xref: /linux/kernel/events/core.c (revision f02e58f91a121ec909efad06b0a7aa806e1f7a84)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 
167 static LIST_HEAD(pmus);
168 static DEFINE_MUTEX(pmus_lock);
169 static struct srcu_struct pmus_srcu;
170 
171 /*
172  * perf event paranoia level:
173  *  -1 - not paranoid at all
174  *   0 - disallow raw tracepoint access for unpriv
175  *   1 - disallow cpu events for unpriv
176  *   2 - disallow kernel profiling for unpriv
177  */
178 int sysctl_perf_event_paranoid __read_mostly = 1;
179 
180 /* Minimum for 512 kiB + 1 user control page */
181 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
182 
183 /*
184  * max perf event sample rate
185  */
186 #define DEFAULT_MAX_SAMPLE_RATE		100000
187 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
188 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
189 
190 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
191 
192 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
193 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
194 
195 static int perf_sample_allowed_ns __read_mostly =
196 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
197 
198 void update_perf_cpu_limits(void)
199 {
200 	u64 tmp = perf_sample_period_ns;
201 
202 	tmp *= sysctl_perf_cpu_time_max_percent;
203 	do_div(tmp, 100);
204 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
205 }
206 
207 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
208 
209 int perf_proc_update_handler(struct ctl_table *table, int write,
210 		void __user *buffer, size_t *lenp,
211 		loff_t *ppos)
212 {
213 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
214 
215 	if (ret || !write)
216 		return ret;
217 
218 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
219 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
220 	update_perf_cpu_limits();
221 
222 	return 0;
223 }
224 
225 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
226 
227 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
228 				void __user *buffer, size_t *lenp,
229 				loff_t *ppos)
230 {
231 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
232 
233 	if (ret || !write)
234 		return ret;
235 
236 	update_perf_cpu_limits();
237 
238 	return 0;
239 }
240 
241 /*
242  * perf samples are done in some very critical code paths (NMIs).
243  * If they take too much CPU time, the system can lock up and not
244  * get any real work done.  This will drop the sample rate when
245  * we detect that events are taking too long.
246  */
247 #define NR_ACCUMULATED_SAMPLES 128
248 static DEFINE_PER_CPU(u64, running_sample_length);
249 
250 static void perf_duration_warn(struct irq_work *w)
251 {
252 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
253 	u64 avg_local_sample_len;
254 	u64 local_samples_len;
255 
256 	local_samples_len = __this_cpu_read(running_sample_length);
257 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
258 
259 	printk_ratelimited(KERN_WARNING
260 			"perf interrupt took too long (%lld > %lld), lowering "
261 			"kernel.perf_event_max_sample_rate to %d\n",
262 			avg_local_sample_len, allowed_ns >> 1,
263 			sysctl_perf_event_sample_rate);
264 }
265 
266 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
267 
268 void perf_sample_event_took(u64 sample_len_ns)
269 {
270 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
271 	u64 avg_local_sample_len;
272 	u64 local_samples_len;
273 
274 	if (allowed_ns == 0)
275 		return;
276 
277 	/* decay the counter by 1 average sample */
278 	local_samples_len = __this_cpu_read(running_sample_length);
279 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
280 	local_samples_len += sample_len_ns;
281 	__this_cpu_write(running_sample_length, local_samples_len);
282 
283 	/*
284 	 * note: this will be biased artifically low until we have
285 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
286 	 * from having to maintain a count.
287 	 */
288 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
289 
290 	if (avg_local_sample_len <= allowed_ns)
291 		return;
292 
293 	if (max_samples_per_tick <= 1)
294 		return;
295 
296 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
297 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
298 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
299 
300 	update_perf_cpu_limits();
301 
302 	if (!irq_work_queue(&perf_duration_work)) {
303 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
304 			     "kernel.perf_event_max_sample_rate to %d\n",
305 			     avg_local_sample_len, allowed_ns >> 1,
306 			     sysctl_perf_event_sample_rate);
307 	}
308 }
309 
310 static atomic64_t perf_event_id;
311 
312 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
313 			      enum event_type_t event_type);
314 
315 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
316 			     enum event_type_t event_type,
317 			     struct task_struct *task);
318 
319 static void update_context_time(struct perf_event_context *ctx);
320 static u64 perf_event_time(struct perf_event *event);
321 
322 void __weak perf_event_print_debug(void)	{ }
323 
324 extern __weak const char *perf_pmu_name(void)
325 {
326 	return "pmu";
327 }
328 
329 static inline u64 perf_clock(void)
330 {
331 	return local_clock();
332 }
333 
334 static inline u64 perf_event_clock(struct perf_event *event)
335 {
336 	return event->clock();
337 }
338 
339 static inline struct perf_cpu_context *
340 __get_cpu_context(struct perf_event_context *ctx)
341 {
342 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
343 }
344 
345 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
346 			  struct perf_event_context *ctx)
347 {
348 	raw_spin_lock(&cpuctx->ctx.lock);
349 	if (ctx)
350 		raw_spin_lock(&ctx->lock);
351 }
352 
353 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
354 			    struct perf_event_context *ctx)
355 {
356 	if (ctx)
357 		raw_spin_unlock(&ctx->lock);
358 	raw_spin_unlock(&cpuctx->ctx.lock);
359 }
360 
361 #ifdef CONFIG_CGROUP_PERF
362 
363 static inline bool
364 perf_cgroup_match(struct perf_event *event)
365 {
366 	struct perf_event_context *ctx = event->ctx;
367 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
368 
369 	/* @event doesn't care about cgroup */
370 	if (!event->cgrp)
371 		return true;
372 
373 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
374 	if (!cpuctx->cgrp)
375 		return false;
376 
377 	/*
378 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
379 	 * also enabled for all its descendant cgroups.  If @cpuctx's
380 	 * cgroup is a descendant of @event's (the test covers identity
381 	 * case), it's a match.
382 	 */
383 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
384 				    event->cgrp->css.cgroup);
385 }
386 
387 static inline void perf_detach_cgroup(struct perf_event *event)
388 {
389 	css_put(&event->cgrp->css);
390 	event->cgrp = NULL;
391 }
392 
393 static inline int is_cgroup_event(struct perf_event *event)
394 {
395 	return event->cgrp != NULL;
396 }
397 
398 static inline u64 perf_cgroup_event_time(struct perf_event *event)
399 {
400 	struct perf_cgroup_info *t;
401 
402 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
403 	return t->time;
404 }
405 
406 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
407 {
408 	struct perf_cgroup_info *info;
409 	u64 now;
410 
411 	now = perf_clock();
412 
413 	info = this_cpu_ptr(cgrp->info);
414 
415 	info->time += now - info->timestamp;
416 	info->timestamp = now;
417 }
418 
419 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
420 {
421 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
422 	if (cgrp_out)
423 		__update_cgrp_time(cgrp_out);
424 }
425 
426 static inline void update_cgrp_time_from_event(struct perf_event *event)
427 {
428 	struct perf_cgroup *cgrp;
429 
430 	/*
431 	 * ensure we access cgroup data only when needed and
432 	 * when we know the cgroup is pinned (css_get)
433 	 */
434 	if (!is_cgroup_event(event))
435 		return;
436 
437 	cgrp = perf_cgroup_from_task(current);
438 	/*
439 	 * Do not update time when cgroup is not active
440 	 */
441 	if (cgrp == event->cgrp)
442 		__update_cgrp_time(event->cgrp);
443 }
444 
445 static inline void
446 perf_cgroup_set_timestamp(struct task_struct *task,
447 			  struct perf_event_context *ctx)
448 {
449 	struct perf_cgroup *cgrp;
450 	struct perf_cgroup_info *info;
451 
452 	/*
453 	 * ctx->lock held by caller
454 	 * ensure we do not access cgroup data
455 	 * unless we have the cgroup pinned (css_get)
456 	 */
457 	if (!task || !ctx->nr_cgroups)
458 		return;
459 
460 	cgrp = perf_cgroup_from_task(task);
461 	info = this_cpu_ptr(cgrp->info);
462 	info->timestamp = ctx->timestamp;
463 }
464 
465 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
466 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
467 
468 /*
469  * reschedule events based on the cgroup constraint of task.
470  *
471  * mode SWOUT : schedule out everything
472  * mode SWIN : schedule in based on cgroup for next
473  */
474 void perf_cgroup_switch(struct task_struct *task, int mode)
475 {
476 	struct perf_cpu_context *cpuctx;
477 	struct pmu *pmu;
478 	unsigned long flags;
479 
480 	/*
481 	 * disable interrupts to avoid geting nr_cgroup
482 	 * changes via __perf_event_disable(). Also
483 	 * avoids preemption.
484 	 */
485 	local_irq_save(flags);
486 
487 	/*
488 	 * we reschedule only in the presence of cgroup
489 	 * constrained events.
490 	 */
491 	rcu_read_lock();
492 
493 	list_for_each_entry_rcu(pmu, &pmus, entry) {
494 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 		if (cpuctx->unique_pmu != pmu)
496 			continue; /* ensure we process each cpuctx once */
497 
498 		/*
499 		 * perf_cgroup_events says at least one
500 		 * context on this CPU has cgroup events.
501 		 *
502 		 * ctx->nr_cgroups reports the number of cgroup
503 		 * events for a context.
504 		 */
505 		if (cpuctx->ctx.nr_cgroups > 0) {
506 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 			perf_pmu_disable(cpuctx->ctx.pmu);
508 
509 			if (mode & PERF_CGROUP_SWOUT) {
510 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 				/*
512 				 * must not be done before ctxswout due
513 				 * to event_filter_match() in event_sched_out()
514 				 */
515 				cpuctx->cgrp = NULL;
516 			}
517 
518 			if (mode & PERF_CGROUP_SWIN) {
519 				WARN_ON_ONCE(cpuctx->cgrp);
520 				/*
521 				 * set cgrp before ctxsw in to allow
522 				 * event_filter_match() to not have to pass
523 				 * task around
524 				 */
525 				cpuctx->cgrp = perf_cgroup_from_task(task);
526 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
527 			}
528 			perf_pmu_enable(cpuctx->ctx.pmu);
529 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
530 		}
531 	}
532 
533 	rcu_read_unlock();
534 
535 	local_irq_restore(flags);
536 }
537 
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 					 struct task_struct *next)
540 {
541 	struct perf_cgroup *cgrp1;
542 	struct perf_cgroup *cgrp2 = NULL;
543 
544 	/*
545 	 * we come here when we know perf_cgroup_events > 0
546 	 */
547 	cgrp1 = perf_cgroup_from_task(task);
548 
549 	/*
550 	 * next is NULL when called from perf_event_enable_on_exec()
551 	 * that will systematically cause a cgroup_switch()
552 	 */
553 	if (next)
554 		cgrp2 = perf_cgroup_from_task(next);
555 
556 	/*
557 	 * only schedule out current cgroup events if we know
558 	 * that we are switching to a different cgroup. Otherwise,
559 	 * do no touch the cgroup events.
560 	 */
561 	if (cgrp1 != cgrp2)
562 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
563 }
564 
565 static inline void perf_cgroup_sched_in(struct task_struct *prev,
566 					struct task_struct *task)
567 {
568 	struct perf_cgroup *cgrp1;
569 	struct perf_cgroup *cgrp2 = NULL;
570 
571 	/*
572 	 * we come here when we know perf_cgroup_events > 0
573 	 */
574 	cgrp1 = perf_cgroup_from_task(task);
575 
576 	/* prev can never be NULL */
577 	cgrp2 = perf_cgroup_from_task(prev);
578 
579 	/*
580 	 * only need to schedule in cgroup events if we are changing
581 	 * cgroup during ctxsw. Cgroup events were not scheduled
582 	 * out of ctxsw out if that was not the case.
583 	 */
584 	if (cgrp1 != cgrp2)
585 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
586 }
587 
588 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
589 				      struct perf_event_attr *attr,
590 				      struct perf_event *group_leader)
591 {
592 	struct perf_cgroup *cgrp;
593 	struct cgroup_subsys_state *css;
594 	struct fd f = fdget(fd);
595 	int ret = 0;
596 
597 	if (!f.file)
598 		return -EBADF;
599 
600 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
601 					 &perf_event_cgrp_subsys);
602 	if (IS_ERR(css)) {
603 		ret = PTR_ERR(css);
604 		goto out;
605 	}
606 
607 	cgrp = container_of(css, struct perf_cgroup, css);
608 	event->cgrp = cgrp;
609 
610 	/*
611 	 * all events in a group must monitor
612 	 * the same cgroup because a task belongs
613 	 * to only one perf cgroup at a time
614 	 */
615 	if (group_leader && group_leader->cgrp != cgrp) {
616 		perf_detach_cgroup(event);
617 		ret = -EINVAL;
618 	}
619 out:
620 	fdput(f);
621 	return ret;
622 }
623 
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 	struct perf_cgroup_info *t;
628 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 	event->shadow_ctx_time = now - t->timestamp;
630 }
631 
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 	/*
636 	 * when the current task's perf cgroup does not match
637 	 * the event's, we need to remember to call the
638 	 * perf_mark_enable() function the first time a task with
639 	 * a matching perf cgroup is scheduled in.
640 	 */
641 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 		event->cgrp_defer_enabled = 1;
643 }
644 
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 			 struct perf_event_context *ctx)
648 {
649 	struct perf_event *sub;
650 	u64 tstamp = perf_event_time(event);
651 
652 	if (!event->cgrp_defer_enabled)
653 		return;
654 
655 	event->cgrp_defer_enabled = 0;
656 
657 	event->tstamp_enabled = tstamp - event->total_time_enabled;
658 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 			sub->cgrp_defer_enabled = 0;
662 		}
663 	}
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666 
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 	return true;
671 }
672 
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675 
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 	return 0;
679 }
680 
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 	return 0;
684 }
685 
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689 
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693 
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 					 struct task_struct *next)
696 {
697 }
698 
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 					struct task_struct *task)
701 {
702 }
703 
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 				      struct perf_event_attr *attr,
706 				      struct perf_event *group_leader)
707 {
708 	return -EINVAL;
709 }
710 
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 			  struct perf_event_context *ctx)
714 {
715 }
716 
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721 
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726 
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 	return 0;
730 }
731 
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736 
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 			 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743 
744 /*
745  * set default to be dependent on timer tick just
746  * like original code
747  */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750  * function must be called with interrupts disbled
751  */
752 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
753 {
754 	struct perf_cpu_context *cpuctx;
755 	int rotations = 0;
756 
757 	WARN_ON(!irqs_disabled());
758 
759 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
760 	rotations = perf_rotate_context(cpuctx);
761 
762 	raw_spin_lock(&cpuctx->hrtimer_lock);
763 	if (rotations)
764 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
765 	else
766 		cpuctx->hrtimer_active = 0;
767 	raw_spin_unlock(&cpuctx->hrtimer_lock);
768 
769 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
770 }
771 
772 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
773 {
774 	struct hrtimer *timer = &cpuctx->hrtimer;
775 	struct pmu *pmu = cpuctx->ctx.pmu;
776 	u64 interval;
777 
778 	/* no multiplexing needed for SW PMU */
779 	if (pmu->task_ctx_nr == perf_sw_context)
780 		return;
781 
782 	/*
783 	 * check default is sane, if not set then force to
784 	 * default interval (1/tick)
785 	 */
786 	interval = pmu->hrtimer_interval_ms;
787 	if (interval < 1)
788 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
789 
790 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
791 
792 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
793 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
794 	timer->function = perf_mux_hrtimer_handler;
795 }
796 
797 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
798 {
799 	struct hrtimer *timer = &cpuctx->hrtimer;
800 	struct pmu *pmu = cpuctx->ctx.pmu;
801 	unsigned long flags;
802 
803 	/* not for SW PMU */
804 	if (pmu->task_ctx_nr == perf_sw_context)
805 		return 0;
806 
807 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
808 	if (!cpuctx->hrtimer_active) {
809 		cpuctx->hrtimer_active = 1;
810 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
811 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
812 	}
813 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
814 
815 	return 0;
816 }
817 
818 void perf_pmu_disable(struct pmu *pmu)
819 {
820 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
821 	if (!(*count)++)
822 		pmu->pmu_disable(pmu);
823 }
824 
825 void perf_pmu_enable(struct pmu *pmu)
826 {
827 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
828 	if (!--(*count))
829 		pmu->pmu_enable(pmu);
830 }
831 
832 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
833 
834 /*
835  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
836  * perf_event_task_tick() are fully serialized because they're strictly cpu
837  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
838  * disabled, while perf_event_task_tick is called from IRQ context.
839  */
840 static void perf_event_ctx_activate(struct perf_event_context *ctx)
841 {
842 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
843 
844 	WARN_ON(!irqs_disabled());
845 
846 	WARN_ON(!list_empty(&ctx->active_ctx_list));
847 
848 	list_add(&ctx->active_ctx_list, head);
849 }
850 
851 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
852 {
853 	WARN_ON(!irqs_disabled());
854 
855 	WARN_ON(list_empty(&ctx->active_ctx_list));
856 
857 	list_del_init(&ctx->active_ctx_list);
858 }
859 
860 static void get_ctx(struct perf_event_context *ctx)
861 {
862 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
863 }
864 
865 static void free_ctx(struct rcu_head *head)
866 {
867 	struct perf_event_context *ctx;
868 
869 	ctx = container_of(head, struct perf_event_context, rcu_head);
870 	kfree(ctx->task_ctx_data);
871 	kfree(ctx);
872 }
873 
874 static void put_ctx(struct perf_event_context *ctx)
875 {
876 	if (atomic_dec_and_test(&ctx->refcount)) {
877 		if (ctx->parent_ctx)
878 			put_ctx(ctx->parent_ctx);
879 		if (ctx->task)
880 			put_task_struct(ctx->task);
881 		call_rcu(&ctx->rcu_head, free_ctx);
882 	}
883 }
884 
885 /*
886  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
887  * perf_pmu_migrate_context() we need some magic.
888  *
889  * Those places that change perf_event::ctx will hold both
890  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
891  *
892  * Lock ordering is by mutex address. There are two other sites where
893  * perf_event_context::mutex nests and those are:
894  *
895  *  - perf_event_exit_task_context()	[ child , 0 ]
896  *      __perf_event_exit_task()
897  *        sync_child_event()
898  *          put_event()			[ parent, 1 ]
899  *
900  *  - perf_event_init_context()		[ parent, 0 ]
901  *      inherit_task_group()
902  *        inherit_group()
903  *          inherit_event()
904  *            perf_event_alloc()
905  *              perf_init_event()
906  *                perf_try_init_event()	[ child , 1 ]
907  *
908  * While it appears there is an obvious deadlock here -- the parent and child
909  * nesting levels are inverted between the two. This is in fact safe because
910  * life-time rules separate them. That is an exiting task cannot fork, and a
911  * spawning task cannot (yet) exit.
912  *
913  * But remember that that these are parent<->child context relations, and
914  * migration does not affect children, therefore these two orderings should not
915  * interact.
916  *
917  * The change in perf_event::ctx does not affect children (as claimed above)
918  * because the sys_perf_event_open() case will install a new event and break
919  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
920  * concerned with cpuctx and that doesn't have children.
921  *
922  * The places that change perf_event::ctx will issue:
923  *
924  *   perf_remove_from_context();
925  *   synchronize_rcu();
926  *   perf_install_in_context();
927  *
928  * to affect the change. The remove_from_context() + synchronize_rcu() should
929  * quiesce the event, after which we can install it in the new location. This
930  * means that only external vectors (perf_fops, prctl) can perturb the event
931  * while in transit. Therefore all such accessors should also acquire
932  * perf_event_context::mutex to serialize against this.
933  *
934  * However; because event->ctx can change while we're waiting to acquire
935  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
936  * function.
937  *
938  * Lock order:
939  *	task_struct::perf_event_mutex
940  *	  perf_event_context::mutex
941  *	    perf_event_context::lock
942  *	    perf_event::child_mutex;
943  *	    perf_event::mmap_mutex
944  *	    mmap_sem
945  */
946 static struct perf_event_context *
947 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
948 {
949 	struct perf_event_context *ctx;
950 
951 again:
952 	rcu_read_lock();
953 	ctx = ACCESS_ONCE(event->ctx);
954 	if (!atomic_inc_not_zero(&ctx->refcount)) {
955 		rcu_read_unlock();
956 		goto again;
957 	}
958 	rcu_read_unlock();
959 
960 	mutex_lock_nested(&ctx->mutex, nesting);
961 	if (event->ctx != ctx) {
962 		mutex_unlock(&ctx->mutex);
963 		put_ctx(ctx);
964 		goto again;
965 	}
966 
967 	return ctx;
968 }
969 
970 static inline struct perf_event_context *
971 perf_event_ctx_lock(struct perf_event *event)
972 {
973 	return perf_event_ctx_lock_nested(event, 0);
974 }
975 
976 static void perf_event_ctx_unlock(struct perf_event *event,
977 				  struct perf_event_context *ctx)
978 {
979 	mutex_unlock(&ctx->mutex);
980 	put_ctx(ctx);
981 }
982 
983 /*
984  * This must be done under the ctx->lock, such as to serialize against
985  * context_equiv(), therefore we cannot call put_ctx() since that might end up
986  * calling scheduler related locks and ctx->lock nests inside those.
987  */
988 static __must_check struct perf_event_context *
989 unclone_ctx(struct perf_event_context *ctx)
990 {
991 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
992 
993 	lockdep_assert_held(&ctx->lock);
994 
995 	if (parent_ctx)
996 		ctx->parent_ctx = NULL;
997 	ctx->generation++;
998 
999 	return parent_ctx;
1000 }
1001 
1002 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1003 {
1004 	/*
1005 	 * only top level events have the pid namespace they were created in
1006 	 */
1007 	if (event->parent)
1008 		event = event->parent;
1009 
1010 	return task_tgid_nr_ns(p, event->ns);
1011 }
1012 
1013 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1014 {
1015 	/*
1016 	 * only top level events have the pid namespace they were created in
1017 	 */
1018 	if (event->parent)
1019 		event = event->parent;
1020 
1021 	return task_pid_nr_ns(p, event->ns);
1022 }
1023 
1024 /*
1025  * If we inherit events we want to return the parent event id
1026  * to userspace.
1027  */
1028 static u64 primary_event_id(struct perf_event *event)
1029 {
1030 	u64 id = event->id;
1031 
1032 	if (event->parent)
1033 		id = event->parent->id;
1034 
1035 	return id;
1036 }
1037 
1038 /*
1039  * Get the perf_event_context for a task and lock it.
1040  * This has to cope with with the fact that until it is locked,
1041  * the context could get moved to another task.
1042  */
1043 static struct perf_event_context *
1044 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1045 {
1046 	struct perf_event_context *ctx;
1047 
1048 retry:
1049 	/*
1050 	 * One of the few rules of preemptible RCU is that one cannot do
1051 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1052 	 * part of the read side critical section was preemptible -- see
1053 	 * rcu_read_unlock_special().
1054 	 *
1055 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1056 	 * side critical section is non-preemptible.
1057 	 */
1058 	preempt_disable();
1059 	rcu_read_lock();
1060 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1061 	if (ctx) {
1062 		/*
1063 		 * If this context is a clone of another, it might
1064 		 * get swapped for another underneath us by
1065 		 * perf_event_task_sched_out, though the
1066 		 * rcu_read_lock() protects us from any context
1067 		 * getting freed.  Lock the context and check if it
1068 		 * got swapped before we could get the lock, and retry
1069 		 * if so.  If we locked the right context, then it
1070 		 * can't get swapped on us any more.
1071 		 */
1072 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1073 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1074 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1075 			rcu_read_unlock();
1076 			preempt_enable();
1077 			goto retry;
1078 		}
1079 
1080 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1081 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1082 			ctx = NULL;
1083 		}
1084 	}
1085 	rcu_read_unlock();
1086 	preempt_enable();
1087 	return ctx;
1088 }
1089 
1090 /*
1091  * Get the context for a task and increment its pin_count so it
1092  * can't get swapped to another task.  This also increments its
1093  * reference count so that the context can't get freed.
1094  */
1095 static struct perf_event_context *
1096 perf_pin_task_context(struct task_struct *task, int ctxn)
1097 {
1098 	struct perf_event_context *ctx;
1099 	unsigned long flags;
1100 
1101 	ctx = perf_lock_task_context(task, ctxn, &flags);
1102 	if (ctx) {
1103 		++ctx->pin_count;
1104 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1105 	}
1106 	return ctx;
1107 }
1108 
1109 static void perf_unpin_context(struct perf_event_context *ctx)
1110 {
1111 	unsigned long flags;
1112 
1113 	raw_spin_lock_irqsave(&ctx->lock, flags);
1114 	--ctx->pin_count;
1115 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 }
1117 
1118 /*
1119  * Update the record of the current time in a context.
1120  */
1121 static void update_context_time(struct perf_event_context *ctx)
1122 {
1123 	u64 now = perf_clock();
1124 
1125 	ctx->time += now - ctx->timestamp;
1126 	ctx->timestamp = now;
1127 }
1128 
1129 static u64 perf_event_time(struct perf_event *event)
1130 {
1131 	struct perf_event_context *ctx = event->ctx;
1132 
1133 	if (is_cgroup_event(event))
1134 		return perf_cgroup_event_time(event);
1135 
1136 	return ctx ? ctx->time : 0;
1137 }
1138 
1139 /*
1140  * Update the total_time_enabled and total_time_running fields for a event.
1141  * The caller of this function needs to hold the ctx->lock.
1142  */
1143 static void update_event_times(struct perf_event *event)
1144 {
1145 	struct perf_event_context *ctx = event->ctx;
1146 	u64 run_end;
1147 
1148 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1149 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1150 		return;
1151 	/*
1152 	 * in cgroup mode, time_enabled represents
1153 	 * the time the event was enabled AND active
1154 	 * tasks were in the monitored cgroup. This is
1155 	 * independent of the activity of the context as
1156 	 * there may be a mix of cgroup and non-cgroup events.
1157 	 *
1158 	 * That is why we treat cgroup events differently
1159 	 * here.
1160 	 */
1161 	if (is_cgroup_event(event))
1162 		run_end = perf_cgroup_event_time(event);
1163 	else if (ctx->is_active)
1164 		run_end = ctx->time;
1165 	else
1166 		run_end = event->tstamp_stopped;
1167 
1168 	event->total_time_enabled = run_end - event->tstamp_enabled;
1169 
1170 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1171 		run_end = event->tstamp_stopped;
1172 	else
1173 		run_end = perf_event_time(event);
1174 
1175 	event->total_time_running = run_end - event->tstamp_running;
1176 
1177 }
1178 
1179 /*
1180  * Update total_time_enabled and total_time_running for all events in a group.
1181  */
1182 static void update_group_times(struct perf_event *leader)
1183 {
1184 	struct perf_event *event;
1185 
1186 	update_event_times(leader);
1187 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1188 		update_event_times(event);
1189 }
1190 
1191 static struct list_head *
1192 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1193 {
1194 	if (event->attr.pinned)
1195 		return &ctx->pinned_groups;
1196 	else
1197 		return &ctx->flexible_groups;
1198 }
1199 
1200 /*
1201  * Add a event from the lists for its context.
1202  * Must be called with ctx->mutex and ctx->lock held.
1203  */
1204 static void
1205 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1206 {
1207 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1208 	event->attach_state |= PERF_ATTACH_CONTEXT;
1209 
1210 	/*
1211 	 * If we're a stand alone event or group leader, we go to the context
1212 	 * list, group events are kept attached to the group so that
1213 	 * perf_group_detach can, at all times, locate all siblings.
1214 	 */
1215 	if (event->group_leader == event) {
1216 		struct list_head *list;
1217 
1218 		if (is_software_event(event))
1219 			event->group_flags |= PERF_GROUP_SOFTWARE;
1220 
1221 		list = ctx_group_list(event, ctx);
1222 		list_add_tail(&event->group_entry, list);
1223 	}
1224 
1225 	if (is_cgroup_event(event))
1226 		ctx->nr_cgroups++;
1227 
1228 	list_add_rcu(&event->event_entry, &ctx->event_list);
1229 	ctx->nr_events++;
1230 	if (event->attr.inherit_stat)
1231 		ctx->nr_stat++;
1232 
1233 	ctx->generation++;
1234 }
1235 
1236 /*
1237  * Initialize event state based on the perf_event_attr::disabled.
1238  */
1239 static inline void perf_event__state_init(struct perf_event *event)
1240 {
1241 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1242 					      PERF_EVENT_STATE_INACTIVE;
1243 }
1244 
1245 /*
1246  * Called at perf_event creation and when events are attached/detached from a
1247  * group.
1248  */
1249 static void perf_event__read_size(struct perf_event *event)
1250 {
1251 	int entry = sizeof(u64); /* value */
1252 	int size = 0;
1253 	int nr = 1;
1254 
1255 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1256 		size += sizeof(u64);
1257 
1258 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1259 		size += sizeof(u64);
1260 
1261 	if (event->attr.read_format & PERF_FORMAT_ID)
1262 		entry += sizeof(u64);
1263 
1264 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1265 		nr += event->group_leader->nr_siblings;
1266 		size += sizeof(u64);
1267 	}
1268 
1269 	size += entry * nr;
1270 	event->read_size = size;
1271 }
1272 
1273 static void perf_event__header_size(struct perf_event *event)
1274 {
1275 	struct perf_sample_data *data;
1276 	u64 sample_type = event->attr.sample_type;
1277 	u16 size = 0;
1278 
1279 	perf_event__read_size(event);
1280 
1281 	if (sample_type & PERF_SAMPLE_IP)
1282 		size += sizeof(data->ip);
1283 
1284 	if (sample_type & PERF_SAMPLE_ADDR)
1285 		size += sizeof(data->addr);
1286 
1287 	if (sample_type & PERF_SAMPLE_PERIOD)
1288 		size += sizeof(data->period);
1289 
1290 	if (sample_type & PERF_SAMPLE_WEIGHT)
1291 		size += sizeof(data->weight);
1292 
1293 	if (sample_type & PERF_SAMPLE_READ)
1294 		size += event->read_size;
1295 
1296 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1297 		size += sizeof(data->data_src.val);
1298 
1299 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1300 		size += sizeof(data->txn);
1301 
1302 	event->header_size = size;
1303 }
1304 
1305 static void perf_event__id_header_size(struct perf_event *event)
1306 {
1307 	struct perf_sample_data *data;
1308 	u64 sample_type = event->attr.sample_type;
1309 	u16 size = 0;
1310 
1311 	if (sample_type & PERF_SAMPLE_TID)
1312 		size += sizeof(data->tid_entry);
1313 
1314 	if (sample_type & PERF_SAMPLE_TIME)
1315 		size += sizeof(data->time);
1316 
1317 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1318 		size += sizeof(data->id);
1319 
1320 	if (sample_type & PERF_SAMPLE_ID)
1321 		size += sizeof(data->id);
1322 
1323 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1324 		size += sizeof(data->stream_id);
1325 
1326 	if (sample_type & PERF_SAMPLE_CPU)
1327 		size += sizeof(data->cpu_entry);
1328 
1329 	event->id_header_size = size;
1330 }
1331 
1332 static void perf_group_attach(struct perf_event *event)
1333 {
1334 	struct perf_event *group_leader = event->group_leader, *pos;
1335 
1336 	/*
1337 	 * We can have double attach due to group movement in perf_event_open.
1338 	 */
1339 	if (event->attach_state & PERF_ATTACH_GROUP)
1340 		return;
1341 
1342 	event->attach_state |= PERF_ATTACH_GROUP;
1343 
1344 	if (group_leader == event)
1345 		return;
1346 
1347 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1348 
1349 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1350 			!is_software_event(event))
1351 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1352 
1353 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1354 	group_leader->nr_siblings++;
1355 
1356 	perf_event__header_size(group_leader);
1357 
1358 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1359 		perf_event__header_size(pos);
1360 }
1361 
1362 /*
1363  * Remove a event from the lists for its context.
1364  * Must be called with ctx->mutex and ctx->lock held.
1365  */
1366 static void
1367 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1368 {
1369 	struct perf_cpu_context *cpuctx;
1370 
1371 	WARN_ON_ONCE(event->ctx != ctx);
1372 	lockdep_assert_held(&ctx->lock);
1373 
1374 	/*
1375 	 * We can have double detach due to exit/hot-unplug + close.
1376 	 */
1377 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1378 		return;
1379 
1380 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1381 
1382 	if (is_cgroup_event(event)) {
1383 		ctx->nr_cgroups--;
1384 		cpuctx = __get_cpu_context(ctx);
1385 		/*
1386 		 * if there are no more cgroup events
1387 		 * then cler cgrp to avoid stale pointer
1388 		 * in update_cgrp_time_from_cpuctx()
1389 		 */
1390 		if (!ctx->nr_cgroups)
1391 			cpuctx->cgrp = NULL;
1392 	}
1393 
1394 	ctx->nr_events--;
1395 	if (event->attr.inherit_stat)
1396 		ctx->nr_stat--;
1397 
1398 	list_del_rcu(&event->event_entry);
1399 
1400 	if (event->group_leader == event)
1401 		list_del_init(&event->group_entry);
1402 
1403 	update_group_times(event);
1404 
1405 	/*
1406 	 * If event was in error state, then keep it
1407 	 * that way, otherwise bogus counts will be
1408 	 * returned on read(). The only way to get out
1409 	 * of error state is by explicit re-enabling
1410 	 * of the event
1411 	 */
1412 	if (event->state > PERF_EVENT_STATE_OFF)
1413 		event->state = PERF_EVENT_STATE_OFF;
1414 
1415 	ctx->generation++;
1416 }
1417 
1418 static void perf_group_detach(struct perf_event *event)
1419 {
1420 	struct perf_event *sibling, *tmp;
1421 	struct list_head *list = NULL;
1422 
1423 	/*
1424 	 * We can have double detach due to exit/hot-unplug + close.
