->lock when iterating the ->flexible_group list due 8856 * to allocations, but we need to prevent rotation because 8857 * rotate_ctx() will change the list from interrupt context. 8858 */ 8859 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8860 parent_ctx->rotate_disable = 1; 8861 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8862 8863 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 8864 ret = inherit_task_group(event, parent, parent_ctx, 8865 child, ctxn, &inherited_all); 8866 if (ret) 8867 break; 8868 } 8869 8870 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8871 parent_ctx->rotate_disable = 0; 8872 8873 child_ctx = child->perf_event_ctxp[ctxn]; 8874 8875 if (child_ctx && inherited_all) { 8876 /* 8877 * Mark the child context as a clone of the parent 8878 * context, or of whatever the parent is a clone of. 8879 * 8880 * Note that if the parent is a clone, the holding of 8881 * parent_ctx->lock avoids it from being uncloned. 8882 */ 8883 cloned_ctx = parent_ctx->parent_ctx; 8884 if (cloned_ctx) { 8885 child_ctx->parent_ctx = cloned_ctx; 8886 child_ctx->parent_gen = parent_ctx->parent_gen; 8887 } else { 8888 child_ctx->parent_ctx = parent_ctx; 8889 child_ctx->parent_gen = parent_ctx->generation; 8890 } 8891 get_ctx(child_ctx->parent_ctx); 8892 } 8893 8894 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8895 mutex_unlock(&parent_ctx->mutex); 8896 8897 perf_unpin_context(parent_ctx); 8898 put_ctx(parent_ctx); 8899 8900 return ret; 8901 } 8902 8903 /* 8904 * Initialize the perf_event context in task_struct 8905 */ 8906 int perf_event_init_task(struct task_struct *child) 8907 { 8908 int ctxn, ret; 8909 8910 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 8911 mutex_init(&child->perf_event_mutex); 8912 INIT_LIST_HEAD(&child->perf_event_list); 8913 8914 for_each_task_context_nr(ctxn) { 8915 ret = perf_event_init_context(child, ctxn); 8916 if (ret) { 8917 perf_event_free_task(child); 8918 return ret; 8919 } 8920 } 8921 8922 return 0; 8923 } 8924 8925 static void __init perf_event_init_all_cpus(void) 8926 { 8927 struct swevent_htable *swhash; 8928 int cpu; 8929 8930 for_each_possible_cpu(cpu) { 8931 swhash = &per_cpu(swevent_htable, cpu); 8932 mutex_init(&swhash->hlist_mutex); 8933 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 8934 } 8935 } 8936 8937 static void perf_event_init_cpu(int cpu) 8938 { 8939 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8940 8941 mutex_lock(&swhash->hlist_mutex); 8942 swhash->online = true; 8943 if (swhash->hlist_refcount > 0) { 8944 struct swevent_hlist *hlist; 8945 8946 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 8947 WARN_ON(!hlist); 8948 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8949 } 8950 mutex_unlock(&swhash->hlist_mutex); 8951 } 8952 8953 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 8954 static void __perf_event_exit_context(void *__info) 8955 { 8956 struct remove_event re = { .detach_group = true }; 8957 struct perf_event_context *ctx = __info; 8958 8959 rcu_read_lock(); 8960 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 8961 __perf_remove_from_context(&re); 8962 rcu_read_unlock(); 8963 } 8964 8965 static void perf_event_exit_cpu_context(int cpu) 8966 { 8967 struct perf_event_context *ctx; 8968 struct pmu *pmu; 8969 int idx; 8970 8971 idx = srcu_read_lock(&pmus_srcu); 8972 list_for_each_entry_rcu(pmu, &pmus, entry) { 8973 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 8974 8975 mutex_lock(&ctx->mutex); 8976 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 8977 mutex_unlock(&ctx->mutex); 8978 } 8979 srcu_read_unlock(&pmus_srcu, idx); 8980 } 8981 8982 static void perf_event_exit_cpu(int cpu) 8983 { 8984 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8985 8986 perf_event_exit_cpu_context(cpu); 8987 8988 mutex_lock(&swhash->hlist_mutex); 8989 swhash->online = false; 8990 swevent_hlist_release(swhash); 8991 mutex_unlock(&swhash->hlist_mutex); 8992 } 8993 #else 8994 static inline void perf_event_exit_cpu(int cpu) { } 8995 #endif 8996 8997 static int 8998 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 8999 { 9000 int cpu; 9001 9002 for_each_online_cpu(cpu) 9003 perf_event_exit_cpu(cpu); 9004 9005 return NOTIFY_OK; 9006 } 9007 9008 /* 9009 * Run the perf reboot notifier at the very last possible moment so that 9010 * the generic watchdog code runs as long as possible. 