1425 	 */
1426 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1427 		return;
1428 
1429 	event->attach_state &= ~PERF_ATTACH_GROUP;
1430 
1431 	/*
1432 	 * If this is a sibling, remove it from its group.
1433 	 */
1434 	if (event->group_leader != event) {
1435 		list_del_init(&event->group_entry);
1436 		event->group_leader->nr_siblings--;
1437 		goto out;
1438 	}
1439 
1440 	if (!list_empty(&event->group_entry))
1441 		list = &event->group_entry;
1442 
1443 	/*
1444 	 * If this was a group event with sibling events then
1445 	 * upgrade the siblings to singleton events by adding them
1446 	 * to whatever list we are on.
1447 	 */
1448 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1449 		if (list)
1450 			list_move_tail(&sibling->group_entry, list);
1451 		sibling->group_leader = sibling;
1452 
1453 		/* Inherit group flags from the previous leader */
1454 		sibling->group_flags = event->group_flags;
1455 
1456 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1457 	}
1458 
1459 out:
1460 	perf_event__header_size(event->group_leader);
1461 
1462 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1463 		perf_event__header_size(tmp);
1464 }
1465 
1466 /*
1467  * User event without the task.
1468  */
1469 static bool is_orphaned_event(struct perf_event *event)
1470 {
1471 	return event && !is_kernel_event(event) && !event->owner;
1472 }
1473 
1474 /*
1475  * Event has a parent but parent's task finished and it's
1476  * alive only because of children holding refference.
1477  */
1478 static bool is_orphaned_child(struct perf_event *event)
1479 {
1480 	return is_orphaned_event(event->parent);
1481 }
1482 
1483 static void orphans_remove_work(struct work_struct *work);
1484 
1485 static void schedule_orphans_remove(struct perf_event_context *ctx)
1486 {
1487 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1488 		return;
1489 
1490 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1491 		get_ctx(ctx);
1492 		ctx->orphans_remove_sched = true;
1493 	}
1494 }
1495 
1496 static int __init perf_workqueue_init(void)
1497 {
1498 	perf_wq = create_singlethread_workqueue("perf");
1499 	WARN(!perf_wq, "failed to create perf workqueue\n");
1500 	return perf_wq ? 0 : -1;
1501 }
1502 
1503 core_initcall(perf_workqueue_init);
1504 
1505 static inline int pmu_filter_match(struct perf_event *event)
1506 {
1507 	struct pmu *pmu = event->pmu;
1508 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1509 }
1510 
1511 static inline int
1512 event_filter_match(struct perf_event *event)
1513 {
1514 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1515 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1516 }
1517 
1518 static void
1519 event_sched_out(struct perf_event *event,
1520 		  struct perf_cpu_context *cpuctx,
1521 		  struct perf_event_context *ctx)
1522 {
1523 	u64 tstamp = perf_event_time(event);
1524 	u64 delta;
1525 
1526 	WARN_ON_ONCE(event->ctx != ctx);
1527 	lockdep_assert_held(&ctx->lock);
1528 
1529 	/*
1530 	 * An event which could not be activated because of
1531 	 * filter mismatch still needs to have its timings
1532 	 * maintained, otherwise bogus information is return
1533 	 * via read() for time_enabled, time_running:
1534 	 */
1535 	if (event->state == PERF_EVENT_STATE_INACTIVE
1536 	    && !event_filter_match(event)) {
1537 		delta = tstamp - event->tstamp_stopped;
1538 		event->tstamp_running += delta;
1539 		event->tstamp_stopped = tstamp;
1540 	}
1541 
1542 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1543 		return;
1544 
1545 	perf_pmu_disable(event->pmu);
1546 
1547 	event->state = PERF_EVENT_STATE_INACTIVE;
1548 	if (event->pending_disable) {
1549 		event->pending_disable = 0;
1550 		event->state = PERF_EVENT_STATE_OFF;
1551 	}
1552 	event->tstamp_stopped = tstamp;
1553 	event->pmu->del(event, 0);
1554 	event->oncpu = -1;
1555 
1556 	if (!is_software_event(event))
1557 		cpuctx->active_oncpu--;
1558 	if (!--ctx->nr_active)
1559 		perf_event_ctx_deactivate(ctx);
1560 	if (event->attr.freq && event->attr.sample_freq)
1561 		ctx->nr_freq--;
1562 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1563 		cpuctx->exclusive = 0;
1564 
1565 	if (is_orphaned_child(event))
1566 		schedule_orphans_remove(ctx);
1567 
1568 	perf_pmu_enable(event->pmu);
1569 }
1570 
1571 static void
1572 group_sched_out(struct perf_event *group_event,
1573 		struct perf_cpu_context *cpuctx,
1574 		struct perf_event_context *ctx)
1575 {
1576 	struct perf_event *event;
1577 	int state = group_event->state;
1578 
1579 	event_sched_out(group_event, cpuctx, ctx);
1580 
1581 	/*
1582 	 * Schedule out siblings (if any):
1583 	 */
1584 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1585 		event_sched_out(event, cpuctx, ctx);
1586 
1587 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1588 		cpuctx->exclusive = 0;
1589 }
1590 
1591 struct remove_event {
1592 	struct perf_event *event;
1593 	bool detach_group;
1594 };
1595 
1596 /*
1597  * Cross CPU call to remove a performance event
1598  *
1599  * We disable the event on the hardware level first. After that we
1600  * remove it from the context list.
1601  */
1602 static int __perf_remove_from_context(void *info)
1603 {
1604 	struct remove_event *re = info;
1605 	struct perf_event *event = re->event;
1606 	struct perf_event_context *ctx = event->ctx;
1607 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1608 
1609 	raw_spin_lock(&ctx->lock);
1610 	event_sched_out(event, cpuctx, ctx);
1611 	if (re->detach_group)
1612 		perf_group_detach(event);
1613 	list_del_event(event, ctx);
1614 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1615 		ctx->is_active = 0;
1616 		cpuctx->task_ctx = NULL;
1617 	}
1618 	raw_spin_unlock(&ctx->lock);
1619 
1620 	return 0;
1621 }
1622 
1623 
1624 /*
1625  * Remove the event from a task's (or a CPU's) list of events.
1626  *
1627  * CPU events are removed with a smp call. For task events we only
1628  * call when the task is on a CPU.
1629  *
1630  * If event->ctx is a cloned context, callers must make sure that
1631  * every task struct that event->ctx->task could possibly point to
1632  * remains valid.  This is OK when called from perf_release since
1633  * that only calls us on the top-level context, which can't be a clone.
1634  * When called from perf_event_exit_task, it's OK because the
1635  * context has been detached from its task.
1636  */
1637 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1638 {
1639 	struct perf_event_context *ctx = event->ctx;
1640 	struct task_struct *task = ctx->task;
1641 	struct remove_event re = {
1642 		.event = event,
1643 		.detach_group = detach_group,
1644 	};
1645 
1646 	lockdep_assert_held(&ctx->mutex);
1647 
1648 	if (!task) {
1649 		/*
1650 		 * Per cpu events are removed via an smp call. The removal can
1651 		 * fail if the CPU is currently offline, but in that case we
1652 		 * already called __perf_remove_from_context from
1653 		 * perf_event_exit_cpu.
1654 		 */
1655 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1656 		return;
1657 	}
1658 
1659 retry:
1660 	if (!task_function_call(task, __perf_remove_from_context, &re))
1661 		return;
1662 
1663 	raw_spin_lock_irq(&ctx->lock);
1664 	/*
1665 	 * If we failed to find a running task, but find the context active now
1666 	 * that we've acquired the ctx->lock, retry.
1667 	 */
1668 	if (ctx->is_active) {
1669 		raw_spin_unlock_irq(&ctx->lock);
1670 		/*
1671 		 * Reload the task pointer, it might have been changed by
1672 		 * a concurrent perf_event_context_sched_out().
1673 		 */
1674 		task = ctx->task;
1675 		goto retry;
1676 	}
1677 
1678 	/*
1679 	 * Since the task isn't running, its safe to remove the event, us
1680 	 * holding the ctx->lock ensures the task won't get scheduled in.
1681 	 */
1682 	if (detach_group)
1683 		perf_group_detach(event);
1684 	list_del_event(event, ctx);
1685 	raw_spin_unlock_irq(&ctx->lock);
1686 }
1687 
1688 /*
1689  * Cross CPU call to disable a performance event
1690  */
1691 int __perf_event_disable(void *info)
1692 {
1693 	struct perf_event *event = info;
1694 	struct perf_event_context *ctx = event->ctx;
1695 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1696 
1697 	/*
1698 	 * If this is a per-task event, need to check whether this
1699 	 * event's task is the current task on this cpu.
1700 	 *
1701 	 * Can trigger due to concurrent perf_event_context_sched_out()
1702 	 * flipping contexts around.
1703 	 */
1704 	if (ctx->task && cpuctx->task_ctx != ctx)
1705 		return -EINVAL;
1706 
1707 	raw_spin_lock(&ctx->lock);
1708 
1709 	/*
1710 	 * If the event is on, turn it off.
1711 	 * If it is in error state, leave it in error state.
1712 	 */
1713 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1714 		update_context_time(ctx);
1715 		update_cgrp_time_from_event(event);
1716 		update_group_times(event);
1717 		if (event == event->group_leader)
1718 			group_sched_out(event, cpuctx, ctx);
1719 		else
1720 			event_sched_out(event, cpuctx, ctx);
1721 		event->state = PERF_EVENT_STATE_OFF;
1722 	}
1723 
1724 	raw_spin_unlock(&ctx->lock);
1725 
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Disable a event.
1731  *
1732  * If event->ctx is a cloned context, callers must make sure that
1733  * every task struct that event->ctx->task could possibly point to
1734  * remains valid.  This condition is satisifed when called through
1735  * perf_event_for_each_child or perf_event_for_each because they
1736  * hold the top-level event's child_mutex, so any descendant that
1737  * goes to exit will block in sync_child_event.
1738  * When called from perf_pending_event it's OK because event->ctx
1739  * is the current context on this CPU and preemption is disabled,
1740  * hence we can't get into perf_event_task_sched_out for this context.
1741  */
1742 static void _perf_event_disable(struct perf_event *event)
1743 {
1744 	struct perf_event_context *ctx = event->ctx;
1745 	struct task_struct *task = ctx->task;
1746 
1747 	if (!task) {
1748 		/*
1749 		 * Disable the event on the cpu that it's on
1750 		 */
1751 		cpu_function_call(event->cpu, __perf_event_disable, event);
1752 		return;
1753 	}
1754 
1755 retry:
1756 	if (!task_function_call(task, __perf_event_disable, event))
1757 		return;
1758 
1759 	raw_spin_lock_irq(&ctx->lock);
1760 	/*
1761 	 * If the event is still active, we need to retry the cross-call.
1762 	 */
1763 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1764 		raw_spin_unlock_irq(&ctx->lock);
1765 		/*
1766 		 * Reload the task pointer, it might have been changed by
1767 		 * a concurrent perf_event_context_sched_out().
1768 		 */
1769 		task = ctx->task;
1770 		goto retry;
1771 	}
1772 
1773 	/*
1774 	 * Since we have the lock this context can't be scheduled
1775 	 * in, so we can change the state safely.
1776 	 */
1777 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 		update_group_times(event);
1779 		event->state = PERF_EVENT_STATE_OFF;
1780 	}
1781 	raw_spin_unlock_irq(&ctx->lock);
1782 }
1783 
1784 /*
1785  * Strictly speaking kernel users cannot create groups and therefore this
1786  * interface does not need the perf_event_ctx_lock() magic.
1787  */
1788 void perf_event_disable(struct perf_event *event)
1789 {
1790 	struct perf_event_context *ctx;
1791 
1792 	ctx = perf_event_ctx_lock(event);
1793 	_perf_event_disable(event);
1794 	perf_event_ctx_unlock(event, ctx);
1795 }
1796 EXPORT_SYMBOL_GPL(perf_event_disable);
1797 
1798 static void perf_set_shadow_time(struct perf_event *event,
1799 				 struct perf_event_context *ctx,
1800 				 u64 tstamp)
1801 {
1802 	/*
1803 	 * use the correct time source for the time snapshot
1804 	 *
1805 	 * We could get by without this by leveraging the
1806 	 * fact that to get to this function, the caller
1807 	 * has most likely already called update_context_time()
1808 	 * and update_cgrp_time_xx() and thus both timestamp
1809 	 * are identical (or very close). Given that tstamp is,
1810 	 * already adjusted for cgroup, we could say that:
1811 	 *    tstamp - ctx->timestamp
1812 	 * is equivalent to
1813 	 *    tstamp - cgrp->timestamp.
1814 	 *
1815 	 * Then, in perf_output_read(), the calculation would
1816 	 * work with no changes because:
1817 	 * - event is guaranteed scheduled in
1818 	 * - no scheduled out in between
1819 	 * - thus the timestamp would be the same
1820 	 *
1821 	 * But this is a bit hairy.
1822 	 *
1823 	 * So instead, we have an explicit cgroup call to remain
1824 	 * within the time time source all along. We believe it
1825 	 * is cleaner and simpler to understand.
1826 	 */
1827 	if (is_cgroup_event(event))
1828 		perf_cgroup_set_shadow_time(event, tstamp);
1829 	else
1830 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1831 }
1832 
1833 #define MAX_INTERRUPTS (~0ULL)
1834 
1835 static void perf_log_throttle(struct perf_event *event, int enable);
1836 static void perf_log_itrace_start(struct perf_event *event);
1837 
1838 static int
1839 event_sched_in(struct perf_event *event,
1840 		 struct perf_cpu_context *cpuctx,
1841 		 struct perf_event_context *ctx)
1842 {
1843 	u64 tstamp = perf_event_time(event);
1844 	int ret = 0;
1845 
1846 	lockdep_assert_held(&ctx->lock);
1847 
1848 	if (event->state <= PERF_EVENT_STATE_OFF)
1849 		return 0;
1850 
1851 	event->state = PERF_EVENT_STATE_ACTIVE;
1852 	event->oncpu = smp_processor_id();
1853 
1854 	/*
1855 	 * Unthrottle events, since we scheduled we might have missed several
1856 	 * ticks already, also for a heavily scheduling task there is little
1857 	 * guarantee it'll get a tick in a timely manner.
1858 	 */
1859 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1860 		perf_log_throttle(event, 1);
1861 		event->hw.interrupts = 0;
1862 	}
1863 
1864 	/*
1865 	 * The new state must be visible before we turn it on in the hardware:
1866 	 */
1867 	smp_wmb();
1868 
1869 	perf_pmu_disable(event->pmu);
1870 
1871 	event->tstamp_running += tstamp - event->tstamp_stopped;
1872 
1873 	perf_set_shadow_time(event, ctx, tstamp);
1874 
1875 	perf_log_itrace_start(event);
1876 
1877 	if (event->pmu->add(event, PERF_EF_START)) {
1878 		event->state = PERF_EVENT_STATE_INACTIVE;
1879 		event->oncpu = -1;
1880 		ret = -EAGAIN;
1881 		goto out;
1882 	}
1883 
1884 	if (!is_software_event(event))
1885 		cpuctx->active_oncpu++;
1886 	if (!ctx->nr_active++)
1887 		perf_event_ctx_activate(ctx);
1888 	if (event->attr.freq && event->attr.sample_freq)
1889 		ctx->nr_freq++;
1890 
1891 	if (event->attr.exclusive)
1892 		cpuctx->exclusive = 1;
1893 
1894 	if (is_orphaned_child(event))
1895 		schedule_orphans_remove(ctx);
1896 
1897 out:
1898 	perf_pmu_enable(event->pmu);
1899 
1900 	return ret;
1901 }
1902 
1903 static int
1904 group_sched_in(struct perf_event *group_event,
1905 	       struct perf_cpu_context *cpuctx,
1906 	       struct perf_event_context *ctx)
1907 {
1908 	struct perf_event *event, *partial_group = NULL;
1909 	struct pmu *pmu = ctx->pmu;
1910 	u64 now = ctx->time;
1911 	bool simulate = false;
1912 
1913 	if (group_event->state == PERF_EVENT_STATE_OFF)
1914 		return 0;
1915 
1916 	pmu->start_txn(pmu);
1917 
1918 	if (event_sched_in(group_event, cpuctx, ctx)) {
1919 		pmu->cancel_txn(pmu);
1920 		perf_mux_hrtimer_restart(cpuctx);
1921 		return -EAGAIN;
1922 	}
1923 
1924 	/*
1925 	 * Schedule in siblings as one group (if any):
1926 	 */
1927 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1928 		if (event_sched_in(event, cpuctx, ctx)) {
1929 			partial_group = event;
1930 			goto group_error;
1931 		}
1932 	}
1933 
1934 	if (!pmu->commit_txn(pmu))
1935 		return 0;
1936 
1937 group_error:
1938 	/*
1939 	 * Groups can be scheduled in as one unit only, so undo any
1940 	 * partial group before returning:
1941 	 * The events up to the failed event are scheduled out normally,
1942 	 * tstamp_stopped will be updated.
1943 	 *
1944 	 * The failed events and the remaining siblings need to have
1945 	 * their timings updated as if they had gone thru event_sched_in()
1946 	 * and event_sched_out(). This is required to get consistent timings
1947 	 * across the group. This also takes care of the case where the group
1948 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1949 	 * the time the event was actually stopped, such that time delta
1950 	 * calculation in update_event_times() is correct.
1951 	 */
1952 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1953 		if (event == partial_group)
1954 			simulate = true;
1955 
1956 		if (simulate) {
1957 			event->tstamp_running += now - event->tstamp_stopped;
1958 			event->tstamp_stopped = now;
1959 		} else {
1960 			event_sched_out(event, cpuctx, ctx);
1961 		}
1962 	}
1963 	event_sched_out(group_event, cpuctx, ctx);
1964 
1965 	pmu->cancel_txn(pmu);
1966 
1967 	perf_mux_hrtimer_restart(cpuctx);
1968 
1969 	return -EAGAIN;
1970 }
1971 
1972 /*
1973  * Work out whether we can put this event group on the CPU now.
1974  */
1975 static int group_can_go_on(struct perf_event *event,
1976 			   struct perf_cpu_context *cpuctx,
1977 			   int can_add_hw)
1978 {
1979 	/*
1980 	 * Groups consisting entirely of software events can always go on.
1981 	 */
1982 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1983 		return 1;
1984 	/*
1985 	 * If an exclusive group is already on, no other hardware
1986 	 * events can go on.
1987 	 */
1988 	if (cpuctx->exclusive)
1989 		return 0;
1990 	/*
1991 	 * If this group is exclusive and there are already
1992 	 * events on the CPU, it can't go on.
1993 	 */
1994 	if (event->attr.exclusive && cpuctx->active_oncpu)
1995 		return 0;
1996 	/*
1997 	 * Otherwise, try to add it if all previous groups were able
1998 	 * to go on.
1999 	 */
2000 	return can_add_hw;
2001 }
2002 
2003 static void add_event_to_ctx(struct perf_event *event,
2004 			       struct perf_event_context *ctx)
2005 {
2006 	u64 tstamp = perf_event_time(event);
2007 
2008 	list_add_event(event, ctx);
2009 	perf_group_attach(event);
2010 	event->tstamp_enabled = tstamp;
2011 	event->tstamp_running = tstamp;
2012 	event->tstamp_stopped = tstamp;
2013 }
2014 
2015 static void task_ctx_sched_out(struct perf_event_context *ctx);
2016 static void
2017 ctx_sched_in(struct perf_event_context *ctx,
2018 	     struct perf_cpu_context *cpuctx,
2019 	     enum event_type_t event_type,
2020 	     struct task_struct *task);
2021 
2022 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2023 				struct perf_event_context *ctx,
2024 				struct task_struct *task)
2025 {
2026 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2027 	if (ctx)
2028 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2029 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2030 	if (ctx)
2031 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2032 }
2033 
2034 /*
2035  * Cross CPU call to install and enable a performance event
2036  *
2037  * Must be called with ctx->mutex held
2038  */
2039 static int  __perf_install_in_context(void *info)
2040 {
2041 	struct perf_event *event = info;
2042 	struct perf_event_context *ctx = event->ctx;
2043 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2044 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2045 	struct task_struct *task = current;
2046 
2047 	perf_ctx_lock(cpuctx, task_ctx);
2048 	perf_pmu_disable(cpuctx->ctx.pmu);
2049 
2050 	/*
2051 	 * If there was an active task_ctx schedule it out.
2052 	 */
2053 	if (task_ctx)
2054 		task_ctx_sched_out(task_ctx);
2055 
2056 	/*
2057 	 * If the context we're installing events in is not the
2058 	 * active task_ctx, flip them.
2059 	 */
2060 	if (ctx->task && task_ctx != ctx) {
2061 		if (task_ctx)
2062 			raw_spin_unlock(&task_ctx->lock);
2063 		raw_spin_lock(&ctx->lock);
2064 		task_ctx = ctx;
2065 	}
2066 
2067 	if (task_ctx) {
2068 		cpuctx->task_ctx = task_ctx;
2069 		task = task_ctx->task;
2070 	}
2071 
2072 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2073 
2074 	update_context_time(ctx);
2075 	/*
2076 	 * update cgrp time only if current cgrp
2077 	 * matches event->cgrp. Must be done before
2078 	 * calling add_event_to_ctx()
2079 	 */
2080 	update_cgrp_time_from_event(event);
2081 
2082 	add_event_to_ctx(event, ctx);
2083 
2084 	/*
2085 	 * Schedule everything back in
2086 	 */
2087 	perf_event_sched_in(cpuctx, task_ctx, task);
2088 
2089 	perf_pmu_enable(cpuctx->ctx.pmu);
2090 	perf_ctx_unlock(cpuctx, task_ctx);
2091 
2092 	return 0;
2093 }
2094 
2095 /*
2096  * Attach a performance event to a context
2097  *
2098  * First we add the event to the list with the hardware enable bit
2099  * in event->hw_config cleared.
2100  *
2101  * If the event is attached to a task which is on a CPU we use a smp
2102  * call to enable it in the task context. The task might have been
2103  * scheduled away, but we check this in the smp call again.
2104  */
2105 static void
2106 perf_install_in_context(struct perf_event_context *ctx,
2107 			struct perf_event *event,
2108 			int cpu)
2109 {
2110 	struct task_struct *task = ctx->task;
2111 
2112 	lockdep_assert_held(&ctx->mutex);
2113 
2114 	event->ctx = ctx;
2115 	if (event->cpu != -1)
2116 		event->cpu = cpu;
2117 
2118 	if (!task) {
2119 		/*
2120 		 * Per cpu events are installed via an smp call and
2121 		 * the install is always successful.
2122 		 */
2123 		cpu_function_call(cpu, __perf_install_in_context, event);
2124 		return;
2125 	}
2126 
2127 retry:
2128 	if (!task_function_call(task, __perf_install_in_context, event))
2129 		return;
2130 
2131 	raw_spin_lock_irq(&ctx->lock);
2132 	/*
2133 	 * If we failed to find a running task, but find the context active now
2134 	 * that we've acquired the ctx->lock, retry.
2135 	 */
2136 	if (ctx->is_active) {
2137 		raw_spin_unlock_irq(&ctx->lock);
2138 		/*
2139 		 * Reload the task pointer, it might have been changed by
2140 		 * a concurrent perf_event_context_sched_out().
2141 		 */
2142 		task = ctx->task;
2143 		goto retry;
2144 	}
2145 
2146 	/*
2147 	 * Since the task isn't running, its safe to add the event, us holding
2148 	 * the ctx->lock ensures the task won't get scheduled in.
2149 	 */
2150 	add_event_to_ctx(event, ctx);
2151 	raw_spin_unlock_irq(&ctx->lock);
2152 }
2153 
2154 /*
2155  * Put a event into inactive state and update time fields.
2156  * Enabling the leader of a group effectively enables all
2157  * the group members that aren't explicitly disabled, so we
2158  * have to update their ->tstamp_enabled also.
2159  * Note: this works for group members as well as group leaders
2160  * since the non-leader members' sibling_lists will be empty.
2161  */
2162 static void __perf_event_mark_enabled(struct perf_event *event)
2163 {
2164 	struct perf_event *sub;
2165 	u64 tstamp = perf_event_time(event);
2166 
2167 	event->state = PERF_EVENT_STATE_INACTIVE;
2168 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2169 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2170 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2171 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2172 	}
2173 }
2174 
2175 /*
2176  * Cross CPU call to enable a performance event
2177  */
2178 static int __perf_event_enable(void *info)
2179 {
2180 	struct perf_event *event = info;
2181 	struct perf_event_context *ctx = event->ctx;
2182 	struct perf_event *leader = event->group_leader;
2183 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2184 	int err;
2185 
2186 	/*
2187 	 * There's a time window between 'ctx->is_active' check
2188 	 * in perf_event_enable function and this place having:
2189 	 *   - IRQs on
2190 	 *   - ctx->lock unlocked
2191 	 *
2192 	 * where the task could be killed and 'ctx' deactivated
2193 	 * by perf_event_exit_task.
2194 	 */
2195 	if (!ctx->is_active)
2196 		return -EINVAL;
2197 
2198 	raw_spin_lock(&ctx->lock);
2199 	update_context_time(ctx);
2200 
2201 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2202 		goto unlock;
2203 
2204 	/*
2205 	 * set current task's cgroup time reference point
2206 	 */
2207 	perf_cgroup_set_timestamp(current, ctx);
2208 
2209 	__perf_event_mark_enabled(event);
2210 
2211 	if (!event_filter_match(event)) {
2212 		if (is_cgroup_event(event))
2213 			perf_cgroup_defer_enabled(event);
2214 		goto unlock;
2215 	}
2216 
2217 	/*
2218 	 * If the event is in a group and isn't the group leader,
2219 	 * then don't put it on unless the group is on.
2220 	 */
2221 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2222 		goto unlock;
2223 
2224 	if (!group_can_go_on(event, cpuctx, 1)) {
2225 		err = -EEXIST;
2226 	} else {
2227 		if (event == leader)
2228 			err = group_sched_in(event, cpuctx, ctx);
2229 		else
2230 			err = event_sched_in(event, cpuctx, ctx);
2231 	}
2232 
2233 	if (err) {
2234 		/*
2235 		 * If this event can't go on and it's part of a
2236 		 * group, then the whole group has to come off.
2237 		 */
2238 		if (leader != event) {
2239 			group_sched_out(leader, cpuctx, ctx);
2240 			perf_mux_hrtimer_restart(cpuctx);
2241 		}
2242 		if (leader->attr.pinned) {
2243 			update_group_times(leader);
2244 			leader->state = PERF_EVENT_STATE_ERROR;
2245 		}
2246 	}
2247 
2248 unlock:
2249 	raw_spin_unlock(&ctx->lock);
2250 
2251 	return 0;
2252 }
2253 
2254 /*
2255  * Enable a event.
2256  *
2257  * If event->ctx is a cloned context, callers must make sure that
2258  * every task struct that event->ctx->task could possibly point to
2259  * remains valid.  This condition is satisfied when called through
2260  * perf_event_for_each_child or perf_event_for_each as described
2261  * for perf_event_disable.
2262  */
2263 static void _perf_event_enable(struct perf_event *event)
2264 {
2265 	struct perf_event_context *ctx = event->ctx;
2266 	struct task_struct *task = ctx->task;
2267 
2268 	if (!task) {
2269 		/*
2270 		 * Enable the event on the cpu that it's on
2271 		 */
2272 		cpu_function_call(event->cpu, __perf_event_enable, event);
2273 		return;
2274 	}
2275 
2276 	raw_spin_lock_irq(&ctx->lock);
2277 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2278 		goto out;
2279 
2280 	/*
2281 	 * If the event is in error state, clear that first.
2282 	 * That way, if we see the event in error state below, we
2283 	 * know that it has gone back into error state, as distinct
2284 	 * from the task having been scheduled away before the
2285 	 * cross-call arrived.
2286 	 */
2287 	if (event->state == PERF_EVENT_STATE_ERROR)
2288 		event->state = PERF_EVENT_STATE_OFF;
2289 
2290 retry:
2291 	if (!ctx->is_active) {
2292 		__perf_event_mark_enabled(event);
2293 		goto out;
2294 	}
2295 
2296 	raw_spin_unlock_irq(&ctx->lock);
2297 
2298 	if (!task_function_call(task, __perf_event_enable, event))
2299 		return;
2300 
2301 	raw_spin_lock_irq(&ctx->lock);
2302 
2303 	/*
2304 	 * If the context is active and the event is still off,
2305 	 * we need to retry the cross-call.
2306 	 */
2307 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2308 		/*
2309 		 * task could have been flipped by a concurrent
2310 		 * perf_event_context_sched_out()
2311 		 */
2312 		task = ctx->task;
2313 		goto retry;
2314 	}
2315 
2316 out:
2317 	raw_spin_unlock_irq(&ctx->lock);
2318 }
2319 
2320 /*
2321  * See perf_event_disable();
2322  */
2323 void perf_event_enable(struct perf_event *event)
2324 {
2325 	struct perf_event_context *ctx;
2326 
2327 	ctx = perf_event_ctx_lock(event);
2328 	_perf_event_enable(event);
2329 	perf_event_ctx_unlock(event, ctx);
2330 }
2331 EXPORT_SYMBOL_GPL(perf_event_enable);
2332 
2333 static int _perf_event_refresh(struct perf_event *event, int refresh)
2334 {
2335 	/*
2336 	 * not supported on inherited events
2337 	 */
2338 	if (event->attr.inherit || !is_sampling_event(event))
2339 		return -EINVAL;
2340 
2341 	atomic_add(refresh, &event->event_limit);
2342 	_perf_event_enable(event);
2343 
2344 	return 0;
2345 }
2346 
2347 /*
2348  * See perf_event_disable()
2349  */
2350 int perf_event_refresh(struct perf_event *event, int refresh)
2351 {
2352 	struct perf_event_context *ctx;
2353 	int ret;
2354 
2355 	ctx = perf_event_ctx_lock(event);
2356 	ret = _perf_event_refresh(event, refresh);
2357 	perf_event_ctx_unlock(event, ctx);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_refresh);
2362 
2363 static void ctx_sched_out(struct perf_event_context *ctx,
2364 			  struct perf_cpu_context *cpuctx,
2365 			  enum event_type_t event_type)
2366 {
2367 	struct perf_event *event;
2368 	int is_active = ctx->is_active;
2369 
2370 	ctx->is_active &= ~event_type;
2371 	if (likely(!ctx->nr_events))
2372 		return;
2373 
2374 	update_context_time(ctx);
2375 	update_cgrp_time_from_cpuctx(cpuctx);
2376 	if (!ctx->nr_active)
2377 		return;
2378 
2379 	perf_pmu_disable(ctx->pmu);
2380 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2381 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2382 			group_sched_out(event, cpuctx, ctx);
2383 	}
2384 
2385 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2386 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2387 			group_sched_out(event, cpuctx, ctx);
2388 	}
2389 	perf_pmu_enable(ctx->pmu);
2390 }
2391 
2392 /*
2393  * Test whether two contexts are equivalent, i.e. whether they have both been
2394  * cloned from the same version of the same context.
2395  *
2396  * Equivalence is measured using a generation number in the context that is
2397  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2398  * and list_del_event().
2399  */
2400 static int context_equiv(struct perf_event_context *ctx1,
2401 			 struct perf_event_context *ctx2)
2402 {
2403 	lockdep_assert_held(&ctx1->lock);
2404 	lockdep_assert_held(&ctx2->lock);
2405 
2406 	/* Pinning disables the swap optimization */
2407 	if (ctx1->pin_count || ctx2->pin_count)
2408 		return 0;
2409 
2410 	/* If ctx1 is the parent of ctx2 */
2411 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2412 		return 1;
2413 
2414 	/* If ctx2 is the parent of ctx1 */
2415 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2416 		return 1;
2417 
2418 	/*
2419 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2420 	 * hierarchy, see perf_event_init_context().
2421 	 */
2422 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2423 			ctx1->parent_gen == ctx2->parent_gen)
2424 		return 1;
2425 
2426 	/* Unmatched */
2427 	return 0;
2428 }
2429 
2430 static void __perf_event_sync_stat(struct perf_event *event,
2431 				     struct perf_event *next_event)
2432 {
2433 	u64 value;
2434 
2435 	if (!event->attr.inherit_stat)
2436 		return;
2437 
2438 	/*
2439 	 * Update the event value, we cannot use perf_event_read()
2440 	 * because we're in the middle of a context switch and have IRQs
2441 	 * disabled, which upsets smp_call_function_single(), however
2442 	 * we know the event must be on the current CPU, therefore we
2443 	 * don't need to use it.
2444 	 */
2445 	switch (event->state) {
2446 	case PERF_EVENT_STATE_ACTIVE:
2447 		event->pmu->read(event);
2448 		/* fall-through */
2449 
2450 	case PERF_EVENT_STATE_INACTIVE:
2451 		update_event_times(event);
2452 		break;
2453 
2454 	default:
2455 		break;
2456 	}
2457 
2458 	/*
2459 	 * In order to keep per-task stats reliable we need to flip the event
2460 	 * values when we flip the contexts.
2461 	 */
2462 	value = local64_read(&next_event->count);
2463 	value = local64_xchg(&event->count, value);
2464 	local64_set(&next_event->count, value);
2465 
2466 	swap(event->total_time_enabled, next_event->total_time_enabled);
2467 	swap(event->total_time_running, next_event->total_time_running);
2468 
2469 	/*
2470 	 * Since we swizzled the values, update the user visible data too.
2471 	 */
2472 	perf_event_update_userpage(event);
2473 	perf_event_update_userpage(next_event);
2474 }
2475 
2476 static void perf_event_sync_stat(struct perf_event_context *ctx,
2477 				   struct perf_event_context *next_ctx)
2478 {
2479 	struct perf_event *event, *next_event;
2480 
2481 	if (!ctx->nr_stat)
2482 		return;
2483 
2484 	update_context_time(ctx);
2485 
2486 	event = list_first_entry(&ctx->event_list,
2487 				   struct perf_event, event_entry);
2488 
2489 	next_event = list_first_entry(&next_ctx->event_list,
2490 					struct perf_event, event_entry);
2491 
2492 	while (&event->event_entry != &ctx->event_list &&
2493 	       &next_event->event_entry != &next_ctx->event_list) {
2494 
2495 		__perf_event_sync_stat(event, next_event);
2496 
2497 		event = list_next_entry(event, event_entry);
2498 		next_event = list_next_entry(next_event, event_entry);
2499 	}
2500 }
2501 
2502 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2503 					 struct task_struct *next)
2504 {
2505 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2506 	struct perf_event_context *next_ctx;
2507 	struct perf_event_context *parent, *next_parent;
2508 	struct perf_cpu_context *cpuctx;
2509 	int do_switch = 1;
2510 
2511 	if (likely(!ctx))
2512 		return;
2513 
2514 	cpuctx = __get_cpu_context(ctx);
2515 	if (!cpuctx->task_ctx)
2516 		return;
2517 
2518 	rcu_read_lock();
2519 	next_ctx = next->perf_event_ctxp[ctxn];
2520 	if (!next_ctx)
2521 		goto unlock;
2522 
2523 	parent = rcu_dereference(ctx->parent_ctx);
2524 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2525 
2526 	/* If neither context have a parent context; they cannot be clones. */
2527 	if (!parent && !next_parent)
2528 		goto unlock;
2529 
2530 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2531 		/*
2532 		 * Looks like the two contexts are clones, so we might be
2533 		 * able to optimize the context switch.  We lock both
2534 		 * contexts and check that they are clones under the
2535 		 * lock (including re-checking that neither has been
2536 		 * uncloned in the meantime).  It doesn't matter which
2537 		 * order we take the locks because no other cpu could
2538 		 * be trying to lock both of these tasks.
2539 		 */
2540 		raw_spin_lock(&ctx->lock);
2541 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2542 		if (context_equiv(ctx, next_ctx)) {
2543 			/*
2544 			 * XXX do we need a memory barrier of sorts
2545 			 * wrt to rcu_dereference() of perf_event_ctxp
2546 			 */
2547 			task->perf_event_ctxp[ctxn] = next_ctx;
2548 			next->perf_event_ctxp[ctxn] = ctx;
2549 			ctx->task = next;
2550 			next_ctx->task = task;
2551 
2552 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2553 
2554 			do_switch = 0;
2555 
2556 			perf_event_sync_stat(ctx, next_ctx);
2557 		}
2558 		raw_spin_unlock(&next_ctx->lock);
2559 		raw_spin_unlock(&ctx->lock);
2560 	}
2561 unlock:
2562 	rcu_read_unlock();
2563 
2564 	if (do_switch) {
2565 		raw_spin_lock(&ctx->lock);
2566 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2567 		cpuctx->task_ctx = NULL;
2568 		raw_spin_unlock(&ctx->lock);
2569 	}
2570 }
2571 
2572 void perf_sched_cb_dec(struct pmu *pmu)
2573 {
2574 	this_cpu_dec(perf_sched_cb_usages);
2575 }
2576 
2577 void perf_sched_cb_inc(struct pmu *pmu)
2578 {
2579 	this_cpu_inc(perf_sched_cb_usages);
2580 }
2581 
2582 /*
2583  * This function provides the context switch callback to the lower code
2584  * layer. It is invoked ONLY when the context switch callback is enabled.
2585  */
2586 static void perf_pmu_sched_task(struct task_struct *prev,
2587 				struct task_struct *next,
2588 				bool sched_in)
2589 {
2590 	struct perf_cpu_context *cpuctx;
2591 	struct pmu *pmu;
2592 	unsigned long flags;
2593 
2594 	if (prev == next)
2595 		return;
2596 
2597 	local_irq_save(flags);
2598 
2599 	rcu_read_lock();
2600 
2601 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2602 		if (pmu->sched_task) {
2603 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2604 
2605 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2606 
2607 			perf_pmu_disable(pmu);
2608 
2609 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2610 
2611 			perf_pmu_enable(pmu);
2612 
2613 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2614 		}
2615 	}
2616 
2617 	rcu_read_unlock();
2618 
2619 	local_irq_restore(flags);
2620 }
2621 
2622 #define for_each_task_context_nr(ctxn)					\
2623 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2624 
2625 /*
2626  * Called from scheduler to remove the events of the current task,
2627  * with interrupts disabled.
2628  *
2629  * We stop each event and update the event value in event->count.
2630  *
2631  * This does not protect us against NMI, but disable()
2632  * sets the disabled bit in the control field of event _before_
2633  * accessing the event control register. If a NMI hits, then it will
2634  * not restart the event.
2635  */
2636 void __perf_event_task_sched_out(struct task_struct *task,
2637 				 struct task_struct *next)
2638 {
2639 	int ctxn;
2640 
2641 	if (__this_cpu_read(perf_sched_cb_usages))
2642 		perf_pmu_sched_task(task, next, false);
2643 
2644 	for_each_task_context_nr(ctxn)
2645 		perf_event_context_sched_out(task, ctxn, next);
2646 
2647 	/*
2648 	 * if cgroup events exist on this CPU, then we need
2649 	 * to check if we have to switch out PMU state.
2650 	 * cgroup event are system-wide mode only
2651 	 */
2652 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2653 		perf_cgroup_sched_out(task, next);
2654 }
2655 
2656 static void task_ctx_sched_out(struct perf_event_context *ctx)
2657 {
2658 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2659 
2660 	if (!cpuctx->task_ctx)
2661 		return;
2662 
2663 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 		return;
2665 
2666 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2667 	cpuctx->task_ctx = NULL;
2668 }
2669 
2670 /*
2671  * Called with IRQs disabled
2672  */
2673 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2674 			      enum event_type_t event_type)
2675 {
2676 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2677 }
2678 
2679 static void
2680 ctx_pinned_sched_in(struct perf_event_context *ctx,
2681 		    struct perf_cpu_context *cpuctx)
2682 {
2683 	struct perf_event *event;
2684 
2685 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2686 		if (event->state <= PERF_EVENT_STATE_OFF)
2687 			continue;
2688 		if (!event_filter_match(event))
2689 			continue;
2690 
2691 		/* may need to reset tstamp_enabled */
2692 		if (is_cgroup_event(event))
2693 			perf_cgroup_mark_enabled(event, ctx);
2694 
2695 		if (group_can_go_on(event, cpuctx, 1))
2696 			group_sched_in(event, cpuctx, ctx);
2697 
2698 		/*
2699 		 * If this pinned group hasn't been scheduled,
2700 		 * put it in error state.
2701 		 */
2702 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2703 			update_group_times(event);
2704 			event->state = PERF_EVENT_STATE_ERROR;
2705 		}
2706 	}
2707 }
2708 
2709 static void
2710 ctx_flexible_sched_in(struct perf_event_context *ctx,
2711 		      struct perf_cpu_context *cpuctx)
2712 {
2713 	struct perf_event *event;
2714 	int can_add_hw = 1;
2715 
2716 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2717 		/* Ignore events in OFF or ERROR state */
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		/*
2721 		 * Listen to the 'cpu' scheduling filter constraint
2722 		 * of events:
2723 		 */
2724 		if (!event_filter_match(event))
2725 			continue;
2726 
2727 		/* may need to reset tstamp_enabled */
2728 		if (is_cgroup_event(event))
2729 			perf_cgroup_mark_enabled(event, ctx);
2730 
2731 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2732 			if (group_sched_in(event, cpuctx, ctx))
2733 				can_add_hw = 0;
2734 		}
2735 	}
2736 }
2737 
2738 static void
2739 ctx_sched_in(struct perf_event_context *ctx,
2740 	     struct perf_cpu_context *cpuctx,
2741 	     enum event_type_t event_type,
2742 	     struct task_struct *task)
2743 {
2744 	u64 now;
2745 	int is_active = ctx->is_active;
2746 
2747 	ctx->is_active |= event_type;
2748 	if (likely(!ctx->nr_events))
2749 		return;
2750 
2751 	now = perf_clock();
2752 	ctx->timestamp = now;
2753 	perf_cgroup_set_timestamp(task, ctx);
2754 	/*
2755 	 * First go through the list and put on any pinned groups
2756 	 * in order to give them the best chance of going on.
2757 	 */
2758 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2759 		ctx_pinned_sched_in(ctx, cpuctx);
2760 
2761 	/* Then walk through the lower prio flexible groups */
2762 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2763 		ctx_flexible_sched_in(ctx, cpuctx);
2764 }
2765 
2766 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2767 			     enum event_type_t event_type,
2768 			     struct task_struct *task)
2769 {
2770 	struct perf_event_context *ctx = &cpuctx->ctx;
2771 
2772 	ctx_sched_in(ctx, cpuctx, event_type, task);
2773 }
2774 
2775 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2776 					struct task_struct *task)
2777 {
2778 	struct perf_cpu_context *cpuctx;
2779 
2780 	cpuctx = __get_cpu_context(ctx);
2781 	if (cpuctx->task_ctx == ctx)
2782 		return;
2783 
2784 	perf_ctx_lock(cpuctx, ctx);
2785 	perf_pmu_disable(ctx->pmu);
2786 	/*
2787 	 * We want to keep the following priority order:
2788 	 * cpu pinned (that don't need to move), task pinned,
2789 	 * cpu flexible, task flexible.
2790 	 */
2791 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2792 
2793 	if (ctx->nr_events)
2794 		cpuctx->task_ctx = ctx;
2795 
2796 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2797 
2798 	perf_pmu_enable(ctx->pmu);
2799 	perf_ctx_unlock(cpuctx, ctx);
2800 }
2801 
2802 /*
2803  * Called from scheduler to add the events of the current task
2804  * with interrupts disabled.
2805  *
2806  * We restore the event value and then enable it.
2807  *
2808  * This does not protect us against NMI, but enable()
2809  * sets the enabled bit in the control field of event _before_
2810  * accessing the event control register. If a NMI hits, then it will
2811  * keep the event running.
2812  */
2813 void __perf_event_task_sched_in(struct task_struct *prev,
2814 				struct task_struct *task)
2815 {
2816 	struct perf_event_context *ctx;
2817 	int ctxn;
2818 
2819 	for_each_task_context_nr(ctxn) {
2820 		ctx = task->perf_event_ctxp[ctxn];
2821 		if (likely(!ctx))
2822 			continue;
2823 
2824 		perf_event_context_sched_in(ctx, task);
2825 	}
2826 	/*
2827 	 * if cgroup events exist on this CPU, then we need
2828 	 * to check if we have to switch in PMU state.
2829 	 * cgroup event are system-wide mode only
2830 	 */
2831 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2832 		perf_cgroup_sched_in(prev, task);
2833 
2834 	if (__this_cpu_read(perf_sched_cb_usages))
2835 		perf_pmu_sched_task(prev, task, true);
2836 }
2837 
2838 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2839 {
2840 	u64 frequency = event->attr.sample_freq;
2841 	u64 sec = NSEC_PER_SEC;
2842 	u64 divisor, dividend;
2843 
2844 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2845 
2846 	count_fls = fls64(count);
2847 	nsec_fls = fls64(nsec);
2848 	frequency_fls = fls64(frequency);
2849 	sec_fls = 30;
2850 
2851 	/*
2852 	 * We got @count in @nsec, with a target of sample_freq HZ
2853 	 * the target period becomes:
2854 	 *
2855 	 *             @count * 10^9
2856 	 * period = -------------------
2857 	 *          @nsec * sample_freq
2858 	 *
2859 	 */
2860 
2861 	/*
2862 	 * Reduce accuracy by one bit such that @a and @b converge
2863 	 * to a similar magnitude.
2864 	 */
2865 #define REDUCE_FLS(a, b)		\
2866 do {					\
2867 	if (a##_fls > b##_fls) {	\
2868 		a >>= 1;		\
2869 		a##_fls--;		\
2870 	} else {			\
2871 		b >>= 1;		\
2872 		b##_fls--;		\
2873 	}				\
2874 } while (0)
2875 
2876 	/*
2877 	 * Reduce accuracy until either term fits in a u64, then proceed with
2878 	 * the other, so that finally we can do a u64/u64 division.
2879 	 */
2880 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2881 		REDUCE_FLS(nsec, frequency);
2882 		REDUCE_FLS(sec, count);
2883 	}
2884 
2885 	if (count_fls + sec_fls > 64) {
2886 		divisor = nsec * frequency;
2887 
2888 		while (count_fls + sec_fls > 64) {
2889 			REDUCE_FLS(count, sec);
2890 			divisor >>= 1;
2891 		}
2892 
2893 		dividend = count * sec;
2894 	} else {
2895 		dividend = count * sec;
2896 
2897 		while (nsec_fls + frequency_fls > 64) {
2898 			REDUCE_FLS(nsec, frequency);
2899 			dividend >>= 1;
2900 		}
2901 
2902 		divisor = nsec * frequency;
2903 	}
2904 
2905 	if (!divisor)
2906 		return dividend;
2907 
2908 	return div64_u64(dividend, divisor);
2909 }
2910 
2911 static DEFINE_PER_CPU(int, perf_throttled_count);
2912 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2913 
2914 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2915 {
2916 	struct hw_perf_event *hwc = &event->hw;
2917 	s64 period, sample_period;
2918 	s64 delta;
2919 
2920 	period = perf_calculate_period(event, nsec, count);
2921 
2922 	delta = (s64)(period - hwc->sample_period);
2923 	delta = (delta + 7) / 8; /* low pass filter */
2924 
2925 	sample_period = hwc->sample_period + delta;
2926 
2927 	if (!sample_period)
2928 		sample_period = 1;
2929 
2930 	hwc->sample_period = sample_period;
2931 
2932 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2933 		if (disable)
2934 			event->pmu->stop(event, PERF_EF_UPDATE);
2935 
2936 		local64_set(&hwc->period_left, 0);
2937 
2938 		if (disable)
2939 			event->pmu->start(event, PERF_EF_RELOAD);
2940 	}
2941 }
2942 
2943 /*
2944  * combine freq adjustment with unthrottling to avoid two passes over the
2945  * events. At the same time, make sure, having freq events does not change
2946  * the rate of unthrottling as that would introduce bias.
2947  */
2948 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2949 					   int needs_unthr)
2950 {
2951 	struct perf_event *event;
2952 	struct hw_perf_event *hwc;
2953 	u64 now, period = TICK_NSEC;
2954 	s64 delta;
2955 
2956 	/*
2957 	 * only need to iterate over all events iff:
2958 	 * - context have events in frequency mode (needs freq adjust)
2959 	 * - there are events to unthrottle on this cpu
2960 	 */
2961 	if (!(ctx->nr_freq || needs_unthr))
2962 		return;
2963 
2964 	raw_spin_lock(&ctx->lock);
2965 	perf_pmu_disable(ctx->pmu);
2966 
2967 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2968 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2969 			continue;
2970 
2971 		if (!event_filter_match(event))
2972 			continue;
2973 
2974 		perf_pmu_disable(event->pmu);
2975 
2976 		hwc = &event->hw;
2977 
2978 		if (hwc->interrupts == MAX_INTERRUPTS) {
2979 			hwc->interrupts = 0;
2980 			perf_log_throttle(event, 1);
2981 			event->pmu->start(event, 0);
2982 		}
2983 
2984 		if (!event->attr.freq || !event->attr.sample_freq)
2985 			goto next;
2986 
2987 		/*
2988 		 * stop the event and update event->count
2989 		 */
2990 		event->pmu->stop(event, PERF_EF_UPDATE);
2991 
2992 		now = local64_read(&event->count);
2993 		delta = now - hwc->freq_count_stamp;
2994 		hwc->freq_count_stamp = now;
2995 
2996 		/*
2997 		 * restart the event
2998 		 * reload only if value has changed
2999 		 * we have stopped the event so tell that
3000 		 * to perf_adjust_period() to avoid stopping it
3001 		 * twice.
3002 		 */
3003 		if (delta > 0)
3004 			perf_adjust_period(event, period, delta, false);
3005 
3006 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3007 	next:
3008 		perf_pmu_enable(event->pmu);
3009 	}
3010 
3011 	perf_pmu_enable(ctx->pmu);
3012 	raw_spin_unlock(&ctx->lock);
3013 }
3014 
3015 /*
3016  * Round-robin a context's events:
3017  */
3018 static void rotate_ctx(struct perf_event_context *ctx)
3019 {
3020 	/*
3021 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3022 	 * disabled by the inheritance code.
3023 	 */
3024 	if (!ctx->rotate_disable)
3025 		list_rotate_left(&ctx->flexible_groups);
3026 }
3027 
3028 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3029 {
3030 	struct perf_event_context *ctx = NULL;
3031 	int rotate = 0;
3032 
3033 	if (cpuctx->ctx.nr_events) {
3034 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3035 			rotate = 1;
3036 	}
3037 
3038 	ctx = cpuctx->task_ctx;
3039 	if (ctx && ctx->nr_events) {
3040 		if (ctx->nr_events != ctx->nr_active)
3041 			rotate = 1;
3042 	}
3043 
3044 	if (!rotate)
3045 		goto done;
3046 
3047 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3048 	perf_pmu_disable(cpuctx->ctx.pmu);
3049 
3050 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3051 	if (ctx)
3052 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3053 
3054 	rotate_ctx(&cpuctx->ctx);
3055 	if (ctx)
3056 		rotate_ctx(ctx);
3057 
3058 	perf_event_sched_in(cpuctx, ctx, current);
3059 
3060 	perf_pmu_enable(cpuctx->ctx.pmu);
3061 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3062 done:
3063 
3064 	return rotate;
3065 }
3066 
3067 #ifdef CONFIG_NO_HZ_FULL
3068 bool perf_event_can_stop_tick(void)
3069 {
3070 	if (atomic_read(&nr_freq_events) ||
3071 	    __this_cpu_read(perf_throttled_count))
3072 		return false;
3073 	else
3074 		return true;
3075 }
3076 #endif
3077 
3078 void perf_event_task_tick(void)
3079 {
3080 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3081 	struct perf_event_context *ctx, *tmp;
3082 	int throttled;
3083 
3084 	WARN_ON(!irqs_disabled());
3085 
3086 	__this_cpu_inc(perf_throttled_seq);
3087 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3088 
3089 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3090 		perf_adjust_freq_unthr_context(ctx, throttled);
3091 }
3092 
3093 static int event_enable_on_exec(struct perf_event *event,
3094 				struct perf_event_context *ctx)
3095 {
3096 	if (!event->attr.enable_on_exec)
3097 		return 0;
3098 
3099 	event->attr.enable_on_exec = 0;
3100 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3101 		return 0;
3102 
3103 	__perf_event_mark_enabled(event);
3104 
3105 	return 1;
3106 }
3107 
3108 /*
3109  * Enable all of a task's events that have been marked enable-on-exec.
3110  * This expects task == current.
3111  */
3112 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3113 {
3114 	struct perf_event_context *clone_ctx = NULL;
3115 	struct perf_event *event;
3116 	unsigned long flags;
3117 	int enabled = 0;
3118 	int ret;
3119 
3120 	local_irq_save(flags);
3121 	if (!ctx || !ctx->nr_events)
3122 		goto out;
3123 
3124 	/*
3125 	 * We must ctxsw out cgroup events to avoid conflict
3126 	 * when invoking perf_task_event_sched_in() later on
3127 	 * in this function. Otherwise we end up trying to
3128 	 * ctxswin cgroup events which are already scheduled
3129 	 * in.
3130 	 */
3131 	perf_cgroup_sched_out(current, NULL);
3132 
3133 	raw_spin_lock(&ctx->lock);
3134 	task_ctx_sched_out(ctx);
3135 
3136 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3137 		ret = event_enable_on_exec(event, ctx);
3138 		if (ret)
3139 			enabled = 1;
3140 	}
3141 
3142 	/*
3143 	 * Unclone this context if we enabled any event.
3144 	 */
3145 	if (enabled)
3146 		clone_ctx = unclone_ctx(ctx);
3147 
3148 	raw_spin_unlock(&ctx->lock);
3149 
3150 	/*
3151 	 * Also calls ctxswin for cgroup events, if any:
3152 	 */
3153 	perf_event_context_sched_in(ctx, ctx->task);
3154 out:
3155 	local_irq_restore(flags);
3156 
3157 	if (clone_ctx)
3158 		put_ctx(clone_ctx);
3159 }
3160 
3161 void perf_event_exec(void)
3162 {
3163 	struct perf_event_context *ctx;
3164 	int ctxn;
3165 
3166 	rcu_read_lock();
3167 	for_each_task_context_nr(ctxn) {
3168 		ctx = current->perf_event_ctxp[ctxn];
3169 		if (!ctx)
3170 			continue;
3171 
3172 		perf_event_enable_on_exec(ctx);
3173 	}
3174 	rcu_read_unlock();
3175 }
3176 
3177 /*
3178  * Cross CPU call to read the hardware event
3179  */
3180 static void __perf_event_read(void *info)
3181 {
3182 	struct perf_event *event = info;
3183 	struct perf_event_context *ctx = event->ctx;
3184 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3185 
3186 	/*
3187 	 * If this is a task context, we need to check whether it is
3188 	 * the current task context of this cpu.  If not it has been
3189 	 * scheduled out before the smp call arrived.  In that case
3190 	 * event->count would have been updated to a recent sample
3191 	 * when the event was scheduled out.
3192 	 */
3193 	if (ctx->task && cpuctx->task_ctx != ctx)
3194 		return;
3195 
3196 	raw_spin_lock(&ctx->lock);
3197 	if (ctx->is_active) {
3198 		update_context_time(ctx);
3199 		update_cgrp_time_from_event(event);
3200 	}
3201 	update_event_times(event);
3202 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3203 		event->pmu->read(event);
3204 	raw_spin_unlock(&ctx->lock);
3205 }
3206 
3207 static inline u64 perf_event_count(struct perf_event *event)
3208 {
3209 	if (event->pmu->count)
3210 		return event->pmu->count(event);
3211 
3212 	return __perf_event_count(event);
3213 }
3214 
3215 /*
3216  * NMI-safe method to read a local event, that is an event that
3217  * is:
3218  *   - either for the current task, or for this CPU
3219  *   - does not have inherit set, for inherited task events
3220  *     will not be local and we cannot read them atomically
3221  *   - must not have a pmu::count method
3222  */
3223 u64 perf_event_read_local(struct perf_event *event)
3224 {
3225 	unsigned long flags;
3226 	u64 val;
3227 
3228 	/*
3229 	 * Disabling interrupts avoids all counter scheduling (context
3230 	 * switches, timer based rotation and IPIs).
3231 	 */
3232 	local_irq_save(flags);
3233 
3234 	/* If this is a per-task event, it must be for current */
3235 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3236 		     event->hw.target != current);
3237 
3238 	/* If this is a per-CPU event, it must be for this CPU */
3239 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3240 		     event->cpu != smp_processor_id());
3241 
3242 	/*
3243 	 * It must not be an event with inherit set, we cannot read
3244 	 * all child counters from atomic context.
3245 	 */
3246 	WARN_ON_ONCE(event->attr.inherit);
3247 
3248 	/*
3249 	 * It must not have a pmu::count method, those are not
3250 	 * NMI safe.
3251 	 */
3252 	WARN_ON_ONCE(event->pmu->count);
3253 
3254 	/*
3255 	 * If the event is currently on this CPU, its either a per-task event,
3256 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3257 	 * oncpu == -1).
3258 	 */
3259 	if (event->oncpu == smp_processor_id())
3260 		event->pmu->read(event);
3261 
3262 	val = local64_read(&event->count);
3263 	local_irq_restore(flags);
3264 
3265 	return val;
3266 }
3267 
3268 static u64 perf_event_read(struct perf_event *event)
3269 {
3270 	/*
3271 	 * If event is enabled and currently active on a CPU, update the
3272 	 * value in the event structure:
3273 	 */
3274 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3275 		smp_call_function_single(event->oncpu,
3276 					 __perf_event_read, event, 1);
3277 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3278 		struct perf_event_context *ctx = event->ctx;
3279 		unsigned long flags;
3280 
3281 		raw_spin_lock_irqsave(&ctx->lock, flags);
3282 		/*
3283 		 * may read while context is not active
3284 		 * (e.g., thread is blocked), in that case
3285 		 * we cannot update context time
3286 		 */
3287 		if (ctx->is_active) {
3288 			update_context_time(ctx);
3289 			update_cgrp_time_from_event(event);
3290 		}
3291 		update_event_times(event);
3292 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3293 	}
3294 
3295 	return perf_event_count(event);
3296 }
3297 
3298 /*
3299  * Initialize the perf_event context in a task_struct:
3300  */
3301 static void __perf_event_init_context(struct perf_event_context *ctx)
3302 {
3303 	raw_spin_lock_init(&ctx->lock);
3304 	mutex_init(&ctx->mutex);
3305 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3306 	INIT_LIST_HEAD(&ctx->pinned_groups);
3307 	INIT_LIST_HEAD(&ctx->flexible_groups);
3308 	INIT_LIST_HEAD(&ctx->event_list);
3309 	atomic_set(&ctx->refcount, 1);
3310 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3311 }
3312 
3313 static struct perf_event_context *
3314 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3315 {
3316 	struct perf_event_context *ctx;
3317 
3318 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3319 	if (!ctx)
3320 		return NULL;
3321 
3322 	__perf_event_init_context(ctx);
3323 	if (task) {
3324 		ctx->task = task;
3325 		get_task_struct(task);
3326 	}
3327 	ctx->pmu = pmu;
3328 
3329 	return ctx;
3330 }
3331 
3332 static struct task_struct *
3333 find_lively_task_by_vpid(pid_t vpid)
3334 {
3335 	struct task_struct *task;
3336 	int err;
3337 
3338 	rcu_read_lock();
3339 	if (!vpid)
3340 		task = current;
3341 	else
3342 		task = find_task_by_vpid(vpid);
3343 	if (task)
3344 		get_task_struct(task);
3345 	rcu_read_unlock();
3346 
3347 	if (!task)
3348 		return ERR_PTR(-ESRCH);
3349 
3350 	/* Reuse ptrace permission checks for now. */
3351 	err = -EACCES;
3352 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3353 		goto errout;
3354 
3355 	return task;
3356 errout:
3357 	put_task_struct(task);
3358 	return ERR_PTR(err);
3359 
3360 }
3361 
3362 /*
3363  * Returns a matching context with refcount and pincount.
3364  */
3365 static struct perf_event_context *
3366 find_get_context(struct pmu *pmu, struct task_struct *task,
3367 		struct perf_event *event)
3368 {
3369 	struct perf_event_context *ctx, *clone_ctx = NULL;
3370 	struct perf_cpu_context *cpuctx;
3371 	void *task_ctx_data = NULL;
3372 	unsigned long flags;
3373 	int ctxn, err;
3374 	int cpu = event->cpu;
3375 
3376 	if (!task) {
3377 		/* Must be root to operate on a CPU event: */
3378 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3379 			return ERR_PTR(-EACCES);
3380 
3381 		/*
3382 		 * We could be clever and allow to attach a event to an
3383 		 * offline CPU and activate it when the CPU comes up, but
3384 		 * that's for later.
3385 		 */
3386 		if (!cpu_online(cpu))
3387 			return ERR_PTR(-ENODEV);
3388 
3389 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3390 		ctx = &cpuctx->ctx;
3391 		get_ctx(ctx);
3392 		++ctx->pin_count;
3393 
3394 		return ctx;
3395 	}
3396 
3397 	err = -EINVAL;
3398 	ctxn = pmu->task_ctx_nr;
3399 	if (ctxn < 0)
3400 		goto errout;
3401 
3402 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3403 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3404 		if (!task_ctx_data) {
3405 			err = -ENOMEM;
3406 			goto errout;
3407 		}
3408 	}
3409 
3410 retry:
3411 	ctx = perf_lock_task_context(task, ctxn, &flags);
3412 	if (ctx) {
3413 		clone_ctx = unclone_ctx(ctx);
3414 		++ctx->pin_count;
3415 
3416 		if (task_ctx_data && !ctx->task_ctx_data) {
3417 			ctx->task_ctx_data = task_ctx_data;
3418 			task_ctx_data = NULL;
3419 		}
3420 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3421 
3422 		if (clone_ctx)
3423 			put_ctx(clone_ctx);
3424 	} else {
3425 		ctx = alloc_perf_context(pmu, task);
3426 		err = -ENOMEM;
3427 		if (!ctx)
3428 			goto errout;
3429 
3430 		if (task_ctx_data) {
3431 			ctx->task_ctx_data = task_ctx_data;
3432 			task_ctx_data = NULL;
3433 		}
3434 
3435 		err = 0;
3436 		mutex_lock(&task->perf_event_mutex);
3437 		/*
3438 		 * If it has already passed perf_event_exit_task().
3439 		 * we must see PF_EXITING, it takes this mutex too.
3440 		 */
3441 		if (task->flags & PF_EXITING)
3442 			err = -ESRCH;
3443 		else if (task->perf_event_ctxp[ctxn])
3444 			err = -EAGAIN;
3445 		else {
3446 			get_ctx(ctx);
3447 			++ctx->pin_count;
3448 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3449 		}
3450 		mutex_unlock(&task->perf_event_mutex);
3451 
3452 		if (unlikely(err)) {
3453 			put_ctx(ctx);
3454 
3455 			if (err == -EAGAIN)
3456 				goto retry;
3457 			goto errout;
3458 		}
3459 	}
3460 
3461 	kfree(task_ctx_data);
3462 	return ctx;
3463 
3464 errout:
3465 	kfree(task_ctx_data);
3466 	return ERR_PTR(err);
3467 }
3468 
3469 static void perf_event_free_filter(struct perf_event *event);
3470 static void perf_event_free_bpf_prog(struct perf_event *event);
3471 
3472 static void free_event_rcu(struct rcu_head *head)
3473 {
3474 	struct perf_event *event;
3475 
3476 	event = container_of(head, struct perf_event, rcu_head);
3477 	if (event->ns)
3478 		put_pid_ns(event->ns);
3479 	perf_event_free_filter(event);
3480 	kfree(event);
3481 }
3482 
3483 static void ring_buffer_attach(struct perf_event *event,
3484 			       struct ring_buffer *rb);
3485 
3486 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3487 {
3488 	if (event->parent)
3489 		return;
3490 
3491 	if (is_cgroup_event(event))
3492 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3493 }
3494 
3495 static void unaccount_event(struct perf_event *event)
3496 {
3497 	if (event->parent)
3498 		return;
3499 
3500 	if (event->attach_state & PERF_ATTACH_TASK)
3501 		static_key_slow_dec_deferred(&perf_sched_events);
3502 	if (event->attr.mmap || event->attr.mmap_data)
3503 		atomic_dec(&nr_mmap_events);
3504 	if (event->attr.comm)
3505 		atomic_dec(&nr_comm_events);
3506 	if (event->attr.task)
3507 		atomic_dec(&nr_task_events);
3508 	if (event->attr.freq)
3509 		atomic_dec(&nr_freq_events);
3510 	if (is_cgroup_event(event))
3511 		static_key_slow_dec_deferred(&perf_sched_events);
3512 	if (has_branch_stack(event))
3513 		static_key_slow_dec_deferred(&perf_sched_events);
3514 
3515 	unaccount_event_cpu(event, event->cpu);
3516 }
3517 
3518 /*
3519  * The following implement mutual exclusion of events on "exclusive" pmus
3520  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3521  * at a time, so we disallow creating events that might conflict, namely:
3522  *
3523  *  1) cpu-wide events in the presence of per-task events,
3524  *  2) per-task events in the presence of cpu-wide events,
3525  *  3) two matching events on the same context.
3526  *
3527  * The former two cases are handled in the allocation path (perf_event_alloc(),
3528  * __free_event()), the latter -- before the first perf_install_in_context().
3529  */
3530 static int exclusive_event_init(struct perf_event *event)
3531 {
3532 	struct pmu *pmu = event->pmu;
3533 
3534 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3535 		return 0;
3536 
3537 	/*
3538 	 * Prevent co-existence of per-task and cpu-wide events on the
3539 	 * same exclusive pmu.
3540 	 *
3541 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3542 	 * events on this "exclusive" pmu, positive means there are
3543 	 * per-task events.
3544 	 *
3545 	 * Since this is called in perf_event_alloc() path, event::ctx
3546 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3547 	 * to mean "per-task event", because unlike other attach states it
3548 	 * never gets cleared.