9011 */ 9012 static struct notifier_block perf_reboot_notifier = { 9013 .notifier_call = perf_reboot, 9014 .priority = INT_MIN, 9015 }; 9016 9017 static int 9018 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9019 { 9020 unsigned int cpu = (long)hcpu; 9021 9022 switch (action & ~CPU_TASKS_FROZEN) { 9023 9024 case CPU_UP_PREPARE: 9025 case CPU_DOWN_FAILED: 9026 perf_event_init_cpu(cpu); 9027 break; 9028 9029 case CPU_UP_CANCELED: 9030 case CPU_DOWN_PREPARE: 9031 perf_event_exit_cpu(cpu); 9032 break; 9033 default: 9034 break; 9035 } 9036 9037 return NOTIFY_OK; 9038 } 9039 9040 void __init perf_event_init(void) 9041 { 9042 int ret; 9043 9044 idr_init(&pmu_idr); 9045 9046 perf_event_init_all_cpus(); 9047 init_srcu_struct(&pmus_srcu); 9048 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9049 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9050 perf_pmu_register(&perf_task_clock, NULL, -1); 9051 perf_tp_register(); 9052 perf_cpu_notifier(perf_cpu_notify); 9053 register_reboot_notifier(&perf_reboot_notifier); 9054 9055 ret = init_hw_breakpoint(); 9056 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9057 9058 /* do not patch jump label more than once per second */ 9059 jump_label_rate_limit(&perf_sched_events, HZ); 9060 9061 /* 9062 * Build time assertion that we keep the data_head at the intended 9063 * location. IOW, validation we got the __reserved[] size right. 9064 */ 9065 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9066 != 1024); 9067 } 9068 9069 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9070 char *page) 9071 { 9072 struct perf_pmu_events_attr *pmu_attr = 9073 container_of(attr, struct perf_pmu_events_attr, attr); 9074 9075 if (pmu_attr->event_str) 9076 return sprintf(page, "%s\n", pmu_attr->event_str); 9077 9078 return 0; 9079 } 9080 9081 static int __init perf_event_sysfs_init(void) 9082 { 9083 struct pmu *pmu; 9084 int ret; 9085 9086 mutex_lock(&pmus_lock); 9087 9088 ret = bus_register(&pmu_bus); 9089 if (ret) 9090 goto unlock; 9091 9092 list_for_each_entry(pmu, &pmus, entry) { 9093 if (!pmu->name || pmu->type < 0) 9094 continue; 9095 9096 ret = pmu_dev_alloc(pmu); 9097 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9098 } 9099 pmu_bus_running = 1; 9100 ret = 0; 9101 9102 unlock: 9103 mutex_unlock(&pmus_lock); 9104 9105 return ret; 9106 } 9107 device_initcall(perf_event_sysfs_init); 9108 9109 #ifdef CONFIG_CGROUP_PERF 9110 static struct cgroup_subsys_state * 9111 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9112 { 9113 struct perf_cgroup *jc; 9114 9115 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9116 if (!jc) 9117 return ERR_PTR(-ENOMEM); 9118 9119 jc->info = alloc_percpu(struct perf_cgroup_info); 9120 if (!jc->info) { 9121 kfree(jc); 9122 return ERR_PTR(-ENOMEM); 9123 } 9124 9125 return &jc->css; 9126 } 9127 9128 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9129 { 9130 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9131 9132 free_percpu(jc->info); 9133 kfree(jc); 9134 } 9135 9136 static int __perf_cgroup_move(void *info) 9137 { 9138 struct task_struct *task = info; 9139 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9140 return 0; 9141 } 9142 9143 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 9144 struct cgroup_taskset *tset) 9145 { 9146 struct task_struct *task; 9147 9148 cgroup_taskset_for_each(task, tset) 9149 task_function_call(task, __perf_cgroup_move, task); 9150 } 9151 9152 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 9153 struct cgroup_subsys_state *old_css, 9154 struct task_struct *task) 9155 { 9156 /* 9157 * cgroup_exit() is called in the copy_process() failure path. 9158 * Ignore this case since the task hasn't ran yet, this avoids 9159 * trying to poke a half freed task state from generic code. 9160 */ 9161 if (!(task->flags & PF_EXITING)) 9162 return; 9163 9164 task_function_call(task, __perf_cgroup_move, task); 9165 } 9166 9167 struct cgroup_subsys perf_event_cgrp_subsys = { 9168 .css_alloc = perf_cgroup_css_alloc, 9169 .css_free = perf_cgroup_css_free, 9170 .exit = perf_cgroup_exit, 9171 .attach = perf_cgroup_attach, 9172 }; 9173 #endif /* CONFIG_CGROUP_PERF */ 9174