3549 	 */
3550 	if (event->attach_state & PERF_ATTACH_TASK) {
3551 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3552 			return -EBUSY;
3553 	} else {
3554 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3555 			return -EBUSY;
3556 	}
3557 
3558 	return 0;
3559 }
3560 
3561 static void exclusive_event_destroy(struct perf_event *event)
3562 {
3563 	struct pmu *pmu = event->pmu;
3564 
3565 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3566 		return;
3567 
3568 	/* see comment in exclusive_event_init() */
3569 	if (event->attach_state & PERF_ATTACH_TASK)
3570 		atomic_dec(&pmu->exclusive_cnt);
3571 	else
3572 		atomic_inc(&pmu->exclusive_cnt);
3573 }
3574 
3575 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3576 {
3577 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3578 	    (e1->cpu == e2->cpu ||
3579 	     e1->cpu == -1 ||
3580 	     e2->cpu == -1))
3581 		return true;
3582 	return false;
3583 }
3584 
3585 /* Called under the same ctx::mutex as perf_install_in_context() */
3586 static bool exclusive_event_installable(struct perf_event *event,
3587 					struct perf_event_context *ctx)
3588 {
3589 	struct perf_event *iter_event;
3590 	struct pmu *pmu = event->pmu;
3591 
3592 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3593 		return true;
3594 
3595 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3596 		if (exclusive_event_match(iter_event, event))
3597 			return false;
3598 	}
3599 
3600 	return true;
3601 }
3602 
3603 static void __free_event(struct perf_event *event)
3604 {
3605 	if (!event->parent) {
3606 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3607 			put_callchain_buffers();
3608 	}
3609 
3610 	perf_event_free_bpf_prog(event);
3611 
3612 	if (event->destroy)
3613 		event->destroy(event);
3614 
3615 	if (event->ctx)
3616 		put_ctx(event->ctx);
3617 
3618 	if (event->pmu) {
3619 		exclusive_event_destroy(event);
3620 		module_put(event->pmu->module);
3621 	}
3622 
3623 	call_rcu(&event->rcu_head, free_event_rcu);
3624 }
3625 
3626 static void _free_event(struct perf_event *event)
3627 {
3628 	irq_work_sync(&event->pending);
3629 
3630 	unaccount_event(event);
3631 
3632 	if (event->rb) {
3633 		/*
3634 		 * Can happen when we close an event with re-directed output.
3635 		 *
3636 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3637 		 * over us; possibly making our ring_buffer_put() the last.
3638 		 */
3639 		mutex_lock(&event->mmap_mutex);
3640 		ring_buffer_attach(event, NULL);
3641 		mutex_unlock(&event->mmap_mutex);
3642 	}
3643 
3644 	if (is_cgroup_event(event))
3645 		perf_detach_cgroup(event);
3646 
3647 	__free_event(event);
3648 }
3649 
3650 /*
3651  * Used to free events which have a known refcount of 1, such as in error paths
3652  * where the event isn't exposed yet and inherited events.
3653  */
3654 static void free_event(struct perf_event *event)
3655 {
3656 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3657 				"unexpected event refcount: %ld; ptr=%p\n",
3658 				atomic_long_read(&event->refcount), event)) {
3659 		/* leak to avoid use-after-free */
3660 		return;
3661 	}
3662 
3663 	_free_event(event);
3664 }
3665 
3666 /*
3667  * Remove user event from the owner task.
3668  */
3669 static void perf_remove_from_owner(struct perf_event *event)
3670 {
3671 	struct task_struct *owner;
3672 
3673 	rcu_read_lock();
3674 	owner = ACCESS_ONCE(event->owner);
3675 	/*
3676 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3677 	 * !owner it means the list deletion is complete and we can indeed
3678 	 * free this event, otherwise we need to serialize on
3679 	 * owner->perf_event_mutex.
3680 	 */
3681 	smp_read_barrier_depends();
3682 	if (owner) {
3683 		/*
3684 		 * Since delayed_put_task_struct() also drops the last
3685 		 * task reference we can safely take a new reference
3686 		 * while holding the rcu_read_lock().
3687 		 */
3688 		get_task_struct(owner);
3689 	}
3690 	rcu_read_unlock();
3691 
3692 	if (owner) {
3693 		/*
3694 		 * If we're here through perf_event_exit_task() we're already
3695 		 * holding ctx->mutex which would be an inversion wrt. the
3696 		 * normal lock order.
3697 		 *
3698 		 * However we can safely take this lock because its the child
3699 		 * ctx->mutex.
3700 		 */
3701 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3702 
3703 		/*
3704 		 * We have to re-check the event->owner field, if it is cleared
3705 		 * we raced with perf_event_exit_task(), acquiring the mutex
3706 		 * ensured they're done, and we can proceed with freeing the
3707 		 * event.
3708 		 */
3709 		if (event->owner)
3710 			list_del_init(&event->owner_entry);
3711 		mutex_unlock(&owner->perf_event_mutex);
3712 		put_task_struct(owner);
3713 	}
3714 }
3715 
3716 static void put_event(struct perf_event *event)
3717 {
3718 	struct perf_event_context *ctx;
3719 
3720 	if (!atomic_long_dec_and_test(&event->refcount))
3721 		return;
3722 
3723 	if (!is_kernel_event(event))
3724 		perf_remove_from_owner(event);
3725 
3726 	/*
3727 	 * There are two ways this annotation is useful:
3728 	 *
3729 	 *  1) there is a lock recursion from perf_event_exit_task
3730 	 *     see the comment there.
3731 	 *
3732 	 *  2) there is a lock-inversion with mmap_sem through
3733 	 *     perf_event_read_group(), which takes faults while
3734 	 *     holding ctx->mutex, however this is called after
3735 	 *     the last filedesc died, so there is no possibility
3736 	 *     to trigger the AB-BA case.
3737 	 */
3738 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3739 	WARN_ON_ONCE(ctx->parent_ctx);
3740 	perf_remove_from_context(event, true);
3741 	perf_event_ctx_unlock(event, ctx);
3742 
3743 	_free_event(event);
3744 }
3745 
3746 int perf_event_release_kernel(struct perf_event *event)
3747 {
3748 	put_event(event);
3749 	return 0;
3750 }
3751 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3752 
3753 /*
3754  * Called when the last reference to the file is gone.
3755  */
3756 static int perf_release(struct inode *inode, struct file *file)
3757 {
3758 	put_event(file->private_data);
3759 	return 0;
3760 }
3761 
3762 /*
3763  * Remove all orphanes events from the context.
3764  */
3765 static void orphans_remove_work(struct work_struct *work)
3766 {
3767 	struct perf_event_context *ctx;
3768 	struct perf_event *event, *tmp;
3769 
3770 	ctx = container_of(work, struct perf_event_context,
3771 			   orphans_remove.work);
3772 
3773 	mutex_lock(&ctx->mutex);
3774 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3775 		struct perf_event *parent_event = event->parent;
3776 
3777 		if (!is_orphaned_child(event))
3778 			continue;
3779 
3780 		perf_remove_from_context(event, true);
3781 
3782 		mutex_lock(&parent_event->child_mutex);
3783 		list_del_init(&event->child_list);
3784 		mutex_unlock(&parent_event->child_mutex);
3785 
3786 		free_event(event);
3787 		put_event(parent_event);
3788 	}
3789 
3790 	raw_spin_lock_irq(&ctx->lock);
3791 	ctx->orphans_remove_sched = false;
3792 	raw_spin_unlock_irq(&ctx->lock);
3793 	mutex_unlock(&ctx->mutex);
3794 
3795 	put_ctx(ctx);
3796 }
3797 
3798 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3799 {
3800 	struct perf_event *child;
3801 	u64 total = 0;
3802 
3803 	*enabled = 0;
3804 	*running = 0;
3805 
3806 	mutex_lock(&event->child_mutex);
3807 	total += perf_event_read(event);
3808 	*enabled += event->total_time_enabled +
3809 			atomic64_read(&event->child_total_time_enabled);
3810 	*running += event->total_time_running +
3811 			atomic64_read(&event->child_total_time_running);
3812 
3813 	list_for_each_entry(child, &event->child_list, child_list) {
3814 		total += perf_event_read(child);
3815 		*enabled += child->total_time_enabled;
3816 		*running += child->total_time_running;
3817 	}
3818 	mutex_unlock(&event->child_mutex);
3819 
3820 	return total;
3821 }
3822 EXPORT_SYMBOL_GPL(perf_event_read_value);
3823 
3824 static int perf_event_read_group(struct perf_event *event,
3825 				   u64 read_format, char __user *buf)
3826 {
3827 	struct perf_event *leader = event->group_leader, *sub;
3828 	struct perf_event_context *ctx = leader->ctx;
3829 	int n = 0, size = 0, ret;
3830 	u64 count, enabled, running;
3831 	u64 values[5];
3832 
3833 	lockdep_assert_held(&ctx->mutex);
3834 
3835 	count = perf_event_read_value(leader, &enabled, &running);
3836 
3837 	values[n++] = 1 + leader->nr_siblings;
3838 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3839 		values[n++] = enabled;
3840 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3841 		values[n++] = running;
3842 	values[n++] = count;
3843 	if (read_format & PERF_FORMAT_ID)
3844 		values[n++] = primary_event_id(leader);
3845 
3846 	size = n * sizeof(u64);
3847 
3848 	if (copy_to_user(buf, values, size))
3849 		return -EFAULT;
3850 
3851 	ret = size;
3852 
3853 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3854 		n = 0;
3855 
3856 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3857 		if (read_format & PERF_FORMAT_ID)
3858 			values[n++] = primary_event_id(sub);
3859 
3860 		size = n * sizeof(u64);
3861 
3862 		if (copy_to_user(buf + ret, values, size)) {
3863 			return -EFAULT;
3864 		}
3865 
3866 		ret += size;
3867 	}
3868 
3869 	return ret;
3870 }
3871 
3872 static int perf_event_read_one(struct perf_event *event,
3873 				 u64 read_format, char __user *buf)
3874 {
3875 	u64 enabled, running;
3876 	u64 values[4];
3877 	int n = 0;
3878 
3879 	values[n++] = perf_event_read_value(event, &enabled, &running);
3880 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3881 		values[n++] = enabled;
3882 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3883 		values[n++] = running;
3884 	if (read_format & PERF_FORMAT_ID)
3885 		values[n++] = primary_event_id(event);
3886 
3887 	if (copy_to_user(buf, values, n * sizeof(u64)))
3888 		return -EFAULT;
3889 
3890 	return n * sizeof(u64);
3891 }
3892 
3893 static bool is_event_hup(struct perf_event *event)
3894 {
3895 	bool no_children;
3896 
3897 	if (event->state != PERF_EVENT_STATE_EXIT)
3898 		return false;
3899 
3900 	mutex_lock(&event->child_mutex);
3901 	no_children = list_empty(&event->child_list);
3902 	mutex_unlock(&event->child_mutex);
3903 	return no_children;
3904 }
3905 
3906 /*
3907  * Read the performance event - simple non blocking version for now
3908  */
3909 static ssize_t
3910 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3911 {
3912 	u64 read_format = event->attr.read_format;
3913 	int ret;
3914 
3915 	/*
3916 	 * Return end-of-file for a read on a event that is in
3917 	 * error state (i.e. because it was pinned but it couldn't be
3918 	 * scheduled on to the CPU at some point).
3919 	 */
3920 	if (event->state == PERF_EVENT_STATE_ERROR)
3921 		return 0;
3922 
3923 	if (count < event->read_size)
3924 		return -ENOSPC;
3925 
3926 	WARN_ON_ONCE(event->ctx->parent_ctx);
3927 	if (read_format & PERF_FORMAT_GROUP)
3928 		ret = perf_event_read_group(event, read_format, buf);
3929 	else
3930 		ret = perf_event_read_one(event, read_format, buf);
3931 
3932 	return ret;
3933 }
3934 
3935 static ssize_t
3936 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3937 {
3938 	struct perf_event *event = file->private_data;
3939 	struct perf_event_context *ctx;
3940 	int ret;
3941 
3942 	ctx = perf_event_ctx_lock(event);
3943 	ret = perf_read_hw(event, buf, count);
3944 	perf_event_ctx_unlock(event, ctx);
3945 
3946 	return ret;
3947 }
3948 
3949 static unsigned int perf_poll(struct file *file, poll_table *wait)
3950 {
3951 	struct perf_event *event = file->private_data;
3952 	struct ring_buffer *rb;
3953 	unsigned int events = POLLHUP;
3954 
3955 	poll_wait(file, &event->waitq, wait);
3956 
3957 	if (is_event_hup(event))
3958 		return events;
3959 
3960 	/*
3961 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3962 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3963 	 */
3964 	mutex_lock(&event->mmap_mutex);
3965 	rb = event->rb;
3966 	if (rb)
3967 		events = atomic_xchg(&rb->poll, 0);
3968 	mutex_unlock(&event->mmap_mutex);
3969 	return events;
3970 }
3971 
3972 static void _perf_event_reset(struct perf_event *event)
3973 {
3974 	(void)perf_event_read(event);
3975 	local64_set(&event->count, 0);
3976 	perf_event_update_userpage(event);
3977 }
3978 
3979 /*
3980  * Holding the top-level event's child_mutex means that any
3981  * descendant process that has inherited this event will block
3982  * in sync_child_event if it goes to exit, thus satisfying the
3983  * task existence requirements of perf_event_enable/disable.
3984  */
3985 static void perf_event_for_each_child(struct perf_event *event,
3986 					void (*func)(struct perf_event *))
3987 {
3988 	struct perf_event *child;
3989 
3990 	WARN_ON_ONCE(event->ctx->parent_ctx);
3991 
3992 	mutex_lock(&event->child_mutex);
3993 	func(event);
3994 	list_for_each_entry(child, &event->child_list, child_list)
3995 		func(child);
3996 	mutex_unlock(&event->child_mutex);
3997 }
3998 
3999 static void perf_event_for_each(struct perf_event *event,
4000 				  void (*func)(struct perf_event *))
4001 {
4002 	struct perf_event_context *ctx = event->ctx;
4003 	struct perf_event *sibling;
4004 
4005 	lockdep_assert_held(&ctx->mutex);
4006 
4007 	event = event->group_leader;
4008 
4009 	perf_event_for_each_child(event, func);
4010 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4011 		perf_event_for_each_child(sibling, func);
4012 }
4013 
4014 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4015 {
4016 	struct perf_event_context *ctx = event->ctx;
4017 	int ret = 0, active;
4018 	u64 value;
4019 
4020 	if (!is_sampling_event(event))
4021 		return -EINVAL;
4022 
4023 	if (copy_from_user(&value, arg, sizeof(value)))
4024 		return -EFAULT;
4025 
4026 	if (!value)
4027 		return -EINVAL;
4028 
4029 	raw_spin_lock_irq(&ctx->lock);
4030 	if (event->attr.freq) {
4031 		if (value > sysctl_perf_event_sample_rate) {
4032 			ret = -EINVAL;
4033 			goto unlock;
4034 		}
4035 
4036 		event->attr.sample_freq = value;
4037 	} else {
4038 		event->attr.sample_period = value;
4039 		event->hw.sample_period = value;
4040 	}
4041 
4042 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4043 	if (active) {
4044 		perf_pmu_disable(ctx->pmu);
4045 		event->pmu->stop(event, PERF_EF_UPDATE);
4046 	}
4047 
4048 	local64_set(&event->hw.period_left, 0);
4049 
4050 	if (active) {
4051 		event->pmu->start(event, PERF_EF_RELOAD);
4052 		perf_pmu_enable(ctx->pmu);
4053 	}
4054 
4055 unlock:
4056 	raw_spin_unlock_irq(&ctx->lock);
4057 
4058 	return ret;
4059 }
4060 
4061 static const struct file_operations perf_fops;
4062 
4063 static inline int perf_fget_light(int fd, struct fd *p)
4064 {
4065 	struct fd f = fdget(fd);
4066 	if (!f.file)
4067 		return -EBADF;
4068 
4069 	if (f.file->f_op != &perf_fops) {
4070 		fdput(f);
4071 		return -EBADF;
4072 	}
4073 	*p = f;
4074 	return 0;
4075 }
4076 
4077 static int perf_event_set_output(struct perf_event *event,
4078 				 struct perf_event *output_event);
4079 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4081 
4082 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4083 {
4084 	void (*func)(struct perf_event *);
4085 	u32 flags = arg;
4086 
4087 	switch (cmd) {
4088 	case PERF_EVENT_IOC_ENABLE:
4089 		func = _perf_event_enable;
4090 		break;
4091 	case PERF_EVENT_IOC_DISABLE:
4092 		func = _perf_event_disable;
4093 		break;
4094 	case PERF_EVENT_IOC_RESET:
4095 		func = _perf_event_reset;
4096 		break;
4097 
4098 	case PERF_EVENT_IOC_REFRESH:
4099 		return _perf_event_refresh(event, arg);
4100 
4101 	case PERF_EVENT_IOC_PERIOD:
4102 		return perf_event_period(event, (u64 __user *)arg);
4103 
4104 	case PERF_EVENT_IOC_ID:
4105 	{
4106 		u64 id = primary_event_id(event);
4107 
4108 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4109 			return -EFAULT;
4110 		return 0;
4111 	}
4112 
4113 	case PERF_EVENT_IOC_SET_OUTPUT:
4114 	{
4115 		int ret;
4116 		if (arg != -1) {
4117 			struct perf_event *output_event;
4118 			struct fd output;
4119 			ret = perf_fget_light(arg, &output);
4120 			if (ret)
4121 				return ret;
4122 			output_event = output.file->private_data;
4123 			ret = perf_event_set_output(event, output_event);
4124 			fdput(output);
4125 		} else {
4126 			ret = perf_event_set_output(event, NULL);
4127 		}
4128 		return ret;
4129 	}
4130 
4131 	case PERF_EVENT_IOC_SET_FILTER:
4132 		return perf_event_set_filter(event, (void __user *)arg);
4133 
4134 	case PERF_EVENT_IOC_SET_BPF:
4135 		return perf_event_set_bpf_prog(event, arg);
4136 
4137 	default:
4138 		return -ENOTTY;
4139 	}
4140 
4141 	if (flags & PERF_IOC_FLAG_GROUP)
4142 		perf_event_for_each(event, func);
4143 	else
4144 		perf_event_for_each_child(event, func);
4145 
4146 	return 0;
4147 }
4148 
4149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4150 {
4151 	struct perf_event *event = file->private_data;
4152 	struct perf_event_context *ctx;
4153 	long ret;
4154 
4155 	ctx = perf_event_ctx_lock(event);
4156 	ret = _perf_ioctl(event, cmd, arg);
4157 	perf_event_ctx_unlock(event, ctx);
4158 
4159 	return ret;
4160 }
4161 
4162 #ifdef CONFIG_COMPAT
4163 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4164 				unsigned long arg)
4165 {
4166 	switch (_IOC_NR(cmd)) {
4167 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4168 	case _IOC_NR(PERF_EVENT_IOC_ID):
4169 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4170 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4171 			cmd &= ~IOCSIZE_MASK;
4172 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4173 		}
4174 		break;
4175 	}
4176 	return perf_ioctl(file, cmd, arg);
4177 }
4178 #else
4179 # define perf_compat_ioctl NULL
4180 #endif
4181 
4182 int perf_event_task_enable(void)
4183 {
4184 	struct perf_event_context *ctx;
4185 	struct perf_event *event;
4186 
4187 	mutex_lock(&current->perf_event_mutex);
4188 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4189 		ctx = perf_event_ctx_lock(event);
4190 		perf_event_for_each_child(event, _perf_event_enable);
4191 		perf_event_ctx_unlock(event, ctx);
4192 	}
4193 	mutex_unlock(&current->perf_event_mutex);
4194 
4195 	return 0;
4196 }
4197 
4198 int perf_event_task_disable(void)
4199 {
4200 	struct perf_event_context *ctx;
4201 	struct perf_event *event;
4202 
4203 	mutex_lock(&current->perf_event_mutex);
4204 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4205 		ctx = perf_event_ctx_lock(event);
4206 		perf_event_for_each_child(event, _perf_event_disable);
4207 		perf_event_ctx_unlock(event, ctx);
4208 	}
4209 	mutex_unlock(&current->perf_event_mutex);
4210 
4211 	return 0;
4212 }
4213 
4214 static int perf_event_index(struct perf_event *event)
4215 {
4216 	if (event->hw.state & PERF_HES_STOPPED)
4217 		return 0;
4218 
4219 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4220 		return 0;
4221 
4222 	return event->pmu->event_idx(event);
4223 }
4224 
4225 static void calc_timer_values(struct perf_event *event,
4226 				u64 *now,
4227 				u64 *enabled,
4228 				u64 *running)
4229 {
4230 	u64 ctx_time;
4231 
4232 	*now = perf_clock();
4233 	ctx_time = event->shadow_ctx_time + *now;
4234 	*enabled = ctx_time - event->tstamp_enabled;
4235 	*running = ctx_time - event->tstamp_running;
4236 }
4237 
4238 static void perf_event_init_userpage(struct perf_event *event)
4239 {
4240 	struct perf_event_mmap_page *userpg;
4241 	struct ring_buffer *rb;
4242 
4243 	rcu_read_lock();
4244 	rb = rcu_dereference(event->rb);
4245 	if (!rb)
4246 		goto unlock;
4247 
4248 	userpg = rb->user_page;
4249 
4250 	/* Allow new userspace to detect that bit 0 is deprecated */
4251 	userpg->cap_bit0_is_deprecated = 1;
4252 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4253 	userpg->data_offset = PAGE_SIZE;
4254 	userpg->data_size = perf_data_size(rb);
4255 
4256 unlock:
4257 	rcu_read_unlock();
4258 }
4259 
4260 void __weak arch_perf_update_userpage(
4261 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4262 {
4263 }
4264 
4265 /*
4266  * Callers need to ensure there can be no nesting of this function, otherwise
4267  * the seqlock logic goes bad. We can not serialize this because the arch
4268  * code calls this from NMI context.
4269  */
4270 void perf_event_update_userpage(struct perf_event *event)
4271 {
4272 	struct perf_event_mmap_page *userpg;
4273 	struct ring_buffer *rb;
4274 	u64 enabled, running, now;
4275 
4276 	rcu_read_lock();
4277 	rb = rcu_dereference(event->rb);
4278 	if (!rb)
4279 		goto unlock;
4280 
4281 	/*
4282 	 * compute total_time_enabled, total_time_running
4283 	 * based on snapshot values taken when the event
4284 	 * was last scheduled in.
4285 	 *
4286 	 * we cannot simply called update_context_time()
4287 	 * because of locking issue as we can be called in
4288 	 * NMI context
4289 	 */
4290 	calc_timer_values(event, &now, &enabled, &running);
4291 
4292 	userpg = rb->user_page;
4293 	/*
4294 	 * Disable preemption so as to not let the corresponding user-space
4295 	 * spin too long if we get preempted.
4296 	 */
4297 	preempt_disable();
4298 	++userpg->lock;
4299 	barrier();
4300 	userpg->index = perf_event_index(event);
4301 	userpg->offset = perf_event_count(event);
4302 	if (userpg->index)
4303 		userpg->offset -= local64_read(&event->hw.prev_count);
4304 
4305 	userpg->time_enabled = enabled +
4306 			atomic64_read(&event->child_total_time_enabled);
4307 
4308 	userpg->time_running = running +
4309 			atomic64_read(&event->child_total_time_running);
4310 
4311 	arch_perf_update_userpage(event, userpg, now);
4312 
4313 	barrier();
4314 	++userpg->lock;
4315 	preempt_enable();
4316 unlock:
4317 	rcu_read_unlock();
4318 }
4319 
4320 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4321 {
4322 	struct perf_event *event = vma->vm_file->private_data;
4323 	struct ring_buffer *rb;
4324 	int ret = VM_FAULT_SIGBUS;
4325 
4326 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4327 		if (vmf->pgoff == 0)
4328 			ret = 0;
4329 		return ret;
4330 	}
4331 
4332 	rcu_read_lock();
4333 	rb = rcu_dereference(event->rb);
4334 	if (!rb)
4335 		goto unlock;
4336 
4337 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4338 		goto unlock;
4339 
4340 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4341 	if (!vmf->page)
4342 		goto unlock;
4343 
4344 	get_page(vmf->page);
4345 	vmf->page->mapping = vma->vm_file->f_mapping;
4346 	vmf->page->index   = vmf->pgoff;
4347 
4348 	ret = 0;
4349 unlock:
4350 	rcu_read_unlock();
4351 
4352 	return ret;
4353 }
4354 
4355 static void ring_buffer_attach(struct perf_event *event,
4356 			       struct ring_buffer *rb)
4357 {
4358 	struct ring_buffer *old_rb = NULL;
4359 	unsigned long flags;
4360 
4361 	if (event->rb) {
4362 		/*
4363 		 * Should be impossible, we set this when removing
4364 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4365 		 */
4366 		WARN_ON_ONCE(event->rcu_pending);
4367 
4368 		old_rb = event->rb;
4369 		spin_lock_irqsave(&old_rb->event_lock, flags);
4370 		list_del_rcu(&event->rb_entry);
4371 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4372 
4373 		event->rcu_batches = get_state_synchronize_rcu();
4374 		event->rcu_pending = 1;
4375 	}
4376 
4377 	if (rb) {
4378 		if (event->rcu_pending) {
4379 			cond_synchronize_rcu(event->rcu_batches);
4380 			event->rcu_pending = 0;
4381 		}
4382 
4383 		spin_lock_irqsave(&rb->event_lock, flags);
4384 		list_add_rcu(&event->rb_entry, &rb->event_list);
4385 		spin_unlock_irqrestore(&rb->event_lock, flags);
4386 	}
4387 
4388 	rcu_assign_pointer(event->rb, rb);
4389 
4390 	if (old_rb) {
4391 		ring_buffer_put(old_rb);
4392 		/*
4393 		 * Since we detached before setting the new rb, so that we
4394 		 * could attach the new rb, we could have missed a wakeup.
4395 		 * Provide it now.
4396 		 */
4397 		wake_up_all(&event->waitq);
4398 	}
4399 }
4400 
4401 static void ring_buffer_wakeup(struct perf_event *event)
4402 {
4403 	struct ring_buffer *rb;
4404 
4405 	rcu_read_lock();
4406 	rb = rcu_dereference(event->rb);
4407 	if (rb) {
4408 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4409 			wake_up_all(&event->waitq);
4410 	}
4411 	rcu_read_unlock();
4412 }
4413 
4414 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4415 {
4416 	struct ring_buffer *rb;
4417 
4418 	rcu_read_lock();
4419 	rb = rcu_dereference(event->rb);
4420 	if (rb) {
4421 		if (!atomic_inc_not_zero(&rb->refcount))
4422 			rb = NULL;
4423 	}
4424 	rcu_read_unlock();
4425 
4426 	return rb;
4427 }
4428 
4429 void ring_buffer_put(struct ring_buffer *rb)
4430 {
4431 	if (!atomic_dec_and_test(&rb->refcount))
4432 		return;
4433 
4434 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4435 
4436 	call_rcu(&rb->rcu_head, rb_free_rcu);
4437 }
4438 
4439 static void perf_mmap_open(struct vm_area_struct *vma)
4440 {
4441 	struct perf_event *event = vma->vm_file->private_data;
4442 
4443 	atomic_inc(&event->mmap_count);
4444 	atomic_inc(&event->rb->mmap_count);
4445 
4446 	if (vma->vm_pgoff)
4447 		atomic_inc(&event->rb->aux_mmap_count);
4448 
4449 	if (event->pmu->event_mapped)
4450 		event->pmu->event_mapped(event);
4451 }
4452 
4453 /*
4454  * A buffer can be mmap()ed multiple times; either directly through the same
4455  * event, or through other events by use of perf_event_set_output().
4456  *
4457  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4458  * the buffer here, where we still have a VM context. This means we need
4459  * to detach all events redirecting to us.
4460  */
4461 static void perf_mmap_close(struct vm_area_struct *vma)
4462 {
4463 	struct perf_event *event = vma->vm_file->private_data;
4464 
4465 	struct ring_buffer *rb = ring_buffer_get(event);
4466 	struct user_struct *mmap_user = rb->mmap_user;
4467 	int mmap_locked = rb->mmap_locked;
4468 	unsigned long size = perf_data_size(rb);
4469 
4470 	if (event->pmu->event_unmapped)
4471 		event->pmu->event_unmapped(event);
4472 
4473 	/*
4474 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4475 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4476 	 * serialize with perf_mmap here.
4477 	 */
4478 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4479 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4480 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4481 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4482 
4483 		rb_free_aux(rb);
4484 		mutex_unlock(&event->mmap_mutex);
4485 	}
4486 
4487 	atomic_dec(&rb->mmap_count);
4488 
4489 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4490 		goto out_put;
4491 
4492 	ring_buffer_attach(event, NULL);
4493 	mutex_unlock(&event->mmap_mutex);
4494 
4495 	/* If there's still other mmap()s of this buffer, we're done. */
4496 	if (atomic_read(&rb->mmap_count))
4497 		goto out_put;
4498 
4499 	/*
4500 	 * No other mmap()s, detach from all other events that might redirect
4501 	 * into the now unreachable buffer. Somewhat complicated by the
4502 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4503 	 */
4504 again:
4505 	rcu_read_lock();
4506 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4507 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4508 			/*
4509 			 * This event is en-route to free_event() which will
4510 			 * detach it and remove it from the list.
4511 			 */
4512 			continue;
4513 		}
4514 		rcu_read_unlock();
4515 
4516 		mutex_lock(&event->mmap_mutex);
4517 		/*
4518 		 * Check we didn't race with perf_event_set_output() which can
4519 		 * swizzle the rb from under us while we were waiting to
4520 		 * acquire mmap_mutex.
4521 		 *
4522 		 * If we find a different rb; ignore this event, a next
4523 		 * iteration will no longer find it on the list. We have to
4524 		 * still restart the iteration to make sure we're not now
4525 		 * iterating the wrong list.
4526 		 */
4527 		if (event->rb == rb)
4528 			ring_buffer_attach(event, NULL);
4529 
4530 		mutex_unlock(&event->mmap_mutex);
4531 		put_event(event);
4532 
4533 		/*
4534 		 * Restart the iteration; either we're on the wrong list or
4535 		 * destroyed its integrity by doing a deletion.
4536 		 */
4537 		goto again;
4538 	}
4539 	rcu_read_unlock();
4540 
4541 	/*
4542 	 * It could be there's still a few 0-ref events on the list; they'll
4543 	 * get cleaned up by free_event() -- they'll also still have their
4544 	 * ref on the rb and will free it whenever they are done with it.
4545 	 *
4546 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4547 	 * undo the VM accounting.
4548 	 */
4549 
4550 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4551 	vma->vm_mm->pinned_vm -= mmap_locked;
4552 	free_uid(mmap_user);
4553 
4554 out_put:
4555 	ring_buffer_put(rb); /* could be last */
4556 }
4557 
4558 static const struct vm_operations_struct perf_mmap_vmops = {
4559 	.open		= perf_mmap_open,
4560 	.close		= perf_mmap_close, /* non mergable */
4561 	.fault		= perf_mmap_fault,
4562 	.page_mkwrite	= perf_mmap_fault,
4563 };
4564 
4565 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4566 {
4567 	struct perf_event *event = file->private_data;
4568 	unsigned long user_locked, user_lock_limit;
4569 	struct user_struct *user = current_user();
4570 	unsigned long locked, lock_limit;
4571 	struct ring_buffer *rb = NULL;
4572 	unsigned long vma_size;
4573 	unsigned long nr_pages;
4574 	long user_extra = 0, extra = 0;
4575 	int ret = 0, flags = 0;
4576 
4577 	/*
4578 	 * Don't allow mmap() of inherited per-task counters. This would
4579 	 * create a performance issue due to all children writing to the
4580 	 * same rb.
4581 	 */
4582 	if (event->cpu == -1 && event->attr.inherit)
4583 		return -EINVAL;
4584 
4585 	if (!(vma->vm_flags & VM_SHARED))
4586 		return -EINVAL;
4587 
4588 	vma_size = vma->vm_end - vma->vm_start;
4589 
4590 	if (vma->vm_pgoff == 0) {
4591 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4592 	} else {
4593 		/*
4594 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4595 		 * mapped, all subsequent mappings should have the same size
4596 		 * and offset. Must be above the normal perf buffer.
4597 		 */
4598 		u64 aux_offset, aux_size;
4599 
4600 		if (!event->rb)
4601 			return -EINVAL;
4602 
4603 		nr_pages = vma_size / PAGE_SIZE;
4604 
4605 		mutex_lock(&event->mmap_mutex);
4606 		ret = -EINVAL;
4607 
4608 		rb = event->rb;
4609 		if (!rb)
4610 			goto aux_unlock;
4611 
4612 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4613 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4614 
4615 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4616 			goto aux_unlock;
4617 
4618 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4619 			goto aux_unlock;
4620 
4621 		/* already mapped with a different offset */
4622 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4623 			goto aux_unlock;
4624 
4625 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4626 			goto aux_unlock;
4627 
4628 		/* already mapped with a different size */
4629 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4630 			goto aux_unlock;
4631 
4632 		if (!is_power_of_2(nr_pages))
4633 			goto aux_unlock;
4634 
4635 		if (!atomic_inc_not_zero(&rb->mmap_count))
4636 			goto aux_unlock;
4637 
4638 		if (rb_has_aux(rb)) {
4639 			atomic_inc(&rb->aux_mmap_count);
4640 			ret = 0;
4641 			goto unlock;
4642 		}
4643 
4644 		atomic_set(&rb->aux_mmap_count, 1);
4645 		user_extra = nr_pages;
4646 
4647 		goto accounting;
4648 	}
4649 
4650 	/*
4651 	 * If we have rb pages ensure they're a power-of-two number, so we
4652 	 * can do bitmasks instead of modulo.
4653 	 */
4654 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4655 		return -EINVAL;
4656 
4657 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4658 		return -EINVAL;
4659 
4660 	WARN_ON_ONCE(event->ctx->parent_ctx);
4661 again:
4662 	mutex_lock(&event->mmap_mutex);
4663 	if (event->rb) {
4664 		if (event->rb->nr_pages != nr_pages) {
4665 			ret = -EINVAL;
4666 			goto unlock;
4667 		}
4668 
4669 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4670 			/*
4671 			 * Raced against perf_mmap_close() through
4672 			 * perf_event_set_output(). Try again, hope for better
4673 			 * luck.
4674 			 */
4675 			mutex_unlock(&event->mmap_mutex);
4676 			goto again;
4677 		}
4678 
4679 		goto unlock;
4680 	}
4681 
4682 	user_extra = nr_pages + 1;
4683 
4684 accounting:
4685 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4686 
4687 	/*
4688 	 * Increase the limit linearly with more CPUs:
4689 	 */
4690 	user_lock_limit *= num_online_cpus();
4691 
4692 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4693 
4694 	if (user_locked > user_lock_limit)
4695 		extra = user_locked - user_lock_limit;
4696 
4697 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4698 	lock_limit >>= PAGE_SHIFT;
4699 	locked = vma->vm_mm->pinned_vm + extra;
4700 
4701 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4702 		!capable(CAP_IPC_LOCK)) {
4703 		ret = -EPERM;
4704 		goto unlock;
4705 	}
4706 
4707 	WARN_ON(!rb && event->rb);
4708 
4709 	if (vma->vm_flags & VM_WRITE)
4710 		flags |= RING_BUFFER_WRITABLE;
4711 
4712 	if (!rb) {
4713 		rb = rb_alloc(nr_pages,
4714 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4715 			      event->cpu, flags);
4716 
4717 		if (!rb) {
4718 			ret = -ENOMEM;
4719 			goto unlock;
4720 		}
4721 
4722 		atomic_set(&rb->mmap_count, 1);
4723 		rb->mmap_user = get_current_user();
4724 		rb->mmap_locked = extra;
4725 
4726 		ring_buffer_attach(event, rb);
4727 
4728 		perf_event_init_userpage(event);
4729 		perf_event_update_userpage(event);
4730 	} else {
4731 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4732 				   event->attr.aux_watermark, flags);
4733 		if (!ret)
4734 			rb->aux_mmap_locked = extra;
4735 	}
4736 
4737 unlock:
4738 	if (!ret) {
4739 		atomic_long_add(user_extra, &user->locked_vm);
4740 		vma->vm_mm->pinned_vm += extra;
4741 
4742 		atomic_inc(&event->mmap_count);
4743 	} else if (rb) {
4744 		atomic_dec(&rb->mmap_count);
4745 	}
4746 aux_unlock:
4747 	mutex_unlock(&event->mmap_mutex);
4748 
4749 	/*
4750 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4751 	 * vma.
4752 	 */
4753 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4754 	vma->vm_ops = &perf_mmap_vmops;
4755 
4756 	if (event->pmu->event_mapped)
4757 		event->pmu->event_mapped(event);
4758 
4759 	return ret;
4760 }
4761 
4762 static int perf_fasync(int fd, struct file *filp, int on)
4763 {
4764 	struct inode *inode = file_inode(filp);
4765 	struct perf_event *event = filp->private_data;
4766 	int retval;
4767 
4768 	mutex_lock(&inode->i_mutex);
4769 	retval = fasync_helper(fd, filp, on, &event->fasync);
4770 	mutex_unlock(&inode->i_mutex);
4771 
4772 	if (retval < 0)
4773 		return retval;
4774 
4775 	return 0;
4776 }
4777 
4778 static const struct file_operations perf_fops = {
4779 	.llseek			= no_llseek,
4780 	.release		= perf_release,
4781 	.read			= perf_read,
4782 	.poll			= perf_poll,
4783 	.unlocked_ioctl		= perf_ioctl,
4784 	.compat_ioctl		= perf_compat_ioctl,
4785 	.mmap			= perf_mmap,
4786 	.fasync			= perf_fasync,
4787 };
4788 
4789 /*
4790  * Perf event wakeup
4791  *
4792  * If there's data, ensure we set the poll() state and publish everything
4793  * to user-space before waking everybody up.
4794  */
4795 
4796 void perf_event_wakeup(struct perf_event *event)
4797 {
4798 	ring_buffer_wakeup(event);
4799 
4800 	if (event->pending_kill) {
4801 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4802 		event->pending_kill = 0;
4803 	}
4804 }
4805 
4806 static void perf_pending_event(struct irq_work *entry)
4807 {
4808 	struct perf_event *event = container_of(entry,
4809 			struct perf_event, pending);
4810 	int rctx;
4811 
4812 	rctx = perf_swevent_get_recursion_context();
4813 	/*
4814 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4815 	 * and we won't recurse 'further'.
4816 	 */
4817 
4818 	if (event->pending_disable) {
4819 		event->pending_disable = 0;
4820 		__perf_event_disable(event);
4821 	}
4822 
4823 	if (event->pending_wakeup) {
4824 		event->pending_wakeup = 0;
4825 		perf_event_wakeup(event);
4826 	}
4827 
4828 	if (rctx >= 0)
4829 		perf_swevent_put_recursion_context(rctx);
4830 }
4831 
4832 /*
4833  * We assume there is only KVM supporting the callbacks.
4834  * Later on, we might change it to a list if there is
4835  * another virtualization implementation supporting the callbacks.
4836  */
4837 struct perf_guest_info_callbacks *perf_guest_cbs;
4838 
4839 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4840 {
4841 	perf_guest_cbs = cbs;
4842 	return 0;
4843 }
4844 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4845 
4846 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4847 {
4848 	perf_guest_cbs = NULL;
4849 	return 0;
4850 }
4851 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4852 
4853 static void
4854 perf_output_sample_regs(struct perf_output_handle *handle,
4855 			struct pt_regs *regs, u64 mask)
4856 {
4857 	int bit;
4858 
4859 	for_each_set_bit(bit, (const unsigned long *) &mask,
4860 			 sizeof(mask) * BITS_PER_BYTE) {
4861 		u64 val;
4862 
4863 		val = perf_reg_value(regs, bit);
4864 		perf_output_put(handle, val);
4865 	}
4866 }
4867 
4868 static void perf_sample_regs_user(struct perf_regs *regs_user,
4869 				  struct pt_regs *regs,
4870 				  struct pt_regs *regs_user_copy)
4871 {
4872 	if (user_mode(regs)) {
4873 		regs_user->abi = perf_reg_abi(current);
4874 		regs_user->regs = regs;
4875 	} else if (current->mm) {
4876 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4877 	} else {
4878 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4879 		regs_user->regs = NULL;
4880 	}
4881 }
4882 
4883 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4884 				  struct pt_regs *regs)
4885 {
4886 	regs_intr->regs = regs;
4887 	regs_intr->abi  = perf_reg_abi(current);
4888 }
4889 
4890 
4891 /*
4892  * Get remaining task size from user stack pointer.
4893  *
4894  * It'd be better to take stack vma map and limit this more
4895  * precisly, but there's no way to get it safely under interrupt,
4896  * so using TASK_SIZE as limit.
4897  */
4898 static u64 perf_ustack_task_size(struct pt_regs *regs)
4899 {
4900 	unsigned long addr = perf_user_stack_pointer(regs);
4901 
4902 	if (!addr || addr >= TASK_SIZE)
4903 		return 0;
4904 
4905 	return TASK_SIZE - addr;
4906 }
4907 
4908 static u16
4909 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4910 			struct pt_regs *regs)
4911 {
4912 	u64 task_size;
4913 
4914 	/* No regs, no stack pointer, no dump. */
4915 	if (!regs)
4916 		return 0;
4917 
4918 	/*
4919 	 * Check if we fit in with the requested stack size into the:
4920 	 * - TASK_SIZE
4921 	 *   If we don't, we limit the size to the TASK_SIZE.
4922 	 *
4923 	 * - remaining sample size
4924 	 *   If we don't, we customize the stack size to
4925 	 *   fit in to the remaining sample size.
4926 	 */
4927 
4928 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4929 	stack_size = min(stack_size, (u16) task_size);
4930 
4931 	/* Current header size plus static size and dynamic size. */
4932 	header_size += 2 * sizeof(u64);
4933 
4934 	/* Do we fit in with the current stack dump size? */
4935 	if ((u16) (header_size + stack_size) < header_size) {
4936 		/*
4937 		 * If we overflow the maximum size for the sample,
4938 		 * we customize the stack dump size to fit in.
4939 		 */
4940 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4941 		stack_size = round_up(stack_size, sizeof(u64));
4942 	}
4943 
4944 	return stack_size;
4945 }
4946 
4947 static void
4948 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4949 			  struct pt_regs *regs)
4950 {
4951 	/* Case of a kernel thread, nothing to dump */
4952 	if (!regs) {
4953 		u64 size = 0;
4954 		perf_output_put(handle, size);
4955 	} else {
4956 		unsigned long sp;
4957 		unsigned int rem;
4958 		u64 dyn_size;
4959 
4960 		/*
4961 		 * We dump:
4962 		 * static size
4963 		 *   - the size requested by user or the best one we can fit
4964 		 *     in to the sample max size
4965 		 * data
4966 		 *   - user stack dump data
4967 		 * dynamic size
4968 		 *   - the actual dumped size
4969 		 */
4970 
4971 		/* Static size. */
4972 		perf_output_put(handle, dump_size);
4973 
4974 		/* Data. */
4975 		sp = perf_user_stack_pointer(regs);
4976 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4977 		dyn_size = dump_size - rem;
4978 
4979 		perf_output_skip(handle, rem);
4980 
4981 		/* Dynamic size. */
4982 		perf_output_put(handle, dyn_size);
4983 	}
4984 }
4985 
4986 static void __perf_event_header__init_id(struct perf_event_header *header,
4987 					 struct perf_sample_data *data,
4988 					 struct perf_event *event)
4989 {
4990 	u64 sample_type = event->attr.sample_type;
4991 
4992 	data->type = sample_type;
4993 	header->size += event->id_header_size;
4994 
4995 	if (sample_type & PERF_SAMPLE_TID) {
4996 		/* namespace issues */
4997 		data->tid_entry.pid = perf_event_pid(event, current);
4998 		data->tid_entry.tid = perf_event_tid(event, current);
4999 	}
5000 
5001 	if (sample_type & PERF_SAMPLE_TIME)
5002 		data->time = perf_event_clock(event);
5003 
5004 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5005 		data->id = primary_event_id(event);
5006 
5007 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5008 		data->stream_id = event->id;
5009 
5010 	if (sample_type & PERF_SAMPLE_CPU) {
5011 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5012 		data->cpu_entry.reserved = 0;
5013 	}
5014 }
5015 
5016 void perf_event_header__init_id(struct perf_event_header *header,
5017 				struct perf_sample_data *data,
5018 				struct perf_event *event)
5019 {
5020 	if (event->attr.sample_id_all)
5021 		__perf_event_header__init_id(header, data, event);
5022 }
5023 
5024 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5025 					   struct perf_sample_data *data)
5026 {
5027 	u64 sample_type = data->type;
5028 
5029 	if (sample_type & PERF_SAMPLE_TID)
5030 		perf_output_put(handle, data->tid_entry);
5031 
5032 	if (sample_type & PERF_SAMPLE_TIME)
5033 		perf_output_put(handle, data->time);
5034 
5035 	if (sample_type & PERF_SAMPLE_ID)
5036 		perf_output_put(handle, data->id);
5037 
5038 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5039 		perf_output_put(handle, data->stream_id);
5040 
5041 	if (sample_type & PERF_SAMPLE_CPU)
5042 		perf_output_put(handle, data->cpu_entry);
5043 
5044 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5045 		perf_output_put(handle, data->id);
5046 }
5047 
5048 void perf_event__output_id_sample(struct perf_event *event,
5049 				  struct perf_output_handle *handle,
5050 				  struct perf_sample_data *sample)
5051 {
5052 	if (event->attr.sample_id_all)
5053 		__perf_event__output_id_sample(handle, sample);
5054 }
5055 
5056 static void perf_output_read_one(struct perf_output_handle *handle,
5057 				 struct perf_event *event,
5058 				 u64 enabled, u64 running)
5059 {
5060 	u64 read_format = event->attr.read_format;
5061 	u64 values[4];
5062 	int n = 0;
5063 
5064 	values[n++] = perf_event_count(event);
5065 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5066 		values[n++] = enabled +
5067 			atomic64_read(&event->child_total_time_enabled);
5068 	}
5069 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5070 		values[n++] = running +
5071 			atomic64_read(&event->child_total_time_running);
5072 	}
5073 	if (read_format & PERF_FORMAT_ID)
5074 		values[n++] = primary_event_id(event);
5075 
5076 	__output_copy(handle, values, n * sizeof(u64));
5077 }
5078 
5079 /*
5080  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5081  */
5082 static void perf_output_read_group(struct perf_output_handle *handle,
5083 			    struct perf_event *event,
5084 			    u64 enabled, u64 running)
5085 {
5086 	struct perf_event *leader = event->group_leader, *sub;
5087 	u64 read_format = event->attr.read_format;
5088 	u64 values[5];
5089 	int n = 0;
5090 
5091 	values[n++] = 1 + leader->nr_siblings;
5092 
5093 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5094 		values[n++] = enabled;
5095 
5096 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5097 		values[n++] = running;
5098 
5099 	if (leader != event)
5100 		leader->pmu->read(leader);
5101 
5102 	values[n++] = perf_event_count(leader);
5103 	if (read_format & PERF_FORMAT_ID)
5104 		values[n++] = primary_event_id(leader);
5105 
5106 	__output_copy(handle, values, n * sizeof(u64));
5107 
5108 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5109 		n = 0;
5110 
5111 		if ((sub != event) &&
5112 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5113 			sub->pmu->read(sub);
5114 
5115 		values[n++] = perf_event_count(sub);
5116 		if (read_format & PERF_FORMAT_ID)
5117 			values[n++] = primary_event_id(sub);
5118 
5119 		__output_copy(handle, values, n * sizeof(u64));
5120 	}
5121 }
5122 
5123 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5124 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5125 
5126 static void perf_output_read(struct perf_output_handle *handle,
5127 			     struct perf_event *event)
5128 {
5129 	u64 enabled = 0, running = 0, now;
5130 	u64 read_format = event->attr.read_format;
5131 
5132 	/*
5133 	 * compute total_time_enabled, total_time_running
5134 	 * based on snapshot values taken when the event
5135 	 * was last scheduled in.
5136 	 *
5137 	 * we cannot simply called update_context_time()
5138 	 * because of locking issue as we are called in
5139 	 * NMI context
5140 	 */
5141 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5142 		calc_timer_values(event, &now, &enabled, &running);
5143 
5144 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5145 		perf_output_read_group(handle, event, enabled, running);
5146 	else
5147 		perf_output_read_one(handle, event, enabled, running);
5148 }
5149 
5150 void perf_output_sample(struct perf_output_handle *handle,
5151 			struct perf_event_header *header,
5152 			struct perf_sample_data *data,
5153 			struct perf_event *event)
5154 {
5155 	u64 sample_type = data->type;
5156 
5157 	perf_output_put(handle, *header);
5158 
5159 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5160 		perf_output_put(handle, data->id);
5161 
5162 	if (sample_type & PERF_SAMPLE_IP)
5163 		perf_output_put(handle, data->ip);
5164 
5165 	if (sample_type & PERF_SAMPLE_TID)
5166 		perf_output_put(handle, data->tid_entry);
5167 
5168 	if (sample_type & PERF_SAMPLE_TIME)
5169 		perf_output_put(handle, data->time);
5170 
5171 	if (sample_type & PERF_SAMPLE_ADDR)
5172 		perf_output_put(handle, data->addr);
5173 
5174 	if (sample_type & PERF_SAMPLE_ID)
5175 		perf_output_put(handle, data->id);
5176 
5177 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5178 		perf_output_put(handle, data->stream_id);
5179 
5180 	if (sample_type & PERF_SAMPLE_CPU)
5181 		perf_output_put(handle, data->cpu_entry);
5182 
5183 	if (sample_type & PERF_SAMPLE_PERIOD)
5184 		perf_output_put(handle, data->period);
5185 
5186 	if (sample_type & PERF_SAMPLE_READ)
5187 		perf_output_read(handle, event);
5188 
5189 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5190 		if (data->callchain) {
5191 			int size = 1;
5192 
5193 			if (data->callchain)
5194 				size += data->callchain->nr;
5195 
5196 			size *= sizeof(u64);
5197 
5198 			__output_copy(handle, data->callchain, size);
5199 		} else {
5200 			u64 nr = 0;
5201 			perf_output_put(handle, nr);
5202 		}
5203 	}
5204 
5205 	if (sample_type & PERF_SAMPLE_RAW) {
5206 		if (data->raw) {
5207 			perf_output_put(handle, data->raw->size);
5208 			__output_copy(handle, data->raw->data,
5209 					   data->raw->size);
5210 		} else {
5211 			struct {
5212 				u32	size;
5213 				u32	data;
5214 			} raw = {
5215 				.size = sizeof(u32),
5216 				.data = 0,
5217 			};
5218 			perf_output_put(handle, raw);
5219 		}
5220 	}
5221 
5222 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5223 		if (data->br_stack) {
5224 			size_t size;
5225 
5226 			size = data->br_stack->nr
5227 			     * sizeof(struct perf_branch_entry);
5228 
5229 			perf_output_put(handle, data->br_stack->nr);
5230 			perf_output_copy(handle, data->br_stack->entries, size);
5231 		} else {
5232 			/*
5233 			 * we always store at least the value of nr
5234 			 */
5235 			u64 nr = 0;
5236 			perf_output_put(handle, nr);
5237 		}
5238 	}
5239 
5240 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5241 		u64 abi = data->regs_user.abi;
5242 
5243 		/*
5244 		 * If there are no regs to dump, notice it through
5245 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5246 		 */
5247 		perf_output_put(handle, abi);
5248 
5249 		if (abi) {
5250 			u64 mask = event->attr.sample_regs_user;
5251 			perf_output_sample_regs(handle,
5252 						data->regs_user.regs,
5253 						mask);
5254 		}
5255 	}
5256 
5257 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5258 		perf_output_sample_ustack(handle,
5259 					  data->stack_user_size,
5260 					  data->regs_user.regs);
5261 	}
5262 
5263 	if (sample_type & PERF_SAMPLE_WEIGHT)
5264 		perf_output_put(handle, data->weight);
5265 
5266 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5267 		perf_output_put(handle, data->data_src.val);
5268 
5269 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5270 		perf_output_put(handle, data->txn);
5271 
5272 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5273 		u64 abi = data->regs_intr.abi;
5274 		/*
5275 		 * If there are no regs to dump, notice it through
5276 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5277 		 */
5278 		perf_output_put(handle, abi);
5279 
5280 		if (abi) {
5281 			u64 mask = event->attr.sample_regs_intr;
5282 
5283 			perf_output_sample_regs(handle,
5284 						data->regs_intr.regs,
5285 						mask);
5286 		}
5287 	}
5288 
5289 	if (!event->attr.watermark) {
5290 		int wakeup_events = event->attr.wakeup_events;
5291 
5292 		if (wakeup_events) {
5293 			struct ring_buffer *rb = handle->rb;
5294 			int events = local_inc_return(&rb->events);
5295 
5296 			if (events >= wakeup_events) {
5297 				local_sub(wakeup_events, &rb->events);
5298 				local_inc(&rb->wakeup);
5299 			}
5300 		}
5301 	}
5302 }
5303 
5304 void perf_prepare_sample(struct perf_event_header *header,
5305 			 struct perf_sample_data *data,
5306 			 struct perf_event *event,
5307 			 struct pt_regs *regs)
5308 {
5309 	u64 sample_type = event->attr.sample_type;
5310 
5311 	header->type = PERF_RECORD_SAMPLE;
5312 	header->size = sizeof(*header) + event->header_size;
5313 
5314 	header->misc = 0;
5315 	header->misc |= perf_misc_flags(regs);
5316 
5317 	__perf_event_header__init_id(header, data, event);
5318 
5319 	if (sample_type & PERF_SAMPLE_IP)
5320 		data->ip = perf_instruction_pointer(regs);
5321 
5322 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5323 		int size = 1;
5324 
5325 		data->callchain = perf_callchain(event, regs);
5326 
5327 		if (data->callchain)
5328 			size += data->callchain->nr;
5329 
5330 		header->size += size * sizeof(u64);
5331 	}
5332 
5333 	if (sample_type & PERF_SAMPLE_RAW) {
5334 		int size = sizeof(u32);
5335 
5336 		if (data->raw)
5337 			size += data->raw->size;
5338 		else
5339 			size += sizeof(u32);
5340 
5341 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5342 		header->size += size;
5343 	}
5344 
5345 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5346 		int size = sizeof(u64); /* nr */
5347 		if (data->br_stack) {
5348 			size += data->br_stack->nr
5349 			      * sizeof(struct perf_branch_entry);
5350 		}
5351 		header->size += size;
5352 	}
5353 
5354 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5355 		perf_sample_regs_user(&data->regs_user, regs,
5356 				      &data->regs_user_copy);
5357 
5358 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5359 		/* regs dump ABI info */
5360 		int size = sizeof(u64);
5361 
5362 		if (data->regs_user.regs) {
5363 			u64 mask = event->attr.sample_regs_user;
5364 			size += hweight64(mask) * sizeof(u64);
5365 		}
5366 
5367 		header->size += size;
5368 	}
5369 
5370 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5371 		/*
5372 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5373 		 * processed as the last one or have additional check added
5374 		 * in case new sample type is added, because we could eat
5375 		 * up the rest of the sample size.
5376 		 */
5377 		u16 stack_size = event->attr.sample_stack_user;
5378 		u16 size = sizeof(u64);
5379 
5380 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5381 						     data->regs_user.regs);
5382 
5383 		/*
5384 		 * If there is something to dump, add space for the dump
5385 		 * itself and for the field that tells the dynamic size,
5386 		 * which is how many have been actually dumped.
5387 		 */
5388 		if (stack_size)
5389 			size += sizeof(u64) + stack_size;
5390 
5391 		data->stack_user_size = stack_size;
5392 		header->size += size;
5393 	}
5394 
5395 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5396 		/* regs dump ABI info */
5397 		int size = sizeof(u64);
5398 
5399 		perf_sample_regs_intr(&data->regs_intr, regs);
5400 
5401 		if (data->regs_intr.regs) {
5402 			u64 mask = event->attr.sample_regs_intr;
5403 
5404 			size += hweight64(mask) * sizeof(u64);
5405 		}
5406 
5407 		header->size += size;
5408 	}
5409 }
5410 
5411 void perf_event_output(struct perf_event *event,
5412 			struct perf_sample_data *data,
5413 			struct pt_regs *regs)
5414 {
5415 	struct perf_output_handle handle;
5416 	struct perf_event_header header;
5417 
5418 	/* protect the callchain buffers */
5419 	rcu_read_lock();
5420 
5421 	perf_prepare_sample(&header, data, event, regs);
5422 
5423 	if (perf_output_begin(&handle, event, header.size))
5424 		goto exit;
5425 
5426 	perf_output_sample(&handle, &header, data, event);
5427 
5428 	perf_output_end(&handle);
5429 
5430 exit:
5431 	rcu_read_unlock();
5432 }
5433 
5434 /*
5435  * read event_id
5436  */
5437 
5438 struct perf_read_event {
5439 	struct perf_event_header	header;
5440 
5441 	u32				pid;
5442 	u32				tid;
5443 };
5444 
5445 static void
5446 perf_event_read_event(struct perf_event *event,
5447 			struct task_struct *task)
5448 {
5449 	struct perf_output_handle handle;
5450 	struct perf_sample_data sample;
5451 	struct perf_read_event read_event = {
5452 		.header = {
5453 			.type = PERF_RECORD_READ,
5454 			.misc = 0,
5455 			.size = sizeof(read_event) + event->read_size,
5456 		},
5457 		.pid = perf_event_pid(event, task),
5458 		.tid = perf_event_tid(event, task),
5459 	};
5460 	int ret;
5461 
5462 	perf_event_header__init_id(&read_event.header, &sample, event);
5463 	ret = perf_output_begin(&handle, event, read_event.header.size);
5464 	if (ret)
5465 		return;
5466 
5467 	perf_output_put(&handle, read_event);
5468 	perf_output_read(&handle, event);
5469 	perf_event__output_id_sample(event, &handle, &sample);
5470 
5471 	perf_output_end(&handle);
5472 }
5473 
5474 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5475 
5476 static void
5477 perf_event_aux_ctx(struct perf_event_context *ctx,
5478 		   perf_event_aux_output_cb output,
5479 		   void *data)
5480 {
5481 	struct perf_event *event;
5482 
5483 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5484 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5485 			continue;
5486 		if (!event_filter_match(event))
5487 			continue;
5488 		output(event, data);
5489 	}
5490 }
5491 
5492 static void
5493 perf_event_aux(perf_event_aux_output_cb output, void *data,
5494 	       struct perf_event_context *task_ctx)
5495 {
5496 	struct perf_cpu_context *cpuctx;
5497 	struct perf_event_context *ctx;
5498 	struct pmu *pmu;
5499 	int ctxn;
5500 
5501 	rcu_read_lock();
5502 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5503 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5504 		if (cpuctx->unique_pmu != pmu)
5505 			goto next;
5506 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5507 		if (task_ctx)
5508 			goto next;
5509 		ctxn = pmu->task_ctx_nr;
5510 		if (ctxn < 0)
5511 			goto next;
5512 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5513 		if (ctx)
5514 			perf_event_aux_ctx(ctx, output, data);
5515 next:
5516 		put_cpu_ptr(pmu->pmu_cpu_context);
5517 	}
5518 
5519 	if (task_ctx) {
5520 		preempt_disable();
5521 		perf_event_aux_ctx(task_ctx, output, data);
5522 		preempt_enable();
5523 	}
5524 	rcu_read_unlock();
5525 }
5526 
5527 /*
5528  * task tracking -- fork/exit
5529  *
5530  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5531  */
5532 
5533 struct perf_task_event {
5534 	struct task_struct		*task;
5535 	struct perf_event_context	*task_ctx;
5536 
5537 	struct {
5538 		struct perf_event_header	header;
5539 
5540 		u32				pid;
5541 		u32				ppid;
5542 		u32				tid;
5543 		u32				ptid;
5544 		u64				time;
5545 	} event_id;
5546 };
5547 
5548 static int perf_event_task_match(struct perf_event *event)
5549 {
5550 	return event->attr.comm  || event->attr.mmap ||
5551 	       event->attr.mmap2 || event->attr.mmap_data ||
5552 	       event->attr.task;
5553 }
5554 
5555 static void perf_event_task_output(struct perf_event *event,
5556 				   void *data)
5557 {
5558 	struct perf_task_event *task_event = data;
5559 	struct perf_output_handle handle;
5560 	struct perf_sample_data	sample;
5561 	struct task_struct *task = task_event->task;
5562 	int ret, size = task_event->event_id.header.size;
5563 
5564 	if (!perf_event_task_match(event))
5565 		return;
5566 
5567 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5568 
5569 	ret = perf_output_begin(&handle, event,
5570 				task_event->event_id.header.size);
5571 	if (ret)
5572 		goto out;
5573 
5574 	task_event->event_id.pid = perf_event_pid(event, task);
5575 	task_event->event_id.ppid = perf_event_pid(event, current);
5576 
5577 	task_event->event_id.tid = perf_event_tid(event, task);
5578 	task_event->event_id.ptid = perf_event_tid(event, current);
5579 
5580 	task_event->event_id.time = perf_event_clock(event);
5581 
5582 	perf_output_put(&handle, task_event->event_id);
5583 
5584 	perf_event__output_id_sample(event, &handle, &sample);
5585 
5586 	perf_output_end(&handle);
5587 out:
5588 	task_event->event_id.header.size = size;
5589 }
5590 
5591 static void perf_event_task(struct task_struct *task,
5592 			      struct perf_event_context *task_ctx,
5593 			      int new)
5594 {
5595 	struct perf_task_event task_event;
5596 
5597 	if (!atomic_read(&nr_comm_events) &&
5598 	    !atomic_read(&nr_mmap_events) &&
5599 	    !atomic_read(&nr_task_events))
5600 		return;
5601 
5602 	task_event = (struct perf_task_event){
5603 		.task	  = task,
5604 		.task_ctx = task_ctx,
5605 		.event_id    = {
5606 			.header = {
5607 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5608 				.misc = 0,
5609 				.size = sizeof(task_event.event_id),
5610 			},
5611 			/* .pid  */
5612 			/* .ppid */
5613 			/* .tid  */
5614 			/* .ptid */
5615 			/* .time */
5616 		},
5617 	};
5618 
5619 	perf_event_aux(perf_event_task_output,
5620 		       &task_event,
5621 		       task_ctx);
5622 }
5623 
5624 void perf_event_fork(struct task_struct *task)
5625 {
5626 	perf_event_task(task, NULL, 1);
5627 }
5628 
5629 /*
5630  * comm tracking
5631  */
5632 
5633 struct perf_comm_event {
5634 	struct task_struct	*task;
5635 	char			*comm;
5636 	int			comm_size;
5637 
5638 	struct {
5639 		struct perf_event_header	header;
5640 
5641 		u32				pid;
5642 		u32				tid;
5643 	} event_id;
5644 };
5645 
5646 static int perf_event_comm_match(struct perf_event *event)
5647 {
5648 	return event->attr.comm;
5649 }
5650 
5651 static void perf_event_comm_output(struct perf_event *event,
5652 				   void *data)
5653 {
5654 	struct perf_comm_event *comm_event = data;
5655 	struct perf_output_handle handle;
5656 	struct perf_sample_data sample;
5657 	int size = comm_event->event_id.header.size;
5658 	int ret;
5659 
5660 	if (!perf_event_comm_match(event))
5661 		return;
5662 
5663 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5664 	ret = perf_output_begin(&handle, event,
5665 				comm_event->event_id.header.size);
5666 
5667 	if (ret)
5668 		goto out;
5669 
5670 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5671 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5672 
5673 	perf_output_put(&handle, comm_event->event_id);
5674 	__output_copy(&handle, comm_event->comm,
5675 				   comm_event->comm_size);
5676 
5677 	perf_event__output_id_sample(event, &handle, &sample);
5678 
5679 	perf_output_end(&handle);
5680 out:
5681 	comm_event->event_id.header.size = size;
5682 }
5683 
5684 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5685 {
5686 	char comm[TASK_COMM_LEN];
5687 	unsigned int size;
5688 
5689 	memset(comm, 0, sizeof(comm));
5690 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5691 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5692 
5693 	comm_event->comm = comm;
5694 	comm_event->comm_size = size;
5695 
5696 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5697 
5698 	perf_event_aux(perf_event_comm_output,
5699 		       comm_event,
5700 		       NULL);
5701 }
5702 
5703 void perf_event_comm(struct task_struct *task, bool exec)
5704 {
5705 	struct perf_comm_event comm_event;
5706 
5707 	if (!atomic_read(&nr_comm_events))
5708 		return;
5709 
5710 	comm_event = (struct perf_comm_event){
5711 		.task	= task,
5712 		/* .comm      */
5713 		/* .comm_size */
5714 		.event_id  = {
5715 			.header = {
5716 				.type = PERF_RECORD_COMM,
5717 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5718 				/* .size */
5719 			},
5720 			/* .pid */
5721 			/* .tid */
5722 		},
5723 	};
5724 
5725 	perf_event_comm_event(&comm_event);
5726 }
5727 
5728 /*
5729  * mmap tracking
5730  */
5731 
5732 struct perf_mmap_event {
5733 	struct vm_area_struct	*vma;
5734 
5735 	const char		*file_name;
5736 	int			file_size;
5737 	int			maj, min;
5738 	u64			ino;
5739 	u64			ino_generation;
5740 	u32			prot, flags;
5741 
5742 	struct {
5743 		struct perf_event_header	header;
5744 
5745 		u32				pid;
5746 		u32				tid;
5747 		u64				start;
5748 		u64				len;
5749 		u64				pgoff;
5750 	} event_id;
5751 };
5752 
5753 static int perf_event_mmap_match(struct perf_event *event,
5754 				 void *data)
5755 {
5756 	struct perf_mmap_event *mmap_event = data;
5757 	struct vm_area_struct *vma = mmap_event->vma;
5758 	int executable = vma->vm_flags & VM_EXEC;
5759 
5760 	return (!executable && event->attr.mmap_data) ||
5761 	       (executable && (event->attr.mmap || event->attr.mmap2));
5762 }
5763 
5764 static void perf_event_mmap_output(struct perf_event *event,
5765 				   void *data)
5766 {
5767 	struct perf_mmap_event *mmap_event = data;
5768 	struct perf_output_handle handle;
5769 	struct perf_sample_data sample;
5770 	int size = mmap_event->event_id.header.size;
5771 	int ret;
5772 
5773 	if (!perf_event_mmap_match(event, data))
5774 		return;
5775 
5776 	if (event->attr.mmap2) {
5777 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5778 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5779 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5780 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5781 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5782 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5783 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5784 	}
5785 
5786 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5787 	ret = perf_output_begin(&handle, event,
5788 				mmap_event->event_id.header.size);
5789 	if (ret)
5790 		goto out;
5791 
5792 	mmap_event->event_id.pid = perf_event_pid(event, current);
5793 	mmap_event->event_id.tid = perf_event_tid(event, current);
5794 
5795 	perf_output_put(&handle, mmap_event->event_id);
5796 
5797 	if (event->attr.mmap2) {
5798 		perf_output_put(&handle, mmap_event->maj);
5799 		perf_output_put(&handle, mmap_event->min);
5800 		perf_output_put(&handle, mmap_event->ino);
5801 		perf_output_put(&handle, mmap_event->ino_generation);
5802 		perf_output_put(&handle, mmap_event->prot);
5803 		perf_output_put(&handle, mmap_event->flags);
5804 	}
5805 
5806 	__output_copy(&handle, mmap_event->file_name,
5807 				   mmap_event->file_size);
5808 
5809 	perf_event__output_id_sample(event, &handle, &sample);
5810 
5811 	perf_output_end(&handle);
5812 out:
5813 	mmap_event->event_id.header.size = size;
5814 }
5815 
5816 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5817 {
5818 	struct vm_area_struct *vma = mmap_event->vma;
5819 	struct file *file = vma->vm_file;
5820 	int maj = 0, min = 0;
5821 	u64 ino = 0, gen = 0;
5822 	u32 prot = 0, flags = 0;
5823 	unsigned int size;
5824 	char tmp[16];
5825 	char *buf = NULL;
5826 	char *name;
5827 
5828 	if (file) {
5829 		struct inode *inode;
5830 		dev_t dev;
5831 
5832 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5833 		if (!buf) {
5834 			name = "//enomem";
5835 			goto cpy_name;
5836 		}
5837 		/*
5838 		 * d_path() works from the end of the rb backwards, so we
5839 		 * need to add enough zero bytes after the string to handle
5840 		 * the 64bit alignment we do later.
5841 		 */
5842 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5843 		if (IS_ERR(name)) {
5844 			name = "//toolong";
5845 			goto cpy_name;
5846 		}
5847 		inode = file_inode(vma->vm_file);
5848 		dev = inode->i_sb->s_dev;
5849 		ino = inode->i_ino;
5850 		gen = inode->i_generation;
5851 		maj = MAJOR(dev);
5852 		min = MINOR(dev);
5853 
5854 		if (vma->vm_flags & VM_READ)
5855 			prot |= PROT_READ;
5856 		if (vma->vm_flags & VM_WRITE)
5857 			prot |= PROT_WRITE;
5858 		if (vma->vm_flags & VM_EXEC)
5859 			prot |= PROT_EXEC;
5860 
5861 		if (vma->vm_flags & VM_MAYSHARE)
5862 			flags = MAP_SHARED;
5863 		else
5864 			flags = MAP_PRIVATE;
5865 
5866 		if (vma->vm_flags & VM_DENYWRITE)
5867 			flags |= MAP_DENYWRITE;
5868 		if (vma->vm_flags & VM_MAYEXEC)
5869 			flags |= MAP_EXECUTABLE;
5870 		if (vma->vm_flags & VM_LOCKED)
5871 			flags |= MAP_LOCKED;
5872 		if (vma->vm_flags & VM_HUGETLB)
5873 			flags |= MAP_HUGETLB;
5874 
5875 		goto got_name;
5876 	} else {
5877 		if (vma->vm_ops && vma->vm_ops->name) {
5878 			name = (char *) vma->vm_ops->name(vma);
5879 			if (name)
5880 				goto cpy_name;
5881 		}
5882 
5883 		name = (char *)arch_vma_name(vma);
5884 		if (name)
5885 			goto cpy_name;
5886 
5887 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5888 				vma->vm_end >= vma->vm_mm->brk) {
5889 			name = "[heap]";
5890 			goto cpy_name;
5891 		}
5892 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5893 				vma->vm_end >= vma->vm_mm->start_stack) {
5894 			name = "[stack]";
5895 			goto cpy_name;
5896 		}
5897 
5898 		name = "//anon";
5899 		goto cpy_name;
5900 	}
5901 
5902 cpy_name:
5903 	strlcpy(tmp, name, sizeof(tmp));
5904 	name = tmp;
5905 got_name:
5906 	/*
5907 	 * Since our buffer works in 8 byte units we need to align our string
5908 	 * size to a multiple of 8. However, we must guarantee the tail end is
5909 	 * zero'd out to avoid leaking random bits to userspace.
5910 	 */
5911 	size = strlen(name)+1;
5912 	while (!IS_ALIGNED(size, sizeof(u64)))
5913 		name[size++] = '\0';
5914 
5915 	mmap_event->file_name = name;
5916 	mmap_event->file_size = size;
5917 	mmap_event->maj = maj;
5918 	mmap_event->min = min;
5919 	mmap_event->ino = ino;
5920 	mmap_event->ino_generation = gen;
5921 	mmap_event->prot = prot;
5922 	mmap_event->flags = flags;
5923 
5924 	if (!(vma->vm_flags & VM_EXEC))
5925 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5926 
5927 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5928 
5929 	perf_event_aux(perf_event_mmap_output,
5930 		       mmap_event,
5931 		       NULL);
5932 
5933 	kfree(buf);
5934 }
5935 
5936 void perf_event_mmap(struct vm_area_struct *vma)
5937 {
5938 	struct perf_mmap_event mmap_event;
5939 
5940 	if (!atomic_read(&nr_mmap_events))
5941 		return;
5942 
5943 	mmap_event = (struct perf_mmap_event){
5944 		.vma	= vma,
5945 		/* .file_name */
5946 		/* .file_size */
5947 		.event_id  = {
5948 			.header = {
5949 				.type = PERF_RECORD_MMAP,
5950 				.misc = PERF_RECORD_MISC_USER,
5951 				/* .size */
5952 			},
5953 			/* .pid */
5954 			/* .tid */
5955 			.start  = vma->vm_start,
5956 			.len    = vma->vm_end - vma->vm_start,
5957 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5958 		},
5959 		/* .maj (attr_mmap2 only) */
5960 		/* .min (attr_mmap2 only) */
5961 		/* .ino (attr_mmap2 only) */
5962 		/* .ino_generation (attr_mmap2 only) */
5963 		/* .prot (attr_mmap2 only) */
5964 		/* .flags (attr_mmap2 only) */
5965 	};
5966 
5967 	perf_event_mmap_event(&mmap_event);
5968 }
5969 
5970 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5971 			  unsigned long size, u64 flags)
5972 {
5973 	struct perf_output_handle handle;
5974 	struct perf_sample_data sample;
5975 	struct perf_aux_event {
5976 		struct perf_event_header	header;
5977 		u64				offset;
5978 		u64				size;
5979 		u64				flags;
5980 	} rec = {
5981 		.header = {
5982 			.type = PERF_RECORD_AUX,
5983 			.misc = 0,
5984 			.size = sizeof(rec),
5985 		},
5986 		.offset		= head,
5987 		.size		= size,
5988 		.flags		= flags,
5989 	};
5990 	int ret;
5991 
5992 	perf_event_header__init_id(&rec.header, &sample, event);
5993 	ret = perf_output_begin(&handle, event, rec.header.size);
5994 
5995 	if (ret)
5996 		return;
5997 
5998 	perf_output_put(&handle, rec);
5999 	perf_event__output_id_sample(event, &handle, &sample);
6000 
6001 	perf_output_end(&handle);
6002 }
6003 
6004 /*
6005  * Lost/dropped samples logging
6006  */
6007 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6008 {
6009 	struct perf_output_handle handle;
6010 	struct perf_sample_data sample;
6011 	int ret;
6012 
6013 	struct {
6014 		struct perf_event_header	header;
6015 		u64				lost;
6016 	} lost_samples_event = {
6017 		.header = {
6018 			.type = PERF_RECORD_LOST_SAMPLES,
6019 			.misc = 0,
6020 			.size = sizeof(lost_samples_event),
6021 		},
6022 		.lost		= lost,
6023 	};
6024 
6025 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6026 
6027 	ret = perf_output_begin(&handle, event,
6028 				lost_samples_event.header.size);
6029 	if (ret)
6030 		return;
6031 
6032 	perf_output_put(&handle, lost_samples_event);
6033 	perf_event__output_id_sample(event, &handle, &sample);
6034 	perf_output_end(&handle);
6035 }
6036 
6037 /*
6038  * IRQ throttle logging
6039  */
6040 
6041 static void perf_log_throttle(struct perf_event *event, int enable)
6042 {
6043 	struct perf_output_handle handle;
6044 	struct perf_sample_data sample;
6045 	int ret;
6046 
6047 	struct {
6048 		struct perf_event_header	header;
6049 		u64				time;
6050 		u64				id;
6051 		u64				stream_id;
6052 	} throttle_event = {
6053 		.header = {
6054 			.type = PERF_RECORD_THROTTLE,
6055 			.misc = 0,
6056 			.size = sizeof(throttle_event),
6057 		},
6058 		.time		= perf_event_clock(event),
6059 		.id		= primary_event_id(event),
6060 		.stream_id	= event->id,
6061 	};
6062 
6063 	if (enable)
6064 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6065 
6066 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6067 
6068 	ret = perf_output_begin(&handle, event,
6069 				throttle_event.header.size);
6070 	if (ret)
6071 		return;
6072 
6073 	perf_output_put(&handle, throttle_event);
6074 	perf_event__output_id_sample(event, &handle, &sample);
6075 	perf_output_end(&handle);
6076 }
6077 
6078 static void perf_log_itrace_start(struct perf_event *event)
6079 {
6080 	struct perf_output_handle handle;
6081 	struct perf_sample_data sample;
6082 	struct perf_aux_event {
6083 		struct perf_event_header        header;
6084 		u32				pid;
6085 		u32				tid;
6086 	} rec;
6087 	int ret;
6088 
6089 	if (event->parent)
6090 		event = event->parent;
6091 
6092 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6093 	    event->hw.itrace_started)
6094 		return;
6095 
6096 	event->hw.itrace_started = 1;
6097 
6098 	rec.header.type	= PERF_RECORD_ITRACE_START;
6099 	rec.header.misc	= 0;
6100 	rec.header.size	= sizeof(rec);
6101 	rec.pid	= perf_event_pid(event, current);
6102 	rec.tid	= perf_event_tid(event, current);
6103 
6104 	perf_event_header__init_id(&rec.header, &sample, event);
6105 	ret = perf_output_begin(&handle, event, rec.header.size);
6106 
6107 	if (ret)
6108 		return;
6109 
6110 	perf_output_put(&handle, rec);
6111 	perf_event__output_id_sample(event, &handle, &sample);
6112 
6113 	perf_output_end(&handle);
6114 }
6115 
6116 /*
6117  * Generic event overflow handling, sampling.
6118  */
6119 
6120 static int __perf_event_overflow(struct perf_event *event,
6121 				   int throttle, struct perf_sample_data *data,
6122 				   struct pt_regs *regs)
6123 {
6124 	int events = atomic_read(&event->event_limit);
6125 	struct hw_perf_event *hwc = &event->hw;
6126 	u64 seq;
6127 	int ret = 0;
6128 
6129 	/*
6130 	 * Non-sampling counters might still use the PMI to fold short
6131 	 * hardware counters, ignore those.
6132 	 */
6133 	if (unlikely(!is_sampling_event(event)))
6134 		return 0;
6135 
6136 	seq = __this_cpu_read(perf_throttled_seq);
6137 	if (seq != hwc->interrupts_seq) {
6138 		hwc->interrupts_seq = seq;
6139 		hwc->interrupts = 1;
6140 	} else {
6141 		hwc->interrupts++;
6142 		if (unlikely(throttle
6143 			     && hwc->interrupts >= max_samples_per_tick)) {
6144 			__this_cpu_inc(perf_throttled_count);
6145 			hwc->interrupts = MAX_INTERRUPTS;
6146 			perf_log_throttle(event, 0);
6147 			tick_nohz_full_kick();
6148 			ret = 1;
6149 		}
6150 	}
6151 
6152 	if (event->attr.freq) {
6153 		u64 now = perf_clock();
6154 		s64 delta = now - hwc->freq_time_stamp;
6155 
6156 		hwc->freq_time_stamp = now;
6157 
6158 		if (delta > 0 && delta < 2*TICK_NSEC)
6159 			perf_adjust_period(event, delta, hwc->last_period, true);
6160 	}
6161 
6162 	/*
6163 	 * XXX event_limit might not quite work as expected on inherited
6164 	 * events
6165 	 */
6166 
6167 	event->pending_kill = POLL_IN;
6168 	if (events && atomic_dec_and_test(&event->event_limit)) {
6169 		ret = 1;
6170 		event->pending_kill = POLL_HUP;
6171 		event->pending_disable = 1;
6172 		irq_work_queue(&event->pending);
6173 	}
6174 
6175 	if (event->overflow_handler)
6176 		event->overflow_handler(event, data, regs);
6177 	else
6178 		perf_event_output(event, data, regs);
6179 
6180 	if (event->fasync && event->pending_kill) {
6181 		event->pending_wakeup = 1;
6182 		irq_work_queue(&event->pending);
6183 	}
6184 
6185 	return ret;
6186 }
6187 
6188 int perf_event_overflow(struct perf_event *event,
6189 			  struct perf_sample_data *data,
6190 			  struct pt_regs *regs)
6191 {
6192 	return __perf_event_overflow(event, 1, data, regs);
6193 }
6194 
6195 /*
6196  * Generic software event infrastructure
6197  */
6198 
6199 struct swevent_htable {
6200 	struct swevent_hlist		*swevent_hlist;
6201 	struct mutex			hlist_mutex;
6202 	int				hlist_refcount;
6203 
6204 	/* Recursion avoidance in each contexts */
6205 	int				recursion[PERF_NR_CONTEXTS];
6206 
6207 	/* Keeps track of cpu being initialized/exited */
6208 	bool				online;
6209 };
6210 
6211 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6212 
6213 /*
6214  * We directly increment event->count and keep a second value in
6215  * event->hw.period_left to count intervals. This period event
6216  * is kept in the range [-sample_period, 0] so that we can use the
6217  * sign as trigger.
6218  */
6219 
6220 u64 perf_swevent_set_period(struct perf_event *event)
6221 {
6222 	struct hw_perf_event *hwc = &event->hw;
6223 	u64 period = hwc->last_period;
6224 	u64 nr, offset;
6225 	s64 old, val;
6226 
6227 	hwc->last_period = hwc->sample_period;
6228 
6229 again:
6230 	old = val = local64_read(&hwc->period_left);
6231 	if (val < 0)
6232 		return 0;
6233 
6234 	nr = div64_u64(period + val, period);
6235 	offset = nr * period;
6236 	val -= offset;
6237 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6238 		goto again;
6239 
6240 	return nr;
6241 }
6242 
6243 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6244 				    struct perf_sample_data *data,
6245 				    struct pt_regs *regs)
6246 {
6247 	struct hw_perf_event *hwc = &event->hw;
6248 	int throttle = 0;
6249 
6250 	if (!overflow)
6251 		overflow = perf_swevent_set_period(event);
6252 
6253 	if (hwc->interrupts == MAX_INTERRUPTS)
6254 		return;
6255 
6256 	for (; overflow; overflow--) {
6257 		if (__perf_event_overflow(event, throttle,
6258 					    data, regs)) {
6259 			/*
6260 			 * We inhibit the overflow from happening when
6261 			 * hwc->interrupts == MAX_INTERRUPTS.
6262 			 */
6263 			break;
6264 		}
6265 		throttle = 1;
6266 	}
6267 }
6268 
6269 static void perf_swevent_event(struct perf_event *event, u64 nr,
6270 			       struct perf_sample_data *data,
6271 			       struct pt_regs *regs)
6272 {
6273 	struct hw_perf_event *hwc = &event->hw;
6274 
6275 	local64_add(nr, &event->count);
6276 
6277 	if (!regs)
6278 		return;
6279 
6280 	if (!is_sampling_event(event))
6281 		return;
6282 
6283 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6284 		data->period = nr;
6285 		return perf_swevent_overflow(event, 1, data, regs);
6286 	} else
6287 		data->period = event->hw.last_period;
6288 
6289 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6290 		return perf_swevent_overflow(event, 1, data, regs);
6291 
6292 	if (local64_add_negative(nr, &hwc->period_left))
6293 		return;
6294 
6295 	perf_swevent_overflow(event, 0, data, regs);
6296 }
6297 
6298 static int perf_exclude_event(struct perf_event *event,
6299 			      struct pt_regs *regs)
6300 {
6301 	if (event->hw.state & PERF_HES_STOPPED)
6302 		return 1;
6303 
6304 	if (regs) {
6305 		if (event->attr.exclude_user && user_mode(regs))
6306 			return 1;
6307 
6308 		if (event->attr.exclude_kernel && !user_mode(regs))
6309 			return 1;
6310 	}
6311 
6312 	return 0;
6313 }
6314 
6315 static int perf_swevent_match(struct perf_event *event,
6316 				enum perf_type_id type,
6317 				u32 event_id,
6318 				struct perf_sample_data *data,
6319 				struct pt_regs *regs)
6320 {
6321 	if (event->attr.type != type)
6322 		return 0;
6323 
6324 	if (event->attr.config != event_id)
6325 		return 0;
6326 
6327 	if (perf_exclude_event(event, regs))
6328 		return 0;
6329 
6330 	return 1;
6331 }
6332 
6333 static inline u64 swevent_hash(u64 type, u32 event_id)
6334 {
6335 	u64 val = event_id | (type << 32);
6336 
6337 	return hash_64(val, SWEVENT_HLIST_BITS);
6338 }
6339 
6340 static inline struct hlist_head *
6341 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6342 {
6343 	u64 hash = swevent_hash(type, event_id);
6344 
6345 	return &hlist->heads[hash];
6346 }
6347 
6348 /* For the read side: events when they trigger */
6349 static inline struct hlist_head *
6350 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6351 {
6352 	struct swevent_hlist *hlist;
6353 
6354 	hlist = rcu_dereference(swhash->swevent_hlist);
6355 	if (!hlist)
6356 		return NULL;
6357 
6358 	return __find_swevent_head(hlist, type, event_id);
6359 }
6360 
6361 /* For the event head insertion and removal in the hlist */
6362 static inline struct hlist_head *
6363 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6364 {
6365 	struct swevent_hlist *hlist;
6366 	u32 event_id = event->attr.config;
6367 	u64 type = event->attr.type;
6368 
6369 	/*
6370 	 * Event scheduling is always serialized against hlist allocation
6371 	 * and release. Which makes the protected version suitable here.
6372 	 * The context lock guarantees that.
6373 	 */
6374 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6375 					  lockdep_is_held(&event->ctx->lock));
6376 	if (!hlist)
6377 		return NULL;
6378 
6379 	return __find_swevent_head(hlist, type, event_id);
6380 }
6381 
6382 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6383 				    u64 nr,
6384 				    struct perf_sample_data *data,
6385 				    struct pt_regs *regs)
6386 {
6387 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6388 	struct perf_event *event;
6389 	struct hlist_head *head;
6390 
6391 	rcu_read_lock();
6392 	head = find_swevent_head_rcu(swhash, type, event_id);
6393 	if (!head)
6394 		goto end;
6395 
6396 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6397 		if (perf_swevent_match(event, type, event_id, data, regs))
6398 			perf_swevent_event(event, nr, data, regs);
6399 	}
6400 end:
6401 	rcu_read_unlock();
6402 }
6403 
6404 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6405 
6406 int perf_swevent_get_recursion_context(void)
6407 {
6408 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6409 
6410 	return get_recursion_context(swhash->recursion);
6411 }
6412 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6413 
6414 inline void perf_swevent_put_recursion_context(int rctx)
6415 {
6416 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6417 
6418 	put_recursion_context(swhash->recursion, rctx);
6419 }
6420 
6421 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6422 {
6423 	struct perf_sample_data data;
6424 
6425 	if (WARN_ON_ONCE(!regs))
6426 		return;
6427 
6428 	perf_sample_data_init(&data, addr, 0);
6429 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6430 }
6431 
6432 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6433 {
6434 	int rctx;
6435 
6436 	preempt_disable_notrace();
6437 	rctx = perf_swevent_get_recursion_context();
6438 	if (unlikely(rctx < 0))
6439 		goto fail;
6440 
6441 	___perf_sw_event(event_id, nr, regs, addr);
6442 
6443 	perf_swevent_put_recursion_context(rctx);
6444 fail:
6445 	preempt_enable_notrace();
6446 }
6447 
6448 static void perf_swevent_read(struct perf_event *event)
6449 {
6450 }
6451 
6452 static int perf_swevent_add(struct perf_event *event, int flags)
6453 {
6454 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6455 	struct hw_perf_event *hwc = &event->hw;
6456 	struct hlist_head *head;
6457 
6458 	if (is_sampling_event(event)) {
6459 		hwc->last_period = hwc->sample_period;
6460 		perf_swevent_set_period(event);
6461 	}
6462 
6463 	hwc->state = !(flags & PERF_EF_START);
6464 
6465 	head = find_swevent_head(swhash, event);
6466 	if (!head) {
6467 		/*
6468 		 * We can race with cpu hotplug code. Do not
6469 		 * WARN if the cpu just got unplugged.
6470 		 */
6471 		WARN_ON_ONCE(swhash->online);
6472 		return -EINVAL;
6473 	}
6474 
6475 	hlist_add_head_rcu(&event->hlist_entry, head);
6476 	perf_event_update_userpage(event);
6477 
6478 	return 0;
6479 }
6480 
6481 static void perf_swevent_del(struct perf_event *event, int flags)
6482 {
6483 	hlist_del_rcu(&event->hlist_entry);
6484 }
6485 
6486 static void perf_swevent_start(struct perf_event *event, int flags)
6487 {
6488 	event->hw.state = 0;
6489 }
6490 
6491 static void perf_swevent_stop(struct perf_event *event, int flags)
6492 {
6493 	event->hw.state = PERF_HES_STOPPED;
6494 }
6495 
6496 /* Deref the hlist from the update side */
6497 static inline struct swevent_hlist *
6498 swevent_hlist_deref(struct swevent_htable *swhash)
6499 {
6500 	return rcu_dereference_protected(swhash->swevent_hlist,
6501 					 lockdep_is_held(&swhash->hlist_mutex));
6502 }
6503 
6504 static void swevent_hlist_release(struct swevent_htable *swhash)
6505 {
6506 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6507 
6508 	if (!hlist)
6509 		return;
6510 
6511 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6512 	kfree_rcu(hlist, rcu_head);
6513 }
6514 
6515 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6516 {
6517 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6518 
6519 	mutex_lock(&swhash->hlist_mutex);
6520 
6521 	if (!--swhash->hlist_refcount)
6522 		swevent_hlist_release(swhash);
6523 
6524 	mutex_unlock(&swhash->hlist_mutex);
6525 }
6526 
6527 static void swevent_hlist_put(struct perf_event *event)
6528 {
6529 	int cpu;
6530 
6531 	for_each_possible_cpu(cpu)
6532 		swevent_hlist_put_cpu(event, cpu);
6533 }
6534 
6535 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6536 {
6537 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6538 	int err = 0;
6539 
6540 	mutex_lock(&swhash->hlist_mutex);
6541 
6542 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6543 		struct swevent_hlist *hlist;
6544 
6545 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6546 		if (!hlist) {
6547 			err = -ENOMEM;
6548 			goto exit;
6549 		}
6550 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6551 	}
6552 	swhash->hlist_refcount++;
6553 exit:
6554 	mutex_unlock(&swhash->hlist_mutex);
6555 
6556 	return err;
6557 }
6558 
6559 static int swevent_hlist_get(struct perf_event *event)
6560 {
6561 	int err;
6562 	int cpu, failed_cpu;
6563 
6564 	get_online_cpus();
6565 	for_each_possible_cpu(cpu) {
6566 		err = swevent_hlist_get_cpu(event, cpu);
6567 		if (err) {
6568 			failed_cpu = cpu;
6569 			goto fail;
6570 		}
6571 	}
6572 	put_online_cpus();
6573 
6574 	return 0;
6575 fail:
6576 	for_each_possible_cpu(cpu) {
6577 		if (cpu == failed_cpu)
6578 			break;
6579 		swevent_hlist_put_cpu(event, cpu);
6580 	}
6581 
6582 	put_online_cpus();
6583 	return err;
6584 }
6585 
6586 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6587 
6588 static void sw_perf_event_destroy(struct perf_event *event)
6589 {
6590 	u64 event_id = event->attr.config;
6591 
6592 	WARN_ON(event->parent);
6593 
6594 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6595 	swevent_hlist_put(event);
6596 }
6597 
6598 static int perf_swevent_init(struct perf_event *event)
6599 {
6600 	u64 event_id = event->attr.config;
6601 
6602 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6603 		return -ENOENT;
6604 
6605 	/*
6606 	 * no branch sampling for software events
6607 	 */
6608 	if (has_branch_stack(event))
6609 		return -EOPNOTSUPP;
6610 
6611 	switch (event_id) {
6612 	case PERF_COUNT_SW_CPU_CLOCK:
6613 	case PERF_COUNT_SW_TASK_CLOCK:
6614 		return -ENOENT;
6615 
6616 	default:
6617 		break;
6618 	}
6619 
6620 	if (event_id >= PERF_COUNT_SW_MAX)
6621 		return -ENOENT;
6622 
6623 	if (!event->parent) {
6624 		int err;
6625 
6626 		err = swevent_hlist_get(event);
6627 		if (err)
6628 			return err;
6629 
6630 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6631 		event->destroy = sw_perf_event_destroy;
6632 	}
6633 
6634 	return 0;
6635 }
6636 
6637 static struct pmu perf_swevent = {
6638 	.task_ctx_nr	= perf_sw_context,
6639 
6640 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6641 
6642 	.event_init	= perf_swevent_init,
6643 	.add		= perf_swevent_add,
6644 	.del		= perf_swevent_del,
6645 	.start		= perf_swevent_start,
6646 	.stop		= perf_swevent_stop,
6647 	.read		= perf_swevent_read,
6648 };
6649 
6650 #ifdef CONFIG_EVENT_TRACING
6651 
6652 static int perf_tp_filter_match(struct perf_event *event,
6653 				struct perf_sample_data *data)
6654 {
6655 	void *record = data->raw->data;
6656 
6657 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6658 		return 1;
6659 	return 0;
6660 }
6661 
6662 static int perf_tp_event_match(struct perf_event *event,
6663 				struct perf_sample_data *data,
6664 				struct pt_regs *regs)
6665 {
6666 	if (event->hw.state & PERF_HES_STOPPED)
6667 		return 0;
6668 	/*
6669 	 * All tracepoints are from kernel-space.
6670 	 */
6671 	if (event->attr.exclude_kernel)
6672 		return 0;
6673 
6674 	if (!perf_tp_filter_match(event, data))
6675 		return 0;
6676 
6677 	return 1;
6678 }
6679 
6680 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6681 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6682 		   struct task_struct *task)
6683 {
6684 	struct perf_sample_data data;
6685 	struct perf_event *event;
6686 
6687 	struct perf_raw_record raw = {
6688 		.size = entry_size,
6689 		.data = record,
6690 	};
6691 
6692 	perf_sample_data_init(&data, addr, 0);
6693 	data.raw = &raw;
6694 
6695 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6696 		if (perf_tp_event_match(event, &data, regs))
6697 			perf_swevent_event(event, count, &data, regs);
6698 	}
6699 
6700 	/*
6701 	 * If we got specified a target task, also iterate its context and
6702 	 * deliver this event there too.
6703 	 */
6704 	if (task && task != current) {
6705 		struct perf_event_context *ctx;
6706 		struct trace_entry *entry = record;
6707 
6708 		rcu_read_lock();
6709 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6710 		if (!ctx)
6711 			goto unlock;
6712 
6713 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6714 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6715 				continue;
6716 			if (event->attr.config != entry->type)
6717 				continue;
6718 			if (perf_tp_event_match(event, &data, regs))
6719 				perf_swevent_event(event, count, &data, regs);
6720 		}
6721 unlock:
6722 		rcu_read_unlock();
6723 	}
6724 
6725 	perf_swevent_put_recursion_context(rctx);
6726 }
6727 EXPORT_SYMBOL_GPL(perf_tp_event);
6728 
6729 static void tp_perf_event_destroy(struct perf_event *event)
6730 {
6731 	perf_trace_destroy(event);
6732 }
6733 
6734 static int perf_tp_event_init(struct perf_event *event)
6735 {
6736 	int err;
6737 
6738 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6739 		return -ENOENT;
6740 
6741 	/*
6742 	 * no branch sampling for tracepoint events
6743 	 */
6744 	if (has_branch_stack(event))
6745 		return -EOPNOTSUPP;
6746 
6747 	err = perf_trace_init(event);
6748 	if (err)
6749 		return err;
6750 
6751 	event->destroy = tp_perf_event_destroy;
6752 
6753 	return 0;
6754 }
6755 
6756 static struct pmu perf_tracepoint = {
6757 	.task_ctx_nr	= perf_sw_context,
6758 
6759 	.event_init	= perf_tp_event_init,
6760 	.add		= perf_trace_add,
6761 	.del		= perf_trace_del,
6762 	.start		= perf_swevent_start,
6763 	.stop		= perf_swevent_stop,
6764 	.read		= perf_swevent_read,
6765 };
6766 
6767 static inline void perf_tp_register(void)
6768 {
6769 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6770 }
6771 
6772 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6773 {
6774 	char *filter_str;
6775 	int ret;
6776 
6777 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6778 		return -EINVAL;
6779 
6780 	filter_str = strndup_user(arg, PAGE_SIZE);
6781 	if (IS_ERR(filter_str))
6782 		return PTR_ERR(filter_str);
6783 
6784 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6785 
6786 	kfree(filter_str);
6787 	return ret;
6788 }
6789 
6790 static void perf_event_free_filter(struct perf_event *event)
6791 {
6792 	ftrace_profile_free_filter(event);
6793 }
6794 
6795 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6796 {
6797 	struct bpf_prog *prog;
6798 
6799 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6800 		return -EINVAL;
6801 
6802 	if (event->tp_event->prog)
6803 		return -EEXIST;
6804 
6805 	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6806 		/* bpf programs can only be attached to kprobes */
6807 		return -EINVAL;
6808 
6809 	prog = bpf_prog_get(prog_fd);
6810 	if (IS_ERR(prog))
6811 		return PTR_ERR(prog);
6812 
6813 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6814 		/* valid fd, but invalid bpf program type */
6815 		bpf_prog_put(prog);
6816 		return -EINVAL;
6817 	}
6818 
6819 	event->tp_event->prog = prog;
6820 
6821 	return 0;
6822 }
6823 
6824 static void perf_event_free_bpf_prog(struct perf_event *event)
6825 {
6826 	struct bpf_prog *prog;
6827 
6828 	if (!event->tp_event)
6829 		return;
6830 
6831 	prog = event->tp_event->prog;
6832 	if (prog) {
6833 		event->tp_event->prog = NULL;
6834 		bpf_prog_put(prog);
6835 	}
6836 }
6837 
6838 #else
6839 
6840 static inline void perf_tp_register(void)
6841 {
6842 }
6843 
6844 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6845 {
6846 	return -ENOENT;
6847 }
6848 
6849 static void perf_event_free_filter(struct perf_event *event)
6850 {
6851 }
6852 
6853 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6854 {
6855 	return -ENOENT;
6856 }
6857 
6858 static void perf_event_free_bpf_prog(struct perf_event *event)
6859 {
6860 }
6861 #endif /* CONFIG_EVENT_TRACING */
6862 
6863 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6864 void perf_bp_event(struct perf_event *bp, void *data)
6865 {
6866 	struct perf_sample_data sample;
6867 	struct pt_regs *regs = data;
6868 
6869 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6870 
6871 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6872 		perf_swevent_event(bp, 1, &sample, regs);
6873 }
6874 #endif
6875 
6876 /*
6877  * hrtimer based swevent callback
6878  */
6879 
6880 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6881 {
6882 	enum hrtimer_restart ret = HRTIMER_RESTART;
6883 	struct perf_sample_data data;
6884 	struct pt_regs *regs;
6885 	struct perf_event *event;
6886 	u64 period;
6887 
6888 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6889 
6890 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6891 		return HRTIMER_NORESTART;
6892 
6893 	event->pmu->read(event);
6894 
6895 	perf_sample_data_init(&data, 0, event->hw.last_period);
6896 	regs = get_irq_regs();
6897 
6898 	if (regs && !perf_exclude_event(event, regs)) {
6899 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6900 			if (__perf_event_overflow(event, 1, &data, regs))
6901 				ret = HRTIMER_NORESTART;
6902 	}
6903 
6904 	period = max_t(u64, 10000, event->hw.sample_period);
6905 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6906 
6907 	return ret;
6908 }
6909 
6910 static void perf_swevent_start_hrtimer(struct perf_event *event)
6911 {
6912 	struct hw_perf_event *hwc = &event->hw;
6913 	s64 period;
6914 
6915 	if (!is_sampling_event(event))
6916 		return;
6917 
6918 	period = local64_read(&hwc->period_left);
6919 	if (period) {
6920 		if (period < 0)
6921 			period = 10000;
6922 
6923 		local64_set(&hwc->period_left, 0);
6924 	} else {
6925 		period = max_t(u64, 10000, hwc->sample_period);
6926 	}
6927 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6928 		      HRTIMER_MODE_REL_PINNED);
6929 }
6930 
6931 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6932 {
6933 	struct hw_perf_event *hwc = &event->hw;
6934 
6935 	if (is_sampling_event(event)) {
6936 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6937 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6938 
6939 		hrtimer_cancel(&hwc->hrtimer);
6940 	}
6941 }
6942 
6943 static void perf_swevent_init_hrtimer(struct perf_event *event)
6944 {
6945 	struct hw_perf_event *hwc = &event->hw;
6946 
6947 	if (!is_sampling_event(event))
6948 		return;
6949 
6950 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6951 	hwc->hrtimer.function = perf_swevent_hrtimer;
6952 
6953 	/*
6954 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6955 	 * mapping and avoid the whole period adjust feedback stuff.
6956 	 */
6957 	if (event->attr.freq) {
6958 		long freq = event->attr.sample_freq;
6959 
6960 		event->attr.sample_period = NSEC_PER_SEC / freq;
6961 		hwc->sample_period = event->attr.sample_period;
6962 		local64_set(&hwc->period_left, hwc->sample_period);
6963 		hwc->last_period = hwc->sample_period;
6964 		event->attr.freq = 0;
6965 	}
6966 }
6967 
6968 /*
6969  * Software event: cpu wall time clock
6970  */
6971 
6972 static void cpu_clock_event_update(struct perf_event *event)
6973 {
6974 	s64 prev;
6975 	u64 now;
6976 
6977 	now = local_clock();
6978 	prev = local64_xchg(&event->hw.prev_count, now);
6979 	local64_add(now - prev, &event->count);
6980 }
6981 
6982 static void cpu_clock_event_start(struct perf_event *event, int flags)
6983 {
6984 	local64_set(&event->hw.prev_count, local_clock());
6985 	perf_swevent_start_hrtimer(event);
6986 }
6987 
6988 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6989 {
6990 	perf_swevent_cancel_hrtimer(event);
6991 	cpu_clock_event_update(event);
6992 }
6993 
6994 static int cpu_clock_event_add(struct perf_event *event, int flags)
6995 {
6996 	if (flags & PERF_EF_START)
6997 		cpu_clock_event_start(event, flags);
6998 	perf_event_update_userpage(event);
6999 
7000 	return 0;
7001 }
7002 
7003 static void cpu_clock_event_del(struct perf_event *event, int flags)
7004 {
7005 	cpu_clock_event_stop(event, flags);
7006 }
7007 
7008 static void cpu_clock_event_read(struct perf_event *event)
7009 {
7010 	cpu_clock_event_update(event);
7011 }
7012 
7013 static int cpu_clock_event_init(struct perf_event *event)
7014 {
7015 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7016 		return -ENOENT;
7017 
7018 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7019 		return -ENOENT;
7020 
7021 	/*
7022 	 * no branch sampling for software events
7023 	 */
7024 	if (has_branch_stack(event))
7025 		return -EOPNOTSUPP;
7026 
7027 	perf_swevent_init_hrtimer(event);
7028 
7029 	return 0;
7030 }
7031 
7032 static struct pmu perf_cpu_clock = {
7033 	.task_ctx_nr	= perf_sw_context,
7034 
7035 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7036 
7037 	.event_init	= cpu_clock_event_init,
7038 	.add		= cpu_clock_event_add,
7039 	.del		= cpu_clock_event_del,
7040 	.start		= cpu_clock_event_start,
7041 	.stop		= cpu_clock_event_stop,
7042 	.read		= cpu_clock_event_read,
7043 };
7044 
7045 /*
7046  * Software event: task time clock
7047  */
7048 
7049 static void task_clock_event_update(struct perf_event *event, u64 now)
7050 {
7051 	u64 prev;
7052 	s64 delta;
7053 
7054 	prev = local64_xchg(&event->hw.prev_count, now);
7055 	delta = now - prev;
7056 	local64_add(delta, &event->count);
7057 }
7058 
7059 static void task_clock_event_start(struct perf_event *event, int flags)
7060 {
7061 	local64_set(&event->hw.prev_count, event->ctx->time);
7062 	perf_swevent_start_hrtimer(event);
7063 }
7064 
7065 static void task_clock_event_stop(struct perf_event *event, int flags)
7066 {
7067 	perf_swevent_cancel_hrtimer(event);
7068 	task_clock_event_update(event, event->ctx->time);
7069 }
7070 
7071 static int task_clock_event_add(struct perf_event *event, int flags)
7072 {
7073 	if (flags & PERF_EF_START)
7074 		task_clock_event_start(event, flags);
7075 	perf_event_update_userpage(event);
7076 
7077 	return 0;
7078 }
7079 
7080 static void task_clock_event_del(struct perf_event *event, int flags)
7081 {
7082 	task_clock_event_stop(event, PERF_EF_UPDATE);
7083 }
7084 
7085 static void task_clock_event_read(struct perf_event *event)
7086 {
7087 	u64 now = perf_clock();
7088 	u64 delta = now - event->ctx->timestamp;
7089 	u64 time = event->ctx->time + delta;
7090 
7091 	task_clock_event_update(event, time);
7092 }
7093 
7094 static int task_clock_event_init(struct perf_event *event)
7095 {
7096 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7097 		return -ENOENT;
7098 
7099 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7100 		return -ENOENT;
7101 
7102 	/*
7103 	 * no branch sampling for software events
7104 	 */
7105 	if (has_branch_stack(event))
7106 		return -EOPNOTSUPP;
7107 
7108 	perf_swevent_init_hrtimer(event);
7109 
7110 	return 0;
7111 }
7112 
7113 static struct pmu perf_task_clock = {
7114 	.task_ctx_nr	= perf_sw_context,
7115 
7116 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7117 
7118 	.event_init	= task_clock_event_init,
7119 	.add		= task_clock_event_add,
7120 	.del		= task_clock_event_del,
7121 	.start		= task_clock_event_start,
7122 	.stop		= task_clock_event_stop,
7123 	.read		= task_clock_event_read,
7124 };
7125 
7126 static void perf_pmu_nop_void(struct pmu *pmu)
7127 {
7128 }
7129 
7130 static int perf_pmu_nop_int(struct pmu *pmu)
7131 {
7132 	return 0;
7133 }
7134 
7135 static void perf_pmu_start_txn(struct pmu *pmu)
7136 {
7137 	perf_pmu_disable(pmu);
7138 }
7139 
7140 static int perf_pmu_commit_txn(struct pmu *pmu)
7141 {
7142 	perf_pmu_enable(pmu);
7143 	return 0;
7144 }
7145 
7146 static void perf_pmu_cancel_txn(struct pmu *pmu)
7147 {
7148 	perf_pmu_enable(pmu);
7149 }
7150 
7151 static int perf_event_idx_default(struct perf_event *event)
7152 {
7153 	return 0;
7154 }
7155 
7156 /*
7157  * Ensures all contexts with the same task_ctx_nr have the same
7158  * pmu_cpu_context too.
7159  */
7160 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7161 {
7162 	struct pmu *pmu;
7163 
7164 	if (ctxn < 0)
7165 		return NULL;
7166 
7167 	list_for_each_entry(pmu, &pmus, entry) {
7168 		if (pmu->task_ctx_nr == ctxn)
7169 			return pmu->pmu_cpu_context;
7170 	}
7171 
7172 	return NULL;
7173 }
7174 
7175 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7176 {
7177 	int cpu;
7178 
7179 	for_each_possible_cpu(cpu) {
7180 		struct perf_cpu_context *cpuctx;
7181 
7182 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7183 
7184 		if (cpuctx->unique_pmu == old_pmu)
7185 			cpuctx->unique_pmu = pmu;
7186 	}
7187 }
7188 
7189 static void free_pmu_context(struct pmu *pmu)
7190 {
7191 	struct pmu *i;
7192 
7193 	mutex_lock(&pmus_lock);
7194 	/*
7195 	 * Like a real lame refcount.
7196 	 */
7197 	list_for_each_entry(i, &pmus, entry) {
7198 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7199 			update_pmu_context(i, pmu);
7200 			goto out;
7201 		}
7202 	}
7203 
7204 	free_percpu(pmu->pmu_cpu_context);
7205 out:
7206 	mutex_unlock(&pmus_lock);
7207 }
7208 static struct idr pmu_idr;
7209 
7210 static ssize_t
7211 type_show(struct device *dev, struct device_attribute *attr, char *page)
7212 {
7213 	struct pmu *pmu = dev_get_drvdata(dev);
7214 
7215 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7216 }
7217 static DEVICE_ATTR_RO(type);
7218 
7219 static ssize_t
7220 perf_event_mux_interval_ms_show(struct device *dev,
7221 				struct device_attribute *attr,
7222 				char *page)
7223 {
7224 	struct pmu *pmu = dev_get_drvdata(dev);
7225 
7226 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7227 }
7228 
7229 static DEFINE_MUTEX(mux_interval_mutex);
7230 
7231 static ssize_t
7232 perf_event_mux_interval_ms_store(struct device *dev,
7233 				 struct device_attribute *attr,
7234 				 const char *buf, size_t count)
7235 {
7236 	struct pmu *pmu = dev_get_drvdata(dev);
7237 	int timer, cpu, ret;
7238 
7239 	ret = kstrtoint(buf, 0, &timer);
7240 	if (ret)
7241 		return ret;
7242 
7243 	if (timer < 1)
7244 		return -EINVAL;
7245 
7246 	/* same value, noting to do */
7247 	if (timer == pmu->hrtimer_interval_ms)
7248 		return count;
7249 
7250 	mutex_lock(&mux_interval_mutex);
7251 	pmu->hrtimer_interval_ms = timer;
7252 
7253 	/* update all cpuctx for this PMU */
7254 	get_online_cpus();
7255 	for_each_online_cpu(cpu) {
7256 		struct perf_cpu_context *cpuctx;
7257 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7258 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7259 
7260 		cpu_function_call(cpu,
7261 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7262 	}
7263 	put_online_cpus();
7264 	mutex_unlock(&mux_interval_mutex);
7265 
7266 	return count;
7267 }
7268 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7269 
7270 static struct attribute *pmu_dev_attrs[] = {
7271 	&dev_attr_type.attr,
7272 	&dev_attr_perf_event_mux_interval_ms.attr,
7273 	NULL,
7274 };
7275 ATTRIBUTE_GROUPS(pmu_dev);
7276 
7277 static int pmu_bus_running;
7278 static struct bus_type pmu_bus = {
7279 	.name		= "event_source",
7280 	.dev_groups	= pmu_dev_groups,
7281 };
7282 
7283 static void pmu_dev_release(struct device *dev)
7284 {
7285 	kfree(dev);
7286 }
7287 
7288 static int pmu_dev_alloc(struct pmu *pmu)
7289 {
7290 	int ret = -ENOMEM;
7291 
7292 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7293 	if (!pmu->dev)
7294 		goto out;
7295 
7296 	pmu->dev->groups = pmu->attr_groups;
7297 	device_initialize(pmu->dev);
7298 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7299 	if (ret)
7300 		goto free_dev;
7301 
7302 	dev_set_drvdata(pmu->dev, pmu);
7303 	pmu->dev->bus = &pmu_bus;
7304 	pmu->dev->release = pmu_dev_release;
7305 	ret = device_add(pmu->dev);
7306 	if (ret)
7307 		goto free_dev;
7308 
7309 out:
7310 	return ret;
7311 
7312 free_dev:
7313 	put_device(pmu->dev);
7314 	goto out;
7315 }
7316 
7317 static struct lock_class_key cpuctx_mutex;
7318 static struct lock_class_key cpuctx_lock;
7319 
7320 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7321 {
7322 	int cpu, ret;
7323 
7324 	mutex_lock(&pmus_lock);
7325 	ret = -ENOMEM;
7326 	pmu->pmu_disable_count = alloc_percpu(int);
7327 	if (!pmu->pmu_disable_count)
7328 		goto unlock;
7329 
7330 	pmu->type = -1;
7331 	if (!name)
7332 		goto skip_type;
7333 	pmu->name = name;
7334 
7335 	if (type < 0) {
7336 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7337 		if (type < 0) {
7338 			ret = type;
7339 			goto free_pdc;
7340 		}
7341 	}
7342 	pmu->type = type;
7343 
7344 	if (pmu_bus_running) {
7345 		ret = pmu_dev_alloc(pmu);
7346 		if (ret)
7347 			goto free_idr;
7348 	}
7349 
7350 skip_type:
7351 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7352 	if (pmu->pmu_cpu_context)
7353 		goto got_cpu_context;
7354 
7355 	ret = -ENOMEM;
7356 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7357 	if (!pmu->pmu_cpu_context)
7358 		goto free_dev;
7359 
7360 	for_each_possible_cpu(cpu) {
7361 		struct perf_cpu_context *cpuctx;
7362 
7363 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7364 		__perf_event_init_context(&cpuctx->ctx);
7365 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7366 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7367 		cpuctx->ctx.pmu = pmu;
7368 
7369 		__perf_mux_hrtimer_init(cpuctx, cpu);
7370 
7371 		cpuctx->unique_pmu = pmu;
7372 	}
7373 
7374 got_cpu_context:
7375 	if (!pmu->start_txn) {
7376 		if (pmu->pmu_enable) {
7377 			/*
7378 			 * If we have pmu_enable/pmu_disable calls, install
7379 			 * transaction stubs that use that to try and batch
7380 			 * hardware accesses.
7381 			 */
7382 			pmu->start_txn  = perf_pmu_start_txn;
7383 			pmu->commit_txn = perf_pmu_commit_txn;
7384 			pmu->cancel_txn = perf_pmu_cancel_txn;
7385 		} else {
7386 			pmu->start_txn  = perf_pmu_nop_void;
7387 			pmu->commit_txn = perf_pmu_nop_int;
7388 			pmu->cancel_txn = perf_pmu_nop_void;
7389 		}
7390 	}
7391 
7392 	if (!pmu->pmu_enable) {
7393 		pmu->pmu_enable  = perf_pmu_nop_void;
7394 		pmu->pmu_disable = perf_pmu_nop_void;
7395 	}
7396 
7397 	if (!pmu->event_idx)
7398 		pmu->event_idx = perf_event_idx_default;
7399 
7400 	list_add_rcu(&pmu->entry, &pmus);
7401 	atomic_set(&pmu->exclusive_cnt, 0);
7402 	ret = 0;
7403 unlock:
7404 	mutex_unlock(&pmus_lock);
7405 
7406 	return ret;
7407 
7408 free_dev:
7409 	device_del(pmu->dev);
7410 	put_device(pmu->dev);
7411 
7412 free_idr:
7413 	if (pmu->type >= PERF_TYPE_MAX)
7414 		idr_remove(&pmu_idr, pmu->type);
7415 
7416 free_pdc:
7417 	free_percpu(pmu->pmu_disable_count);
7418 	goto unlock;
7419 }
7420 EXPORT_SYMBOL_GPL(perf_pmu_register);
7421 
7422 void perf_pmu_unregister(struct pmu *pmu)
7423 {
7424 	mutex_lock(&pmus_lock);
7425 	list_del_rcu(&pmu->entry);
7426 	mutex_unlock(&pmus_lock);
7427 
7428 	/*
7429 	 * We dereference the pmu list under both SRCU and regular RCU, so
7430 	 * synchronize against both of those.
7431 	 */
7432 	synchronize_srcu(&pmus_srcu);
7433 	synchronize_rcu();
7434 
7435 	free_percpu(pmu->pmu_disable_count);
7436 	if (pmu->type >= PERF_TYPE_MAX)
7437 		idr_remove(&pmu_idr, pmu->type);
7438 	device_del(pmu->dev);
7439 	put_device(pmu->dev);
7440 	free_pmu_context(pmu);
7441 }
7442 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7443 
7444 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7445 {
7446 	struct perf_event_context *ctx = NULL;
7447 	int ret;
7448 
7449 	if (!try_module_get(pmu->module))
7450 		return -ENODEV;
7451 
7452 	if (event->group_leader != event) {
7453 		/*
7454 		 * This ctx->mutex can nest when we're called through
7455 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7456 		 */
7457 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7458 						 SINGLE_DEPTH_NESTING);
7459 		BUG_ON(!ctx);
7460 	}
7461 
7462 	event->pmu = pmu;
7463 	ret = pmu->event_init(event);
7464 
7465 	if (ctx)
7466 		perf_event_ctx_unlock(event->group_leader, ctx);
7467 
7468 	if (ret)
7469 		module_put(pmu->module);
7470 
7471 	return ret;
7472 }
7473 
7474 struct pmu *perf_init_event(struct perf_event *event)
7475 {
7476 	struct pmu *pmu = NULL;
7477 	int idx;
7478 	int ret;
7479 
7480 	idx = srcu_read_lock(&pmus_srcu);
7481 
7482 	rcu_read_lock();
7483 	pmu = idr_find(&pmu_idr, event->attr.type);
7484 	rcu_read_unlock();
7485 	if (pmu) {
7486 		ret = perf_try_init_event(pmu, event);
7487 		if (ret)
7488 			pmu = ERR_PTR(ret);
7489 		goto unlock;
7490 	}
7491 
7492 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7493 		ret = perf_try_init_event(pmu, event);
7494 		if (!ret)
7495 			goto unlock;
7496 
7497 		if (ret != -ENOENT) {
7498 			pmu = ERR_PTR(ret);
7499 			goto unlock;
7500 		}
7501 	}
7502 	pmu = ERR_PTR(-ENOENT);
7503 unlock:
7504 	srcu_read_unlock(&pmus_srcu, idx);
7505 
7506 	return pmu;
7507 }
7508 
7509 static void account_event_cpu(struct perf_event *event, int cpu)
7510 {
7511 	if (event->parent)
7512 		return;
7513 
7514 	if (is_cgroup_event(event))
7515 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7516 }
7517 
7518 static void account_event(struct perf_event *event)
7519 {
7520 	if (event->parent)
7521 		return;
7522 
7523 	if (event->attach_state & PERF_ATTACH_TASK)
7524 		static_key_slow_inc(&perf_sched_events.key);
7525 	if (event->attr.mmap || event->attr.mmap_data)
7526 		atomic_inc(&nr_mmap_events);
7527 	if (event->attr.comm)
7528 		atomic_inc(&nr_comm_events);
7529 	if (event->attr.task)
7530 		atomic_inc(&nr_task_events);
7531 	if (event->attr.freq) {
7532 		if (atomic_inc_return(&nr_freq_events) == 1)
7533 			tick_nohz_full_kick_all();
7534 	}
7535 	if (has_branch_stack(event))
7536 		static_key_slow_inc(&perf_sched_events.key);
7537 	if (is_cgroup_event(event))
7538 		static_key_slow_inc(&perf_sched_events.key);
7539 
7540 	account_event_cpu(event, event->cpu);
7541 }
7542 
7543 /*
7544  * Allocate and initialize a event structure
7545  */
7546 static struct perf_event *
7547 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7548 		 struct task_struct *task,
7549 		 struct perf_event *group_leader,
7550 		 struct perf_event *parent_event,
7551 		 perf_overflow_handler_t overflow_handler,
7552 		 void *context, int cgroup_fd)
7553 {
7554 	struct pmu *pmu;
7555 	struct perf_event *event;
7556 	struct hw_perf_event *hwc;
7557 	long err = -EINVAL;
7558 
7559 	if ((unsigned)cpu >= nr_cpu_ids) {
7560 		if (!task || cpu != -1)
7561 			return ERR_PTR(-EINVAL);
7562 	}
7563 
7564 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7565 	if (!event)
7566 		return ERR_PTR(-ENOMEM);
7567 
7568 	/*
7569 	 * Single events are their own group leaders, with an
7570 	 * empty sibling list:
7571 	 */
7572 	if (!group_leader)
7573 		group_leader = event;
7574 
7575 	mutex_init(&event->child_mutex);
7576 	INIT_LIST_HEAD(&event->child_list);
7577 
7578 	INIT_LIST_HEAD(&event->group_entry);
7579 	INIT_LIST_HEAD(&event->event_entry);
7580 	INIT_LIST_HEAD(&event->sibling_list);
7581 	INIT_LIST_HEAD(&event->rb_entry);
7582 	INIT_LIST_HEAD(&event->active_entry);
7583 	INIT_HLIST_NODE(&event->hlist_entry);
7584 
7585 
7586 	init_waitqueue_head(&event->waitq);
7587 	init_irq_work(&event->pending, perf_pending_event);
7588 
7589 	mutex_init(&event->mmap_mutex);
7590 
7591 	atomic_long_set(&event->refcount, 1);
7592 	event->cpu		= cpu;
7593 	event->attr		= *attr;
7594 	event->group_leader	= group_leader;
7595 	event->pmu		= NULL;
7596 	event->oncpu		= -1;
7597 
7598 	event->parent		= parent_event;
7599 
7600 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7601 	event->id		= atomic64_inc_return(&perf_event_id);
7602 
7603 	event->state		= PERF_EVENT_STATE_INACTIVE;
7604 
7605 	if (task) {
7606 		event->attach_state = PERF_ATTACH_TASK;
7607 		/*
7608 		 * XXX pmu::event_init needs to know what task to account to
7609 		 * and we cannot use the ctx information because we need the
7610 		 * pmu before we get a ctx.
7611 		 */
7612 		event->hw.target = task;
7613 	}
7614 
7615 	event->clock = &local_clock;
7616 	if (parent_event)
7617 		event->clock = parent_event->clock;
7618 
7619 	if (!overflow_handler && parent_event) {
7620 		overflow_handler = parent_event->overflow_handler;
7621 		context = parent_event->overflow_handler_context;
7622 	}
7623 
7624 	event->overflow_handler	= overflow_handler;
7625 	event->overflow_handler_context = context;
7626 
7627 	perf_event__state_init(event);
7628 
7629 	pmu = NULL;
7630 
7631 	hwc = &event->hw;
7632 	hwc->sample_period = attr->sample_period;
7633 	if (attr->freq && attr->sample_freq)
7634 		hwc->sample_period = 1;
7635 	hwc->last_period = hwc->sample_period;
7636 
7637 	local64_set(&hwc->period_left, hwc->sample_period);
7638 
7639 	/*
7640 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7641 	 */
7642 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7643 		goto err_ns;
7644 
7645 	if (!has_branch_stack(event))
7646 		event->attr.branch_sample_type = 0;
7647 
7648 	if (cgroup_fd != -1) {
7649 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7650 		if (err)
7651 			goto err_ns;
7652 	}
7653 
7654 	pmu = perf_init_event(event);
7655 	if (!pmu)
7656 		goto err_ns;
7657 	else if (IS_ERR(pmu)) {
7658 		err = PTR_ERR(pmu);
7659 		goto err_ns;
7660 	}
7661 
7662 	err = exclusive_event_init(event);
7663 	if (err)
7664 		goto err_pmu;
7665 
7666 	if (!event->parent) {
7667 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7668 			err = get_callchain_buffers();
7669 			if (err)
7670 				goto err_per_task;
7671 		}
7672 	}
7673 
7674 	return event;
7675 
7676 err_per_task:
7677 	exclusive_event_destroy(event);
7678 
7679 err_pmu:
7680 	if (event->destroy)
7681 		event->destroy(event);
7682 	module_put(pmu->module);
7683 err_ns:
7684 	if (is_cgroup_event(event))
7685 		perf_detach_cgroup(event);
7686 	if (event->ns)
7687 		put_pid_ns(event->ns);
7688 	kfree(event);
7689 
7690 	return ERR_PTR(err);
7691 }
7692 
7693 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7694 			  struct perf_event_attr *attr)
7695 {
7696 	u32 size;
7697 	int ret;
7698 
7699 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7700 		return -EFAULT;
7701 
7702 	/*
7703 	 * zero the full structure, so that a short copy will be nice.
7704 	 */
7705 	memset(attr, 0, sizeof(*attr));
7706 
7707 	ret = get_user(size, &uattr->size);
7708 	if (ret)
7709 		return ret;
7710 
7711 	if (size > PAGE_SIZE)	/* silly large */
7712 		goto err_size;
7713 
7714 	if (!size)		/* abi compat */
7715 		size = PERF_ATTR_SIZE_VER0;
7716 
7717 	if (size < PERF_ATTR_SIZE_VER0)
7718 		goto err_size;
7719 
7720 	/*
7721 	 * If we're handed a bigger struct than we know of,
7722 	 * ensure all the unknown bits are 0 - i.e. new
7723 	 * user-space does not rely on any kernel feature
7724 	 * extensions we dont know about yet.
7725 	 */
7726 	if (size > sizeof(*attr)) {
7727 		unsigned char __user *addr;
7728 		unsigned char __user *end;
7729 		unsigned char val;
7730 
7731 		addr = (void __user *)uattr + sizeof(*attr);
7732 		end  = (void __user *)uattr + size;
7733 
7734 		for (; addr < end; addr++) {
7735 			ret = get_user(val, addr);
7736 			if (ret)
7737 				return ret;
7738 			if (val)
7739 				goto err_size;
7740 		}
7741 		size = sizeof(*attr);
7742 	}
7743 
7744 	ret = copy_from_user(attr, uattr, size);
7745 	if (ret)
7746 		return -EFAULT;
7747 
7748 	if (attr->__reserved_1)
7749 		return -EINVAL;
7750 
7751 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7752 		return -EINVAL;
7753 
7754 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7755 		return -EINVAL;
7756 
7757 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7758 		u64 mask = attr->branch_sample_type;
7759 
7760 		/* only using defined bits */
7761 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7762 			return -EINVAL;
7763 
7764 		/* at least one branch bit must be set */
7765 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7766 			return -EINVAL;
7767 
7768 		/* propagate priv level, when not set for branch */
7769 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7770 
7771 			/* exclude_kernel checked on syscall entry */
7772 			if (!attr->exclude_kernel)
7773 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7774 
7775 			if (!attr->exclude_user)
7776 				mask |= PERF_SAMPLE_BRANCH_USER;
7777 
7778 			if (!attr->exclude_hv)
7779 				mask |= PERF_SAMPLE_BRANCH_HV;
7780 			/*
7781 			 * adjust user setting (for HW filter setup)
7782 			 */
7783 			attr->branch_sample_type = mask;
7784 		}
7785 		/* privileged levels capture (kernel, hv): check permissions */
7786 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7787 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7788 			return -EACCES;
7789 	}
7790 
7791 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7792 		ret = perf_reg_validate(attr->sample_regs_user);
7793 		if (ret)
7794 			return ret;
7795 	}
7796 
7797 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7798 		if (!arch_perf_have_user_stack_dump())
7799 			return -ENOSYS;
7800 
7801 		/*
7802 		 * We have __u32 type for the size, but so far
7803 		 * we can only use __u16 as maximum due to the
7804 		 * __u16 sample size limit.
7805 		 */
7806 		if (attr->sample_stack_user >= USHRT_MAX)
7807 			ret = -EINVAL;
7808 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7809 			ret = -EINVAL;
7810 	}
7811 
7812 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7813 		ret = perf_reg_validate(attr->sample_regs_intr);
7814 out:
7815 	return ret;
7816 
7817 err_size:
7818 	put_user(sizeof(*attr), &uattr->size);
7819 	ret = -E2BIG;
7820 	goto out;
7821 }
7822 
7823 static int
7824 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7825 {
7826 	struct ring_buffer *rb = NULL;
7827 	int ret = -EINVAL;
7828 
7829 	if (!output_event)
7830 		goto set;
7831 
7832 	/* don't allow circular references */
7833 	if (event == output_event)
7834 		goto out;
7835 
7836 	/*
7837 	 * Don't allow cross-cpu buffers
7838 	 */
7839 	if (output_event->cpu != event->cpu)
7840 		goto out;
7841 
7842 	/*
7843 	 * If its not a per-cpu rb, it must be the same task.
7844 	 */
7845 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7846 		goto out;
7847 
7848 	/*
7849 	 * Mixing clocks in the same buffer is trouble you don't need.
7850 	 */
7851 	if (output_event->clock != event->clock)
7852 		goto out;
7853 
7854 	/*
7855 	 * If both events generate aux data, they must be on the same PMU
7856 	 */
7857 	if (has_aux(event) && has_aux(output_event) &&
7858 	    event->pmu != output_event->pmu)
7859 		goto out;
7860 
7861 set:
7862 	mutex_lock(&event->mmap_mutex);
7863 	/* Can't redirect output if we've got an active mmap() */
7864 	if (atomic_read(&event->mmap_count))
7865 		goto unlock;
7866 
7867 	if (output_event) {
7868 		/* get the rb we want to redirect to */
7869 		rb = ring_buffer_get(output_event);
7870 		if (!rb)
7871 			goto unlock;
7872 	}
7873 
7874 	ring_buffer_attach(event, rb);
7875 
7876 	ret = 0;
7877 unlock:
7878 	mutex_unlock(&event->mmap_mutex);
7879 
7880 out:
7881 	return ret;
7882 }
7883 
7884 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7885 {
7886 	if (b < a)
7887 		swap(a, b);
7888 
7889 	mutex_lock(a);
7890 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7891 }
7892 
7893 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7894 {
7895 	bool nmi_safe = false;
7896 
7897 	switch (clk_id) {
7898 	case CLOCK_MONOTONIC:
7899 		event->clock = &ktime_get_mono_fast_ns;
7900 		nmi_safe = true;
7901 		break;
7902 
7903 	case CLOCK_MONOTONIC_RAW:
7904 		event->clock = &ktime_get_raw_fast_ns;
7905 		nmi_safe = true;
7906 		break;
7907 
7908 	case CLOCK_REALTIME:
7909 		event->clock = &ktime_get_real_ns;
7910 		break;
7911 
7912 	case CLOCK_BOOTTIME:
7913 		event->clock = &ktime_get_boot_ns;
7914 		break;
7915 
7916 	case CLOCK_TAI:
7917 		event->clock = &ktime_get_tai_ns;
7918 		break;
7919 
7920 	default:
7921 		return -EINVAL;
7922 	}
7923 
7924 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7925 		return -EINVAL;
7926 
7927 	return 0;
7928 }
7929 
7930 /**
7931  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7932  *
7933  * @attr_uptr:	event_id type attributes for monitoring/sampling
7934  * @pid:		target pid
7935  * @cpu:		target cpu
7936  * @group_fd:		group leader event fd
7937  */
7938 SYSCALL_DEFINE5(perf_event_open,
7939 		struct perf_event_attr __user *, attr_uptr,
7940 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7941 {
7942 	struct perf_event *group_leader = NULL, *output_event = NULL;
7943 	struct perf_event *event, *sibling;
7944 	struct perf_event_attr attr;
7945 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7946 	struct file *event_file = NULL;
7947 	struct fd group = {NULL, 0};
7948 	struct task_struct *task = NULL;
7949 	struct pmu *pmu;
7950 	int event_fd;
7951 	int move_group = 0;
7952 	int err;
7953 	int f_flags = O_RDWR;
7954 	int cgroup_fd = -1;
7955 
7956 	/* for future expandability... */
7957 	if (flags & ~PERF_FLAG_ALL)
7958 		return -EINVAL;
7959 
7960 	err = perf_copy_attr(attr_uptr, &attr);
7961 	if (err)
7962 		return err;
7963 
7964 	if (!attr.exclude_kernel) {
7965 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7966 			return -EACCES;
7967 	}
7968 
7969 	if (attr.freq) {
7970 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7971 			return -EINVAL;
7972 	} else {
7973 		if (attr.sample_period & (1ULL << 63))
7974 			return -EINVAL;
7975 	}
7976 
7977 	/*
7978 	 * In cgroup mode, the pid argument is used to pass the fd
7979 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7980 	 * designates the cpu on which to monitor threads from that
7981 	 * cgroup.
7982 	 */
7983 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7984 		return -EINVAL;
7985 
7986 	if (flags & PERF_FLAG_FD_CLOEXEC)
7987 		f_flags |= O_CLOEXEC;
7988 
7989 	event_fd = get_unused_fd_flags(f_flags);
7990 	if (event_fd < 0)
7991 		return event_fd;
7992 
7993 	if (group_fd != -1) {
7994 		err = perf_fget_light(group_fd, &group);
7995 		if (err)
7996 			goto err_fd;
7997 		group_leader = group.file->private_data;
7998 		if (flags & PERF_FLAG_FD_OUTPUT)
7999 			output_event = group_leader;
8000 		if (flags & PERF_FLAG_FD_NO_GROUP)
8001 			group_leader = NULL;
8002 	}
8003 
8004 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8005 		task = find_lively_task_by_vpid(pid);
8006 		if (IS_ERR(task)) {
8007 			err = PTR_ERR(task);
8008 			goto err_group_fd;
8009 		}
8010 	}
8011 
8012 	if (task && group_leader &&
8013 	    group_leader->attr.inherit != attr.inherit) {
8014 		err = -EINVAL;
8015 		goto err_task;
8016 	}
8017 
8018 	get_online_cpus();
8019 
8020 	if (flags & PERF_FLAG_PID_CGROUP)
8021 		cgroup_fd = pid;
8022 
8023 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8024 				 NULL, NULL, cgroup_fd);
8025 	if (IS_ERR(event)) {
8026 		err = PTR_ERR(event);
8027 		goto err_cpus;
8028 	}
8029 
8030 	if (is_sampling_event(event)) {
8031 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8032 			err = -ENOTSUPP;
8033 			goto err_alloc;
8034 		}
8035 	}
8036 
8037 	account_event(event);
8038 
8039 	/*
8040 	 * Special case software events and allow them to be part of
8041 	 * any hardware group.
8042 	 */
8043 	pmu = event->pmu;
8044 
8045 	if (attr.use_clockid) {
8046 		err = perf_event_set_clock(event, attr.clockid);
8047 		if (err)
8048 			goto err_alloc;
8049 	}
8050 
8051 	if (group_leader &&
8052 	    (is_software_event(event) != is_software_event(group_leader))) {
8053 		if (is_software_event(event)) {
8054 			/*
8055 			 * If event and group_leader are not both a software
8056 			 * event, and event is, then group leader is not.
8057 			 *
8058 			 * Allow the addition of software events to !software
8059 			 * groups, this is safe because software events never
8060 			 * fail to schedule.
8061 			 */
8062 			pmu = group_leader->pmu;
8063 		} else if (is_software_event(group_leader) &&
8064 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8065 			/*
8066 			 * In case the group is a pure software group, and we
8067 			 * try to add a hardware event, move the whole group to
8068 			 * the hardware context.
8069 			 */
8070 			move_group = 1;
8071 		}
8072 	}
8073 
8074 	/*
8075 	 * Get the target context (task or percpu):
8076 	 */
8077 	ctx = find_get_context(pmu, task, event);
8078 	if (IS_ERR(ctx)) {
8079 		err = PTR_ERR(ctx);
8080 		goto err_alloc;
8081 	}
8082 
8083 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8084 		err = -EBUSY;
8085 		goto err_context;
8086 	}
8087 
8088 	if (task) {
8089 		put_task_struct(task);
8090 		task = NULL;
8091 	}
8092 
8093 	/*
8094 	 * Look up the group leader (we will attach this event to it):
8095 	 */
8096 	if (group_leader) {
8097 		err = -EINVAL;
8098 
8099 		/*
8100 		 * Do not allow a recursive hierarchy (this new sibling
8101 		 * becoming part of another group-sibling):
8102 		 */
8103 		if (group_leader->group_leader != group_leader)
8104 			goto err_context;
8105 
8106 		/* All events in a group should have the same clock */
8107 		if (group_leader->clock != event->clock)
8108 			goto err_context;
8109 
8110 		/*
8111 		 * Do not allow to attach to a group in a different
8112 		 * task or CPU context:
8113 		 */
8114 		if (move_group) {
8115 			/*
8116 			 * Make sure we're both on the same task, or both
8117 			 * per-cpu events.
8118 			 */
8119 			if (group_leader->ctx->task != ctx->task)
8120 				goto err_context;
8121 
8122 			/*
8123 			 * Make sure we're both events for the same CPU;
8124 			 * grouping events for different CPUs is broken; since
8125 			 * you can never concurrently schedule them anyhow.
8126 			 */
8127 			if (group_leader->cpu != event->cpu)
8128 				goto err_context;
8129 		} else {
8130 			if (group_leader->ctx != ctx)
8131 				goto err_context;
8132 		}
8133 
8134 		/*
8135 		 * Only a group leader can be exclusive or pinned
8136 		 */
8137 		if (attr.exclusive || attr.pinned)
8138 			goto err_context;
8139 	}
8140 
8141 	if (output_event) {
8142 		err = perf_event_set_output(event, output_event);
8143 		if (err)
8144 			goto err_context;
8145 	}
8146 
8147 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8148 					f_flags);
8149 	if (IS_ERR(event_file)) {
8150 		err = PTR_ERR(event_file);
8151 		goto err_context;
8152 	}
8153 
8154 	if (move_group) {
8155 		gctx = group_leader->ctx;
8156 
8157 		/*
8158 		 * See perf_event_ctx_lock() for comments on the details
8159 		 * of swizzling perf_event::ctx.
8160 		 */
8161 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8162 
8163 		perf_remove_from_context(group_leader, false);
8164 
8165 		list_for_each_entry(sibling, &group_leader->sibling_list,
8166 				    group_entry) {
8167 			perf_remove_from_context(sibling, false);
8168 			put_ctx(gctx);
8169 		}
8170 	} else {
8171 		mutex_lock(&ctx->mutex);
8172 	}
8173 
8174 	WARN_ON_ONCE(ctx->parent_ctx);
8175 
8176 	if (move_group) {
8177 		/*
8178 		 * Wait for everybody to stop referencing the events through
8179 		 * the old lists, before installing it on new lists.
8180 		 */
8181 		synchronize_rcu();
8182 
8183 		/*
8184 		 * Install the group siblings before the group leader.
8185 		 *
8186 		 * Because a group leader will try and install the entire group
8187 		 * (through the sibling list, which is still in-tact), we can
8188 		 * end up with siblings installed in the wrong context.
8189 		 *
8190 		 * By installing siblings first we NO-OP because they're not
8191 		 * reachable through the group lists.
8192 		 */
8193 		list_for_each_entry(sibling, &group_leader->sibling_list,
8194 				    group_entry) {
8195 			perf_event__state_init(sibling);
8196 			perf_install_in_context(ctx, sibling, sibling->cpu);
8197 			get_ctx(ctx);
8198 		}
8199 
8200 		/*
8201 		 * Removing from the context ends up with disabled
8202 		 * event. What we want here is event in the initial
8203 		 * startup state, ready to be add into new context.
8204 		 */
8205 		perf_event__state_init(group_leader);
8206 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8207 		get_ctx(ctx);
8208 	}
8209 
8210 	if (!exclusive_event_installable(event, ctx)) {
8211 		err = -EBUSY;
8212 		mutex_unlock(&ctx->mutex);
8213 		fput(event_file);
8214 		goto err_context;
8215 	}
8216 
8217 	perf_install_in_context(ctx, event, event->cpu);
8218 	perf_unpin_context(ctx);
8219 
8220 	if (move_group) {
8221 		mutex_unlock(&gctx->mutex);
8222 		put_ctx(gctx);
8223 	}
8224 	mutex_unlock(&ctx->mutex);
8225 
8226 	put_online_cpus();
8227 
8228 	event->owner = current;
8229 
8230 	mutex_lock(&current->perf_event_mutex);
8231 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8232 	mutex_unlock(&current->perf_event_mutex);
8233 
8234 	/*
8235 	 * Precalculate sample_data sizes
8236 	 */
8237 	perf_event__header_size(event);
8238 	perf_event__id_header_size(event);
8239 
8240 	/*
8241 	 * Drop the reference on the group_event after placing the
8242 	 * new event on the sibling_list. This ensures destruction
8243 	 * of the group leader will find the pointer to itself in
8244 	 * perf_group_detach().
8245 	 */
8246 	fdput(group);
8247 	fd_install(event_fd, event_file);
8248 	return event_fd;
8249 
8250 err_context:
8251 	perf_unpin_context(ctx);
8252 	put_ctx(ctx);
8253 err_alloc:
8254 	free_event(event);
8255 err_cpus:
8256 	put_online_cpus();
8257 err_task:
8258 	if (task)
8259 		put_task_struct(task);
8260 err_group_fd:
8261 	fdput(group);
8262 err_fd:
8263 	put_unused_fd(event_fd);
8264 	return err;
8265 }
8266 
8267 /**
8268  * perf_event_create_kernel_counter
8269  *
8270  * @attr: attributes of the counter to create
8271  * @cpu: cpu in which the counter is bound
8272  * @task: task to profile (NULL for percpu)
8273  */
8274 struct perf_event *
8275 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8276 				 struct task_struct *task,
8277 				 perf_overflow_handler_t overflow_handler,
8278 				 void *context)
8279 {
8280 	struct perf_event_context *ctx;
8281 	struct perf_event *event;
8282 	int err;
8283 
8284 	/*
8285 	 * Get the target context (task or percpu):
8286 	 */
8287 
8288 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8289 				 overflow_handler, context, -1);
8290 	if (IS_ERR(event)) {
8291 		err = PTR_ERR(event);
8292 		goto err;
8293 	}
8294 
8295 	/* Mark owner so we could distinguish it from user events. */
8296 	event->owner = EVENT_OWNER_KERNEL;
8297 
8298 	account_event(event);
8299 
8300 	ctx = find_get_context(event->pmu, task, event);
8301 	if (IS_ERR(ctx)) {
8302 		err = PTR_ERR(ctx);
8303 		goto err_free;
8304 	}
8305 
8306 	WARN_ON_ONCE(ctx->parent_ctx);
8307 	mutex_lock(&ctx->mutex);
8308 	if (!exclusive_event_installable(event, ctx)) {
8309 		mutex_unlock(&ctx->mutex);
8310 		perf_unpin_context(ctx);
8311 		put_ctx(ctx);
8312 		err = -EBUSY;
8313 		goto err_free;
8314 	}
8315 
8316 	perf_install_in_context(ctx, event, cpu);
8317 	perf_unpin_context(ctx);
8318 	mutex_unlock(&ctx->mutex);
8319 
8320 	return event;
8321 
8322 err_free:
8323 	free_event(event);
8324 err:
8325 	return ERR_PTR(err);
8326 }
8327 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8328 
8329 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8330 {
8331 	struct perf_event_context *src_ctx;
8332 	struct perf_event_context *dst_ctx;
8333 	struct perf_event *event, *tmp;
8334 	LIST_HEAD(events);
8335 
8336 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8337 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8338 
8339 	/*
8340 	 * See perf_event_ctx_lock() for comments on the details
8341 	 * of swizzling perf_event::ctx.
8342 	 */
8343 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8344 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8345 				 event_entry) {
8346 		perf_remove_from_context(event, false);
8347 		unaccount_event_cpu(event, src_cpu);
8348 		put_ctx(src_ctx);
8349 		list_add(&event->migrate_entry, &events);
8350 	}
8351 
8352 	/*
8353 	 * Wait for the events to quiesce before re-instating them.
8354 	 */
8355 	synchronize_rcu();
8356 
8357 	/*
8358 	 * Re-instate events in 2 passes.
8359 	 *
8360 	 * Skip over group leaders and only install siblings on this first
8361 	 * pass, siblings will not get enabled without a leader, however a
8362 	 * leader will enable its siblings, even if those are still on the old
8363 	 * context.
8364 	 */
8365 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8366 		if (event->group_leader == event)
8367 			continue;
8368 
8369 		list_del(&event->migrate_entry);
8370 		if (event->state >= PERF_EVENT_STATE_OFF)
8371 			event->state = PERF_EVENT_STATE_INACTIVE;
8372 		account_event_cpu(event, dst_cpu);
8373 		perf_install_in_context(dst_ctx, event, dst_cpu);
8374 		get_ctx(dst_ctx);
8375 	}
8376 
8377 	/*
8378 	 * Once all the siblings are setup properly, install the group leaders
8379 	 * to make it go.
8380 	 */
8381 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8382 		list_del(&event->migrate_entry);
8383 		if (event->state >= PERF_EVENT_STATE_OFF)
8384 			event->state = PERF_EVENT_STATE_INACTIVE;
8385 		account_event_cpu(event, dst_cpu);
8386 		perf_install_in_context(dst_ctx, event, dst_cpu);
8387 		get_ctx(dst_ctx);
8388 	}
8389 	mutex_unlock(&dst_ctx->mutex);
8390 	mutex_unlock(&src_ctx->mutex);
8391 }
8392 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8393 
8394 static void sync_child_event(struct perf_event *child_event,
8395 			       struct task_struct *child)
8396 {
8397 	struct perf_event *parent_event = child_event->parent;
8398 	u64 child_val;
8399 
8400 	if (child_event->attr.inherit_stat)
8401 		perf_event_read_event(child_event, child);
8402 
8403 	child_val = perf_event_count(child_event);
8404 
8405 	/*
8406 	 * Add back the child's count to the parent's count:
8407 	 */
8408 	atomic64_add(child_val, &parent_event->child_count);
8409 	atomic64_add(child_event->total_time_enabled,
8410 		     &parent_event->child_total_time_enabled);
8411 	atomic64_add(child_event->total_time_running,
8412 		     &parent_event->child_total_time_running);
8413 
8414 	/*
8415 	 * Remove this event from the parent's list
8416 	 */
8417 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8418 	mutex_lock(&parent_event->child_mutex);
8419 	list_del_init(&child_event->child_list);
8420 	mutex_unlock(&parent_event->child_mutex);
8421 
8422 	/*
8423 	 * Make sure user/parent get notified, that we just
8424 	 * lost one event.
8425 	 */
8426 	perf_event_wakeup(parent_event);
8427 
8428 	/*
8429 	 * Release the parent event, if this was the last
8430 	 * reference to it.
8431 	 */
8432 	put_event(parent_event);
8433 }
8434 
8435 static void
8436 __perf_event_exit_task(struct perf_event *child_event,
8437 			 struct perf_event_context *child_ctx,
8438 			 struct task_struct *child)
8439 {
8440 	/*
8441 	 * Do not destroy the 'original' grouping; because of the context
8442 	 * switch optimization the original events could've ended up in a
8443 	 * random child task.
8444 	 *
8445 	 * If we were to destroy the original group, all group related
8446 	 * operations would cease to function properly after this random
8447 	 * child dies.
8448 	 *
8449 	 * Do destroy all inherited groups, we don't care about those
8450 	 * and being thorough is better.
8451 	 */
8452 	perf_remove_from_context(child_event, !!child_event->parent);
8453 
8454 	/*
8455 	 * It can happen that the parent exits first, and has events
8456 	 * that are still around due to the child reference. These
8457 	 * events need to be zapped.
8458 	 */
8459 	if (child_event->parent) {
8460 		sync_child_event(child_event, child);
8461 		free_event(child_event);
8462 	} else {
8463 		child_event->state = PERF_EVENT_STATE_EXIT;
8464 		perf_event_wakeup(child_event);
8465 	}
8466 }
8467 
8468 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8469 {
8470 	struct perf_event *child_event, *next;
8471 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8472 	unsigned long flags;
8473 
8474 	if (likely(!child->perf_event_ctxp[ctxn])) {
8475 		perf_event_task(child, NULL, 0);
8476 		return;
8477 	}
8478 
8479 	local_irq_save(flags);
8480 	/*
8481 	 * We can't reschedule here because interrupts are disabled,
8482 	 * and either child is current or it is a task that can't be
8483 	 * scheduled, so we are now safe from rescheduling changing
8484 	 * our context.
8485 	 */
8486 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8487 
8488 	/*
8489 	 * Take the context lock here so that if find_get_context is
8490 	 * reading child->perf_event_ctxp, we wait until it has
8491 	 * incremented the context's refcount before we do put_ctx below.
8492 	 */
8493 	raw_spin_lock(&child_ctx->lock);
8494 	task_ctx_sched_out(child_ctx);
8495 	child->perf_event_ctxp[ctxn] = NULL;
8496 
8497 	/*
8498 	 * If this context is a clone; unclone it so it can't get
8499 	 * swapped to another process while we're removing all
8500 	 * the events from it.
8501 	 */
8502 	clone_ctx = unclone_ctx(child_ctx);
8503 	update_context_time(child_ctx);
8504 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8505 
8506 	if (clone_ctx)
8507 		put_ctx(clone_ctx);
8508 
8509 	/*
8510 	 * Report the task dead after unscheduling the events so that we
8511 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8512 	 * get a few PERF_RECORD_READ events.
8513 	 */
8514 	perf_event_task(child, child_ctx, 0);
8515 
8516 	/*
8517 	 * We can recurse on the same lock type through:
8518 	 *
8519 	 *   __perf_event_exit_task()
8520 	 *     sync_child_event()
8521 	 *       put_event()
8522 	 *         mutex_lock(&ctx->mutex)
8523 	 *
8524 	 * But since its the parent context it won't be the same instance.
8525 	 */
8526 	mutex_lock(&child_ctx->mutex);
8527 
8528 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8529 		__perf_event_exit_task(child_event, child_ctx, child);
8530 
8531 	mutex_unlock(&child_ctx->mutex);
8532 
8533 	put_ctx(child_ctx);
8534 }
8535 
8536 /*
8537  * When a child task exits, feed back event values to parent events.
8538  */
8539 void perf_event_exit_task(struct task_struct *child)
8540 {
8541 	struct perf_event *event, *tmp;
8542 	int ctxn;
8543 
8544 	mutex_lock(&child->perf_event_mutex);
8545 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8546 				 owner_entry) {
8547 		list_del_init(&event->owner_entry);
8548 
8549 		/*
8550 		 * Ensure the list deletion is visible before we clear
8551 		 * the owner, closes a race against perf_release() where
8552 		 * we need to serialize on the owner->perf_event_mutex.
8553 		 */
8554 		smp_wmb();
8555 		event->owner = NULL;
8556 	}
8557 	mutex_unlock(&child->perf_event_mutex);
8558 
8559 	for_each_task_context_nr(ctxn)
8560 		perf_event_exit_task_context(child, ctxn);
8561 }
8562 
8563 static void perf_free_event(struct perf_event *event,
8564 			    struct perf_event_context *ctx)
8565 {
8566 	struct perf_event *parent = event->parent;
8567 
8568 	if (WARN_ON_ONCE(!parent))
8569 		return;
8570 
8571 	mutex_lock(&parent->child_mutex);
8572 	list_del_init(&event->child_list);
8573 	mutex_unlock(&parent->child_mutex);
8574 
8575 	put_event(parent);
8576 
8577 	raw_spin_lock_irq(&ctx->lock);
8578 	perf_group_detach(event);
8579 	list_del_event(event, ctx);
8580 	raw_spin_unlock_irq(&ctx->lock);
8581 	free_event(event);
8582 }
8583 
8584 /*
8585  * Free an unexposed, unused context as created by inheritance by
8586  * perf_event_init_task below, used by fork() in case of fail.
8587  *
8588  * Not all locks are strictly required, but take them anyway to be nice and
8589  * help out with the lockdep assertions.
8590  */
8591 void perf_event_free_task(struct task_struct *task)
8592 {
8593 	struct perf_event_context *ctx;
8594 	struct perf_event *event, *tmp;
8595 	int ctxn;
8596 
8597 	for_each_task_context_nr(ctxn) {
8598 		ctx = task->perf_event_ctxp[ctxn];
8599 		if (!ctx)
8600 			continue;
8601 
8602 		mutex_lock(&ctx->mutex);
8603 again:
8604 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8605 				group_entry)
8606 			perf_free_event(event, ctx);
8607 
8608 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8609 				group_entry)
8610 			perf_free_event(event, ctx);
8611 
8612 		if (!list_empty(&ctx->pinned_groups) ||
8613 				!list_empty(&ctx->flexible_groups))
8614 			goto again;
8615 
8616 		mutex_unlock(&ctx->mutex);
8617 
8618 		put_ctx(ctx);
8619 	}
8620 }
8621 
8622 void perf_event_delayed_put(struct task_struct *task)
8623 {
8624 	int ctxn;
8625 
8626 	for_each_task_context_nr(ctxn)
8627 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8628 }
8629 
8630 struct perf_event *perf_event_get(unsigned int fd)
8631 {
8632 	int err;
8633 	struct fd f;
8634 	struct perf_event *event;
8635 
8636 	err = perf_fget_light(fd, &f);
8637 	if (err)
8638 		return ERR_PTR(err);
8639 
8640 	event = f.file->private_data;
8641 	atomic_long_inc(&event->refcount);
8642 	fdput(f);
8643 
8644 	return event;
8645 }
8646 
8647 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8648 {
8649 	if (!event)
8650 		return ERR_PTR(-EINVAL);
8651 
8652 	return &event->attr;
8653 }
8654 
8655 /*
8656  * inherit a event from parent task to child task:
8657  */
8658 static struct perf_event *
8659 inherit_event(struct perf_event *parent_event,
8660 	      struct task_struct *parent,
8661 	      struct perf_event_context *parent_ctx,
8662 	      struct task_struct *child,
8663 	      struct perf_event *group_leader,
8664 	      struct perf_event_context *child_ctx)
8665 {
8666 	enum perf_event_active_state parent_state = parent_event->state;
8667 	struct perf_event *child_event;
8668 	unsigned long flags;
8669 
8670 	/*
8671 	 * Instead of creating recursive hierarchies of events,
8672 	 * we link inherited events back to the original parent,
8673 	 * which has a filp for sure, which we use as the reference
8674 	 * count:
8675 	 */
8676 	if (parent_event->parent)
8677 		parent_event = parent_event->parent;
8678 
8679 	child_event = perf_event_alloc(&parent_event->attr,
8680 					   parent_event->cpu,
8681 					   child,
8682 					   group_leader, parent_event,
8683 					   NULL, NULL, -1);
8684 	if (IS_ERR(child_event))
8685 		return child_event;
8686 
8687 	if (is_orphaned_event(parent_event) ||
8688 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8689 		free_event(child_event);
8690 		return NULL;
8691 	}
8692 
8693 	get_ctx(child_ctx);
8694 
8695 	/*
8696 	 * Make the child state follow the state of the parent event,
8697 	 * not its attr.disabled bit.  We hold the parent's mutex,
8698 	 * so we won't race with perf_event_{en, dis}able_family.
8699 	 */
8700 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8701 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8702 	else
8703 		child_event->state = PERF_EVENT_STATE_OFF;
8704 
8705 	if (parent_event->attr.freq) {
8706 		u64 sample_period = parent_event->hw.sample_period;
8707 		struct hw_perf_event *hwc = &child_event->hw;
8708 
8709 		hwc->sample_period = sample_period;
8710 		hwc->last_period   = sample_period;
8711 
8712 		local64_set(&hwc->period_left, sample_period);
8713 	}
8714 
8715 	child_event->ctx = child_ctx;
8716 	child_event->overflow_handler = parent_event->overflow_handler;
8717 	child_event->overflow_handler_context
8718 		= parent_event->overflow_handler_context;
8719 
8720 	/*
8721 	 * Precalculate sample_data sizes
8722 	 */
8723 	perf_event__header_size(child_event);
8724 	perf_event__id_header_size(child_event);
8725 
8726 	/*
8727 	 * Link it up in the child's context:
8728 	 */
8729 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8730 	add_event_to_ctx(child_event, child_ctx);
8731 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8732 
8733 	/*
8734 	 * Link this into the parent event's child list
8735 	 */
8736 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8737 	mutex_lock(&parent_event->child_mutex);
8738 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8739 	mutex_unlock(&parent_event->child_mutex);
8740 
8741 	return child_event;
8742 }
8743 
8744 static int inherit_group(struct perf_event *parent_event,
8745 	      struct task_struct *parent,
8746 	      struct perf_event_context *parent_ctx,
8747 	      struct task_struct *child,
8748 	      struct perf_event_context *child_ctx)
8749 {
8750 	struct perf_event *leader;
8751 	struct perf_event *sub;
8752 	struct perf_event *child_ctr;
8753 
8754 	leader = inherit_event(parent_event, parent, parent_ctx,
8755 				 child, NULL, child_ctx);
8756 	if (IS_ERR(leader))
8757 		return PTR_ERR(leader);
8758 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8759 		child_ctr = inherit_event(sub, parent, parent_ctx,
8760 					    child, leader, child_ctx);
8761 		if (IS_ERR(child_ctr))
8762 			return PTR_ERR(child_ctr);
8763 	}
8764 	return 0;
8765 }
8766 
8767 static int
8768 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8769 		   struct perf_event_context *parent_ctx,
8770 		   struct task_struct *child, int ctxn,
8771 		   int *inherited_all)
8772 {
8773 	int ret;
8774 	struct perf_event_context *child_ctx;
8775 
8776 	if (!event->attr.inherit) {
8777 		*inherited_all = 0;
8778 		return 0;
8779 	}
8780 
8781 	child_ctx = child->perf_event_ctxp[ctxn];
8782 	if (!child_ctx) {
8783 		/*
8784 		 * This is executed from the parent task context, so
8785 		 * inherit events that have been marked for cloning.
8786 		 * First allocate and initialize a context for the
8787 		 * child.
8788 		 */
8789 
8790 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8791 		if (!child_ctx)
8792 			return -ENOMEM;
8793 
8794 		child->perf_event_ctxp[ctxn] = child_ctx;
8795 	}
8796 
8797 	ret = inherit_group(event, parent, parent_ctx,
8798 			    child, child_ctx);
8799 
8800 	if (ret)
8801 		*inherited_all = 0;
8802 
8803 	return ret;
8804 }
8805 
8806 /*
8807  * Initialize the perf_event context in task_struct
8808  */
8809 static int perf_event_init_context(struct task_struct *child, int ctxn)
8810 {
8811 	struct perf_event_context *child_ctx, *parent_ctx;
8812 	struct perf_event_context *cloned_ctx;
8813 	struct perf_event *event;
8814 	struct task_struct *parent = current;
8815 	int inherited_all = 1;
8816 	unsigned long flags;
8817 	int ret = 0;
8818 
8819 	if (likely(!parent->perf_event_ctxp[ctxn]))
8820 		return 0;
8821 
8822 	/*
8823 	 * If the parent's context is a clone, pin it so it won't get
8824 	 * swapped under us.
8825 	 */
8826 	parent_ctx = perf_pin_task_context(parent, ctxn);
8827 	if (!parent_ctx)
8828 		return 0;
8829 
8830 	/*
8831 	 * No need to check if parent_ctx != NULL here; since we saw
8832 	 * it non-NULL earlier, the only reason for it to become NULL
8833 	 * is if we exit, and since we're currently in the middle of
8834 	 * a fork we can't be exiting at the same time.
8835 	 */
8836 
8837 	/*
8838 	 * Lock the parent list. No need to lock the child - not PID
8839 	 * hashed yet and not running, so nobody can access it.
8840 	 */
8841 	mutex_lock(&parent_ctx->mutex);
8842 
8843 	/*
8844 	 * We dont have to disable NMIs - we are only looking at
8845 	 * the list, not manipulating it:
8846 	 */
8847 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8848 		ret = inherit_task_group(event, parent, parent_ctx,
8849 					 child, ctxn, &inherited_all);
8850 		if (ret)
8851 			break;
8852 	}
8853 
8854 	/*
8855 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8856 	 * to allocations, but we need to prevent rotation because
8857 	 * rotate_ctx() will change the list from interrupt context.
8858 	 */
8859 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8860 	parent_ctx->rotate_disable = 1;
8861 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8862 
8863 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8864 		ret = inherit_task_group(event, parent, parent_ctx,
8865 					 child, ctxn, &inherited_all);
8866 		if (ret)
8867 			break;
8868 	}
8869 
8870 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8871 	parent_ctx->rotate_disable = 0;
8872 
8873 	child_ctx = child->perf_event_ctxp[ctxn];
8874 
8875 	if (child_ctx && inherited_all) {
8876 		/*
8877 		 * Mark the child context as a clone of the parent
8878 		 * context, or of whatever the parent is a clone of.
8879 		 *
8880 		 * Note that if the parent is a clone, the holding of
8881 		 * parent_ctx->lock avoids it from being uncloned.
8882 		 */
8883 		cloned_ctx = parent_ctx->parent_ctx;
8884 		if (cloned_ctx) {
8885 			child_ctx->parent_ctx = cloned_ctx;
8886 			child_ctx->parent_gen = parent_ctx->parent_gen;
8887 		} else {
8888 			child_ctx->parent_ctx = parent_ctx;
8889 			child_ctx->parent_gen = parent_ctx->generation;
8890 		}
8891 		get_ctx(child_ctx->parent_ctx);
8892 	}
8893 
8894 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8895 	mutex_unlock(&parent_ctx->mutex);
8896 
8897 	perf_unpin_context(parent_ctx);
8898 	put_ctx(parent_ctx);
8899 
8900 	return ret;
8901 }
8902 
8903 /*
8904  * Initialize the perf_event context in task_struct
8905  */
8906 int perf_event_init_task(struct task_struct *child)
8907 {
8908 	int ctxn, ret;
8909 
8910 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8911 	mutex_init(&child->perf_event_mutex);
8912 	INIT_LIST_HEAD(&child->perf_event_list);
8913 
8914 	for_each_task_context_nr(ctxn) {
8915 		ret = perf_event_init_context(child, ctxn);
8916 		if (ret) {
8917 			perf_event_free_task(child);
8918 			return ret;
8919 		}
8920 	}
8921 
8922 	return 0;
8923 }
8924 
8925 static void __init perf_event_init_all_cpus(void)
8926 {
8927 	struct swevent_htable *swhash;
8928 	int cpu;
8929 
8930 	for_each_possible_cpu(cpu) {
8931 		swhash = &per_cpu(swevent_htable, cpu);
8932 		mutex_init(&swhash->hlist_mutex);
8933 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8934 	}
8935 }
8936 
8937 static void perf_event_init_cpu(int cpu)
8938 {
8939 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8940 
8941 	mutex_lock(&swhash->hlist_mutex);
8942 	swhash->online = true;
8943 	if (swhash->hlist_refcount > 0) {
8944 		struct swevent_hlist *hlist;
8945 
8946 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8947 		WARN_ON(!hlist);
8948 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8949 	}
8950 	mutex_unlock(&swhash->hlist_mutex);
8951 }
8952 
8953 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8954 static void __perf_event_exit_context(void *__info)
8955 {
8956 	struct remove_event re = { .detach_group = true };
8957 	struct perf_event_context *ctx = __info;
8958 
8959 	rcu_read_lock();
8960 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8961 		__perf_remove_from_context(&re);
8962 	rcu_read_unlock();
8963 }
8964 
8965 static void perf_event_exit_cpu_context(int cpu)
8966 {
8967 	struct perf_event_context *ctx;
8968 	struct pmu *pmu;
8969 	int idx;
8970 
8971 	idx = srcu_read_lock(&pmus_srcu);
8972 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8973 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8974 
8975 		mutex_lock(&ctx->mutex);
8976 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8977 		mutex_unlock(&ctx->mutex);
8978 	}
8979 	srcu_read_unlock(&pmus_srcu, idx);
8980 }
8981 
8982 static void perf_event_exit_cpu(int cpu)
8983 {
8984 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8985 
8986 	perf_event_exit_cpu_context(cpu);
8987 
8988 	mutex_lock(&swhash->hlist_mutex);
8989 	swhash->online = false;
8990 	swevent_hlist_release(swhash);
8991 	mutex_unlock(&swhash->hlist_mutex);
8992 }
8993 #else
8994 static inline void perf_event_exit_cpu(int cpu) { }
8995 #endif
8996 
8997 static int
8998 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8999 {
9000 	int cpu;
9001 
9002 	for_each_online_cpu(cpu)
9003 		perf_event_exit_cpu(cpu);
9004 
9005 	return NOTIFY_OK;
9006 }
9007 
9008 /*
9009  * Run the perf reboot notifier at the very last possible moment so that
9010  * the generic watchdog code runs as long as possible.
9011  */
9012 static struct notifier_block perf_reboot_notifier = {
9013 	.notifier_call = perf_reboot,
9014 	.priority = INT_MIN,
9015 };
9016 
9017 static int
9018 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9019 {
9020 	unsigned int cpu = (long)hcpu;
9021 
9022 	switch (action & ~CPU_TASKS_FROZEN) {
9023 
9024 	case CPU_UP_PREPARE:
9025 	case CPU_DOWN_FAILED:
9026 		perf_event_init_cpu(cpu);
9027 		break;
9028 
9029 	case CPU_UP_CANCELED:
9030 	case CPU_DOWN_PREPARE:
9031 		perf_event_exit_cpu(cpu);
9032 		break;
9033 	default:
9034 		break;
9035 	}
9036 
9037 	return NOTIFY_OK;
9038 }
9039 
9040 void __init perf_event_init(void)
9041 {
9042 	int ret;
9043 
9044 	idr_init(&pmu_idr);
9045 
9046 	perf_event_init_all_cpus();
9047 	init_srcu_struct(&pmus_srcu);
9048 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9049 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9050 	perf_pmu_register(&perf_task_clock, NULL, -1);
9051 	perf_tp_register();
9052 	perf_cpu_notifier(perf_cpu_notify);
9053 	register_reboot_notifier(&perf_reboot_notifier);
9054 
9055 	ret = init_hw_breakpoint();
9056 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9057 
9058 	/* do not patch jump label more than once per second */
9059 	jump_label_rate_limit(&perf_sched_events, HZ);
9060 
9061 	/*
9062 	 * Build time assertion that we keep the data_head at the intended
9063 	 * location.  IOW, validation we got the __reserved[] size right.
9064 	 */
9065 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9066 		     != 1024);
9067 }
9068 
9069 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9070 			      char *page)
9071 {
9072 	struct perf_pmu_events_attr *pmu_attr =
9073 		container_of(attr, struct perf_pmu_events_attr, attr);
9074 
9075 	if (pmu_attr->event_str)
9076 		return sprintf(page, "%s\n", pmu_attr->event_str);
9077 
9078 	return 0;
9079 }
9080 
9081 static int __init perf_event_sysfs_init(void)
9082 {
9083 	struct pmu *pmu;
9084 	int ret;
9085 
9086 	mutex_lock(&pmus_lock);
9087 
9088 	ret = bus_register(&pmu_bus);
9089 	if (ret)
9090 		goto unlock;
9091 
9092 	list_for_each_entry(pmu, &pmus, entry) {
9093 		if (!pmu->name || pmu->type < 0)
9094 			continue;
9095 
9096 		ret = pmu_dev_alloc(pmu);
9097 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9098 	}
9099 	pmu_bus_running = 1;
9100 	ret = 0;
9101 
9102 unlock:
9103 	mutex_unlock(&pmus_lock);
9104 
9105 	return ret;
9106 }
9107 device_initcall(perf_event_sysfs_init);
9108 
9109 #ifdef CONFIG_CGROUP_PERF
9110 static struct cgroup_subsys_state *
9111 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9112 {
9113 	struct perf_cgroup *jc;
9114 
9115 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9116 	if (!jc)
9117 		return ERR_PTR(-ENOMEM);
9118 
9119 	jc->info = alloc_percpu(struct perf_cgroup_info);
9120 	if (!jc->info) {
9121 		kfree(jc);
9122 		return ERR_PTR(-ENOMEM);
9123 	}
9124 
9125 	return &jc->css;
9126 }
9127 
9128 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9129 {
9130 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9131 
9132 	free_percpu(jc->info);
9133 	kfree(jc);
9134 }
9135 
9136 static int __perf_cgroup_move(void *info)
9137 {
9138 	struct task_struct *task = info;
9139 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9140 	return 0;
9141 }
9142 
9143 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9144 			       struct cgroup_taskset *tset)
9145 {
9146 	struct task_struct *task;
9147 
9148 	cgroup_taskset_for_each(task, tset)
9149 		task_function_call(task, __perf_cgroup_move, task);
9150 }
9151 
9152 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9153 			     struct cgroup_subsys_state *old_css,
9154 			     struct task_struct *task)
9155 {
9156 	/*
9157 	 * cgroup_exit() is called in the copy_process() failure path.
9158 	 * Ignore this case since the task hasn't ran yet, this avoids
9159 	 * trying to poke a half freed task state from generic code.
9160 	 */
9161 	if (!(task->flags & PF_EXITING))
9162 		return;
9163 
9164 	task_function_call(task, __perf_cgroup_move, task);
9165 }
9166 
9167 struct cgroup_subsys perf_event_cgrp_subsys = {
9168 	.css_alloc	= perf_cgroup_css_alloc,
9169 	.css_free	= perf_cgroup_css_free,
9170 	.exit		= perf_cgroup_exit,
9171 	.attach		= perf_cgroup_attach,
9172 };
9173 #endif /* CONFIG_CGROUP_PERF */
9174